WO2015178161A1 - 循環冷却水系における冷却水処理薬剤の濃度調整方法、冷却排出水の回収方法及び冷却排出水の処理装置 - Google Patents

循環冷却水系における冷却水処理薬剤の濃度調整方法、冷却排出水の回収方法及び冷却排出水の処理装置 Download PDF

Info

Publication number
WO2015178161A1
WO2015178161A1 PCT/JP2015/062502 JP2015062502W WO2015178161A1 WO 2015178161 A1 WO2015178161 A1 WO 2015178161A1 JP 2015062502 W JP2015062502 W JP 2015062502W WO 2015178161 A1 WO2015178161 A1 WO 2015178161A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling water
concentration
water
membrane
chemical
Prior art date
Application number
PCT/JP2015/062502
Other languages
English (en)
French (fr)
Inventor
邦洋 早川
隆彦 内田
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Priority to CN201580011957.9A priority Critical patent/CN106414344B/zh
Priority to SG11201609011UA priority patent/SG11201609011UA/en
Publication of WO2015178161A1 publication Critical patent/WO2015178161A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/12Controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/58Multistep processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/08Prevention of membrane fouling or of concentration polarisation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/50Treatment of water, waste water, or sewage by addition or application of a germicide or by oligodynamic treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • C02F5/08Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • C02F5/08Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents
    • C02F5/10Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • C02F5/08Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents
    • C02F5/10Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances
    • C02F5/14Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances containing phosphorus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28GCLEANING OF INTERNAL OR EXTERNAL SURFACES OF HEAT-EXCHANGE OR HEAT-TRANSFER CONDUITS, e.g. WATER TUBES OR BOILERS
    • F28G13/00Appliances or processes not covered by groups F28G1/00 - F28G11/00; Combinations of appliances or processes covered by groups F28G1/00 - F28G11/00

