JP6777130B2 - 膜用水処理薬品及び膜処理方法 - Google Patents

膜用水処理薬品及び膜処理方法 Download PDF

Info

Publication number
JP6777130B2
JP6777130B2 JP2018190257A JP2018190257A JP6777130B2 JP 6777130 B2 JP6777130 B2 JP 6777130B2 JP 2018190257 A JP2018190257 A JP 2018190257A JP 2018190257 A JP2018190257 A JP 2018190257A JP 6777130 B2 JP6777130 B2 JP 6777130B2
Authority
JP
Japan
Prior art keywords
membrane
water
treatment
polymer compound
hydroxy group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018190257A
Other languages
English (en)
Other versions
JP2020058964A (ja
Inventor
一輝 石井
一輝 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2018190257A priority Critical patent/JP6777130B2/ja
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to CN201980059109.3A priority patent/CN112739448B/zh
Priority to EP19868809.5A priority patent/EP3862071A4/en
Priority to KR1020217001818A priority patent/KR102549065B1/ko
Priority to PCT/JP2019/038493 priority patent/WO2020071309A1/ja
Priority to US17/281,975 priority patent/US11958019B2/en
Priority to TW108136016A priority patent/TWI797387B/zh
Publication of JP2020058964A publication Critical patent/JP2020058964A/ja
Application granted granted Critical
Publication of JP6777130B2 publication Critical patent/JP6777130B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/10Accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/08Prevention of membrane fouling or of concentration polarisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/04Feed pretreatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/60Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide containing nitrogen in addition to the carbonamido nitrogen
    • C08F220/606Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide containing nitrogen in addition to the carbonamido nitrogen and containing other heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F228/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a bond to sulfur or by a heterocyclic ring containing sulfur
    • C08F228/02Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a bond to sulfur or by a heterocyclic ring containing sulfur by a bond to sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/02Homopolymers or copolymers of acids; Metal or ammonium salts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/04Specific process operations in the feed stream; Feed pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/12Addition of chemical agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/16Use of chemical agents
    • B01D2321/167Use of scale inhibitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2321/00Details relating to membrane cleaning, regeneration, sterilization or to the prevention of fouling
    • B01D2321/16Use of chemical agents
    • B01D2321/168Use of other chemical agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/20Prevention of biofouling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Description

