WO2017006824A1 - 冷却排出水の回収方法及び回収装置 - Google Patents

冷却排出水の回収方法及び回収装置 Download PDF

Info

Publication number
WO2017006824A1
WO2017006824A1 PCT/JP2016/069282 JP2016069282W WO2017006824A1 WO 2017006824 A1 WO2017006824 A1 WO 2017006824A1 JP 2016069282 W JP2016069282 W JP 2016069282W WO 2017006824 A1 WO2017006824 A1 WO 2017006824A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
membrane
dispersant
cooling
acid
Prior art date
Application number
PCT/JP2016/069282
Other languages
English (en)
French (fr)
Inventor
邦洋 早川
藤田 和久
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Priority to US15/741,920 priority Critical patent/US11130694B2/en
Priority to SG11201800034TA priority patent/SG11201800034TA/en
Priority to CN201680039207.7A priority patent/CN107735365B/zh
Publication of WO2017006824A1 publication Critical patent/WO2017006824A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/58Multistep processes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • C02F5/08Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents
    • C02F5/10Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • C02F1/004Processes for the treatment of water whereby the filtration technique is of importance using large scale industrial sized filters
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B9/00Auxiliary systems, arrangements, or devices
    • F28B9/04Auxiliary systems, arrangements, or devices for feeding, collecting, and storing cooling water or other cooling liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F25/00Component parts of trickle coolers
    • F28F25/02Component parts of trickle coolers for distributing, circulating, and accumulating liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28GCLEANING OF INTERNAL OR EXTERNAL SURFACES OF HEAT-EXCHANGE OR HEAT-TRANSFER CONDUITS, e.g. WATER TUBES OR BOILERS
    • F28G13/00Appliances or processes not covered by groups F28G1/00 - F28G11/00; Combinations of appliances or processes covered by groups F28G1/00 - F28G11/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/04Specific process operations in the feed stream; Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/12Addition of chemical agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/18Details relating to membrane separation process operations and control pH control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/02Non-contaminated water, e.g. for industrial water supply
    • C02F2103/023Water in cooling circuits
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/16Nature of the water, waste water, sewage or sludge to be treated from metallurgical processes, i.e. from the production, refining or treatment of metals, e.g. galvanic wastes
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/26Nature of the water, waste water, sewage or sludge to be treated from the processing of plants or parts thereof
    • C02F2103/28Nature of the water, waste water, sewage or sludge to be treated from the processing of plants or parts thereof from the paper or cellulose industry
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/08Corrosion inhibition
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/22Eliminating or preventing deposits, scale removal, scale prevention
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • C02F5/08Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents
    • C02F5/10Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances
    • C02F5/105Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances combined with inorganic substances