Definitions

  • the present invention relates to a method for adjusting the concentration of a cooling water treatment chemical in a cooling facility used in an industrial process such as building air conditioning, chemical industry, paper industry, steel industry, electric power industry and the like.
  • the present invention also relates to a cooling drainage recovery method and a cooling drainage treatment apparatus.
  • Water is used as effectively as possible to save water and save energy. In the case of further high concentration operation, scale deposition cannot be suppressed.
  • a reverse osmosis membrane As a water recovery system, a reverse osmosis membrane (RO membrane) is generally used to remove salts in cooling water blow water and return treated water to a cooling tower. Even in these water recovery systems, slime failure and scale failure occur in the RO membrane device. Therefore, a slime control agent and a scale dispersant are usually added before the RO membrane for stable operation of the RO membrane device. The concentration management of each drug is necessary.
  • a silica dispersant is added according to the silica concentration in the RO membrane treated water.
  • RO membrane concentrated water is subjected to electrolytic treatment, free chlorine having a slime control action is generated from chloride ions concentrated in the concentrated water, and electrolytic treatment water is added to the front stage of the RO membrane. This is used as a slime control agent, and at the same time, a scale inhibitor is added to the front stage of the RO membrane.
  • the present invention is a technique for reducing the water treatment cost and improving and stabilizing the water recovery rate when recovering the cooling discharge water such as blow water of the circulating cooling water system by the water recovery system using the separation membrane. I will provide a.
  • the present inventor has found that the cooling water recovery system using the RO membrane is affected by the quality of the circulating cooling water system. If the slime control treatment is not sufficiently performed in the circulating cooling water system, the amount of microorganisms in the system and the concentration of metabolites discharged from the microorganisms rise, and cooling water blow water discharged from such circulating cooling water systems. Cause membrane occlusion of the RO membrane in the water recovery system that processes. If the scale dispersant concentration in the circulating cooling water system is not sufficient, scale is generated in the RO membrane of the water recovery system, the water recovery rate is limited, and the advantages of water recovery cannot be obtained sufficiently.
  • the present inventor performs feedback control from changes in the performance of the separation membrane of the water recovery system, for example, changes in pressure, amount of treated water, treated water quality, etc., and is used for cooling water treatment in a circulating cooling water system. It has been found that by adjusting the concentration of the drug used, stable operation can be performed not only in the circulating cooling water system but also in the water recovery system, and the advantages of water recovery can be sufficiently obtained.
  • the separation membrane device of the water recovery system can function as a monitoring device for the effective drug concentration in the circulating cooling water system.
  • the gist of the present invention is as follows.
  • a circulating cooling water system to which a cooling water treatment chemical is added which is provided with a water recovery system that treats discharged water from the circulating cooling water system with a separation membrane and returns the treated water to the circulating cooling water system.
  • the concentration adjustment method of the cooling water treatment chemical in the circulating cooling water system is characterized in that the concentration of the cooling water treatment chemical in the circulating cooling water system is adjusted according to the performance change of the separation membrane.
  • the concentration of the cooling water treatment chemical is adjusted according to at least one change amount of the pressure of the separation membrane, the quality of the treated water, and the amount of the treated water.
  • a method for adjusting the concentration of a cooling water treatment chemical is a method for adjusting the concentration of a cooling water treatment chemical.
  • the concentration of the cooling water treatment chemical that stabilizes the performance of the separation membrane is known in advance, and the cooling water treatment in the circulating cooling water system is performed so as to exceed the concentration.
  • the cooling water treatment chemical is a slime control agent and / or a scale dispersant, and the method for adjusting the concentration of the cooling water treatment chemical in the circulating cooling water system .
  • the cooling water treatment chemical is a slime control agent and a scale dispersant, and after adjusting the concentration of any one of the slime control agent and the scale dispersant, A method for adjusting the concentration of a cooling water treatment chemical in a circulating cooling water system, wherein the concentration of the other chemical is adjusted.
  • the water recovery system has a microfiltration or ultrafiltration membrane as a pretreatment membrane for the reverse osmosis membrane, and a method for adjusting the concentration of a cooling water treatment chemical in a circulating cooling water system .
  • the discharge water from the circulating cooling water system to which the cooling water treatment chemical is added is treated with a water recovery system using a separation membrane, and the treated water is returned to the circulating cooling water system.
  • the concentration of the cooling water treatment chemical is adjusted according to the method for adjusting the concentration of the cooling water treatment chemical according to any one of [1] to [8]. Method.
  • a circulating cooling water system to which a cooling water treatment chemical has been added wherein the discharged water from the circulating cooling water system is treated with a separation membrane device and the treated water is returned to the circulating cooling water system.
  • the apparatus for treating cooling and draining water comprising: a chemical concentration adjusting means for adjusting the concentration of the cooling water treatment chemical in the circulating cooling water system according to a change in performance of the separation membrane.
  • the chemical concentration adjusting means is a means for adjusting the cooling water treatment chemical concentration according to at least one change amount of the pressure of the separation membrane, the quality of treated water, and the amount of treated water. Cooling discharge water treatment device characterized by.
  • the chemical concentration adjusting unit is configured so that the performance of the separation membrane grasped in advance is equal to or higher than the concentration of the cooling water treatment chemical.
  • a treatment apparatus for cooling discharge water which is means for adjusting the concentration of a cooling water treatment chemical.
  • the cooling water treatment chemical is a slime control agent and a scale dispersant
  • the chemical concentration adjusting means is one of the slime control agent and the scale dispersant.
  • a cooling wastewater treatment apparatus wherein the concentration of the other drug is adjusted after the concentration adjustment.
  • the concentration of the cooling water treatment chemical in the circulating cooling water system by feedback control based on the performance change of the separation membrane in the water recovery system for treating the cooling discharge water, not only the circulating cooling water system,
  • the operation of the water recovery system can be stabilized and the water recovery rate can be increased.
  • the following methods are mentioned. (1) The concentration of the cooling water treatment chemical capable of stably maintaining the circulating cooling water system is adjusted so that the separation membrane can also be stabilized. (2) The treatment chemical concentration at which the operation of the separation membrane is stabilized is digitized, and the concentration of the cooling water treatment chemical in the circulating cooling water system is adjusted to be equal to or higher than the numeric value.
  • the separation membrane device of the water recovery system for processing the cooling discharge water can function as a monitoring device for controlling the chemical concentration of the cooling water treatment chemical in the circulating cooling water system. It is not necessary to provide a separate monitoring device.
  • the concentration management of the water treatment chemical that has been conventionally managed separately in the circulating cooling water system and the water recovery system is unified to the concentration management based on the performance change of the separation membrane in the water recovery system, Stable operation of both the circulating cooling water system and the water recovery system can be achieved.
  • the cooling water treatment chemical added to the circulating cooling water system can be effectively used as the water treatment chemical in the water recovery system, and the water treatment cost can be reduced.
  • 6 is a graph showing changes with time in RO membrane operating pressure in Example 1 and Comparative Example 1. 6 is a graph showing a change with time of the ratio of the initial recovered water amount in Example 1 and Comparative Example 1.
  • Cooling discharge water The cooling discharge water treated with the separation membrane of the water recovery system and returned to the circulating cooling water system typically includes blow water from the cooling tower.
  • the present invention is not limited to blow water but can be applied to all discharged water discharged from the circulating cooling water system. You may make it return to the said circulating cooling water system, after extracting a part or all of circulating cooling water from the circulating piping of a circulating cooling water system, processing with a separation membrane. It is also possible to collect water from the discharged water branched and discharged from the piping for supplying the cooling water to the cooling device for the cooling tower and the circulating cooling water. In the present invention, such cooling discharge water is treated as water to be treated by the separation membrane of the water recovery system, and the treated water is returned to the circulating cooling water system.
  • the water recovery system corresponding to the cooling wastewater treatment apparatus of the present invention which treats the cooling discharge water with the separation membrane and returns it to the circulating cooling water system, may be any as long as it has a separation membrane, that is, a separation membrane device.
  • the separation membrane which processes cooling discharge water is a reverse osmosis membrane (RO membrane).
  • RO membrane reverse osmosis membrane
  • MF membrane microfiltration membrane
  • UF membrane ultrafiltration membrane
  • former stage a water recovery system in which a strainer, a pretreatment membrane device, and an RO membrane device are provided in this order will be described.
  • the above cooling discharge water can be processed as it is in the pretreatment membrane device, but since the cooling discharge water may contain coarse turbidity and foreign matter, it is placed before the pretreatment membrane device. It is preferable to provide a strainer and remove these in advance with the strainer, and then perform a turbidity treatment in the pretreatment membrane device. Operation is possible even if the strainer is omitted, but in this case, the pretreatment film may be damaged by coarse turbidity or foreign matter in the cooling discharge water.
  • an automatic strainer that automatically performs a cleaning process is preferably used.
  • the shape of the strainer is not particularly limited, and any shape such as a Y shape or a bucket shape can be used.
  • the pore size of the strainer is preferably 100 to 500 ⁇ m. When the pore size of the strainer is smaller than 100 ⁇ m, the strainer is severely blocked, and when it exceeds 500 ⁇ m, there is a high possibility that coarse turbidity or foreign matter that has passed through the strainer will damage the pretreatment film.
  • a filter such as a thread-wound filter or a pleated filter may be used instead of the strainer, but a strainer is preferable in terms of replacement frequency and cleaning efficiency.
  • Pretreatment membrane device It is preferable that the cooled discharged water after the turbidity treatment with the strainer is then treated with the pretreatment membrane device.
  • the pretreatment membrane device is for removing turbidity and colloidal components in the cooling discharge water that cause membrane contamination of the RO membrane device, and an MF membrane or a UF membrane can be used.
  • the membrane type is not particularly limited, and a membrane filtration device such as a hollow fiber type or a spiral type can be employed. There is no restriction
  • the molecular weight cutoff of the UF membrane that is the pretreatment membrane is preferably 30,000 or more.
  • the cooling water treatment chemical added in the circulating cooling water system and contained in the cooling discharge water and brought into the water recovery system can permeate. It can be effectively used for scale prevention of the membrane device, slime control, etc., and it is not necessary to add these chemicals again before the RO membrane device.
  • the pore size of the MF membrane as the pretreatment membrane is preferably about 0.1 to 0.01 ⁇ m for the same reason as the molecular weight cut off of the UF membrane.
  • the cooling water treatment agent added in the circulating cooling water system and included in the cooling discharge water and brought into the water recovery system will be described later as a cooling water treatment agent.
  • medical agent it is preferable that pH of the feed water of a pre-processing film shall be 5 or more.
  • the pH of the feed water of the pretreatment membrane is lower than 5, the permeability of the pretreatment membrane is lowered even when a cooling water treatment agent, particularly a polymer having a sulfonic acid group and a carboxyl group, which will be described later, is used as a scale dispersant. In some cases, it is difficult to effectively use the RO membrane device for scale prevention.
  • the pH of the feed water of the pretreatment membrane may be 5 or more, and the upper limit is not particularly limited.
  • cooling discharge water such as cooling tower blow water is usually pH 8 to 10, most of which is about 8 to 9. Therefore, this can be directly processed by the pretreatment film device.
  • the treated water (pretreated membrane permeated water) after the cooling discharge water is preferably treated by the above-mentioned pretreatment membrane device is then desalted by the RO membrane device.
  • the type of RO membrane of the RO membrane device is not particularly limited, and is appropriately determined depending on the quality of the cooling discharge water to be treated (the quality of raw water supplied to the circulating cooling water system or the concentration rate in the circulating cooling water system).
  • the desalting rate of the RO membrane is preferably 80% or more, particularly preferably 85% or more. When the desalting rate of the RO membrane is lower than this, desalting efficiency is poor, and treated water (permeated water) with good water quality cannot be obtained.
  • the material of the RO membrane any material such as a polyamide composite membrane or a cellulose acetate membrane can be used. There is no restriction
  • the RO membrane water supply (water passed through the RO membrane device as treated water) has a suitable pH as follows, and the pretreatment membrane device and the RO are adjusted to adjust the pH of the RO membrane water supply. It is preferable to provide a pH adjusting means for adjusting pH by adding an acid between the membrane device.
  • the pH adjusting means include means for adding an acid directly to a RO membrane water supply introduction line or a line mixer provided in the line or to a pH adjusting tank provided separately by a chemical injection pump or the like.
  • the acid used here is not particularly limited, and inorganic acids such as hydrochloric acid, sulfuric acid, and nitric acid can be suitably used.
  • the pH of the circulating cooling water rises to about 8 to 9 due to the concentration circulation operation, and such a high pH is more suitable for permeation of the scale dispersant in the pretreatment membrane device. .
  • the RO membrane device since the cooling discharge water is further concentrated, there is a concern about generation of scale. In terms of scale suppression, it is preferable that the RO membrane device is operated at a reduced pH.
  • the pH range of the RO membrane water supply is preferably 4.0 to 7.5. When pH exceeds 7.5, depending on the water quality, scales such as calcium carbonate, calcium phosphate, calcium sulfate, and barium sulfate may be precipitated.
  • the silica concentration in the cooling discharge water exceeds 30 mg / L, it is preferable to lower the pH of the RO membrane water supply to 4.0 to 5.5 in order to suppress the precipitation.
  • the lower the pH of the RO membrane feed water the better in terms of preventing scale precipitation.
  • the amount of acid required becomes large, which is not economically preferable.
  • the RO membrane may be blocked.
  • the pH of the cooling discharge water is preferably 5.5 to 7.0, particularly preferably 5.5 to 6.5.
  • humic acid and fulvic acid are dissociated and the RO membrane is blocked, and Ca in the cooling water is effectively dispersed by the dispersant to form a complex with fulvic acid. It becomes difficult.
  • phenolic polymer a polymer compound having a phenolic hydroxyl group (hereinafter referred to as “phenolic polymer”) as a coagulation aid in the cooling discharge water which is the water to be treated in the water recovery system. May also be added.) May be added.
  • phenolic polymers examples include vinylphenol homopolymers, modified vinylphenol homopolymers, copolymers of vinylphenol and modified vinylphenol, vinylphenol and / or copolymers of modified vinylphenol and hydrophobic vinyl monomers.
  • polyvinylphenol polymers such as polymers; phenol resins such as polycondensates of phenol and formaldehyde, polycondensates of cresol and formaldehyde, and polycondensates of xylenol and formaldehyde.
  • the melting point of the phenolic polymer obtained by subjecting the novolac type phenolic resin to the resol type secondary reaction is preferably 130 to 220 ° C, particularly 150 to 200 ° C.
  • the phenolic polymer has a weight average molecular weight of preferably 5,000 to 50,000, and more preferably 10,000 to 30,000.