本発明は、フェノール性ヒドロキシ基を有する有機化合物を含む被処理水を逆浸透膜(RO膜)等で膜分離処理する際に、被処理水中のフェノール性ヒドロキシ基を有する有機化合物による膜汚染を防止する膜用水処理薬品と、この膜用水処理薬品を用いた膜処理方法に関する。
現在、世界的な水供給の不足において、海水、かん水の淡水化また排水回収系でRO膜システムを用い、水回収率向上による節水対策が積極的に行われている。高回収率でRO膜システムを運転した場合、RO膜面でRO膜給水中の成分が高濃縮されることで、スケール障害や有機化合物によるRO膜の閉塞が問題となっている。
フェノール性ヒドロキシ基を有する有機化合物であるポリフェノールは、土壌に含まれる腐植物質として存在し、また、食品及び飲料製造工場などにおいて、食品や飲料の原料としても用いられている。
このため、腐植物質が含まれている表層水や地下水、並びに食品・飲料製造工場における排水等には、ポリフェノール等のフェノール性ヒドロキシ基を有する有機化合物が含まれることとなるため、これらの水を被処理水としてRO膜処理すると、RO膜給水中のフェノール性ヒドロキシ基を有する有機化合物によるRO膜の閉塞が問題となる。
RO膜に限らず、食品・飲料原料由来のポリフェノールを含有する被処理水を精密濾過膜等の分離膜で処理する場合にも、ポリフェノールが濾過膜に捕捉され、膜閉塞の問題が発生する可能性がある。
このように、土壌に含まれる腐植物質或いは食品や飲料の原料として用いられるポリフェノール等のフェノール性ヒドロキシ基を有する有機化合物は、精密濾過膜(MF膜)、限外濾過膜(UF膜)、ナノ濾過膜(NF膜)、及び逆浸透膜(RO膜)などの分離膜に対し、膜汚染(ファウリング)を引き起こす。ファウリングは、膜給水中に存在する分離対象物質などが膜表面や細孔内に付着、堆積する現象であり、懸濁粒子の膜面への堆積、膜への吸着による層形成、溶解性高分子物質の膜面でのゲル化、膜細孔内部での吸着、析出、閉塞及び気泡による細孔のブロッキング(目詰まり)、並びにモジュール内での流路閉塞などが含まれる。
膜分離処理の前段階で凝集・吸着処理を行うことでフェノール性ヒドロキシ基を有する有機化合物を除去することもできるが、凝集処理では、フルボ酸等の比較的低分子量の有機化合物の除去効果が低く、また、吸着処理では吸着剤の交換が定期的に必要となる。
このため、このような前処理ではなく、膜給水に添加して、ポリフェノール等のフェノール性ヒドロキシ基を有する有機化合物による膜汚染を防止する水処理薬品が望まれる。
特許文献1には、膜分離処理工程の前段において、被処理水に、融点130〜220℃のフェノール樹脂のアルカリ溶液よりなる凝集剤を添加する凝集処理工程を行う水処理方法が提案されているが、このような凝集剤で凝集処理して得られる凝集処理水にもフェノール性ヒドロキシ基を有する有機化合物であるフェノール樹脂が残留して含まれる可能性があるため、この凝集処理水を膜分離処理する場合には、フェノール性ヒドロキシ基を有する有機化合物による膜汚染が起こり得る。
従来、膜用水処理薬品としては、被処理水中の炭酸カルシウムや硫酸カルシウム等のスケール成分によるスケール障害に対応するものは多く提案されているが、フェノール性ヒドロキシ基を有する有機化合物による膜汚染に対する水処理薬品の提案は殆どなされていない。
特許文献2には、ポリビニルピロリドンやポリアクリルアミドといった、カルボニル基を有し、カルボニル炭素と窒素原子とが結合した構造を有する高分子化合物を有効成分とする、フェノール性ヒドロキシ基を有する有機化合物用分散剤が提案されているが、薬品選択の自由度や、実用化に向けた多様性の拡大のために、更なる新規薬品の開発が望まれている。
なお、本発明で用いるAA/AMPS共重合体やAA/HAPS共重合体は、水系のカルシウム系スケール防止剤として知られているが(例えば、特許文献3)、フェノール性ヒドロキシ基を有する有機化合物による膜汚染の防止効果については知られていない。
特開2011−56496号公報 特許第5867532号公報 特開2012−206044号公報
本発明は、フェノール性ヒドロキシ基を有する有機化合物を含む被処理水をRO膜等で膜分離処理する際に、被処理水中のフェノール性ヒドロキシ基を有する有機化合物による膜汚染を効果的に防止することができる膜用水処理薬品と、この膜用水処理薬品を用いた膜処理方法を提供することを目的とする。
本発明者は上記課題を解決すべく検討を重ねた結果、カルボキシル基とスルホ基を有する高分子化合物が、被処理水中のフェノール性ヒドロキシ基を有する有機化合物を効果的に分散させて、フェノール性ヒドロキシ基を有する有機化合物による膜汚染を有効に防止することができることを見出した。
即ち、本発明は以下を要旨とする。
[1] フェノール性ヒドロキシ基を有する有機化合物による膜汚染を防止するための水処理薬品であって、カルボキシル基とスルホ基とを有する高分子化合物を含むことを特徴とする膜用水処理薬品。
[2] 前記高分子化合物が、下記式(1)で表される高分子化合物である[1]に記載の膜用水処理薬品。
Figure 0006777130
