WO2011158357A1 - エレベータの制御装置 - Google Patents

エレベータの制御装置 Download PDF

Info

Publication number
WO2011158357A1
WO2011158357A1 PCT/JP2010/060260 JP2010060260W WO2011158357A1 WO 2011158357 A1 WO2011158357 A1 WO 2011158357A1 JP 2010060260 W JP2010060260 W JP 2010060260W WO 2011158357 A1 WO2011158357 A1 WO 2011158357A1
Authority
WO
WIPO (PCT)
Prior art keywords
elevator
command
elevator control
control panel
motor
Prior art date
Application number
PCT/JP2010/060260
Other languages
English (en)
French (fr)
Inventor
覚 加藤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2010/060260 priority Critical patent/WO2011158357A1/ja
Publication of WO2011158357A1 publication Critical patent/WO2011158357A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/34Details, e.g. call counting devices, data transmission from car to control system, devices giving information to the control system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/34Details, e.g. call counting devices, data transmission from car to control system, devices giving information to the control system
    • B66B1/3415Control system configuration and the data transmission or communication within the control system
    • B66B1/3423Control system configuration, i.e. lay-out

Definitions

  • the present invention relates to an elevator control device for driving a large capacity motor of an elevator.
  • Ultra-high-rise buildings require ultra-high speed and large capacity elevators.
  • High speed and large capacity elevators require large capacity hoisting machines.
  • a large capacity hoist requires a large capacity motor.
  • a control panel that drives two power converters in parallel has been proposed as one that drives a large capacity motor of an elevator.
  • a drive signal output from a dedicated control panel is distributed to the two power converters (see, for example, Patent Document 1 and Patent Document 2).
  • the method of distributing the drive signal to the two power converters is susceptible to noise. In order to reduce the influence of this noise, it is necessary to shorten the drive signal wiring as much as possible. That is, it is necessary to make two power converters adjacent to each other and to make the control panel adjacent to the two power devices. For this reason, restrictions arise in arrangement
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide an elevator control device that can reduce restrictions on the arrangement of the power conversion device and the control panel.
  • An elevator control device is provided corresponding to each of a plurality of power conversion devices that drive an elevator motor, and includes a plurality of control panels that drive the corresponding power conversion devices.
  • Embodiment 1 of this invention It is a block diagram of the control apparatus of the elevator in Embodiment 1 of this invention. It is a block diagram of the control apparatus of the elevator in Embodiment 2 of this invention. It is a block diagram of the control apparatus of the elevator in Embodiment 3 of this invention. It is a figure for demonstrating the operation mode of the control apparatus of the elevator in Embodiment 4 of this invention.
  • Embodiment 1 FIG.
  • building technology has advanced, and the number of super high-rise buildings is increasing.
  • Ultra-high-rise buildings require ultra-high speed and large capacity elevators.
  • High speed and large capacity elevators require large capacity hoisting machines.
  • a large capacity hoist requires a large capacity motor.
  • a method for driving a large-capacity motor will be described with reference to FIG.
  • FIG. 1 is a block diagram of an elevator control apparatus according to Embodiment 1 of the present invention.
  • 1 is a motor.
  • the motor 1 is a multiple winding type large capacity motor.
  • the motor 1 is provided in an elevator hoist (not shown).
  • the hoisting machine is provided in an elevator machine room (not shown) or a hoistway (not shown).
  • the motor 1 is provided with a sheave (not shown).
  • a main rope (not shown) is wound around the sheave.
  • a car (not shown) is suspended on one side of the main rope.
  • a counterweight (not shown) is suspended on the other side of the main rope.
  • the main rope moves following the rotation of the motor 1.
  • the car and the counterweight move up and down in the opposite direction.
  • the rotation amount of the motor 1 is detected by the encoder 2. Based on the detection result, the rotation of the motor 1 is corrected.
  • the motor 1 is driven by combining a small-capacity main control panel 3, a first slave control panel 4, and a second slave control panel 5. These control panels 3 to 5 are arranged in an empty machine room or a hoistway space.
  • control panels 3 to 5 are provided with inverters 6 to 8, gate drive circuits 9 to 11, and current control circuits 12 to 14, respectively.
  • Each of the inverters 6 to 8 includes a plurality of transistors. Adjacent to these inverters 6-8, gate drive circuits 9-11 are arranged.
  • the main control panel 3 is provided with an elevator control circuit 15 and a speed control circuit 16.
  • a divider 17 is provided between the speed control circuit 16 and the current control circuit 12 in the main control panel 3.
  • the elevator control circuit 15 outputs a speed command. Based on this speed command, the speed control circuit 16 outputs a torque command 18. The value of the torque command 18 is divided by a third by the divider 17.
  • One of the divided torque commands is distributed to the current control circuit 12.
  • Two of the remaining divided torque commands are distributed to the current control circuits 13 and 14 via signal lines 19 and 20, respectively.
  • Each current control circuit 12-14 outputs a current command based on the distributed torque command. Based on these current commands, the gate drive circuits 9 to 11 output drive signals to the transistors of the inverters 6 to 8, respectively. Based on these drive signals, the inverters 6 to 8 are driven. Electric power is supplied to the motor 1 by these driving. The motor 1 is rotated by this electric power.
  • the detection result of the encoder 2 is input to the speed control circuit 16 of the main control panel 3. Then, the speed control circuit 16 corrects the torque command 18 based on the input detection result. By this correction, the rotation of the motor 1 is corrected.
  • the motor 1 is driven by combining the control panels 3 to 5 having a small capacity.
