WO2019044197A1 - 硬度成分含有水の処理装置および処理方法 - Google Patents

硬度成分含有水の処理装置および処理方法 Download PDF

Info

Publication number
WO2019044197A1
WO2019044197A1 PCT/JP2018/026213 JP2018026213W WO2019044197A1 WO 2019044197 A1 WO2019044197 A1 WO 2019044197A1 JP 2018026213 W JP2018026213 W JP 2018026213W WO 2019044197 A1 WO2019044197 A1 WO 2019044197A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
hardness component
solid
reverse osmosis
osmosis membrane
Prior art date
Application number
PCT/JP2018/026213
Other languages
English (en)
French (fr)
Inventor
徹 中野
圭一郎 福水
明広 高田
Original Assignee
オルガノ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オルガノ株式会社 filed Critical オルガノ株式会社
Priority to SG11202000878RA priority Critical patent/SG11202000878RA/en
Priority to CN201880051401.6A priority patent/CN111032580A/zh
Publication of WO2019044197A1 publication Critical patent/WO2019044197A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D21/00Separation of suspended solid particles from liquids by sedimentation
    • B01D21/01Separation of suspended solid particles from liquids by sedimentation using flocculating agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/04Feed pretreatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/52Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
    • C02F1/54Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities using organic material
    • C02F1/56Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/58Treatment of water, waste water, or sewage by removing specified dissolved compounds
    • C02F1/60Silicon compounds

