WO2023032566A1 - 水処理方法及び水処理装置 - Google Patents
水処理方法及び水処理装置 Download PDFInfo
- Publication number
- WO2023032566A1 WO2023032566A1 PCT/JP2022/029681 JP2022029681W WO2023032566A1 WO 2023032566 A1 WO2023032566 A1 WO 2023032566A1 JP 2022029681 W JP2022029681 W JP 2022029681W WO 2023032566 A1 WO2023032566 A1 WO 2023032566A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- water
- reverse osmosis
- osmosis membrane
- treated
- scale inhibitor
- Prior art date
Links
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 title claims abstract description 255
- 238000011282 treatment Methods 0.000 title claims abstract description 60
- 238000000034 method Methods 0.000 title claims abstract description 44
- 239000002455 scale inhibitor Substances 0.000 claims abstract description 83
- 239000012528 membrane Substances 0.000 claims abstract description 79
- 238000001223 reverse osmosis Methods 0.000 claims abstract description 74
- 229910001634 calcium fluoride Inorganic materials 0.000 claims abstract description 37
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical compound [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 claims abstract description 36
- -1 fluoride ions Chemical class 0.000 claims abstract description 28
- 238000005259 measurement Methods 0.000 claims abstract description 15
- 239000011575 calcium Substances 0.000 claims abstract description 13
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims abstract description 11
- 229910052791 calcium Inorganic materials 0.000 claims abstract description 11
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 claims abstract description 8
- 229910052731 fluorine Inorganic materials 0.000 claims abstract description 8
- 239000011737 fluorine Substances 0.000 claims abstract description 8
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 claims description 73
- 239000003002 pH adjusting agent Substances 0.000 claims description 22
- 238000001556 precipitation Methods 0.000 claims description 16
- 239000008400 supply water Substances 0.000 claims description 14
- 239000012267 brine Substances 0.000 claims description 11
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 claims description 11
- 238000006114 decarboxylation reaction Methods 0.000 claims description 9
- 238000011084 recovery Methods 0.000 claims description 7
- 238000011144 upstream manufacturing Methods 0.000 claims description 5
- 238000002156 mixing Methods 0.000 claims description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 claims 2
- 229910001424 calcium ion Inorganic materials 0.000 description 14
- 150000002500 ions Chemical class 0.000 description 14
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 13
- 239000000047 product Substances 0.000 description 13
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 10
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 10
- 229910000040 hydrogen fluoride Inorganic materials 0.000 description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 8
- 230000000052 comparative effect Effects 0.000 description 8
- 238000001914 filtration Methods 0.000 description 8
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 6
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 6
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 5
- 239000003513 alkali Substances 0.000 description 5
- 229920001897 terpolymer Polymers 0.000 description 5
- 229920000536 2-Acrylamido-2-methylpropane sulfonic acid Polymers 0.000 description 4
- XHZPRMZZQOIPDS-UHFFFAOYSA-N 2-Methyl-2-[(1-oxo-2-propenyl)amino]-1-propanesulfonic acid Chemical compound OS(=O)(=O)CC(C)(C)NC(=O)C=C XHZPRMZZQOIPDS-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 229920001577 copolymer Polymers 0.000 description 4
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 3
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 3
- 229910000019 calcium carbonate Inorganic materials 0.000 description 3
- 230000015271 coagulation Effects 0.000 description 3
- 238000005345 coagulation Methods 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 239000011976 maleic acid Substances 0.000 description 3
- 238000010979 pH adjustment Methods 0.000 description 3
- 239000012466 permeate Substances 0.000 description 3
- 239000002244 precipitate Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000002352 surface water Substances 0.000 description 3
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 3
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical compound OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 description 2
- YSMRWXYRXBRSND-UHFFFAOYSA-N TOTP Chemical compound CC1=CC=CC=C1OP(=O)(OC=1C(=CC=CC=1)C)OC1=CC=CC=C1C YSMRWXYRXBRSND-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000005374 membrane filtration Methods 0.000 description 2
- 238000001471 micro-filtration Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 238000001728 nano-filtration Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 238000009287 sand filtration Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- PUZPDOWCWNUUKD-UHFFFAOYSA-M sodium fluoride Chemical compound [F-].[Na+] PUZPDOWCWNUUKD-UHFFFAOYSA-M 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 238000000108 ultra-filtration Methods 0.000 description 2
- XKWFZGCWEYYGSK-UHFFFAOYSA-N 3,3,5,5-tetramethyl-2-methylidenehexanamide Chemical compound CC(C)(C)CC(C)(C)C(=C)C(N)=O XKWFZGCWEYYGSK-UHFFFAOYSA-N 0.000 description 1
- ZAWQXWZJKKICSZ-UHFFFAOYSA-N 3,3-dimethyl-2-methylidenebutanamide Chemical compound CC(C)(C)C(=C)C(N)=O ZAWQXWZJKKICSZ-UHFFFAOYSA-N 0.000 description 1
- WHNPOQXWAMXPTA-UHFFFAOYSA-N 3-methylbut-2-enamide Chemical compound CC(C)=CC(N)=O WHNPOQXWAMXPTA-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- 229910004261 CaF 2 Inorganic materials 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 229940120146 EDTMP Drugs 0.000 description 1
- DBVJJBKOTRCVKF-UHFFFAOYSA-N Etidronic acid Chemical compound OP(=O)(O)C(O)(C)P(O)(O)=O DBVJJBKOTRCVKF-UHFFFAOYSA-N 0.000 description 1
- 229910021578 Iron(III) chloride Inorganic materials 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 1
- YDONNITUKPKTIG-UHFFFAOYSA-N [Nitrilotris(methylene)]trisphosphonic acid Chemical compound OP(O)(=O)CN(CP(O)(O)=O)CP(O)(O)=O YDONNITUKPKTIG-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 150000003926 acrylamides Chemical class 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- DIZPMCHEQGEION-UHFFFAOYSA-H aluminium sulfate (anhydrous) Chemical compound [Al+3].[Al+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O DIZPMCHEQGEION-UHFFFAOYSA-H 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005536 corrosion prevention Methods 0.000 description 1
- 230000037123 dental health Effects 0.000 description 1
- NFDRPXJGHKJRLJ-UHFFFAOYSA-N edtmp Chemical compound OP(O)(=O)CN(CP(O)(O)=O)CCN(CP(O)(O)=O)CP(O)(O)=O NFDRPXJGHKJRLJ-UHFFFAOYSA-N 0.000 description 1
- 239000011790 ferrous sulphate Substances 0.000 description 1
- 235000003891 ferrous sulphate Nutrition 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000008394 flocculating agent Substances 0.000 description 1
- 238000005189 flocculation Methods 0.000 description 1
- 230000016615 flocculation Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000008235 industrial water Substances 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000003014 ion exchange membrane Substances 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 1
- 229910000359 iron(II) sulfate Inorganic materials 0.000 description 1
- 125000000962 organic group Chemical group 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- 150000003009 phosphonic acids Chemical class 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 229920001444 polymaleic acid Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000011775 sodium fluoride Substances 0.000 description 1
- 235000013024 sodium fluoride Nutrition 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 229910021642 ultra pure water Inorganic materials 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/02—Reverse osmosis; Hyperfiltration ; Nanofiltration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D61/00—Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
- B01D61/02—Reverse osmosis; Hyperfiltration ; Nanofiltration
- B01D61/04—Feed pretreatment
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/20—Treatment of water, waste water, or sewage by degassing, i.e. liberation of dissolved gases
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/44—Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F5/00—Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F5/00—Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
- C02F5/08—Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents
- C02F5/10—Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F5/00—Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
- C02F5/08—Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents
- C02F5/10—Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances
- C02F5/14—Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances containing phosphorus
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F9/00—Multistage treatment of water, waste water or sewage
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A20/00—Water conservation; Efficient water supply; Efficient water use
- Y02A20/124—Water desalination
- Y02A20/131—Reverse-osmosis
Definitions
- the present invention relates to a water treatment method and a water treatment apparatus including a reverse osmosis membrane apparatus, in which scale adhesion is suppressed.
- Patent Document 1 proposes a method of lowering the pH of the water to be treated to 4 to 6, etc., as a countermeasure against scale caused by calcium carbonate.
- Patent Document 2 or Patent Document 3 proposes the application of a scale inhibitor as a countermeasure against scale caused by calcium fluoride.
- an object of the present invention is to provide a water treatment method and a water treatment apparatus in which running costs are optimized by adding an appropriate amount of scale inhibitor at an appropriate pH.
- the present invention is a water treatment method in which water to be treated containing fluorine and calcium is treated by passing it through at least a reverse osmosis membrane, A step of measuring the fluoride ion concentration in the water to be treated; a step of adding a scale inhibitor that suppresses precipitation of calcium fluoride; a reverse osmosis membrane treatment step in which the water to be treated to which the scale inhibitor has been added is passed through the reverse osmosis membrane to obtain permeated water and concentrated water; with The measurement of the fluoride ion concentration in the water to be treated is performed after adjusting the pH to 5 or more, and the addition amount of the scale inhibitor is determined based on the measured fluoride ion concentration.
- a water treatment method is provided.
- the present invention provides a reverse osmosis membrane for passing water to be treated containing fluorine and calcium to obtain permeated water and concentrated water, a supply water line for supplying the water to be treated to the reverse osmosis membrane;
- a water treatment device having The water supply line is pH adjusting means for adjusting the pH of the water to be treated; measuring means for measuring the concentration of fluoride ions in the water to be treated under conditions where the pH is 5 or higher; addition means for adding a scale inhibitor that suppresses precipitation of calcium fluoride to the water to be treated; with and an addition amount control device for determining the addition amount of the scale inhibitor to be added by the addition means based on the measured fluoride ion concentration and controlling the addition amount of the scale inhibitor by the addition means.
- the present invention provides a water treatment method and a water treatment apparatus for treating water containing fluorine and calcium with a reverse osmosis membrane.
- the water to be treated includes surface water in rivers and lakes, tap water, and industrial water.
- the water to be treated according to the present invention is used for purposes such as ultrapure water production.
- FIG. 1 is a schematic diagram showing the configuration of a water treatment apparatus according to a first embodiment of the present invention.
- the water treatment device 100 of the present embodiment is a device that removes impurities (fluoride ions, calcium ions, etc.) contained in the water to be treated to generate treated water, and includes concentrated water containing impurities and impurities are removed. It has a reverse osmosis membrane 11 that separates the filtered permeated water.
- the water treatment device 100 also has a plurality of lines each connected to the reverse osmosis membrane 11 . That is, a feed water line 1 that supplies water to be treated to the reverse osmosis membrane, a permeated water line 2 that drains permeated water from the reverse osmosis membrane 11, and a concentrated water line 3 that drains concentrated water from the reverse osmosis membrane 11. and
- the supply water line 1 includes a pH adjuster 21 as pH adjusting means, a measuring means (fluoride ion meter) 22 for measuring the concentration of fluoride ions, and an addition line 23 as scale inhibitor adding means.
- a decarboxylation step may be provided before the pH adjuster 21 in order to suppress calcium carbonate scale and improve permeate water quality.
- the treated water in the above process often has a pH ⁇ 5.0.
- the fluoride ion concentration in the water to be treated changes depending on the pH during measurement with a fluoride ion meter, and the amount of scale inhibitor added calculated from the fluoride ion concentration at low pH is too little, resulting in scale. Insufficient suppression.
- the fluoride ion concentration is measured under the condition that the pH is 5.0 or higher.
- the pH adjusting device 21 provides a pH adjusting step so that the water to be treated has pH ⁇ 5.0. This prevents some of the fluoride ions from becoming hydrogen fluoride, and the fluoride ion meter 22 can accurately measure the fluoride ion concentration of the water to be treated in the supply water line 1 .
- a chemical solution injection method that does not affect fluoride ions in the water to be treated is selected, and alkali, particularly a low-concentration sodium hydroxide aqueous solution is added.
- the pH adjusting apparatus has a pH measuring means such as a pH meter for measuring the pH of at least one of the water to be treated before and after adding the alkali.
- Calcium fluoride scale deposition is determined by the product of the molar concentrations of fluoride ions and calcium ions (hereinafter referred to as the ionic product).
- the solubility product of calcium fluoride is 3.9 ⁇ 10 ⁇ 11 (mol 3 /L 3 ). If the ionic product exceeds this solubility product value, scale will precipitate.
- Calcium fluoride is composed of calcium ions and fluoride ions in a molar ratio of 1:2.
- the ion product Kap of calcium fluoride is calculated by multiplying the square of the fluoride ion concentration and the calcium ion concentration. Therefore, the fluoride ion concentration has a greater effect on the ion product than the calcium ion concentration. From the above, it is more effective to monitor fluoride ions than calcium ions when determining the amount of scale inhibitor to be added based on the ion product from fluctuating water quality.
- the lower limit of the measurement amount of a general fluoride ion meter is about 1 mg/L.
- the fluoride ion concentration is 20 mg/L or less, the fluctuation of the ion product exceeds about 10% when the fluoride ion concentration fluctuates by 1 mg/L. Therefore, this method is particularly effective in the region where the fluoride ion concentration is 20 mg/L or less.
- the calcium ion concentration at that time is 1.4 mg/L or more because the ion product is equal to or greater than the solubility product of calcium fluoride.
- the fluoride ion concentration is 10 mg/L or less, the ion product fluctuates by 20% or more, so this method is even more effective.
- the calcium ion concentration at that time is 5.6 mg/L or more.
- the measurement result of the fluoride ion concentration, and the first and second flow sensors (not shown) connected to any two of the feed water line 1, the permeated water line 2, and the concentrated water line 3 The addition amount of the scale inhibitor is determined in real time based on the recovery rate (sometimes referred to as concentration ratio) calculated from the flow rate and the second flow rate. This saves time from analysis to determination of the amount of scale inhibitor to be added. Normally, if the flow rate of the feed water line 1 is 100, the total flow rate of the permeate line 2 and the concentrated water line 3 is also 100.
- the recovery rate is the amount of permeated water relative to the water to be treated, and is set to 75%, for example, as the performance of the reverse osmosis membrane.
- the amount of permeated water and the amount of concentrated water fluctuate due to fluctuations in the quality and temperature of the water to be treated. Therefore, by measuring the actual amount of water, when measuring the concentration of fluoride ions, the concentration of fluoride ions can be accurately measured without being affected by fluctuations in the amount of permeated water and concentrated water due to fluctuations in water quality and water temperature. and the appropriate amount of scale inhibitor to be added can be determined.
- the "appropriate amount of scale inhibitor to be added" in the present invention is preferably the minimum amount to be added from the viewpoint of avoiding excessive addition of an expensive scale inhibitor.
- the scale inhibitor is added from the scale inhibitor addition line 23 based on the determined addition amount of the scale inhibitor.
- the scale inhibitor is not limited to a specific one as long as it is a substance capable of suppressing the precipitation of scale components such as silica and calcium, but a scale inhibitor that suppresses the precipitation of calcium fluoride is particularly preferable.
- phosphonic acids such as 1-hydroxyethylidene-1,1-diphosphonic acid, 2-phosphonobutane-1,2,4-tricarboxylic acid, ethylenediaminetetramethylenephosphonic acid, nitrilotrimethylphosphonic acid, and salts thereof.
- Phosphonic acid-based compounds Phosphonic acid-based compounds; phosphoric acid-based compounds such as orthophosphates and polymerized phosphates; maleic acid-based compounds such as polymaleic acid and maleic acid copolymers; are copolymers such as poly(meth)acrylic acid, maleic acid/(meth)acrylic acid, (meth)acrylic acid/sulfonic acid, (meth)acrylic acid/nonionic group-containing monomers, and (meth)acrylic acid/sulfonic acid /nonionic group-containing monomer, (meth)acrylic acid/acrylamide-alkylsulfonic acid/substituted (meth)acrylamide, and (meth)acrylic acid/acrylamide-arylsulfonic acid/substituted (meth)acrylamide terpolymer.
- Examples of the (meth)acrylic acid constituting the terpolymer include methacrylic acid, acrylic acid, and (meth)acrylic acid salts such as sodium salts thereof.
- Examples of acrylamide-alkylsulfonic acids constituting the terpolymer include 2-acrylamido-2-methylpropanesulfonic acid and salts thereof.
- Examples of substituted (meth)acrylamides constituting the terpolymer include t-butylacrylamide, t-octylacrylamide and dimethylacrylamide.
- a phosphonic acid-based compound and an acrylic acid-based polymer For example, copolymers of acrylic acid and 2-acrylamido-2-methylpropanesulfonic acid are preferred.
- a scale inhibitor consisting of a mixture of /substituted (meth)acrylamide with a terpolymer.
- scale inhibitors for reverse osmosis membranes include the "Orpersion” series manufactured by Organo Corporation, the “Flocon (registered trademark)” series manufactured by BWA Water Additives, and the “PermaTreat (registered trademark)” manufactured by Nalco. )” series, General Electric Company's “Hypersperse (registered trademark)” series, and Kurita Water Industries Ltd.'s “Kuriverter (registered trademark)” series.
- Addition of the scale inhibitor can be carried out in a pH range where calcium fluoride precipitates.
- calcium fluoride begins to precipitate at a pH of 3.5 or higher.
- the pH of the water to be treated is adjusted to 5 or more in order to measure the fluoride ion concentration between the pH adjustment device 21 and the reverse osmosis membrane 11, and the pH of the water to be treated is adjusted to After adjusting to 5 or more, measurement of fluoride ions and addition of a scale inhibitor are performed.
- the pH is preferably 4 or higher, more preferably 5 or higher.
- FIG. 1 shows an example in which the means for measuring the fluoride ion concentration is arranged downstream of the means for adjusting the pH, but the present invention is not limited to this. If the pH of water is 5 or higher, a fluoride ion concentration measuring means can be arranged upstream of the pH adjusting means. It is also preferable to provide a pH meter or the like for confirming that the water to be treated has a pH of 5 or higher.
- FIG. 2 is a schematic diagram showing the configuration of a water treatment device 200 according to a second embodiment of the invention.
- configurations similar to those of the first embodiment are denoted by the same reference numerals in the drawings, description thereof is omitted, and only configurations different from those of the first embodiment are described.
- the water supply line 1 includes a water supply tank 13 for storing water to be treated, a pretreatment (coagulation/filtration) device 31, and a heat exchanger 32. , an activated carbon tower (activated carbon filter) 33 , a decarboxylation tower 34 , a reverse osmosis membrane 11 and a brine reverse osmosis membrane 12 .
- the storage amount of the water supply tank 13 is adjusted by a pressure pump P1 (pressure adjustment means) that adjusts the pressure of the water to be treated flowing through the supply water line.
- a pressure pump P1 pressure adjustment means
- permeated water that has permeated the reverse osmosis membrane 11 can be returned to the water supply tank 13 not only from the supply water line 1 but also from the permeated water line 2 via the reflux line 2b.
- the permeated water after filtering the concentrated water separated by the reverse osmosis membrane 11 with the brine reverse osmosis membrane 12 can also be introduced through the circulation line 5 .
- the permeated water that has passed through the reverse osmosis membrane 11 may be sampled, in that case it is not circulated to the water supply tank 13 but is sampled through the water sampling line 2a. Condensed water from the brine reverse osmosis membrane 12 is discharged from the discharge line 4, and after post-treatment if necessary, is discarded.
- Examples of the pretreatment device 31 include devices capable of coagulation treatment, sand filtration, and membrane filtration.
- the flocculation treatment the charge of negatively charged fine particles in water is neutralized by a flocculant having a positive charge and flocculated to form basic flocs. This is a process that creates flocs and facilitates precipitation.
- Flocculants include aluminum sulfate, polyaluminum chloride, ferric chloride, ferrous sulfate, and the like.
- Sand filtration is a process of filtering by using deposited sand as a filter medium and passing water through the deposited sand.
- Membrane filtration is the process of filtering water by passing it through filtration membranes. Examples of filtration membranes include microfiltration (MF) membranes, ultrafiltration (UF) membranes, nanofiltration (NF) membranes, ion exchange membranes, and the like, depending on the size of the substance to be filtered and the driving force for filtration.
- the heat exchanger 32 is a device for heating the water to be treated that is supplied after pretreatment, and is provided to generate hot water for heat sterilization.
- the activated carbon tower 33 is provided to remove chlorine from the water to be treated supplied from the heat exchanger.
- the decarbonation tower 34 is a device that converts carbonate ions or bicarbonate ions into carbon dioxide by lowering the pH by injecting acid, and removes carbonic acid from water by blowing air into the packed tower. It is provided for suppression and improvement of permeate quality.
- the decarboxylation tower 34 to the reverse osmosis membrane 11 are basically the same as in the first embodiment, and have a pH adjuster 21, a fluoride ion meter 22, and a scale inhibitor addition line 23.
- the pH adjuster 21 is a pH meter 21a, which is a pH measuring means, and a pH controller that determines the addition amount of the pH adjuster (alkali) in the pH adjuster adder 21c based on the pH value measured by the pH meter 21a. It has a device 21b. A predetermined amount of pH adjuster (alkali) is added from the pH adjuster addition device 21c controlled by the pH control device 21b to adjust the pH of the water to be treated to 5.0 or higher.
- a flow meter as described in the first embodiment is placed upstream of the pH adjuster 21, and the measured flow rate and pH value are input to the pH controller 21b to add the pH adjuster in real time.
- a pH meter may be installed downstream of the pH adjusting device, and the pH adjusting agent corresponding to the difference between the pH meters before and after may be added.
- the water to be treated whose pH has been adjusted in this manner is sampled, and the fluoride ion concentration is measured by the fluoride ion meter 22 .
- the measured fluoride ion concentration is transferred to the scale inhibitor addition amount control device 41 to calculate the minimum necessary amount of scale inhibitor, and based on that information, the scale inhibitor is supplied from the scale inhibitor addition device 42. It is added to feed water line 1 via scale inhibitor addition line 23 .
- scale inhibitor addition means 40 includes fluoride ion meter 22 , controller 41 , addition device 42 and addition line 23 .
- the pressure is adjusted by the pressure pump P2 (pressure adjusting means) to allow water to flow through the reverse osmosis membrane 11.
- the pH is raised to 5.0 or more in the pH adjuster 21, and then the fluoride ion concentration is measured by the fluoride ion meter 22, and based on the value, the flow from the scale inhibitor addition line 23 is measured. Even if the amount of the scale inhibitor added is set to the minimum necessary amount, the adhesion of scale to the reverse osmosis membrane can be sufficiently prevented.
- the installation position of the fluoride ion meter 22 is not limited to the downstream of the pH adjuster 21 shown in FIG.
- the permeated water of the reverse osmosis membrane 11 and the permeated water of the brine reverse osmosis membrane 12 are raised to pH 5.0 or more, and the water to be treated in the water supply tank 13 mixed with surface water by circulating this
- the pH may be 5.0 or higher. Therefore, an on-line fluoride ion meter (not shown) is installed in the water supply tank 13 or in the supply water line 1 before the pretreatment device downstream thereof, and the measured fluoride ion concentration is communicated to the addition amount control device 41. , the minimum necessary amount of scale inhibitor can be added.
- the permeated water after passing through the reverse osmosis membrane 11 may be sampled or circulated to the water supply tank 13 without being sampled through the permeated water line 2 .
- the concentrated water after passing through the reverse osmosis membrane 11 is passed through the concentrated water line 3, the pressure of which is adjusted by the pressure pump P3 (pressure adjusting means) in the concentrated water line 3, and the brine reverse osmosis membrane 12. Water is passed through. After being filtered by the brine reverse osmosis membrane 12 , the water is separated into waste water drained through the drain line 4 and circulating water circulating to the water supply tank 13 .
- Example 1 Using pure water as raw water, simulated water containing fluoride ions and calcium ions was prepared in a 1 L beaker. The pH during adjustment was adjusted to 3.5. Hydrochloric acid or an aqueous sodium hydroxide solution was used for pH adjustment. Sodium fluoride was used to adjust the fluoride ion concentration to 6.7 mg/L. The calcium ion concentration was adjusted to 200 mg/L using calcium chloride. After adjusting the pH to 5.0, the fluoride ion concentration was measured with a fluoride ion meter (F ion measurement value). The scale inhibitor was added according to the amount of scale inhibitor added calculated from the measured fluoride ion concentration.
- a copolymer of acrylic acid, acrylic acid and 2-acrylamido-2-methylpropanesulfonic acid was used as the scale inhibitor.
- An ion electrode (model number: F-2021) manufactured by Toa DKK Co., Ltd. was used to measure the fluoride ion concentration. After adding the scale inhibitor, the mixture was stirred for 24 hours using a magnetic stirrer, and then the amount of precipitated calcium fluoride was calculated.
- the method for calculating the amount of precipitated calcium fluoride is as follows. After the test, the supernatant was filtered using a 0.1 ⁇ m filter and the pH was adjusted to 6.0 to 7.0, after which the fluoride ion concentration was measured. From the measurement results and the fluoride ion concentration before the test, the concentration of fluoride ions consumed for scale deposition was calculated. From this result, the precipitation amount of calcium fluoride was calculated.
- Example 2 The precipitation amount of calcium fluoride was calculated in the same manner as in Example 1 except that the simulated water was adjusted to pH 4.0.
- Example 3 The precipitation amount of calcium fluoride was calculated in the same manner as in Example 1 except that the simulated water was adjusted to pH 4.5.
- Example 4 Simulated water was prepared at pH 5.0.
- the precipitation amount of calcium fluoride was calculated in the same manner as in Example 1, except that the fluoride ion concentration was measured without changing the pH.