  • gate drive circuits 9 to 11 are adjacent to the inverters 6 to 8. That is, it is not necessary to stretch the gate drive circuits 9 to 11 that are relatively vulnerable to noise. For this reason, the influence of noise of the drive signal can be reduced.
  • control panels 3 to 5 there are few restrictions on the connection between the control panels 3 to 5, such as the wire length. For this reason, restrictions on the arrangement of the control panels 3 to 5 can be reduced. That is, restrictions on the arrangement of the inverters 6 to 8 can be reduced. Therefore, the control panels 3 to 5 may be arranged at positions separated from each other.
  • the elevator control circuit 15 is built in the main control panel 3.
  • the first slave control panel 4 and the second slave control panel 5 do not include the elevator control circuit 15 and have the same configuration. For this reason, when there is a demand for a further large-capacity motor 1, it is possible to respond flexibly by simply increasing the number of slave control panels similar to the first slave control panel 4 and the second slave control panel 5. .
  • FIG. FIG. 2 is a configuration diagram of an elevator control device according to Embodiment 2 of the present invention.
  • symbol is attached
  • the divider 17 is built. On the other hand, the divider 17 is not built in the main control panel 3 of the second embodiment. In the second embodiment, the torque command is distributed from the current control circuit 12 to the current control circuits 13 and 14.
  • FIG. 3 is a configuration diagram of an elevator control device according to Embodiment 2 of the present invention.
  • symbol is attached
  • the divider 17 is built. Further, the first slave control panel 4 of the first embodiment includes the inverter 7, the gate drive circuit 10, and the current control circuit 13. Further, the second slave control panel 5 of the first embodiment includes the inverter 8, the gate drive circuit 11, and the current control circuit 14.
  • the divider 17 is not built in the main control panel 3 of the third embodiment.
  • the gate drive circuit 10, and the current control circuit 13 the first slave control panel 4 of the third embodiment incorporates a speed control circuit 21.
  • the gate drive circuit 11, and the current control circuit 14 the second slave control panel 5 of the third embodiment incorporates a speed control circuit 22.
  • the elevator control circuit 15 outputs a speed command 23.
  • the speed command 23 is distributed to the speed control circuit 16.
  • the speed command 23 is distributed to the speed control circuits 21 and 22 via the signal lines 24 and 25.
  • each speed control circuit 16, 21, 22 calculates a torque command.
  • the calculated torque command is input to each of the current control circuits 12 to 14, respectively.
  • Each current control circuit 12-14 outputs a current command based on each torque command. Based on these current commands, the gate drive circuits 9 to 11 output drive signals to the transistors of the inverters 6 to 8, respectively. Based on these drive signals, the inverters 6 to 8 are driven. Electric power is supplied to the motor 1 by these driving. The motor 1 is rotated by this electric power.
  • the detection result of the encoder 2 is sent to the speed control circuit 16 of the main control panel 3, the speed control circuit 21 of the first slave control panel 4, and the speed control circuit 22 of the second slave control panel 5. Entered.
  • Each speed control circuit 16, 21, and 22 corrects the torque command based on the input detection result. By this correction, the rotation of the motor 1 is corrected.
  • each speed control circuit 16, 21, 22 calculates a torque command in each control panel 3-5. For this reason, the same effect as in the first embodiment can be obtained without using the divider 17.
  • FIG. 4 is a diagram for explaining an operation mode of the elevator control apparatus according to Embodiment 3 of the present invention.
  • symbol is attached
  • the torque command 18 is output from the elevator control circuit 15 to the control panels 3-5.
  • an operation mode command is output from the elevator control circuit 15 to the main control panels 3-5.
  • FIG. 4 The horizontal axis of FIG. 4 represents time.
  • the vertical axis in FIG. 4 (a) represents the speed of the elevator.
  • FIG. 4B shows an operation mode command.
  • the vertical axis in FIG. 4C represents the torque generated by the motor 1.
  • the elevator speed repeats acceleration, constant speed, and deceleration.
  • each period such as stopping and accelerating is divided into a stopping mode, an accelerating mode, a constant speed mode, and a decelerating mode.
  • the stop mode command is “00”.
  • the in-acceleration mode command is “10”.
  • the constant speed mode command is “11”.
  • the decelerating mode command is “01”.
  • each control panel 3 to 5 outputs a torque command corresponding to each operation mode.
  • the torque command maintains the first predetermined value in the stop mode.
  • the torque command increases monotonously from the first predetermined value, maintains the second predetermined value, and then decreases monotonously to the first predetermined value.
  • the torque command maintains the first predetermined value.
  • the torque command monotonously decreases from the first predetermined value, maintains the third predetermined value, and then monotonously increases to the first predetermined value.
  • the same effect as in the first embodiment can be obtained only by using a simple operation mode command.
  • sudden noise may be superimposed on the torque command 18 in some cases.
  • vibration is generated in the elevator. This vibration affects the ride quality of the elevator.
  • the elevator control circuit 15 may output the torque command 18 and the operation mode command, and the control panels 3 to 5 may determine the consistency between the torque command 18 and the operation mode command. If this determination result is used, the torque command 18 can be supplemented by the operation mode command. This supplement can suppress the vibration of the elevator. This suppression can improve riding comfort, which is one of the reliability of the elevator.
  • the elevator control device according to the present invention can be used for an elevator that reduces restrictions on the arrangement of the power conversion device and the control panel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Elevator Control (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