Definitions

  • the present invention relates to an apparatus and method for treating water containing hardness components.
  • the concentrated water of the reverse osmosis membrane is further treated with the reverse osmosis membrane or concentrated by a method such as evaporation concentration.
  • a method such as evaporation concentration.
  • Patent Document 1 As a method of softening the waste water containing the hardness component, as disclosed in Patent Document 1, there is known a method in which the hardness component in the waste water is precipitated as calcium carbonate or magnesium hydroxide to perform solid-liquid separation. When the drainage contains calcium as a hardness component, this solid-liquid separated softened water is saturated with calcium carbonate, so acid is added to increase the solubility of calcium carbonate, and decarboxylation is performed in the latter stage. Measures are taken to control the precipitation of calcium carbonate.
  • a hardness component of the dissolved amount usually remains in the range of several mg / L to several tens mg / L. Since calcium hardness components are removed as calcium carbonate, the calcium concentration of the softened water is determined by the concentration of carbonate ions remaining in the softened water, and if the carbonate ion concentration is high, the calcium hardness is lowered, but that amount of carbonic acid It requires a large amount of injection and is costly. Since the magnesium hardness component is removed as magnesium hydroxide, the magnesium concentration of the softened water changes with pH. If the pH is 11.0 or more, the magnesium hardness component can be removed to 1 mg / L or less, but if the pH is 10.5, magnesium hardness components of several mg / L to several tens mg / L remain.
  • the object of the present invention is to use an apparatus and method for performing reverse osmosis membrane treatment after softening treatment of hardness component-containing water, which can reduce the amount of hardness component of concentrated water flowing out to the latter stage.
  • Processing apparatus and processing method
  • the present invention relates to a reaction vessel for adding at least one of an alkaline agent and a carbonate compound to water to be treated containing a hardness component to insolubilize the hardness component, and a solid-liquid separation for solid-liquid separation of the obtained insoluble matter Separation means, reverse osmosis membrane treatment means for obtaining concentrated water and permeated water by treating the obtained solid-liquid separated liquid with a reverse osmosis membrane, and at least a portion of the obtained concentrated water from the solid-liquid separation means And a return means to be returned to the front stage of the treatment apparatus for water containing hardness component.
  • the return destination of the said concentrated water by the said return means is the said reaction tank in the processing apparatus of the said hardness component containing water.
  • CaCO 3 concentration of the reaction vessel it is preferable that CaCO 3 concentration of the reaction vessel to return the concentrated water so that 100 mg / L or more.
  • the apparatus for treating hardness component-containing water further comprises an ion concentration measuring means for measuring the ion concentration of the concentrated water, and adjusting the amount of the concentrated water returned by the return means according to the measured value. preferable.
  • the present invention also includes an insolubilizing step of adding at least one of an alkaline agent and a carbonic acid compound to water to be treated containing a hardness component to insolubilize the hardness component, and a solid-liquid separation of the obtained insoluble matter Separation step, reverse osmosis membrane treatment step of obtaining the concentrated water and permeated water by treating the obtained solid-liquid separated liquid with a reverse osmosis membrane, and performing at least a part of the obtained concentrated water on the solid-liquid separation step And a return step of returning to the previous stage of the treatment of hardness component-containing water.
  • the return destination of the concentrated water in the return step is a reaction tank to which at least one of the alkali agent and the carbonic acid compound is added.
  • the concentration of CaCO 3 in the reaction tank is 100 mg / L or more.
  • the method for treating hardness component-containing water it is preferable to measure the ion concentration of the concentrated water and adjust the amount of the concentrated water to be returned in the return step according to the measured value.
  • the present invention it is possible to reduce the amount of the hardness component of the concentrated water flowing out to the subsequent stage in the apparatus and method for performing the reverse osmosis membrane treatment after the softening treatment of the hardness component-containing water.
  • FIG. 2 is a schematic configuration view showing a processing apparatus used in Example 1. It is a schematic block diagram which shows the processing apparatus used by the comparative example 1.
  • FIG. It is a graph which shows Ca concentration (mg-CaCO 3 / L) with respect to the reaction time (min) in Example 2. It is a graph which shows solubility (mg / L) of calcium carbonate to pH of water of 25 ° C. Is a graph showing the solubility of silica to pH of 25 ° C. of water (mgSiO 2 / L).
  • Embodiments of the present invention will be described below.
  • the present embodiment is an example for implementing the present invention, and the present invention is not limited to the present embodiment.
  • FIG. 1 An outline of an example of a treatment apparatus for a water containing a hardness component according to an embodiment of the present invention is shown in FIG. 1, and the configuration thereof will be described.
  • the treatment apparatus 1 for water containing a hardness component comprises a reaction tank 12 for adding at least one of an alkaline agent and a carbonate compound to water to be treated containing a hardness component to insolubilize the hardness component, and the obtained insoluble matter
  • a reverse osmosis membrane treatment means for obtaining concentrated water and permeated water by treating the resulting solid-liquid separated liquid with a reverse osmosis membrane as solid-liquid separation means for solid-liquid separation And 20.
  • the treatment apparatus 1 for hardness component-containing water comprises a water tank 10 for storing water to be treated and a polymer for performing a coagulation reaction by adding a polymer flocculant to the reaction liquid obtained in the reaction tank 12
  • the reactor 14 may further include a solid-liquid separated liquid tank 18 for storing the solid-liquid separated liquid obtained in the precipitation tank 16.
  • the outlet of the treated water tank 10 and the treated water inlet of the reaction vessel 12 are connected by a pipe 26 via a pump 22.
  • the outlet of the reaction tank 12 and the inlet of the polymer reaction tank 14 are connected by a pipe 28.
  • the outlet of the polymer reaction tank 14 and the inlet of the precipitation tank 16 are connected by a pipe 30.
  • the solid-liquid separated liquid outlet of the settling tank 16 and the inlet of the solid-liquid separated liquid tank 18 are connected by a pipe 32.
  • a sludge pipe 58 is connected to the sludge outlet of the settling tank 16.
  • the outlet of the solid-liquid separated liquid tank 18 and the inlet of the reverse osmosis membrane treatment apparatus 20 are connected by a pipe 34 via a pump 24.
  • a permeated water pipe 36 is connected to the permeated water outlet of the reverse osmosis membrane treatment apparatus 20.
  • the concentrated water outlet of the reverse osmosis membrane treatment apparatus 20 and the return water inlet of the reaction tank 12 are connected via the valve 54 by the return pipe 38 as return means for returning at least a part of the obtained concentrated water to the front stage of the settling tank 16 Is connected.
  • a concentrated water pipe 40 is connected between the concentrated water outlet in the return pipe 38 and the valve 54 via a valve 56.
  • the reaction vessel 12 is connected with a carbonic acid compound addition pipe 42 as a carbonic acid compound addition means and an alkali agent addition pipe 44 as an alkali agent addition means, and a stirring device 50 provided with a stirring blade as a stirring means is installed.
  • a polymer coagulant addition pipe 46 is connected to the polymer reaction tank 14 as a polymer coagulant addition means, and a stirring device 52 provided with a stirring blade as a stirring means is installed.
  • the pipe 32 is connected with a pH adjuster addition pipe 48 as a pH adjuster addition means.
  • the hardness component-containing water which is water to be treated, is stored in the water tank 10 to be treated, if necessary, and is sent to the reaction tank 12 through the pipe 26 by the pump 22.
  • the reaction tank 12 at least one of the alkaline agent and the carbonic acid compound is added to the water containing the hardness component to insolubilize the hardness component (insolubilization step).
  • the alkali agent is added to the reaction tank 12 through the alkali agent addition pipe 44, and the carbonic acid compound is added to the reaction tank 12 through the carbonic acid compound addition pipe 42.
  • the reaction solution may be stirred by the stirring device 50.
  • the insolubilization reaction is represented, for example, by the following formula.
  • the calcium hardness component which is a temporary hardness component, is insolubilized in calcium carbonate using, for example, calcium hydroxide (Ca (OH) 2 ) as an alkali agent.
  • the calcium hardness component which is a permanent hardness component, is insolubilized in calcium carbonate using, for example, sodium carbonate (Na 2 CO 3 ) as a carbonate compound.
  • the magnesium hardness component is insolubilized in magnesium hydroxide using, for example, sodium hydroxide (NaOH) as an alkali agent.
  • the reaction liquid obtained in the insolubilization step is sent from the reaction vessel 12 to the polymer reaction vessel 14 through the pipe 28.
  • a polymer flocculant is added to the reaction liquid through the polymer flocculant addition pipe 46 as needed to carry out a coagulation reaction (aggregation step).
  • the coagulated liquid may be stirred by the stirring device 52 in the polymer reaction tank 14.
  • the coagulated liquid obtained in the aggregation step is sent from the polymer reaction tank 14 to the precipitation tank 16 through the pipe 30.
  • the obtained insoluble matter is subjected to solid-liquid separation by natural sedimentation or the like (solid-liquid separation step).
  • the solid-liquid separated liquid obtained in the solid-liquid separation step is sent from the settling tank 16 through the pipe 32 to the solid-liquid separated liquid tank 18 as needed, and stored.
  • a pH adjuster may be added to the solid-liquid separated solution through the pH adjuster addition pipe 48 to adjust the pH of the solid-liquid separated solution (pH adjustment step). pH adjustment may be performed in the solid-liquid separated liquid tank 18.
  • the sludge obtained in the solid-liquid separation step is discharged through the sludge pipe 58.
  • the solid-liquid separated liquid is fed by the pump 24 through the pipe 34 to the reverse osmosis membrane treatment apparatus 20.
  • the solid-liquid separated liquid is treated with the reverse osmosis membrane to obtain concentrated water and permeated water (reverse osmosis membrane treatment step).
  • the permeated water obtained in the reverse osmosis membrane treatment step is discharged through the permeated water pipe 36, and is recovered and reused or discarded.
  • At least a portion of the concentrated water obtained in the reverse osmosis membrane treatment step is returned to the reaction tank 12 which is the front stage of the precipitation tank 16 (solid-liquid separation step) through the return pipe 38 (return step). At least a portion of the concentrated water may be returned to the solid-liquid separated liquid tank 18.
  • solid-liquid separation including the hardness component after the softening treatment (insolubilization step, aggregation step, solid-liquid separation step) of the hardness component-containing water
  • the solution is concentrated by reverse osmosis membrane treatment, and at least a portion of the concentrated water is returned to the previous stage of the solid-liquid separation step.
  • the amount of the hardness component of the concentrated water which flows out to the latter stage can be reduced. Even if concentration treatment such as reverse osmosis membrane treatment or evaporation concentration treatment is performed at the latter stage of reverse osmosis membrane treatment, the equipment can be miniaturized. In addition, precipitation of the hardness component is suppressed in concentration processing such as reverse osmosis membrane treatment or evaporation concentration treatment at the latter stage of reverse osmosis membrane treatment, and the system can be stably operated.
  • the return destination of the concentrated water by the return means may be a stage before the settling tank 16 (solid-liquid separation step), and is not particularly limited.
  • at least a portion of the concentrated water may be returned to at least one of the treated water tank 10, the reaction tank 12, the polymer reaction tank 14, and the pipes 26, 28, 30;
  • the hardness component in the concentrated water can promote precipitation of calcium carbonate and magnesium hydroxide in the reaction tank 12 by being returned to the reaction tank 12 to which at least one is added.
  • the reaction time is higher when calcium carbonate particles are present or when the concentration of the calcium hardness component is high. Is considered to be short.
  • the concentration of calcium carbonate (CaCO 3 ) in the reaction tank 12 is 100 mg / L or more, and more preferable to return the concentrated water so as to be 1000 mg / L or more .
  • concentration of calcium carbonate (CaCO 3 ) in the reaction tank 12 is less than 100 mg / L, precipitation of calcium carbonate in the reaction tank 12 may be difficult to be promoted.
  • the amount of concentrated water returned to the front stage of the sedimentation tank 16 can reduce the load of hardness flowing out to the rear stage of the reverse osmosis membrane treatment, but the hardness component-containing water which is the water to be treated These components may be concentrated in the system if they contain ionic components that are difficult to remove by coagulation precipitation such as sodium chloride (NaCl). If the concentration factor is too high, the osmotic pressure will be high and the operation pressure in the reverse osmosis membrane will be high, so it is desirable to send a predetermined amount of concentrated water to the latter stage of the reverse osmosis membrane treatment.
  • the latter stage of reverse osmosis membrane treatment further comprises, for example, an ion concentration measuring means for measuring the ion concentration of concentrated water, and the amount of concentrated water returned by the return means according to the measured value. It is preferable to adjust the For example, there is a method of measuring the conductivity in the concentrated water and adjusting the amount of liquid concentrate to be fed to the latter stage of the reverse osmosis membrane treatment so that the conductivity is less than or equal to a predetermined value.
  • the adjustment of the flow rate of concentrated water is performed, for example, by adjusting the opening degree of the valves 54 and 56.
  • the osmotic pressure does not exceed the upper pressure limit in reverse osmosis membrane treatment, and the value should be 30000 ⁇ S / cm or less Preferably, it is more preferably 20000 ⁇ S / cm or less. If the conductivity of the concentrated water exceeds 30,000 ⁇ S / cm, the osmotic pressure of the reverse osmosis membrane may be high, and the pressure limit of the reverse osmosis membrane may be exceeded.
  • reverse osmosis membrane treatment as means for further concentrating concentrated water, reverse osmosis membrane treatment, heating evaporation and concentration treatment, forward osmosis membrane treatment, electrodialysis treatment and the like can be mentioned, but from the point of suppressing treatment cost low.
  • Reverse osmosis membrane treatment is preferred. According to the method and apparatus for treating hardness component-containing water according to the present embodiment, stable treatment can be performed even when the subsequent stage of reverse osmosis membrane treatment is further reverse osmosis membrane treatment.
  • the hardness component-containing water to be treated is, for example, underground water, industrial water, industrial waste water, and the like.
  • the amount of calcium hardness component in the water containing hardness component is, for example, 50 to 5000 mg-CaCO 3 / L
  • the amount of magnesium hardness component is, for example, 10 to 1000 mg-CaCO 3 / L.
  • the amount of silica in the hardness component-containing water is, for example, 10 to 400 mg / L.
  • Examples of the alkali agent used in the insolubilization step include calcium hydroxide (Ca (OH) 2 ), sodium hydroxide (NaOH), potassium hydroxide (KOH) and the like. Among these, calcium hydroxide and sodium hydroxide are preferable in terms of chemical cost and the like.
  • the carbonic compound used in the insolubilization process for example, sodium carbonate (Na 2 CO 3), sodium bicarbonate (NaHCO 3), carbon dioxide, and the like. Among these, sodium carbonate is preferable in terms of drug cost and the like.
  • the addition amount of the alkali agent and the carbonic acid compound in the insolubilization step is in the range of 1.0 mol to 1.2 mol with respect to the amount (1 mol) of the calcium hardness component in the water containing the hardness component to be treated water Is preferable, and the range of 1.0 mol to 1.1 mol is more preferable.
  • the amount is preferably in the range of 2.0 to 2.4 mol, more preferably in the range of 2.0 to 2.2 mol, with respect to the amount (1 mol) of the magnesium hardness component.
  • the addition amount of the alkali agent and the carbonic acid compound in the insolubilization step is less than the equivalent molar amount with respect to the amount (1 mol) of the hardness component in the water containing the hardness component, the insolubilization reaction may not proceed sufficiently. May be disadvantageous in terms of the cost of medicine.
  • the reaction temperature in the insolubilization step is not particularly limited, and is, for example, in the range of 15 ° C. to 30 ° C.
  • flocculant used at an aggregation process polymer coagulant
  • flocculants such as an acrylamide type and an acrylic ester type, are mentioned, for example.
  • acrylamide-based polymer flocculants are preferable in terms of drug cost and the like.
  • the addition amount of the polymer flocculant in the aggregation step is preferably in the range of 0.5 to 5.0 mg / L, and more preferably in the range of 1 to 2 mg / L. If the addition amount of the polymer flocculant in the aggregation step is less than 0.5 mg / L, the aggregation reaction may not proceed sufficiently, and if it is added excessively, it may be disadvantageous in terms of drug cost and the like.
  • the reaction temperature in the aggregation step is not particularly limited, and is, for example, in the range of 15 ° C. to 30 ° C.
  • the method of solid-liquid separation in the solid-liquid separation step is not particularly limited, and examples thereof include methods such as sand filtration and membrane filtration in addition to sedimentation by natural sedimentation. Among these, the settling tank by natural sedimentation is preferable from the point of equipment cost etc.
  • acids such as hydrochloric acid and a sulfuric acid
  • alkali agents such as sodium hydroxide
  • the pH is preferably adjusted to 4 to 10, and more preferably 5 to 8. If the pH is less than 4, the cost of the acid may be excessive. If the pH is more than 10, the scale inhibition effect of calcium carbonate may be insufficient.
  • the hardness component is difficult to precipitate because it has high solubility in the acidic region (see FIG. 5), but when the water containing hardness component contains a silica component, the silica component tends to precipitate because it has low solubility in the acidic region (see FIG. 6) Therefore, the hardness component may be insolubilized and removed (solid-liquid separation) by the above-mentioned method, and it may be treated, for example, at pH 9.5 or more in the reverse osmosis membrane treatment step.
  • reaction tank 12 When the hardness component-containing water contains a silica component, another reaction tank (second reaction tank) is provided in the reaction tank 12 or at the front stage or rear stage of the reaction tank 12 and a magnesium compound is added to insolubilize the silica, You may remove by the said solid-liquid separation process.
  • reverse osmosis membrane treatment can be performed at any pH.
  • the magnesium compound used for the insolubilization of the silica component for example, magnesium hydroxide (Mg (OH) 2), magnesium chloride (MgCl 2), inorganic salts such as magnesium such as magnesium oxide (MgO) and the like.
  • magnesium hydroxide is preferable in terms of chemical cost and the like.
  • the amount of the magnesium compound added is preferably in the range of 0.5 mol to 5.0 mol, and more preferably in the range of 1.0 mol to 2.5 mol, with respect to the amount (1 mol) of silica in the water to be treated. It is more preferable that If the addition amount of the magnesium compound is less than 0.5 mol with respect to the amount (1 mol) of silica in the water to be treated, the insolubilization reaction may not proceed sufficiently, and if it exceeds 5.0 mol, the drug cost It may be disadvantageous in terms of etc.
  • the reverse osmosis membrane used in the reverse osmosis membrane treatment is not particularly limited, and is, for example, a polyimide-based reverse osmosis membrane.
  • Example 1 and Comparative Example 1 The water flow test was performed in the experimental equipment of the flow shown in FIG. 2 (Example 1) and FIG. 3 (Comparative Example 1). In Example 1, part of the concentrated water was returned to the reaction tank.
  • Example 1 water flowed into the reaction tank at a treated water flow rate of 140 L / h.
  • calcium hydroxide (Ca (OH) 2 ) is added as an alkali agent to adjust to pH 10.8 to 11.0, and sodium carbonate (Na 2 CO 3 ) as a carbonate compound is 100 mg-CaCO 3 / L.
  • Na 2 CO 3 sodium carbonate
  • a polymer reaction tank 2 mg / L of Orfloc M-4020 (manufactured by Organo Corporation) was added as a polymer coagulant.
  • Solid-liquid separation was performed by a sedimentation tank as a solid-liquid separation device. The solid-liquid separated liquid was passed through the solid-liquid separated liquid tank at a flow rate of 200 L / h.
  • the solid-liquid separated liquid was passed through a 4-inch RO element (manufactured by Nitto Denko, LFC-3) as a reverse osmosis membrane treatment device at a flow rate of 720 L / h.
  • the permeated water is obtained by reverse osmosis membrane treatment at a flow rate of 120 L / h, concentrated water is circulated to the solid-liquid separated liquid tank at a flow rate of 520 L / h, and is returned to the reaction tank at a flow rate of 60 L / h.
  • the solution was sent to the concentrator of In Example 1, the concentrated water was returned so that the CaCO 3 concentration in the reaction tank was 155 mg / L.
  • Table 1 The results are shown in Table 1.
  • the comparative example 1 it flowed into the reaction tank by the to-be-processed water flow volume of 140 L / h.
  • calcium hydroxide (Ca (OH) 2 ) is added as an alkali agent to adjust to pH 10.8 to 11.0, and sodium carbonate (Na 2 CO 3 ) as a carbonate compound is 100 mg-CaCO 3 / L.
  • Na 2 CO 3 sodium carbonate
  • Added 2 mg / L of Orfloc M-4020 (manufactured by Organo Corporation) was added as a polymer coagulant. Solid-liquid separation was performed by a sedimentation tank as a solid-liquid separation device.
  • the solid-liquid separated liquid was passed through the solid-liquid separated liquid tank at a flow rate of 140 L / h.
  • the solid-liquid separated solution was passed through a 4-inch RO element (manufactured by Nitto Denko, LFC-3) as a reverse osmosis membrane treatment device at a flow rate of 684 L / h.
  • Permeated water was obtained at a flow rate of 84 L / h by reverse osmosis membrane treatment, concentrated water was circulated to the solid-liquid separated liquid tank at a flow rate of 544 L / h, and was sent to the downstream concentrator at a flow rate of 56 L / h.
  • Table 2 The results are shown in Table 2.
  • water Ca the amount of Mg is ion chromatograph (Metrohm Ltd., IC761) was measured using a HCO 3 - The amount of the TOC meter (Shimadzu Science Co., TOC-3000) using a mineral The value of carbon was measured and converted.
  • Example 1 the Ca load and the Mg load of RO concentrated water are reduced by returning a part of the concentrated water to the reaction tank that is the front stage of the precipitation tank (solid-liquid separation tank), and the reverse osmosis membrane treatment device The amount of hardness component flowing out to the later stage decreased.
  • Comparative Example 1 since concentrated water was not circulated, there were many hardness components which flowed out to the latter stage of the reverse osmosis membrane treatment apparatus.
  • Example 2 The return destination of the concentrated water was examined. Deposition reaction CaCO 3, in order to proceed by the CaCO 3 in the generated surface of the crystals precipitated, and if the pre-particles of CaCO 3 are present, who when the concentration of Ca is high, short reaction time It is thought that it is finished.
  • FIG. 4 shows the result of the jar test.
  • the graph in FIG. 4 shows the Ca concentration (mg-CaCO 3 / L) with respect to the reaction time (min).
  • the precipitation of CaCO 3 can be promoted by returning the concentrated water containing CaCO 3 to the reaction tank so as to be 100 mg / L or more as CaCO 3 .
  • the amount of the hardness component of the concentrated water flowing out to the subsequent stage can be reduced.
  • Water hardness component-containing water treatment apparatus 10 treated water tank, 12 reaction tank, 14 polymer reaction tank, 16 solid-liquid separation tank, 18 solid-liquid separation liquid tank, 20 reverse osmosis membrane treatment apparatus, 22, 24 pump, 26 , 28, 30, 32, 34 piping, 36 permeated water piping, 38 return piping, 40 concentrated water piping, 42 carbonated compound added piping, 44 alkali agent added piping, 46 polymer coagulant added piping, 48 pH adjuster added piping , 50, 52 stirrers, 54, 56 valves, 58 sludge piping.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Removal Of Specific Substances (AREA)
  • Separation Of Suspended Particles By Flocculating Agents (AREA)

Abstract

硬度成分含有水の軟化処理の後、逆浸透膜処理を行う装置および方法において、後段に流出する濃縮水の硬度成分の量を低減することができる、硬度成分含有水の処理装置および処理方法を提供する。硬度成分を含む被処理水に、アルカリ剤および炭酸化合物のうち少なくとも1つを添加して硬度成分を不溶化するための反応槽12と、得られた不溶化物を固液分離する固液分離装置16と、得られた固液分離液を逆浸透膜で処理して濃縮水と透過水とを得る逆浸透膜処理装置20と、得られた濃縮水の少なくとも一部を、固液分離手段の前段に返送する返送配管38と、を備える、硬度成分含有水の処理装置1である。

Description

硬度成分含有水の処理装置および処理方法
 本発明は、硬度成分含有水の処理装置および処理方法に関する。
 排水を減容化する方法として、逆浸透膜を用いて排水を濃縮し、透過水を回収することが行われている。近年では、排水量を削減するニーズがさらに高まり、排水の濃縮倍率をできる限り高めることが行われ、中にはZLD(Zero Liquid Discharge)まで行われている工場等も増えている。
 そのため、逆浸透膜の濃縮水をさらに逆浸透膜で処理したり、蒸発濃縮等の方法によって濃縮したりする方法が行われている。このように排水の濃縮倍率が高くなると、その分排水中の硬度成分等によるスケーリングのリスクが高くなる。スケールが発生すると、逆浸透膜が閉塞して透過水量が減少したり、蒸発濃縮の伝熱面がスケールで覆われて伝熱効率が低下したりする。
 そこで、逆浸透膜処理の前に排水中の硬度成分を軟化処理等によってできるだけ低減することが望ましい。硬度成分を含む排水を軟化処理する方法として、特許文献1にあるように、排水中の硬度成分を炭酸カルシウムや水酸化マグネシウムとして析出させて固液分離する方法が知られている。排水が硬度成分としてカルシウムを含む場合は、この固液分離した軟化処理水は炭酸カルシウムが飽和しているため、酸を添加して炭酸カルシウムの溶解度を上げ、かつ脱炭酸を行って、後段での炭酸カルシウムの析出を抑制する方法が取られる。
 この軟化処理による軟化処理水には、溶解している分の硬度成分が通常は数mg/L~数十mg/L程度残留してしまう。カルシウム硬度成分は炭酸カルシウムとして除去するため、軟化処理水のカルシウム濃度は軟化処理水中に残留している炭酸イオンの濃度によって決まり、炭酸イオン濃度が高ければカルシウム硬度は低くなるが、その分炭酸の注入量が多く必要になってコストがかかる。マグネシウム硬度成分は、水酸化マグネシウムとして除去するため、軟化処理水のマグネシウム濃度はpHによって変わる。pHが11.0以上であれば1mg/L以下までマグネシウム硬度成分を除去できるが、pH10.5になると数mg/L~数十mg/L程度マグネシウム硬度成分が残留する。
 このように、逆浸透膜処理の前に排水中の硬度成分を軟化処理によって低減しても、軟化処理水には硬度成分が残留しているため、後段の逆浸透膜による濃縮での濃縮倍率をより高めると、後段でスケーリングするリスクが高くなる。
 軟化処理水に残留した硬度成分をさらに除去するために、イオン交換樹脂で処理する方法もあるが、処理コストが増大する。
特許第5906892号公報
 本発明の目的は、硬度成分含有水の軟化処理の後、逆浸透膜処理を行う装置および方法において、後段に流出する濃縮水の硬度成分の量を低減することができる、硬度成分含有水の処理装置および処理方法を提供することにある。
 本発明は、硬度成分を含む被処理水に、アルカリ剤および炭酸化合物のうち少なくとも1つを添加して硬度成分を不溶化するための反応槽と、得られた不溶化物を固液分離する固液分離手段と、得られた固液分離液を逆浸透膜で処理して濃縮水と透過水とを得る逆浸透膜処理手段と、得られた濃縮水の少なくとも一部を、前記固液分離手段の前段に返送する返送手段と、を備える、硬度成分含有水の処理装置である。
 前記硬度成分含有水の処理装置において、前記返送手段による前記濃縮水の返送先が、前記反応槽であることが好ましい。
 前記硬度成分含有水の処理装置において、前記反応槽内のCaCO濃度が100mg/L以上となるように前記濃縮水を返送することが好ましい。
 前記硬度成分含有水の処理装置において、前記濃縮水のイオン濃度を測定するイオン濃度測定手段をさらに備え、その測定値に応じて前記返送手段により返送される前記濃縮水の量を調節することが好ましい。
 また、本発明は、硬度成分を含む被処理水に、アルカリ剤および炭酸化合物のうち少なくとも1つを添加して硬度成分を不溶化する不溶化工程と、得られた不溶化物を固液分離する固液分離工程と、得られた固液分離液を逆浸透膜で処理して濃縮水と透過水とを得る逆浸透膜処理工程と、得られた濃縮水の少なくとも一部を、前記固液分離工程の前段に返送する返送工程と、を含む、硬度成分含有水の処理方法である。
 前記硬度成分含有水の処理方法において、前記返送工程における前記濃縮水の返送先が、前記アルカリ剤および炭酸化合物のうち少なくとも1つが添加される反応槽であることが好ましい。
 前記硬度成分含有水の処理方法において、前記反応槽内のCaCO濃度が100mg/L以上となるように前記濃縮水を返送することが好ましい。
 前記硬度成分含有水の処理方法において、前記濃縮水のイオン濃度を測定し、その測定値に応じて前記返送工程において返送する前記濃縮水の量を調節することが好ましい。
 本発明では、硬度成分含有水の軟化処理の後、逆浸透膜処理を行う装置および方法において、後段に流出する濃縮水の硬度成分の量を低減することができる。
本発明の実施形態に係る硬度成分含有水の処理装置の一例を示す概略構成図である。 実施例1で用いた処理装置を示す概略構成図である。 比較例1で用いた処理装置を示す概略構成図である。 実施例2における反応時間(min)に対するCa濃度(mg-CaCO/L)を示すグラフである。 25℃の水のpHに対する炭酸カルシウムの溶解度(mg/L)を示すグラフである。 25℃の水のpHに対するシリカの溶解度(mgSiO/L)を示すグラフである。
 本発明の実施の形態について以下説明する。本実施形態は本発明を実施する一例であって、本発明は本実施形態に限定されるものではない。
 本発明の実施形態に係る硬度成分含有水の処理装置の一例の概略を図1に示し、その構成について説明する。
 硬度成分含有水の処理装置1は、硬度成分を含む被処理水に、アルカリ剤および炭酸化合物のうち少なくとも1つを添加して硬度成分を不溶化するための反応槽12と、得られた不溶化物を固液分離する固液分離手段として沈殿槽16と、得られた固液分離液を逆浸透膜で処理して濃縮水と透過水とを得る逆浸透膜処理手段として、逆浸透膜処理装置20とを備える。硬度成分含有水の処理装置1は、被処理水を貯留するための被処理水槽10と、反応槽12で得られた反応液に高分子凝集剤を添加して凝集反応を行うための高分子反応槽14と、沈殿槽16で得られた固液分離液を貯留するための固液分離液槽18と、をさらに備えてもよい。
 図1の硬度成分含有水の処理装置1において、被処理水槽10の出口と反応槽12の被処理水入口とは、ポンプ22を介して配管26により接続されている。反応槽12の出口と高分子反応槽14の入口とは、配管28により接続されている。高分子反応槽14の出口と沈殿槽16の入口とは、配管30により接続されている。沈殿槽16の固液分離液出口と固液分離液槽18の入口とは、配管32により接続されている。沈殿槽16の汚泥出口には、汚泥配管58が接続されている。固液分離液槽18の出口と逆浸透膜処理装置20の入口とは、ポンプ24を介して配管34により接続されている。逆浸透膜処理装置20の透過水出口には、透過水配管36が接続されている。逆浸透膜処理装置20の濃縮水出口と反応槽12の返送水入口とは、得られた濃縮水の少なくとも一部を沈殿槽16の前段に返送する返送手段として返送配管38によりバルブ54を介して接続されている。返送配管38における濃縮水出口とバルブ54との間にはバルブ56を介して濃縮水配管40が接続されている。反応槽12には、炭酸化合物添加手段として炭酸化合物添加配管42と、アルカリ剤添加手段としてアルカリ剤添加配管44とが接続され、撹拌手段として撹拌羽根を備える撹拌装置50が設置されている。高分子反応槽14には、高分子凝集剤添加手段として高分子凝集剤添加配管46が接続され、撹拌手段として撹拌羽根を備える撹拌装置52が設置されている。配管32には、pH調整剤添加手段としてpH調整剤添加配管48が接続されている。
 本実施形態に係る硬度成分含有水の処理方法および硬度成分含有水の処理装置1の動作について説明する。
 被処理水である硬度成分含有水は、必要に応じて被処理水槽10に貯留され、ポンプ22により配管26を通して反応槽12へ送液される。反応槽12において、硬度成分含有水に、アルカリ剤および炭酸化合物のうち少なくとも1つが添加されて硬度成分が不溶化される(不溶化工程)。アルカリ剤は、アルカリ剤添加配管44を通して反応槽12に添加され、炭酸化合物は、炭酸化合物添加配管42を通して反応槽12に添加される。反応槽12では撹拌装置50により反応液が撹拌されてもよい。
 不溶化反応は、例えば、以下の式により表される。一時硬度成分であるカルシウム硬度成分は、アルカリ剤として例えば水酸化カルシウム(Ca(OH))を用いて、炭酸カルシウムに不溶化される。または、永久硬度成分であるカルシウム硬度成分は、炭酸化合物として例えば炭酸ナトリウム(NaCO)を用いて、炭酸カルシウムに不溶化される。マグネシウム硬度成分は、アルカリ剤として例えば水酸化ナトリウム(NaOH)を用いて、水酸化マグネシウムに不溶化される。
  Ca(HCO + Ca(OH) → 2CaCO↓ +2H
  CaCl + NaCO → CaCO↓ +2NaCl
  MgCl + 2NaOH → Mg(OH)↓ +2NaCl
 不溶化工程で得られた反応液が反応槽12から配管28を通して高分子反応槽14へ送液される。高分子反応槽14において、必要に応じて、反応液に、高分子凝集剤添加配管46を通して高分子凝集剤が添加されて凝集反応が行われる(凝集工程)。高分子反応槽14では撹拌装置52により凝集液が撹拌されてもよい。
 凝集工程で得られた凝集液が高分子反応槽14から配管30を通して沈殿槽16へ送液される。沈殿槽16において、得られた不溶化物が自然沈降等により固液分離される(固液分離工程)。
 固液分離工程で得られた固液分離液は、沈殿槽16から配管32を通して、必要に応じて固液分離液槽18に送液され、貯留される。配管32において、必要に応じて、pH調整剤添加配管48と通して固液分離液にpH調整剤が添加され、固液分離液のpH調整が行われてもよい(pH調整工程)。pH調整は、固液分離液槽18において行われてもよい。一方、固液分離工程で得られた汚泥は、汚泥配管58を通して排出される。
 固液分離液は、ポンプ24により配管34を通して逆浸透膜処理装置20へ送液される。逆浸透膜処理装置20において、固液分離液が逆浸透膜で処理されて濃縮水と透過水とが得られる(逆浸透膜処理工程)。逆浸透膜処理工程で得られた透過水は、透過水配管36を通して排出され、回収再利用または廃棄される。逆浸透膜処理工程で得られた濃縮水の少なくとも一部は、返送配管38を通して沈殿槽16(固液分離工程)の前段である反応槽12に返送される(返送工程)。濃縮水の少なくとも一部は、固液分離液槽18に返送してもよい。
 このように、本実施形態に係る硬度成分含有水の処理方法および処理装置では、硬度成分含有水の軟化処理(不溶化工程、凝集工程、固液分離工程)の後、硬度成分を含む固液分離液を逆浸透膜処理で濃縮し、濃縮水の少なくとも一部を固液分離工程の前段に返送する。
 これにより、後段に流出する濃縮水の硬度成分の量を低減することができる。逆浸透膜処理の後段にさらに逆浸透膜処理や蒸発濃縮処理等の濃縮処理を行っても、それらの設備を小型化することができる。また、逆浸透膜処理の後段の逆浸透膜処理や蒸発濃縮処理等の濃縮処理において硬度成分の析出が抑制され、システムを安定運転することができる。
 返送手段による濃縮水の返送先は、沈殿槽16(固液分離工程)の前段であればよく、特に制限はない。例えば、被処理水槽10、反応槽12、高分子反応槽14、配管26,28,30のうちの少なくとも1つに濃縮水の少なくとも一部を返送すればよいが、アルカリ剤および炭酸化合物のうち少なくとも1つが添加される反応槽12に返送することによって、濃縮水中の硬度成分が、反応槽12における炭酸カルシウムや水酸化マグネシウムの析出を促進させることができるため、より好ましい。例えば炭酸カルシウムの析出反応は、生成する結晶の表面に炭酸カルシウムが析出することによって進行するため、予め炭酸カルシウムの粒子が存在する場合や、カルシウム硬度成分の濃度が高い場合の方が、反応時間が短くて済むと考えられる。
 この場合、反応槽12内の炭酸カルシウム(CaCO)濃度が100mg/L以上となるように濃縮水を返送することが好ましく、1000mg/L以上となるように濃縮水を返送することがより好ましい。反応槽12内の炭酸カルシウム(CaCO)濃度が100mg/L未満となると、反応槽12における炭酸カルシウムの析出が促進されにくくなる場合がある。
 沈殿槽16(固液分離工程)の前段に返送する濃縮水の量は多くするほど逆浸透膜処理の後段に流出する硬度の負荷を減らすことができるが、被処理水である硬度成分含有水中に塩化ナトリウム(NaCl)等の凝集沈殿で除去することが困難であるイオン成分が含まれる場合、これらの成分が系内で濃縮されてしまう場合がある。濃縮倍率が高くなりすぎると、浸透圧が高くなって逆浸透膜での操作圧力が高くなるため、所定量の濃縮水は逆浸透膜処理の後段に送液することが望ましい。逆浸透膜処理の後段に送液する量を調節するために、例えば濃縮水のイオン濃度を測定するイオン濃度測定手段をさらに備え、その測定値に応じて返送手段により返送される濃縮水の量を調節することが好ましい。例えば、濃縮水中の導電率を測定し、導電率が所定の値以下になるように、逆浸透膜処理の後段への濃縮水の送液量を調節する方法が取られる。濃縮水の送液量の調節は、例えば、バルブ54,56の開度を調節することに行われる。
 濃縮水の導電率を測定し、濃縮水の送液量を調節する場合、その浸透圧が逆浸透膜処理での圧力上限を超えない値とすることが望ましく、30000μS/cm以下とすることが好ましく、20000μS/cm以下とすることがより好ましい。濃縮水の導電率が30000μS/cmを超えると、逆浸透膜での浸透圧が高くなり、逆浸透膜の耐圧限界を超えてしまう場合がある。
 逆浸透膜処理の後段において、濃縮水をさらに濃縮する手段としては、逆浸透膜処理、加熱蒸発濃縮処理、正浸透膜処理、電気透析処理等が挙げられるが、処理コストを低く抑えるという点から逆浸透膜処理が好ましい。本実施形態に係る硬度成分含有水の処理方法および処理装置によれば、逆浸透膜処理の後段がさらなる逆浸透膜処理である場合においても、安定して処理を行うことができる。
 処理対象となる硬度成分含有水は、例えば、地下水、工業用水、工場排水等である。硬度成分含有水中のカルシウム硬度成分の量は、例えば、50~5000mg-CaCO/Lであり、マグネシウム硬度成分の量は、例えば、10~1000mg-CaCO/Lである。硬度成分含有水がシリカを含む場合、硬度成分含有水中のシリカの量は、例えば、10~400mg/Lである。
 不溶化工程で用いられるアルカリ剤としては、例えば、水酸化カルシウム(Ca(OH))、水酸化ナトリウム(NaOH)、水酸化カリウム(KOH)等が挙げられる。これらのうち、薬品コスト等の点から水酸化カルシウム、水酸化ナトリウムが好ましい。不溶化工程で用いられる炭酸化合物としては、例えば、炭酸ナトリウム(NaCO)、炭酸水素ナトリウム(NaHCO)、炭酸ガス等が挙げられる。これらのうち、薬品コスト等の点から炭酸ナトリウムが好ましい。
 不溶化工程におけるアルカリ剤および炭酸化合物の添加量は、被処理水である硬度成分含有水中のカルシウム硬度成分の量(1モル)に対して、1.0モル~1.2モルの範囲であることが好ましく、1.0モル~1.1モルの範囲であることがより好ましい。また、マグネシウム硬度成分の量(1モル)に対して、2.0~2.4モルの範囲であることが好ましく、2.0~2.2モルの範囲であることがより好ましい。不溶化工程におけるアルカリ剤および炭酸化合物の添加量が硬度成分含有水中の硬度成分の量(1モル)に対して当量モル未満であると、不溶化反応が十分に進行しない場合があり、過剰に添加すると、薬品コスト等の点で不利になる場合がある。
 不溶化工程における反応温度は、特に制限はないが、例えば、15℃~30℃の範囲である。
 凝集工程で用いられる高分子凝集剤としては、例えば、アクリルアミド系、アクリル酸エステル系等の高分子凝集剤が挙げられる。これらのうち、薬品コスト等の点からアクリルアミド系の高分子凝集剤が好ましい。
 凝集工程における高分子凝集剤の添加量は、0.5~5.0mg/Lの範囲であることが好ましく、1~2mg/Lの範囲であることがより好ましい。凝集工程における高分子凝集剤の添加量が0.5mg/L未満であると、凝集反応が十分に進行しない場合があり、過剰に添加すると、薬品コスト等の点で不利になる場合がある。
 凝集工程における反応温度は、特に制限はないが、例えば、15℃~30℃の範囲である。
 固液分離工程における固液分離の方法は、特に制限はなく、例えば、自然沈降による沈殿槽の他に、砂ろ過、膜ろ過等の方法が挙げられる。これらのうち、設備費等の点から自然沈降による沈殿槽が好ましい。
 pH調整工程で用いられるpH調整剤としては、例えば、塩酸、硫酸等の酸、または、水酸化ナトリウム等のアルカリ剤が挙げられる。
 pH調整工程において、pH4~10の範囲に調整されることが好ましく、pH5~8の範囲に調整されることがより好ましい。pH4未満であると、酸のコストが過剰となる場合があり、pH10を超えると、炭酸カルシウムのスケール抑制効果が不十分とある場合がある。
 硬度成分は酸性領域では溶解度が高いため(図5参照)析出しにくいが、硬度成分含有水がシリカ成分を含む場合は、シリカ成分は酸性領域では溶解度が低いため(図6参照)析出しやすいので、上記方法によって硬度成分を不溶化、除去(固液分離)し、逆浸透膜処理工程では例えばpH9.5以上で処理すればよい。
 硬度成分含有水がシリカ成分を含む場合は、反応槽12において、または反応槽12の前段または後段に別の反応槽(第2反応槽)を設け、マグネシウム化合物を添加してシリカを不溶化し、上記固液分離工程により除去してもよい。この場合は、任意のpHで逆浸透膜処理を行うことができる。
 シリカ成分の不溶化に用いられるマグネシウム化合物としては、例えば、水酸化マグネシウム(Mg(OH))、塩化マグネシウム(MgCl)、酸化マグネシウム(MgO)等のマグネシウムの無機塩等が挙げられる。これらのうち、薬品コスト等の点から水酸化マグネシウムが好ましい。
 マグネシウム化合物の添加量は、被処理水中のシリカの量(1モル)に対して、0.5モル~5.0モルの範囲であることが好ましく、1.0モル~2.5モルの範囲であることがより好ましい。マグネシウム化合物の添加量が被処理水中のシリカの量(1モル)に対して0.5モル未満であると、不溶化反応が十分に進行しない場合があり、5.0モルを超えると、薬品コスト等の点で不利になる場合がある。
 逆浸透膜処理において用いられる逆浸透膜は、特に制限はないが、例えば、ポリイミド系の逆浸透膜である。
 以下、実施例および比較例を挙げ、本発明をより具体的に詳細に説明するが、本発明は、以下の実施例に限定されるものではない。
<実施例1および比較例1>
 図2(実施例1)、図3(比較例1)に示すフローの実験設備にて、通水試験を行った。実施例1では、濃縮水の一部を反応槽に返送した。
(被処理水)
 被処理水:工場放流水(硬度成分含有)
 Ca=200mg-CaCO/L、Mg=50mg-CaCO/L
 HCO =200mg-CaCO/L
 実施例1では、被処理水流量140L/hで反応槽へ通水した。反応槽において、アルカリ剤として水酸化カルシウム(Ca(OH))を添加してpH10.8~11.0に調整し、炭酸化合物として炭酸ナトリウム(NaCO)を100mg-CaCO/L添加した。高分子反応槽において、高分子凝集剤としてオルフロックM-4020(オルガノ株式会社製)2mg/Lを添加した。固液分離装置として沈殿槽により固液分離を行った。固液分離液を流量200L/hで固液分離液槽へ通水した。固液分離液を流量720L/hで逆浸透膜処理装置として4インチROエレメント(日東電工製、LFC-3)に通水した。逆浸透膜処理により透過水を流量120L/hで得て、濃縮水を流量520L/hで固液分離液槽へ循環し、流量60L/hで反応槽へ返送し、流量20L/hで後段の濃縮装置へ送液した。実施例1では、反応槽内のCaCO濃度が155mg/Lとなるように濃縮水を返送した。結果を表1に示す。
 比較例1では、被処理水流量140L/hで反応槽へ通水した。反応槽において、アルカリ剤として水酸化カルシウム(Ca(OH))を添加してpH10.8~11.0に調整し、炭酸化合物として炭酸ナトリウム(NaCO)を100mg-CaCO/L添加した。高分子反応槽において、高分子凝集剤としてオルフロックM-4020(オルガノ株式会社製)2mg/Lを添加した。固液分離装置として沈殿槽により固液分離を行った。固液分離液を流量140L/hで固液分離液槽へ通水した。固液分離液を流量684L/hで逆浸透膜処理装置として4インチROエレメント(日東電工製、LFC-3)に通水した。逆浸透膜処理により透過水を流量84L/hで得て、濃縮水を流量544L/hで固液分離液槽へ循環し、流量56L/hで後段の濃縮装置へ送液した。結果を表2に示す。
 なお、水中のCa、Mgの量は、イオンクロマトグラフ(メトローム社製、IC761)を用いて測定し、HCO の量は、TOC計(島津サイエンス製、TOC-3000)を用いて、無機炭素の値を測定して換算した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 実施例1では、濃縮水の一部を沈殿槽(固液分離槽)の前段である反応槽に返送することによって、RO濃縮水のCa負荷、Mg負荷が低下し、逆浸透膜処理装置の後段へ流出する硬度成分の量が少なくなった。一方、比較例1では、濃縮水の循環を行わなかったため、逆浸透膜処理装置の後段へ流出する硬度成分が多かった。
<実施例2>
 濃縮水の返送先について、検討した。CaCOの析出反応は、生成する結晶の表面にCaCOが析出することによって進行するため、予めCaCOの粒子が存在する場合や、Caの濃度が高い場合の方が、反応時間が短くて済むと考えられる。
[ジャーテスト手順]
 原水(Ca=250mg-CaCO/L)に、CaCO含有汚泥を0,100,1000,10000mg/L添加した。そこに、NaCOを417mg-CaCO/L添加し、水酸化ナトリウム(NaOH)でpH11に調整した。ジャーテスタにて120rpmで反応させた。0.45μmフィルタでろ過後、処理水のCa濃度を測定した。
 図4に、ジャーテストの結果を示す。図4のグラフは、反応時間(min)に対するCa濃度(mg-CaCO/L)を示す。
 このように、CaCOを含む濃縮水を、CaCOとして100mg/L以上になるように反応槽に返送することで、CaCOの析出を促進させることができることがわかった。
 以上のように、実施例により、硬度成分含有水の軟化処理の後、逆浸透膜処理を行う装置および方法において、後段に流出する濃縮水の硬度成分の量を低減することができた。
 1 硬度成分含有水の処理装置、10 被処理水槽、12 反応槽、14 高分子反応槽、16 固液分離槽、18 固液分離液槽、20 逆浸透膜処理装置、22,24 ポンプ、26,28,30,32,34 配管、36 透過水配管、38 返送配管、40 濃縮水配管、42 炭酸化合物添加配管、44 アルカリ剤添加配管、46 高分子凝集剤添加配管、48 pH調整剤添加配管、50,52 撹拌装置、54,56 バルブ、58 汚泥配管。

Claims (8)

  1.  硬度成分を含む被処理水に、アルカリ剤および炭酸化合物のうち少なくとも1つを添加して硬度成分を不溶化するための反応槽と、
     得られた不溶化物を固液分離する固液分離手段と、
     得られた固液分離液を逆浸透膜で処理して濃縮水と透過水とを得る逆浸透膜処理手段と、
     得られた濃縮水の少なくとも一部を、前記固液分離手段の前段に返送する返送手段と、
     を備えることを特徴とする、硬度成分含有水の処理装置。
  2.  請求項1に記載の硬度成分含有水の処理装置であって、
     前記返送手段による前記濃縮水の返送先が、前記反応槽であることを特徴とする、硬度成分含有水の処理装置。
  3.  請求項2に記載の硬度成分含有水の処理装置であって、
     前記反応槽内のCaCO濃度が100mg/L以上となるように前記濃縮水を返送することを特徴とする、硬度成分含有水の処理装置。
  4.  請求項1~3のいずれか1項に記載の硬度成分含有水の処理装置であって、
     前記濃縮水のイオン濃度を測定するイオン濃度測定手段をさらに備え、
     その測定値に応じて前記返送手段により返送される前記濃縮水の量を調節することを特徴とする、硬度成分含有水の処理装置。
  5.  硬度成分を含む被処理水に、アルカリ剤および炭酸化合物のうち少なくとも1つを添加して硬度成分を不溶化する不溶化工程と、
     得られた不溶化物を固液分離する固液分離工程と、
     得られた固液分離液を逆浸透膜で処理して濃縮水と透過水とを得る逆浸透膜処理工程と、
     得られた濃縮水の少なくとも一部を、前記固液分離工程の前段に返送する返送工程と、
     を含むことを特徴とする、硬度成分含有水の処理方法。
  6.  請求項5に記載の硬度成分含有水の処理方法であって、
     前記返送工程における前記濃縮水の返送先が、前記アルカリ剤および炭酸化合物のうち少なくとも1つが添加される反応槽であることを特徴とする、硬度成分含有水の処理方法。
  7.  請求項6に記載の硬度成分含有水の処理方法であって、
     前記反応槽内のCaCO濃度が100mg/L以上となるように前記濃縮水を返送することを特徴とする、硬度成分含有水の処理方法。
  8.  請求項5~7のいずれか1項に記載の硬度成分含有水の処理方法であって、
     前記濃縮水のイオン濃度を測定し、その測定値に応じて前記返送工程において返送する前記濃縮水の量を調節することを特徴とする、硬度成分含有水の処理方法。
PCT/JP2018/026213 2017-08-31 2018-07-11 硬度成分含有水の処理装置および処理方法 WO2019044197A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SG11202000878RA SG11202000878RA (en) 2017-08-31 2018-07-11 Treatment apparatus and treatment method for hardness component-containing water
CN201880051401.6A CN111032580A (zh) 2017-08-31 2018-07-11 含硬度成分的水的处理装置及处理方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-166850 2017-08-31
JP2017166850A JP7020821B2 (ja) 2017-08-31 2017-08-31 硬度成分含有水の処理装置および処理方法

Publications (1)

Publication Number Publication Date
WO2019044197A1 true WO2019044197A1 (ja) 2019-03-07

Family

ID=65525377

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/026213 WO2019044197A1 (ja) 2017-08-31 2018-07-11 硬度成分含有水の処理装置および処理方法

Country Status (4)

Country Link
JP (1) JP7020821B2 (ja)
CN (1) CN111032580A (ja)
SG (1) SG11202000878RA (ja)
WO (1) WO2019044197A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110655270A (zh) * 2019-08-30 2020-01-07 杭州广业环保有限公司 一种地埋式生活污水处理系统
CN114702158A (zh) * 2022-04-01 2022-07-05 新疆天业汇合新材料有限公司 一种脱硅除硬集成化的装置和方法
AU2020420328B2 (en) * 2020-01-08 2023-10-19 Mitsubishi Heavy Industries, Ltd. System for producing magnesium hydroxide
JP7520764B2 (ja) 2021-05-12 2024-07-23 水ing株式会社 水処理方法及びその装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7297473B2 (ja) * 2019-03-08 2023-06-26 三菱重工サーマルシステムズ株式会社 制御装置、空気調和機、制御方法及びプログラム
JP7377000B2 (ja) * 2019-03-27 2023-11-09 川崎重工業株式会社 水処理システムおよび水処理方法
JP7237714B2 (ja) * 2019-05-07 2023-03-13 株式会社東芝 水処理装置
CN113461193A (zh) * 2021-07-20 2021-10-01 胡月 一种反渗透膜净水器
CN114772793A (zh) * 2022-05-24 2022-07-22 广东飞南资源利用股份有限公司 脱硫废水在预处理及脱硬过程中延缓硫酸钙结垢的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3800449B2 (ja) * 1997-03-28 2006-07-26 株式会社荏原製作所 高濃度の塩類を含有する有機性廃水の処理方法及び装置
JP2011177640A (ja) * 2010-03-01 2011-09-15 Kurita Water Ind Ltd 金属含有水の処理方法及び金属含有水の処理装置
JP2014014738A (ja) * 2012-07-06 2014-01-30 Swing Corp 有機性廃水の処理方法及び処理装置
JP2015112593A (ja) * 2013-12-16 2015-06-22 栗田工業株式会社 高硬度排水の処理装置及び処理方法
JP5906892B2 (ja) * 2012-03-29 2016-04-20 栗田工業株式会社 カルシウム・マグネシウム含有水の処理方法及び処理装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2186963C (en) * 1996-10-01 1999-03-30 Riad A. Al-Samadi High water recovery membrane purification process
MX2011001303A (es) * 2008-08-05 2011-08-15 Aquatech Int Corp Proceso hibrido de recuperacion mejorado con osmosis inversa.
WO2011020176A1 (en) * 2009-08-15 2011-02-24 Riad Al-Samadi Enhanced high water recovery membrane process
CN105800833A (zh) * 2016-05-16 2016-07-27 北京鑫佰利科技发展有限公司 一种降低水硬度的膜反应器和方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3800449B2 (ja) * 1997-03-28 2006-07-26 株式会社荏原製作所 高濃度の塩類を含有する有機性廃水の処理方法及び装置
JP2011177640A (ja) * 2010-03-01 2011-09-15 Kurita Water Ind Ltd 金属含有水の処理方法及び金属含有水の処理装置
JP5906892B2 (ja) * 2012-03-29 2016-04-20 栗田工業株式会社 カルシウム・マグネシウム含有水の処理方法及び処理装置
JP2014014738A (ja) * 2012-07-06 2014-01-30 Swing Corp 有機性廃水の処理方法及び処理装置
JP2015112593A (ja) * 2013-12-16 2015-06-22 栗田工業株式会社 高硬度排水の処理装置及び処理方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110655270A (zh) * 2019-08-30 2020-01-07 杭州广业环保有限公司 一种地埋式生活污水处理系统
AU2020420328B2 (en) * 2020-01-08 2023-10-19 Mitsubishi Heavy Industries, Ltd. System for producing magnesium hydroxide
JP7520764B2 (ja) 2021-05-12 2024-07-23 水ing株式会社 水処理方法及びその装置
CN114702158A (zh) * 2022-04-01 2022-07-05 新疆天业汇合新材料有限公司 一种脱硅除硬集成化的装置和方法

Also Published As

Publication number Publication date
JP2019042651A (ja) 2019-03-22
CN111032580A (zh) 2020-04-17
JP7020821B2 (ja) 2022-02-16
TW201934497A (zh) 2019-09-01
SG11202000878RA (en) 2020-02-27

Similar Documents

Publication Publication Date Title
WO2019044197A1 (ja) 硬度成分含有水の処理装置および処理方法
JP4880656B2 (ja) 水処理装置および水処理方法
US20130248445A1 (en) Membrane filtration process with high water recovery
US10399878B2 (en) Water treatment system and power generation facility
JPWO2013153587A1 (ja) 坑井からの随伴水処理方法および装置
US11046598B1 (en) Method and system for treating high salinity water
CN105800846A (zh) 一种用于反渗透浓水处理与零排放的方法与装置
US20160145132A1 (en) Water treatment device and water treatment method
JP2012196614A (ja) 排水処理方法および排水処理システム
CN105948352A (zh) 处理电厂脱硫高盐高硬度废水的零排放回用工艺
WO2018030109A1 (ja) 膜ろ過方法及び膜ろ過システム
JP7212490B2 (ja) 水処理装置および水処理方法
CN102815810B (zh) 脱盐系统和方法
US20160221846A1 (en) Process for water treatment prior to reverse osmosis
JP7084704B2 (ja) シリカ含有水の処理装置および処理方法
JP2019042646A (ja) シリカ含有水の処理装置および処理方法
JP7108392B2 (ja) シリカ含有水の処理装置および処理方法
JP7228492B2 (ja) 水処理装置および水処理方法
TWI855997B (zh) 含有硬度成分之水的處理裝置及處理方法
JP7137393B2 (ja) シリカ/硬度成分含有水の処理方法および処理装置
JP7149129B2 (ja) シリカ含有水の処理方法および処理装置
JP2005224761A (ja) 純水又は超純水の製造方法
CN111051253A (zh) 含二氧化硅水的处理装置及处理方法
JP7168324B2 (ja) シリカ含有水の処理装置および処理方法
JP2021065803A (ja) フッ素含有排水の処理方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18850149

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18850149

Country of ref document: EP

Kind code of ref document: A1