  • the amount of the phenolic polymer added varies depending on the quality of the cooling discharged water, and is not particularly limited, but is preferably about 0.01 to 10 mg / L as the active ingredient concentration.
  • the RO membrane When cooling discharge water contains heavy metal ions such as copper and iron derived from heat exchangers, the RO membrane is promoted in the presence of redox agents such as thorium hypochlorite and hydrazine and heavy metal ions. May be deteriorated. In that case, by adding a substance having a chelating action of heavy metal (for example, EDTA), contact between the membrane and heavy metal can be prevented, and accelerated deterioration can be prevented.
  • heavy metal for example, EDTA
  • pretreatment membrane devices such as MF membrane devices and RO membrane devices are blocked by the treatment of cooling discharge water for a long time, and the treated water obtained ( When the amount of permeated water is reduced (that is, when the water recovery rate is reduced), these membrane devices can be washed to remove clogs and recover the treated water amount.
  • the chemicals used for the cleaning treatment can be appropriately selected according to the occluding substance and membrane material. For example, hydrochloric acid, sulfuric acid, nitric acid, sodium hypochlorite, sodium hydroxide, citric acid, oxalic acid, etc. are selected. be able to.
  • Cooling water treatment chemical The cooling water treatment chemical added to the circulating cooling water system is not particularly limited, but preferably includes a scale dispersant and a slime control agent. Only one of the scale dispersant and the slime control agent may be added, or both may be added, but preferably both the scale dispersant and the slime control agent are used.
  • Scale dispersant As the scale dispersant, inorganic polyphosphoric acids such as sodium hexametaphosphate and sodium tripolyphosphate, and phosphonic acids such as hydroxyethylidene diphosphonic acid and phosphonobutane tricarboxylic acid can be used. As the scale dispersant, it is preferable to use a polymer having a sulfonic acid group and a carboxyl group.
  • the scale dispersant dissociates as the pH increases, and the function as the scale dispersant increases.
  • the calcium concentrated in the RO membrane device under the high pH condition. Etc. are likely to precipitate as scales, so that the treatment is performed under low pH conditions.
  • the scale dispersant has only a carboxyl group and does not have a sulfonic acid group, it becomes insoluble and cannot function as a scale dispersant.
  • a polymer having a sulfonic acid group and a carboxyl group as the scale dispersant.
  • a scale dispersant it is added to the circulating cooling water system and is contained in the cooling discharge water.
  • the scale dispersant that has been brought into the water recovery system and permeated through the pretreatment membrane can be effectively used as the scale dispersant of the RO membrane device.
  • a polymer having a sulfonic acid group and a carboxyl group suitable as a scale dispersant a copolymer of a monomer having a sulfonic acid group and a monomer having a carboxyl group, or a single amount thereof. And terpolymers with other monomers copolymerizable with the polymer.
  • Examples of the monomer having a sulfonic acid group include conjugated diene sulfonic acids such as 2-methyl-1,3-butadiene-1-sulfonic acid, and sulfonic acid groups such as 3- (meth) allyloxy-2-hydroxypropanesulfonic acid.
  • Unsaturated (meth) allyl ether monomers 2- (meth) acrylamide-2-methylpropanesulfonic acid, 2-hydroxy-3-acrylamidepropanesulfonic acid, styrenesulfonic acid, methallylsulfonic acid, vinylsulfone Acid, allyl sulfonic acid, isoamylene sulfonic acid, or salts thereof, preferably 3-allyloxy-2-hydroxy-1-propanesulfonic acid (HAPS), 2-acrylamido-2-methylpropanesulfonic acid (AMPS) ).
  • HAPS 3-allyloxy-2-hydroxy-1-propanesulfonic acid
  • AMPS 2-acrylamido-2-methylpropanesulfonic acid
  • the monomer having a sulfonic acid group one type may be used alone, or two or more types may be mixed and used.
  • the monomer having a carboxyl group acrylic acid, methacrylic acid, crotonic acid, isocrotonic acid, vinyl acetic acid, atropic acid, maleic acid, fumaric acid, itaconic acid, hydroxyethylacrylic acid or a salt thereof, preferably examples include acrylic acid and methacrylic acid.
  • the monomer which has a carboxyl group may be used individually by 1 type, and 2 or more types may be mixed and used for it.
  • Examples of monomers copolymerizable with these monomers include amides such as N-tert-butylacrylamide (N-tBAA) and N-vinylformamide.
  • the present invention is not limited to these.
  • the polymer having a sulfonic acid group and a carboxyl group preferably has a weight average molecular weight of 1,000 to 30,000. If the weight average molecular weight of the polymer is less than 1,000, the effect of dispersing the scale is insufficient, and if it exceeds 30,000, it becomes difficult to permeate the pretreatment film. Or adsorb to the RO membrane, which may cause membrane clogging.
  • the scale dispersant may be used alone or in combination of two or more.
  • Slime control agent As slime control agent, free chlorine agent such as sodium hypochlorite (NaClO), chlorine compound such as chloramine, monochlorosulfamic acid, amide sulfate, chlorinated amide agent, amide sulfate group bonded chlorine agent, dibromohydantoin 1 type, or 2 or more types, such as organic agents, such as bromine agents, such as DBNPA (dibromonitrilopropion acid), and MIT (methyl isothiazolone), can be used.
  • sodium hypochlorite (NaClO) chlorine compound such as chloramine, monochlorosulfamic acid, amide sulfate, chlorinated amide agent, amide sulfate group bonded chlorine agent, dibromohydantoin 1 type, or 2 or more types, such as organic agents, such as bromine agents, such as DBNPA (dibromonitrilopropion acid), and MIT (methyl isothiazolone
  • Free chlorine and bound chlorine are shown in JIS K 0400-33-10: 1999, and are measured as the concentration of Cl 2 by the DPD method using N, N-diethyl-1,4-phenylenediamine.
  • Free chlorine is chlorine present in the form of hypochlorous acid, hypochlorite ions or dissolved chlorine.
  • Bound chlorine is chlorine present in the form of chloroamines and organic chloroamines.
  • Total chlorine is chlorine present in the form of free chlorine, combined chlorine or both.
  • Examples of the free chlorine agent that can be used in the present invention include chlorine gas, hypochlorous acid or a salt thereof, chlorous acid or a salt thereof, chloric acid or a salt thereof, perchloric acid or a salt thereof, chlorinated isocyanuric acid or The salt can be used.
  • Examples of the salt include alkali metal salts such as sodium and potassium, alkaline earth metal salts such as barium, other metal salts such as nickel, ammonium salts, and the like. One or more of these can be used. Among these, sodium hypochlorite is preferable because of its excellent handleability.
  • the nitrogen compound to which the free chlorine is bonded includes ammonia or a compound thereof, melamine, urea, acetamide, sulfamide, cyclolamic acid, sulfamic acid, toluenesulfonamide, succinimide, phthalimide, isocyanuric. Examples thereof include acids, N-chlorotoluenesulfonamide, uric acid, saccharin, and salts thereof.
  • the bonded chlorine agent used in the present invention is a compound in which the above-mentioned free chlorine is bonded to these nitrogen compounds.
  • the combined chlorine agent used in the present invention those obtained by mixing and reacting the above nitrogen compound and free chlorine agent, particularly those obtained by mixing and reacting each in the state of an aqueous solution are preferable.
  • Examples of such bonded chlorinating agents include chloramine, chloramine-T (sodium salt of N-chloro-4-methylbenzenesulfonamide), chloramine- B (sodium salt of N-chloro-benzenesulfonamide), sodium salt of N-chloro-paranitrobenzenesulfonamide, trichloromelamine, mono- or di-chloromelamine sodium salt or potassium salt, trichloro-isocyanurate, mono- Or sodium salt or potassium salt of di-chloroisocyanuric acid, sodium salt or potassium salt of mono- or di-chlorosulfamic acid, monochlorohydantoin or 1,3-dichlorohydantoin, 5,5-dimethylhydantoin, etc. 5 Alkyl derivatives. Also about these bond chlorine agents, 1 type may be used independently and 2 or more types may be used together.
  • the polyamide RO membrane is highly likely to deteriorate due to contact with hypochlorite, when applying hypochlorite, after removing residual chlorine in the water recovery system, the polyamide RO It is preferable to pass water through the membrane device.
  • the adjustment based on the performance change of the RO membrane is performed as the adjustment of the cooling water treatment chemical concentration based on the performance change of the separation membrane described later, the residual chlorine derived from the circulating cooling water system is removed in the preceding stage of the RO membrane in this way. If this happens, the density cannot be adjusted. Accordingly, as the slime control agent, it is preferable to use a combined chlorine agent that does not cause such a film deterioration problem.
  • the concentration of the cooling water treatment agent such as the scale dispersant and / or slime control agent in the circulation cooling water system is determined according to the performance of the separation membrane of the water recovery system. Changes, more specifically, the pressure of the pretreatment membrane and / or RO membrane (separation membrane operating pressure (operation differential pressure)), treated water quality (membrane permeated water quality), treated water volume (permeated water volume) That is, it adjusts based on the change of one or two or more of recovered water amount).
  • the concentration in one of the slime control agent and the scale dispersant in the circulating cooling water system is increased by about 0.1 to 2.0 mg / L. If this pressure increase does not stop after a certain period of time, the concentration of the drug is further increased by about 0.1 to 2.0 mg / L. If the pressure does not stop after adjusting the concentration several times in this way (about 2 to 10 times), it is assumed that there is no effect due to the increase in the concentration of one of the drugs, and the concentration adjustment of one drug is stopped. Similarly, the concentration of the other drug is adjusted. This is repeated a certain number of times to determine the drug concentration.
  • the feedback control is performed in the same manner as described above, and the concentration of the slime control agent and / or the scale dispersant is adjusted, so that these items become stable. To decide.
  • Such adjustment and determination of the drug concentration may be performed at any time, continuously, periodically, or irregularly.
  • concentration rate of the cooling water varies depending on the season, process, etc. Due to seasonal variations in breeding, it is preferable to periodically adjust and determine the drug concentration.
  • the concentration adjustment may be performed from either agent, but in order to see the effect of changing the concentration, multiple drugs should be used. It is preferable not to adjust the concentration at the same time, but to change only one kind of medicine by changing the concentration once. For example, after changing the drug concentration and adjusting and determining the drug concentration for one of the slime control agent and the scale dispersant, the drug concentration can be similarly changed and the drug concentration adjusted and determined for the other. preferable.
  • stable adjustment of the water recovery system can be performed by adjusting the concentration of the drug, the concentration of only one of the scale dispersant and the slime control agent is adjusted thereafter, and the concentration of the other drug is adjusted. In some cases, stable operation can be maintained without adjusting the concentration.
  • the water recovery system can be stably operated in advance, that is, for example, the pressure of the RO membrane device of the water recovery system is increased, the quality of the treated water is lowered, and the amount of treated water is lowered. Understand and set the drug concentration of slime control agent, scale dispersant, etc. in the circulating cooling water system that can be operated without any problems, and feed back the measurement results of the equipment that can measure these drug concentrations to obtain the concentration Adjustments may be made.
  • circulation cooling is performed in contrast to the conventional method in which the chemical dispersion control of the scale dispersant and slime control agent in the water recovery system is performed based on the performance change of the separation membrane of the water recovery system.
  • the added cooling water treatment chemical is included in the cooling discharge water in the circulating cooling water system and brought into the water recovery system. This means that the effect of the drug is exerted on the separation membrane, that is, the drug effect remains in the water recovery system. Accordingly, in the circulating cooling water system, naturally, chemical effects such as scale prevention and slime control are exhibited.
  • the concentration of the chemical in the circulating cooling water system is adjusted according to the present invention but the performance of the separation membrane of the water recovery system tends to deteriorate, the contamination of the separation membrane is severe or the contamination of the cooling tower is severe.
  • this adjustment of the drug concentration means that the performance of the water recovery system cannot be recovered. In this case, the operation is stopped, and maintenance such as cleaning treatment of the separation membrane of the water recovery system or cleaning of the cooling tower is performed.
  • the concentration of the scale dispersant in the circulating cooling water system is 1 to 100 mg / L, preferably 2 to 30 mg / L, more preferably about 5 to 20 mg / L as the active ingredient concentration.
  • the concentration of the slime control agent in the circulating cooling water system is preferably about 0.1 to 200 mg / L, more preferably about 0.1 to 100 mg / L as the active ingredient concentration. If the performance of the separation membrane of the water recovery system does not improve even if both of these chemicals exceed the above upper limit, it is preferable to perform maintenance such as washing of the separation membrane or washing of the cooling tower.
  • the cooling / draining water treatment apparatus of the present invention comprises chemical concentration adjusting means for adjusting the concentration of the cooling water treatment chemical in the circulating cooling water system based on the performance change of the separation membrane by the method as described above.
  • the drug concentration adjusting means for example, a pressure gauge that detects the operating pressure of the RO membrane, a concentration meter that detects the drug concentration in the circulating cooling water system, and these measured values are input, and based on the input values
  • a control unit that calculates an adjustment value of the drug concentration and outputs an instruction signal of a chemical injection amount of the circulating cooling water system chemical injection unit based on the calculation result.
  • Cooling tower blow water (hereinafter simply referred to as “blow water”), which is operated at a concentration factor of 3.5 times, using Chiba industrial water as raw water, is used as a strainer, MF membrane device, RO membrane device. In this order, the water was recovered and the recovered water was returned to the circulating cooling water system.
  • AA / AMPS sodium hydroxide, sulfamic acid and hypochlorite are used as slime control agents according to the method of Example 1 of WO 2011/125762 pamphlet.
  • the combined chlorine agent prepared using sodium acid is added so that the in-system holding concentration (bound chlorine concentration) is 1.0 mg / L.
  • sufficient cooling water treatment can be performed at an AA / AMPW concentration of 3 mg / L and a combined chlorine concentration of 1.0 mg / L.
  • the mesh pore diameter of the strainer is 400 ⁇ m.
  • MF membrane “Pureia GS (hydrophilic PVDF, pore size 0.02 ⁇ m, external pressure type)” manufactured by Kuraray Co., Ltd. was used.
  • RO membrane “KROA-2032-SN (polyamide ultra-low pressure RO membrane)” manufactured by Kurita Kogyo Co., Ltd. was used.
  • the cleaning frequency of the MF membrane device was 1 time / 30 minutes.
  • Blow water (pH 8.5 to 8.7) is sequentially passed through the strainer and MF membrane device without adjusting the pH, and sulfuric acid is added to the inlet side of the RO membrane device to adjust the pH to 5.5. Water was passed through the membrane device.
  • the water recovery rates of the MF membrane device and RO membrane device were 90% and 75%, respectively.
  • the scale dispersant concentration and the slime control agent concentration in the circulating cooling water system were adjusted in order while observing the pressure rise in the RO membrane device.
  • the increase in pressure was confirmed every 3 days, and each drug concentration was changed by 1 mg / L.
  • the pressure increase was most reduced when the concentration of the scale dispersant in the circulating cooling water system was 10 mg / L and the concentration of the combined chlorine derived from the slime control agent in the circulating cooling water system was 5 mg / L. .
  • FIG. 1 shows the change over time in the operating pressure of the RO membrane during the 30-day operation period.
  • FIG. 2 shows the change over time in the ratio of the recovered water amount after the lapse of time to the recovered water amount at the beginning of the operation (the recovered water amount after the lapse of time / the recovered water amount at the beginning of the operation; hereinafter referred to as “the initial recovered water amount ratio”).
  • Comparative Example 1 a sufficient amount of scale dispersant concentration is 3 mg / L for cooling water treatment of the circulating cooling water system, and the combined chlorine agent has a combined chlorine concentration of 2 mg / L higher than the required amount.
  • the water recovery rate of the membrane device was set lower than that in Example 1, stable operation of the water recovery system could not be performed.
  • FIG. 1 shows the change over time in the operating pressure of the RO membrane during the 30-day operation period.
  • FIG. 2 shows the change over time in the ratio of the initial recovered water amount.
  • the water recovery agent is adjusted by adjusting the concentration of the cooling water treatment chemical in the circulating cooling water system based on the performance change of the separation membrane of the water recovery system. It can be seen that the operation can be stabilized and water can be recovered efficiently without adding a water treatment chemical in the system.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

