WO2016208394A1 - エレベーターシステム - Google Patents
エレベーターシステム Download PDFInfo
- Publication number
- WO2016208394A1 WO2016208394A1 PCT/JP2016/067040 JP2016067040W WO2016208394A1 WO 2016208394 A1 WO2016208394 A1 WO 2016208394A1 JP 2016067040 W JP2016067040 W JP 2016067040W WO 2016208394 A1 WO2016208394 A1 WO 2016208394A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- car
- learning
- control means
- same height
- diagnostic
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66B—ELEVATORS; ESCALATORS OR MOVING WALKWAYS
- B66B5/00—Applications of checking, fault-correcting, or safety devices in elevators
- B66B5/02—Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions
- B66B5/021—Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions the abnormal operating conditions being independent of the system
- B66B5/022—Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions the abnormal operating conditions being independent of the system where the abnormal operating condition is caused by a natural event, e.g. earthquake
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66B—ELEVATORS; ESCALATORS OR MOVING WALKWAYS
- B66B1/00—Control systems of elevators in general
- B66B1/24—Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration
- B66B1/28—Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66B—ELEVATORS; ESCALATORS OR MOVING WALKWAYS
- B66B5/00—Applications of checking, fault-correcting, or safety devices in elevators
- B66B5/0087—Devices facilitating maintenance, repair or inspection tasks
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B66—HOISTING; LIFTING; HAULING
- B66B—ELEVATORS; ESCALATORS OR MOVING WALKWAYS
- B66B2201/00—Aspects of control systems of elevators
- B66B2201/40—Details of the change of control mode
- B66B2201/402—Details of the change of control mode by historical, statistical or predicted traffic data, e.g. by learning
Definitions
- This invention relates to an elevator system.
- Patent Document 1 describes an elevator apparatus that performs diagnostic operation after an earthquake.
- the diagnosis operation is performed to automatically return the elevator stopped due to the earthquake to the normal operation.
- various predetermined operations are performed. And if all operation
- various data are measured. For example, the torque data of the hoisting machine is measured. An abnormality is detected when the data measured in the diagnostic operation is out of the reference range.
- the reference range used in the diagnostic operation is set based on, for example, learning data acquired in the learning operation. For example, a certain range having the median learning data acquired in the learning operation is set as the reference range.
- FIG. 13 is a diagram for explaining a conventional problem.
- FIG. 13 shows the learning data acquired in the learning operation and the reference range set based on the learning data.
- a range between the upper limit value and the lower limit value shown in FIG. 13 is the reference range. If there is a local variation as shown in FIG. 13D in the learning data, an abnormality is detected in the diagnostic operation even if no abnormality actually occurs. If the neighboring car in normal driving passes the car in learning driving or overtakes the car in learning driving, the wind pressure causes a local fluctuation as shown in FIG. Investigation revealed.
- An object of the present invention is to provide an elevator system that can appropriately set a reference range for detecting an abnormality in diagnostic operation.
- the first car that moves up and down the diagnostic operation control means that performs the diagnostic operation by moving the first car after the occurrence of the earthquake, and the learning operation that moves the first car
- a learning driving control means a setting means for setting a reference range for detecting an abnormality in the diagnostic driving based on the learning data acquired in the learning driving, and moving up and down and adjacent at the same height for the first car Driving that controls the position of the second car so that the second car is not placed at the same height as the first car while the learning operation is controlled by the learning operation control means.
- Control means the control means.
- the first car that moves up and down the diagnostic operation control means that performs the diagnostic operation by moving the first car after the occurrence of the earthquake, and the learning operation that moves the first car
- a learning driving control means a setting means for setting a reference range for detecting an abnormality in the diagnostic driving based on the learning data acquired in the learning driving, and moving up and down and adjacent at the same height for the first car Operation control for stopping the second car when the second car is arranged at the same height as the first car while the learning operation is being performed by the learning operation control means.
- the first car that moves up and down the diagnostic operation control means that performs the diagnostic operation by moving the first car after the occurrence of the earthquake, and the learning operation that moves the first car
- a learning driving control means a setting means for setting a reference range for detecting an abnormality in the diagnostic driving based on the learning data acquired in the learning driving, and moving up and down and adjacent at the same height for the first car
- an operation control means for performing normal operation by moving the second car at the first speed.
- the first car that moves up and down the diagnostic operation control means that performs the diagnostic operation by moving the first car after the occurrence of the earthquake, and the learning operation that moves the first car
- a learning driving control means a setting means for setting a reference range for detecting an abnormality in the diagnostic driving based on the learning data acquired in the learning driving, and moving up and down and adjacent at the same height for the first car A second car that can be arranged as described above.
- the learning driving control means stops the learning driving when the second car is arranged at the same height as the first car during the learning driving.
- the first car that moves up and down the diagnostic operation control means that performs the diagnostic operation by moving the first car after the occurrence of the earthquake, and the learning operation that moves the first car
- a learning driving control means a setting means for setting a reference range for detecting an abnormality in the diagnostic driving based on the learning data acquired in the learning driving, and moving up and down and adjacent at the same height for the first car A second car that can be arranged as described above.
- the learning driving control means stops the learning driving when the second car being moved is arranged at the same height as the first car during the learning driving.
- the first car that moves up and down the diagnostic operation control means that performs the diagnostic operation by moving the first car after the occurrence of the earthquake, and the learning operation that moves the first car
- a learning driving control means a setting means for setting a reference range for detecting an abnormality in the diagnostic driving based on the learning data acquired in the learning driving, and moving up and down and adjacent at the same height for the first car A second car that can be arranged as described above.
- the setting means sets the reference range without using the learning data acquired when the second car is arranged at the same height as the first car among the learning data acquired in the learning operation.
- the first car that moves up and down the diagnostic operation control means that performs the diagnostic operation by moving the first car after the occurrence of the earthquake, and the learning operation that moves the first car
- a learning driving control means a setting means for setting a reference range for detecting an abnormality in the diagnostic driving based on the learning data acquired in the learning driving, and moving up and down and adjacent at the same height for the first car A second car that can be arranged as described above.
- the setting means sets the reference range without using the learning data acquired when the second car being moved is arranged at the same height as the first car among the learning data acquired in the learning operation.
- the elevator system according to the present invention can appropriately set a reference range for detecting an abnormality in diagnostic operation.
- FIG. 1 is a diagram showing a configuration example of an elevator system according to Embodiment 1 of the present invention.
- the group management device 1 manages a plurality of elevator devices installed in a building or the like as a group.
- FIG. 1 shows an example in which the group management device 1 manages three elevator devices of No. A, No. B, and No. C.
- the group management device 1 may manage two elevator devices or may manage four or more elevator devices.
- A, B, or C is added after the code. For example, for the A machine, A is added after the code.
- For C add C after the code.
- the group management device 1 includes, for example, an operation command unit 2 and a car position detection unit 3.
- Each elevator device has a car 4 and a counterweight 5, for example.
- the car 4 moves up and down the hoistway.
- the hoistway is, for example, a space formed in a building and extending vertically.
- the counterweight 5 moves up and down the hoistway.
- the car 4 and the counterweight 5 are suspended from the hoistway by the main rope 6.
- the roping method for suspending the car 4 and the counterweight 5 is not limited to the example shown in FIG.
- the main rope 6 is wound around the driving sheave 7 of the hoisting machine.
- the rotation and stop of the drive sheave 7 are controlled by the control device 8.
- the drive sheave 7 rotates, the main rope 6 moves in a direction corresponding to the direction in which the drive sheave 7 rotates.
- the car 4 is raised or lowered according to the direction in which the main rope 6 moves.
- the counterweight 5 moves in a direction opposite to the direction in which the car 4 moves.
- the range in which the car 4A of the Unit A moves is adjacent to the range in which the car 4B of the Unit B moves. That is, the car 4B can be arranged so as to be adjacent at the same height as the car 4A.
- the car 4A stops from the first floor to the tenth floor of the building.
- the car 4B stops from the first floor to the tenth floor of the building.
- the range in which the car 4B moves may not completely coincide with the range in which the car 4A moves.
- the range in which the car 4B moves is adjacent to the range in which the car 4C of Unit C moves. That is, the car 4C can be arranged so as to be adjacent at the same height as the car 4B. For example, the car 4C stops from the first floor to the tenth floor of the building. The range in which the car 4C moves may not completely coincide with the range in which the car 4B moves.
- FIG. 2 is a diagram illustrating a configuration example of the control device 8.
- the control device 8 includes, for example, a storage unit 9, an operation control unit 10, a control operation control unit 11, a diagnostic operation control unit 12, a learning operation control unit 13, and a setting unit 14.
- the operation when an earthquake occurs will be specifically described below with reference to FIG.
- FIG. 3 is a flowchart showing an operation example of the elevator system according to Embodiment 1 of the present invention.
- the group management device 1 periodically determines whether or not an earthquake has occurred (S101). If an earthquake has not occurred, each elevator apparatus performs normal operation.
- the normal operation is an operation for bringing the user to the destination floor. Normal operation is controlled by the operation control unit 10.
