WO2023032566A1 - 水処理方法及び水処理装置 - Google Patents

水処理方法及び水処理装置 Download PDF

Info

Publication number
WO2023032566A1
WO2023032566A1 PCT/JP2022/029681 JP2022029681W WO2023032566A1 WO 2023032566 A1 WO2023032566 A1 WO 2023032566A1 JP 2022029681 W JP2022029681 W JP 2022029681W WO 2023032566 A1 WO2023032566 A1 WO 2023032566A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
reverse osmosis
osmosis membrane
treated
scale inhibitor
Prior art date
Application number
PCT/JP2022/029681
Other languages
English (en)
French (fr)
Inventor
雄大 鈴木
史生 須藤
樹生 森田
Original Assignee
オルガノ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オルガノ株式会社 filed Critical オルガノ株式会社
Priority to CN202280060094.4A priority Critical patent/CN118159497A/zh
Publication of WO2023032566A1 publication Critical patent/WO2023032566A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/04Feed pretreatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/20Treatment of water, waste water, or sewage by degassing, i.e. liberation of dissolved gases
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • C02F5/08Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents
    • C02F5/10Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • C02F5/08Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents
    • C02F5/10Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances
    • C02F5/14Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Definitions

  • the present invention relates to a water treatment method and a water treatment apparatus including a reverse osmosis membrane apparatus, in which scale adhesion is suppressed.
  • Patent Document 1 proposes a method of lowering the pH of the water to be treated to 4 to 6, etc., as a countermeasure against scale caused by calcium carbonate.
  • Patent Document 2 or Patent Document 3 proposes the application of a scale inhibitor as a countermeasure against scale caused by calcium fluoride.
  • an object of the present invention is to provide a water treatment method and a water treatment apparatus in which running costs are optimized by adding an appropriate amount of scale inhibitor at an appropriate pH.
  • the present invention is a water treatment method in which water to be treated containing fluorine and calcium is treated by passing it through at least a reverse osmosis membrane, A step of measuring the fluoride ion concentration in the water to be treated; a step of adding a scale inhibitor that suppresses precipitation of calcium fluoride; a reverse osmosis membrane treatment step in which the water to be treated to which the scale inhibitor has been added is passed through the reverse osmosis membrane to obtain permeated water and concentrated water; with The measurement of the fluoride ion concentration in the water to be treated is performed after adjusting the pH to 5 or more, and the addition amount of the scale inhibitor is determined based on the measured fluoride ion concentration.
  • a water treatment method is provided.
  • the present invention provides a reverse osmosis membrane for passing water to be treated containing fluorine and calcium to obtain permeated water and concentrated water, a supply water line for supplying the water to be treated to the reverse osmosis membrane;
  • a water treatment device having The water supply line is pH adjusting means for adjusting the pH of the water to be treated; measuring means for measuring the concentration of fluoride ions in the water to be treated under conditions where the pH is 5 or higher; addition means for adding a scale inhibitor that suppresses precipitation of calcium fluoride to the water to be treated; with and an addition amount control device for determining the addition amount of the scale inhibitor to be added by the addition means based on the measured fluoride ion concentration and controlling the addition amount of the scale inhibitor by the addition means.
  • the present invention provides a water treatment method and a water treatment apparatus for treating water containing fluorine and calcium with a reverse osmosis membrane.
  • the water to be treated includes surface water in rivers and lakes, tap water, and industrial water.
  • the water to be treated according to the present invention is used for purposes such as ultrapure water production.
  • FIG. 1 is a schematic diagram showing the configuration of a water treatment apparatus according to a first embodiment of the present invention.
  • the water treatment device 100 of the present embodiment is a device that removes impurities (fluoride ions, calcium ions, etc.) contained in the water to be treated to generate treated water, and includes concentrated water containing impurities and impurities are removed. It has a reverse osmosis membrane 11 that separates the filtered permeated water.
  • the water treatment device 100 also has a plurality of lines each connected to the reverse osmosis membrane 11 . That is, a feed water line 1 that supplies water to be treated to the reverse osmosis membrane, a permeated water line 2 that drains permeated water from the reverse osmosis membrane 11, and a concentrated water line 3 that drains concentrated water from the reverse osmosis membrane 11. and
  • the supply water line 1 includes a pH adjuster 21 as pH adjusting means, a measuring means (fluoride ion meter) 22 for measuring the concentration of fluoride ions, and an addition line 23 as scale inhibitor adding means.
  • a decarboxylation step may be provided before the pH adjuster 21 in order to suppress calcium carbonate scale and improve permeate water quality.
  • the treated water in the above process often has a pH ⁇ 5.0.
  • the fluoride ion concentration in the water to be treated changes depending on the pH during measurement with a fluoride ion meter, and the amount of scale inhibitor added calculated from the fluoride ion concentration at low pH is too little, resulting in scale. Insufficient suppression.
  • the fluoride ion concentration is measured under the condition that the pH is 5.0 or higher.
  • the pH adjusting device 21 provides a pH adjusting step so that the water to be treated has pH ⁇ 5.0. This prevents some of the fluoride ions from becoming hydrogen fluoride, and the fluoride ion meter 22 can accurately measure the fluoride ion concentration of the water to be treated in the supply water line 1 .
  • a chemical solution injection method that does not affect fluoride ions in the water to be treated is selected, and alkali, particularly a low-concentration sodium hydroxide aqueous solution is added.
  • the pH adjusting apparatus has a pH measuring means such as a pH meter for measuring the pH of at least one of the water to be treated before and after adding the alkali.
  • Calcium fluoride scale deposition is determined by the product of the molar concentrations of fluoride ions and calcium ions (hereinafter referred to as the ionic product).
  • the solubility product of calcium fluoride is 3.9 ⁇ 10 ⁇ 11 (mol 3 /L 3 ). If the ionic product exceeds this solubility product value, scale will precipitate.
  • Calcium fluoride is composed of calcium ions and fluoride ions in a molar ratio of 1:2.
  • the ion product Kap of calcium fluoride is calculated by multiplying the square of the fluoride ion concentration and the calcium ion concentration. Therefore, the fluoride ion concentration has a greater effect on the ion product than the calcium ion concentration. From the above, it is more effective to monitor fluoride ions than calcium ions when determining the amount of scale inhibitor to be added based on the ion product from fluctuating water quality.
  • the lower limit of the measurement amount of a general fluoride ion meter is about 1 mg/L.
  • the fluoride ion concentration is 20 mg/L or less, the fluctuation of the ion product exceeds about 10% when the fluoride ion concentration fluctuates by 1 mg/L. Therefore, this method is particularly effective in the region where the fluoride ion concentration is 20 mg/L or less.
  • the calcium ion concentration at that time is 1.4 mg/L or more because the ion product is equal to or greater than the solubility product of calcium fluoride.
  • the fluoride ion concentration is 10 mg/L or less, the ion product fluctuates by 20% or more, so this method is even more effective.
  • the calcium ion concentration at that time is 5.6 mg/L or more.
  • the measurement result of the fluoride ion concentration, and the first and second flow sensors (not shown) connected to any two of the feed water line 1, the permeated water line 2, and the concentrated water line 3 The addition amount of the scale inhibitor is determined in real time based on the recovery rate (sometimes referred to as concentration ratio) calculated from the flow rate and the second flow rate. This saves time from analysis to determination of the amount of scale inhibitor to be added. Normally, if the flow rate of the feed water line 1 is 100, the total flow rate of the permeate line 2 and the concentrated water line 3 is also 100.
  • the recovery rate is the amount of permeated water relative to the water to be treated, and is set to 75%, for example, as the performance of the reverse osmosis membrane.
  • the amount of permeated water and the amount of concentrated water fluctuate due to fluctuations in the quality and temperature of the water to be treated. Therefore, by measuring the actual amount of water, when measuring the concentration of fluoride ions, the concentration of fluoride ions can be accurately measured without being affected by fluctuations in the amount of permeated water and concentrated water due to fluctuations in water quality and water temperature. and the appropriate amount of scale inhibitor to be added can be determined.