- Example 5 Simulated water was prepared at pH 5.5.
- the precipitation amount of calcium fluoride was calculated in the same manner as in Example 1, except that the fluoride ion concentration was measured without changing the pH.
- Example 1 Simulated water prepared as in Example 1 was used. Before measuring fluoride ions with a fluoride ion meter, the pH was not adjusted to 5.0, and the fluoride ion concentration was measured (F ion measurement value) while the pH was 3.5. The scale inhibitor was added according to the amount of scale inhibitor added calculated from the fluoride ion concentration obtained. Otherwise, the amount of precipitated calcium fluoride was calculated in the same manner as in Example 1.
- Example 2 Simulated water prepared as in Example 2 was used. Before measuring fluoride ions with a fluoride ion meter, the pH was not adjusted to 5.0, and the fluoride ion concentration was measured while the pH was 4.0 (F ion measurement value). The scale inhibitor was added according to the amount of scale inhibitor added calculated from the fluoride ion concentration obtained. Otherwise, the amount of precipitated calcium fluoride was calculated in the same manner as in Example 1.
- Example 3 Simulated water prepared as in Example 3 was used. Before measuring fluoride ions with a fluoride ion meter, the pH was not adjusted to 5.0, and the fluoride ion concentration was measured (F ion measurement value) while the pH was 4.5. The scale inhibitor was added according to the amount of scale inhibitor added calculated from the fluoride ion concentration obtained. Otherwise, the amount of precipitated calcium fluoride was calculated in the same manner as in Example 1.
- Table 1 shows the detected amount ratio of calcium fluoride between each example and each comparative example (comparative example/example).
- fluoride ions are indicated as “F ions,” calcium ions as “Ca ions,” and calcium fluoride as “ CaF.sub.2 .”
- FIG. 3 is a graph showing the relationship between the detection amount ratio (comparative example/example) of calcium fluoride detected in the example and the comparative example. It can be seen that in the region of pH ⁇ 5.0, the scale inhibitor was added in an insufficient amount. In Examples 4 and 5, the detection amount ratio is 1.00. When the pH is low, the amount of CaF 2 precipitation is small, but assuming that the scale inhibitor is added at pH ⁇ 5 or higher, an increase in scale corresponding to the shortage indicated by the detection amount ratio is predicted. can.
- a water treatment method for treating water to be treated containing fluorine and calcium by passing it through at least a reverse osmosis membrane A step of measuring the fluoride ion concentration in the water to be treated; a step of adding a scale inhibitor that suppresses precipitation of calcium fluoride; a reverse osmosis membrane treatment step in which the water to be treated to which the scale inhibitor has been added is passed through the reverse osmosis membrane to obtain permeated water and concentrated water; with The measurement of the fluoride ion concentration in the water to be treated is performed after adjusting the pH to 5 or more, and the addition amount of the scale inhibitor is determined based on the measured fluoride ion concentration. water treatment method.
- [Method 2] The water treatment method according to [Method 1], wherein the addition of the scale inhibitor is performed after adjusting the pH of the water to be treated to 5 or higher.
- [Method 3] The adjustment of the pH is performed by adding a pH adjuster to a feed water line that supplies the water to be treated to the reverse osmosis membrane, The water treatment method according to [Method 1] or [Method 2], wherein the fluoride ion concentration is measured in the feed water line after adding the pH adjuster.
- [Method 4] A first flow rate and a second flow rate are measured in any two of the feed water line, the permeated water line from the reverse osmosis membrane, and the concentrated water line from the reverse osmosis membrane, and the first flow rate and The water treatment method according to [Method 3], wherein the addition amount of the scale inhibitor is determined from the recovery rate obtained by comparison with the second flow rate and the measured fluoride ion concentration.
- the present invention includes the following configurations.
- a reverse osmosis membrane for passing water to be treated containing fluorine and calcium to obtain permeated water and concentrated water; a supply water line for supplying the water to be treated to the reverse osmosis membrane;
- a water treatment device having The water supply line is pH adjusting means for adjusting the pH of the water to be treated; measuring means for measuring the concentration of fluoride ions in the water to be treated under conditions where the pH is 5 or higher; means for adding a scale inhibitor to the water to be treated to suppress precipitation of calcium fluoride; with and an addition amount control device for determining the addition amount of the scale inhibitor to be added by the addition means based on the measured fluoride ion concentration and controlling the addition amount of the scale inhibitor by the addition means.
- a first flow rate sensor for measuring a first flow rate and a second flow rate for any two of the feed water line, the permeated water from the reverse osmosis membrane, and the concentrated water line from the reverse osmosis membrane. each comprising a second flow sensor,
- the addition amount control device determines the addition amount of the scale inhibitor from the recovery rate obtained by comparing the first flow rate and the second flow rate and the fluoride ion concentration measured by the measuring means. 1].
- the water treatment device according to any one of [Configuration 1] to [Configuration 3], further comprising: [Configuration 5] The water treatment apparatus according to any one of [Structure 1] to [Structure 4], wherein the measurement means is arranged downstream of the pH adjustment means.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Water Supply & Treatment (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nanotechnology (AREA)
- General Chemical & Material Sciences (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
- Physical Water Treatments (AREA)
Abstract
Description
また、特許文献3に示すように、pHの低い酸性側ではフッ化カルシウムの析出が少なく、スケール抑制剤を使用しない、又はスケール抑制剤の使用量を減らすことができる。しかしながら、pHの低い状態は、配管などの腐食の原因となり、腐食防止のためのライニングなどに別のコスト増となる。
前記被処理水中のフッ化物イオン濃度を測定する工程と、
フッ化カルシウムの析出を抑制するスケール抑制剤を添加する工程と、
前記スケール抑制剤を添加後の被処理水を前記逆浸透膜に通水して透過水と濃縮水とを得る逆浸透膜処理工程と、
を備え、
前記被処理水中のフッ化物イオン濃度の測定が、pHを5以上に調整した後に実施され、該測定されたフッ化物イオン濃度に基づいて前記スケール抑制剤の添加量を決定することを特徴とする水処理方法を提供する。
前記被処理水を前記逆浸透膜に供給する供給水ラインと、
を有する水処理装置であって、
前記供給水ラインは、
前記被処理水のpHを調整するpH調整手段と、
前記被処理水中のフッ化物イオン濃度をpHが5以上の条件で測定する測定手段と、
前記被処理水にフッ化カルシウムの析出を抑制するスケール抑制剤を添加する添加手段と、
を備え、
前記測定されたフッ化物イオン濃度に基づいて前記添加手段で添加するスケール抑制剤の添加量を決定し、前記添加手段におけるスケール抑制剤の添加量を制御する添加量制御装置を有することを特徴とする水処理装置を提供する。
以下、図面を参照して、本発明の実施形態について説明する。
図1は、本発明の第1の実施形態に係る水処理装置の構成を示す概略図である。
本実施形態の水処理装置100は、被処理水に含まれる不純物(フッ化物イオン、カルシムイオンなど)を除去して処理水を生成する装置であって、不純物を含む濃縮水と、不純物が除去された透過水と、に分離する逆浸透膜11を有している。
Kap=[Ca+]([F-]2) ・・・式(1)
式(1)中、[Ca+]はカルシムイオン濃度、[F-]はフッ化物イオン濃度である。
また図1では、フッ化物イオン濃度の測定手段を、pH調整手段の下流に配置する例を示しているが、これに限定されず、脱炭酸塔などのpH値を引き下げる処理の前に被処理水のpHが5以上であれば、pH調整手段の上流にフッ化物イオン濃度の測定手段を配置することができる。また、その際の被処理水がpH5以上であることを確認するpHメータ等を設けていることも好ましい。
図2は、本発明の第2の実施形態に係る水処理装置200の構成を示す概略図である。以下、第1の実施形態と同様の構成については、図面に同じ符号を付してその説明を省略し、第1の実施形態と異なる構成のみ説明する。
活性炭塔33は、熱交換器から供給される被処理水から塩素を除去するために設けられている。
一方、逆浸透膜11へ通水後の濃縮水は、濃縮水ライン3を通じて、濃縮水ライン3中にある加圧ポンプP3(圧力調整手段)により圧力を調整して、ブライン逆浸透膜12に通水される。ブライン逆浸透膜12でろ過後、排水ライン4を通じて排水される排水と給水タンク13へと循環する循環水に分離される。
(実施例1)
1Lのビーカーに純水を原水としてフッ化物イオン及びカルシウムイオンを含む模擬水を調製した。調整時のpHは3.5に調整した。pH調整には塩酸または水酸化ナトリウム水溶液を用いた。フッ化物イオン濃度は6.7mg/Lとなるようにフッ化ナトリウムを用いて調整した。カルシウムイオン濃度は200mg/Lとなるように塩化カルシウムを用いて調整した。pHを5.0となるように調整してからフッ化物イオン計でフッ化物イオン濃度を測定(Fイオン計測値)した。測定されたフッ化物イオン濃度から算出したスケール抑制剤の添加量に従い、スケール抑制剤を添加した。スケール抑制剤としては、アクリル酸とアクリル酸と2-アクリルアミド-2-メチルプロパンスルホン酸とからなるコポリマーを用いた。フッ化物イオン濃度の測定には、東亜ディーケーケー株式会社製のイオン電極(型番:F-2021)を用いた。スケール抑制剤の添加後、マグネティックスターラーを用いて24時間撹拌したのち、フッ化カルシウムの析出量を算出した。フッ化カルシウムの析出量の算出方法については、以下のとおりである。試験後の上澄み液を0.1μmのフィルターを用いてろ過し、pHを6.0~7.0に調整したのちに、フッ化物イオン濃度を測定した。前記測定結果と試験前のフッ化物イオン濃度から、スケールの析出に消費されたフッ化物イオン濃度を算出した。この結果からフッ化カルシウムの析出量を算出した。
模擬水をpH4.0で調整した以外は実施例1と同様にしてフッ化カルシウムの析出量を算出した。
模擬水をpH4.5で調整した以外は実施例1と同様にしてフッ化カルシウムの析出量を算出した。
模擬水をpH5.0で調製した。フッ化物イオン濃度の測定をそのままのpHで行った以外は実施例1と同様にしてフッ化カルシウムの析出量を算出した。
模擬水をpH5.5で調製した。フッ化物イオン濃度の測定をそのままのpHで行った以外は実施例1と同様にしてフッ化カルシウムの析出量を算出した。
実施例1と同様に調製した模擬水を使用した。フッ化物イオン計でフッ化物イオンを測定する前にpHが5.0となるように調整はせず、pHは3.5のままフッ化物イオン濃度を測定(Fイオン計測値)し、測定されたフッ化物イオン濃度から算出したスケール抑制剤の添加量に従い、スケール抑制剤を添加した。それ以外は実施例1と同様にしてフッ化カルシウムの析出量を算出した。
実施例2と同様に調製した模擬水を使用した。フッ化物イオン計でフッ化物イオンを測定する前にpHが5.0となるように調整はせず、pHは4.0のままフッ化物イオン濃度を測定(Fイオン計測値)し、測定されたフッ化物イオン濃度から算出したスケール抑制剤の添加量に従い、スケール抑制剤を添加した。それ以外は実施例1と同様にしてフッ化カルシウムの析出量を算出した。
実施例3と同様に調製した模擬水を使用した。フッ化物イオン計でフッ化物イオンを測定する前にpHが5.0となるように調整はせず、pHは4.5のままフッ化物イオン濃度を測定(Fイオン計測値)し、測定されたフッ化物イオン濃度から算出したスケール抑制剤の添加量に従い、スケール抑制剤を添加した。それ以外は実施例1と同様にしてフッ化カルシウムの析出量を算出した。
この出願は、2021年9月6日に出願された日本特許出願特願2021-144780を基礎とする優先権を主張し、その開示の全てをここに取り込む。
本発明には、以下の方法が含まれる。
[方法1]
フッ素及びカルシウムを含む被処理水を少なくとも逆浸透膜に通水して処理する水処理方法であって、
前記被処理水中のフッ化物イオン濃度を測定する工程と、
フッ化カルシウムの析出を抑制するスケール抑制剤を添加する工程と、
前記スケール抑制剤を添加後の被処理水を前記逆浸透膜に通水して透過水と濃縮水とを得る逆浸透膜処理工程と、
を備え、
前記被処理水中のフッ化物イオン濃度の測定が、pHを5以上に調整した後に実施され、該測定されたフッ化物イオン濃度に基づいて前記スケール抑制剤の添加量を決定することを特徴とする水処理方法。
[方法2]
前記スケール抑制剤の添加は、前記被処理水のpHを5以上に調整した後に実施される、[方法1]に記載の水処理方法。
[方法3]
前記pHの調整が、前記被処理水を前記逆浸透膜に供給する供給水ラインにpH調整剤を添加することで実施され、
前記フッ化物イオン濃度の測定が、該pH調整剤を添加後の供給水ライン中で実施される[方法1]又は[方法2]に記載の水処理方法。
[方法4]
前記供給水ライン、前記逆浸透膜からの透過水のライン、及び前記逆浸透膜からの濃縮水のラインのいずれか2つにおいて、第1流量と第2流量を測定し、前記第1流量と前記第2流量との比較から求められる回収率と前記測定されたフッ化物イオン濃度とから、前記スケール抑制剤の添加量を決定する[方法3]に記載の水処理方法。
[方法5]
前記供給水ラインにpH調整剤を添加する前に、前記被処理水中の炭酸成分を除去する脱炭酸工程を有する[方法3]又は[方法4]に記載の水処理方法。
[構成1]
フッ素及びカルシウムを含む被処理水を通水して透過水と濃縮水とを得る逆浸透膜と、
前記被処理水を前記逆浸透膜に供給する供給水ラインと、
を有する水処理装置であって、
前記供給水ラインは、
前記被処理水のpHを調整するpH調整手段と、
前記被処理水中のフッ化物イオン濃度をpHが5以上の条件で測定する測定手段と、
前記被処理水にフッ化カルシウムの析出を抑制するスケール抑制剤の添加手段と、
を備え、
前記測定されたフッ化物イオン濃度に基づいて前記添加手段で添加するスケール抑制剤の添加量を決定し、前記添加手段におけるスケール抑制剤の添加量を制御する添加量制御装置を有することを特徴とする水処理装置。
[構成2]
前記供給水ライン、前記逆浸透膜からの透過水、及び前記逆浸透膜からの濃縮水のラインのいずれか2つにおいて、第1流量を測定する第1流量センサと、第2流量を測定する第2流量センサをそれぞれ備え、
前記添加量制御装置は、前記第1流量と前記第2流量との比較から求められる回収率と、前記測定手段で測定されたフッ化物イオン濃度から前記スケール抑制剤の添加量を決定する[構成1]に記載の水処理装置。
[構成3]
前記供給水ラインは、前記pH調整手段の上流に、被処理水中の炭酸成分を除去する脱炭酸塔を備える[構成1]又は[構成2]に記載の水処理装置。
[構成4]
前記逆浸透膜の濃縮水をさらに処理するブライン逆浸透膜と、
前記供給水ライン中にあって、前記ブライン逆浸透膜の透過水及び/又は前記逆浸透膜の透過水を前記供給水ラインの被処理水と混合する給水タンクと、
をさらに備える[構成1]乃至[構成3]のいずれか1項に記載の水処理装置。
[構成5]
前記測定手段は前記pH調整手段の下流に配置される[構成1]乃至[構成4]のいずれか1項に記載の水処理装置。
2 透過水ライン
3 濃縮水ライン
4 排水ライン
5 循環ライン
11 逆浸透膜
12 ブライン逆浸透膜
13 給水タンク
21 pH調整装置
21a pHメータ
21b pH制御装置
21c pH調整剤添加装置
22 フッ化物イオン計
23 スケール抑制剤添加ライン
31 前処理装置(凝集・ろ過)
32 熱交換器
33 活性炭塔
34 脱炭酸塔
40 スケール抑制剤添加手段
41 スケール抑制剤添加量制御装置
42 スケール抑制剤添加装置
100,200 水処理装置
P1 第1ポンプ
P2 第2ポンプ
P3 第3ポンプ
Claims (10)
- フッ素及びカルシウムを含む被処理水を少なくとも逆浸透膜に通水して処理する水処理方法であって、
前記被処理水中のフッ化物イオン濃度を測定する工程と、
フッ化カルシウムの析出を抑制するスケール抑制剤を添加する工程と、
前記スケール抑制剤を添加後の被処理水を前記逆浸透膜に通水して透過水と濃縮水とを得る逆浸透膜処理工程と、
を備え、
前記被処理水中のフッ化物イオン濃度の測定が、pHを5以上に調整した後に実施され、該測定されたフッ化物イオン濃度に基づいて前記スケール抑制剤の添加量を決定することを特徴とする水処理方法。 - 前記スケール抑制剤の添加は、前記被処理水のpHを5以上に調整した後に実施される請求項1に記載の水処理方法。
- 前記pHの調整が、前記被処理水を前記逆浸透膜に供給する供給水ラインにpH調整剤を添加することで実施され、
前記フッ化物イオン濃度の測定が、該pH調整剤を添加後の供給水ライン中で実施される請求項1又は2に記載の水処理方法。 - 前記供給水ライン、前記逆浸透膜からの透過水のライン、及び前記逆浸透膜からの濃縮水のラインのいずれか2つにおいて、第1流量と第2流量を測定し、前記第1流量と前記第2流量との比較から求められる回収率と前記測定されたフッ化物イオン濃度とから、前記スケール抑制剤の添加量を決定する請求項3に記載の水処理方法。
- 前記供給水ラインにpH調整剤を添加する前に、前記被処理水中の炭酸成分を除去する脱炭酸工程を有する請求項3に記載の水処理方法。
- フッ素及びカルシウムを含む被処理水を通水して透過水と濃縮水とを得る逆浸透膜と、
前記被処理水を前記逆浸透膜に供給する供給水ラインと、
を有する水処理装置であって、
前記供給水ラインは、
前記被処理水のpHを調整するpH調整手段と、
前記被処理水中のフッ化物イオン濃度をpHが5以上の条件で測定する測定手段と、
前記被処理水にフッ化カルシウムの析出を抑制するスケール抑制剤の添加手段と、
を備え、
前記測定されたフッ化物イオン濃度に基づいて前記添加手段で添加するスケール抑制剤の添加量を決定し、前記添加手段におけるスケール抑制剤の添加量を制御する添加量制御装置を有することを特徴とする水処理装置。 - 前記供給水ライン、前記逆浸透膜からの透過水、及び前記逆浸透膜からの濃縮水のラインのいずれか2つにおいて、第1流量を測定する第1流量センサと、第2流量を測定する第2流量センサをそれぞれ備え、
前記添加量制御装置は、前記第1流量と前記第2流量との比較から求められる回収率と、前記測定手段で測定されたフッ化物イオン濃度から前記スケール抑制剤の添加量を決定する請求項6に記載の水処理装置。 - 前記供給水ラインは、前記pH調整手段の上流に、被処理水中の炭酸成分を除去する脱炭酸塔を備える請求項6に記載の水処理装置。
- 前記逆浸透膜の濃縮水をさらに処理するブライン逆浸透膜と、
前記供給水ライン中にあって、前記ブライン逆浸透膜の透過水及び/又は前記逆浸透膜の透過水を前記供給水ラインの被処理水と混合する給水タンクと、
をさらに備える請求項6に記載の水処理装置。 - 前記測定手段は前記pH調整手段の下流に配置される請求項6乃至9のいずれか1項に記載の水処理装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202280060094.4A CN118159497A (zh) | 2021-09-06 | 2022-08-02 | 水处理方法及水处理装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021144780A JP2023037938A (ja) | 2021-09-06 | 2021-09-06 | 水処理方法及び水処理装置 |
JP2021-144780 | 2021-09-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023032566A1 true WO2023032566A1 (ja) | 2023-03-09 |
Family
ID=85411031
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/029681 WO2023032566A1 (ja) | 2021-09-06 | 2022-08-02 | 水処理方法及び水処理装置 |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP2023037938A (ja) |
CN (1) | CN118159497A (ja) |
TW (1) | TW202313487A (ja) |
WO (1) | WO2023032566A1 (ja) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001149950A (ja) * | 1999-12-01 | 2001-06-05 | Kurita Water Ind Ltd | 水処理方法及び水処理装置 |
JP2003103260A (ja) * | 2001-09-28 | 2003-04-08 | Nomura Micro Sci Co Ltd | フッ化物含有排水の処理方法 |
JP2010000455A (ja) * | 2008-06-20 | 2010-01-07 | Japan Organo Co Ltd | スケール防止剤の供給管理方法および供給管理装置 |
JP2015142921A (ja) * | 2015-03-27 | 2015-08-06 | 株式会社東芝 | フッ素含有廃水の処理方法及びフッ素含有廃水の処理装置 |
JP2015174018A (ja) * | 2014-03-14 | 2015-10-05 | 栗田工業株式会社 | スケール防止方法及びスケール防止剤 |
WO2015198438A1 (ja) * | 2014-06-26 | 2015-12-30 | 栗田工業株式会社 | フッ化物含有水の処理方法及び処理装置 |
CN110451704A (zh) * | 2019-08-30 | 2019-11-15 | 南京大学 | 一种含氟回用水的处理方法 |
JP2020157223A (ja) * | 2019-03-26 | 2020-10-01 | 栗田工業株式会社 | 有機物及びカルシウム含有水の処理方法及び装置 |
JP2021037449A (ja) * | 2019-09-02 | 2021-03-11 | 栗田工業株式会社 | フッ素含有排水の処理方法 |
-
2021
- 2021-09-06 JP JP2021144780A patent/JP2023037938A/ja active Pending
-
2022
- 2022-08-02 CN CN202280060094.4A patent/CN118159497A/zh active Pending
- 2022-08-02 WO PCT/JP2022/029681 patent/WO2023032566A1/ja active Application Filing
- 2022-08-31 TW TW111132808A patent/TW202313487A/zh unknown
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001149950A (ja) * | 1999-12-01 | 2001-06-05 | Kurita Water Ind Ltd | 水処理方法及び水処理装置 |
JP2003103260A (ja) * | 2001-09-28 | 2003-04-08 | Nomura Micro Sci Co Ltd | フッ化物含有排水の処理方法 |
JP2010000455A (ja) * | 2008-06-20 | 2010-01-07 | Japan Organo Co Ltd | スケール防止剤の供給管理方法および供給管理装置 |
JP2015174018A (ja) * | 2014-03-14 | 2015-10-05 | 栗田工業株式会社 | スケール防止方法及びスケール防止剤 |
WO2015198438A1 (ja) * | 2014-06-26 | 2015-12-30 | 栗田工業株式会社 | フッ化物含有水の処理方法及び処理装置 |
JP2015142921A (ja) * | 2015-03-27 | 2015-08-06 | 株式会社東芝 | フッ素含有廃水の処理方法及びフッ素含有廃水の処理装置 |
JP2020157223A (ja) * | 2019-03-26 | 2020-10-01 | 栗田工業株式会社 | 有機物及びカルシウム含有水の処理方法及び装置 |
CN110451704A (zh) * | 2019-08-30 | 2019-11-15 | 南京大学 | 一种含氟回用水的处理方法 |
JP2021037449A (ja) * | 2019-09-02 | 2021-03-11 | 栗田工業株式会社 | フッ素含有排水の処理方法 |
Also Published As
Publication number | Publication date |
---|---|
CN118159497A (zh) | 2024-06-07 |
TW202313487A (zh) | 2023-04-01 |
JP2023037938A (ja) | 2023-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5359898B2 (ja) | 水処理方法及び水処理システム | |
JP5345344B2 (ja) | スケール防止剤の供給管理方法および供給管理装置 | |
JP7045814B2 (ja) | 膜ろ過装置 | |
WO2019044197A1 (ja) | 硬度成分含有水の処理装置および処理方法 | |
JP6851877B2 (ja) | 膜ろ過装置 | |
CN108380051B (zh) | 一种稳定节能型反渗透系统及其控制方法 | |
TWI703093B (zh) | 含有氨之排放水的處理方法及處理裝置 | |
TW202039377A (zh) | 逆滲透膜用水垢防止劑及逆滲透膜處理方法 | |
WO2023032566A1 (ja) | 水処理方法及び水処理装置 | |
WO2018030109A1 (ja) | 膜ろ過方法及び膜ろ過システム | |
JP7449107B2 (ja) | 水処理方法および水処理装置 | |
TW201834737A (zh) | 逆滲透處理方法以及裝置 | |
JP7017365B2 (ja) | 膜ろ過装置 | |
JP7106283B2 (ja) | 膜ろ過装置 | |
JP6939121B2 (ja) | 膜分離装置 | |
JP2005224761A (ja) | 純水又は超純水の製造方法 | |
WO2024166591A1 (ja) | 水処理方法および水処理装置 | |
JP7534177B2 (ja) | 膜ろ過装置およびその運転方法 | |
JP2021065803A (ja) | フッ素含有排水の処理方法 | |
JP2020032311A (ja) | 膜ろ過装置 | |
JP7364451B2 (ja) | 水処理装置および水処理装置の運転管理方法 | |
JP2018161632A (ja) | 水処理装置及び水処理方法 | |
JP2019130502A (ja) | 膜ろ過装置 | |
JP7289257B2 (ja) | 膜ろ過装置およびその運転方法 | |
US20240207789A1 (en) | Preventive control method and system for preventing the fouling of a membrane separation unit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22864153 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18688828 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280060094.4 Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22864153 Country of ref document: EP Kind code of ref document: A1 |