- the operation control unit 10A performs normal operation by moving the car 4A.
- the operation control unit 10B performs normal operation by moving the car 4B.
- the operation control unit 10C performs normal operation by moving the car 4C.
- the operation control unit 10 moves the car 4 at the rated speed in normal operation. For example, the operation control unit 10 causes the car 4 to sequentially respond to registered calls.
- the occurrence of an earthquake is detected by the earthquake detector 15.
- the earthquake detector 15 is provided, for example, in a building equipped with an elevator apparatus.
- the earthquake detector 15 detects the occurrence of an earthquake, the earthquake detector 15 transmits earthquake information to the group management apparatus 1.
- the operation command unit 2 transmits a control operation command to each control device 8.
- each elevator device when a control operation command is received from the group management device 1, control operation during an earthquake is started (S102).
- the earthquake control operation is an operation for evacuating a person in the car 4 to the outside of the car 4.
- the control operation during an earthquake is controlled by the control operation control unit 11.
- the control operation control unit 11A moves the car 4A to perform the earthquake control operation.
- the control operation control unit 11B moves the car 4B and performs the control operation during an earthquake.
- the control operation control unit 11C moves the car 4C to perform the earthquake control operation.
- the control operation control unit 11 receives the control operation command from the group management device 1, for example, the car 4 is stopped at the nearest floor and opened.
- the control operation control unit 11 closes the door and stops the car 4 at the nearest floor when a predetermined time has elapsed since the door was opened at the nearest floor.
- diagnostic operation is started (S103).
- the diagnostic operation is an operation for automatically returning to normal operation after an earthquake occurs.
- the diagnostic operation is controlled by the diagnostic operation control unit 12.
- the diagnostic operation control unit 12A performs a diagnostic operation by moving the car 4A.
- the diagnostic operation control unit 12B performs diagnostic operation by moving the car 4B.
- the diagnostic operation control unit 12C performs the diagnostic operation by moving the car 4C.
- the diagnostic operation control unit 12 performs various predetermined operations in the diagnostic operation. For example, the diagnostic operation control unit 12 moves the car 4 as determined in advance.
- various data are acquired. For example, the torque data of the hoisting machine is acquired. The acquired data is compared with a reference range. The reference range is stored in advance in the storage unit 9. If the acquired data is not within the reference range, an abnormality is detected (Yes in S104).
- the diagnostic operation control unit 12 stops the diagnostic operation (S105).
- the diagnostic operation is stopped by detecting an abnormality, the elevator apparatus is manually returned to normal operation by a professional engineer.
- the diagnostic operation is completed without detecting any abnormality (No in S104)
- the elevator apparatus is automatically returned to the normal operation (S106).
- FIG. 4 and FIG. 4 and 5 are flowcharts showing another example of operation of the elevator system according to Embodiment 1 of the present invention.
- Each elevator apparatus periodically determines whether or not a start condition for starting the learning operation is satisfied (S201).
- the start condition is stored in the storage unit 9 in advance. If the start condition is not satisfied, each elevator apparatus performs normal operation.
- Each elevator device starts a learning operation when a start condition is satisfied (S202).
- the learning operation is an operation for acquiring learning data necessary for setting the reference range.
- the learning operation is controlled by the learning operation control unit 13.
- the learning driving control unit 13A moves the car 4A to perform learning driving.
- the learning operation control unit 13B performs the learning operation by moving the car 4B.
- the learning operation control unit 13C performs the learning operation by moving the car 4C.
- the learning operation control unit 13A starts the learning operation when the start condition is satisfied.
- the learning operation control unit 13A moves the car 4A and acquires learning data necessary for setting the reference range.
- each elevator device it is periodically determined whether or not the start condition is satisfied in the adjacent unit (S301).
- the operation control unit 10 stops the car 4 to be controlled at a predetermined position before the learning operation is started at the adjacent car.
- the operation control unit 10 stops the car 4 to be controlled at a position outside the range in which the car 4 of the adjacent car moves in the learning operation.
- the operation control unit 10 controls the position of the car 4 so that the car 4 to be controlled is not placed at the same height as the car 4 during the learning operation (S302).
- the operation control unit 10B of the No. B machine stops the car 4B, for example, at a position lower than the stop position on the first floor before the learning operation is started in the No. A machine. Thereafter, in the B machine, it is determined whether or not the learning operation has been completed in the A machine (S303).
- the operation control unit 10B controls the position of the car 4B so that the car 4B is not arranged at the same height as the car 4A until the learning operation is completed in the No. A machine.
- the operation control unit 10B controls the operation for carrying the user to the destination floor on the condition that the car 4B is not arranged at the same height as the car 4A.
- the learning operation control unit 13A performs various predetermined operations. For example, the learning operation control unit 13A moves the car 4A as determined in advance. In learning driving, various learning data are acquired. For example, the torque data of the hoisting machine is acquired as one of the learning data.
- the learning operation is completed by performing various predetermined operations by the learning operation control unit 13 (Yes in S203).
- the learning data acquired by the learning driving is stored in the storage unit 9 (S204).
- the setting unit 14 sets a reference range for detecting an abnormality in the diagnostic operation (S205).
- the setting unit 14 sets a reference range based on learning data acquired in the learning operation. For example, the setting unit 14 sets a certain range in which the learning data acquired in the learning operation is the median value as the reference range.
- Information for setting the upper limit value and the lower limit value of the reference range is stored in the storage unit 9 in advance.
- the position of the car 4 of the car adjacent to that car is controlled so that it is not arranged at the same height as the car 4 during the learning car. .
- the car 4 in the learning operation does not pass or overtake the car 4 of the adjacent unit during the learning operation. For this reason, it can prevent that the local fluctuation
- a reference range for detecting an abnormality in diagnostic operation can be set appropriately.
- Embodiment 2 FIG.
- the example in which the car 4 of the adjacent car is not arranged at the same height as the car 4 during the learning operation has been described while the learning operation is performed in a certain car.
- the local fluctuation of the learning data occurs due to the wind pressure when the adjacent cars 4 pass each other.
- an example will be described in which the object is achieved by reducing the wind pressure.
- FIG. 6 is a flowchart showing an operation example of the elevator system according to Embodiment 2 of the present invention.
- each elevator apparatus performs the operation shown in FIG.
- it is periodically determined whether or not a start condition for starting a learning operation is established in an adjacent car (S401).
- the operation control unit 10 stops the car 4 to be controlled in accordance with the position of the car 4 of the car in which the learning operation is performed.
- the operation control unit 10 stops the car 4 to be controlled (S402).
- the car position detector 3 detects the position of each car 4 managed by the group management device 1. Based on the position detected by the car position detector 3, the operation controller 10 determines whether or not the car 4 to be controlled has the same height as the car 4 during the learning operation.
- the operation control unit 10B of the No. B car stops the car 4B when the car 4B is arranged at the same height as the car 4A while the learning operation is performed in the No. A machine. That is, when the car 4A passes the car 4B, the car 4B is always stopped. Thereafter, in the B machine, it is determined whether or not the learning operation has been completed in the A machine (S403).
- the operation control unit 10B performs the stop control for the car 4B until the learning operation is completed in the No. A machine. For example, when the operation control unit 10B is arranged at the same height as the car 4A, the operation control unit 10B controls the operation for carrying the user to the destination floor on condition that the car 4B is always stopped.
- the operation of the car 4 adjacent to that unit is controlled so as to pass the car 4 during the learning operation in a stopped state.
- the car 4 of the adjacent car does not move at high speed next to the car 4 during the learning operation. For this reason, it can prevent that the local fluctuation
- a reference range for detecting an abnormality in diagnostic operation can be set appropriately.
- 7 and 8 are diagrams for explaining another operation example of the elevator system according to Embodiment 2 of the present invention.
- 7 and 8 show an example in which the start condition for the A-unit is satisfied in S201.
- the driving control unit 10B arranges the car 4B at the same height as the car 4A only when the learning driving is started, as shown in FIGS.
- the operation control unit 10B stops the car 4B at the stop position on the first floor before the learning operation is started in the A machine.
- the first floor is a position where the car 4A stops when the learning operation is started in the A-unit.
- the car 4A moves from the first floor to the tenth floor in the learning operation.
- the operation control unit 10B controls the position of the car 4B so that the car 4B is not arranged at the same height as the car 4A during the learning operation.
- the operation control unit 10B sets the user to the destination floor on the condition that the car 4A is not arranged at the same height as the car 4A after the car 4A has left the first floor after the learning operation is started in the Unit A. Control driving to carry.
- the operation control unit 10B controls the position of the car 4B so that the car 4B is not arranged at the same height as the car 4A from the time when the learning operation is started in the No. A machine until just before the learning operation is finished.
- the operation control unit 10B stops the car 4B at the stop position on the 10th floor immediately before the learning operation ends in the No. A machine.
- the 10th floor is a position where the car 4A stops when the learning operation is finished in the No. A machine.
- the operation control unit 10B brings the user to the destination floor on the condition that the car 4B is not arranged at the same height as the car 4A from the start of the learning operation in the No. A machine until just before the learning operation is finished. Operation may be controlled.
- the car 4B is replaced with the car 4A only at the start and end of the learning operation. May be arranged at the same height.
- the operation control unit 10 may decelerate the car 4 to be controlled according to the position of the car 4 during the learning operation while the learning operation is performed in the adjacent car. For example, when the car 4 to be controlled is disposed at the same height as the car 4 that is in the learning operation while moving, the operation control unit 10 moves the moving car 4 at a speed slower than the rated speed. Even if such a configuration is adopted, a certain effect can be expected.
- Embodiment 3 FIG. In Embodiment 1 and 2, the example which achieves an object by the function of the machine which is not performing learning driving was explained. This Embodiment demonstrates the example which achieves an objective by the function of the number machine which is performing learning driving
- FIG. 9 is a flowchart showing an operation example of the elevator system according to Embodiment 3 of the present invention.
- Each elevator apparatus periodically determines whether or not a start condition for starting the learning operation is satisfied (S501). If the start condition is not satisfied, each elevator apparatus performs normal operation.
- Each elevator device starts a learning operation when a start condition is satisfied (S502).
- the learning operation control unit 13A starts the learning operation when the start condition is satisfied.
- the learning operation control unit 13A moves the car 4A and acquires learning data necessary for setting the reference range.
- the learning operation control unit 13A determines, for example, based on the position detected by the car position detection unit 3 whether the car 4B is arranged at the same height as the car 4A.
- the learning operation control unit 13A stops the learning operation when the car 4B is arranged at the same height as the car 4A during the learning operation (S504).
- the learning operation is completed by performing various predetermined operations by the learning operation control unit 13 (Yes in S505).
- the learning data acquired by the learning driving is stored in the storage unit 9 (S506).
- the setting unit 14 sets a reference range for detecting an abnormality in the diagnostic operation (S507).
- the setting unit 14 sets a reference range based on learning data acquired in the learning operation. For example, the setting unit 14 sets a certain range in which the learning data acquired in the learning operation is the median value as the reference range.
- Information for setting the upper limit value and the lower limit value of the reference range is stored in the storage unit 9 in advance.
- the learning operation control unit 13A stops the learning operation when the moving car 4B is arranged at the same height as the car 4A during the learning operation (S504).
- the learning operation control unit 13A does not stop the learning operation even when the stopped car 4B is arranged at the same height as the car 4A during the learning operation (No in S503).
- the learning driving control unit 13 may subsequently perform the learning driving again from the beginning, or may resume the learning driving from the position where the learning driving is stopped or the vicinity thereof. good.
- any operation may be performed at the unit adjacent to the unit that is performing the learning operation.
- the operation control unit 10B controls the operation for carrying the user to the destination floor on condition that the car 4B is not arranged as high as possible with the car 4A. To do.
- the operation control unit 10B controls the position of the car 4B so that the car 4B is not arranged at the same height as the car 4A.
- the operation control unit 10B performs an operation in which the car 4B can be arranged at the same height as the car 4A only when the number of registered calls exceeds a certain number.
- Embodiment 4 FIG.
- the configuration of the elevator system in the present embodiment is the same as the configuration disclosed in the first embodiment.
- the operation when an earthquake occurs is the same as the operation disclosed in the first embodiment. Also in this embodiment, when an earthquake occurs, the operation shown in FIG. 3 is performed.
- FIG. 10 is a diagram for explaining an example of the reference range setting function of the control device 8.
- each elevator apparatus performs the operation shown in FIG. Below, the example in which learning driving
- the learning operation control unit 13A starts the learning operation when the start condition is satisfied.
- the learning operation control unit 13A moves the car 4A and acquires learning data necessary for setting the reference range.
- the learning data acquired by the learning driving is stored in the storage unit 9A.
- the setting unit 14A sets the reference range based on the learning data acquired in the learning operation. For example, when the setting unit 14A sets the reference range, among the learning data acquired in the learning operation, the learning data acquired when the car 4B of the adjacent Unit B is arranged at the same height as the car 4A. Do not use.
- FIG. 10 shows an example in which the car 4B is arranged at the same height as the car 4A at the car positions shown in H1 and H2.
- the setting unit 14A discards the learning data acquired when the car 4B is arranged at the same height as the car 4A.
- the setting unit 14A linearly complements the portion where the learning data is discarded to set the reference range.
- the method of complementing the part where the learning data is discarded is not limited to the above example.
- the discarded learning data may be collected by performing the learning operation a plurality of times.
- the setting unit 14 ⁇ / b> A may complement a portion in which the learning data is discarded based on the learning data acquired previously (for example, last time).
- the setting unit 14 ⁇ / b> A may complement a portion in which the learning data is discarded based on the average value of the plurality of learning data acquired previously.
- a display may be made so that the maintenance staff can know the portion where the learning data has been discarded, and the maintenance staff may be able to complement the manual data manually.
- FIG. 11 is a diagram for explaining another example of the reference range setting function of the control device 8.
- the learning operation is performed by, for example, a low speed that is slower than the rated speed and a medium speed that is slower than the rated speed and faster than the low speed.
- FIG. 11 shows an example in which the car 4B is arranged at the same height as the car 4A at the car position indicated by H4 in the learning operation performed at a low speed.
- an example is shown in which the car 4B is arranged at the same height as the car 4A at the car position indicated by H3 in the learning operation performed at a medium speed.
- the setting unit 14A discards the learning data acquired when the car 4B is placed at the same height as the car 4A, for example.
- the setting unit 14A supplements the learning data acquired in the low-speed learning driving based on the learning data acquired in the medium-speed learning driving.
- the setting unit 14A supplements the learning data acquired in the medium speed learning driving based on the learning data acquired in the low speed learning driving.
- the reference range for detecting an abnormality in diagnostic operation can be set appropriately.
- the setting part 14 may determine the presence or absence of use of learning data on condition that the cage
- the setting unit 14A sets the reference range without using the learning data acquired when the moving car 4B is arranged at the same height as the car 4A among the learning data acquired in the learning operation. . Even if the learning data acquired when the car 4B is arranged at the same height as the car 4A, if the car 4B is stopped at that time, the setting unit 14A sets the reference range using the learning data. To do.
- any operation may be performed at the unit adjacent to the unit that is performing the learning operation.
- the operation control unit 10B controls the operation for carrying the user to the destination floor on condition that the car 4B is not arranged as high as possible with the car 4A. To do.
- the operation control unit 10B controls the position of the car 4B so that the car 4B is not arranged at the same height as the car 4A.
- the operation control unit 10B performs an operation in which the car 4B can be arranged at the same height as the car 4A only when the number of registered calls exceeds a certain number.
- each part indicated by reference numerals 9 to 14 represents a function of the control device 8.
- FIG. 12 is a diagram illustrating a hardware configuration of the control device 8.
- the control device 8 includes, for example, a circuit including an input / output interface 16, a processor 17, and a memory 18 as hardware resources.
- the functions of the storage unit 9 are realized by the memory 18.
- the control device 8 implements the functions of the units 10 to 14 by executing the program stored in the memory 18 by the processor 17. Some or all of the functions of the units 10 to 14 may be realized by hardware.
- symbol 2 and 3 shows the function which the group management apparatus 1 has.
- the hardware configuration of the group management apparatus 1 is the same as that shown in FIG.
- the control device 8 may have all or part of the functions of the group management device 1.
- the elevator system according to the present invention can be applied to a system that performs diagnostic operation after an earthquake occurs.
Landscapes
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Remote Sensing (AREA)
- Maintenance And Inspection Apparatuses For Elevators (AREA)
Abstract
エレベーターシステムは、第1かご、診断運転制御部(12)、学習運転制御部(13)、設定部(14)、第2かご及び運転制御部(10)を備える。診断運転制御部(12)は、地震の発生後に、第1かごを移動させて診断運転を行う。学習運転制御部(13)は、第1かごを移動させて学習運転を行う。設定部(14)は、学習運転で取得された学習データに基づいて、診断運転で異常を検出するための基準範囲を設定する。運転制御部(10)は、学習運転制御部(13)によって学習運転が行われている間、第2かごが第1かごと同じ高さに配置されないように第2かごの位置を制御する。
Description
この発明は、エレベーターシステムに関する。
特許文献1に、地震後に診断運転を行うエレベーター装置が記載されている。診断運転は、地震によって停止したエレベーターを自動で通常運転に復帰させるために行われる。診断運転では、予め定められた各種動作が行われる。そして、異常が検出されることなく全ての動作が終了すれば、エレベーターは通常運転に復帰される。
診断運転では、各種データが測定される。例えば、巻上機のトルクデータが測定される。診断運転で測定されたデータが基準範囲から外れると、異常が検出される。診断運転で用いられる基準範囲は、例えば学習運転で取得された学習データに基づいて設定される。例えば、学習運転で取得された学習データを中央値とする一定の範囲が基準範囲として設定される。
図13は、従来の課題を説明するための図である。図13は、学習運転で取得された学習データとその学習データに基づいて設定された基準範囲とを示す。図13に示す上限値と下限値との間の範囲が基準範囲である。学習データに図13のDに示すような局所的な変動が存在すると、実際には異常が発生していない場合でも診断運転において異常が検出されてしまう。通常運転を行っている隣りのかごが学習運転中のかごとすれ違ったり学習運転中のかごを追い越したりすると、その風圧によって図13のDに示すような局所的な変動が発生することが出願人の調査によって判明した。
この発明は、上述のような課題を解決するためになされた。この発明の目的は、診断運転で異常を検出するための基準範囲を適切に設定できるエレベーターシステムを提供することである。
この発明に係るエレベーターシステムは、上下に移動する第1かごと、地震の発生後に、第1かごを移動させて診断運転を行う診断運転制御手段と、第1かごを移動させて学習運転を行う学習運転制御手段と、学習運転で取得された学習データに基づいて、診断運転で異常を検出するための基準範囲を設定する設定手段と、上下に移動し、第1かごと同じ高さで隣接するように配置可能な第2かごと、学習運転制御手段によって学習運転が行われている間、第2かごが第1かごと同じ高さに配置されないように第2かごの位置を制御する運転制御手段と、を備える。
この発明に係るエレベーターシステムは、上下に移動する第1かごと、地震の発生後に、第1かごを移動させて診断運転を行う診断運転制御手段と、第1かごを移動させて学習運転を行う学習運転制御手段と、学習運転で取得された学習データに基づいて、診断運転で異常を検出するための基準範囲を設定する設定手段と、上下に移動し、第1かごと同じ高さで隣接するように配置可能な第2かごと、学習運転制御手段によって学習運転が行われている間、第2かごが第1かごと同じ高さに配置される場合は第2かごを停止させる運転制御手段と、を備える。
この発明に係るエレベーターシステムは、上下に移動する第1かごと、地震の発生後に、第1かごを移動させて診断運転を行う診断運転制御手段と、第1かごを移動させて学習運転を行う学習運転制御手段と、学習運転で取得された学習データに基づいて、診断運転で異常を検出するための基準範囲を設定する設定手段と、上下に移動し、第1かごと同じ高さで隣接するように配置可能な第2かごと、第2かごを第1速度で移動させて通常運転を行う運転制御手段と、を備える。運転制御手段は、学習運転制御手段によって学習運転が行われている間、移動中の第2かごが第1かごと同じ高さに配置される場合は第2かごを第1速度より遅い第2速度で移動させる。
この発明に係るエレベーターシステムは、上下に移動する第1かごと、地震の発生後に、第1かごを移動させて診断運転を行う診断運転制御手段と、第1かごを移動させて学習運転を行う学習運転制御手段と、学習運転で取得された学習データに基づいて、診断運転で異常を検出するための基準範囲を設定する設定手段と、上下に移動し、第1かごと同じ高さで隣接するように配置可能な第2かごと、を備える。学習運転制御手段は、学習運転を行っている時に第2かごが第1かごと同じ高さに配置されると、学習運転を中止する。
この発明に係るエレベーターシステムは、上下に移動する第1かごと、地震の発生後に、第1かごを移動させて診断運転を行う診断運転制御手段と、第1かごを移動させて学習運転を行う学習運転制御手段と、学習運転で取得された学習データに基づいて、診断運転で異常を検出するための基準範囲を設定する設定手段と、上下に移動し、第1かごと同じ高さで隣接するように配置可能な第2かごと、を備える。学習運転制御手段は、学習運転を行っている時に移動中の第2かごが第1かごと同じ高さに配置されると、学習運転を中止する。
この発明に係るエレベーターシステムは、上下に移動する第1かごと、地震の発生後に、第1かごを移動させて診断運転を行う診断運転制御手段と、第1かごを移動させて学習運転を行う学習運転制御手段と、学習運転で取得された学習データに基づいて、診断運転で異常を検出するための基準範囲を設定する設定手段と、上下に移動し、第1かごと同じ高さで隣接するように配置可能な第2かごと、を備える。設定手段は、学習運転で取得された学習データのうち、第2かごが第1かごと同じ高さに配置された時に取得された学習データを使用せずに基準範囲を設定する。
この発明に係るエレベーターシステムは、上下に移動する第1かごと、地震の発生後に、第1かごを移動させて診断運転を行う診断運転制御手段と、第1かごを移動させて学習運転を行う学習運転制御手段と、学習運転で取得された学習データに基づいて、診断運転で異常を検出するための基準範囲を設定する設定手段と、上下に移動し、第1かごと同じ高さで隣接するように配置可能な第2かごと、を備える。設定手段は、学習運転で取得された学習データのうち、移動中の第2かごが第1かごと同じ高さに配置された時に取得された学習データを使用せずに基準範囲を設定する。
この発明に係るエレベーターシステムであれば、診断運転で異常を検出するための基準範囲を適切に設定できる。
添付の図面を参照し、本発明を説明する。重複する説明は、適宜簡略化或いは省略する。各図において、同一の符号は同一の部分又は相当する部分を示す。
実施の形態1.
図1は、この発明の実施の形態1におけるエレベーターシステムの構成例を示す図である。群管理装置1は、ビル等に設置された複数台のエレベーター装置を一群として管理する。図1は、群管理装置1がA号機、B号機及びC号機の3台のエレベーター装置を管理する例を示す。群管理装置1は、2台のエレベーター装置を管理しても良いし、4台以上のエレベーター装置を管理しても良い。以下においては、特定の号機について説明する場合、符号の後にA、B或いはCを付す。例えば、A号機に対しては符号の後にAを付す。B号機に対しては符号の後にBを付す。C号機に対しては符号の後にCを付す。群管理装置1は、例えば運転指令部2及びかご位置検出部3を備える。
図1は、この発明の実施の形態1におけるエレベーターシステムの構成例を示す図である。群管理装置1は、ビル等に設置された複数台のエレベーター装置を一群として管理する。図1は、群管理装置1がA号機、B号機及びC号機の3台のエレベーター装置を管理する例を示す。群管理装置1は、2台のエレベーター装置を管理しても良いし、4台以上のエレベーター装置を管理しても良い。以下においては、特定の号機について説明する場合、符号の後にA、B或いはCを付す。例えば、A号機に対しては符号の後にAを付す。B号機に対しては符号の後にBを付す。C号機に対しては符号の後にCを付す。群管理装置1は、例えば運転指令部2及びかご位置検出部3を備える。
各エレベーター装置は、例えばかご4及びつり合いおもり5を備える。かご4は、昇降路を上下に移動する。昇降路は、例えばビル内に形成された上下に延びる空間である。つり合いおもり5は、昇降路を上下に移動する。かご4及びつり合いおもり5は、主ロープ6によって昇降路に吊り下げられる。かご4及びつり合いおもり5を吊り下げるためのローピングの方式は、図1に示す例に限定されない。
主ロープ6は、巻上機の駆動綱車7に巻き掛けられる。駆動綱車7の回転及び停止は、制御装置8によって制御される。駆動綱車7が回転すると、駆動綱車7が回転する方向に応じた方向に主ロープ6が移動する。主ロープ6が移動する方向に応じて、かご4が上昇或いは下降する。つり合いおもり5は、かご4が移動する方向とは反対の方向に移動する。
A号機のかご4Aが移動する範囲は、B号機のかご4Bが移動する範囲に隣接する。即ち、かご4Bは、かご4Aと同じ高さで隣接するように配置可能である。例えば、かご4Aは、ビルの1階から10階に停止する。かご4Bは、ビルの1階から10階に停止する。かご4Bが移動する範囲は、かご4Aが移動する範囲と完全に一致しなくても良い。
また、かご4Bが移動する範囲は、C号機のかご4Cが移動する範囲に隣接する。即ち、かご4Cは、かご4Bと同じ高さで隣接するように配置可能である。例えば、かご4Cは、ビルの1階から10階に停止する。かご4Cが移動する範囲は、かご4Bが移動する範囲と完全に一致しなくても良い。
図2は、制御装置8の構成例を示す図である。制御装置8は、例えば記憶部9、運転制御部10、管制運転制御部11、診断運転制御部12、学習運転制御部13及び設定部14を備える。以下に、図3も参照し、地震が発生した時の動作について具体的に説明する。図3は、この発明の実施の形態1におけるエレベーターシステムの動作例を示すフローチャートである。
群管理装置1では、地震が発生した否かが定期的に判定される(S101)。地震が発生していなければ、各エレベーター装置では通常運転が行われる。通常運転は、利用者を目的階に運ぶための運転である。通常運転は、運転制御部10によって制御される。運転制御部10Aは、かご4Aを移動させて通常運転を行う。運転制御部10Bは、かご4Bを移動させて通常運転を行う。運転制御部10Cは、かご4Cを移動させて通常運転を行う。運転制御部10は、通常運転において、かご4を定格速度で移動させる。運転制御部10は、例えば登録された呼びにかご4を順次応答させる。
地震が発生したことは地震検出器15によって検出される。地震検出器15は、例えばエレベーター装置が備えられているビルに設けられる。地震検出器15は、地震の発生を検出すると地震情報を群管理装置1に送信する。群管理装置1では、地震検出器15から地震情報を受信すると、運転指令部2が各制御装置8に対して管制運転指令を送信する。
各エレベーター装置では、群管理装置1から管制運転指令を受信すると、地震時管制運転を開始する(S102)。地震時管制運転は、かご4の中にいる人をかご4の外に避難させるための運転である。地震時管制運転は、管制運転制御部11によって制御される。管制運転制御部11Aは、かご4Aを移動させて地震時管制運転を行う。管制運転制御部11Bは、かご4Bを移動させて地震時管制運転を行う。管制運転制御部11Cは、かご4Cを移動させて地震時管制運転を行う。管制運転制御部11は、群管理装置1から管制運転指令を受信すると、例えばかご4を最寄り階に停止させて戸開させる。管制運転制御部11は、最寄り階で戸開してから一定時間が経過すると、戸閉してかご4を最寄り階に停止させておく。
各エレベーター装置では、地震時管制運転が完了すると、診断運転を開始する(S103)。診断運転は、地震が発生した後に自動で通常運転に復帰させるための運転である。診断運転は、診断運転制御部12によって制御される。診断運転制御部12Aは、かご4Aを移動させて診断運転を行う。診断運転制御部12Bは、かご4Bを移動させて診断運転を行う。診断運転制御部12Cは、かご4Cを移動させて診断運転を行う。
診断運転制御部12は、診断運転において、予め定められた各種動作を行わせる。例えば、診断運転制御部12は、かご4を予め定められた通りに移動させる。診断運転では、各種データが取得される。例えば、巻上機のトルクデータが取得される。取得されたデータは基準範囲と比較される。基準範囲は、記憶部9に予め記憶される。取得されたデータが基準範囲に入っていない場合、異常が検出される(S104のYes)。
診断運転制御部12は、異常が検出されると、診断運転を中止する(S105)。異常が検出されることによって診断運転が中止された場合、エレベーター装置は、専門の技術者によって手動で通常運転に復帰される。一方、異常が検出されることなく診断運転が完了すると(S104のNo)、エレベーター装置は自動で通常運転に復帰される(S106)。
次に、図4及び図5も参照し、基準範囲を設定するための動作について具体的に説明する。図4及び図5は、この発明の実施の形態1におけるエレベーターシステムの他の動作例を示すフローチャートである。
各エレベーター装置では、学習運転を開始するための開始条件が成立したか否かが定期的に判定される(S201)。開始条件は、記憶部9に予め記憶される。開始条件が成立していなければ、各エレベーター装置では通常運転が行われる。
各エレベーター装置では、開始条件が成立すると、学習運転を開始する(S202)。学習運転は、基準範囲を設定するために必要な学習データを取得するための運転である。学習運転は、学習運転制御部13によって制御される。学習運転制御部13Aは、かご4Aを移動させて学習運転を行う。学習運転制御部13Bは、かご4Bを移動させて学習運転を行う。学習運転制御部13Cは、かご4Cを移動させて学習運転を行う。
A号機、B号機及びC号機で学習運転が同時に開始されると、システム全体の運行効率が低下してしまう。このため、例えばA号機で学習運転が行われている間はB号機及びC号機で学習運転が行われないようにしても良い。以下においては、一例としてA号機で学習運転が行われる例について説明する。学習運転制御部13Aは、開始条件が成立すると学習運転を開始する。学習運転制御部13Aは、かご4Aを移動させて、基準範囲を設定するために必要な学習データを取得する。
また、各エレベーター装置では、隣接する号機で上記開始条件が成立したか否かが定期的に判定される(S301)。隣接する号機で開始条件が成立すると、運転制御部10は、隣接する号機で学習運転が開始される前に制御対象のかご4を予め定められた位置に停止させる。この時、運転制御部10は、隣接する号機のかご4が学習運転で移動する範囲から外れた位置に制御対象のかご4を停止させる。その後、運転制御部10は、制御対象のかご4が学習運転中のかご4と同じ高さに配置されないようにかご4の位置を制御する(S302)。
例えば、S201においてA号機の開始条件が成立した場合を考える。A号機のかご4Aは、学習運転において1階から10階まで移動する。B号機の運転制御部10Bは、A号機で学習運転が開始される前に、例えば1階の停止位置より低い位置にかご4Bを停止させる。その後、B号機では、A号機で学習運転が完了したか否かが判定される(S303)。運転制御部10Bは、A号機で学習運転が完了するまで、かご4Bがかご4Aと同じ高さに配置されないようにかご4Bの位置を制御する。例えば、運転制御部10Bは、かご4Bがかご4Aと同じ高さに配置されないことを条件に、利用者を目的階に運ぶための運転を制御する。
学習運転を開始したA号機では、学習運転制御部13Aが予め定められた各種動作を行わせる。例えば、学習運転制御部13Aは、かご4Aを予め定められた通りに移動させる。学習運転では、各種学習データが取得される。例えば、巻上機のトルクデータが学習データの一つとして取得される。
予め定められた各種動作が学習運転制御部13によって行われることにより、学習運転が完了する(S203のYes)。学習運転が完了すると、学習運転で取得された学習データが記憶部9に記憶される(S204)。
設定部14は、学習運転が完了すると、診断運転で異常を検出するための基準範囲を設定する(S205)。設定部14は、学習運転で取得された学習データに基づいて基準範囲の設定を行う。例えば、設定部14は、学習運転で取得された学習データを中央値とする一定の範囲を基準範囲に設定する。基準範囲の上限値及び下限値を設定するための情報は、記憶部9に予め記憶される。
上記構成のエレベーターシステムでは、ある号機で学習運転が行われている間、その号機に隣接する号機のかご4は、学習運転中のかご4と同じ高さに配置されないように位置が制御される。学習運転中のかご4は、学習運転中に隣接する号機のかご4とすれ違ったり追い越されたりすることがない。このため、風圧等に起因する局所的な変動が学習データに発生することを防止できる。本エレベーターシステムであれば、診断運転で異常を検出するための基準範囲を適切に設定できる。
実施の形態2.
実施の形態1では、ある号機で学習運転が行われている間、隣接する号機のかご4を学習運転中のかご4と同じ高さに配置させない例について説明した。学習データの局所的な変動は、隣接するかご4同士がすれ違う時等の風圧に起因して発生する。本実施の形態では、上記風圧を減少させて目的を達成する例について説明する。
実施の形態1では、ある号機で学習運転が行われている間、隣接する号機のかご4を学習運転中のかご4と同じ高さに配置させない例について説明した。学習データの局所的な変動は、隣接するかご4同士がすれ違う時等の風圧に起因して発生する。本実施の形態では、上記風圧を減少させて目的を達成する例について説明する。
本実施の形態におけるエレベーターシステムの構成は、実施の形態1で開示した構成と同じである。また、地震が発生した時の動作は、実施の形態1で開示した動作と同じである。本実施の形態においても、地震が発生すると図3に示す動作が行われる。以下に、図6も参照し、基準範囲を設定するための動作について具体的に説明する。図6は、この発明の実施の形態2におけるエレベーターシステムの動作例を示すフローチャートである。
本実施の形態においても、各エレベーター装置では、図4に示す動作が行われる。また、各エレベーター装置では、隣接する号機で学習運転を開始するための開始条件が成立したか否かが定期的に判定される(S401)。運転制御部10は、隣接する号機で学習運転が開始されると、学習運転が行われている号機のかご4の位置に合わせて制御対象のかご4を停止させる。具体的に、運転制御部10は、制御対象のかご4が学習運転中のかご4と同じ高さに配置される場合は、制御対象のかご4を停止させる(S402)。かご位置検出部3は、群管理装置1が管理する各かご4の位置を検出する。運転制御部10は、かご位置検出部3によって検出された位置に基づいて、制御対象のかご4が学習運転中のかご4と同じ高さになるか否かを判定する。
例えば、S201においてA号機の開始条件が成立した場合を考える。B号機の運転制御部10Bは、A号機で学習運転が行われている間は、かご4Bがかご4Aと同じ高さに配置される場合にかご4Bを停止させる。即ち、かご4Aがかご4Bとすれ違う時に、かご4Bは常に停止している。その後、B号機では、A号機で学習運転が完了したか否かが判定される(S403)。運転制御部10Bは、A号機で学習運転が完了するまで、かご4Bに対する上記停止制御を行う。例えば、運転制御部10Bは、かご4Aと同じ高さに配置される場合はかご4Bが常に停止していることを条件に、利用者を目的階に運ぶための運転を制御する。
上記構成のエレベーターシステムでは、ある号機で学習運転が行われている間、その号機に隣接する号機のかご4は、停止した状態で学習運転中のかご4とすれ違うように動作が制御される。学習運転中のかご4の隣りを、隣接する号機のかご4が高速で移動することはない。このため、風圧等に起因する局所的な変動が学習データに発生することを防止できる。本エレベーターシステムであれば、診断運転で異常を検出するための基準範囲を適切に設定できる。
図7及び図8は、この発明の実施の形態2におけるエレベーターシステムの他の動作例を説明するための図である。図7及び図8は、S201においてA号機の開始条件が成立した例を示す。運転制御部10Bは、A号機で学習運転が行われている間は、図7及び図8に示すように学習運転が開始される時のみかご4Bをかご4Aと同じ高さに配置させる。
例えば、A号機で開始条件が成立すると、運転制御部10Bは、A号機で学習運転が開始される前にかご4Bを1階の停止位置に停止させる。1階は、A号機で学習運転が開始される時にかご4Aが停止する位置である。例えば、かご4Aは、学習運転で1階から10階に移動する。A号機で学習運転が開始された後、運転制御部10Bは、かご4Bが学習運転中のかご4Aと同じ高さに配置されないようにかご4Bの位置を制御する。例えば、運転制御部10Bは、A号機で学習運転が開始されてかご4Aが1階を出発した後、かご4Bがかご4Aと同じ高さに配置されないことを条件に、利用者を目的階に運ぶための運転を制御する。
上記構成のエレベーターシステムであれば、学習運転中のかご4が、隣接する号機のかご4と同じ高さに配置されることを最小限に抑えることができる。同様の効果は、学習運転が終了する時のみかご4Bをかご4Aと同じ高さに配置させても実現できる。例えば、運転制御部10Bは、A号機で学習運転が開始されてから学習運転が終了する直前まで、かご4Bがかご4Aと同じ高さに配置されないようにかご4Bの位置を制御する。運転制御部10Bは、A号機で学習運転が終了する直前にかご4Bを10階の停止位置に停止させる。10階は、A号機で学習運転が終了する時にかご4Aが停止する位置である。運転制御部10Bは、例えば、A号機で学習運転が開始されてから学習運転が終了する直前まで、かご4Bがかご4Aと同じ高さに配置されないことを条件に、利用者を目的階に運ぶための運転を制御しても良い。
また、例えば、学習運転が開始される時にかご4Aが停止する階と学習運転が終了する時にかご4Aが停止する階とが同じ場合は、学習運転の開始時及び終了時のみかご4Bをかご4Aと同じ高さに配置させても良い。
本実施の形態では、隣接する号機のかご4を停止させることによって、学習運転中のかご4が受ける風圧を減少させる例について説明した。隣接する号機のかご4を減速させても、学習運転中のかご4が受ける風圧を減少させることは可能である。このため、運転制御部10は、隣接する号機で学習運転が行われている間、制御対象のかご4を学習運転中のかご4の位置に合わせて減速させても良い。例えば、運転制御部10は、制御対象のかご4が移動中に学習運転中のかご4と同じ高さに配置される場合は、移動中のかご4を定格速度より遅い速度で移動させる。このような構成を採用しても、一定の効果は期待できる。
実施の形態3.
実施の形態1及び2では、学習運転を行っていない号機の機能によって目的を達成する例について説明した。本実施の形態では、学習運転を行っている号機の機能によって目的を達成する例について説明する。
実施の形態1及び2では、学習運転を行っていない号機の機能によって目的を達成する例について説明した。本実施の形態では、学習運転を行っている号機の機能によって目的を達成する例について説明する。
本実施の形態におけるエレベーターシステムの構成は、実施の形態1で開示した構成と同じである。また、地震が発生した時の動作は、実施の形態1で開示した動作と同じである。本実施の形態においても、地震が発生すると図3に示す動作が行われる。以下に、図9も参照し、基準範囲を設定するための動作について具体的に説明する。図9は、この発明の実施の形態3におけるエレベーターシステムの動作例を示すフローチャートである。
各エレベーター装置では、学習運転を開始するための開始条件が成立したか否かが定期的に判定される(S501)。開始条件が成立していなければ、各エレベーター装置では通常運転が行われる。
各エレベーター装置では、開始条件が成立すると、学習運転を開始する(S502)。以下においては、一例としてA号機で学習運転が行われる例について説明する。学習運転制御部13Aは、開始条件が成立すると学習運転を開始する。学習運転制御部13Aは、かご4Aを移動させて、基準範囲を設定するために必要な学習データを取得する。
学習運転を開始したA号機では、隣接するB号機のかご4Bがかご4Aと同じ高さに配置されたか否かが判定される(S503)。学習運転制御部13Aは、例えばかご位置検出部3によって検出された位置に基づいて、かご4Bがかご4Aと同じ高さに配置されたか否かを判定する。学習運転制御部13Aは、学習運転を行っている時にかご4Bがかご4Aと同じ高さに配置されると、学習運転を中止する(S504)。
予め定められた各種動作が学習運転制御部13によって行われることにより、学習運転が完了する(S505のYes)。学習運転が完了すると、学習運転で取得された学習データが記憶部9に記憶される(S506)。
設定部14は、学習運転が完了すると、診断運転で異常を検出するための基準範囲を設定する(S507)。設定部14は、学習運転で取得された学習データに基づいて基準範囲の設定を行う。例えば、設定部14は、学習運転で取得された学習データを中央値とする一定の範囲を基準範囲に設定する。基準範囲の上限値及び下限値を設定するための情報は、記憶部9に予め記憶される。
上記構成のエレベーターシステムでは、学習運転を行っている号機のかご4と隣接する号機のかご4とが同じ高さに配置されると、学習運転が中止される。このため、風圧等に起因する局所的な変動が学習データに発生することを防止できる。本エレベーターシステムであれば、診断運転で異常を検出するための基準範囲を適切に設定できる。
なお、隣接する号機のかご4が停止していれば、学習運転中のかご4が受ける風圧を抑制することができる。このため、図9のS503において、隣接する号機のかご4が移動中であることを条件に、そのかご4が制御対象のかご4と同じ高さに配置されたか否かを判定しても良い。例えば、学習運転制御部13Aは、学習運転を行っている時に移動中のかご4Bがかご4Aと同じ高さに配置されると、学習運転を中止する(S504)。学習運転制御部13Aは、学習運転を行っている時に停止中のかご4Bがかご4Aと同じ高さに配置されても、学習運転を中止しない(S503のNo)。
S504で学習運転を中止した場合、学習運転制御部13は、その後に学習運転を最初から改めて実施しても良いし、学習運転を中止した位置或いはその位置の近傍から学習運転を再開させても良い。
本実施の形態において、学習運転を行っている号機に隣接する号機では、どのような運転が行われても良い。例えば、A号機で学習運転が行われている場合、運転制御部10Bは、かご4Bがかご4Aと同じ高さに極力配置されないことを条件に、利用者を目的階に運ぶための運転を制御する。例えば、運転制御部10Bは、登録された呼びの数が一定数以下の場合は、かご4Bがかご4Aと同じ高さに配置されないようにかご4Bの位置を制御する。運転制御部10Bは、登録された呼びの数が一定数を超えた場合のみ、かご4Bがかご4Aと同じ高さに配置され得る運転を行う。
実施の形態4.
本実施の形態では、制御装置8の設定部14の機能によって目的を達成する例について説明する。本実施の形態におけるエレベーターシステムの構成は、実施の形態1で開示した構成と同じである。また、地震が発生した時の動作は、実施の形態1で開示した動作と同じである。本実施の形態においても、地震が発生すると図3に示す動作が行われる。
本実施の形態では、制御装置8の設定部14の機能によって目的を達成する例について説明する。本実施の形態におけるエレベーターシステムの構成は、実施の形態1で開示した構成と同じである。また、地震が発生した時の動作は、実施の形態1で開示した動作と同じである。本実施の形態においても、地震が発生すると図3に示す動作が行われる。
以下に、図10も参照し、基準範囲を設定するための動作について具体的に説明する。図10は、制御装置8の基準範囲設定機能の一例を説明するための図である。
本実施の形態においても、各エレベーター装置では、図4に示す動作が行われる。以下においては、一例としてA号機で学習運転が行われる例について説明する。学習運転制御部13Aは、開始条件が成立すると学習運転を開始する。学習運転制御部13Aは、かご4Aを移動させて、基準範囲を設定するために必要な学習データを取得する。学習運転が完了すると、学習運転で取得された学習データが記憶部9Aに記憶される。
設定部14Aは、学習運転で取得された学習データに基づいて基準範囲を設定する。例えば、設定部14Aは、基準範囲を設定する際に、学習運転で取得された学習データのうち、隣接するB号機のかご4Bがかご4Aと同じ高さに配置された時に取得された学習データを使用しない。図10は、H1及びH2に示すかご位置でかご4Bがかご4Aと同じ高さに配置された例を示す。設定部14Aは、例えば、かご4Bがかご4Aと同じ高さに配置された時に取得された学習データを破棄する。設定部14Aは、学習データを破棄した部分を線形補完して、基準範囲を設定する。
学習データを破棄した部分を補完する方法は、上記例に限定されない。例えば、学習運転を複数回実施することにより、破棄した部分の学習データを採取しても良い。設定部14Aは、以前に(例えば、前回)取得された学習データに基づいて、学習データを破棄した部分を補完しても良い。設定部14Aは、以前に取得された複数の学習データの平均値に基づいて、学習データを破棄した部分を補完しても良い。また、学習データを破棄した部分が保守員に分かるような表示を行い、保守員の手動による補完を可能にしても良い。
図11は、制御装置8の基準範囲設定機能の他の例を説明するための図である。学習運転は、例えば、定格速度より遅い低速度と定格速度より遅く低速度より速い中速度とによって行われる。図11は、低速度で行われた学習運転においてH4に示すかご位置でかご4Bがかご4Aと同じ高さに配置された例を示す。また、中速度で行われた学習運転においてH3に示すかご位置でかご4Bがかご4Aと同じ高さに配置された例を示す。
設定部14Aは、例えば、かご4Bがかご4Aと同じ高さに配置された時に取得された学習データを破棄する。設定部14Aは、低速度の学習運転で取得された学習データを、中速度の学習運転で取得された学習データに基づいて補完する。また、設定部14Aは、中速度の学習運転で取得された学習データを、低速度の学習運転で取得された学習データに基づいて補完する。
上記構成のエレベーターシステムであれば、診断運転で異常を検出するための基準範囲を適切に設定できる。
なお、隣接する号機のかご4が停止していれば、学習運転中のかご4が受ける風圧を抑制することができる。このため、設定部14は、隣接する号機のかご4が移動中であることを条件に、学習データの使用の有無を判定しても良い。例えば、設定部14Aは、学習運転で取得された学習データのうち、移動中のかご4Bがかご4Aと同じ高さに配置された時に取得された学習データを使用せずに基準範囲を設定する。かご4Bがかご4Aと同じ高さに配置された時に取得された学習データであっても、その時にかご4Bが停止中であれば、設定部14Aはその学習データを使用して基準範囲を設定する。
本実施の形態において、学習運転を行っている号機に隣接する号機では、どのような運転が行われても良い。例えば、A号機で学習運転が行われている場合、運転制御部10Bは、かご4Bがかご4Aと同じ高さに極力配置されないことを条件に、利用者を目的階に運ぶための運転を制御する。例えば、運転制御部10Bは、登録された呼びの数が一定数以下の場合は、かご4Bがかご4Aと同じ高さに配置されないようにかご4Bの位置を制御する。運転制御部10Bは、登録された呼びの数が一定数を超えた場合のみ、かご4Bがかご4Aと同じ高さに配置され得る運転を行う。
各実施の形態において、符号9~14に示す各部は、制御装置8が有する機能を示す。図12は、制御装置8のハードウェア構成を示す図である。制御装置8は、ハードウェア資源として、例えば入出力インターフェース16とプロセッサ17とメモリ18とを含む回路を備える。記憶部9が有する機能はメモリ18によって実現される。また、制御装置8は、メモリ18に記憶されたプログラムをプロセッサ17によって実行することにより、各部10~14が有する各機能を実現する。各部10~14が有する各機能の一部又は全部をハードウェアによって実現しても良い。
また、符号2及び3に示す各部は、群管理装置1が有する機能を示す。群管理装置1のハードウェア構成は、図12に示す構成と同様である。群管理装置1が有する機能の全部又は一部を制御装置8が有していても良い。
この発明に係るエレベーターシステムは、地震の発生後に診断運転を行うものに適用できる。
1 群管理装置
2 運転指令部
3 かご位置検出部
4 かご
5 つり合いおもり
6 主ロープ
7 駆動綱車
8 制御装置
9 記憶部
10 運転制御部
11 管制運転制御部
12 診断運転制御部
13 学習運転制御部
14 設定部
15 地震検出器
16 入出力インターフェース
17 プロセッサ
18 メモリ
2 運転指令部
3 かご位置検出部
4 かご
5 つり合いおもり
6 主ロープ
7 駆動綱車
8 制御装置
9 記憶部
10 運転制御部
11 管制運転制御部
12 診断運転制御部
13 学習運転制御部
14 設定部
15 地震検出器
16 入出力インターフェース
17 プロセッサ
18 メモリ
Claims (10)
- 上下に移動する第1かごと、
地震の発生後に、前記第1かごを移動させて診断運転を行う診断運転制御手段と、
前記第1かごを移動させて学習運転を行う学習運転制御手段と、
学習運転で取得された学習データに基づいて、診断運転で異常を検出するための基準範囲を設定する設定手段と、
上下に移動し、前記第1かごと同じ高さで隣接するように配置可能な第2かごと、
前記学習運転制御手段によって学習運転が行われている間、前記第2かごが前記第1かごと同じ高さに配置されないように前記第2かごの位置を制御する運転制御手段と、
を備えたエレベーターシステム。 - 上下に移動する第1かごと、
地震の発生後に、前記第1かごを移動させて診断運転を行う診断運転制御手段と、
前記第1かごを移動させて学習運転を行う学習運転制御手段と、
学習運転で取得された学習データに基づいて、診断運転で異常を検出するための基準範囲を設定する設定手段と、
上下に移動し、前記第1かごと同じ高さで隣接するように配置可能な第2かごと、
前記学習運転制御手段によって学習運転が行われている間、前記第2かごが前記第1かごと同じ高さに配置される場合は前記第2かごを停止させる運転制御手段と、
を備えたエレベーターシステム。 - 前記運転制御手段は、前記学習運転制御手段によって学習運転が行われている間は、学習運転の開始時のみ前記第2かごを前記第1かごと同じ高さに配置させる請求項2に記載のエレベーターシステム。
- 前記運転制御手段は、前記学習運転制御手段によって学習運転が行われている間は、学習運転の終了時のみ前記第2かごを前記第1かごと同じ高さに配置させる請求項2に記載のエレベーターシステム。
- 前記運転制御手段は、前記学習運転制御手段によって学習運転が行われている間は、学習運転の開始時及び終了時のみ前記第2かごを前記第1かごと同じ高さに配置させる請求項2に記載のエレベーターシステム。
- 上下に移動する第1かごと、
地震の発生後に、前記第1かごを移動させて診断運転を行う診断運転制御手段と、
前記第1かごを移動させて学習運転を行う学習運転制御手段と、
学習運転で取得された学習データに基づいて、診断運転で異常を検出するための基準範囲を設定する設定手段と、
上下に移動し、前記第1かごと同じ高さで隣接するように配置可能な第2かごと、
前記第2かごを第1速度で移動させて通常運転を行う運転制御手段と、
を備え、
前記運転制御手段は、前記学習運転制御手段によって学習運転が行われている間、移動中の前記第2かごが前記第1かごと同じ高さに配置される場合は前記第2かごを前記第1速度より遅い第2速度で移動させるエレベーターシステム。 - 上下に移動する第1かごと、
地震の発生後に、前記第1かごを移動させて診断運転を行う診断運転制御手段と、
前記第1かごを移動させて学習運転を行う学習運転制御手段と、
学習運転で取得された学習データに基づいて、診断運転で異常を検出するための基準範囲を設定する設定手段と、
上下に移動し、前記第1かごと同じ高さで隣接するように配置可能な第2かごと、
を備え、
前記学習運転制御手段は、学習運転を行っている時に前記第2かごが前記第1かごと同じ高さに配置されると、学習運転を中止するエレベーターシステム。 - 上下に移動する第1かごと、
地震の発生後に、前記第1かごを移動させて診断運転を行う診断運転制御手段と、
前記第1かごを移動させて学習運転を行う学習運転制御手段と、
学習運転で取得された学習データに基づいて、診断運転で異常を検出するための基準範囲を設定する設定手段と、
上下に移動し、前記第1かごと同じ高さで隣接するように配置可能な第2かごと、
を備え、
前記学習運転制御手段は、学習運転を行っている時に移動中の前記第2かごが前記第1かごと同じ高さに配置されると、学習運転を中止するエレベーターシステム。 - 上下に移動する第1かごと、
地震の発生後に、前記第1かごを移動させて診断運転を行う診断運転制御手段と、
前記第1かごを移動させて学習運転を行う学習運転制御手段と、
学習運転で取得された学習データに基づいて、診断運転で異常を検出するための基準範囲を設定する設定手段と、
上下に移動し、前記第1かごと同じ高さで隣接するように配置可能な第2かごと、
を備え、
前記設定手段は、学習運転で取得された学習データのうち、前記第2かごが前記第1かごと同じ高さに配置された時に取得された学習データを使用せずに基準範囲を設定するエレベーターシステム。 - 上下に移動する第1かごと、
地震の発生後に、前記第1かごを移動させて診断運転を行う診断運転制御手段と、
前記第1かごを移動させて学習運転を行う学習運転制御手段と、
学習運転で取得された学習データに基づいて、診断運転で異常を検出するための基準範囲を設定する設定手段と、
上下に移動し、前記第1かごと同じ高さで隣接するように配置可能な第2かごと、
を備え、
前記設定手段は、学習運転で取得された学習データのうち、移動中の前記第2かごが前記第1かごと同じ高さに配置された時に取得された学習データを使用せずに基準範囲を設定するエレベーターシステム。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/570,931 US10696520B2 (en) | 2015-06-25 | 2016-06-08 | Elevator system |
CN201680029639.XA CN107614408B (zh) | 2015-06-25 | 2016-06-08 | 电梯系统 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015127385A JP6202050B2 (ja) | 2015-06-25 | 2015-06-25 | エレベータシステム |
JP2015-127385 | 2015-06-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016208394A1 true WO2016208394A1 (ja) | 2016-12-29 |
Family
ID=57585660
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/067040 WO2016208394A1 (ja) | 2015-06-25 | 2016-06-08 | エレベーターシステム |
Country Status (5)
Country | Link |
---|---|
US (1) | US10696520B2 (ja) |
JP (1) | JP6202050B2 (ja) |
CN (1) | CN107614408B (ja) |
TW (1) | TWI681920B (ja) |
WO (1) | WO2016208394A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6445658B1 (ja) * | 2017-11-17 | 2018-12-26 | 東芝エレベータ株式会社 | エレベータの遠隔診断運転方法、エレベータ制御装置及びエレベータの遠隔診断運転プログラム |
US20210339982A1 (en) * | 2020-05-01 | 2021-11-04 | Otis Elevator Company | Elevator system monitoring and control based on hoistway wind speed |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6202050B2 (ja) * | 2015-06-25 | 2017-09-27 | 三菱電機ビルテクノサービス株式会社 | エレベータシステム |
JP6445669B1 (ja) * | 2017-12-14 | 2018-12-26 | 東芝エレベータ株式会社 | エレベータの遠隔診断運転方法、エレベータ群管理装置、及びエレベータの遠隔診断運転プログラム |
CN112805233B (zh) * | 2018-10-19 | 2023-01-31 | 三菱电机株式会社 | 电梯的制动装置异常诊断系统 |
JP7315119B2 (ja) * | 2021-03-18 | 2023-07-26 | 三菱電機ビルソリューションズ株式会社 | エレベーターの監視装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005132563A (ja) * | 2003-10-30 | 2005-05-26 | Mitsubishi Electric Corp | エレベータの地震時点検装置 |
JP4826294B2 (ja) * | 2006-03-09 | 2011-11-30 | 三菱電機ビルテクノサービス株式会社 | エレベータの地震復旧運転装置及び地震復旧運転方法 |
JP5082803B2 (ja) * | 2007-11-27 | 2012-11-28 | 三菱電機ビルテクノサービス株式会社 | エレベータの制御装置及び制御方法、並びに既設エレベータの改修方法 |
JP5397075B2 (ja) * | 2009-08-06 | 2014-01-22 | 三菱電機ビルテクノサービス株式会社 | エレベータの異常音検出装置 |
JP5850801B2 (ja) * | 2012-06-15 | 2016-02-03 | 株式会社日立製作所 | エレベータおよびその速度制御方法 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55106980A (en) * | 1979-02-08 | 1980-08-16 | Mitsubishi Electric Corp | Device for running elevator at earthquake |
JPH0631142B2 (ja) * | 1986-03-27 | 1994-04-27 | 三菱電機株式会社 | エレベ−タの地震時運転装置 |
JP2596452B2 (ja) * | 1988-07-08 | 1997-04-02 | 三菱電機株式会社 | エレベ−タの地震管制運転からの復旧方法 |
FI117432B (fi) * | 2002-02-05 | 2006-10-13 | Kone Corp | Menetelmä ja järjestely hissin kaukovalvontaan |
JP5255180B2 (ja) * | 2005-12-05 | 2013-08-07 | 日本オーチス・エレベータ株式会社 | エレベーターの地震管制運転システムおよびエレベーターの地震管制運転方法 |
JP4935593B2 (ja) * | 2007-09-13 | 2012-05-23 | 三菱電機ビルテクノサービス株式会社 | エレベータの地震時基準階帰着運転装置 |
JP4597211B2 (ja) * | 2008-04-25 | 2010-12-15 | 株式会社日立製作所 | エレベーターの地震防災システム |
JP5388801B2 (ja) * | 2009-11-05 | 2014-01-15 | 株式会社日立ビルシステム | エレベータの地震復旧診断運転装置 |
JP6222162B2 (ja) * | 2015-04-20 | 2017-11-01 | 三菱電機ビルテクノサービス株式会社 | エレベータ装置及びエレベータの復旧方法 |
JP6202050B2 (ja) * | 2015-06-25 | 2017-09-27 | 三菱電機ビルテクノサービス株式会社 | エレベータシステム |
EP4354041A3 (en) * | 2017-07-14 | 2024-05-01 | Daikin Industries, Ltd. | Information providing system |
-
2015
- 2015-06-25 JP JP2015127385A patent/JP6202050B2/ja active Active
-
2016
- 2016-06-08 WO PCT/JP2016/067040 patent/WO2016208394A1/ja active Application Filing
- 2016-06-08 CN CN201680029639.XA patent/CN107614408B/zh active Active
- 2016-06-08 US US15/570,931 patent/US10696520B2/en not_active Expired - Fee Related
- 2016-06-17 TW TW105119066A patent/TWI681920B/zh active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005132563A (ja) * | 2003-10-30 | 2005-05-26 | Mitsubishi Electric Corp | エレベータの地震時点検装置 |
JP4826294B2 (ja) * | 2006-03-09 | 2011-11-30 | 三菱電機ビルテクノサービス株式会社 | エレベータの地震復旧運転装置及び地震復旧運転方法 |
JP5082803B2 (ja) * | 2007-11-27 | 2012-11-28 | 三菱電機ビルテクノサービス株式会社 | エレベータの制御装置及び制御方法、並びに既設エレベータの改修方法 |
JP5397075B2 (ja) * | 2009-08-06 | 2014-01-22 | 三菱電機ビルテクノサービス株式会社 | エレベータの異常音検出装置 |
JP5850801B2 (ja) * | 2012-06-15 | 2016-02-03 | 株式会社日立製作所 | エレベータおよびその速度制御方法 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6445658B1 (ja) * | 2017-11-17 | 2018-12-26 | 東芝エレベータ株式会社 | エレベータの遠隔診断運転方法、エレベータ制御装置及びエレベータの遠隔診断運転プログラム |
JP2019089657A (ja) * | 2017-11-17 | 2019-06-13 | 東芝エレベータ株式会社 | エレベータの遠隔診断運転方法、エレベータ制御装置及びエレベータの遠隔診断運転プログラム |
US20210339982A1 (en) * | 2020-05-01 | 2021-11-04 | Otis Elevator Company | Elevator system monitoring and control based on hoistway wind speed |
US11649138B2 (en) * | 2020-05-01 | 2023-05-16 | Otis Elevator Company | Elevator system monitoring and control based on hoistway wind speed |
Also Published As
Publication number | Publication date |
---|---|
US10696520B2 (en) | 2020-06-30 |
CN107614408A (zh) | 2018-01-19 |
US20180290860A1 (en) | 2018-10-11 |
JP6202050B2 (ja) | 2017-09-27 |
CN107614408B (zh) | 2019-05-10 |
JP2017007846A (ja) | 2017-01-12 |
TW201722832A (zh) | 2017-07-01 |
TWI681920B (zh) | 2020-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016208394A1 (ja) | エレベーターシステム | |
JP5120811B2 (ja) | エレベータの制御装置 | |
JP2009196778A (ja) | エレベータの制御装置及び制御方法 | |
JP6482988B2 (ja) | エレベータ用ドア開閉異常判定装置 | |
JP6299926B2 (ja) | エレベータの制御システム | |
JP2016069133A (ja) | エレベータ | |
JP5738948B2 (ja) | エレベータ制御装置 | |
JP2011162294A (ja) | エレベータの群管理システム | |
JP6404406B1 (ja) | エレベータ制御装置およびエレベータ制御方法 | |
JP2009215047A (ja) | エレベータの制御装置 | |
JP5720847B2 (ja) | エレベーター群管理装置 | |
JP6046222B1 (ja) | エレベータシステム | |
JP5428900B2 (ja) | エレベータの速度制御装置 | |
WO2011104816A1 (ja) | エレベータの制御装置 | |
JP5665078B2 (ja) | エレベータ | |
JP4967933B2 (ja) | エレベータの制御装置及び制御方法 | |
JP2019031382A (ja) | 群管理エレベータ装置 | |
JP2019043747A (ja) | エレベーター地震時自動診断システム | |
JP6265057B2 (ja) | エレベータシステム | |
JP6223799B2 (ja) | エレベータの速度制御方法 | |
WO2018109257A1 (en) | Elevator call controller | |
JP2011178541A (ja) | エレベータの制御システム | |
JP5955819B2 (ja) | エレベータ装置およびその運転方法 | |
WO2020003346A1 (ja) | エレベーターシステム | |
WO2011158357A1 (ja) | エレベータの制御装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16814165 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15570931 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16814165 Country of ref document: EP Kind code of ref document: A1 |