  • the "appropriate amount of scale inhibitor to be added" in the present invention is preferably the minimum amount to be added from the viewpoint of avoiding excessive addition of an expensive scale inhibitor.
  • the scale inhibitor is added from the scale inhibitor addition line 23 based on the determined addition amount of the scale inhibitor.
  • the scale inhibitor is not limited to a specific one as long as it is a substance capable of suppressing the precipitation of scale components such as silica and calcium, but a scale inhibitor that suppresses the precipitation of calcium fluoride is particularly preferable.
  • phosphonic acids such as 1-hydroxyethylidene-1,1-diphosphonic acid, 2-phosphonobutane-1,2,4-tricarboxylic acid, ethylenediaminetetramethylenephosphonic acid, nitrilotrimethylphosphonic acid, and salts thereof.
  • Phosphonic acid-based compounds Phosphonic acid-based compounds; phosphoric acid-based compounds such as orthophosphates and polymerized phosphates; maleic acid-based compounds such as polymaleic acid and maleic acid copolymers; are copolymers such as poly(meth)acrylic acid, maleic acid/(meth)acrylic acid, (meth)acrylic acid/sulfonic acid, (meth)acrylic acid/nonionic group-containing monomers, and (meth)acrylic acid/sulfonic acid /nonionic group-containing monomer, (meth)acrylic acid/acrylamide-alkylsulfonic acid/substituted (meth)acrylamide, and (meth)acrylic acid/acrylamide-arylsulfonic acid/substituted (meth)acrylamide terpolymer.
  • Examples of the (meth)acrylic acid constituting the terpolymer include methacrylic acid, acrylic acid, and (meth)acrylic acid salts such as sodium salts thereof.
  • Examples of acrylamide-alkylsulfonic acids constituting the terpolymer include 2-acrylamido-2-methylpropanesulfonic acid and salts thereof.
  • Examples of substituted (meth)acrylamides constituting the terpolymer include t-butylacrylamide, t-octylacrylamide and dimethylacrylamide.
  • a phosphonic acid-based compound and an acrylic acid-based polymer For example, copolymers of acrylic acid and 2-acrylamido-2-methylpropanesulfonic acid are preferred.
  • a scale inhibitor consisting of a mixture of /substituted (meth)acrylamide with a terpolymer.
  • scale inhibitors for reverse osmosis membranes include the "Orpersion” series manufactured by Organo Corporation, the “Flocon (registered trademark)” series manufactured by BWA Water Additives, and the “PermaTreat (registered trademark)” manufactured by Nalco. )” series, General Electric Company's “Hypersperse (registered trademark)” series, and Kurita Water Industries Ltd.'s “Kuriverter (registered trademark)” series.
  • Addition of the scale inhibitor can be carried out in a pH range where calcium fluoride precipitates.
  • calcium fluoride begins to precipitate at a pH of 3.5 or higher.
  • the pH of the water to be treated is adjusted to 5 or more in order to measure the fluoride ion concentration between the pH adjustment device 21 and the reverse osmosis membrane 11, and the pH of the water to be treated is adjusted to After adjusting to 5 or more, measurement of fluoride ions and addition of a scale inhibitor are performed.
  • the pH is preferably 4 or higher, more preferably 5 or higher.
  • FIG. 1 shows an example in which the means for measuring the fluoride ion concentration is arranged downstream of the means for adjusting the pH, but the present invention is not limited to this. If the pH of water is 5 or higher, a fluoride ion concentration measuring means can be arranged upstream of the pH adjusting means. It is also preferable to provide a pH meter or the like for confirming that the water to be treated has a pH of 5 or higher.
  • FIG. 2 is a schematic diagram showing the configuration of a water treatment device 200 according to a second embodiment of the invention.
  • configurations similar to those of the first embodiment are denoted by the same reference numerals in the drawings, description thereof is omitted, and only configurations different from those of the first embodiment are described.
  • the water supply line 1 includes a water supply tank 13 for storing water to be treated, a pretreatment (coagulation/filtration) device 31, and a heat exchanger 32. , an activated carbon tower (activated carbon filter) 33 , a decarboxylation tower 34 , a reverse osmosis membrane 11 and a brine reverse osmosis membrane 12 .
  • the storage amount of the water supply tank 13 is adjusted by a pressure pump P1 (pressure adjustment means) that adjusts the pressure of the water to be treated flowing through the supply water line.
  • a pressure pump P1 pressure adjustment means
  • permeated water that has permeated the reverse osmosis membrane 11 can be returned to the water supply tank 13 not only from the supply water line 1 but also from the permeated water line 2 via the reflux line 2b.
  • the permeated water after filtering the concentrated water separated by the reverse osmosis membrane 11 with the brine reverse osmosis membrane 12 can also be introduced through the circulation line 5 .
  • the permeated water that has passed through the reverse osmosis membrane 11 may be sampled, in that case it is not circulated to the water supply tank 13 but is sampled through the water sampling line 2a. Condensed water from the brine reverse osmosis membrane 12 is discharged from the discharge line 4, and after post-treatment if necessary, is discarded.
  • Examples of the pretreatment device 31 include devices capable of coagulation treatment, sand filtration, and membrane filtration.
  • the flocculation treatment the charge of negatively charged fine particles in water is neutralized by a flocculant having a positive charge and flocculated to form basic flocs. This is a process that creates flocs and facilitates precipitation.
  • Flocculants include aluminum sulfate, polyaluminum chloride, ferric chloride, ferrous sulfate, and the like.
  • Sand filtration is a process of filtering by using deposited sand as a filter medium and passing water through the deposited sand.
  • Membrane filtration is the process of filtering water by passing it through filtration membranes. Examples of filtration membranes include microfiltration (MF) membranes, ultrafiltration (UF) membranes, nanofiltration (NF) membranes, ion exchange membranes, and the like, depending on the size of the substance to be filtered and the driving force for filtration.
  • the heat exchanger 32 is a device for heating the water to be treated that is supplied after pretreatment, and is provided to generate hot water for heat sterilization.
  • the activated carbon tower 33 is provided to remove chlorine from the water to be treated supplied from the heat exchanger.
  • the decarbonation tower 34 is a device that converts carbonate ions or bicarbonate ions into carbon dioxide by lowering the pH by injecting acid, and removes carbonic acid from water by blowing air into the packed tower. It is provided for suppression and improvement of permeate quality.
  • the decarboxylation tower 34 to the reverse osmosis membrane 11 are basically the same as in the first embodiment, and have a pH adjuster 21, a fluoride ion meter 22, and a scale inhibitor addition line 23.
  • the pH adjuster 21 is a pH meter 21a, which is a pH measuring means, and a pH controller that determines the addition amount of the pH adjuster (alkali) in the pH adjuster adder 21c based on the pH value measured by the pH meter 21a. It has a device 21b. A predetermined amount of pH adjuster (alkali) is added from the pH adjuster addition device 21c controlled by the pH control device 21b to adjust the pH of the water to be treated to 5.0 or higher.
  • a flow meter as described in the first embodiment is placed upstream of the pH adjuster 21, and the measured flow rate and pH value are input to the pH controller 21b to add the pH adjuster in real time.
  • a pH meter may be installed downstream of the pH adjusting device, and the pH adjusting agent corresponding to the difference between the pH meters before and after may be added.
  • the water to be treated whose pH has been adjusted in this manner is sampled, and the fluoride ion concentration is measured by the fluoride ion meter 22 .
  • the measured fluoride ion concentration is transferred to the scale inhibitor addition amount control device 41 to calculate the minimum necessary amount of scale inhibitor, and based on that information, the scale inhibitor is supplied from the scale inhibitor addition device 42. It is added to feed water line 1 via scale inhibitor addition line 23 .
  • scale inhibitor addition means 40 includes fluoride ion meter 22 , controller 41 , addition device 42 and addition line 23 .
  • the pressure is adjusted by the pressure pump P2 (pressure adjusting means) to allow water to flow through the reverse osmosis membrane 11.
  • the pH is raised to 5.0 or more in the pH adjuster 21, and then the fluoride ion concentration is measured by the fluoride ion meter 22, and based on the value, the flow from the scale inhibitor addition line 23 is measured. Even if the amount of the scale inhibitor added is set to the minimum necessary amount, the adhesion of scale to the reverse osmosis membrane can be sufficiently prevented.
  • the installation position of the fluoride ion meter 22 is not limited to the downstream of the pH adjuster 21 shown in FIG.
  • the permeated water of the reverse osmosis membrane 11 and the permeated water of the brine reverse osmosis membrane 12 are raised to pH 5.0 or more, and the water to be treated in the water supply tank 13 mixed with surface water by circulating this
  • the pH may be 5.0 or higher. Therefore, an on-line fluoride ion meter (not shown) is installed in the water supply tank 13 or in the supply water line 1 before the pretreatment device downstream thereof, and the measured fluoride ion concentration is communicated to the addition amount control device 41. , the minimum necessary amount of scale inhibitor can be added.
  • the permeated water after passing through the reverse osmosis membrane 11 may be sampled or circulated to the water supply tank 13 without being sampled through the permeated water line 2 .
  • the concentrated water after passing through the reverse osmosis membrane 11 is passed through the concentrated water line 3, the pressure of which is adjusted by the pressure pump P3 (pressure adjusting means) in the concentrated water line 3, and the brine reverse osmosis membrane 12. Water is passed through. After being filtered by the brine reverse osmosis membrane 12 , the water is separated into waste water drained through the drain line 4 and circulating water circulating to the water supply tank 13 .
  • Example 1 Using pure water as raw water, simulated water containing fluoride ions and calcium ions was prepared in a 1 L beaker. The pH during adjustment was adjusted to 3.5. Hydrochloric acid or an aqueous sodium hydroxide solution was used for pH adjustment. Sodium fluoride was used to adjust the fluoride ion concentration to 6.7 mg/L. The calcium ion concentration was adjusted to 200 mg/L using calcium chloride. After adjusting the pH to 5.0, the fluoride ion concentration was measured with a fluoride ion meter (F ion measurement value). The scale inhibitor was added according to the amount of scale inhibitor added calculated from the measured fluoride ion concentration.
  • a copolymer of acrylic acid, acrylic acid and 2-acrylamido-2-methylpropanesulfonic acid was used as the scale inhibitor.
  • An ion electrode (model number: F-2021) manufactured by Toa DKK Co., Ltd. was used to measure the fluoride ion concentration. After adding the scale inhibitor, the mixture was stirred for 24 hours using a magnetic stirrer, and then the amount of precipitated calcium fluoride was calculated.
  • the method for calculating the amount of precipitated calcium fluoride is as follows. After the test, the supernatant was filtered using a 0.1 ⁇ m filter and the pH was adjusted to 6.0 to 7.0, after which the fluoride ion concentration was measured. From the measurement results and the fluoride ion concentration before the test, the concentration of fluoride ions consumed for scale deposition was calculated. From this result, the precipitation amount of calcium fluoride was calculated.
  • Example 2 The precipitation amount of calcium fluoride was calculated in the same manner as in Example 1 except that the simulated water was adjusted to pH 4.0.
  • Example 3 The precipitation amount of calcium fluoride was calculated in the same manner as in Example 1 except that the simulated water was adjusted to pH 4.5.
  • Example 4 Simulated water was prepared at pH 5.0.
  • the precipitation amount of calcium fluoride was calculated in the same manner as in Example 1, except that the fluoride ion concentration was measured without changing the pH.
  • Example 5 Simulated water was prepared at pH 5.5.
  • the precipitation amount of calcium fluoride was calculated in the same manner as in Example 1, except that the fluoride ion concentration was measured without changing the pH.
  • Example 1 Simulated water prepared as in Example 1 was used. Before measuring fluoride ions with a fluoride ion meter, the pH was not adjusted to 5.0, and the fluoride ion concentration was measured (F ion measurement value) while the pH was 3.5. The scale inhibitor was added according to the amount of scale inhibitor added calculated from the fluoride ion concentration obtained. Otherwise, the amount of precipitated calcium fluoride was calculated in the same manner as in Example 1.
  • Example 2 Simulated water prepared as in Example 2 was used. Before measuring fluoride ions with a fluoride ion meter, the pH was not adjusted to 5.0, and the fluoride ion concentration was measured while the pH was 4.0 (F ion measurement value). The scale inhibitor was added according to the amount of scale inhibitor added calculated from the fluoride ion concentration obtained. Otherwise, the amount of precipitated calcium fluoride was calculated in the same manner as in Example 1.
  • Example 3 Simulated water prepared as in Example 3 was used. Before measuring fluoride ions with a fluoride ion meter, the pH was not adjusted to 5.0, and the fluoride ion concentration was measured (F ion measurement value) while the pH was 4.5. The scale inhibitor was added according to the amount of scale inhibitor added calculated from the fluoride ion concentration obtained. Otherwise, the amount of precipitated calcium fluoride was calculated in the same manner as in Example 1.
  • Table 1 shows the detected amount ratio of calcium fluoride between each example and each comparative example (comparative example/example).
  • fluoride ions are indicated as “F ions,” calcium ions as “Ca ions,” and calcium fluoride as “ CaF.sub.2 .”
  • FIG. 3 is a graph showing the relationship between the detection amount ratio (comparative example/example) of calcium fluoride detected in the example and the comparative example. It can be seen that in the region of pH ⁇ 5.0, the scale inhibitor was added in an insufficient amount. In Examples 4 and 5, the detection amount ratio is 1.00. When the pH is low, the amount of CaF 2 precipitation is small, but assuming that the scale inhibitor is added at pH ⁇ 5 or higher, an increase in scale corresponding to the shortage indicated by the detection amount ratio is predicted. can.
  • a water treatment method for treating water to be treated containing fluorine and calcium by passing it through at least a reverse osmosis membrane A step of measuring the fluoride ion concentration in the water to be treated; a step of adding a scale inhibitor that suppresses precipitation of calcium fluoride; a reverse osmosis membrane treatment step in which the water to be treated to which the scale inhibitor has been added is passed through the reverse osmosis membrane to obtain permeated water and concentrated water; with The measurement of the fluoride ion concentration in the water to be treated is performed after adjusting the pH to 5 or more, and the addition amount of the scale inhibitor is determined based on the measured fluoride ion concentration. water treatment method.
  • [Method 2] The water treatment method according to [Method 1], wherein the addition of the scale inhibitor is performed after adjusting the pH of the water to be treated to 5 or higher.
  • [Method 3] The adjustment of the pH is performed by adding a pH adjuster to a feed water line that supplies the water to be treated to the reverse osmosis membrane, The water treatment method according to [Method 1] or [Method 2], wherein the fluoride ion concentration is measured in the feed water line after adding the pH adjuster.
  • [Method 4] A first flow rate and a second flow rate are measured in any two of the feed water line, the permeated water line from the reverse osmosis membrane, and the concentrated water line from the reverse osmosis membrane, and the first flow rate and The water treatment method according to [Method 3], wherein the addition amount of the scale inhibitor is determined from the recovery rate obtained by comparison with the second flow rate and the measured fluoride ion concentration.
  • the present invention includes the following configurations.
  • a reverse osmosis membrane for passing water to be treated containing fluorine and calcium to obtain permeated water and concentrated water; a supply water line for supplying the water to be treated to the reverse osmosis membrane;
  • a water treatment device having The water supply line is pH adjusting means for adjusting the pH of the water to be treated; measuring means for measuring the concentration of fluoride ions in the water to be treated under conditions where the pH is 5 or higher; means for adding a scale inhibitor to the water to be treated to suppress precipitation of calcium fluoride; with and an addition amount control device for determining the addition amount of the scale inhibitor to be added by the addition means based on the measured fluoride ion concentration and controlling the addition amount of the scale inhibitor by the addition means.
  • a first flow rate sensor for measuring a first flow rate and a second flow rate for any two of the feed water line, the permeated water from the reverse osmosis membrane, and the concentrated water line from the reverse osmosis membrane. each comprising a second flow sensor,
  • the addition amount control device determines the addition amount of the scale inhibitor from the recovery rate obtained by comparing the first flow rate and the second flow rate and the fluoride ion concentration measured by the measuring means. 1].
  • the water treatment device according to any one of [Configuration 1] to [Configuration 3], further comprising: [Configuration 5] The water treatment apparatus according to any one of [Structure 1] to [Structure 4], wherein the measurement means is arranged downstream of the pH adjustment means.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Physical Water Treatments (AREA)

Abstract

逆浸透膜へのフッ化カルシウムのスケールの対策として、スケール抑制剤を適切な添加量で添加できる水処理方法及び装置を提供する。フッ素及びカルシウムを含む被処理水を少なくとも逆浸透膜11に通水して処理する水処理方法及び水処理装置であって、処理水を逆浸透膜11に通水する供給水ライン1に、被処理水のpHを調整するpH調整手段21を備え、被処理水のpHが5.0以上の条件でフッ化物イオン濃度を測定する測定手段22と、測定されたフッ化物イオン濃度に基づいて被処理水に添加するスケール抑制剤の添加量を決定し、添加ライン23からスケール抑制剤を添加し、その後逆浸透膜11にて被処理水を透過水ライン2から透過水を、濃縮水ライン3から濃縮水を排出する。

Description

水処理方法及び水処理装置
 本発明は、スケール付着が抑制された、逆浸透膜装置を含む水処理方法及び水処理装置に関する。
 近年、水処理において、逆浸透膜が用いられる機会が増加している。水処理の対象水(被処理水という)には様々な成分が含まれており、様々な要因により成分が析出(スケールという)する。これにより、逆浸透膜を閉塞し、処理効率の低下をもたらす。スケールの析出(スケーリング)は、逆浸透膜の運転管理項目の中でも重要な要素の一つである。特に、カルシウムによるスケーリングは最も一般的であり、炭酸カルシウムやフッ化カルシウムによるスケーリングが知られている。
 香港、シンガポール、マレーシア、アイルランド、アメリカ、オーストラリア、ニュージーランド、英国などの海外では、歯の健康維持を目的として、上水道中にフッ素が添加されている。さらに、海外の表流水は、日本と比較して硬度成分の濃度が高い。そのため、前記の国では、純水製造においてフッ化カルシウムによるスケールの析出が懸念される。
 特許文献1では、炭酸カルシウムによるスケール対策として、被処理水のpHを4~6などに下げる方法が提案されている。一方で、特許文献2又は特許文献3では、フッ化カルシウムによるスケール対策として、スケール抑制剤の適用が提案されている。
特開2018-153732号公報 特開2014-184365号公報 特開2002-186835号公報
 近年、水不足により、様々な水を処理して使用する水需要の増加、それによる水回収率の増加から、濃縮水のスケール成分の濃度は上昇している。そのため、スケール抑制剤の加濃度は上昇しており、水処理装置の運転コストの増加が問題となっている。従来のスケール対策としては、事前試験や水質分析によって、決められた量のスケール抑制剤を定量注入していた。しかし、水処理工程において水質の変動が大きい場合、スケール抑制剤が過剰に添加される場合はランニングコストの増大が問題である。特に、スケール抑制剤は高価であり、コスト面での負担は無視することができない。一方、スケール抑制剤が過小に添加されると、逆浸透膜のスケール付着を十分防止できず、逆浸透膜の交換時期が短くなる。
 また、特許文献3に示すように、pHの低い酸性側ではフッ化カルシウムの析出が少なく、スケール抑制剤を使用しない、又はスケール抑制剤の使用量を減らすことができる。しかしながら、pHの低い状態は、配管などの腐食の原因となり、腐食防止のためのライニングなどに別のコスト増となる。
 そこで、本発明の目的は、適度なpHにおいて適切な量のスケール抑制剤を添加することでランニングコストの最適化を図った水処理方法及び水処理装置を提供することである。
 本発明は、フッ素及びカルシウムを含む被処理水を少なくとも逆浸透膜に通水して処理する水処理方法であって、
 前記被処理水中のフッ化物イオン濃度を測定する工程と、
 フッ化カルシウムの析出を抑制するスケール抑制剤を添加する工程と、
 前記スケール抑制剤を添加後の被処理水を前記逆浸透膜に通水して透過水と濃縮水とを得る逆浸透膜処理工程と、
を備え、
 前記被処理水中のフッ化物イオン濃度の測定が、pHを5以上に調整した後に実施され、該測定されたフッ化物イオン濃度に基づいて前記スケール抑制剤の添加量を決定することを特徴とする水処理方法を提供する。
 また、本発明は、フッ素及びカルシウムを含む被処理水を通水して透過水と濃縮水とを得る逆浸透膜と、
 前記被処理水を前記逆浸透膜に供給する供給水ラインと、
を有する水処理装置であって、
 前記供給水ラインは、
 前記被処理水のpHを調整するpH調整手段と、
 前記被処理水中のフッ化物イオン濃度をpHが5以上の条件で測定する測定手段と、
 前記被処理水にフッ化カルシウムの析出を抑制するスケール抑制剤を添加する添加手段と、
を備え、
 前記測定されたフッ化物イオン濃度に基づいて前記添加手段で添加するスケール抑制剤の添加量を決定し、前記添加手段におけるスケール抑制剤の添加量を制御する添加量制御装置を有することを特徴とする水処理装置を提供する。
 本発明によれば、適度なpHにおいて適切な量のスケール抑制剤を添加することができる水処理方法及び水処理装置を提供することができる。
本発明の第1の実施形態に係る水処理装置の構成を示す概略図である。 本発明の第2の実施形態に係る水処理装置の構成を示す概略図である。 実施例と比較例とで検出したフッ化カルシウムの検出量比の関係を示したグラフである。
 本発明では、フッ素とカルシウムを含む被処理水を逆浸透膜で処理する水処理方法及び水処理装置を提供する。ここで、被処理水は河川や湖沼における表流水や、水道水、工業用水が挙げられる。本発明で処理された被処理水は、超純水製造用途などに使用される。
 以下、図面を参照して、本発明の実施形態について説明する。
 (第1の実施形態)
 図1は、本発明の第1の実施形態に係る水処理装置の構成を示す概略図である。
 本実施形態の水処理装置100は、被処理水に含まれる不純物(フッ化物イオン、カルシムイオンなど)を除去して処理水を生成する装置であって、不純物を含む濃縮水と、不純物が除去された透過水と、に分離する逆浸透膜11を有している。
 また、水処理装置100は、逆浸透膜11にそれぞれ接続された複数のラインを有している。すなわち、逆浸透膜に被処理水を供給する供給水ライン1と、逆浸透膜11からの透過水を排水する透過水ライン2と、逆浸透膜11からの濃縮水を排水する濃縮水ライン3とを有している。加えて、供給水ライン1は、pH調整手段としてのpH調整装置21と、フッ化物イオンの濃度の測定を行う測定手段(フッ化物イオン計)22と、スケール抑制剤の添加手段として添加ライン23とを有している。
 本実施形態では図示していないが、炭酸カルシウムのスケール抑制及び透過水質の向上のため、pH調整装置21の前に脱炭酸工程を備える場合がある。この場合、前記工程の処理水はpH<5.0となることが多い。pH<5.0のときフッ化物イオンは、フッ化水素の乖離曲線に従って一部がフッ化水素となる。例えば、pH=5.0ではフッ化水素になるフッ化物イオンは1%程度とほとんど無視できる量である。しかし、pH=4.5ではフッ化物イオンの約4.5%がフッ化水素となり、pH=4.0ではフッ化物イオンの約13%がフッ化水素となり、pH=3.5ではフッ化物イオンの約32%がフッ化水素となる。フッ化水素となったフッ化物イオンは、フッ化水素とフッ化物イオンの平衡反応により、pHの上昇に伴いフッ化物イオンとなってフッ化カルシウムの生成に寄与する。しかし、フッ化水素となったフッ化物イオンは、フッ化物イオン計では測定できない。そのため、フッ化物イオン計による測定時のpHによって、被処理水中のフッ化物イオン濃度は変化しており、低pHにおけるフッ化物イオン濃度から算出したスケール抑制剤の添加量では、過少添加となり、スケール抑制が十分にできない。
 そこで、フッ化物イオン濃度の測定をpHが5.0以上となる条件で行う。具体的には、pH調整装置21により、被処理水がpH≧5.0となるようにpH調整工程を提供する。これにより、フッ化物イオンの一部がフッ化水素となることを防止し、フッ化物イオン計22により供給水ライン1中の被処理水のフッ化物イオン濃度を正確に測定することができる。pH調整装置21では、被処理水中のフッ化物イオンに影響しない薬液注入方法が選択され、アルカリ、特には低濃度の水酸化ナトリウム水溶液を添加して行う。また、pH調整装置にはこのようなアルカリの添加手段に加えて、アルカリ添加前及び添加後の少なくとも一方の被処理水のpHを測定するpHメータ等のpH測定手段を有する。
 また、フッ化カルシウムのスケール析出において、カルシウムイオン濃度ではなく、フッ化物イオン濃度を測定する理由を以下に説明する。フッ化カルシウムのスケール析出は、フッ化物イオンとカルシウムイオンのモル濃度の積(以下、イオン積と表す。)によって決定される。フッ化カルシウムの溶解度積は3.9×10-11(mol/L)である。イオン積が、この溶解度積の値を超過すると、スケールが析出する。フッ化カルシウムは、カルシウムイオンとフッ化物イオンのモル比が1:2で構成されている。また、フッ化カルシウムのイオン積Kapは、下記式(1)で表される。
   Kap=[Ca]([F)   ・・・式(1)
 式(1)中、[Ca]はカルシムイオン濃度、[F]はフッ化物イオン濃度である。
 フッ化カルシウムのイオン積Kapは、フッ化物イオン濃度の2乗とカルシウムイオン濃度の積により算出される。このことから、フッ化物イオン濃度の方がカルシウムイオン濃度より、イオン積に大きな影響を与える。以上より、変動する水質からイオン積によりスケール抑制剤の添加量を決定する際は、カルシウムイオンよりもフッ化物イオンをモニタリングする方が有効である。
 一般的なフッ化物イオン計の測定定量の下限値は1mg/L程度である。フッ化物イオン濃度が20mg/L以下のとき、フッ化物イオン濃度が1mg/L変動した際のイオン積の変動は約1割を超える。このことより、本手法はフッ化物イオン濃度が20mg/L以下の領域で特に有効である。さらに、そのときのカルシウムイオン濃度は、イオン積がフッ化カルシウムの溶解度積以上となることから、1.4mg/L以上である。また、フッ化物イオン濃度10mg/L以下のとき、イオン積の変動は2割以上となるため、本手法はさらに有効である。さらに、そのときのカルシウムイオン濃度は、5.6mg/L以上である。
 前記フッ化物イオン濃度の測定結果と、供給水ライン1、透過水ライン2、及び濃縮水ライン3のいずれか2つに接続された第1及び第2流量センサ(不図示)により測定した第1流量と第2流量から算出した回収率(濃縮倍率という場合もある)をもとに、リアルタイムでスケール抑制剤の添加量を決定する。これにより、分析からスケール抑制剤の添加量の決定までに時間を要しない。通常、供給水ライン1の流量を100とすると、透過水ライン2及び濃縮水ライン3の流量の合計は同じく100となる。回収率は、被処理水に対する透過水の量であり、例えば逆浸透膜の性能として75%などに設定される。しかしながら、実際の水処理操作では、被処理水の水質や水温の変動により透過水量及び濃縮水量の変動が発生する。そのため、実際の水量を測定することで、フッ化物イオンの濃度を測定する際、水質変動や水温変動などにより透過水量及び濃縮水量の変動の影響を受けず、正確なフッ化物イオンの濃度を測定し、適切なスケール抑制剤の添加量を決定することができる。ここで、本発明における「適切なスケール抑制剤の添加量」とは、高価なスケール抑制剤を過剰に添加することを避ける観点から、必要最小限の添加量であることが好ましい。
 決定したスケール抑制剤の添加量をもとに、スケール抑制剤添加ライン23よりスケール抑制剤を添加する。
 スケール抑制剤は、シリカやカルシウムなどのスケール成分の析出を抑制可能な物質であれば、特定のものに限定されるものではないが、特にフッ化カルシウムの析出を抑制するスケール抑制剤が好ましい。その種類としては、例えば、1-ヒドロキシエチリデン-1,1-ジホスホン酸、2-ホスホノブタン-1,2,4-トリカルボン酸、エチレンジアミンテトラメチレンホスホン酸、ニトリロトリメチルホスホン酸などのホスホン酸とその塩類などのホスホン酸系化合物;正リン酸塩、重合リン酸塩などのリン酸系化合物;ポリマレイン酸、マレイン酸共重合物などのマレイン酸系化合物;アクリル酸系ポリマーなどが挙げられ、アクリル酸系ポリマーとしては、ポリ(メタ)アクリル酸、マレイン酸/(メタ)アクリル酸、(メタ)アクリル酸/スルホン酸、(メタ)アクリル酸/ノニオン基含有モノマーなどのコポリマーや、(メタ)アクリル酸/スルホン酸/ノニオン基含有モノマー、(メタ)アクリル酸/アクリルアミド-アルキルスルホン酸/置換(メタ)アクリルアミド、(メタ)アクリル酸/アクリルアミド-アリールスルホン酸/置換(メタ)アクリルアミドのターポリマーなどが挙げられる。ターポリマーを構成する(メタ)アクリル酸としては、例えば、メタアクリル酸及びアクリル酸と、それらのナトリウム塩などの(メタ)アクリル酸塩などが挙げられる。ターポリマーを構成するアクリルアミド-アルキルスルホン酸としては、例えば、2-アクリルアミド-2-メチルプロパンスルホン酸とその塩などが挙げられる。また、ターポリマーを構成する置換(メタ)アクリルアミドとしては、例えば、t-ブチルアクリルアミド、t-オクチルアクリルアミド、ジメチルアクリルアミドなどが挙げられる。
 これらの中でも、ホスホン酸系化合物とアクリル酸系ポリマーのうち少なくとも1種類を含むものを用いることが好ましい。たとえば、アクリル酸と2-アクリルアミド-2-メチルプロパンスルホン酸とからなるコポリマーが好ましい。また、カルシウムとシリカに由来するスケールを同時に抑制するためには、2-ホスホノブタン-1,2,4-トリカルボン酸と、アクリル酸と(メタ)アクリル酸/2-アクリルアミド-2-メチルプロパンスルホン酸/置換(メタ)アクリルアミドのターポリマーとの混合物とからなるスケール防止剤を用いることが特に好ましい。
 特に、逆浸透膜用の市販のスケール抑制剤としては、オルガノ株式会社製の「オルパージョン」シリーズ、BWA Water Additives社製の「Flocon(登録商標)」シリーズ、Nalco社製の「PermaTreat(登録商標)」シリーズ、ゼネラル・エレクトリック社製の「Hypersperse(登録商標)」シリーズ、栗田工業株式会社製の「クリバーター(登録商標)」シリーズなどが挙げられる。
 スケール抑制剤の添加は、フッ化カルシウムが析出するpH範囲で行うことができる。通常、pHが3.5以上ではフッ化カルシウムが析出し始める。図1に示す実施形態では、pH調整装置21と逆浸透膜11との間でフッ化物イオン濃度を測定するために被処理水のpHが5以上に調整されており、被処理水のpHを5以上に調整した後にフッ化物イオンの測定とスケール抑制剤の添加が実施される。なお、逆浸透膜の透過水の水質向上には、pHは4以上が好ましく、5以上がより好ましい。そのため、逆浸透膜11の手前(上流)にてpH調整を行うことは好ましい態様である。
 また図1では、フッ化物イオン濃度の測定手段を、pH調整手段の下流に配置する例を示しているが、これに限定されず、脱炭酸塔などのpH値を引き下げる処理の前に被処理水のpHが5以上であれば、pH調整手段の上流にフッ化物イオン濃度の測定手段を配置することができる。また、その際の被処理水がpH5以上であることを確認するpHメータ等を設けていることも好ましい。
 (第2の実施形態)
 図2は、本発明の第2の実施形態に係る水処理装置200の構成を示す概略図である。以下、第1の実施形態と同様の構成については、図面に同じ符号を付してその説明を省略し、第1の実施形態と異なる構成のみ説明する。
 第1の実施形態と同様に被処理水を供給する供給水ライン1と逆浸透膜11を有している。第2の実施形態に係る水処理装置200では、供給水ライン1中に、通水する被処理水を貯蔵する給水タンク13と、前処理(凝集・ろ過)装置31と、熱交換器32と、活性炭塔(活性炭ろ過器)33と、脱炭酸塔34と、逆浸透膜11と、ブライン逆浸透膜12とを有している。
 給水タンク13の貯蔵量は、供給水ラインを流れる被処理水の圧力を調整する加圧ポンプP1(圧力調整手段)により、調整される。また、給水タンク13へは、供給水ライン1からだけでなく、逆浸透膜11を透過後の透過水を透過水ライン2から環流ライン2bを介して戻すこともできる。また、逆浸透膜11にて分離された濃縮水をブライン逆浸透膜12でろ過処理した後の透過水も循環ライン5により流入させることもできる。ただし、逆浸透膜11を透過後の透過水は、採水をする場合もあるので、その場合は給水タンク13へは循環せず、採水ライン2aを介して採水される。ブライン逆浸透膜12での濃縮水は排出ライン4から排出され、必要により後処理された後に廃棄される。
 前処理装置31としては、凝集処理、砂ろ過、膜ろ過が可能な装置が挙げられる。凝集処理は、正電荷を持つ凝集剤によって負に帯電している水中の微粒子の帯電を中和して凝集させて基礎フロックを生成し、ポリマー等の凝集助剤によって基礎フロックを吸着させて粗大フロックを生成して沈殿しやすくする処理である。凝集剤には、硫酸アルミニウム、ポリ塩化アルミニウム、塩化第二鉄、硫酸第一鉄、等が挙げられる。砂ろ過は、堆積した砂をろ材に用い、その堆積した砂内に水を通すことによってろ過する処理である。膜ろ過は、ろ過膜を通すことによって水をろ過する処理である。ろ過膜には、ろ過対象物質の大きさと、ろ過の駆動力によって、精密ろ過(MF)膜、限外ろ過(UF)膜、ナノろ過(NF)膜、イオン交換膜、等が挙げられる。
 熱交換器32は、前処理後に供給される被処理水を加熱する装置であり、加熱殺菌用の熱水を生成するために設けられている。
 活性炭塔33は、熱交換器から供給される被処理水から塩素を除去するために設けられている。
 脱炭酸塔34は、酸の注入によりpHを下げることで炭酸イオン又は重炭酸イオンを炭酸ガスに転換し、充填塔に空気を吹き込むことで水中の炭酸を除去する装置であり、炭酸カルシウムのスケール抑制及び透過水質の向上のために設けられている。
 脱炭酸塔34から逆浸透膜11までは第1の実施形態と基本的には同じであり、pH調整装置21と、フッ化物イオン計22と、スケール抑制剤添加ライン23を有している。pH調整装置21は、pH測定手段であるpHメータ21a、pHメータ21aで測定されたpH値に基づいて、pH調整剤添加装置21cでのpH調整剤(アルカリ)の添加量を決定するpH制御装置21bを有している。pH制御装置21bにより制御されたpH調整剤添加装置21cから所定量のpH調整剤(アルカリ)を添加して被処理水のpHを5.0以上に調整する。この時、第1の実施形態で説明したような流量計をpH調整装置21の上流に配置し、測定された流量とpH値をpH制御装置21bに入力することでリアルタイムに添加するpH調整剤の添加量を設定できる。また、pH調整装置の下流にもpHメータを設置して、前後のpHメータの差分に相当するpH調整剤を添加するようにしてもよい。このようにpH調整された被処理水を採取して、フッ化物イオン計22にてフッ化物イオン濃度を測定する。測定されたフッ化物イオン濃度は、スケール抑制剤添加量制御装置41に転送されて必要最小限のスケール抑制剤の量を算出し、その情報に基づいてスケール抑制剤がスケール抑制剤添加装置42からスケール抑制剤添加ライン23を介して供給水ライン1に添加される。この例ではスケール抑制剤添加手段40にフッ化物イオン計22、制御装置41、添加装置42、添加ライン23が含まれている。
 さらに、スケール抑制剤添加ライン23からスケール抑制剤を添加後は加圧ポンプP2(圧力調整手段)により圧力を調整して、逆浸透膜11へ通水させる。
 このように、脱炭酸塔34で一旦下げたpHのままでフッ化物イオン濃度を測定すると、その後pHを上げてからスケール抑制剤を添加する際に、測定されたフッ化物イオン濃度に基づくスケール抑制剤添加量は過少添加となり、逆浸透膜のスケール付着を十分防止できない。したがって、本実施形態では、pH調整装置21において、pHを5.0以上に高めてからフッ化物イオン計22でフッ化物イオン濃度を測定し、その値に基づいてスケール抑制剤添加ライン23からのスケール抑制剤添加量を必要最小限の量としても、十分に逆浸透膜のスケール付着を防止できる。フッ化物イオン計22の設置箇所は、図2に示すpH調整装置21の下流に限定されず、pHが5.0以上となる供給水ラインのいずれにも設置できる。例えば逆浸透膜11の透過水やブライン逆浸透膜12の透過水は、pHが5.0以上に高められており、これを循環して表流水に混合した給水タンク13内の被処理水もpHが5.0以上となる場合がある。したがって、給水タンク13内やその下流の前処理装置前の供給水ライン1にオンラインフッ化物イオン計(不図示)を設置して、測定されたフッ化物イオン濃度を添加量制御装置41に連絡し、必要最小限量のスケール抑制剤を添加することができる。
 逆浸透膜11へ通水後の透過水は、透過水ライン2を通じて、採水する場合と採水せずに給水タンク13へ循環させる場合がある。
 一方、逆浸透膜11へ通水後の濃縮水は、濃縮水ライン3を通じて、濃縮水ライン3中にある加圧ポンプP3(圧力調整手段)により圧力を調整して、ブライン逆浸透膜12に通水される。ブライン逆浸透膜12でろ過後、排水ライン4を通じて排水される排水と給水タンク13へと循環する循環水に分離される。
 次に、具体的な実施例を挙げて、本発明の効果について説明する。
(実施例1)
 1Lのビーカーに純水を原水としてフッ化物イオン及びカルシウムイオンを含む模擬水を調製した。調整時のpHは3.5に調整した。pH調整には塩酸または水酸化ナトリウム水溶液を用いた。フッ化物イオン濃度は6.7mg/Lとなるようにフッ化ナトリウムを用いて調整した。カルシウムイオン濃度は200mg/Lとなるように塩化カルシウムを用いて調整した。pHを5.0となるように調整してからフッ化物イオン計でフッ化物イオン濃度を測定(Fイオン計測値)した。測定されたフッ化物イオン濃度から算出したスケール抑制剤の添加量に従い、スケール抑制剤を添加した。スケール抑制剤としては、アクリル酸とアクリル酸と2-アクリルアミド-2-メチルプロパンスルホン酸とからなるコポリマーを用いた。フッ化物イオン濃度の測定には、東亜ディーケーケー株式会社製のイオン電極(型番:F-2021)を用いた。スケール抑制剤の添加後、マグネティックスターラーを用いて24時間撹拌したのち、フッ化カルシウムの析出量を算出した。フッ化カルシウムの析出量の算出方法については、以下のとおりである。試験後の上澄み液を0.1μmのフィルターを用いてろ過し、pHを6.0~7.0に調整したのちに、フッ化物イオン濃度を測定した。前記測定結果と試験前のフッ化物イオン濃度から、スケールの析出に消費されたフッ化物イオン濃度を算出した。この結果からフッ化カルシウムの析出量を算出した。
 (実施例2)
 模擬水をpH4.0で調整した以外は実施例1と同様にしてフッ化カルシウムの析出量を算出した。
 (実施例3)
 模擬水をpH4.5で調整した以外は実施例1と同様にしてフッ化カルシウムの析出量を算出した。
 (実施例4)
 模擬水をpH5.0で調製した。フッ化物イオン濃度の測定をそのままのpHで行った以外は実施例1と同様にしてフッ化カルシウムの析出量を算出した。
 (実施例5)
 模擬水をpH5.5で調製した。フッ化物イオン濃度の測定をそのままのpHで行った以外は実施例1と同様にしてフッ化カルシウムの析出量を算出した。
 (比較例1)
 実施例1と同様に調製した模擬水を使用した。フッ化物イオン計でフッ化物イオンを測定する前にpHが5.0となるように調整はせず、pHは3.5のままフッ化物イオン濃度を測定(Fイオン計測値)し、測定されたフッ化物イオン濃度から算出したスケール抑制剤の添加量に従い、スケール抑制剤を添加した。それ以外は実施例1と同様にしてフッ化カルシウムの析出量を算出した。
 (比較例2)
 実施例2と同様に調製した模擬水を使用した。フッ化物イオン計でフッ化物イオンを測定する前にpHが5.0となるように調整はせず、pHは4.0のままフッ化物イオン濃度を測定(Fイオン計測値)し、測定されたフッ化物イオン濃度から算出したスケール抑制剤の添加量に従い、スケール抑制剤を添加した。それ以外は実施例1と同様にしてフッ化カルシウムの析出量を算出した。
 (比較例3)
 実施例3と同様に調製した模擬水を使用した。フッ化物イオン計でフッ化物イオンを測定する前にpHが5.0となるように調整はせず、pHは4.5のままフッ化物イオン濃度を測定(Fイオン計測値)し、測定されたフッ化物イオン濃度から算出したスケール抑制剤の添加量に従い、スケール抑制剤を添加した。それ以外は実施例1と同様にしてフッ化カルシウムの析出量を算出した。
 各実施例と各比較例とのフッ化カルシウムの検出量比(比較例/実施例)を表1に示す。表1中、フッ化物イオンを「Fイオン」、カルシウムイオンを「Caイオン」、フッ化カルシウムを「CaF」と表示している。
Figure JPOXMLDOC01-appb-T000001
 
 また、図3は実施例と比較例とで検出したフッ化カルシウムの検出量比(比較例/実施例)の関係を示したグラフである。pH<5.0の領域では、スケール抑制剤が過少添加になっていることがわかる。なお、実施例4,5は検出量比を1.00としている。pHが低い場合にはCaF析出量が少なくなっているが、スケール抑制剤の添加をpH≧5以上で行うことを想定すると、検出量比で示される不足分に対応するスケールの増加が予測できる。
 以上、実施形態例を参照して本発明を説明したが、本発明は上記実施形態例に限定されるものではない。本発明の構成や詳細には、本発明の範囲内で当業者が理解できる様々な変更を行うことができる。
 この出願は、2021年9月6日に出願された日本特許出願特願2021-144780を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 本発明には、以下の方法が含まれる。
[方法1]
 フッ素及びカルシウムを含む被処理水を少なくとも逆浸透膜に通水して処理する水処理方法であって、
 前記被処理水中のフッ化物イオン濃度を測定する工程と、
 フッ化カルシウムの析出を抑制するスケール抑制剤を添加する工程と、
 前記スケール抑制剤を添加後の被処理水を前記逆浸透膜に通水して透過水と濃縮水とを得る逆浸透膜処理工程と、
を備え、
 前記被処理水中のフッ化物イオン濃度の測定が、pHを5以上に調整した後に実施され、該測定されたフッ化物イオン濃度に基づいて前記スケール抑制剤の添加量を決定することを特徴とする水処理方法。
[方法2]
 前記スケール抑制剤の添加は、前記被処理水のpHを5以上に調整した後に実施される、[方法1]に記載の水処理方法。
[方法3]
 前記pHの調整が、前記被処理水を前記逆浸透膜に供給する供給水ラインにpH調整剤を添加することで実施され、
 前記フッ化物イオン濃度の測定が、該pH調整剤を添加後の供給水ライン中で実施される[方法1]又は[方法2]に記載の水処理方法。
[方法4]
 前記供給水ライン、前記逆浸透膜からの透過水のライン、及び前記逆浸透膜からの濃縮水のラインのいずれか2つにおいて、第1流量と第2流量を測定し、前記第1流量と前記第2流量との比較から求められる回収率と前記測定されたフッ化物イオン濃度とから、前記スケール抑制剤の添加量を決定する[方法3]に記載の水処理方法。
[方法5]
 前記供給水ラインにpH調整剤を添加する前に、前記被処理水中の炭酸成分を除去する脱炭酸工程を有する[方法3]又は[方法4]に記載の水処理方法。
 また、本発明には以下の構成が含まれる。
[構成1]
 フッ素及びカルシウムを含む被処理水を通水して透過水と濃縮水とを得る逆浸透膜と、
 前記被処理水を前記逆浸透膜に供給する供給水ラインと、
を有する水処理装置であって、
 前記供給水ラインは、
 前記被処理水のpHを調整するpH調整手段と、
 前記被処理水中のフッ化物イオン濃度をpHが5以上の条件で測定する測定手段と、
 前記被処理水にフッ化カルシウムの析出を抑制するスケール抑制剤の添加手段と、
を備え、
 前記測定されたフッ化物イオン濃度に基づいて前記添加手段で添加するスケール抑制剤の添加量を決定し、前記添加手段におけるスケール抑制剤の添加量を制御する添加量制御装置を有することを特徴とする水処理装置。
[構成2]
 前記供給水ライン、前記逆浸透膜からの透過水、及び前記逆浸透膜からの濃縮水のラインのいずれか2つにおいて、第1流量を測定する第1流量センサと、第2流量を測定する第2流量センサをそれぞれ備え、
 前記添加量制御装置は、前記第1流量と前記第2流量との比較から求められる回収率と、前記測定手段で測定されたフッ化物イオン濃度から前記スケール抑制剤の添加量を決定する[構成1]に記載の水処理装置。
[構成3]
 前記供給水ラインは、前記pH調整手段の上流に、被処理水中の炭酸成分を除去する脱炭酸塔を備える[構成1]又は[構成2]に記載の水処理装置。
[構成4]
 前記逆浸透膜の濃縮水をさらに処理するブライン逆浸透膜と、
 前記供給水ライン中にあって、前記ブライン逆浸透膜の透過水及び/又は前記逆浸透膜の透過水を前記供給水ラインの被処理水と混合する給水タンクと、
をさらに備える[構成1]乃至[構成3]のいずれか1項に記載の水処理装置。
[構成5]
 前記測定手段は前記pH調整手段の下流に配置される[構成1]乃至[構成4]のいずれか1項に記載の水処理装置。
 1   供給水ライン
 2   透過水ライン
 3   濃縮水ライン
 4  排水ライン
 5  循環ライン
 11 逆浸透膜
 12 ブライン逆浸透膜
 13 給水タンク
 21 pH調整装置
  21a pHメータ
  21b pH制御装置
  21c pH調整剤添加装置
 22 フッ化物イオン計
 23 スケール抑制剤添加ライン
 31 前処理装置(凝集・ろ過)
 32 熱交換器
 33 活性炭塔
 34 脱炭酸塔
 40 スケール抑制剤添加手段
 41 スケール抑制剤添加量制御装置
 42 スケール抑制剤添加装置
 100,200 水処理装置
 P1 第1ポンプ
 P2 第2ポンプ
 P3 第3ポンプ
 

Claims (10)

  1.  フッ素及びカルシウムを含む被処理水を少なくとも逆浸透膜に通水して処理する水処理方法であって、
     前記被処理水中のフッ化物イオン濃度を測定する工程と、
     フッ化カルシウムの析出を抑制するスケール抑制剤を添加する工程と、
     前記スケール抑制剤を添加後の被処理水を前記逆浸透膜に通水して透過水と濃縮水とを得る逆浸透膜処理工程と、
    を備え、
     前記被処理水中のフッ化物イオン濃度の測定が、pHを5以上に調整した後に実施され、該測定されたフッ化物イオン濃度に基づいて前記スケール抑制剤の添加量を決定することを特徴とする水処理方法。
  2.  前記スケール抑制剤の添加は、前記被処理水のpHを5以上に調整した後に実施される請求項1に記載の水処理方法。
  3.  前記pHの調整が、前記被処理水を前記逆浸透膜に供給する供給水ラインにpH調整剤を添加することで実施され、
     前記フッ化物イオン濃度の測定が、該pH調整剤を添加後の供給水ライン中で実施される請求項1又は2に記載の水処理方法。
  4.  前記供給水ライン、前記逆浸透膜からの透過水のライン、及び前記逆浸透膜からの濃縮水のラインのいずれか2つにおいて、第1流量と第2流量を測定し、前記第1流量と前記第2流量との比較から求められる回収率と前記測定されたフッ化物イオン濃度とから、前記スケール抑制剤の添加量を決定する請求項3に記載の水処理方法。
  5.  前記供給水ラインにpH調整剤を添加する前に、前記被処理水中の炭酸成分を除去する脱炭酸工程を有する請求項3に記載の水処理方法。
  6.  フッ素及びカルシウムを含む被処理水を通水して透過水と濃縮水とを得る逆浸透膜と、
     前記被処理水を前記逆浸透膜に供給する供給水ラインと、
    を有する水処理装置であって、
     前記供給水ラインは、
     前記被処理水のpHを調整するpH調整手段と、
     前記被処理水中のフッ化物イオン濃度をpHが5以上の条件で測定する測定手段と、
     前記被処理水にフッ化カルシウムの析出を抑制するスケール抑制剤の添加手段と、
    を備え、
     前記測定されたフッ化物イオン濃度に基づいて前記添加手段で添加するスケール抑制剤の添加量を決定し、前記添加手段におけるスケール抑制剤の添加量を制御する添加量制御装置を有することを特徴とする水処理装置。
  7.  前記供給水ライン、前記逆浸透膜からの透過水、及び前記逆浸透膜からの濃縮水のラインのいずれか2つにおいて、第1流量を測定する第1流量センサと、第2流量を測定する第2流量センサをそれぞれ備え、
     前記添加量制御装置は、前記第1流量と前記第2流量との比較から求められる回収率と、前記測定手段で測定されたフッ化物イオン濃度から前記スケール抑制剤の添加量を決定する請求項6に記載の水処理装置。
  8.  前記供給水ラインは、前記pH調整手段の上流に、被処理水中の炭酸成分を除去する脱炭酸塔を備える請求項6に記載の水処理装置。
  9.  前記逆浸透膜の濃縮水をさらに処理するブライン逆浸透膜と、
     前記供給水ライン中にあって、前記ブライン逆浸透膜の透過水及び/又は前記逆浸透膜の透過水を前記供給水ラインの被処理水と混合する給水タンクと、
    をさらに備える請求項6に記載の水処理装置。
  10.  前記測定手段は前記pH調整手段の下流に配置される請求項6乃至9のいずれか1項に記載の水処理装置。
     
PCT/JP2022/029681 2021-09-06 2022-08-02 水処理方法及び水処理装置 WO2023032566A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280060094.4A CN118159497A (zh) 2021-09-06 2022-08-02 水处理方法及水处理装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021144780A JP2023037938A (ja) 2021-09-06 2021-09-06 水処理方法及び水処理装置
JP2021-144780 2021-09-06

Publications (1)

Publication Number Publication Date
WO2023032566A1 true WO2023032566A1 (ja) 2023-03-09

Family

ID=85411031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/029681 WO2023032566A1 (ja) 2021-09-06 2022-08-02 水処理方法及び水処理装置

Country Status (4)

Country Link
JP (1) JP2023037938A (ja)
CN (1) CN118159497A (ja)
TW (1) TW202313487A (ja)
WO (1) WO2023032566A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001149950A (ja) * 1999-12-01 2001-06-05 Kurita Water Ind Ltd 水処理方法及び水処理装置
JP2003103260A (ja) * 2001-09-28 2003-04-08 Nomura Micro Sci Co Ltd フッ化物含有排水の処理方法
JP2010000455A (ja) * 2008-06-20 2010-01-07 Japan Organo Co Ltd スケール防止剤の供給管理方法および供給管理装置
JP2015142921A (ja) * 2015-03-27 2015-08-06 株式会社東芝 フッ素含有廃水の処理方法及びフッ素含有廃水の処理装置
JP2015174018A (ja) * 2014-03-14 2015-10-05 栗田工業株式会社 スケール防止方法及びスケール防止剤
WO2015198438A1 (ja) * 2014-06-26 2015-12-30 栗田工業株式会社 フッ化物含有水の処理方法及び処理装置
CN110451704A (zh) * 2019-08-30 2019-11-15 南京大学 一种含氟回用水的处理方法
JP2020157223A (ja) * 2019-03-26 2020-10-01 栗田工業株式会社 有機物及びカルシウム含有水の処理方法及び装置
JP2021037449A (ja) * 2019-09-02 2021-03-11 栗田工業株式会社 フッ素含有排水の処理方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001149950A (ja) * 1999-12-01 2001-06-05 Kurita Water Ind Ltd 水処理方法及び水処理装置
JP2003103260A (ja) * 2001-09-28 2003-04-08 Nomura Micro Sci Co Ltd フッ化物含有排水の処理方法
JP2010000455A (ja) * 2008-06-20 2010-01-07 Japan Organo Co Ltd スケール防止剤の供給管理方法および供給管理装置
JP2015174018A (ja) * 2014-03-14 2015-10-05 栗田工業株式会社 スケール防止方法及びスケール防止剤
WO2015198438A1 (ja) * 2014-06-26 2015-12-30 栗田工業株式会社 フッ化物含有水の処理方法及び処理装置
JP2015142921A (ja) * 2015-03-27 2015-08-06 株式会社東芝 フッ素含有廃水の処理方法及びフッ素含有廃水の処理装置
JP2020157223A (ja) * 2019-03-26 2020-10-01 栗田工業株式会社 有機物及びカルシウム含有水の処理方法及び装置
CN110451704A (zh) * 2019-08-30 2019-11-15 南京大学 一种含氟回用水的处理方法
JP2021037449A (ja) * 2019-09-02 2021-03-11 栗田工業株式会社 フッ素含有排水の処理方法

Also Published As

Publication number Publication date
CN118159497A (zh) 2024-06-07
TW202313487A (zh) 2023-04-01
JP2023037938A (ja) 2023-03-16

Similar Documents

Publication Publication Date Title
JP5359898B2 (ja) 水処理方法及び水処理システム
JP5345344B2 (ja) スケール防止剤の供給管理方法および供給管理装置
JP7045814B2 (ja) 膜ろ過装置
WO2019044197A1 (ja) 硬度成分含有水の処理装置および処理方法
JP6851877B2 (ja) 膜ろ過装置
CN108380051B (zh) 一种稳定节能型反渗透系统及其控制方法
TWI703093B (zh) 含有氨之排放水的處理方法及處理裝置
TW202039377A (zh) 逆滲透膜用水垢防止劑及逆滲透膜處理方法
WO2023032566A1 (ja) 水処理方法及び水処理装置
WO2018030109A1 (ja) 膜ろ過方法及び膜ろ過システム
JP7449107B2 (ja) 水処理方法および水処理装置
TW201834737A (zh) 逆滲透處理方法以及裝置
JP7017365B2 (ja) 膜ろ過装置
JP7106283B2 (ja) 膜ろ過装置
JP6939121B2 (ja) 膜分離装置
JP2005224761A (ja) 純水又は超純水の製造方法
WO2024166591A1 (ja) 水処理方法および水処理装置
JP7534177B2 (ja) 膜ろ過装置およびその運転方法
JP2021065803A (ja) フッ素含有排水の処理方法
JP2020032311A (ja) 膜ろ過装置
JP7364451B2 (ja) 水処理装置および水処理装置の運転管理方法
JP2018161632A (ja) 水処理装置及び水処理方法
JP2019130502A (ja) 膜ろ過装置
JP7289257B2 (ja) 膜ろ過装置およびその運転方法
US20240207789A1 (en) Preventive control method and system for preventing the fouling of a membrane separation unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22864153

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18688828

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280060094.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22864153

Country of ref document: EP

Kind code of ref document: A1