 電力変換装置や制御盤の配置の制約を少なくすることができるエレベータの制御装置を提供する。このため、エレベータのモータを駆動する複数の電力変換装置の各々に対応して設けられ、対応した電力変換装置を駆動する複数の制御盤、を備える構成とした。かかる構成では、電力変換装置と制御盤とを隣接させれば、ドライブ信号のノイズの影響を少なくすることができる。これにより、電力変換装置や制御盤の配置の制約を少なくすることができる。

Description

エレベータの制御装置
 この発明は、エレベータの大容量モータを駆動するためのエレベータの制御装置に関するものである。
 近年、建築技術が進み、超々高層の建物が増えつつある。超々高層の建物には、超高速や大容量のエレベータが必要となる。超高速や大容量のエレベータには、大容量の巻上機が必要となる。大容量の巻上機には、大容量のモータが必要となる。
 ここで、エレベータの大容量モータを駆動するものとして、2つの電力変換装置を並列駆動する制御盤(ドライブ回路)が提案されている。この2つの電力変換装置には、専用に設計された制御盤から出力されたドライブ信号が分配される(例えば、特許文献1及び特許文献2参照)。
日本特開平5-260793号公報 日本特開2002-284464号公報
 しかしながら、2つの電力変換装置にドライブ信号を分配する方法は、ノイズの影響を受けやすい。このノイズの影響を少なくするためには、ドライブ信号の配線を極力短くする必要がある。すなわち、2つの電力変換装置を隣接させ、かつ、制御盤を2つの電力装置に隣接させる必要がある。このため、電力変換装置や制御盤の配置に制約が発生する。
 この発明は、上述のような課題を解決するためになされたもので、その目的は、電力変換装置や制御盤の配置の制約を少なくすることができるエレベータの制御装置を提供することである。
 この発明に係るエレベータの制御装置は、エレベータのモータを駆動する複数の電力変換装置の各々に対応して設けられ、対応した電力変換装置を駆動する複数の制御盤、を備えたものである。
 この発明によれば、電力変換装置や制御盤の配置の制約を少なくすることができる。
この発明の実施の形態1におけるエレベータの制御装置の構成図である。 この発明の実施の形態2におけるエレベータの制御装置の構成図である。 この発明の実施の形態3におけるエレベータの制御装置の構成図である。 この発明の実施の形態4におけるエレベータの制御装置の運転モードを説明するための図である。
 この発明を実施するための形態について添付の図面に従って説明する。なお、各図中、同一又は相当する部分には同一の符号を付しており、その重複説明は適宜に簡略化ないし省略する。
実施の形態1.
 近年、建築技術が進み、超々高層の建物が増えつつある。超々高層の建物には、超高速や大容量のエレベータが必要となる。超高速や大容量のエレベータには、大容量の巻上機が必要となる。大容量の巻上機には、大容量のモータが必要となる。以下、図1を用いて、大容量のモータの駆動方法を説明する。
 図1はこの発明の実施の形態1におけるエレベータの制御装置の構成図である。
 図1において、1はモータである。このモータ1は、多重巻線型の大容量モータである。このモータ1は、エレベータの巻上機(図示せず)に設けられる。この巻上機は、エレベータの機械室(図示せず)や昇降路(図示せず)に設けられる。
 モータ1には、綱車(図示せず)が設けられる。この綱車には、主索(図示せず)が巻き掛けられる。この主索の一側には、かご(図示せず)が吊持される。一方、主索の他側には、釣合いおもり(図示せず)が吊持される。
 かかる構成のエレベータにおいては、モータ1の回転に追従して、主索が移動する。この主索の移動に追従して、かごと釣合いおもりとが反対方向に昇降する。このとき、モータ1の回転量は、エンコーダ2に検出される。この検出結果に基づいて、モータ1の回転が修正される。
 本実施の形態においては、モータ1は、小容量の主制御盤3、第1従制御盤4、第2従制御盤5を組み合わせることによって駆動される。これらの制御盤3~5は、エレベータの機械室や昇降路の空きスペースに配置される。
 これらの制御盤3~5には、それぞれ、インバータ6~8、ゲートドライブ回路9~11、電流制御回路12~14が設けられる。インバータ6~8は、それぞれ、複数のトランジスタを備える。これらのインバータ6~8に隣接して、ゲートドライブ回路9~11が配置される。
 さらに、主制御盤3には、エレベータ制御回路15、速度制御回路16が設けられる。加えて、主制御盤3内では、速度制御回路16と電流制御回路12との間に、除算器17が設けられる。