 循環冷却水系のブロー水等の冷却排出水を、分離膜を用いた水回収システムで水回収するに当たり、水処理コストを低減すると共に、水回収率の向上と安定化を図る。冷却水処理薬剤が添加されている循環冷却水系であって、該循環冷却水系からの排出水を、分離膜で処理し、処理水を該循環冷却水系に戻す水回収システムを備える循環冷却水系において、循環冷却水系における冷却水処理薬剤の濃度を、水回収システムの分離膜の性能変化に応じて調整する。

Description

循環冷却水系における冷却水処理薬剤の濃度調整方法、冷却排出水の回収方法及び冷却排出水の処理装置
 本発明は、ビル空調や、化学工業、製紙工業、製鉄工業、電力工業等の工業プロセスにおいて使用される冷却設備における冷却水処理薬剤の濃度調整方法に関する。本発明はまた、冷却排出水の回収方法、及び冷却排出水の処理装置に関する。
 冷却水系、ボイラ水系などの水と接触する伝熱面や配管内では、スケール障害が発生する。省資源、省エネルギーの立場から、冷却水の系外への排棄(ブロー)量を少なくして高濃縮運転を行う場合、水中に溶解している塩類が濃縮されて、伝熱面が腐食しやすくなるとともに、難溶性の塩となってスケール化する。装置の壁面などにスケールが付着すると、熱効率の低下、配管の閉塞など、ボイラや熱交換器の運転に重大な障害が生じる。
 節水や省エネルギーを目的に、水は可能な限り有効利用される。更なる高濃縮運転の場合、スケールの析出を抑制することができない。
 循環冷却水系ではスケール障害だけでなく、微生物によるスライム障害も考慮する必要がある。循環冷却水系の高濃縮運転では、冷却水の水質が悪化し、細菌、黴、藻類などの微生物群に、土砂、塵埃などが混ざり合って形成されるスライムが発生し易くなり、熱交換器における熱効率の低下や通水阻害を引き起こす。スライム付着部の下部において、機器や配管の局部腐食を誘発する。
 スケールやスライムによる障害を防止するために、一般にスケール分散剤やスライムコントロール剤として塩素系薬剤や非塩素系の微生物忌避剤を循環冷却水に添加すると共に、これらの薬剤濃度が最適な濃度となるよう管理・制御することが行われている。その濃度管理・制御方法として、特開2009-291693号公報では、トレーサーを利用する。特開2012-101194号公報では、微生物汚れモニターを利用する。
 水資源の有効活用の面から、冷却水ブロー水を水回収システムで回収し、その処理水を冷却塔に戻す取り組みが行われている。水回収システムとしては、逆浸透膜(RO膜)で冷却水ブロー水中の塩類を除去し、処理水を冷却塔に戻すものが一般的である。これらの水回収システムにおいても、RO膜装置において、スライム障害やスケール障害が発生するため、通常、RO膜装置の安定運転のために、RO膜の前段でスライムコントロール剤やスケール分散剤が添加され、各薬剤の濃度管理が必要となっている。特開2001-099595号公報では、RO膜処理する水中のシリカ濃度に応じてシリカ分散剤を添加する。特開2003-275761号公報では、RO膜濃縮水を電解処理し、濃縮水中に濃縮された塩化物イオンからスライムコントロール作用のある遊離塩素を発生させ、電解処理水をRO膜の前段に添加し、これをスライムコントロール剤として利用し、同時に、スケール防止剤をRO膜の前段に添加する。
特開2009-291693号公報 特開2012-101194号公報 特開2001-099595号公報 特開2003-275761号公報
 従来の水回収システムでは、RO膜装置の安定運転のためにRO膜給水へのスライムコントロール剤やスケール分散剤の添加が必要となり、そのためのコストと作業が処理コストを押し上げていた。
 本発明は、循環冷却水系のブロー水等の冷却排出水を、分離膜を用いた水回収システムで水回収するに当たり、水処理コストを低減すると共に、水回収率の向上と安定化を図る技術を提供する。
 本発明者は、RO膜を用いた冷却排出水の水回収システムは、当該循環冷却水系の水処理の良否に影響を受けることを見出した。循環冷却水系において、スライムコントロール処理が十分に行われていないと、系内の微生物量、および微生物が排出する代謝物の濃度が上昇し、このような循環冷却水系から排出される冷却水ブロー水を処理する水回収システムにおけるRO膜の膜閉塞を引き起こす。循環冷却水系におけるスケール分散剤濃度が十分でないと、水回収システムのRO膜でスケールが発生し、水回収率が制限され、水回収の利点を十分に得ることができなくなる。
 本発明者は、この知見をもとに、水回収システムの分離膜の性能変化、例えば、圧力、処理水量、処理水質等の変化から、フィードバック制御して、循環冷却水系における冷却水処理で使用されている薬剤濃度を調整することで、循環冷却水系だけでなく、水回収システムにおいても安定運転を行うことができ、水回収の利点を十分に得ることができることを見出した。水回収システムの分離膜装置を循環冷却水系における有効薬剤濃度に対するモニタリング装置として機能させることができる。
 本発明は、以下を要旨とする。
[1] 冷却水処理薬剤が添加されている循環冷却水系であって、該循環冷却水系からの排出水を、分離膜で処理し、処理水を該循環冷却水系に戻す水回収システムを備える循環冷却水系において、該循環冷却水系における該冷却水処理薬剤の濃度を、前記分離膜の性能変化に応じて調整することを特徴とする、循環冷却水系における冷却水処理薬剤の濃度調整方法。
[2] [1]において、前記分離膜の圧力、処理水質、及び処理水量の少なくとも一つの変化量に応じて、前記冷却水処理薬剤の濃度を調整することを特徴とする、循環冷却水系における冷却水処理薬剤の濃度調整方法。
[3] [1]又は[2]において、前記分離膜の性能が安定する前記冷却水処理薬剤の濃度を事前に把握しておき、該濃度以上となるように前記循環冷却水系における冷却水処理薬剤の濃度を調整することを特徴とする、循環冷却水系における冷却水処理薬剤の濃度調整方法。
[4] [1]ないし[3]のいずれかにおいて、前記冷却水処理薬剤がスライムコントロール剤及び/又はスケール分散剤であることを特徴とする、循環冷却水系における冷却水処理薬剤の濃度調整方法。
[5] [4]において、前記スライムコントロール剤が結合塩素剤を含むことを特徴とする、循環冷却水系における冷却水処理薬剤の濃度調整方法。
[6] [4]又は[5]において、前記冷却水処理薬剤がスライムコントロール剤及びスケール分散剤であり、該スライムコントロール剤とスケール分散剤のいずれか一方の薬剤の濃度調整を行った後、他方の薬剤の濃度調整を行うことを特徴とする、循環冷却水系における冷却水処理薬剤の濃度調整方法。
[7] [1]ないし[6]のいずれかにおいて、前記分離膜が逆浸透膜であることを特徴とする、循環冷却水系における冷却水処理薬剤の濃度調整方法。
[8] [7]において、前記水回収システムは、前記逆浸透膜の前処理膜として精密濾過又は限外濾過膜を有することを特徴とする、循環冷却水系における冷却水処理薬剤の濃度調整方法。
[9] 冷却水処理薬剤が添加されている循環冷却水系からの排出水を、分離膜を用いた水回収システムで処理し、処理水を該循環冷却水系に戻す冷却排出水の回収方法において、該循環冷却水系において、該冷却水処理薬剤の濃度を、[1]ないし[8]のいずれかに記載の冷却水処理薬剤の濃度調整方法に従って調整することを特徴とする、冷却排出水の回収方法。
[10] 冷却水処理薬剤が添加されている循環冷却水系であって、該循環冷却水系からの排出水を、分離膜装置で処理し、処理水を該循環冷却水系に戻す冷却排出水の処理装置において、該循環冷却水系における該冷却水処理薬剤の濃度を、前記分離膜の性能変化に応じて調整する薬剤濃度調整手段を備えることを特徴とする、冷却排出水の処理装置。
[11] [10]において、前記薬剤濃度調整手段は、前記分離膜の圧力、処理水質、及び処理水量の少なくとも一つの変化量に応じて、前記冷却水処理薬剤濃度を調整する手段であることを特徴とする、冷却排出水の処理装置。
[12] [10]又は[11]において、前記薬剤濃度調整手段は、事前に把握された前記分離膜の性能が安定する前記冷却水処理薬剤の濃度以上となるように、前記循環冷却水系における冷却水処理薬剤の濃度を調整する手段であることを特徴とする、冷却排出水の処理装置。
[13] [10]ないし[12]のいずれかにおいて、前記冷却水処理薬剤がスライムコントロール剤及び/又はスケール分散剤であることを特徴とする、冷却排出水の処理装置。
[14] [13]において、前記スライムコントロール剤が結合塩素剤を含むことを特徴とする、冷却排出水の処理装置。
[15] [13]又は[14]において、前記冷却水処理薬剤がスライムコントロール剤及びスケール分散剤であり、前記薬剤濃度調整手段は、該スライムコントロール剤とスケール分散剤のいずれか一方の薬剤の濃度調整を行った後、他方の薬剤の濃度調整を行うことを特徴とする、冷却排出水の処理装置。
[16] [10]ないし[15]のいずれかにおいて、前記分離膜装置が逆浸透膜装置であることを特徴とする、冷却排出水の処理装置。
[17] [16]において、前記逆浸透膜装置の前段に、前処理膜装置として精密濾過膜装置又は限外濾過膜装置を有することを特徴とする、冷却排出水の処理装置。
 本発明によれば、循環冷却水系における冷却水処理薬剤の濃度を、冷却排出水を処理する水回収システムにおける分離膜の性能変化に基づくフィードバック制御で調整することにより、循環冷却水系のみならず、水回収システムの運転を安定化すると共に、水回収率も高めることができる。具体的には、以下の方法が挙げられる。
 (1)循環冷却水系を安定に維持し得る冷却水処理薬剤の濃度を、分離膜についても安定運転が可能な濃度となるように調整する。
 (2)分離膜の運転が安定する処理薬剤濃度を数値化しておき、当該数値以上となるように循環冷却水系の冷却水処理薬剤の濃度を調整する。
 本発明においては、冷却排出水を処理する水回収システムの分離膜装置を、循環冷却水系における冷却水処理薬剤の薬剤濃度を制御するためのモニタリング装置として機能させることができ、循環冷却水系においては、別途モニタリング装置を設けることが不要となる。
 本発明によれば、従来、循環冷却水系と水回収システムとで別々に管理されていた水処理薬剤の濃度管理を、水回収システムにおける分離膜の性能変化に基づく濃度管理に一本化して、循環冷却水系と水回収システムの両方の安定運転を図ることができる。
 本発明によれば、循環冷却水系に添加する冷却水処理薬剤を、水回収システムにおける水処理薬剤として有効利用することができ、水処理コストの低減を図ることができる。
実施例1及び比較例1におけるRO膜運転圧力の経時変化を示すグラフである。 実施例1及び比較例1における対初期回収水量比率の経時変化を示すグラフである。
 以下に本発明の実施の形態を詳細に説明する。
冷却排出水
 水回収システムの分離膜で処理して循環冷却水系に戻す冷却排出水としては、代表的には、冷却塔のブロー水が挙げられる。本発明は、ブロー水に限らず、循環冷却水系から排出されるすべての排出水に適用することができる。循環冷却水系の循環配管から循環冷却水の一部又は全部を引き抜いて分離膜で処理した後当該循環冷却水系に戻すようにしても良い。冷却塔の冷却水や循環冷却水の濾過装置に冷却水を送給する配管から分岐して排出した排出水を処理対象として水回収することもできる。
 本発明では、このような冷却排出水を処理対象水として、水回収システムの分離膜で処理し、処理水を循環冷却水系に返送する。
水回収システム
 本発明の冷却排出水の処理装置に該当する、冷却排出水を分離膜で処理して循環冷却水系に戻す水回収システムは、分離膜、即ち分離膜装置を備えるものであればよく、特に制限はない。冷却排出水を処理する分離膜は逆浸透膜(RO膜)であることが好ましい。RO膜装置の前段に前処理膜装置として、精密濾過膜(MF膜)装置又は限外濾過膜(UF膜)装置を有することが好ましい。更に、その前段にストレーナーを有することが好ましい。
 以下、ストレーナー、前処理膜装置及びRO膜装置をこの順で設けた水回収システムについて説明する。
ストレーナー
 上記の冷却排出水は、そのまま前処理膜装置で処理することもできるが、冷却排出水には、粗大な濁質や異物が含有されている場合があるため、前処理膜装置の前段にストレーナーを設け、これらをストレーナーで予め除去した後、前処理膜装置において除濁処理を行うことが好ましい。ストレーナーを省略しても運転可能であるが、この場合には、冷却排出水中の粗大な濁質や異物により、前処理膜が破損する可能性がある。
 ストレーナーとしては、自動で洗浄処理を行うオートストレーナーが好適に使用される。
 ストレーナーの形状には特に制限はなく、Y型、バケット型などいずれの形状のものをも使用することができる。
 ストレーナーの孔径は100~500μmであることが好ましい。ストレーナーの孔径が100μmより小さいとストレーナーの閉塞が激しくなり、500μmを超えるとストレーナーを透過した粗大な濁質や異物が前処理膜を破損させる可能性が高くなる。
 ストレーナーの代わりに糸巻きフィルター、プリーツフィルターなどのフィルターを使用してもよいが、交換頻度、洗浄効率の点からはストレーナーが好適である。
前処理膜装置
 ストレーナーで除濁処理した後の冷却排出水は、次いで前処理膜装置で処理されることが好ましい。
 前処理膜装置は、RO膜装置の膜汚染の原因となる冷却排出水中の濁質やコロイダル成分を除去するためのものであり、MF膜やUF膜を用いることができる。その膜型式には特に制限はなく、中空糸型、スパイラル型等の膜濾過装置を採用することができる。濾過方式にも制限はなく、内圧濾過、外圧濾過、クロスフロー濾過、全量濾過のいずれの方式も適用可能である。
 前処理膜であるUF膜の分画分子量としては30,000以上であることが好ましい。UF膜の分画分子量が30,000以上であると、循環冷却水系で添加され、冷却排出水に含まれて水回収システムに持ち込まれた冷却水処理薬剤を透過させることができ、後段のRO膜装置のスケール防止、スライムコントロール等に有効利用することができ、RO膜装置の前段で、これらの薬剤を改めて添加する必要がなくなる。UF膜の分画分子量の上限に特に制限はないが、1,000,000以下であると、冷却排出水中のRO膜の閉塞原因となりうる高分子多糖類などを除去できる。前処理膜であるMF膜の孔径は、UF膜の分画分子量と同様の理由から、好ましくは0.1~0.01μm程度である。
 循環冷却水系で添加され冷却排出水中に含まれて水回収システムに持ち込まれた冷却水処理薬剤を、高い透過率でこのような前処理膜を透過させるために、冷却水処理薬剤として、後述の好適な冷却水処理薬剤を用いると共に、前処理膜の給水のpHを5以上とすることが好ましい。前処理膜の給水のpHが5よりも低いと、冷却水処理薬剤、特にスケール分散剤として後述のスルホン酸基とカルボキシル基を有する重合物を用いても、前処理膜の透過率が低くなり、RO膜装置のスケール防止に有効利用しにくくなる場合がある。前処理膜の給水のpHは、5以上であればよく、その上限には特に制限はないが、通常、冷却塔ブロー水等の冷却排出水は、通常pH8~10、多くは8~9程度であるため、これをそのまま前処理膜装置で処理できる。
RO膜装置
 冷却排出水を好ましくは前述の前処理膜装置で処理した後の処理水(前処理膜透過水)は、次いでRO膜装置で脱塩処理される。
 RO膜装置のRO膜の種類としては、特に制限はなく、処理する冷却排出水の水質(循環冷却水系に供給される原水水質や循環冷却水系での濃縮倍率)によって適宜決定される。RO膜の脱塩率は80%以上、特に85%以上が好ましい。RO膜の脱塩率がこれよりも低いと、脱塩効率が悪く、良好な水質の処理水(透過水)を得ることができない。RO膜の材質としてはポリアミド複合膜、酢酸セルロース膜などいずれの材質の膜も使用可能である。RO膜の形状についても特に制限はなく、中空糸型、スパイラル型など、いずれのものも使用可能である。
 本発明において、RO膜給水(RO膜装置に被処理水として通水される水)には、以下の通り好適pHが存在し、RO膜給水のpH調整のために、前処理膜装置とRO膜装置との間に酸を添加してpHを調整するpH調整手段を設けることが好ましい。このpH調整手段としては、RO膜の給水導入ラインやライン中に設けたラインミキサに直接或いは、別途設けたpH調整槽に、酸を薬注ポンプ等により添加する手段などを挙げることができる。ここで使用される酸は特に限定されるものではなく、塩酸、硫酸、硝酸などの無機酸を好適に用いることができる。
 通常、循環冷却水系では濃縮循環運転により、循環冷却水のpHが8~9程度に上昇しており、前処理膜装置におけるスケール分散剤の透過にはこのような高pHの方が好適である。RO膜装置では、冷却排出水をさらに濃縮するため、スケールの発生が懸念される。スケール抑制の面から、RO膜装置ではpHを下げて運転することが好適である。RO膜給水のpH範囲としては4.0~7.5が好ましい。pHが7.5を超えると水質によっては、炭酸カルシウム、リン酸カルシウム、硫酸カルシウム、硫酸バリウム等のスケール類が析出する場合がある。
 冷却排出水中のシリカ濃度が30mg/Lを超える場合はその析出を抑制するために、RO膜給水のpHを4.0~5.5に下げることが好ましい。RO膜給水のpHは低い程スケール析出防止の点では好ましいが、pHを4.0より低くするには、必要な酸の量が多量になり、経済的に好ましくない。
 冷却排出水中にフミン酸やフルボ酸が多く含まれていると、RO膜の閉塞が生じる場合がある。その場合には、冷却排出水のpHを5.5~7.0、特に5.5~6.5とすることが好ましい。このpHの範囲であれば、フミン酸やフルボ酸が酸解離してRO膜の閉塞が抑制されるとともに、冷却水中のCaが分散剤により効果的に分散し、フルボ酸とのコンプレックスを形成し難くなる。
その他の処理
 前処理膜装置やRO膜装置を安定化させるために、水回収システムの被処理水である冷却排出水に凝集助剤としてフェノール系水酸基を有する高分子化合物(以下「フェノール性高分子」と称す場合がある。)を添加してもよい。
 フェノール性高分子としては、ビニルフェノールの単独重合体、変性ビニルフェノールの単独重合体、ビニルフェノールと変性ビニルフェノールとの共重合体、ビニルフェノール及び/又は変性ビニルフェノールと疎水性ビニルモノマーとの共重合体のようなポリビニルフェノール系重合体;フェノールとホルムアルデヒドの重縮合物、クレゾールとホルムアルデヒドの重縮合物、キシレノールとホルムアルデヒドの重縮合物といったフェノール系樹脂;が挙げられる。本発明では、特に特開2010-131469号公報、特開2013-255922号公報、特開2013-255923号公報等に記載されるノボラック型フェノール樹脂にレゾール型の2次反応を行って得られた反応物を用いることが好ましい。
 ノボラック型フェノール樹脂にレゾール型の2次反応を行って得られるフェノール性高分子の融点は130~220℃、特に150~200℃であることが好ましい。このフェノール性高分子の重量平均分子量は5,000~50,000であることが好ましく、10,000~30,000であることがより好ましい。
 フェノール性高分子の添加量は、冷却排出水の水質により異なり、特に制限はないが、有効成分濃度として0.01~10mg/L程度とすることが好ましい。
 冷却排出水に熱交換器由来の銅、鉄などの重金属イオンが含まれている場合、酸化還元作用を持つ薬剤、例えば次亜塩素酸トリウム、ヒドラジンと、重金属イオンの存在下でRO膜が促進劣化を受けることがある。その場合、重金属のキレート作用がある物質(たとえばEDTA)を添加することで、膜と重金属の接触を防止し、促進劣化を防止することができる。
膜装置の洗浄処理
 後述の薬剤濃度調整を行っていても、長時間冷却排出水の処理を行うことで、MF膜装置等の前処理膜装置やRO膜装置が閉塞し、得られる処理水(透過水)量が低下した場合(即ち、水回収率が低下した場合)には、これらの膜装置を洗浄処理することで閉塞物を除去し、処理水量を回復させることができる。洗浄処理に使用する薬品としては閉塞物質、膜素材に応じて適宜選択することができ、例えば、塩酸、硫酸、硝酸、次亜塩素酸ナトリウム、水酸化ナトリウム、クエン酸、シュウ酸等を選択することができる。
冷却水処理薬剤
 循環冷却水系に添加される冷却水処理薬剤としては特に制限はないが、好ましくは、スケール分散剤、スライムコントロール剤が挙げられる。スケール分散剤とスライムコントロール剤はいずれか一方のみが添加されてもよく、両方が添加されてもよいが、好ましくは、スケール分散剤とスライムコントロール剤の両方の使用である。
スケール分散剤
 スケール分散剤としては、ヘキサメタリン酸ソーダやトリポリリン酸ソーダ等の無機ポリリン酸類、ヒドロキシエチリデンジホスホン酸やホスホノブタントリカルボン酸等のホスホン酸類等を用いることもできる。スケール分散剤としては、スルホン酸基とカルボキシル基を有する重合物を用いることが好ましい。
 リンを含む分散剤では、Ca硬度が高くなった場合に、リン酸Caスケールを析出させる可能性がある。
 スケール分散剤は高pH条件下であるほど解離してスケール分散剤としての機能が高くなるが、前述の通り、RO膜装置では、高pH条件であると、RO膜装置内で濃縮されたカルシウム等がスケールとして析出し易くなるため、低pH条件で処理が行われる。このような低pH条件でのRO膜装置では、スケール分散剤がカルボキシル基のみを有し、スルホン酸基を有さないものであると、不溶化してスケール分散剤として機能し得なくなる。このため、スケール分散剤としては、スルホン酸基とカルボキシル基とを有する重合物を用いることが好ましく、このようなスケール分散剤を用いることにより、循環冷却水系に添加され、冷却排出水中に含まれて水回収システムに持ち込まれ、前処理膜を透過したスケール分散剤をRO膜装置のスケール分散剤として有効利用することができる。
 スケール分散剤として好適なスルホン酸基とカルボキシル基を有する重合物としては、スルホン酸基を有する単量体と、カルボキシル基を有する単量体との共重合物、或いは、更に、これらの単量体と共重合可能な他の単量体との三元共重合体が挙げられる。
 スルホン酸基を有する単量体としては、2-メチル-1,3-ブタジエン-1-スルホン酸などの共役ジエンスルホン酸、3-(メタ)アリルオキシ-2-ヒドロキシプロパンスルホン酸等のスルホン酸基を有する不飽和(メタ)アリルエーテル系単量体や2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸、2-ヒドロキシ-3-アクリルアミドプロパンスルホン酸、スチレンスルホン酸、メタリルスルホン酸、ビニルスルホン酸、アリルスルホン酸、イソアミレンスルホン酸、又はこれらの塩など、好ましくは、3-アリルオキシ-2-ヒドロキシ-1-プロパンスルホン酸(HAPS)、2-アクリルアミド-2-メチルプロパンスルホン酸(AMPS)が挙げられる。スルホン酸基を有する単量体は1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 カルボキシル基を有する単量体としては、アクリル酸、メタクリル酸、クロトン酸、イソクロトン酸、ビニル酢酸、アトロパ酸、マレイン酸、フマル酸、イタコン酸、ヒドロキシエチルアクリル酸又はこれらの塩など、好ましくは、アクリル酸、メタクリル酸が挙げられる。カルボキシル基を有する単量体は1種を単独で用いてもよく、2種以上を混合して用いてもよい。
 これらの単量体と共重合可能な単量体としては、N-tert-ブチルアクリルアミド(N-tBAA)、N-ビニルホルムアミドなどアミド類が挙げられる。
 本発明に好適なスケール分散剤としては、特に、アクリル酸(AA)と2-アクリルアミド-2-メチルプロパンスルホン酸(AMPS)をAA:AMPS=70~95:5~30(モル比)の割合で共重合させた共重合物、AAとAMPSとN-tert-ブチルアクリルアミド(N-tBAA)等のアミド類を、AA:AMPS:アミド類=40~90:5~30:5~30(モル比)の割合で共重合させた共重合物、AAと3-アリロキシ-2-ヒドロキシプロパンスルホン酸(HAPS)を、AA:HAPS=70~95:5~30(モル比)の割合で共重合させた共重合物などが挙げられるが、何らこれらに限定されるものではない。
 スルホン酸基とカルボキシル基を有する重合物の重量平均分子量は、1,000~30,000であることが好ましい。この重合物の重量平均分子量が1,000未満であるとスケール分散効果が不十分であり、30,000を超えると、前処理膜を透過し難くなり、また、この重合物自体が前処理膜やRO膜に吸着し、膜閉塞の要因となるおそれがある。
 スケール分散剤は1種を単独で用いてもよく、2種以上を併用してもよい。
スライムコントロール剤
 スライムコントロール剤としては、次亜塩素酸ナトリウム(NaClO)等の遊離塩素剤、クロラミン、モノクロルスルファミン酸などの塩素とアミド硫酸、アミド硫酸基を有する化合物が反応した結合塩素剤、ジブロモヒダントインなどの臭素剤、DBNPA(ジブロモニトリロプロピオンアシド)、MIT(メチルイソチアゾロン)などの有機剤などの1種又は2種以上を用いることができる。
 遊離塩素、結合塩素は、JIS K 0400-33-10:1999に示されており、N,N-ジエチル-1,4-フェニレンジアミンを用いるDPD法によりClの濃度として測定される。遊離塩素は次亜塩素酸、次亜塩素酸イオン又は溶存塩素の形で存在する塩素である。結合塩素はクロロアミンおよび有機クロロアミンの形で存在する塩素である。全塩素は遊離塩素、結合塩素又は両者の形で存在する塩素である。
 本発明で使用できる遊離塩素剤としては、塩素ガス、次亜塩素酸又はその塩のほか、亜塩素酸又はその塩、塩素酸又その塩、過塩素酸又はその塩、塩素化イソシアヌール酸又はその塩などを用いることができる。塩としては、ナトリウム、カリウム等のアルカリ金属塩、バリウム等のアルカリ土類金属塩、ニッケル等の他の金属塩、アンモニウム塩などが挙げられる。これらは1種以上を用いることができる。これらの中では次亜塩素酸ナトリウムが取扱性に優れるため好ましい。
 結合塩素剤において、上記の遊離塩素が結合する窒素化合物としては、アンモニア又はその化合物、メラミン、尿素、アセトアミド、スルファミド、サイクロラミン酸、スルファミン酸、トルエンスルホンアミド、コハク酸イミド、フタル酸イミド、イソシアヌル酸、N-クロロトルエンスルホンアミド、尿酸、サッカリン又はこれらの塩などが挙げられる。本発明で使用する結合塩素剤は、これらの窒素化合物に上記の遊離塩素が結合したものである。本発明で使用する結合塩素剤としては、上記の窒素化合物と遊離塩素剤とを混合して反応させたもの、特にそれぞれを水溶液の状態で混合して反応させたものが好ましい。
 このような結合塩素剤としては、クロラミン、上記の遊離塩素剤とスルファミン酸化合物とからなる結合塩素剤のほか、クロラミン-T(N-クロロ-4-メチルベンゼンスルホンアミドのナトリウム塩)、クロラミン-B(N-クロロ-ベンゼンスルホンアミドのナトリウム塩)、N-クロロ-パラニトロベンゼンスルホンアミドのナトリウム塩、トリクロロメラミン、モノ-もしくはジ-クロロメラミンのナトリウム塩又はカリウム塩、トリクロロ-イソシアヌレート、モノ-もしくはジ-クロロイソシアヌール酸のナトリウム塩又はカリウム塩、モノ-もしくはジ-クロロスルファミン酸のナトリウム塩又はカリウム塩、モノクロロヒダントインもしくは1,3-ジクロロヒダントイン、5,5-ジメチルヒダントインのような5,5-アルキル誘導体等が挙げられる。
 これらの結合塩素剤についても、1種を単独で用いてもよく、2種以上を併用してもよい。
 ポリアミド系RO膜は、次亜塩素酸塩との接触で劣化する可能性が高いため、次亜塩素酸塩を適用する場合には、水回収システムにおいて、残留塩素を除去した後、ポリアミド系RO膜装置に通水することが好ましい。
 しかし、後述の分離膜の性能変化に基づく冷却水処理薬剤濃度の調整として、RO膜の性能変化に基づく調整を行う場合、このように、RO膜の前段で循環冷却水系由来の残留塩素を除去してしまうと、濃度調整を行えなくなる。従って、スライムコントロール剤としては、このような膜劣化の問題のない結合塩素剤を用いることが好ましい。
循環冷却水系における冷却水処理薬剤の濃度調整
 本発明においては、循環冷却水系における、前述のスケール分散剤及び/又はスライムコントロール剤等の冷却水処理薬剤の濃度を、水回収システムの分離膜の性能変化、より具体的には、分離膜である前処理膜及び/又はRO膜の圧力(分離膜の運転圧力(運転差圧))、処理水質(膜透過水の水質)、処理水量(透過水量、即ち、回収水量)のうちの一つ又は二つ以上の変化に基づいて調整する。
 例えば、RO膜装置の圧力が上昇した場合、循環冷却水系におけるスライムコントロール剤及びスケール分散剤のうちの一方の系内濃度を0.1~2.0mg/L程度上昇させる。一定時間経過後、この圧力上昇が止まらない場合、当該薬剤の濃度をさらに0.1~2.0mg/L程度上昇させる。このようにして数回(2~10回程度)濃度調整を行った後、圧力上昇が止まらない場合は、この一方の薬剤濃度の上昇による効果はないものとして、一方の薬剤の濃度調整をやめ、同様に、他方の薬剤の濃度調整を行う。それを一定回数繰り返し、薬剤濃度を決定する。
 RO膜装置の処理水質が低下した場合、処理水量が低下した場合も、上記と同様にフィードバック制御し、スライムコントロール剤及び/又はスケール分散剤の濃度を調整し、これらの項目が安定となる濃度を決定する。
 このような薬剤濃度の調整及び決定は、連続的、定期的、不定期的、いずれのタイミングで実施してもよいが、冷却水の濃縮倍率は季節やプロセスなどにより変動し、また、スライムの繁殖にも季節変動等があるため、定期的に薬剤濃度の調整、決定を行うことが好ましい。
 スライムコントロール剤とスケール分散剤との併用のように、2種以上の薬剤を用いる場合、濃度調整はいずれの薬剤から実施してもかまわないが、濃度変更の影響をみるため、複数の薬剤を同時に濃度調整するのではなく、一回の濃度調整で変更するのは1種類の薬剤のみとすることが好ましい。例えば、スライムコントロール剤とスケール分散剤のうちの一方について、薬剤濃度を変更し、薬剤濃度を調整、決定した後、他方について、同様に薬剤濃度を変更し、薬剤濃度を調整、決定することが好ましい。
 このような薬剤濃度の調整で、水回収システムの安定運転が行えるようになった場合は、以後、スケール分散剤とスライムコントロール剤のうちのいずれか一方の薬剤のみ濃度調整し、他方の薬剤の濃度調整を行わなくても安定運転を維持できる場合もある。
 循環冷却水系の条件変動がそれほど大きくない場合は、あらかじめ水回収システムを安定的に運転できる、即ち、例えば水回収システムのRO膜装置の圧力の上昇、処理水質の低下、処理水量の低下を引き起こすことなく運転することができる循環冷却水系におけるスライムコントロール剤、スケール分散剤等の薬剤濃度を把握、設定しておき、これら薬剤濃度を測定できる機器の測定結果をフィードバックしてその濃度になるように調整を行ってもよい。
 循環冷却水系における薬剤濃度の測定方法に制限はなく、公知の技術を活用することができる。
 本発明では、水回収システムの分離膜の性能変化に基づいて、当該水回収システムにおけるスケール分散剤やスライムコントロール剤の薬注制御を行っていた従来法に対して、水回収システムではなく循環冷却水系における薬注制御を行うことで、循環冷却水系と水回収システムの両方の水処理を一本化して行う。
 水回収システムの分離膜の性能変化に基づく薬剤濃度の管理であれば、循環冷却水系において、添加された冷却水処理薬剤が、冷却排出水に含まれて水回収システムに持ち込まれ、水回収システムにおける分離膜で当該薬剤の効果を発揮していること、即ち、水回収システムにおいても薬剤効果を残していることを意味する。従って、循環冷却水系においては、当然スケール防止やスライムコントロール等の薬剤効果が発揮されている。
 本発明に従って、循環冷却水系における薬剤濃度の調整を行っても、水回収システムの分離膜の性能が低下する傾向にある場合は、分離膜の汚染が激しい、或いは、冷却塔の汚染が激しいために、この薬剤濃度の調整では水回収システムの性能を回復させることができないことを意味する。この場合には、運転を停止して、前述の水回収システムの分離膜の洗浄処理、或いは冷却塔の洗浄等のメンテナンスを行う。
 通常、循環冷却水系におけるスケール分散剤濃度は、有効成分濃度として1~100mg/L、好ましくは2~30mg/L、より好ましくは5~20mg/L程度とされる。循環冷却水系におけるスライムコントロール剤濃度は、有効成分濃度として好ましくは0.1~200mg/L、より好ましくは0.1~100mg/L程度とされる。これらの薬剤が共に上記上限を超えても、水回収システムの分離膜性能が向上しない場合には、前述の分離膜の洗浄或いは冷却塔の洗浄等のメンテナンスを行うことが好ましい。
 本発明の冷却排出水の処理装置は、上記のような方法で、循環冷却水系における冷却水処理薬剤の濃度を、分離膜の性能変化に基づいて調整する薬剤濃度調整手段を備えるものである。その薬剤濃度調整手段としては、例えば、RO膜の運転圧力を検出する圧力計と、循環冷却水系における薬剤濃度を検出する濃度計と、これらの測定値が入力され、入力された値に基づいて、薬剤濃度の調整値を演算し、演算結果に基づいて循環冷却水系の薬注手段の薬注量の指示信号を出力する制御手段とを備えるものが挙げられる。
 以下に実施例を挙げて本発明をより具体的に説明するが、本発明はその要旨を超えない限り以下の実施例により限定されるものではない。
[実施例1]
 千葉工業用水を原水として、濃縮倍率3.5倍で運転を行っている循環冷却水系の冷却塔ブロー水(以下、単に「ブロー水」と称す。)を、ストレーナー、MF膜装置、RO膜装置の順で処理することにより水回収し、回収水を循環冷却水系に返送した。
 この循環冷却水系では、スケール分散剤として、アクリル酸とAMPMとの共重合物(アクリル酸:AMPM(モル比)=70:30、重量平均分子量10,000。以下「AA/AMPS」と略記する。)を、系内保持濃度が3mg/Lとなるように添加すると共に、スライムコントロール剤として、国際公開WO2011/125762号パンフレットの実施例1の方法に従って、水酸化ナトリウムとスルファミン酸と次亜塩素酸ナトリウムを用いて調製した結合塩素剤を、系内保持濃度(結合塩素濃度)が1.0mg/Lとなるように添加している。この循環冷却水系では、AA/AMPW濃度3mg/L、結合塩素濃度1.0mg/Lで、十分な冷却水処理を行うことができる。
 ストレーナーのメッシュ孔径は400μmである。MF膜はクラレ社製「ピューリアGS(親水化PVDF、孔径0.02μm、外圧式)」を用いた。RO膜は栗田工業(株)製「KROA-2032-SN(ポリアミド超低圧RO膜)」を用いた。MF膜装置の洗浄頻度は1回/30分とした。
 ブロー水(pH8.5~8.7)は、pH調整せずにストレーナー、MF膜装置に順次通水し、RO膜装置の入口側で硫酸を添加してpH5.5に調整した後、RO膜装置に通水した。
 MF膜装置及びRO膜装置の水回収率はそれぞれ90%、75%とした。
 運転開始後、RO膜装置の圧力上昇をみながら、循環冷却水系内のスケール分散剤濃度、スライムコントロール剤濃度を順番に調整した。圧力上昇の確認は3日ごとに行い、各薬剤濃度を1mg/Lずつ変化させた。その結果、圧力上昇を最も低減できたのは、スケール分散剤の循環冷却水系内濃度が10mg/Lで、スライムコントロール剤由来の結合塩素の循環冷却水系内濃度が5mg/Lのときであった。
 その状態で、RO膜装置の水回収率75%を維持し得るように装置(ポンプ)のインバータの調整を行いながら、30日間通水を行い、RO膜の圧力変化を経時的に調べたところ、30日後の運転圧力は1.22MPaとなった。
 30日間の運転期間中のRO膜の運転圧力の経時変化を図1に示す。運転開始初期の回収水量に対する経時後の回収水量の比率(経時後の回収水量/運転開始初期の回収水量。以下「対初期回収水量比率」と称す。)の経時変化を図2に示す。
[比較例1]
 循環冷却水系内のスケール分散剤濃度を3mg/Lに、スライムコントロール剤濃度を結合塩素濃度として2mg/Lに固定し、かつRO膜の水回収率は65%で処理を行った以外は、実施例1と同様の冷却水処理及び水回収処理を行い、同様に30日間の通水を行い、RO膜の圧力変化を調べた。運転開始から21日後にRO膜の運転圧力は1.4MPaを超え、十分な水量を得るだけのポンプ揚程が確保できなくなり、通水30日後に洗浄が必要な状況となった。
 比較例1では、循環冷却水系の冷却水処理には十分量のスケール分散剤濃度3mg/Lで、また結合塩素剤は、必要量よりも多い結合塩素濃度2mg/Lとし、水回収システムではRO膜装置の水回収率を実施例1よりも低く設定したが、水回収システムの安定運転を行うことはできなかった。
 30日間の運転期間中のRO膜の運転圧力の経時変化を図1に示す。対初期回収水量比率の経時変化を図2に示す。
 以上の実施例1と比較例1の結果から、本発明によれば、循環冷却水系における冷却水処理薬剤の濃度を、水回収システムの分離膜の性能変化に基づいて調整することにより、水回収システムにおいて水処理薬剤を添加することなく、運転を安定化させ、効率的な水回収を行えることが分かる。
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2014年5月19日付で出願された日本特許出願2014-103434に基づいており、その全体が引用により援用される。