(式中、mとnは各構造単位のモル%を示しており、m+n=90〜100%である。Rはスルホ基を含むアニオン基である。)
[3] 前記式(1)におけるRが、−C(=O)−NH−C(CH−CHSOH及び/又は−CHOCH−CH(−OH)−CHSOHである[2]に記載の膜用水処理薬品。
[4] 前記式(1)中のnが、5〜50(%)である[2]又は[3]に記載の膜用水処理薬品。
[5] 前記高分子化合物の質量平均分子量が1000〜30000である[1]ないし[4]のいずれかに記載の膜用水処理薬品。
[6] フェノール性ヒドロキシ基を有する有機化合物を含む被処理水を逆浸透膜処理する逆浸透膜用水処理薬品であって、該逆浸透膜処理で得られる濃縮水が、下記条件(A)及び/又は(B)と、下記条件(C)とを満たす[1]ないし[5]のいずれかに記載の膜用水処理薬品。
(A) 該濃縮水を孔径0.45μmのフィルターで濾過して得られた濾過水について、紫外可視分光光度計を用いて50mmセルで測定した波長260nmの吸光度(abs(50mmセル))が0.01〜5.0
(B) 該濃縮水の全有機炭素(TOC)もしくは不揮発性有機炭素(NPOC)濃度が0.01〜100mg/L
(C) 該濃縮水の多価金属カチオンの濃度が1mg/L以上
[7] 前記逆浸透膜処理における濃縮倍率が3倍以上である[6]に記載の膜用水処理薬品。
[8] フェノール性ヒドロキシ基を有する有機化合物を含む被処理水を膜分離処理するに当たり、該膜の給水に[1]ないし[7]のいずれかに記載の膜用水処理薬品を添加することを特徴とする膜処理方法。
[9] 前記膜用水処理薬品を、前記被処理水に、前記高分子化合物の濃度が0.01〜50mg/Lとなるように添加する[8]に記載の膜処理方法。
本発明によれば、フェノール性ヒドロキシ基を有する有機化合物を含む被処理水をRO膜等で膜分離処理する際に、被処理水中のフェノール性ヒドロキシ基を有する有機化合物を効果的に分散させて、フェノール性ヒドロキシ基を有する有機化合物による膜汚染、更には膜閉塞を防止し、膜の透過水量の低下を抑制して、長期に亘り、安定かつ効率的な膜分離処理を行うことができる。
実施例で用いた平膜試験装置を示す模式図である。 実施例1〜5、比較例1及び参考例1,2の結果を示すグラフである。
以下に本発明の実施の形態を詳細に説明する。
なお、以下においては、本発明の膜用水処理薬品を、主としてRO膜を用いた膜分離処理に適用する場合を例示して本発明を説明するが、本発明の膜用水処理薬品は、RO膜に限らず、MF膜、UF膜、NF膜等の分離膜の被処理水(給水)にも有効に適用される。
本発明の膜用水処理薬品は、フェノール性ヒドロキシ基を有する有機化合物による膜汚染を防止するための水処理薬品であって、カルボキシル基(−COOH)とスルホ基(−SOH)とを有する高分子化合物を有効成分とするものである。
本発明者は、腐植物質のようなフェノール性ヒドロキシ基を有する有機化合物が存在するRO膜処理系において、透過水量の低下を防止し得る水処理薬品について鋭意検討した結果、カルボキシル基とスルホ基とを有する高分子化合物を用いることで透過水量の低下を抑制できることを見出した。特に、後述の式(1)で表される高分子化合物の中でも、後述の構造単位(b)が2−アクリルアミド−2−メチルプロパンスルホン酸(AMPS)や3−アリルオキシ−2−ヒドロキシプロパンスルホン酸(HAPS)に由来するものであって、その含有量が比較的多いもの程、膜汚染度合いも軽減される傾向にあることを知見した。
本発明で用いるカルボキシル基とスルホ基とを有する高分子化合物により、このような作用効果が得られるメカニズムについては、以下の通り推定される。
即ち、腐植物質等のフェノール性ヒドロキシ基およびカルボキシル基を有する有機化合物による膜閉塞要因として、フェノール性ヒドロキシ基およびカルボキシル基を有する有機化合物に含有されるカルボキシル基と水中に共存するカルシウムイオン等の多価金属カチオンが結合して架橋化することで高分子化し、高分子化した有機化合物が膜面に付着することが挙げられる。カルボキシル基とスルホ基とを有する高分子化合物、特に式(1)で表される高分子化合物を用いることによって、この高分子化合物に含有されるカルボキシル基がカルシウムイオン等の多価金属カチオンと優先的に結合し、一方で、AMPS又はHAPS由来のR基の静電反発力によって膜への付着が防止され、膜汚染、膜閉塞が抑制されると考えられる。
本発明の膜用水処理薬品の有効成分としてのカルボキシル基とスルホ基とを有する高分子化合物としては、例えば、下記式(1)で表される高分子化合物が挙げられる。
<式(1)で表される高分子化合物>
Figure 0006777130
(式中、mとnは各構造単位のモル%を示しており、m+n=90〜100%である。Rはスルホ基を含むアニオン基である。)
以下において、式(1)中、[CH−CH(−COOH)]を「構造単位(a)」と称し、[CH−CH(−R)]を「構造単位(b)」と称す場合がある。
上記式(1)におけるRとしては、−C(=O)−NH−C(CH−CHSOH、−CHOCH−CH(−OH)−CHSOHが好ましいものとして挙げられる。