 次に、主制御盤3、第1従制御盤4、第2従制御盤5によるモータ1の駆動を説明する。
 まず、エレベータ制御回路15が速度指令を出力する。この速度指令に基づいて、速度制御回路16は、トルク指令18を出力する。このトルク指令18の値は、除算器17で1/3倍に分割される。
 分割されたトルク指令の1つは、電流制御回路12に分配される。分割された残りのトルク指令の2つは、それぞれ、信号線19、20を介して、電流制御回路13、14に分配される。
 各電流制御回路12~14は、分配されたトルク指令に基づいて、電流指令を出力する。これらの電流指令に基づいて、各ゲートドライブ回路9~11は、各インバータ6~8のトランジスタにドライブ信号を出力する。これらのドライブ信号に基づいて、各インバータ6~8が駆動される。これらの駆動によって、モータ1に電力が供給される。この電力により、モータ1が回転する。
 なお、本実施の形態においては、エンコーダ2の検出結果は、主制御盤3の速度制御回路16に入力される。そして、速度制御回路16は、入力された検出結果に基づいて、トルク指令18を修正する。この修正により、モータ1の回転が修正される。
 以上で説明した実施の形態1によれば、モータ1は、小容量の制御盤3~5を組み合わせることによって駆動される。これらの制御盤3~5内では、インバータ6~8にゲートドライブ回路9~11が隣接している。すなわち、ノイズに比較的弱いゲートドライブ回路9~11を引き伸ばす必要がない。このため、ドライブ信号のノイズの影響を少なくすることができる。
 また、電線長等、制御盤3~5の間の接続の制約が少ない。このため、制御盤3~5の配置の制約を少なくすることができる。すなわち、インバータ6~8の配置の制約を少なくすることができる。従って、制御盤3~5を互いに離れた位置に配置してもよい。
 また、更なる大容量のモータ1の要求がある場合においても、制御盤の数を増やすだけで、柔軟に対応することができる。すなわち、大容量のモータ1に対応する大容量で複雑な回路となる制御盤を専用に開発する場合より、小容量の複数の制御盤3~5の方が、技術的にも信頼性においても優れている。従って、3台以上のインバータも容易に駆動することができる。
 なお、エレベータ制御回路15は、主制御盤3に内蔵される。これに対し、第1従制御盤4と第2従制御盤5は、エレベータ制御回路15を内蔵せず、同様の構成となっている。このため、更なる大容量のモータ1の要求がある場合は、第1従制御盤4と第2従制御盤5と同様の従制御盤の数を増やすだけで、柔軟に対応することができる。
実施の形態2.
 図2はこの発明の実施の形態2におけるエレベータの制御装置の構成図である。なお、実施の形態1と同一又は相当部分には同一符号を付して説明を省略する。
 実施の形態1の主制御盤3には、除算器17が内蔵されていた。一方、実施の形態2の主制御盤3には、除算器17が内蔵されていない。実施の形態2においては、トルク指令が、電流制御回路12から電流制御回路13、14に分配される。
 以上で説明した実施の形態2によれば、除算器17を利用することなく、実施の形態1と同様の効果を得ることができる。
実施の形態3.
 図3はこの発明の実施の形態2におけるエレベータの制御装置の構成図である。なお、実施の形態1と同一又は相当部分には同一符号を付して説明を省略する。
 実施の形態1の主制御盤3には、除算器17が内蔵されていた。また、実施の形態1の第1従制御盤4には、インバータ7、ゲートドライブ回路10、電流制御回路13が内蔵されていた。さらに、実施の形態1の第2従制御盤5には、インバータ8、ゲートドライブ回路11、電流制御回路14が内蔵されていた。
 一方、実施の形態3の主制御盤3には、除算器17が内蔵されていない。また、実施の形態3の第1従制御盤4には、インバータ7、ゲートドライブ回路10、電流制御回路13に加え、速度制御回路21が内蔵されている。さらに、実施の形態3の第2従制御盤5には、インバータ8、ゲートドライブ回路11、電流制御回路14に加え、速度制御回路22が内蔵されている。
 次に、主制御盤3、第1従制御盤4、第2従制御盤5によるモータ1の駆動を説明する。
 まず、エレベータ制御回路15が速度指令23を出力する。この速度指令23は、速度制御回路16に分配される。また、速度指令23は、信号線24、25を介して、速度制御回路21、22に分配される。
 これらの速度指令23に基づいて、各速度制御回路16、21、22は、トルク指令を算出する。算出されたトルク指令は、それぞれ、各電流制御回路12~14に入力される。