Definitions

  • the present invention relates to a method and an apparatus for recovering cooling effluent in a cooling facility used in industrial processes such as building air conditioning, chemical industry, paper industry, steel industry, and electric power industry.
  • Water is used as effectively as possible to save water and save energy. In the case of further high concentration operation, scale deposition cannot be suppressed.
  • ⁇ ⁇ ⁇ ⁇ Efforts are being made to collect cooling water blow water with a recovery system and return the treated water to the cooling tower.
  • a reverse osmosis membrane RO membrane
  • ions salts
  • Patent Documents 1 to 4 the following systems have been studied.
  • System 6 is a simple system using only the RO membrane device, but turbidity contained in the blow water clogs the RO membrane, so that stable treatment is difficult.
  • the RO membrane treatment can be stabilized by agglomeration treatment before the RO membrane or removing turbidity in the blown water with the pretreatment membrane.
  • the blow water contains a dispersant added in the circulating cooling water system, and this dispersant inhibits the aggregation treatment.
  • the amount of the flocculant added for the treatment is very large.
  • a dispersant is required to disperse the scale components and stabilize the treatment with a high water recovery rate.
  • the dispersant in the blown water is removed by the pretreatment film. For this reason, in order to stabilize the process of the RO membrane device, it is necessary to add a dispersant to the RO membrane water supply.
  • the inventor can allow the dispersant to permeate the pretreatment membrane by combining the dispersant and the membrane that permeate the pretreatment membrane, and stabilize the RO membrane without newly adding a dispersant to the RO membrane water supply. (Patent Document 4).
  • Patent Document 4 when the cooling discharge water such as blow water of the circulating cooling water system is subjected to RO membrane treatment to recover the water, the dispersant added in the circulating cooling water system permeates as a pretreatment membrane of the RO membrane.
  • the dispersant added in the circulating cooling water system and contained in the cooling discharge water can be effectively used as the RO membrane dispersant by permeating the pretreatment membrane, thereby adding the dispersant in the water recovery system. It can be eliminated or the amount of dispersant added can be reduced to reduce the water treatment cost and to improve and stabilize the water recovery rate.
  • the following inconveniences have been found by further study by the present inventors.
  • Patent Document 4 when a polymer having only a carboxyl group is used as a dispersant, the polymer is insolubilized due to the pH condition of the water recovery system and clogs the pretreatment membrane and the RO membrane. For this reason, in Patent Document 4, a polymer having a sulfonic acid group is used as a polymer that permeates the pretreatment film.
  • this polymer since this polymer has a weak anticorrosive effect, the phosphoric acid, phosphonic acid, polyphosphoric acid, etc. It is necessary to add a phosphoric acid compound and a zinc compound as anticorrosives to the cooling water system.
  • the zinc-based compound is required when the cooling water system piping or the like is an iron material, and it is not necessary to add it if it is a copper material.
  • the present invention improves and stabilizes the water recovery rate while avoiding the problem of phosphorus discharge of the RO membrane concentrated water when recovering the water discharged by treating the cooling discharge water such as blow water of the circulating cooling water system with the RO membrane.
  • a cooling drainage recovery method and a recovery device are provided.
  • the present inventor uses a dispersant having a carboxyl group having a weight average molecular weight of 5,000 or less as a dispersant to be added in the circulating cooling water system when recovering water by subjecting the cooling discharge water such as blow water of the circulating cooling water system to RO membrane treatment.
  • a dispersant having a carboxyl group having a weight average molecular weight of 5,000 or less as a dispersant to be added in the circulating cooling water system when recovering water by subjecting the cooling discharge water such as blow water of the circulating cooling water system to RO membrane treatment.
  • the polymer having a carboxyl group was supposed to block the membrane in Patent Document 4, but the present inventor has found that the membrane is not blocked if the molecular weight is small.
  • a polymer having a carboxyl group having a weight average molecular weight of 5,000 or less permeates through the turbidity equipment and can suppress scale as a scale inhibitor in the RO membrane. Since the polymer having a carboxyl group itself has an anticorrosive effect, it is not necessary to add a phosphate compound as an anticorrosive to the cooling water system, or the required addition amount can be kept low, and the RO membrane concentration An increase in the phosphorus concentration of water can be suppressed.
  • the gist of the present invention is as follows.
  • the polymer having a carboxyl group having a weight average molecular weight of 5,000 or less is a polymer of acrylic acid, methacrylic acid, maleic acid, or epoxy succinic acid, or a copolymer of two or more thereof. Or a method for recovering cooling effluent, which is a salt thereof.
  • the polymer having a sulfonic acid group is methacrylic acid and / or acrylic acid, 3-allyloxy-2-hydroxy-1-propanesulfonic acid and / or 2-acrylamido-2-methylpropane.
  • the turbidity removing device is any one of a filter, a strainer, a bag filter, a spool filter, a disk filter, a microfiltration membrane, and an ultrafiltration membrane. Cooling discharge water recovery method characterized by.
  • the cooling drainage water recovery method is characterized in that the pH of the feed water of the turbidity equipment is 7 or more.
  • a turbidity facility through which discharged water from the circulating cooling water system is passed, a reverse osmosis membrane device through which the permeated water from the turbidity facility is passed, and the permeated water from the reverse osmosis membrane device are circulated and cooled.
  • the cooling drain water recovery apparatus having a return means for returning to the water system
  • the circulating cooling water system has a dispersant addition means for adding a dispersant to the water system, and the dispersant has a weight average molecular weight of 5,000 or less.
  • An apparatus for recovering cooled and discharged water, comprising a polymer having a carboxyl group, wherein the dispersant permeates the turbidity equipment.
  • the polymer having a carboxyl group having a weight average molecular weight of 5,000 or less is a polymer of acrylic acid, methacrylic acid, maleic acid, or epoxy succinic acid, or a copolymer of two or more thereof.
  • a cooling drainage recovery device characterized by being a salt thereof is a polymer of acrylic acid, methacrylic acid, maleic acid, or epoxy succinic acid, or a copolymer of two or more thereof.
  • the polymer having a sulfonic acid group is methacrylic acid and / or acrylic acid, 3-allyloxy-2-hydroxy-1-propanesulfonic acid and / or 2-acrylamido-2-methylpropane.
  • An apparatus for recovering cooling effluent which is a copolymer obtained by copolymerizing sulfonic acid.
  • the turbidity removing device is any one of a filter, a strainer, a bag filter, a spool filter, a disk filter, a microfiltration membrane, and an ultrafiltration membrane. Cooling discharge water recovery device.
  • the present invention by treating the cooling discharge water with the turbidity facility upstream of the RO membrane, turbidity in the cooling discharge water can be removed, and the subsequent RO membrane treatment can be stabilized.
  • the dispersant added in the circulating cooling water system and contained in the cooling discharge water permeates the turbidity equipment, the permeated dispersant can be effectively used as the dispersant for the RO membrane. For this reason, unlike the conventional system, it is not necessary to re-add the dispersant removed in the previous stage of the RO membrane, and the efficiency can be improved economically and in terms of processing operation, and the processing cost is greatly reduced. Can do.
  • the dispersing agent that has permeated the pretreatment membrane it is possible to stabilize the RO membrane treatment and improve the water recovery rate.
  • the polymer having a carboxyl group having a weight average molecular weight of 5,000 or less used as a dispersant in the present invention also has an anticorrosive effect, it is not necessary to add a phosphate compound as an anticorrosive to the cooling water system. Or the required addition amount can be restrained low. For this reason, the phosphorus concentration of the RO membrane concentrated water can be kept low.
  • Cooling effluent Water typically used as cooling effluent for the water recovery process is blow water from the cooling tower.
  • the present invention is not limited to blow water but can be applied to all discharged water discharged from the circulating cooling water system. You may make it return to the said circulating cooling water system, after extracting a part or all of circulating cooling water from the circulating piping of a circulating cooling water system, processing according to this invention. It is also possible to recover the water discharged from the side filter and light filter piping as a treatment target.
  • such cooling discharge water is treated as water to be treated, sequentially treated by a turbidity facility and an RO device, and the treated water is returned to the circulating cooling water system.
  • a polymer having a carboxyl group having a weight average molecular weight of 5,000 or less is added as a dispersant.
  • a polymer having a carboxyl group having a weight average molecular weight of 5,000 or less can be sufficiently treated even if only a polymer having a carboxyl group having a weight average molecular weight of 5,000 or less is used. It is preferable to add a polymer having a sulfonic acid group as the second dispersant.
  • the reason why it is preferable to use the first dispersant and the second dispersant in combination as the dispersant is as follows.
  • a polymer having a carboxyl group with a weight average molecular weight of 5,000 or less can permeate the turbidity equipment and has an anticorrosive effect, and does not require the addition of a phosphate compound as an anticorrosive to the cooling water system. Or the required addition amount can be kept low. For this reason, since the phosphorus concentration of RO membrane concentrated water can be kept low, a polymer having a carboxyl group having a weight average molecular weight of 5,000 or less is used as a dispersant.
  • a polymer having a carboxyl group having a weight average molecular weight of 5,000 or less has a weak dispersion effect of a zinc-based compound added as an anticorrosive agent in a cooling water system, and therefore only a polymer having a carboxyl group having a weight average molecular weight of 5,000 or less is used.
  • zinc is easily scaled in the circulating cooling water system to which the zinc compound is added.
  • a polymer having a carboxyl group with a weight average molecular weight of 5,000 or less as a first dispersant and adding a second dispersant having a sulfonic acid group, scaling of zinc can be prevented.
  • the anticorrosive effect of the cooling water system can be enhanced.
  • a polymer having a sulfonic acid group such as a copolymer of acrylic acid (AA) and 2-acrylamido-2-methylpropanesulfonic acid (AMPS), which will be described later, is added to the circulating cooling water system as a dispersant, and the cooling discharge water is adjusted to pH 5.
  • AA acrylic acid
  • AMPS 2-acrylamido-2-methylpropanesulfonic acid
  • treatment with an RO device allows the polymer having a sulfonic acid group to permeate through the turbidity facility and be effectively used as a dispersant for the RO device. can do.
  • the first dispersant it is particularly preferable to use a polymer having a carboxyl group having a weight average molecular weight of 3,000 or less.
  • the weight average molecular weight of the first dispersant is preferably 1,000 or more.
  • acrylic acid, methacrylic acid, crotonic acid, isocrotonic acid, vinyl acetic acid, atropic acid, maleic acid, fumaric acid, itaconic acid, hydroxyethyl Acrylic acid, succinic acid, epoxy succinic acid, or salts thereof may be mentioned.
  • One homopolymer or two or more copolymers of these monomers can be used as the first dispersant.
  • Particularly preferred is a polymer of acrylic acid, methacrylic acid, maleic acid, or epoxy succinic acid, a copolymer of two or more of these, or a salt thereof.
  • the first dispersant has a carboxyl group and does not have a sulfonic acid group, and is distinguished from the second dispersant.
  • the first dispersant may be used alone or in combination of two or more.
  • the second dispersant is a polymer having a sulfonic acid group, preferably a polymer having a sulfonic acid group and a carboxyl group.
  • a polymer having a sulfonic acid group and a carboxyl group suitable as a dispersant a copolymer of a monomer having a sulfonic acid group and a monomer having a carboxyl group, or, further, these monomers And terpolymers with other monomers copolymerizable therewith.
  • Examples of the monomer having a sulfonic acid group include conjugated diene sulfonic acids such as 2-methyl-1,3-butadiene-1-sulfonic acid, and sulfonic acid groups such as 3- (meth) allyloxy-2-hydroxypropanesulfonic acid.
  • Examples include acids, allyl sulfonic acids, isoamylene sulfonic acids, and salts thereof.
  • Preferred are 3-allyloxy-2-hydroxy-1-propanesulfonic acid (HAPS) and 2-acrylamido-2-methylpropanesulfonic acid (AMPS). These may be used alone or in combination of two or more.
  • Acrylic acid and methacrylic acid are preferred. These may be used alone or in combination of two or more.
  • Examples of monomers copolymerizable with these monomers include amides such as N-tert-butylacrylamide (N-tBAA) and N-vinylformamide.
  • the second dispersant include the following, but are not limited thereto.
  • a copolymer obtained by copolymerizing 3-allyloxy-2-hydroxypropanesulfonic acid (HAPS) at a ratio of AA: HAPS 70 to 90:10 to 30 (molar ratio)
  • the weight average molecular weight of the polymer having a sulfonic acid group as the second dispersant is preferably 1,000 to 30,000.
  • the weight average molecular weight of the second dispersant is less than 1,000, the dispersion effect is insufficient.
  • the weight average molecular weight of the second dispersant exceeds 30,000, it becomes difficult to permeate the turbidity equipment, and the polymer itself may be adsorbed on the turbidity equipment or the RO membrane, which may cause membrane clogging.
  • the amount of dispersant added in the circulating cooling water system is 3 to 30 mg / L as solid as the concentration of the active ingredient (the above polymer) from the viewpoints of the dispersion effect and economy in the cooling tower and the dispersion effect in the RO membrane water supply. In particular, 5 to 20 mg / L as solid is preferable.
  • the 1st dispersing agent and the 2nd dispersing agent it is preferable to add so that the sum total of the density
  • concentration concentration
  • concentration concentration
  • concentration There is no particular limitation on the ratio of the first dispersant and the second dispersant added, but it is preferably 1: 1 to 1: 9 (weight ratio). There are no particular restrictions on the method of adding the dispersant and the location of addition.
  • Anticorrosive A phosphoric acid compound and a zinc compound are usually added to the circulating cooling water system in order to prevent corrosion of the cooling water system and piping.
  • a zinc compound In the case of an iron material, it is necessary to add a zinc compound, but in the case of a copper material, the addition of a zinc compound is not necessary. Since the polymer having a carboxyl group used as a dispersant in the present invention can react with zinc and exhibit an anticorrosive effect even without phosphorus, the required addition amount of a phosphoric acid compound for anticorrosion can be reduced. The addition of a phosphoric acid compound can be made unnecessary.
  • phosphoric acid compound phosphoric acid, phosphonic acid, polyphosphoric acid and the like can be used. More specifically, phosphonic acids such as hydroxyethylidene diphosphonic acid, phosphonobutane tricarboxylic acid, ethylenediaminetetramethylene phosphonic acid, nitrilotrimethylphosphonic acid, orthophosphate, polymerized phosphate, phosphate ester and the like can be mentioned.
  • concentration of the phosphoric acid compound added to the cooling water system is preferably 0 to 1.5 mg / L as PO 4 .
  • the present invention from the viewpoint of suppressing the phosphorus concentration of the RO membrane concentrated water, it is preferable to obtain an anticorrosive effect with a polymer having a carboxyl group used as a dispersant without adding a phosphate compound.
  • Zinc chloride is preferably used as the zinc compound.
  • concentration of the zinc-based compound added to the cooling water is preferably 0 to 5 mg / L as the Zn concentration.
  • an aromatic azole compound in order to suppress corrosion of the copper or copper alloy.
  • the aromatic azole compound include tolyltriazole, benzotriazole, halo-substituted benzotriazole, halo-substituted tolyltriazole, mercaptobenzothiazole and the like.
  • Turbidity equipment Prior to RO membrane treatment of cooling effluent, turbidity equipment for treating cooling effluent includes foreign matter, SS content, turbidity, colloidal components, etc. in cooling effluent causing membrane contamination of RO membrane equipment There is no particular limitation as long as it can be removed.
  • a filter, strainer, bag filter, spool filter, disk filter, microfiltration (MF) membrane, ultrafiltration (UF) membrane, or the like can be used as the turbidity equipment. Two or more of these may be used in combination. In the case of using an MF film or a UF film, it is preferable to remove a coarse substance by installing a strainer or the like before the film for protecting the film.
  • an automatic strainer that performs a cleaning process automatically is particularly preferably used.
  • the shape of the strainer is not particularly limited, and any shape such as a Y shape or a bucket shape can be used.
  • the pore size of the strainer varies depending on whether or not a subsequent MF membrane or UF membrane is used in combination.
  • the strainer preferably has a pore diameter of 100 to 500 ⁇ m.
  • the pore size of the strainer is smaller than 100 ⁇ m, the strainer is severely blocked, and when it exceeds 500 ⁇ m, the effect of removing turbidity and foreign matter is inferior.
  • a strainer especially an auto strainer is used alone, it is preferable to use a strainer having a smaller pore diameter of 1 to 100 ⁇ m, particularly about 1 to 50 ⁇ m.
  • the membrane type of the MF membrane and UF membrane is not particularly limited, and a membrane filtration device such as a hollow fiber type or a spiral type can be employed.
  • the membrane filtration method is not limited, and any method of internal pressure filtration, external pressure filtration, crossflow filtration, and total amount filtration can be applied.
  • the molecular weight cutoff of the UF membrane is preferably 30,000 or more. If the molecular weight cut off of the UF membrane is smaller than 30,000, the dispersant in the cooling discharge water cannot be permeated, and it may be necessary to add the dispersant again before the RO membrane device.
  • the upper limit of the molecular weight cut-off of the UF membrane is not particularly limited, but it is preferably 1,000,000 or less because it is possible to remove polymer polysaccharides and the like that can cause clogging of the RO membrane in the cooling discharge water.
  • the pore size of the MF membrane is preferably about 0.01 to 0.1 ⁇ m for the same reason as the molecular weight cut off of the UF membrane.
  • the transmittance of the above-mentioned dispersant calculated by the following formula is preferably 80% or more, particularly 85% or more.
  • the upper limit of the transmittance of the dispersant is usually 100%.
  • the pH of the water supply water treated in the turbidity facility in the turbidity facility
  • it is preferably 5 or more, particularly 7 or more. If the pH of the feed water of the turbidity equipment is lower than 5, the dissociation property of the carboxyl group changes and the dispersant polymer may be insolubilized.
  • the upper limit of the pH is not particularly limited, but usually cooling discharge water such as cooling tower blow water has a pH of 8 to 10, generally about 8 to 9, so it should be treated as it is with a turbidity facility. Is preferred.
  • the type of RO membrane of the RO membrane device is not particularly limited, and is appropriately determined depending on the quality of the cooling discharge water to be treated (the quality of raw water supplied to the circulating cooling water system or the concentration rate in the circulating cooling water system).
  • the desalting rate of the RO membrane is preferably 80% or more, particularly preferably 85% or more. When the desalting rate of the RO membrane is lower than this, desalting efficiency is poor, and treated water (permeated water) with good water quality cannot be obtained.
  • the material of the RO membrane any material such as a polyamide composite membrane or a cellulose acetate membrane can be used. There is no restriction
  • the RO membrane water supply (water passed through the RO membrane device as treated water) has a suitable pH as follows, and between the turbidity equipment and the RO membrane device for adjusting the pH of the RO membrane water supply. It is preferable to provide a pH adjusting means for adjusting the pH by adding an acid.
  • the pH adjusting means include means for adding an acid by a chemical injection pump or the like directly to the RO membrane water supply introduction line or the line mixer provided in the line or to a pH adjusting tank provided separately.
  • the acid used here is not particularly limited, and inorganic acids such as hydrochloric acid, sulfuric acid, and nitric acid can be suitably used.
  • the pH of the circulating cooling water rises to about 8 to 9 due to the concentration circulation operation, and such a high pH is more suitable for the permeation of the dispersant in the turbidity equipment.
  • the RO membrane device since the cooling discharge water is further concentrated, there is a concern about generation of scale. In terms of scale suppression, it is preferable that the RO membrane device is operated at a reduced pH.
  • the pH range of the RO membrane water supply is preferably 4.0 to 7.5. When pH exceeds 7.5, depending on the water quality, scales such as calcium carbonate, calcium phosphate, calcium sulfate, and barium sulfate may be precipitated.
  • the silica concentration in the cooling discharge water exceeds 30 mg / L, it is preferable to lower the pH of the RO membrane water supply to 4.0 to 5.5 in order to suppress the precipitation.
  • the lower the pH of the RO membrane feed water the better in terms of preventing scale precipitation.
  • the amount of acid required becomes large, which is not economically preferable.
  • the RO membrane may be blocked.
  • the pH of the cooling discharge water is preferably 5.5 to 7.0, particularly preferably 5.5 to 6.5.
  • humic acid and fulvic acid are dissociated and the RO membrane is blocked, and Ca in the cooling water is effectively dispersed by the dispersant to form a complex with fulvic acid. It becomes difficult.
  • the dispersant added to the circulating cooling water system is one that passes through the turbidity equipment, so that the dispersant contained in the cooling discharge water and brought into the water recovery system is put into the treated water of the turbidity equipment.
  • the scale dispersion process in the RO membrane device is performed with the dispersing agent that has permeated and passed through the turbidity removal equipment. Therefore, the RO membrane water supply needs to contain a dispersant at a concentration effective for the scale dispersion treatment.
  • the concentration of the dispersant in the RO membrane water supply required for the scale dispersion treatment of the RO membrane device varies depending on the quality of the cooling effluent water, the treatment conditions (water recovery rate) of the RO membrane, etc. Is as follows.
  • RO membrane water supply dispersant concentration (total concentration of the first dispersant and the second dispersant when the first dispersant and the second dispersant are used together) is 3 mg / L as solid or more, especially 5 It is preferably about 50 mg / L as solid, in particular, about 8-30 mg / L as solid.
  • a dispersant on the inlet side of the RO membrane device (between the turbidity facility and the RO membrane device). It is preferable to add.
  • a dispersant to be added a dispersant suitable as the dispersant used in the circulating cooling water system described above can be used.
  • the dispersant added on the inlet side of the RO membrane device is not necessarily the same as the dispersant added in the circulating cooling water system, and a different dispersant may be used.
  • the dispersant concentration can be controlled so that the dispersant concentration of the RO membrane water supply is measured and the dispersant concentration becomes a predetermined concentration.