Rが−C(=O)−NH−C(CH−CHSOHである構造単位(b)は、モノマー原料として2−アクリルアミド−2−メチルプロパンスルホン酸(AMPS)を用いることで、高分子化合物に導入することができる。また、Rが−CHOCH−CH(−OH)−CHSOHである構造単位(b)は、モノマー原料として、3−アリルオキシ−2−ヒドロキシプロパンスルホン酸(HAPS)を用いることで、高分子化合物に導入することができる。
構造単位(a)は、モノマー原料としてアクリル酸(AA)を用いることで、高分子化合物に導入することができる。
上記式(1)で表される高分子化合物は、構造単位(a)及び構造単位(b)以外の他の構造単位を10モル%以下の範囲で含有していてもよい。他の構造単位は、構造単位(a)のモノマー原料および構造単位(b)のモノマー原料と共重合可能なモノマー原料により式(1)で表される高分子化合物に導入可能な構造単位であればよく、特に限定されるものではないが、例えば、構造単位(a)、構造単位(b)としてそれぞれAA、AMPSを用いた場合には、アクリルアミド、N−tert−ブチルアクリルアミド、ジアリルアミン塩酸塩などを用いることができる。
また、上記式(1)で表される高分子化合物としては、次亜リン酸構造単位(a)及び構造単位(b)との反応物であるホスフィノポリカルボン酸であってもよい。ホスフィノポリカルボン酸としては、構造単位(a)及び構造単位(b)として、それぞれAA、AMPSを用いた場合には、例えばBWA社製のBelclene(登録商標)400を好適に用いることができる。
式(1)において、mは構造単位(a)のモル%を、nは構造単位(b)のモル%を示す数であり(ただし、m+n=90〜100モル%)、前述のカルボキシル基による架橋抑制効果と、スルホ基による静電反発効果とをバランスよく発揮させて、膜汚染を効果的に防止する観点から、nが5〜50モル%でmが95〜50モル%、特にnが10〜40モル%でmが90〜60モル%であることが好ましい。
なお、式(1)で表される高分子化合物のカルボキシル基やスルホ基は、ナトリウム塩等の塩を形成していてもよく、COOのようなイオン形であってもよい。
本発明で用いるカルボキシル基とスルホ基とを有する高分子化合物の重量平均分子量は、1000〜30000であることが好ましく、2000〜3000であることがより好ましく、8000〜15000であることが特に好ましい。高分子化合物の分子量が上記範囲内であれば、フェノール性ヒドロキシ基を有する有機化合物等の汚染物質の分散効果により優れたものとなる。なお、ここで、高分子化合物の重量平均分子量とは、ゲルパーミエーションクロマトグラフィー分析により、ポリアクリル酸を標準物質として測定した値である。
このようなカルボキシル基とスルホ基とを有する高分子化合物は、1種のみを用いてもよく、2種以上を併用してもよい。
また、本発明の膜用水処理薬品は、上記のカルボキシル基とスルホ基とを有する高分子化合物を含むものであればよく、このカルボキシル基とスルホ基とを有する高分子化合物以外の他のスケール防止剤やスライムコントロール剤を含むものであってもよい。
本発明の水処理薬品が適用される膜給水に含まれるフェノール性ヒドロキシ基を有する有機化合物としては次のようなものが挙げられる。
「フェノール性ヒドロキシ基」とは、芳香環に結合したヒドロキシ基のことであり、それを有する有機化合物としては、例えば、フミン酸、フルボ酸、エラグ酸、フェノール酸、タンニン、カテキン、ルチン、アントシアニン、及び合成されたフェノール樹脂などが挙げられる。
フェノール性ヒドロキシ基を有する有機化合物の分子量(低分子の場合)又は重量平均分子量(高分子の場合)は、通常500〜1000000であり、1000〜500000であることが好ましく、1000〜100000であることがより好ましい。フェノール性ヒドロキシ基を有する有機化合物の分子量又は重量平均分子量が500〜1000000(好ましくは1000〜100000)程度であれば、本発明の膜用水処理薬品により効率的に分散させることが可能となる。
なお、フェノール性ヒドロキシ基を有する有機化合物がポリフェノール等の高分子の場合の重量平均分子量は、GPC法で測定し、標準プルランによる検量線を用いて算出した、プルラン換算の値である。
このようなフェノール性ヒドロキシ基を有する有機化合物を含む被処理水としては、ポリフェノールを含む腐植物質を含んでいる表層水及び地下水、並びに原料由来のポリフェノールが含まれた食品・飲料製造工場の排水などが挙げられる。また、前述の特許文献1に記載の、フェノール樹脂のアルカリ溶液を凝集剤として用いて凝集処理して得られる、フェノール樹脂が残存した凝集処理水も、好適な被処理水として挙げられる。
これらの被処理水に含まれるフェノール性ヒドロキシ基を有する有機化合物の濃度は、当該被処理水の種類により異なるが、通常0.01〜10mg/L程度である。
膜処理に供されるこれら被処理水のpHは、特に限定されないが、好ましくは3.5〜8.5であり、より好ましくは4.0〜7.5であり、さらに好ましくは5.0〜7.0であるので、必要に応じて、酸剤及び/又はアルカリ剤を添加して、このpH範囲になるように調整することが望ましい。
本発明の膜用水処理薬品は、例えば、RO膜用水処理薬品として好適に用いることができ、特に、得られる濃縮水が、下記条件(A)及び/又は(B)と、下記条件(C)とを満たすようなRO膜分離処理、或いは濃縮倍率が3倍以上、例えば3〜5倍のRO膜分離処理において、フェノール性ヒドロキシ基を有する有機化合物を含むRO膜給水に添加することで、良好な効果を得ることができる。
(A) 該濃縮水を孔径0.45μmのフィルターで濾過して得られた濾過水について、紫外可視分光光度計を用いて50mmセルで測定した波長260nmの吸光度(abs(50mmセル))が0.01〜5.0、特に0.1〜1.0。
(B) 該濃縮水の全有機炭素(TOC)もしくは不揮発性有機炭素(NPOC)濃度が0.01〜100mg/L、特に1〜10mg/L。
ここで、TOC、NPOCは燃焼式酸化法等により測定することができる。
(C) 該濃縮水の多価金属カチオンの濃度が1mg/L以上、特に10〜100mg/L。
本発明の膜用水処理薬品を、フェノール性ヒドロキシ基を有する有機化合物による膜汚染を防止するために、RO膜、その他の膜給水に添加する場合、その添加量は、カルボキシル基とスルホ基とを有する高分子化合物の濃度として、0.01〜50mg/L、特に1〜20mg/Lとなるような量とすることが好ましい。この高分子化合物の添加量が少な過ぎると、これを添加したことによるフェノール性ヒドロキシ基を有する有機化合物の分散効果を十分に得ることができず、多過ぎると当該高分子化合物自体が膜汚染を引き起こす可能性がある。
以下に、本発明の効果を具体的な実施例を挙げてさらに詳細に説明する。なお、本発明は以下の実施例に限定されるものではない。
以下の実施例で用いた評価薬剤を、下記表1に示す。
Figure 0006777130
実施例、参考例及び比較例における試験方法は以下の通りである。
<試験溶液の調製>
フェノール性ヒドロキシ基を有する有機化合物としてカナディアンフルボ溶液(UV260値が0.8になるよう調整)、塩化カルシウム100mg/L、評価薬剤1mg/L(有効成分として)を含有する水溶液(純水をベース)を調製し、更に、少量の水酸化ナトリウム水溶液又は硫酸水溶液でpHを6.5〜6.6に調整して試験溶液Iとした。
カナディアンフルボは、分子量10000のフェノール性ヒドロキシ基を有する有機化合物であり、試験溶液Iのフェノール性ヒドロキシ基を有する有機化合物濃度は約2.2mg/Lである。
別に、カナディアンフルボと評価薬剤を添加しなかったこと以外は試験溶液Iと同様にして試験溶液IIを調製した(参考例1)。
また、塩化カルシウムと評価薬剤を添加しなかったこと以外は試験溶液Iと同様にして試験溶液IIIを調製した(参考例2)。
更に、評価薬剤を添加しなかったこと以外は、試験溶液Iと同様にして試験溶液IVを調製した(比較例1)。
<試験装置>
試験装置としては、図1に示す平膜試験装置を用いた。
この平膜試験装置は、有底有蓋の円筒状容器1の高さ方向の中間位置に平膜セル2を設けて容器内を原水室1Aと透過水室1Bとに仕切り、この容器1をスターラー3上に設置し、ポンプ4で被処理水を配管11を介して原水室1Aに給水すると共に、容器1内の攪拌子5を回転させて原水室1A内を攪拌し、透過水を透過水室1Bより配管12を介して取り出すと共に、濃縮水を原水室1Aより配管13を介して取り出すものである。濃縮水取り出し配管13には圧力計6と圧力調整バルブ7が設けられている。
<RO膜通水試験>
上記の試験溶液I〜IVと試験装置を用い、以下の条件でRO膜通水試験を行った。
RO膜:ポリアミド系RO膜(日東電工社製「ES20」)
温度:24〜25℃
RO膜回収率:75%(4倍濃縮)
試験溶液I〜IVの通水試験で得られる濃縮水の水質は下記表2に示す通りである。
Figure 0006777130
このときのフラックス比(初期フラックスに対する経時時間後のフラックスの割合)の経時変化を調べ、結果を図2に示した。
図2より明らかなように、薬剤無添加の比較例1では、経時によりフラックス比が大きく低下するが、実施例1〜5では、フラックス比の低下を抑えることができ、特に、式(1)における構造単位(a)と構造単位(b)とを好適なモル比で含み、かつ好適な分子量を有するAA/AMPS又はAA/HAPS共重合体である高分子化合物を用いた実施例1,2では、連続通水でも長期に亘り初期フラックスの70%以上を維持できている。
これに対して、Caを含んでいても、カナディアンフルボを含まない試験溶液IIや、カナディアンフルボを含んでいてもCaを含まない試験溶液IIIでは、フラックスの低下は殆ど見られないことから、本発明による効果(薬剤無添加の比較例1に対するフラックスの向上効果)は、多価金属カチオン共存下でのフェノール性ヒドロキシ基を有する有機化合物に対する分散効果であり、カルシウム系スケール防止剤とは異質の効果であることが分かる。
1 容器
1A 原水室
1B 透過水室
2 平膜セル
3 スターラー