 各電流制御回路12~14は、各トルク指令に基づいて、電流指令を出力する。これらの電流指令に基づいて、各ゲートドライブ回路9~11は、各インバータ6~8のトランジスタにドライブ信号を出力する。これらのドライブ信号に基づいて、各インバータ6~8が駆動される。これらの駆動によって、モータ1に電力が供給される。この電力により、モータ1が回転する。
 なお、本実施の形態においては、エンコーダ2の検出結果は、主制御盤3の速度制御回路16、第1従制御盤4の速度制御回路21、第2従制御盤5の速度制御回路22に入力される。そして、各速度制御回路16、21、22は、それぞれ、入力された検出結果に基づいて、トルク指令を修正する。この修正により、モータ1の回転が修正される。
 以上で説明した実施の形態3によれば、各制御盤3~5内で、各速度制御回路16、21、22は、トルク指令を算出する。このため、除算器17を利用することなく、実施の形態1と同様の効果を得ることができる。
実施の形態4.
 図4はこの発明の実施の形態3におけるエレベータの制御装置の運転モードを説明するための図である。なお、実施の形態1と同一又は相当部分には同一符号を付して説明を省略する。
 実施の形態1においては、エレベータ制御回路15から、制御盤3~5に対して、トルク指令18が出力されていた。一方、実施の形態4においては、エレベータ制御回路15から、主制御盤3~5に対して、運転モード指令が出力されている。
 次に、図4を用いて、運転モード指令を説明する。
 図4の横軸は時間を表す。図4(a)の縦軸はエレベータの速度を表す。図4(b)は運転モード指令を表す。図4(c)の縦軸は、モータ1の発生トルクを表す。
 図4(a)に示すように、エレベータの速度は、加速、一定速、減速を繰り返す。本実施の形態においては、図4(b)に示すように、停止中、加速中等の各期間は、停止中モード、加速中モード、一定速中モード、減速中モードに区分けされる。
 具体的には、停止中モード指令は、「00」とされる。加速中モード指令は、「10」とされる。一定速中モード指令は、「11」とされる。減速中モード指令は、「01」とされる。
 ここで、各運転モード中、モータ1のトルクは、図4(c)に示すパターンとなることが好ましい。そこで、各制御盤3~5は、各運転モードに対応したトルク指令を出力するようになっている。
 具体的には、停止中モードのとき、トルク指令は、第1所定値を維持する。加速中モードのとき、トルク指令は、第1所定値から単調増加して、第2所定値を維持した後、第1所定値まで単調減少する。一定速中モードのとき、トルク指令は、第1所定値を維持する。減速中モードのとき、トルク指令は、第1所定値から単調減少して、第3所定値を維持した後、第1所定値まで単調増加する。
 以上で説明した実施の形態4によれば、簡易な運転モード指令を利用するだけで、実施の形態1と同様の効果を得ることができる。
 なお、実施の形態1において、トルク指令18に突発的なノイズが重畳する場合もある。この場合、エレベータに振動が発生する。この振動は、エレベータの乗り心地に影響する。
 そこで、エレベータ制御回路15に、トルク指令18と運転モード指令とを出力させ、各制御盤3~5で、トルク指令18と運転モード指令との整合性を判定してもよい。この判定結果を利用すれば、トルク指令18を運転モード指令によって補完することができる。この補完により、エレベータの振動を抑制することができる。この抑制により、エレベータの信頼性の1つである乗り心地を向上することができる。
 なお、実施の形態1~4においては、複数のインバータを複数の制御盤で駆動する場合を説明した。しかしながら、複数の制御盤で駆動する対象をインバータに限定する必要ない。例えば、複数のコンバータを複数の制御盤で駆動すれば、複数のコンバータに対するドライブ信号のノイズの影響を少なくすることができる。
 すなわち、複数の電力変換装置の各々に対応して制御盤を設け、各制御盤で各電力変換装置を駆動すれば、ドライブ信号のノイズの影響を少なくしつつ、電力変換装置や制御盤の配置の制約を少なくすることができる。
 以上のように、この発明に係るエレベータの制御装置によれば、電力変換装置や制御盤の配置の制約を少なくするエレベータに利用できる。
 1 モータ、 2 エンコーダ、 3 主制御盤、 4 第1従制御盤、
 5 第2従制御盤、 6~8 インバータ、 9~11 ゲートドライブ回路、
12~14 電流制御回路、 15 エレベータ制御回路、 16 速度制御回路、
17 除算器、 18 トルク指令、 19、20 信号線、
21、22 速度制御回路、 23 速度指令、 24、25 信号線