Claims (17)

  1.  冷却水処理薬剤が添加されている循環冷却水系であって、該循環冷却水系からの排出水を、分離膜で処理し、処理水を該循環冷却水系に戻す水回収システムを備える循環冷却水系において、該循環冷却水系における該冷却水処理薬剤の濃度を、前記分離膜の性能変化に応じて調整することを特徴とする、循環冷却水系における冷却水処理薬剤の濃度調整方法。
  2.  請求項1において、前記分離膜の圧力、処理水質、及び処理水量の少なくとも一つの変化量に応じて、前記冷却水処理薬剤の濃度を調整することを特徴とする、循環冷却水系における冷却水処理薬剤の濃度調整方法。
  3.  請求項1又は2において、前記分離膜の性能が安定する前記冷却水処理薬剤の濃度を事前に把握しておき、該濃度以上となるように前記循環冷却水系における冷却水処理薬剤の濃度を調整することを特徴とする、循環冷却水系における冷却水処理薬剤の濃度調整方法。
  4.  請求項1ないし3のいずれか1項において、前記冷却水処理薬剤がスライムコントロール剤及び/又はスケール分散剤であることを特徴とする、循環冷却水系における冷却水処理薬剤の濃度調整方法。
  5.  請求項4において、前記スライムコントロール剤が結合塩素剤を含むことを特徴とする、循環冷却水系における冷却水処理薬剤の濃度調整方法。
  6.  請求項4又は5において、前記冷却水処理薬剤がスライムコントロール剤及びスケール分散剤であり、該スライムコントロール剤とスケール分散剤のいずれか一方の薬剤の濃度調整を行った後、他方の薬剤の濃度調整を行うことを特徴とする、循環冷却水系における冷却水処理薬剤の濃度調整方法。
  7.  請求項1ないし6のいずれか1項において、前記分離膜が逆浸透膜であることを特徴とする、循環冷却水系における冷却水処理薬剤の濃度調整方法。
  8.  請求項7において、前記水回収システムは、前記逆浸透膜の前処理膜として精密濾過膜又は限外濾過膜を有することを特徴とする、循環冷却水系における冷却水処理薬剤の濃度調整方法。
  9.  冷却水処理薬剤が添加されている循環冷却水系からの排出水を、分離膜を用いた水回収システムで処理し、処理水を該循環冷却水系に戻す冷却排出水の回収方法において、該循環冷却水系において、該冷却水処理薬剤の濃度を、請求項1ないし8のいずれか1項に記載の冷却水処理薬剤の濃度調整方法に従って調整することを特徴とする、冷却排出水の回収方法。
  10.  冷却水処理薬剤が添加されている循環冷却水系であって、該循環冷却水系からの排出水を、分離膜装置で処理し、処理水を該循環冷却水系に戻す冷却排出水の処理装置において、該循環冷却水系における該冷却水処理薬剤の濃度を、前記分離膜の性能変化に応じて調整する薬剤濃度調整手段を備えることを特徴とする、冷却排出水の処理装置。
  11.  請求項10において、前記薬剤濃度調整手段は、前記分離膜の圧力、処理水質、及び処理水量の少なくとも一つの変化量に応じて、前記冷却水処理薬剤濃度を調整する手段であることを特徴とする、冷却排出水の処理装置。
  12.  請求項10又は11において、前記薬剤濃度調整手段は、事前に把握された前記分離膜の性能が安定する前記冷却水処理薬剤の濃度以上となるように、前記循環冷却水系における冷却水処理薬剤の濃度を調整する手段であることを特徴とする、冷却排出水の処理装置。
  13.  請求項10ないし12のいずれか1項において、前記冷却水処理薬剤がスライムコントロール剤及び/又はスケール分散剤であることを特徴とする、冷却排出水の処理装置。
  14.  請求項13において、前記スライムコントロール剤が結合塩素剤を含むことを特徴とする、冷却排出水の処理装置。
  15.  請求項13又は14において、前記冷却水処理薬剤がスライムコントロール剤及びスケール分散剤であり、前記薬剤濃度調整手段は、該スライムコントロール剤とスケール分散剤のいずれか一方の薬剤の濃度調整を行った後、他方の薬剤の濃度調整を行うことを特徴とする、冷却排出水の処理装置。
  16.  請求項10ないし15のいずれか1項において、前記分離膜装置が逆浸透膜装置であることを特徴とする、冷却排出水の処理装置。
  17.  請求項16において、前記逆浸透膜装置の前段に、前処理膜装置として精密濾過膜装置又は限外濾過膜装置を有することを特徴とする、冷却排出水の処理装置。
PCT/JP2015/062502 2014-05-19 2015-04-24 循環冷却水系における冷却水処理薬剤の濃度調整方法、冷却排出水の回収方法及び冷却排出水の処理装置 WO2015178161A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580011957.9A CN106414344B (zh) 2014-05-19 2015-04-24 循环冷却水系统中的冷却水处理药剂的浓度调整方法、冷却排出水的回收方法以及水处理装置
SG11201609011UA SG11201609011UA (en) 2014-05-19 2015-04-24 Method for adjusting concentration of cooling water treatment agent in circulating cooling water system, method for recovering discharged cooling water, and treatment device for discharged cooling water

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014103434A JP5888365B2 (ja) 2014-05-19 2014-05-19 循環冷却水系における冷却水処理薬剤の濃度調整方法、冷却排出水の回収方法及び水処理設備
JP2014-103434 2014-05-19

Publications (1)

Publication Number Publication Date
WO2015178161A1 true WO2015178161A1 (ja) 2015-11-26

Family

ID=54553837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/062502 WO2015178161A1 (ja) 2014-05-19 2015-04-24 循環冷却水系における冷却水処理薬剤の濃度調整方法、冷却排出水の回収方法及び冷却排出水の処理装置

Country Status (5)

Country Link
JP (1) JP5888365B2 (ja)
CN (1) CN106414344B (ja)
SG (1) SG11201609011UA (ja)
TW (1) TWI641417B (ja)
WO (1) WO2015178161A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019202246A (ja) * 2018-05-21 2019-11-28 王子ホールディングス株式会社 水処理装置および水処理方法
CN112978816A (zh) * 2019-12-12 2021-06-18 中国石油化工股份有限公司 一种循环水水质稳定性控制方法
US20220097007A1 (en) * 2019-01-28 2022-03-31 Kurita Water Industries Ltd. Chemical dosing control method
EP4122894A1 (en) * 2021-07-22 2023-01-25 Newtec Water Systems NV A method and system for purifying water

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018142904A1 (ja) * 2017-02-02 2018-08-09 オルガノ株式会社 逆浸透膜の改質方法、逆浸透膜、および、非荷電物質含有水の処理方法、逆浸透膜の運転方法および逆浸透膜装置
JP7144922B2 (ja) * 2017-05-09 2022-09-30 オルガノ株式会社 逆浸透膜の運転方法および逆浸透膜装置
JP6933902B2 (ja) * 2017-02-02 2021-09-08 オルガノ株式会社 逆浸透膜の改質方法、および、非荷電物質含有水の処理方法
JP6777130B2 (ja) 2018-10-05 2020-10-28 栗田工業株式会社 膜用水処理薬品及び膜処理方法
JP7122941B2 (ja) * 2018-10-31 2022-08-22 株式会社クラレ バイオポリマー除去装置、及び水処理システム
JP7270490B2 (ja) * 2019-07-11 2023-05-10 オルガノ株式会社 冷却塔向け給水装置および給水方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002018437A (ja) * 2000-05-02 2002-01-22 Kurita Water Ind Ltd カルシウム及びシリカ含有水の処理方法及び処理装置
JP2006317163A (ja) * 2005-05-10 2006-11-24 Japan Organo Co Ltd 水質測定方法および装置
JP2008218679A (ja) * 2007-03-05 2008-09-18 Kandenko Co Ltd 大容量の変圧器の冷却水供給方法及び装置
JP2009236715A (ja) * 2008-03-27 2009-10-15 Kurita Water Ind Ltd スライムモニター、スライムのモニタリング方法及びコントロール方法
WO2011125764A1 (ja) * 2010-03-31 2011-10-13 栗田工業株式会社 逆浸透膜処理方法
JP2011212608A (ja) * 2010-03-31 2011-10-27 Kurita Water Ind Ltd リユース分離膜の管理装置、管理プログラム、および、管理方法
WO2014171400A1 (ja) * 2013-04-17 2014-10-23 栗田工業株式会社 水系のスライム付着状況のモニタリング方法及びモニタリング装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102053052B (zh) * 2009-10-30 2014-04-02 中国石油化工股份有限公司 一种水处理药剂对膜系统运行影响的测试方法
CN201952271U (zh) * 2011-01-27 2011-08-31 贵州天睿水处理节能有限公司 智能化水处理设备
JP2013198869A (ja) * 2012-03-26 2013-10-03 Kurita Water Ind Ltd 水系の微生物抑制方法
JP6106943B2 (ja) * 2012-04-17 2017-04-05 栗田工業株式会社 逆浸透膜処理方法及び逆浸透膜処理装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002018437A (ja) * 2000-05-02 2002-01-22 Kurita Water Ind Ltd カルシウム及びシリカ含有水の処理方法及び処理装置
JP2006317163A (ja) * 2005-05-10 2006-11-24 Japan Organo Co Ltd 水質測定方法および装置
JP2008218679A (ja) * 2007-03-05 2008-09-18 Kandenko Co Ltd 大容量の変圧器の冷却水供給方法及び装置
JP2009236715A (ja) * 2008-03-27 2009-10-15 Kurita Water Ind Ltd スライムモニター、スライムのモニタリング方法及びコントロール方法
WO2011125764A1 (ja) * 2010-03-31 2011-10-13 栗田工業株式会社 逆浸透膜処理方法
JP2011212608A (ja) * 2010-03-31 2011-10-27 Kurita Water Ind Ltd リユース分離膜の管理装置、管理プログラム、および、管理方法
WO2014171400A1 (ja) * 2013-04-17 2014-10-23 栗田工業株式会社 水系のスライム付着状況のモニタリング方法及びモニタリング装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019202246A (ja) * 2018-05-21 2019-11-28 王子ホールディングス株式会社 水処理装置および水処理方法
US20220097007A1 (en) * 2019-01-28 2022-03-31 Kurita Water Industries Ltd. Chemical dosing control method
CN112978816A (zh) * 2019-12-12 2021-06-18 中国石油化工股份有限公司 一种循环水水质稳定性控制方法
EP4122894A1 (en) * 2021-07-22 2023-01-25 Newtec Water Systems NV A method and system for purifying water

Also Published As

Publication number Publication date
JP2015217353A (ja) 2015-12-07
JP5888365B2 (ja) 2016-03-22
CN106414344A (zh) 2017-02-15
TWI641417B (zh) 2018-11-21
SG11201609011UA (en) 2016-12-29
TW201609238A (zh) 2016-03-16
CN106414344B (zh) 2020-10-16

Similar Documents

Publication Publication Date Title
WO2015178161A1 (ja) 循環冷却水系における冷却水処理薬剤の濃度調整方法、冷却排出水の回収方法及び冷却排出水の処理装置
JP5773013B1 (ja) 冷却排出水の回収方法及び回収装置
JP5608988B2 (ja) 活性炭用スライムコントロール剤、活性炭装置への通水方法、有機物含有水の処理方法及び処理装置
JP6305368B2 (ja) 水処理方法及び装置
WO2016158633A1 (ja) 逆浸透膜処理システムの運転方法及び逆浸透膜処理システム
JP6631147B2 (ja) ボイラ給水用水処理装置及びボイラの運転方法
TWI696490B (zh) 冷卻排水之回收方法及回收裝置
JP2014176799A (ja) 逆浸透膜分離方法
JP6550851B2 (ja) 逆浸透膜を用いた水処理方法及び水処理装置
TW201019058A (en) Proactive control system for an industrial water system
JP5967337B1 (ja) 逆浸透膜処理システムの運転方法及び逆浸透膜処理システム
JP6065066B2 (ja) ボイラ用水処理装置及びボイラの運転方法
JP4576760B2 (ja) 循環冷却水の処理方法
WO2019111474A1 (ja) 逆浸透膜のシリカスケール抑制方法
JP6512322B1 (ja) 逆浸透膜のスケール抑制方法
TW202327718A (zh) 逆滲透膜系統的二氧化矽污染抑制方法及二氧化矽污染抑制劑
JP3729260B2 (ja) 逆浸透膜を用いた水処理方法
JP2019155293A (ja) 水処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15795972

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15795972

Country of ref document: EP

Kind code of ref document: A1