Claims (5)

  1. 多価金属カチオン共存下でのフェノール性ヒドロキシ基を有する有機化合物による膜汚染を防止するための水処理薬品であって、カルボキシル基とスルホ基とを有する高分子化合物を含み、
    前記高分子化合物が、下記式(1)で表される、質量平均分子量8000〜15000の高分子化合物であることを特徴とする膜用水処理薬品。
    Figure 0006777130
    (式中、mとnは各構造単位のモル%を示しており、m+n=90〜100%、nが10〜40%である。Rは−C(=O)−NH−C(CH−CHSOH及び/又は−CHOCH−CH(−OH)−CHSOHである。)
  2. フェノール性ヒドロキシ基を有する有機化合物を含む被処理水を膜分離処理するに当たり、該膜の給水に請求項1に記載の膜用水処理薬品を添加することを特徴とする膜処理方法。
  3. 前記膜用水処理薬品を、前記被処理水に、前記高分子化合物の濃度が0.01〜50mg/Lとなるように添加する請求項2に記載の膜処理方法。
  4. 前記膜分離処理が逆浸透膜処理であって、該逆浸透膜処理で得られる濃縮水が、下記条件(A)及び/又は(B)と、下記条件(C)とを満たす請求項2又は3に記載の膜処理方法。
    (A) 該濃縮水を孔径0.45μmのフィルターで濾過して得られた濾過水について、紫外可視分光光度計を用いて50mmセルで測定した波長260nmの吸光度(abs(50mmセル))が0.01〜5.0
    (B) 該濃縮水の全有機炭素(TOC)もしくは不揮発性有機炭素(NPOC)濃度が0.01〜100mg/L
    (C) 該濃縮水の多価金属カチオンの濃度が1mg/L以上
  5. 前記逆浸透膜処理における濃縮倍率が3倍以上である請求項4に記載の膜処理方法。
JP2018190257A 2018-10-05 2018-10-05 膜用水処理薬品及び膜処理方法 Active JP6777130B2 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2018190257A JP6777130B2 (ja) 2018-10-05 2018-10-05 膜用水処理薬品及び膜処理方法
EP19868809.5A EP3862071A4 (en) 2018-10-05 2019-09-30 Water treatment chemical for membranes and membrane treatment method
KR1020217001818A KR102549065B1 (ko) 2018-10-05 2019-09-30 막용 수처리 약품 및 막 처리 방법
PCT/JP2019/038493 WO2020071309A1 (ja) 2018-10-05 2019-09-30 膜用水処理薬品及び膜処理方法
CN201980059109.3A CN112739448B (zh) 2018-10-05 2019-09-30 膜用水处理药品及膜处理方法
US17/281,975 US11958019B2 (en) 2018-10-05 2019-09-30 Water treatment chemical for membranes and membrane treatment method
TW108136016A TWI797387B (zh) 2018-10-05 2019-10-04 膜處理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018190257A JP6777130B2 (ja) 2018-10-05 2018-10-05 膜用水処理薬品及び膜処理方法

Publications (2)

Publication Number Publication Date
JP2020058964A JP2020058964A (ja) 2020-04-16
JP6777130B2 true JP6777130B2 (ja) 2020-10-28

Family

ID=70055541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018190257A Active JP6777130B2 (ja) 2018-10-05 2018-10-05 膜用水処理薬品及び膜処理方法

Country Status (7)

Country Link
US (1) US11958019B2 (ja)
EP (1) EP3862071A4 (ja)
JP (1) JP6777130B2 (ja)
KR (1) KR102549065B1 (ja)
CN (1) CN112739448B (ja)
TW (1) TWI797387B (ja)
WO (1) WO2020071309A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6981501B2 (ja) * 2020-05-19 2021-12-15 栗田工業株式会社 分離膜のファウリング防止剤及びファウリング防止方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4414996A (en) 1981-10-13 1983-11-15 Uop Inc. System for automatically dispensing liquid chemicals into an intermittently flowing liquid stream
JP5103747B2 (ja) * 2006-02-03 2012-12-19 栗田工業株式会社 水処理装置及び水処理方法
JP5407994B2 (ja) 2009-08-11 2014-02-05 栗田工業株式会社 水処理方法及び水処理凝集剤
WO2012132892A1 (ja) * 2011-03-30 2012-10-04 栗田工業株式会社 逆浸透膜用スケール防止剤及びスケール防止方法
JP2012206044A (ja) 2011-03-30 2012-10-25 Kurita Water Ind Ltd 冷却水系のスケール防止方法
JP5773013B1 (ja) 2014-03-14 2015-09-02 栗田工業株式会社 冷却排出水の回収方法及び回収装置
JP5867532B2 (ja) * 2014-03-18 2016-02-24 栗田工業株式会社 水処理用分散剤及び水処理方法
JP5888365B2 (ja) 2014-05-19 2016-03-22 栗田工業株式会社 循環冷却水系における冷却水処理薬剤の濃度調整方法、冷却排出水の回収方法及び水処理設備
JP6550851B2 (ja) * 2015-03-30 2019-07-31 栗田工業株式会社 逆浸透膜を用いた水処理方法及び水処理装置
JP6128171B2 (ja) 2015-07-09 2017-05-17 栗田工業株式会社 冷却排出水の回収方法及び回収装置
WO2018168522A1 (ja) * 2017-03-15 2018-09-20 栗田工業株式会社 膜用水処理薬品及び膜処理方法
JP2018190257A (ja) 2017-05-10 2018-11-29 キヤノン株式会社 画像処理装置
CN112004844A (zh) * 2017-12-01 2020-11-27 加州大学评议会 耐生物污垢涂层及其制备和使用方法

Also Published As

Publication number Publication date
WO2020071309A1 (ja) 2020-04-09
KR102549065B1 (ko) 2023-06-28
TWI797387B (zh) 2023-04-01
US11958019B2 (en) 2024-04-16
TW202028123A (zh) 2020-08-01
CN112739448A (zh) 2021-04-30
CN112739448B (zh) 2022-10-25
US20210339205A1 (en) 2021-11-04
EP3862071A4 (en) 2022-06-29
KR20210069621A (ko) 2021-06-11
EP3862071A1 (en) 2021-08-11
JP2020058964A (ja) 2020-04-16

Similar Documents

Publication Publication Date Title
Zularisam et al. Behaviours of natural organic matter in membrane filtration for surface water treatment—a review
Nghiem et al. Characterising humic acid fouling of nanofiltration membranes using bisphenol A as a molecular indicator
Lau et al. Ultrafiltration as a pretreatment for seawater desalination: A review
EP3375759B1 (en) Method for purifying water as well as plant suitable for said method
Karabelas et al. Membrane treatment of potable water for pesticides removal
JP5867532B2 (ja) 水処理用分散剤及び水処理方法
KR101550702B1 (ko) 높은 회수율로 정수 생산을 위한 막여과 정수 처리 시스템 및 방법
JP6777130B2 (ja) 膜用水処理薬品及び膜処理方法
Zazouli et al. Retention of humic acid from water by nanofiltration membrane and influence of solution chemistry on membrane performance
WO2010053051A1 (ja) ろ過装置及び水処理装置
KR101197022B1 (ko) 역세척이 가능한 역삼투 수처리 설비
KR102278438B1 (ko) 막용 수 처리 약품 및 막 처리 방법
AU2013365015B2 (en) Method for hydrophilizing reverse osmosis membrane
JP6441712B2 (ja) 被処理水の膜閉塞度評価方法
US11077403B2 (en) Water treatment method
JP2016215113A (ja) 水処理方法及び水処理装置
JP2013223846A (ja) 被処理水の評価方法、膜処理装置およびその運転方法
JP2016093789A (ja) 水処理方法及び水処理システム
JP2019188338A (ja) 水処理方法及び水処理装置
CN206553239U (zh) 一种转式膜过滤系统
Hilal et al. Combined humic substance coagulation and membrane filtration under saline conditions
JP2010179247A (ja) ろ過装置及び水処理装置
YAN Experimental study of RO membrane organic fouling for wastewater reclamation
JP2017131824A (ja) 水処理方法および生物代謝物用吸着剤
MURATA et al. INHIBITION OF MEMBRANE FOULING FOR TREATMENT OF SURFACE WATER CONTAINING ALGAE: INVESTIGATION BASED ON THE LONG TERM PILOT-SCALE CERAMIC MF FILTRATION EXPERIMENT

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200921

R150 Certificate of patent or registration of utility model

Ref document number: 6777130

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250