Claims (8)

  1.  エレベータのモータを駆動する複数の電力変換装置の各々に対応して設けられ、対応した電力変換装置を駆動する複数の制御盤、
    を備えたエレベータの制御装置。
  2.  前記制御盤の各々は、前記対応した電力変換装置に隣接したことを特徴とする請求項1記載のエレベータの制御装置。
  3.  前記制御盤の各々に対し、指令を分配するエレベータ制御部、
    を備え、
     前記制御盤の各々は、前記指令に基づいて、前記対応した電力変換装置を駆動することを特徴とする請求項1又は請求項2に記載のエレベータの制御装置。
  4.  前記エレベータ制御部は、前記複数の制御盤のうちの一つに内蔵されたことを特徴とする請求項3記載のエレベータの制御装置。
  5.  前記エレベータ制御部は、前記指令として、トルク指令を分配することを特徴とする請求項3又は請求項4に記載のエレベータの制御装置。
  6.  前記エレベータ制御部は、前記指令として、速度指令を分配することを特徴とする請求項3又は請求項4に記載のエレベータの制御装置。
  7.  前記エレベータ制御部は、前記指令として、前記エレベータの運転モード指令を分配することを特徴とする請求項3又は請求項4に記載のエレベータの制御装置。
  8.  前記エレベータ制御部は、前記指令として、トルク指令と前記エレベータの運転モード指令とを分配し、
     前記制御盤の各々は、前記トルク指令と前記運転モード指令との整合性を判定することを特徴とする請求項3又は請求項4に記載のエレベータの制御装置。
PCT/JP2010/060260 2010-06-17 2010-06-17 エレベータの制御装置 WO2011158357A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/060260 WO2011158357A1 (ja) 2010-06-17 2010-06-17 エレベータの制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/060260 WO2011158357A1 (ja) 2010-06-17 2010-06-17 エレベータの制御装置