  • a method for measuring the dispersant concentration a method using a turbidimetric method (for example, a method described in JP-A-2006-64498) can be employed.
  • the dispersant can be additionally added to the RO membrane water supply by, for example, a dispersant addition unit that is linked to the dispersant concentration measurement unit of the RO membrane water supply.
  • the dispersant dispersed in the cooling discharge water after being added to the circulating cooling water system is used as the RO membrane device.
  • the residence time of the cooling water in the cooling tower of the circulating cooling water system affects the activity of the dispersing agent
  • the residence time of the cooling tower of the circulating cooling water system is set so that the dispersant exhibits sufficient activity in the RO membrane device. It may be preferable to adjust.
  • the water recovery rate in the RO membrane device is preferably determined in consideration of the scale precipitation tendency in the RO membrane device. Since the conductivity of the cooling effluent treated in the present invention and the concentration of Ca, Mg, etc. in the cooling effluent as a scale factor may vary, the conductivity, Ca concentration, Mg concentration, etc. The RO membrane water recovery rate may be adjusted accordingly. The water recovery rate may be set by determining the presence or absence of scale generation from pH, dispersant concentration, water quality, and the like.
  • a conductivity meter that measures the conductivity of cooling discharge water, RO membrane water supply and / or RO membrane concentrated water is provided, and the scale deposition tendency in the RO membrane device is evaluated based on the measured value, and the water recovery of the RO membrane device is performed. Control the rate.
  • the measured value of the conductivity meter is high, it is determined that the scale deposition tendency is high, and the valve opening on the permeate water extraction side of the RO membrane is reduced so that the water recovery rate is low.
  • the measured value of the conductivity meter is low, it is determined that the tendency of scale deposition is low, and the opening degree of the valve on the permeate extraction side of the RO membrane device is increased so that the water recovery rate is high.
  • the cooling exhaust water that is not concentrated inside the device RO membrane permeated water, pure water, or deionized Flushing with water is preferred. This is because when the RO membrane device is stopped while the concentrated water remains in the RO membrane device, silica scale and other scales may be generated depending on the stop time, and the RO membrane device cannot be stably operated when the operation is resumed. Because there is.
  • the RO membrane permeate is circulated to the inlet side of the RO membrane device, the RO membrane concentrated water is discharged out of the system, and the inside of the RO membrane device is moved to the primary side of the RO membrane (for example, the water supply side) and the secondary side (concentrated water side) may be replaced with RO membrane permeate.
  • hypochlorites such as sodium hypochlorite (NaClO), chlorine agents such as chlorine gas, chloramine, and chlorinated isocyanurates, monochloro Chlorine such as sulfamic acid and amidosulfuric acid, a combined chlorine agent reacted with a compound having an amidosulfuric acid group, a bromine agent such as dibromohydantoin, an organic agent such as DBNPA (dibromonitrilopropion acid), MIT (methylisothiazolone), hydrazine, hydantoin (5,5-dimethylhydantoin) or the like may be added.
  • NaClO sodium hypochlorite
  • chlorine agents such as chlorine gas, chloramine, and chlorinated isocyanurates
  • monochloro Chlorine such as sulfamic acid and amidosulfuric acid
  • a bromine agent such as dibromohydantoin
  • an organic agent such as DBNPA (di
  • slime control treatment may be performed using these slime control agents added in the circulating cooling water system, and further slime control agent is added before the RO membrane device to perform slime control treatment. May be.
  • a slime control agent may be added separately after reducing and removing the chlorine agent in the cooling discharge water.
  • One type of slime control agent may be added, or two or more types may be added simultaneously or alternately.
  • the slime control agent may be added continuously or intermittently.
  • the RO membrane When cooling discharge water contains heavy metal ions such as copper and iron derived from heat exchangers, the RO membrane is promoted in the presence of redox agents such as thorium hypochlorite and hydrazine and heavy metal ions. May be deteriorated. In that case, by adding a substance having a chelating action of heavy metal (for example, EDTA), contact between the membrane and heavy metal can be prevented, and accelerated deterioration can be prevented.
  • heavy metal for example, EDTA
  • phenolic polymer a polymer compound having a phenolic hydroxyl group (hereinafter referred to as “phenolic polymer”) as a coagulation aid in the cooling discharge water that is the water to be treated in order to stabilize the turbidity removal equipment and the RO membrane device. May be added).
  • phenolic polymers examples include vinylphenol homopolymers, modified vinylphenol homopolymers, copolymers of vinylphenol and modified vinylphenol, vinylphenol and / or copolymers of modified vinylphenol and hydrophobic vinyl monomers.
  • polyvinylphenol polymers such as polymers; phenol resins such as polycondensates of phenol and formaldehyde, polycondensates of cresol and formaldehyde, and polycondensates of xylenol and formaldehyde.
  • phenolic polymer in particular, a reaction product obtained by performing a resol type secondary reaction on a novolac type phenol resin described in JP2010-131469A, JP2013-255922A, JP2013-255923A, or the like. It is preferable to use it.
  • the melting point of the phenolic polymer obtained by subjecting the novolac type phenol resin to the resol type secondary reaction is preferably 130 to 220 ° C., particularly 150 to 200 ° C.
  • the weight average molecular weight of the phenolic polymer is preferably 5,000 to 50,000, more preferably 10,000 to 30,000.
  • the amount of the phenolic polymer added varies depending on the quality of the cooling effluent, and is not particularly limited, but is preferably about 0.01 to 10 mg / L as the active ingredient concentration.
  • the turbidity equipment such as the MF membrane device or the RO membrane device is blocked, and the amount of treated water (permeated water) obtained is reduced (that is, water recovery).
  • these devices can be washed to remove clogs and recover the amount of treated water.
  • the chemicals used for the cleaning treatment can be appropriately selected according to the occluding substance and membrane material. For example, hydrochloric acid, sulfuric acid, nitric acid, sodium hypochlorite, sodium hydroxide, citric acid, oxalic acid, etc. are selected. be able to.
  • the cooling discharge water used for the water recovery treatment in the following examples and comparative examples is a cooling tower blow water (hereinafter simply referred to as a circulating cooling water system) operating at a concentration factor of 3.5 times using Chiba industrial water as raw water. "Blow water”).
  • the dispersants described in the respective examples and comparative examples are added so that the dispersant concentration in the system becomes a predetermined retention concentration, and sodium hypochlorite (NaClO) is added in the system. Is added so that the residual chlorine concentration of the solution becomes 0.5 mg / L as Cl 2 , and slime control treatment is performed.
  • NaClO sodium hypochlorite
  • the circulating cooling water system targeted in the following Examples 1 to 5 and Comparative Examples 1 to 4 has copper piping, and the circulating cooling water system targeted in Example 6 has iron piping.
  • the pH of the blow water is 8.5 to 8.9 (about 8.8).
  • Example 1 In cooling water using PMA having a weight average molecular weight of 2,000 as a dispersant, a strainer and an MF membrane device are used as turbidity equipment, and the blow water is treated in the order of the strainer, the MF membrane device, and the RO membrane device. Water recovery was performed.
  • the mesh pore diameter of the strainer is 400 ⁇ m.
  • MF membrane “Pureia GS (hydrophilic PVDF, pore size 0.02 ⁇ m, external pressure type)” manufactured by Kuraray Co., Ltd. was used.
  • RO membrane “KROA-2032-SN (polyamide ultra-low pressure RO membrane)” manufactured by Kurita Kogyo Co., Ltd. was used.
  • the cleaning frequency of the MF membrane device was 1 time / 30 minutes.
  • the blow water was sequentially passed through the strainer and the MF membrane device without adjusting the pH, and then sulfuric acid was added at the inlet side of the RO membrane device to adjust to pH 5.0.
  • sulfuric acid was added at the inlet side of the RO membrane device to adjust to pH 5.0.
  • sodium bisulfite is added at the inlet side of the RO membrane device to reduce the residual chlorine concentration to 0.05 mg / L or less, and “Kuriverter (registered trademark) IK-110” (bonded chlorine) manufactured by Kurita Kogyo Co., Ltd.
  • the system slime control agent was added at 10 mg / L, and the slime control treatment of the RO membrane device was performed.
  • the water recovery rates of the MF membrane device and RO membrane device started from 90% and 80%, respectively, and the total water recovery rate was 72%. Since the blow water has a high organic substance concentration, the water recovery rate of the MF membrane device and the RO membrane device gradually decreases with time. For this reason, when the water recovery rate falls below 50%, the device is once stopped and washed, and the water flow is resumed again under the condition that the total water recovery rate becomes 72%. The recovery process was continued.
  • the dispersant concentration of blow water which is the MF membrane water supply
  • the average water recovery rate for one month was 70%.
  • the phosphate ion concentration of the RO membrane concentrated water was less than 0.5 mg / L.
  • Example 2 Blow water was recovered in the same manner as in Example 1, except that 10 mg / L as solid of PAA-1 having a weight average molecular weight of 4,500 was added as a dispersant instead of PMA having a weight average molecular weight of 2,000. It was. Table 1 shows the average water recovery rate and the phosphate ion concentration of the RO membrane concentrated water.
  • Example 3 Instead of PMA having a weight average molecular weight of 2,000, PMA having a molecular weight of 2,000 is 5 mg / L as solid as the first dispersant, and AA / AMPS having a molecular weight of 10,000 is 5 mg / L as the second dispersant. Blow water was recovered in the same manner as in Example 1 except that as solid was added. Table 1 shows the average water recovery rate and the phosphate ion concentration of the RO membrane concentrated water.
  • Example 4 Instead of PMA having a weight average molecular weight of 2,000, PMA having a molecular weight of 2,000 is 5 mg / L as solid as the first dispersant, and AA / HAPS having a molecular weight of 8,000 is 5 mg / L as the second dispersant. Blow water was recovered in the same manner as in Example 1 except that as solid was added. Table 1 shows the average water recovery rate and the phosphate ion concentration of the RO membrane concentrated water.
  • Example 5 Blow water was collected in the same manner as in Example 1 except that an auto strainer having a pore size of 5 ⁇ m was adopted as the turbidity removal equipment. Table 1 shows the average water recovery rate and the phosphate ion concentration of the RO membrane concentrated water.
  • Example 6 Blow water was collected in the same manner as in Example 1 except that zinc chloride was added as an anticorrosive agent so that the Zn concentration was 2.5 mg / L in the circulating cooling water system for iron piping.
  • Table 1 shows the average water recovery rate and the phosphate ion concentration of the RO membrane concentrated water.
  • Example 1 Blow water was collected in the same manner as in Example 1 except that 10 mg / L as solid of MA / IB having a molecular weight of 15,000 was added as a dispersant instead of PMA having a molecular weight of 2,000. Table 1 shows the average water recovery rate and the phosphate ion concentration of the RO membrane concentrated water.
  • Example 4 Blow water was collected in the same manner as in Example 1 except that 10 mg / L as solid of PPA-2 having a molecular weight of 15,000 was added as a dispersant instead of PMA having a weight average molecular weight of 2,000. Table 1 shows the average water recovery rate and the phosphate ion concentration of the RO membrane concentrated water.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

循環冷却水系のブロー水等の冷却排出水をRO膜処理して水回収するに当たり、RO膜濃縮水のリンの排出の問題を回避した上で、水回収率の向上と安定化を図る。循環冷却水系からの排出水を除濁設備とRO膜を含む水回収システムで処理し、処理水を循環冷却水系に戻す水回収において、循環冷却水系に添加するスケール成分を分散させる分散剤として、重量平均分子量5,000以下のカルボキシル基を有するポリマーを含み、除濁設備を透過するものを用いる。重量平均分子量5,000以下のカルボキシル基を有するポリマーは、除濁設備を透過してRO膜のスケール分散剤としてスケールの析出を抑制することができる。このポリマーは、それ自体に防食効果があるため、冷却水系への防食剤としてのリン酸系化合物の添加を不要とするか、或いは必要添加量を低く抑えることができ、RO膜濃縮水のリン濃度の上昇を抑えることができる。

Description

冷却排出水の回収方法及び回収装置
 本発明は、ビル空調や、化学工業、製紙工業、製鉄工業、電力工業等の工業プロセスにおいて使用される冷却設備における冷却排出水の回収方法及び回収装置に関する。
 冷却水系、ボイラ水系などの水と接触する伝熱面や配管内では、スケール障害が発生する。省資源、省エネルギーの立場から、冷却水の系外への排出(ブロー)量を少なくして高濃縮運転を行う場合、水中に溶解している塩類が濃縮されて、伝熱面が腐食しやすくなるとともに、難溶性の塩となってスケール化する。装置の壁面などにスケールが付着すると、熱効率の低下、配管の閉塞など、ボイラや熱交換器の運転に重大な障害が生ずる。
 節水や省エネルギーを目的に、水は、可能な限り有効利用される。更なる高濃縮運転の場合、スケールの析出を抑制することができない。
 冷却水ブロー水を回収システムで回収し、その処理水を冷却塔に戻す取り組みが行われている。回収システムとしては、逆浸透膜(RO膜)で塩類(イオン)を除去し、処理水を冷却塔に戻すものが一般的である。例えば、以下のようなシステムが検討されている(特許文献1~4)。
 システム1:凝集→砂濾過→保安フィルター→RO膜
 システム2:凝集→砂濾過→前処理膜→RO膜
 システム3:凝集→加圧浮上→砂濾過→保安フィルター→RO膜
 システム4:脱炭酸塔→前処理膜→RO膜
 システム5:前処理膜→RO膜
 システム6:RO膜
 システム6はRO膜装置のみの簡易なシステムであるが、ブロー水中に含まれる濁質がRO膜を閉塞させるため、安定処理が困難である。
 システム1~5のように、RO膜の前段で凝集処理や前処理膜でブロー水中の濁質を除去することで、RO膜処理を安定化させることができる。しかし、ブロー水中には、循環冷却水系で添加された分散剤が含まれており、この分散剤が凝集処理を阻害する。このため、システム1~3の凝集処理では、処理に必要な凝集剤の添加量が非常に多くなる。RO膜装置では、スケール成分を分散させて、高い水回収率で処理を安定化させるために、分散剤が必要となる。凝集処理により、ブロー水中の分散剤を除去した場合、RO膜でのスケール分散、処理の安定化のために、RO膜給水に分散剤を添加することが必要となる。
 凝集処理を行わず、前処理膜でブロー水中の濁質を除去するシステム4,5においても、前処理膜でブロー水中の分散剤が除去されてしまう。このため、RO膜装置の処理安定化のためには、RO膜給水に分散剤を添加することが必要となる。
 本発明者は、前処理膜を透過する分散剤と膜の組み合わせにより、分散剤を前処理膜を透過させることができ、RO膜給水に分散剤を新たに添加することなく、RO膜の安定化が可能であることを見出した(特許文献4)。
特開2003-1256 特開2002-18437 特開2009-297600 特開2015-174030
 特許文献4によれば、循環冷却水系のブロー水等の冷却排出水をRO膜処理して水回収するに当たり、RO膜の前処理膜として、循環冷却水系で添加されている分散剤が透過するものを用い、循環冷却水系で添加され、冷却排出水中に含まれる分散剤を、前処理膜を透過させてRO膜の分散剤として有効利用することにより、水回収システムでの分散剤の添加を不要とするか、或いは分散剤添加量を低減し、水処理コストを低減すると共に、水回収率の向上と安定化を図ることができる。
 しかし、本発明者の更なる検討により、以下の不具合が見出された。
 特許文献4において、分散剤としてカルボキシル基のみを有するポリマーを用いると、このものは水回収系のpH条件によって不溶化し、前処理膜、RO膜を閉塞させてしまう。このため、特許文献4では、前処理膜を透過するポリマーとしてスルホン酸基を有するポリマーを用いるが、このポリマーは、ポリマー自体の防食効果が弱いため、別途リン酸、ホスホン酸、ポリリン酸などのリン酸系化合物と亜鉛系化合物を防食剤として冷却水系に添加する必要がある。亜鉛系化合物は、冷却水系の配管等が鉄素材である際に必要とされ、銅素材であれば添加の必要ない。
 リン酸系化合物が添加されている循環冷却水系からの冷却排出水をRO膜を用いて水回収すると、RO膜の濃縮水のリン濃度が高くなる。リン濃度の高い濃縮水は、排出の際、特に閉鎖系水域への排出の際において問題になるため、RO膜の濃縮水を別途排水処理する必要が生じる。
 本発明は、循環冷却水系のブロー水等の冷却排出水をRO膜処理して水回収するに当たり、RO膜濃縮水のリンの排出の問題を回避した上で、水回収率の向上と安定化を図る冷却排出水の回収方法及び回収装置を提供する。
 本発明者は、循環冷却水系のブロー水等の冷却排出水をRO膜処理して水回収するに当たり、循環冷却水系で添加する分散剤を重量平均分子量5,000以下のカルボキシル基を有する分散剤とすることで、膜閉塞を防止しながら、RO膜でのスケールの析出を抑制し、さらに、濃縮水のリン濃度の増加を抑制することができることを見出した。
 カルボキシル基を有するポリマーは、特許文献4において、膜を閉塞させるとされていたが、本発明者は、分子量の小さいものであれば、膜を閉塞させることがないことを見出した。重量平均分子量5,000以下のカルボキシル基を有するポリマーは除濁設備を透過して、RO膜において、スケール防止剤としてスケールを抑制することができる。カルボキシル基を有するポリマーは、それ自体に防食効果があるため、冷却水系への防食剤としてのリン酸系化合物の添加を不要とするか、或いは必要添加量を低く抑えることができ、RO膜濃縮水のリン濃度の上昇を抑えることができる。
 本発明は、以下を要旨とする。
[1] 分散剤が添加されている循環冷却水系からの排出水を、除濁設備と逆浸透膜とを含む水回収システムで処理し、処理水を該循環冷却水系に戻す冷却排出水の回収方法において、該分散剤が、重量平均分子量5,000以下のカルボキシル基を有するポリマーを含み、該分散剤が該除濁設備を透過することを特徴とする冷却排出水の回収方法。
[2] [1]において、前記重量平均分子量5,000以下のカルボキシル基を有するポリマーが、アクリル酸、メタクリル酸、マレイン酸、もしくはエポキシコハク酸の重合物又はこれらの2種以上の共重合物、あるいはそれらの塩であることを特徴とする冷却排出水の回収方法。
[3] [1]又は[2]において、前記分散剤が、更にスルホン酸基を有するポリマーを含むことを特徴とする冷却排出水の回収方法。
[4] [3]において、前記スルホン酸基を有するポリマーが、メタクリル酸及び/又はアクリル酸と、3-アリルオキシ-2-ヒドロキシ-1-プロパンスルホン酸及び/又は2-アクリルアミド-2-メチルプロパンスルホン酸とを共重合してなる共重合物であることを特徴とする冷却排出水の回収方法。
[5] [1]ないし[4]のいずれかにおいて、前記除濁設備が、濾過器、ストレーナー、バグフィルター、糸巻きフィルター、ディスクフィルター、精密濾過膜、および限外濾過膜のいずれかであることを特徴とする冷却排出水の回収方法。
[6] [1]ないし[5]のいずれかにおいて、前記除濁設備の給水のpHを7以上とすることを特徴とする冷却排出水の回収方法。
[7] [1]ないし[6]のいずれかにおいて、前記逆浸透膜の給水のpHを4.0~7.5に調整することを特徴とする冷却排出水の回収方法。
[8] [1]ないし[7]のいずれかにおいて、前記循環冷却水系に、防食剤として亜鉛系化合物を添加することを特徴とする冷却排出水の回収方法。
[9] 循環冷却水系からの排出水が通水される除濁設備と、該除濁設備の透過水が通水される逆浸透膜装置と、該逆浸透膜装置の透過水を該循環冷却水系に戻す返送手段とを有する冷却排出水の回収装置において、前記循環冷却水系は該水系に分散剤を添加する分散剤添加手段を有し、該分散剤が、重量平均分子量5,000以下のカルボキシル基を有するポリマーを含み、該分散剤が該除濁設備を透過するものであることを特徴とする冷却排出水の回収装置。
[10] [9]において、前記重量平均分子量5,000以下のカルボキシル基を有するポリマーが、アクリル酸、メタクリル酸、マレイン酸、もしくはエポキシコハク酸の重合物又はこれらの2種以上の共重合物、あるいはそれらの塩であることを特徴とする冷却排出水の回収装置。
[11] [9]又は[10]において、前記分散剤が、更にスルホン酸基を有するポリマーを含むことを特徴とする冷却排出水の回収装置。
[12] [11]において、前記スルホン酸基を有するポリマーが、メタクリル酸及び/又はアクリル酸と、3-アリルオキシ-2-ヒドロキシ-1-プロパンスルホン酸及び/又は2-アクリルアミド-2-メチルプロパンスルホン酸とを共重合してなる共重合物であることを特徴とする冷却排出水の回収装置。
[13] [9]ないし[12]のいずれかにおいて、前記除濁設備が、濾過器、ストレーナー、バグフィルター、糸巻きフィルター、ディスクフィルター、精密濾過膜、および限外濾過膜のいずれかであることを特徴とする冷却排出水の回収装置。
[14] [9]ないし[13]のいずれかにおいて、前記除濁設備の給水のpHを7以上とすることを特徴とする冷却排出水の回収装置。
[15] [9]ないし[14]のいずれかにおいて、前記逆浸透膜装置の給水のpHを4.0~7.5に調整するpH調整手段を有することを特徴とする冷却排出水の回収装置。
[16] [9]ないし[15]のいずれかにおいて、前記循環冷却水系が該水系に防食剤として亜鉛系化合物を添加する防食剤添加手段を有することを特徴とする冷却排出水の回収装置。
 本発明によれば、RO膜の前段の除濁設備で冷却排出水を処理することにより、冷却排出水中の濁質等を除去し、後段のRO膜処理を安定化させることができる。
 本発明では、循環冷却水系で添加され、冷却排出水に含まれている分散剤が、除濁設備を透過するため、透過した分散剤をRO膜の分散剤として有効利用することができる。このため、従来システムのように、RO膜の前段で除去された分散剤の再添加が不要となり、経済的にも処理操作的にも効率化することができ、処理コストを大幅に低減することができる。前処理膜を透過した分散剤を利用して、RO膜処理の安定化、水回収率の向上を図ることができる。
 本発明で分散剤として用いる重量平均分子量5,000以下のカルボキシル基を有するポリマーは、防食効果をも有するものであるため、冷却水系への防食剤としてのリン酸系化合物の添加を不要とするか、その必要添加量を低く抑えることができる。このため、RO膜濃縮水のリン濃度を低く抑えることができる。
 以下に本発明の実施の形態を詳細に説明する。
冷却排出水
 水回収処理に供する冷却排出水としては、代表的には、冷却塔のブロー水が挙げられる。本発明は、ブロー水に限らず、循環冷却水系から排出されるすべての排出水に適用することができる。循環冷却水系の循環配管から循環冷却水の一部又は全部を引き抜いて本発明に従って処理した後当該循環冷却水系に戻すようにしても良い。サイドフィルター、ライトフィルターの配管から分岐して排出した排出水を処理対象として水回収することもできる。
 本発明では、このような冷却排出水を処理対象水として、除濁設備及びRO装置で順次処理し、処理水を循環冷却水系に返送する。
分散剤
 循環冷却水系は、分散剤として重量平均分子量5,000以下のカルボキシル基を有するポリマーが添加される。分散剤としては、重量平均分子量5,000以下のカルボキシル基を有するポリマーのみを用いても十分に処理可能であるが、重量平均分子量5,000以下のカルボキシル基を有するポリマーを第一の分散剤として添加すると共に、スルホン酸基を有するポリマーを第二の分散剤として添加することが好ましい。
 分散剤として、上記の第一の分散剤と第二の分散剤とを併用することが好ましい理由は以下の通りである。
 重量平均分子量5,000以下のカルボキシル基を有するポリマーは、徐濁設備を透過し得る上に、防食効果をも有するものであり、冷却水系への防食剤としてのリン酸系化合物の添加を不要とするか、その必要添加量を低く抑えることができる。このため、RO膜濃縮水のリン濃度を低く抑えることができるため、分散剤として重量平均分子量5,000以下のカルボキシル基を有するポリマーを用いる。重量平均分子量5,000以下のカルボキシル基を有するポリマーは、冷却水系中に防食剤として添加される亜鉛系化合物の分散効果が弱いため、重量平均分子量5,000以下のカルボキシル基を有するポリマーのみを用いた場合、亜鉛系化合物が添加されている循環冷却水系では亜鉛が系内でスケール化しやすい。重量平均分子量5,000以下のカルボキシル基を有するポリマーを第一の分散剤として用い、スルホン酸基を有する第二の分散剤を添加しておくことで、亜鉛のスケール化を防止することができ、冷却水系の防食効果を高めることができる。
 RO膜濃縮水のリン酸が問題とならない場合は、第二の分散剤として後述するスルホン酸基を有するポリマーのみを分散剤として用いても問題はない。分散剤として後述のアクリル酸(AA)と2-アクリルアミド-2-メチルプロパンスルホン酸(AMPS)との共重合物等のスルホン酸基を有するポリマーを循環冷却水系に添加し、冷却排出水をpH5以上もしくはpH7以上で、後述の濾過器等の除濁設備で処理した後RO装置で処理するようにして、スルホン酸基を有するポリマーを除濁設備を透過させてRO装置の分散剤として有効利用することができる。
 第一の分散剤としては、特に、重量平均分子量が3,000以下のカルボキシル基を有するポリマーを用いることが好ましい。
 RO膜装置では、高pH条件であると、RO膜装置内で濃縮されたカルシウム、シリカ等がスケールとして析出し易くなるため、後述のように低pH条件で処理が行われる。低pH条件でのRO膜装置では、カルボキシル基のみを有する分散剤は不溶化して分散剤として機能し得なくなる。重量平均分子量が5,000以下、好ましくは3,000以下のものであれば不溶化しても膜を閉塞させることがなく、処理に影響しない。
 第一の分散剤の分子量が過度に小さいと分散効果が低下するため、第一の分散剤の重量平均分子量は1,000以上であることが好ましい。
 第一の分散剤としてのカルボキシル基を有するポリマーを構成する単量体としては、アクリル酸、メタクリル酸、クロトン酸、イソクロトン酸、ビニル酢酸、アトロパ酸、マレイン酸、フマル酸、イタコン酸、ヒドロキシエチルアクリル酸、コハク酸、エポキシコハク酸、あるいはそれらの塩が挙げられる。これらの単量体の1種の単独重合物もしくは2種以上の共重合物を第一の分散剤とすることができる。特に好ましくは、アクリル酸、メタクリル酸、マレイン酸、又はエポキシコハク酸の重合物、あるいはこれらの2種以上の共重合物、あるいはそれらの塩である。
 第一の分散剤は、カルボキシル基を有し、スルホン酸基を有さないものであり、第二の分散剤と区別される。
 第一の分散剤は、1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 第二の分散剤は、スルホン酸基を有するポリマーであり、好ましくはスルホン酸基とカルボキシル基を有する重合物である。分散剤として好適なスルホン酸基とカルボキシル基を有する重合物としては、スルホン酸基を有する単量体と、カルボキシル基を有する単量体との共重合物、或いは、更に、これらの単量体と共重合可能な他の単量体との三元共重合体が挙げられる。
 スルホン酸基を有する単量体としては、2-メチル-1,3-ブタジエン-1-スルホン酸などの共役ジエンスルホン酸、3-(メタ)アリルオキシ-2-ヒドロキシプロパンスルホン酸等のスルホン酸基を有する不飽和(メタ)アリルエーテル系単量体、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸、2-ヒドロキシ-3-アクリルアミドプロパンスルホン酸、スチレンスルホン酸、メタリルスルホン酸、ビニルスルホン酸、アリルスルホン酸、イソアミレンスルホン酸、又はこれらの塩などが挙げられる。好ましくは、3-アリルオキシ-2-ヒドロキシ-1-プロパンスルホン酸(HAPS)、2-アクリルアミド-2-メチルプロパンスルホン酸(AMPS)である。これらは1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 カルボキシル基を有する単量体としては、アクリル酸、メタクリル酸、クロトン酸、イソクロトン酸、ビニル酢酸、アトロパ酸、マレイン酸、フマル酸、イタコン酸、ヒドロキシエチルアクリル酸、コハク酸、エポキシコハク酸又はこれらの塩などが挙げられる。好ましくは、アクリル酸、メタクリル酸である。これらは1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 これらの単量体と共重合可能な単量体としては、N-tert-ブチルアクリルアミド(N-tBAA)、N-ビニルホルムアミドなどのアミド類が挙げられる。
 第二の分散剤としては、具体的には以下のものが挙げられるが、何らこれらに限定されるものではない。
 アクリル酸(AA)と2-アクリルアミド-2-メチルプロパンスルホン酸(AMPS)をAA:AMPS=70~90:10~30(モル比)の割合で共重合させた共重合物
 AAとAMPSとN-tert-ブチルアクリルアミド(N-tBAA)等のアミド類を、AA:AMPS:アミド類=40~90:5~30:5~30(モル比)の割合で共重合させた共重合物
 AAと3-アリロキシ-2-ヒドロキシプロパンスルホン酸(HAPS)を、AA:HAPS=70~90:10~30(モル比)の割合で共重合させた共重合物
 第二の分散剤であるスルホン酸基を有するポリマーの重量平均分子量は、1,000~30,000であることが好ましい。第二の分散剤の重量平均分子量が1,000未満であると分散効果が不十分である。第二の分散剤の重量平均分子量が30,000を超えると、除濁設備を透過し難くなり、ポリマー自体が除濁設備やRO膜に吸着し、膜閉塞の要因となるおそれがある。
 循環冷却水系における分散剤の添加量は、冷却塔における分散効果と経済性、さらには、RO膜給水における分散効果の面から、有効成分(上記のポリマー)の濃度として3~30mg/L as solid、特に5~20mg/L as solidとすることが好ましい。第一の分散剤と第二の分散剤を併用する場合は第一の分散剤と第二の分散剤の濃度の合計が上記濃度になるように添加することが好ましい。第一の分散剤と第二の分散剤の添加量の比率に特に制限はないが、1:1~1:9(重量比)であることが好ましい。分散剤の添加方法や添加箇所には特に制限はない。
防食剤
 冷却水系の設備、配管の防食のために、通常、循環冷却水系には、リン酸系化合物、亜鉛系化合物が添加される。鉄素材の場合、亜鉛系化合物の添加が必要であるが、銅素材の場合、亜鉛系化合物の添加は不要である。本発明で分散剤として用いるカルボキシル基を有するポリマーは、リンがなくても亜鉛と反応して防食効果を発揮することができるため、防食のためのリン酸系化合物の必要添加量を低減したり、リン酸系化合物の添加を不要としたりすることができる。
 リン酸系化合物としては、リン酸、ホスホン酸、ポリリン酸などを使用することができる。より具体的には、ヒドロキシエチリデンジホスホン酸、ホスホノブタントリカルボン酸、エチレンジアミンテトラメチレンホスホン酸、ニトリロトリメチルホスホン酸等のホスホン酸、正リン酸塩、重合リン酸塩、リン酸エステルなどが挙げられる。冷却水系へのリン酸系化合物の添加濃度は0~1.5mg/L as POが好適である。
 本発明では、RO膜濃縮水のリン濃度を抑える観点から、リン酸系化合物を添加せずに、分散剤として用いるカルボキシル基を有するポリマーにより防食効果を得ることが好ましい。
 亜鉛系化合物としては塩化亜鉛が好適に使用される。亜鉛系化合物の冷却水への添加濃度はZn濃度として0~5mg/Lが好適である。
 開放循環式冷却水系の冷却水と接する箇所に銅又は銅合金が用いられている場合には、銅又は銅合金の腐食抑制のために芳香族アゾール化合物を添加することが好ましい。芳香族アゾール化合物の例としては、例えばトリルトリアゾール、ベンゾトリアゾール、ハロ置換ベンゾトリアゾール、ハロ置換トリルトリアゾール、メルカプトベンゾチアゾール等が挙げられる。
除濁設備
 冷却排出水のRO膜処理に先立ち、冷却排出水を処理する除濁設備としては、RO膜装置の膜汚染の原因となる冷却排出水中の異物、SS分、濁質やコロイダル成分等を除去し得るものであればよく、特に制限はない。除濁設備としては、濾過器、ストレーナー、バグフィルター、糸巻きフィルター、ディスクフィルター、精密濾過(MF)膜又は限外濾過(UF)膜などを用いることができる。これらは2以上を組み合わせて用いてもよい。MF膜、UF膜を用いる場合は、膜保護のために、その前段にストレーナー等を設置し、粗大な物質を除去することが好ましい。
 ストレーナーとしては、特に自動で洗浄処理を行うオートストレーナーが好適に使用される。
 ストレーナーの形状には特に制限はなく、Y型、バケット型などいずれの形状のものをも使用することができる。
 ストレーナーの孔径は、後段のMF膜又はUF膜の併用の有無により異なる。MF膜又はUF膜を併用する場合は、ストレーナーの孔径は100~500μmであることが好ましい。ストレーナーの孔径が100μmより小さいとストレーナーの閉塞が激しくなり、500μmを超えると濁質や異物の除去効果が劣るものとなる。
 ストレーナー、特にオートストレーナーを単独で用いる場合は、孔径がより小さく、1~100μm、特に1~50μm程度のものを用いることが好ましい。
 MF膜、UF膜の膜型式には特に制限はなく、中空糸型、スパイラル型等の膜濾過装置を採用することができる。膜濾過方式にも制限はなく、内圧濾過、外圧濾過、クロスフロー濾過、全量濾過のいずれの方式も適用可能である。
 UF膜の分画分子量としては30,000以上であることが好ましい。UF膜の分画分子量が30,000より小さいと、冷却排出水中の分散剤を透過させることができず、RO膜装置の前段で分散剤を改めて添加する必要を生じるおそれがある。UF膜の分画分子量の上限に特に制限はないが、1,000,000以下であると、冷却排出水中のRO膜の閉塞原因となりうる高分子多糖類などを除去できるため、好ましい。MF膜の孔径は、UF膜の分画分子量と同様の理由から、好ましくは0.01~0.1μm程度である。
 本発明で用いる除濁設備において、下記式で算出される前述の分散剤の透過率は80%以上、特に85%以上であることが好ましい。分散剤の透過率が上記下限より低いと本発明の効果を有効に得ることができない。分散剤の透過率の上限は通常100%である。
  透過率=(除濁設備の処理水の分散剤濃度/除濁設備の給水の分散剤濃度)×100
 除濁設備において、給水(除濁設備で処理される水)のpHに特に制限はないが、5以上、特に7以上とすることが好ましい。除濁設備の給水のpHが5よりも低いと、カルボキシル基の解離性が変化し、分散剤ポリマーが不溶化する恐れがある。pHの上限には特に制限はないが、通常、冷却塔ブロー水等の冷却排出水は、pH8~10、一般的には8~9程度であるため、これをそのまま除濁設備で処理することが好ましい。
RO膜装置
 冷却排出水を前述の除濁設備で処理した後の処理水(除濁処理水)は、次いでRO膜装置で脱塩処理される。
 RO膜装置のRO膜の種類としては、特に制限はなく、処理する冷却排出水の水質(循環冷却水系に供給される原水水質や循環冷却水系での濃縮倍率)によって適宜決定される。RO膜の脱塩率は80%以上、特に85%以上が好ましい。RO膜の脱塩率がこれよりも低いと、脱塩効率が悪く、良好な水質の処理水(透過水)を得ることができない。RO膜の材質としてはポリアミド複合膜、酢酸セルロース膜などいずれの材質の膜も使用可能である。RO膜の形状についても特に制限はなく、中空糸型、スパイラル型など、いずれのものも使用可能である。
 RO膜給水(RO膜装置に被処理水として通水される水)には、以下の通り好適pHが存在し、RO膜給水のpH調整のために、除濁設備とRO膜装置との間に酸を添加してpHを調整するpH調整手段を設けることが好ましい。pH調整手段としては、RO膜の給水導入ラインやライン中に設けたラインミキサに直接或いは、別途設けたpH調整槽に、薬注ポンプ等により酸を添加する手段などを挙げることができる。ここで使用される酸は特に限定されるものではなく、塩酸、硫酸、硝酸などの無機酸を好適に用いることができる。
 通常、循環冷却水系では濃縮循環運転により、循環冷却水のpHが8~9程度に上昇しており、除濁設備における分散剤の透過にはこのような高pHの方が好適である。一方、RO膜装置では、冷却排出水をさらに濃縮するため、スケールの発生が懸念される。スケール抑制の面から、RO膜装置ではpHを下げて運転することが好適である。RO膜給水のpH範囲としては4.0~7.5が好ましい。pHが7.5を超えると水質によっては、炭酸カルシウム、リン酸カルシウム、硫酸カルシウム、硫酸バリウム等のスケール類が析出する場合がある。
 冷却排出水中のシリカ濃度が30mg/Lを超える場合はその析出を抑制するために、RO膜給水のpHを4.0~5.5に下げることが好ましい。RO膜給水のpHは低い程スケール析出防止の点では好ましいが、pHを4.0より低くするには、必要な酸の量が多量になり、経済的に好ましくない。
 冷却排出水中にフミン酸やフルボ酸が多く含まれていると、RO膜の閉塞が生じる場合がある。その場合には、冷却排出水のpHを5.5~7.0、特に5.5~6.5とすることが好ましい。このpHの範囲であれば、フミン酸やフルボ酸が酸解離してRO膜の閉塞が抑制されるとともに、冷却水中のCaが分散剤により効果的に分散し、フルボ酸とのコンプレックスを形成し難くなる。
 本発明では、循環冷却水系に添加する分散剤として、除濁設備を透過するものを用いることにより、冷却排出水に含有されて水回収システムに持ち込まれた分散剤を除濁設備の処理水中に透過させ、除濁設備を透過した分散剤によりRO膜装置におけるスケール分散処理を行う。従って、RO膜給水中には、スケール分散処理に有効な濃度で分散剤が含まれている必要がある。
 RO膜装置のスケール分散処理に必要なRO膜給水の分散剤濃度は、冷却排出水の水質、RO膜の処理条件(水回収率)等により異なり、一概に規定することはできないが、一般的には、以下の通りである。
 RO膜給水の分散剤濃度(第一の分散剤と第二の分散剤を併用する場合は第一の分散剤と第二の分散剤の合計濃度)は、3mg/L as solid以上、特に5~50mg/L as solid程度、とりわけ8~30mg/L as solid程度であることが好ましい。
 RO膜給水の分散剤濃度がRO膜装置において十分なスケール分散効果を得るには不足する場合には、RO膜装置の入口側(除濁設備とRO膜装置との間)で分散剤を追加添加することが好ましい。添加する分散剤としては、前述の循環冷却水系で用いる分散剤として好適なものを用いることができる。RO膜装置の入口側で添加する分散剤は、循環冷却水系で添加される分散剤と必ずしも同一のものである必要はなく、異なる分散剤を用いてもよい。
 この場合、RO膜給水の分散剤濃度を測定し、その分散剤濃度が所定の濃度となるように分散剤添加量を制御することもできる。分散剤濃度の測定方法としては比濁法(例えば特開2006-64498号公報に記載の方法)による方法を採用することができる。分散剤は、例えば、RO膜給水の分散剤濃度測定手段に連動する分散剤添加手段によりRO膜給水に追加添加することができる。
 本発明に従って、循環冷却水系に添加した分散剤をRO膜装置の分散剤として利用するためには、循環冷却水系に添加後、冷却排出水に含まれて排出された分散剤が、RO膜装置に達した際に、分散剤として機能するだけの活性が残っている必要がある。分散剤の活性には、循環冷却水系の冷却塔における冷却水の滞留時間が影響することから、RO膜装置において分散剤が十分な活性を発揮するように循環冷却水系の冷却塔の滞留時間を調整することが好ましい場合もある。
 RO膜装置における水回収率は、RO膜装置におけるスケールの析出傾向を考慮して決定することが好ましい。本発明で処理する冷却排出水の導電率や、スケール要因となる冷却排出水中のCa、Mgなどの濃度は変動する可能性があるため、RO濃縮水の導電率やCa濃度、Mg濃度等に応じてRO膜の水回収率を調整してもよい。pHや分散剤濃度、水質等から、スケール発生の有無を判定し、水回収率を設定してもよい。
 具体的には、次のような制御が挙げられる。
 冷却排出水、RO膜給水及び/又はRO膜濃縮水の導電率を測定する導電率計を設け、その測定値に基づいて、RO膜装置におけるスケール析出傾向を評価し、RO膜装置の水回収率を制御する。導電率計の測定値が高い場合、スケール析出傾向が高いと判断し、水回収率が低くなるように、RO膜の透過水取出側のバルブ開度を小さくする。逆に導電率計の測定値が低い場合スケール析出傾向が低いと判断し、水回収率が高くなるように、RO膜装置の透過水取出側のバルブの開度を大きくする。
 冷却排出水及び/又はRO膜給水の分散剤濃度を測定し、分散剤濃度の測定値が高い場合にはスケール析出傾向が低いと判断し、水回収率が高くなるようにRO膜装置の透過水取出側のバルブの開度を大きくする。逆に、分散剤濃度の測定値が低い場合にはスケール析出傾向が高いと判断し、水回収率が低くなるように、RO膜装置の透過水取出側のバルブの開度を小さくする。
 RO膜装置において、特にシリカスケールの発生が懸念される場合には、RO膜装置を停止する際は、装置内部を濃縮されていない冷却排出水や、RO膜透過水、純水、又は脱イオン水でフラッシングすることが好ましい。これは、RO膜装置内に濃縮水が残留したままRO膜装置を停止した場合、停止時間によってはシリカスケールやその他のスケールが発生し、運転再開時にRO膜装置の安定運転を行えなくなることがあるためである。この場合、例えばRO膜装置の運転停止に際して、RO膜透過水をRO膜装置の入口側へ循環させ、RO膜濃縮水を系外へ排出し、RO膜装置内を、RO膜の一次側(給水側)も二次側(濃縮水側)もRO膜透過水で置換する操作を行うことが挙げられる。
その他の処理
 本発明に係る循環冷却水系においては、スライムコントロール剤として、次亜塩素酸ナトリウム(NaClO)等の次亜塩素酸塩、塩素ガス、クロラミン、塩素化イソシアヌル酸塩などの塩素剤、モノクロルスルファミン酸などの塩素とアミド硫酸、アミド硫酸基を有する化合物の反応した結合塩素剤、ジブロモヒダントインなどの臭素剤、DBNPA(ジブロモニトリロプロピオンアシド)、MIT(メチルイソチアゾロン)などの有機剤、ヒドラジン、ヒダントイン(5,5-ジメチルヒダントイン)などを添加してもよい。
 RO膜装置において、循環冷却水系で添加されたこれらのスライムコントロール剤を利用してスライムコントロール処理を行ってもよく、RO膜装置の前段で更にスライムコントロール剤を追加添加してスライムコントロール処理を行ってもよい。塩素剤等によるRO膜の酸化劣化が問題となる場合は、冷却排出水中の塩素剤を一旦還元除去してから、別途スライムコントロール剤を添加してもよい。
 スライムコントロール剤は、一種類を添加しても良いし、二種類以上を同時又は交互に添加しても良い。スライムコントロール剤は、連続的に添加してもよく間欠添加としてもよい。
 冷却排出水に熱交換器由来の銅、鉄などの重金属イオンが含まれている場合、酸化還元作用を持つ薬剤、例えば次亜塩素酸トリウム、ヒドラジンと、重金属イオンの存在下でRO膜が促進劣化を受けることがある。その場合、重金属のキレート作用がある物質(たとえばEDTA)を添加することで、膜と重金属の接触を防止し、促進劣化を防止することができる。
 ポリアミド系RO膜は重金属の有無にかかわらず、次亜塩素酸塩との接触で劣化する。次亜塩素酸塩は膜劣化の原因になる可能性が高いため、できる限り適用を避け、適用する場合には残留塩素を除去した後、RO膜装置に通水するのが好ましい。 
 本発明においては、除濁設備やRO膜装置を安定化させるために、被処理水である冷却排出水に凝集助剤としてフェノール系水酸基を有する高分子化合物(以下「フェノール性高分子」と称す場合がある。)を添加してもよい。
 フェノール性高分子としては、ビニルフェノールの単独重合体、変性ビニルフェノールの単独重合体、ビニルフェノールと変性ビニルフェノールとの共重合体、ビニルフェノール及び/又は変性ビニルフェノールと疎水性ビニルモノマーとの共重合体のようなポリビニルフェノール系重合体;フェノールとホルムアルデヒドの重縮合物、クレゾールとホルムアルデヒドの重縮合物、キシレノールとホルムアルデヒドの重縮合物といったフェノール系樹脂;が挙げられる。フェノール性高分子としては、特に特開2010-131469、特開2013-255922、特開2013-255923等に記載されるノボラック型フェノール樹脂にレゾール型の2次反応を行って得られた反応物を用いることが好ましい。
 ノボラック型フェノール樹脂にレゾール型の2次反応を行って得られるフェノール性高分子の融点は130~220℃、特に150~200℃であることが好ましい。フェノール性高分子の重量平均分子量は5,000~50,000であることが好ましく、10,000~30,000であることがより好ましい。
 フェノール性高分子の添加量は、冷却排出水の水質により異なり、特に制限はないが、有効成分濃度として0.01~10mg/L程度とすることが好ましい。
 本発明において、長時間冷却排出水の処理を行うことで、MF膜装置等の除濁設備やRO膜装置が閉塞し、得られる処理水(透過水)量が低下した場合(即ち、水回収率が低下した場合)には、これらの装置を洗浄処理することで閉塞物を除去し、処理水量を回復させることができる。洗浄処理に使用する薬品としては閉塞物質、膜素材に応じて適宜選択することができ、例えば、塩酸、硫酸、硝酸、次亜塩素酸ナトリウム、水酸化ナトリウム、クエン酸、シュウ酸等を選択することができる。
 以下に実施例を挙げて本発明をより具体的に説明するが、本発明はその要旨を超えない限り以下の実施例により限定されるものではない。
[分散剤]
 以下の実施例及び比較例で用いた分散剤の仕様は以下の通りである。
 AA/AMPS:アクリル酸とAMPMとの共重合物、アクリル酸:AMPM(モル比)=70:30、重量平均分子量10,000
 AA/HAPS:アクリル酸とHAPSとの共重合物、アクリル酸:HAPS(モル比)=70:30、重量平均分子量8,000
 MA/IB:マレイン酸とイソブチレンの共重合物、マレイン酸とイソブチレン(モル比)=50:50、重量平均分子量15,000
PMA:ポリマレイン酸、重量平均分子量2,000
PAA-1:ポリアクリル酸、重量平均分子量4,500
PAA-2:ポリアクリル酸、重量平均分子量15,000
[冷却排出水]
 以下の実施例及び比較例で水回収処理に供した冷却排出水は、千葉工業用水を原水として、濃縮倍率3.5倍で運転を行っている循環冷却水系の冷却塔ブロー水(以下、単に「ブロー水」と称す。)である。
 この循環冷却水系では、それぞれの実施例及び比較例に記載の分散剤を系内の分散剤濃度が所定の保持濃度となるように添加すると共に、次亜塩素酸ナトリウム(NaClO)を、系内の残留塩素濃度が0.5mg/L as Clになるように添加してスライムコントロール処理が行われている。
 以下の実施例1~5及び比較例1~4で対象とした循環冷却水系は銅配管を有し、実施例6で対象とした循環冷却水系は鉄配管を有するものである。
 ブロー水のpHは8.5~8.9(約8.8)である。
[実施例1]
 分散剤として重量平均分子量が2,000のPMAを用いた冷却水において、除濁設備としてストレーナーとMF膜装置を用い、ストレーナー、MF膜装置、RO膜装置の順でブロー水を処理することにより水回収を行った。
 ストレーナーのメッシュ孔径は400μmである。MF膜はクラレ社製「ピューリアGS(親水化PVDF、孔径0.02μm、外圧式)」を用いた。RO膜は栗田工業(株)製「KROA-2032-SN(ポリアミド超低圧RO膜)」を用いた。MF膜装置の洗浄頻度は1回/30分とした。
 ブロー水は、pH調整せずにストレーナー、MF膜装置に順次通水した後、RO膜装置の入口側で硫酸を添加してpH5.0に調整した。同様にRO膜装置の入口側で重亜硫酸ナトリウムを添加して、残留塩素濃度を0.05mg/L以下とすると共に、栗田工業(株)製「クリバーター(登録商標)IK-110」(結合塩素系スライムコントロール剤)を10mg/L添加して、RO膜装置のスライムコントロール処理を行った。
 MF膜装置及びRO膜装置の水回収率はそれぞれ90%、80%から開始し、トータルの水回収率は72%とした。ブロー水は有機物濃度が高いことから、MF膜装置及びRO膜装置の水回収率は経時により徐々に低下する。このため、水回収率が50%を切った場合、装置を一度停止して洗浄処理を行い、再度トータルの水回収率が72%となる条件で通水を再開し、一ヶ月間、通水、回収処理を継続した。
 上記の水回収処理において、MF膜の給水であるブロー水の分散剤濃度は10mg/L as solid、一ヶ月間の平均水回収率は70%であった。
 冷却水にはリン酸系化合物を添加していないため、RO膜濃縮水のリン酸イオン濃度は0.5mg/L未満であった。
[実施例2]
 分散剤として、重量平均分子量2,000のPMAの代わりに、重量平均分子量4,500のPAA-1を10mg/L as solid添加した以外は実施例1と同様の方法でブロー水の回収を行った。平均水回収率及びRO膜濃縮水のリン酸イオン濃度は表1に示す通りであった。
[実施例3]
 重量平均分子量2,000のPMAの代わりに、第一の分散剤として、分子量2,000のPMAを5mg/L as solid、第二の分散剤として分子量10,000のAA/AMPSを5mg/L as solid添加したこと以外は実施例1と同様の方法でブロー水の回収を行った。平均水回収率及びRO膜濃縮水のリン酸イオン濃度は表1に示す通りであった。
[実施例4]
 重量平均分子量2,000のPMAの代わりに、第一の分散剤として、分子量2,000のPMAを5mg/L as solid、第二の分散剤として分子量8,000のAA/HAPSを5mg/L as solid添加したこと以外は実施例1と同様の方法でブロー水の回収を行った。平均水回収率及びRO膜濃縮水のリン酸イオン濃度は表1に示す通りであった。
[実施例5]
 除濁設備として、孔径5μmのオートストレーナーを採用したこと以外は実施例1と同様の方法でブロー水の回収を行った。平均水回収率及びRO膜濃縮水のリン酸イオン濃度は表1に示す通りであった。
[実施例6]
 鉄配管を対象に、循環冷却水系において、防食剤として塩化亜鉛をZn濃度が2.5mg/Lとなるように添加したこと以外は実施例1と同様の方法でブロー水の回収を行った。平均水回収率及びRO膜濃縮水のリン酸イオン濃度は表1に示す通りであった。
[比較例1]
 分散剤として、分子量2,000のPMAの代わりに、分子量15,000のMA/IBを10mg/L as solid添加した以外は実施例1と同様の方法でブロー水の回収を行った。平均水回収率及びRO膜濃縮水のリン酸イオン濃度は表1に示す通りであった。
 比較例1では、MA/IBがMF膜、RO膜を閉塞させたため、平均水回収率は52%であった。
[比較例2]
 分散剤として、分子量2,000のPMAの代わりに、分子量10,000のAA/AMPSを10mg/L as solid添加し、防食剤として、オルソリン酸を6mg/L as POになるように冷却水に添加した以外は実施例1と同様の方法でブロー水の回収を行った。平均水回収率及びRO膜濃縮水のリン酸イオン濃度は表1に示す通りであった。
 比較例2では、冷却水にオルソリン酸を添加したため、RO膜濃縮水のリン酸イオン濃度が30mg/Lとなり、別途排水処理が必要であった。
[比較例3]
 除濁設備の給水のpHを5.0とした以外は比較例2と同様の方法でブロー水の回収を行った。平均水回収率及びRO膜濃縮水のリン酸イオン濃度は表1に示す通りであった。
 比較例3では、分散剤がMF膜を閉塞させたため、平均水回収率は56%まで低下した。RO膜濃縮水のリン酸イオン濃度が30mg/Lとなり、別途排水処理が必要であった。
[比較例4]
 分散剤として、重量平均分子量2,000のPMAの代わりに、分子量15,000のPPA-2を10mg/L as solid添加した以外は実施例1と同様の方法でブロー水の回収を行った。平均水回収率及びRO膜濃縮水のリン酸イオン濃度は表1に示す通りであった。
 比較例4では、高分子量のポリアクリル酸がMF膜、RO膜を閉塞させたため、平均水回収率は54%であった。
Figure JPOXMLDOC01-appb-T000001
 以上の結果から、本発明により、冷却水系に添加した分散剤を利用して、高い水回収率で安定した処理を継続することができることが分かる。
 実施例1~6では、冷却水系に防食剤としてリン酸系化合物を添加しなくても、良好な防食効果を得ることができ、RO膜濃縮水のリン排出の問題を軽減することができる。
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2015年7月9日付で出願された日本特許出願2015-137916に基づいており、その全体が引用により援用される。

Claims (16)

  1.  分散剤が添加されている循環冷却水系からの排出水を、除濁設備と逆浸透膜とを含む水回収システムで処理し、処理水を該循環冷却水系に戻す冷却排出水の回収方法において、該分散剤が、重量平均分子量5,000以下のカルボキシル基を有するポリマーを含み、該分散剤が該除濁設備を透過することを特徴とする冷却排出水の回収方法。
  2.  請求項1において、前記重量平均分子量5,000以下のカルボキシル基を有するポリマーが、アクリル酸、メタクリル酸、マレイン酸、もしくはエポキシコハク酸の重合物又はこれらの2種以上の共重合物、あるいはそれらの塩であることを特徴とする冷却排出水の回収方法。
  3.  請求項1又は2において、前記分散剤が、更にスルホン酸基を有するポリマーを含むことを特徴とする冷却排出水の回収方法。
  4.  請求項3において、前記スルホン酸基を有するポリマーが、メタクリル酸及び/又はアクリル酸と、3-アリルオキシ-2-ヒドロキシ-1-プロパンスルホン酸及び/又は2-アクリルアミド-2-メチルプロパンスルホン酸とを共重合してなる共重合物であることを特徴とする冷却排出水の回収方法。
  5.  請求項1ないし4のいずれか1項において、前記除濁設備が、濾過器、ストレーナー、バグフィルター、糸巻きフィルター、ディスクフィルター、精密濾過膜、および限外濾過膜のいずれかであることを特徴とする冷却排出水の回収方法。
  6.  請求項1ないし5のいずれか1項において、前記除濁設備の給水のpHを7以上とすることを特徴とする冷却排出水の回収方法。
  7.  請求項1ないし6のいずれか1項において、前記逆浸透膜の給水のpHを4.0~7.5に調整することを特徴とする冷却排出水の回収方法。
  8.  請求項1ないし7のいずれか1項において、前記循環冷却水系に、防食剤として亜鉛系化合物を添加することを特徴とする冷却排出水の回収方法。
  9.  循環冷却水系からの排出水が通水される除濁設備と、該除濁設備の透過水が通水される逆浸透膜装置と、該逆浸透膜装置の透過水を該循環冷却水系に戻す返送手段とを有する冷却排出水の回収装置において、前記循環冷却水系は該水系に分散剤を添加する分散剤添加手段を有し、該分散剤が、重量平均分子量5,000以下のカルボキシル基を有するポリマーを含み、該分散剤が該除濁設備を透過するものであることを特徴とする冷却排出水の回収装置。
  10.  請求項9において、前記重量平均分子量5,000以下のカルボキシル基を有するポリマーが、アクリル酸、メタクリル酸、マレイン酸、もしくはエポキシコハク酸の重合物又はこれらの2種以上の共重合物、あるいはそれらの塩であることを特徴とする冷却排出水の回収装置。
  11.  請求項9又は10において、前記分散剤が、更にスルホン酸基を有するポリマーを含むことを特徴とする冷却排出水の回収装置。
  12.  請求項11において、前記スルホン酸基を有するポリマーが、メタクリル酸及び/又はアクリル酸と、3-アリルオキシ-2-ヒドロキシ-1-プロパンスルホン酸及び/又は2-アクリルアミド-2-メチルプロパンスルホン酸とを共重合してなる共重合物であることを特徴とする冷却排出水の回収装置。
  13.  請求項9ないし12のいずれか1項において、前記除濁設備が、濾過器、ストレーナー、バグフィルター、糸巻きフィルター、ディスクフィルター、精密濾過膜、および限外濾過膜のいずれかであることを特徴とする冷却排出水の回収装置。
  14.  請求項9ないし13のいずれか1項において、前記除濁設備の給水のpHを7以上とすることを特徴とする冷却排出水の回収装置。
  15.  請求項9ないし14のいずれか1項において、前記逆浸透膜装置の給水のpHを4.0~7.5に調整するpH調整手段を有することを特徴とする冷却排出水の回収装置。
  16.  請求項9ないし15のいずれか1項において、前記循環冷却水系が該水系に防食剤として亜鉛系化合物を添加する防食剤添加手段を有することを特徴とする冷却排出水の回収装置。
PCT/JP2016/069282 2015-07-09 2016-06-29 冷却排出水の回収方法及び回収装置 WO2017006824A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/741,920 US11130694B2 (en) 2015-07-09 2016-06-29 Recovery method for discharged cooling water
SG11201800034TA SG11201800034TA (en) 2015-07-09 2016-06-29 Recovery method and recovery device for discharged cooling water
CN201680039207.7A CN107735365B (zh) 2015-07-09 2016-06-29 冷却排水的回收方法及回收装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015137916A JP6128171B2 (ja) 2015-07-09 2015-07-09 冷却排出水の回収方法及び回収装置
JP2015-137916 2015-07-09

Publications (1)

Publication Number Publication Date
WO2017006824A1 true WO2017006824A1 (ja) 2017-01-12

Family

ID=57685545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/069282 WO2017006824A1 (ja) 2015-07-09 2016-06-29 冷却排出水の回収方法及び回収装置

Country Status (6)

Country Link
US (1) US11130694B2 (ja)
JP (1) JP6128171B2 (ja)
CN (1) CN107735365B (ja)
SG (1) SG11201800034TA (ja)
TW (1) TWI696490B (ja)
WO (1) WO2017006824A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023067903A1 (ja) * 2021-10-18 2023-04-27 栗田工業株式会社 水系の金属防食処理方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6777130B2 (ja) * 2018-10-05 2020-10-28 栗田工業株式会社 膜用水処理薬品及び膜処理方法
JP7351623B2 (ja) * 2019-02-28 2023-09-27 株式会社クラレ 複合中空糸膜モジュール
CN111439854A (zh) * 2020-05-25 2020-07-24 嘉兴天兴环保技术有限公司 一种污水处理用无磷阻垢分散剂及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003001256A (ja) * 2001-06-25 2003-01-07 Kurita Water Ind Ltd 循環冷却水の処理方法
JP2014195754A (ja) * 2013-03-29 2014-10-16 栗田工業株式会社 スケール防止方法及び逆浸透膜用水酸化マグネシウムスケール防止剤
JP2015174030A (ja) * 2014-03-14 2015-10-05 栗田工業株式会社 冷却排出水の回収方法及び回収装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3116105A (en) * 1961-02-15 1963-12-31 Dearborn Chemicals Co Zinc-sodium polyphosphate, sodium polyphosphate, chelating agent corrosion inhibiting composition
US3898037A (en) * 1972-06-01 1975-08-05 Betz Laboratories Acrylamido-sulfonic acid polymers and their use
US4698161A (en) * 1985-06-27 1987-10-06 Pony Industries, Inc. Polymer blend for dispersion of particulate materials in aqueous systems
TW238257B (ja) 1992-07-24 1995-01-11 Malco Puel Tech
JP3870712B2 (ja) 2000-05-02 2007-01-24 栗田工業株式会社 循環冷却水の処理方法及び処理装置
US8668779B2 (en) * 2002-04-30 2014-03-11 Nalco Company Method of simultaneously cleaning and disinfecting industrial water systems
WO2005116296A1 (ja) 2004-05-25 2005-12-08 Kurita Water Industries Ltd. 冷却水の処理方法及び処理薬剤
US20060009185A1 (en) * 2004-07-08 2006-01-12 Khosro Shamsaifar Method and apparatus capable of interference cancellation
JP2006026543A (ja) * 2004-07-16 2006-02-02 Kurita Water Ind Ltd シリカ除去装置及びシリカ除去方法
CN1864826A (zh) * 2006-04-27 2006-11-22 天津化工研究设计院 一种反渗透膜用阻垢剂
WO2008059824A1 (fr) 2006-11-16 2008-05-22 Kurita Water Industries Ltd. Appareil de traitement d'eau et procédé de traitement d'eau
JP5364298B2 (ja) 2008-06-10 2013-12-11 オルガノ株式会社 分散剤含有水の処理方法
CN102284247A (zh) * 2010-06-21 2011-12-21 中国石油化工股份有限公司 一种反渗透系统的清洗方法
US20130213868A1 (en) * 2012-02-17 2013-08-22 Tempest Environmental Systems, Inc. Cooling tower blow-down, groundwater and wastewater re-use process and system
JP6146075B2 (ja) * 2013-03-22 2017-06-14 栗田工業株式会社 スケール防止方法及びスケール防止剤
SG11201701878TA (en) * 2014-09-17 2017-04-27 Vito Nv Reaction process with membrane separation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003001256A (ja) * 2001-06-25 2003-01-07 Kurita Water Ind Ltd 循環冷却水の処理方法
JP2014195754A (ja) * 2013-03-29 2014-10-16 栗田工業株式会社 スケール防止方法及び逆浸透膜用水酸化マグネシウムスケール防止剤
JP2015174030A (ja) * 2014-03-14 2015-10-05 栗田工業株式会社 冷却排出水の回収方法及び回収装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023067903A1 (ja) * 2021-10-18 2023-04-27 栗田工業株式会社 水系の金属防食処理方法
JP2023060546A (ja) * 2021-10-18 2023-04-28 栗田工業株式会社 水系の金属防食処理方法
JP7363875B2 (ja) 2021-10-18 2023-10-18 栗田工業株式会社 水系の金属防食処理方法

Also Published As

Publication number Publication date
US20180194659A1 (en) 2018-07-12
CN107735365B (zh) 2020-11-13
CN107735365A (zh) 2018-02-23
US11130694B2 (en) 2021-09-28
JP2017018878A (ja) 2017-01-26
JP6128171B2 (ja) 2017-05-17
SG11201800034TA (en) 2018-02-27
TWI696490B (zh) 2020-06-21
TW201716134A (zh) 2017-05-16

Similar Documents

Publication Publication Date Title
JP5773013B1 (ja) 冷却排出水の回収方法及び回収装置
WO2015178161A1 (ja) 循環冷却水系における冷却水処理薬剤の濃度調整方法、冷却排出水の回収方法及び冷却排出水の処理装置
WO2017006824A1 (ja) 冷却排出水の回収方法及び回収装置
CN107406277B (zh) 水处理方法及装置
WO2005116296A1 (ja) 冷却水の処理方法及び処理薬剤
JP2010120015A (ja) 膜濾過方法
JP6550851B2 (ja) 逆浸透膜を用いた水処理方法及び水処理装置
JPWO2020203527A1 (ja) 逆浸透膜用スケール防止剤及び逆浸透膜処理方法
JP6065066B2 (ja) ボイラ用水処理装置及びボイラの運転方法
WO2018030109A1 (ja) 膜ろ過方法及び膜ろ過システム
JP4576760B2 (ja) 循環冷却水の処理方法
KR20190127654A (ko) 용수 처리 방법
WO2023112819A1 (ja) 逆浸透膜システムのシリカ汚染抑制法およびシリカ汚染抑制剤
WO2023032566A1 (ja) 水処理方法及び水処理装置
JP6468384B1 (ja) 水処理装置
JP2023073688A (ja) 水処理方法およびシリカ系スケール抑制剤
TW202335732A (zh) 除鹽裝置的運轉方法
JP2013180277A (ja) 逆浸透膜処理用スケール防止剤および逆浸透膜処理におけるスケール生成防止方法
JP2004025027A (ja) 逆浸透膜を用いた水処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16821293

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 11201800034T

Country of ref document: SG

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16821293

Country of ref document: EP

Kind code of ref document: A1