Publications (1)

Publication Number Publication Date
WO2011158357A1 true WO2011158357A1 (ja) 2011-12-22

Family

ID=45347778

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/060260 WO2011158357A1 (ja) 2010-06-17 2010-06-17 エレベータの制御装置

Country Status (1)

Country Link
WO (1) WO2011158357A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000004600A (ja) * 1998-06-16 2000-01-07 Nippon Otis Elevator Co 可変速駆動装置
JP2001292587A (ja) * 2000-04-05 2001-10-19 Toshiba Corp 交流電動機制御装置
JP2002211847A (ja) * 2001-01-18 2002-07-31 Hitachi Building Systems Co Ltd エレベータの制御盤
JP2006137514A (ja) * 2004-11-11 2006-06-01 Hitachi Ltd 分割機器群式エレベータ
WO2007013448A1 (ja) * 2005-07-26 2007-02-01 Mitsubishi Electric Corporation エレベータ装置
JP2010130793A (ja) * 2008-11-27 2010-06-10 Hitachi Automotive Systems Ltd 電動機制御装置および運転制御方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000004600A (ja) * 1998-06-16 2000-01-07 Nippon Otis Elevator Co 可変速駆動装置
JP2001292587A (ja) * 2000-04-05 2001-10-19 Toshiba Corp 交流電動機制御装置
JP2002211847A (ja) * 2001-01-18 2002-07-31 Hitachi Building Systems Co Ltd エレベータの制御盤
JP2006137514A (ja) * 2004-11-11 2006-06-01 Hitachi Ltd 分割機器群式エレベータ
WO2007013448A1 (ja) * 2005-07-26 2007-02-01 Mitsubishi Electric Corporation エレベータ装置
JP2010130793A (ja) * 2008-11-27 2010-06-10 Hitachi Automotive Systems Ltd 電動機制御装置および運転制御方法

Similar Documents

Publication Publication Date Title
JP3152034B2 (ja) トラクションシーブ式エレベータ装置
WO2016208394A1 (ja) エレベーターシステム
JP2009215057A (ja) エレベータの強制減速制御システム
EP2558394B1 (en) Elevator system
US7090056B2 (en) Double deck elevator that controls a velocity change during inter-cage distance adjustment
JP2011162294A (ja) エレベータの群管理システム
JP5631489B2 (ja) エレベータ装置
JP4781853B2 (ja) エレベータ装置
JP2006321642A (ja) エレベーターのかご内荷重検出装置
WO2018016061A1 (ja) エレベーター
JP2009215047A (ja) エレベータの制御装置
JP2010215365A (ja) エレベーター制御システム
JP5428900B2 (ja) エレベータの速度制御装置
JP5554336B2 (ja) エレベータの制御装置
WO2011158357A1 (ja) エレベータの制御装置
KR101335496B1 (ko) 다이내믹 제동을 이용하는 더블랩 트랙션 엘리베이터 기계의 모듈 구성부
JP2019031382A (ja) 群管理エレベータ装置
US11078049B2 (en) Elevator system including a permanent magnet (PM) synchronous motor drive system
US11014778B2 (en) Rescue control and method of operating an elevator system including a permanent magnet (PM) synchronous motor drive system
EP2541754B1 (en) Elevator control device
JP2007008714A (ja) エレベータの制御装置及びエレベータの改修方法
US20200148506A1 (en) Method and device for monitoring an elevator system
JP6589831B2 (ja) エレベータ駆動装置及びエレベータ
JP4901446B2 (ja) エレベータ制御システム
JP2011241086A (ja) エレベータの制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10853238

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10853238

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP