WO2016187584A1 - Energy storage molecular material, crystal dielectric layer and capacitor - Google Patents
Energy storage molecular material, crystal dielectric layer and capacitor Download PDFInfo
- Publication number
- WO2016187584A1 WO2016187584A1 PCT/US2016/033628 US2016033628W WO2016187584A1 WO 2016187584 A1 WO2016187584 A1 WO 2016187584A1 US 2016033628 W US2016033628 W US 2016033628W WO 2016187584 A1 WO2016187584 A1 WO 2016187584A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- energy storage
- molecular material
- material according
- group
- storage molecular
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D519/00—Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/005—Electrodes
- H01G4/012—Form of non-self-supporting electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G4/00—Fixed capacitors; Processes of their manufacture
- H01G4/002—Details
- H01G4/018—Dielectrics
- H01G4/06—Solid dielectrics
- H01G4/14—Organic dielectrics
Definitions
- a capacitor is a passive electronic component that is used to store energy in the form of an electrostatic field, and comprises a pair of electrodes separated by a dielectric layer. When a potential difference exists between two electrodes, an electric field is present in the dielectric layer.
- An ideal capacitor is characterized by a single constant value of capacitance. This is a ratio of the electric charge on each electrode to the potential difference between them.
- the dielectric layer between electrodes passes a small amount of leakage current. Electrodes and leads introduce an equivalent series resistance, and dielectric layer has limitation to an electric field strength which results in a breakdown voltage.
- An ideal capacitor is characterized by a constant capacitance C, defined by the formula (1)
- a characteristic electric field known as the breakdown strength i3 ⁇ 4 d is an electric field in which the dielectric layer in a capacitor becomes conductive.
- the voltage at which this occurs is called the breakdown voltage of the device, and is given by the product of dielectric strength and separation between the electrodes,
- V M E M d (2)
- the maximal volumetric energy density stored in the capacitor is limited by the value proportional to ⁇ ⁇ bd , where ⁇ is dielectric permittivity and 3 ⁇ 4 d IS breakdown strength.
- ⁇ is dielectric permittivity and 3 ⁇ 4 d IS breakdown strength.
- Breakdown of the dielectric layer usually occurs when the intensity of the electric field becomes high enough to "pull" electrons from atoms of the energy storage molecular material and make them conduct an electric current from one electrode to another. Presence of impurities in the energy storage molecular material or imperfections of the crystal dielectric layer can result in an avalanche breakdown as observed in capacitor.
- an energy storage molecular material is its dielectric permittivity.
- Different types of energy storage molecular materials are used for capacitors and include ceramics, polymer film, paper, and electrolytic capacitors of different kinds.
- the most widely used film materials are polypropylene and polyester. Increase of dielectric permittivity allows increasing of volumetric energy density which makes it an important technical task.
- the water-soluble PAA served as a polymeric stabilizer, protecting the PANI particles from macroscopic aggregation.
- a very high dielectric constant of ca. 2.0*10 5 (at 1 kHz) was obtained for the composite containing 30% PANI by weight.
- Influence of the PANI content on the morphological, dielectric and electrical properties of the composites was investigated. Frequency dependence of dielectric permittivity, dielectric loss, loss tangent and electric modulus were analyzed in the frequency range from 0.5 kHz to 10 MHz.
- SEM micrograph revealed that composites with high PANI content (i.e., 20 wt%) consisted of numerous nano-scale PANI particles that were evenly distributed within the PAA matrix.
- Single crystals of doped aniline oligomers are produced via a simple solution-based self-assembly method (see, Yue Wang, et. al., "Morphological and Dimensional Control via Hierarchical Assembly of Doped Oligoaniline Single Crystals", J. Am. Chem. Soc. 2012, 134, pp. 9251-9262).
- Detailed mechanistic studies reveal that crystals of different morphologies and dimensions can be produced by a "bottom-up" hierarchical assembly where structures such as one-dimensional (1-D) nanofibers can be aggregated into higher order architectures.
- a large variety of crystalline nanostructures including 1 -D nanofibers and nano wires, 2-D nanoribbons and nanosheets, 3-D nanoplates, stacked sheets, nanoflowers, porous networks, hollow spheres, and twisted coils, can be obtained by controlling the nucleation of the crystals and the non- covalent interactions between the doped oligomers.
- These nanoscale crystals exhibit enhanced conductivity compared to their bulk counterparts as well as interesting structure-property relationships such as shape-dependent crystallinity.
- the morphology and dimension of these structures can be largely rationalized and predicted by monitoring molecule-solvent interactions via absorption studies. Using doped tetra-aniline as a model system, the results and strategies presented in this article provide insight into the general scheme of shape and size control for organic materials.
- electrochemical energy storage e.g. a battery.
- capacitors are able to store energy with very high power density, i.e. charge/recharge rates, have long shelf life with little degradation, and can be charged and discharged (cycled) hundreds of thousands or millions of times.
- capacitors often do not store energy in such little volume or weight as in a battery, or at low cost per energy stored, making capacitors impractical for applications such as in electric vehicles. Accordingly, it would be an advance in energy storage technology to provide storing energy more densely per volume and/or mass.
- aspects of the present disclosure provide solutions to the problem of the further increase of volumetric and mass density of reserved energy of the energy storage device, and at the same time reduces cost of materials and manufacturing process.
- the present disclosure provides an energy storage molecular material, crystal dielectric layer and capacitor which may solve a problem of the further increase of volumetric and mass density of reserved energy associated with some energy storage devices, and at the same time reduce cost of materials.
- the energy storage molecular material is a relatively low molecular weight dielectric crystalline material having a molecular structure.
- Other dielectric materials, e.g. and polymers are also molecular but are characterized by a distribution of molecular weight.
- the present disclosure provides an energy storage molecular material having a general molecular structural formula:
- Cor is a predominantly planar polycyclic molecular system which forms column-like supramolecular stacks by means of ⁇ - ⁇ -interaction
- P is a polarization unit providing polarization
- I is a high-breakdown insulating substituent group
- n is 1 , 2, 3, 4, 5, 6, 7 or 8
- m is 1, 2, 3, 4, 5, 6, 7 or 8.
- the present disclosure provides an energy storage molecular material having a general molecular structural formula: wherein D- moiety is a polarization unit forming column-like supramolecular stacks by means of ⁇ - ⁇ -interaction, I is a high-breakdown insulating substituent group, m is 1, 2, 3, 4, 5, 6, 7 or 8.
- the present disclosure provides a crystal dielectric layer comprising the disclosed energy storage molecular material.
- the present disclosure provides a capacitor comprising a first electrode, a second electrode, and a crystal dielectric layer disposed between said first and second electrodes.
- the electrodes are flat and planar and positioned parallel to each other.
- the crystal dielectric layer comprises the disclosed energy storage molecular material.
- FIG. 1 is a schematic diagram of a capacitor according to an aspect of the present disclosure.
- the present disclosure provides an energy storage molecular material.
- the energy storage molecular material contains three components which carry out different (various) functions.
- the predominantly planar polycyclic molecular systems (Cors) give to the energy storage molecular material an ability to form supramolecules. In turn supramolecules allow forming crystal structure of the crystal dielectric layer.
- the polarization units (P) are used for providing the molecular material with high dielectric permeability.
- polarizability such as dipole polarizability, ionic polarizability, and hyper-electronic polarizability of molecules, monomers and polymers possessing metal conductivity. All polarization units with the listed types of polarization may be used in aspects of the present disclosure.
- the insulating substituent groups (I) provide electric isolation of the supramolecules from each other in the dielectric crystal layer and provide high breakdown voltage of the energy storage molecular material.
- the planar polycyclic molecular system may comprise tetrapirolic macro-cyclic fragments having a general structural formula from the group comprising structures 1-6 as given in Table 1, where M denotes an atom of metal or two protons (2H).
- the planar polycyclic molecular system may comprise planar fused polycyclic hydrocarbons selected from the list comprising truxene, decacyclene, antanthrene, hexabenzotriphenylene, 1.2,3.4,5.6,7.8-tetra-(peri-naphthylene)- anthracene, dibenzoctacene, tetrabenzoheptacene, peropyrene, hexabenzocoronene and has a general structural formula from the group comprising structures 7 - 17 as given in Table 2.
- the planar polycyclic molecular system may comprise coronene fragments having a general structural formula from the group comprising structures 18 - 25 as given in table 3.
- the polarization unit may comprise rylene fragments having a general structural formula from the group comprising structures 33-53 as given in Table 5.
- the polarization unit may be selected from the list comprising doped oligoaniline and p-oligo-phenylene.
- the doped oligoaniline is self-doped oligoaniline with SO3- groups or COO- groups on the phenyl rings of aniline.
- the doped oligoaniline is mix-doped by acid compounds selected from the list comprising alkyl- SO 3 H acid or alkyl-COOH mixed to oligoaniline in oxidized state.
- At least one of the high-breakdown insulating substituent group may be independently selected from the list comprising -(CH 2 ) n -CH 3 ,
- the energy storage molecular material may further comprise at least one linker unit selected from the list comprising the following structures: 54- 63 as given in Table 6, which connect the predominantly planar polycyclic molecular system (Cor) with the polarization units (P).
- the predominantly planar polycyclic molecular system is perylene comprising the polarization units (P) connected to bay positions of perylene structure by linker units (L) where s is equal to 0, 1 , 2, 3, 4, 5, or 6:
- the predominantly planar polycyclic molecular system may be perylene comprising the polarization units (P) connected to apex positions of perylene structure by linker units (L) where s is equal to 0, 1 , 2, 3, 4, 5, or 6:
- the predominantly planar polycyclic molecular system may be perylene of structural formula where P are the polarization units, I are the high-breakdown insulating substituent groups:
- the predominantly planar polycyclic molecular system (Cor) may be perylene of structural formula:
- I are the high-breakdown insulating substituent groups.
- the predominantly planar polycyclic molecular system (Cor) may be perylene of structural formula:
- I are the high-breakdown insulating substituent groups.
- aspects of the present disclosure also include an energy storage molecular material having a general molecular structural formula: wherein D- moiety is a polarization unit forming column-like supramolecular stacks by means of ⁇ - ⁇ -interaction, I is a high-breakdown insulating substituent group, m is 1, 2, 3, 4, 5, 6, 7 or 8.
- D- moiety is a polarization unit forming column-like supramolecular stacks by means of ⁇ - ⁇ -interaction
- I is a high-breakdown insulating substituent group
- m is 1, 2, 3, 4, 5, 6, 7 or 8.
- the D- moiety gives to the energy storage molecular material an ability to form supramolecules. In turn supramolecules allow forming crystal structure of the crystal dielectric layer.
- the D- moiety is used for providing the molecular material with high dielectric permeability.
- the D- moiety may be selected from the list comprising doped oligoaniline and p-oligo-phenylene.
- the doped oligoaniline is self-doped oligoaniline with S03- groups or COO- groups on the phenyl rings of aniline.
- the doped oligoaniline is mix-doped by acid compounds selected from the list comprising alkyl- SO 3 H acid or alkyl-COOH mixed to oligoaniline in oxidized state.
- the energy storage molecular material further comprises at least one linker unit presented in structures 71-80 as given in Table 8, which connect the polarization units (D- moiety) with the high-breakdown insulating substituent group.
- the energy storage molecular material may comprise perylene as the D- moiety and the high-breakdown insulating substituent groups (I) may be connected to bay positions of perylene structure by linker units (L) where s is equal to
- the energy storage molecular material may comprise perylene as the D- moiety and the high-breakdown insulating substituent groups (I) may be connected to apex positions of perylene structure by linker units (L) where s is equal to 0, 1, 2, 3, 4, 5, and 6:
- the energy storage molecular material may have the general structural formula, where m is 1 :
- the energy storage molecular material may have the general structural formula, where m is 2:
- aspects of the present disclosure include a crystal dielectric layer comprising the disclosed energy storage molecular material.
- energy storage molecular material When dissolved in an appropriate solvent, such energy storage molecular material forms a colloidal system (lyotropic liquid crystal) in which molecules are aggregated into supramolecular complexes constituting kinetic units of the system.
- This lyotropic liquid crystal phase is essentially a precursor of the ordered state of the system, from which the crystal dielectric layer is formed during the subsequent alignment of the supramolecular complexes and removal of the solvent.
- a method for making the crystal dielectric layers from a colloidal system with supramolecular complexes may include the following steps: -application of the colloidal system onto a substrate.
- the colloidal system typically possesses thixotropic properties, which are provided by maintaining a preset temperature and a certain concentration of the dispersed phase;
- the degree of the external alignment should be sufficient to impart necessary orientation to the kinetic units of the colloidal system and form a structure, which serves as a base of the crystal lattice of the crystal dielectric layer;
- the molecular planes of the predominantly planar polycyclic molecular system are parallel to each other and the energy storage molecular material forms a three-dimensional crystal structure, at least in part of the crystal. Optimization of the production technology may allow the formation of the single crystal dielectric layer.
- aspects of the present disclosure include a capacitor 100 comprising a first electrode 102, a second electrode 104, and a crystal dielectric layer 106 disposed between said first and second electrodes.
- the crystal dielectric layer 106 comprises the disclosed energy storage molecular material having a general molecular structural formula:
- Such materials may be characterized by a dielectric constant ⁇ between about 100 and about 1,000,000 and a breakdown field E d between about 0.01 V/m and about 2.0 V/nm.
- the electrodes may be made of any suitable conductive material, e.g., metals, such as
- one or both electrodes may be made of a foamed metal, such as foamed Aluminum.
- the electrodes 102,104 may be flat and planar and positioned parallel to each other.
- the electrodes may be planar and parallel, but not necessarily flat, e.g., they may coiled, rolled, bent, folded, or otherwise shaped to reduce the overall form fact of the capacitor. It is also possible for the electrodes to be non-flat, non-planar, or non-parallel or some combination of two or more of these.
- a spacing d between the electrodes 102, 104 which may correspond to the thickness of the crystal dielectric layer 106 may range from about 1 ⁇ to about 10 000 ⁇ .
- the electrodes may have the same shape as each other, the same dimensions, and the same area A.
- the area A of each electrode 102,104 may range from about 0.01 m 2 to about 1000 m 2 .
- electrodes up to, e.g., 1000 m long and 1 m wide are manufacturable with roll-to-roll processes similar to those used to manufacture magnetic tape or photographic film.
- the capacitance C of the capacitor 100 may be approximated by the formula:
- the energy storage capacity U is determined by the dielectric constant ⁇ , the area A, and the breakdown field E bd .
- a capacitor or capacitor bank may be designed to have any desired energy storage capacity U.
- a capacitor in accordance with aspects of the present disclosure may have an energy storage capacity U ranging from about 500 Joules to about 2X10 16 Joules.
- a capacitor of the type described herein may have a specific energy capacity per unit mass ranging from about 10 W-h/kg up to about 100,000 W-h/kg, though implementations are not so limited.
- the example describes a method of synthesis of porphyrin - (phenyl - perylene diimide)4-compound (TPP-PDI4) represented by the general structural formula / and comprising fragments represented by structural formulas 6 and 35 (Tables 1 and 5),
- the method comprises several steps.
- porphyrin - phenyl - perylene diimideV compound (TPP-PDI 4 ) represented by the general structural formula / was carried out.
- TPP-PDI 4 phenyl - perylene diimideV compound represented by the general structural formula /
- 510,15,20-Tetrakis(p-aminophenyl)po hyrin (50 mg, 0.074 mmol), PIA (334 mg, 0.36 mmol) and imidazole (3.0 g) are added to 10 ml of pyridine.
- the reaction mixture was heated to reflux under dry nitrogen for 2 days with stirring.
- the reaction is slow (monitored by MALDI) and additional PIA (252 mg, 0.28 mmol) was added.
- TPP-PDI 4 The synthesis of TPP-PDI 4 have been performed according with known literature procedures (see, 1.) van der Boom, T.; Hayes, R. T.; Zhao, Y.; Bushard, P. J.; Weiss, E. A.; Wasielewski, M. R. J. Am. Chem. Soc. 2002, 124, 9582; 2.) M.J. Ahrens, L.E. Sinks, B. Rybtchinski, W. Liu, B.A. Jones, J.M. Giaimo, A.V. Gusev, A.J. Goshe, D M. Tiede, M R. Wasielewski, J. Am. Chem. Soc, 2004, 126, 8284).
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Organic Insulating Materials (AREA)
- Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
Priority Applications (11)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| RU2017139761A RU2017139761A (ru) | 2015-05-21 | 2016-05-20 | Молекулярный материал для накопления энергии, кристаллический диэлектрический слой и конденсатор |
| AU2016264757A AU2016264757A1 (en) | 2015-05-21 | 2016-05-20 | Energy storage molecular material, crystal dielectric layer and capacitor |
| MX2017014729A MX2017014729A (es) | 2015-05-21 | 2016-05-20 | Material molecular de almacenamiento de energia, capa dielectrica cristalina y capacitor. |
| BR112017024842A BR112017024842A2 (pt) | 2015-05-21 | 2016-05-20 | material molecular de armazenamento de energia, camada dielétrica de cristal e capacitor |
| KR1020177033571A KR102073078B1 (ko) | 2015-05-21 | 2016-05-20 | 에너지 저장 분자 물질, 결정 유전체 층 및 커패시터 |
| JP2017558522A JP6612897B2 (ja) | 2015-05-21 | 2016-05-20 | エネルギー蓄積分子材料、結晶誘電体層およびコンデンサ |
| CN201680029192.6A CN107924762B (zh) | 2015-05-21 | 2016-05-20 | 储能分子材料、结晶电介质层和电容器 |
| CA2986573A CA2986573A1 (en) | 2015-05-21 | 2016-05-20 | Energy storage molecular material, crystal dielectric layer and capacitor |
| EP16797411.2A EP3298616A4 (en) | 2015-05-21 | 2016-05-20 | Energy storage molecular material, crystal dielectric layer and capacitor |
| IL255681A IL255681A (en) | 2015-05-21 | 2017-11-15 | A molecular material stores energy, a crystalline dielectric layer and a capacitor |
| PH12017502124A PH12017502124A1 (en) | 2015-05-21 | 2017-11-21 | Energy storage molecular material, crystal dielectric layer and capacitor |
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US14/719,072 | 2015-05-21 | ||
| US14/719,072 US9932358B2 (en) | 2015-05-21 | 2015-05-21 | Energy storage molecular material, crystal dielectric layer and capacitor |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| WO2016187584A1 true WO2016187584A1 (en) | 2016-11-24 |
Family
ID=57320946
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| PCT/US2016/033628 Ceased WO2016187584A1 (en) | 2015-05-21 | 2016-05-20 | Energy storage molecular material, crystal dielectric layer and capacitor |
Country Status (13)
| Country | Link |
|---|---|
| US (3) | US9932358B2 (enExample) |
| EP (1) | EP3298616A4 (enExample) |
| JP (1) | JP6612897B2 (enExample) |
| KR (1) | KR102073078B1 (enExample) |
| CN (1) | CN107924762B (enExample) |
| AU (1) | AU2016264757A1 (enExample) |
| BR (1) | BR112017024842A2 (enExample) |
| CA (1) | CA2986573A1 (enExample) |
| IL (1) | IL255681A (enExample) |
| MX (1) | MX2017014729A (enExample) |
| PH (1) | PH12017502124A1 (enExample) |
| RU (1) | RU2017139761A (enExample) |
| WO (1) | WO2016187584A1 (enExample) |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2019209372A3 (en) * | 2017-11-20 | 2019-12-12 | Capacitor Sciences Incorporated | Plasma electric propulsion device |
Families Citing this family (19)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10340082B2 (en) | 2015-05-12 | 2019-07-02 | Capacitor Sciences Incorporated | Capacitor and method of production thereof |
| US10319523B2 (en) | 2014-05-12 | 2019-06-11 | Capacitor Sciences Incorporated | Yanli dielectric materials and capacitor thereof |
| US10347423B2 (en) | 2014-05-12 | 2019-07-09 | Capacitor Sciences Incorporated | Solid multilayer structure as semiproduct for meta-capacitor |
| JP6953306B2 (ja) | 2014-05-12 | 2021-10-27 | キャパシター サイエンシズ インコーポレイテッドCapacitor Sciences Incorporated | エネルギー蓄積装置及びその製造方法 |
| US20170301477A1 (en) | 2016-04-04 | 2017-10-19 | Capacitor Sciences Incorporated | Electro-polarizable compound and capacitor |
| EP3216037B1 (en) | 2014-11-04 | 2024-01-03 | Capacitor Sciences Incorporated | Energy storage devices and methods of production thereof |
| AU2016222597A1 (en) | 2015-02-26 | 2017-08-31 | Capacitor Sciences Incorporated | Self-healing capacitor and methods of production thereof |
| US9932358B2 (en) | 2015-05-21 | 2018-04-03 | Capacitor Science Incorporated | Energy storage molecular material, crystal dielectric layer and capacitor |
| US9941051B2 (en) * | 2015-06-26 | 2018-04-10 | Capactor Sciences Incorporated | Coiled capacitor |
| US10026553B2 (en) | 2015-10-21 | 2018-07-17 | Capacitor Sciences Incorporated | Organic compound, crystal dielectric layer and capacitor |
| US10305295B2 (en) | 2016-02-12 | 2019-05-28 | Capacitor Sciences Incorporated | Energy storage cell, capacitive energy storage module, and capacitive energy storage system |
| US10636575B2 (en) | 2016-02-12 | 2020-04-28 | Capacitor Sciences Incorporated | Furuta and para-Furuta polymer formulations and capacitors |
| US9978517B2 (en) | 2016-04-04 | 2018-05-22 | Capacitor Sciences Incorporated | Electro-polarizable compound and capacitor |
| US10566138B2 (en) | 2016-04-04 | 2020-02-18 | Capacitor Sciences Incorporated | Hein electro-polarizable compound and capacitor thereof |
| US10153087B2 (en) | 2016-04-04 | 2018-12-11 | Capacitor Sciences Incorporated | Electro-polarizable compound and capacitor |
| US10395841B2 (en) * | 2016-12-02 | 2019-08-27 | Capacitor Sciences Incorporated | Multilayered electrode and film energy storage device |
| US10163575B1 (en) | 2017-11-07 | 2018-12-25 | Capacitor Sciences Incorporated | Non-linear capacitor and energy storage device comprising thereof |
| US10403435B2 (en) | 2017-12-15 | 2019-09-03 | Capacitor Sciences Incorporated | Edder compound and capacitor thereof |
| CN109712822B (zh) * | 2018-12-27 | 2020-09-08 | 东莞理工学院 | 基于四对羟基苯基锰卟啉-邻苯二甲酸酯的超级电容器 |
Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2002026774A2 (en) * | 2000-09-27 | 2002-04-04 | The Procter & Gamble Company | Melanocortin receptor ligands |
| WO2008038047A2 (en) * | 2006-09-26 | 2008-04-03 | Cryscade Solar Limited | Organic compound, photovoltaic layer and organic photovoltaic device |
| US7837902B2 (en) * | 2004-04-13 | 2010-11-23 | E. I. Du Pont De Nemours And Company | Compositions of electrically conductive polymers and non-polymeric fluorinated organic acids |
| WO2012012672A2 (en) * | 2010-07-21 | 2012-01-26 | Cleanvolt Energy, Inc. | Use of organic and organometallic high dielectric constant material for improved energy storage devices and associated methods |
| WO2015003725A1 (en) * | 2013-07-09 | 2015-01-15 | Friedrich-Schiller-Universität Jena | Electroactive polymers, manufacturing process thereof, electrode and use thereof |
Family Cites Families (196)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB547853A (en) | 1941-03-12 | 1942-09-15 | Norman Hulton Haddock | New perylene derivatives |
| GB923148A (en) | 1960-03-24 | 1963-04-10 | Ici Ltd | New anthraquinone dyestuffs |
| US3407394A (en) | 1964-10-23 | 1968-10-22 | Xerox Corp | Selenium trapping memory |
| GB2084585B (en) | 1980-09-25 | 1983-11-30 | Dearborn Chemicals Ltd | The preparation of high molecular weight hydrophilic polymer gels |
| JPS60146405A (ja) | 1983-12-30 | 1985-08-02 | 日石三菱株式会社 | 精製された電気絶縁油および油含浸電気機器 |
| DE3401338A1 (de) | 1984-01-17 | 1985-07-25 | Merck Patent Gmbh, 6100 Darmstadt | Fluessigkristall-phase |
| US4694377A (en) | 1986-05-28 | 1987-09-15 | Aerovox Incorporated | Segmented capacitor |
| JPS6385731A (ja) | 1986-09-30 | 1988-04-16 | Mita Ind Co Ltd | 光学部支持装置 |
| EP0268354A3 (en) | 1986-10-07 | 1988-06-15 | Imperial Chemical Industries Plc | Substituted pyrazoline |
| DE3904797A1 (de) | 1989-02-17 | 1990-08-30 | Merck Patent Gmbh | Nichtlinear optische materialien mit vicinalen donor- und akzeptorgruppen |
| DE3926563A1 (de) | 1989-08-11 | 1991-02-14 | Hoechst Ag | Sulfonsaeuregruppenhaltige perylenverbindungen, verfahren zu ihrer herstellung und ihre verwendung |
| JP2786298B2 (ja) | 1990-03-02 | 1998-08-13 | 株式会社日立製作所 | フイルムコンデンサ及びその製造方法 |
| US6294593B1 (en) | 1990-12-07 | 2001-09-25 | University Of Massachusetts Lowell | Method and crosslinkable polymers for forming crosslinked second order nonlinear optical polymers |
| US5395556A (en) | 1990-12-12 | 1995-03-07 | Enichem S.P.A. | Tricyanovinyl substitution process for NLO polymers |
| US5514799A (en) | 1993-08-02 | 1996-05-07 | Enichem S.P.A. | 1,1-vinyl substituted nonlinear optical materials |
| EP0573568B1 (en) | 1991-03-01 | 2001-01-24 | University Of Florida Research Foundation, Inc. | Use of nicotinic analogs for treatment of degenerative diseases of the nervous system |
| JP3362865B2 (ja) | 1991-03-21 | 2003-01-07 | クラリアント・ゲゼルシヤフト・ミト・ベシユレンクテル・ハフツング | ペリレン化合物の分子内塩、その製造方法およびその用途 |
| JP2741804B2 (ja) | 1991-06-14 | 1998-04-22 | 松下電器産業株式会社 | コンデンサ及びその製造方法 |
| EP0585999A1 (en) | 1992-08-14 | 1994-03-09 | ENICHEM S.p.A. | Functional heteroaromatics for NLO applications |
| US5384521A (en) | 1992-09-25 | 1995-01-24 | Coe; Carlos J. | Power capacitor powertrain |
| US5312896A (en) | 1992-10-09 | 1994-05-17 | Sri International | Metal ion porphyrin-containing poly(imide) |
| US5597661A (en) | 1992-10-23 | 1997-01-28 | Showa Denko K.K. | Solid polymer electrolyte, battery and solid-state electric double layer capacitor using the same as well as processes for the manufacture thereof |
| EP0602654A1 (en) | 1992-12-18 | 1994-06-22 | ENICHEM S.p.A. | Efficient electron-donating groups for nonlinear optical applictions |
| FR2713387B1 (fr) | 1993-11-30 | 1996-01-12 | Merlin Gerin | Condenseur de puissance. |
| US6501093B1 (en) | 1994-04-04 | 2002-12-31 | Alvin M. Marks | Quantum energy storage or retrieval device |
| US5679763A (en) | 1995-02-24 | 1997-10-21 | Enichem S.P.A. | Polyquinoline-based nonlinear optical materials |
| US5583359A (en) | 1995-03-03 | 1996-12-10 | Northern Telecom Limited | Capacitor structure for an integrated circuit |
| EP0791849A1 (en) | 1996-02-26 | 1997-08-27 | ENICHEM S.p.A. | Non-linear optical compounds |
| JP3637163B2 (ja) | 1996-10-01 | 2005-04-13 | 本田技研工業株式会社 | 蓄電式電源装置 |
| US5742471A (en) | 1996-11-25 | 1998-04-21 | The Regents Of The University Of California | Nanostructure multilayer dielectric materials for capacitors and insulators |
| FR2760911B1 (fr) | 1997-03-13 | 1999-05-07 | Renault | Dispositif d'alimentation electrique avec batterie d'accumulateurs et supercondensateur |
| US6555027B2 (en) | 1998-07-27 | 2003-04-29 | Pacific Wave Industries, Inc. | Second-order nonlinear optical chromophores containing dioxine and/or bithiophene as conjugate bridge and devices incorporating the same |
| JP4103975B2 (ja) | 1998-09-10 | 2008-06-18 | 富士フイルム株式会社 | 電解質、光電気化学電池、及び電解質層を形成する方法 |
| DE10006839A1 (de) | 1999-02-17 | 2000-08-24 | Hitachi Maxell | Elektrode für einen Kondensator, Verfahren zur deren Herstellung und ein Kondensator |
| US6426861B1 (en) | 1999-06-22 | 2002-07-30 | Lithium Power Technologies, Inc. | High energy density metallized film capacitors and methods of manufacture thereof |
| JP2001093778A (ja) | 1999-09-20 | 2001-04-06 | Toray Ind Inc | 金属蒸着フィルムおよびそれを用いたコンデンサ |
| US6426863B1 (en) | 1999-11-25 | 2002-07-30 | Lithium Power Technologies, Inc. | Electrochemical capacitor |
| US6341056B1 (en) | 2000-05-17 | 2002-01-22 | Lsi Logic Corporation | Capacitor with multiple-component dielectric and method of fabricating same |
| UA74018C2 (en) | 2000-10-10 | 2005-10-17 | American Electric Power Compan | Power-accumulating system for power supply of consumers in peak demands |
| ATE336791T1 (de) | 2000-10-25 | 2006-09-15 | Maxwell Technologies Sa | Aus übereinander gewickelten bändern bestehende vorrichtung zur elektrischen energiespeicherung und herstellungsverfahren |
| US6391104B1 (en) | 2000-12-01 | 2002-05-21 | Bayer Corporation | Perylene pigment compositions |
| US7033406B2 (en) | 2001-04-12 | 2006-04-25 | Eestor, Inc. | Electrical-energy-storage unit (EESU) utilizing ceramic and integrated-circuit technologies for replacement of electrochemical batteries |
| JP4633960B2 (ja) | 2001-05-10 | 2011-02-16 | 日清紡ホールディングス株式会社 | 自動車用蓄電システム |
| DE60212668T2 (de) | 2001-09-27 | 2007-06-21 | 3M Innovative Properties Co., St. Paul | Halbleiter auf basis von substituiertem pentacen |
| UA77459C2 (en) | 2001-11-03 | 2006-12-15 | Thin-film capacitor and a method for producing the capacitor | |
| TWI266342B (en) | 2001-12-03 | 2006-11-11 | Tdk Corp | Multilayer capacitor |
| RU2199450C1 (ru) | 2002-01-08 | 2003-02-27 | Московский государственный авиационный институт (технический университет) | Источник энергоснабжения мобильного объекта |
| EP1476885A1 (en) | 2002-01-24 | 2004-11-17 | Toray Plastics (America), Inc. | Polymer coated capacitor films |
| DE10203918A1 (de) | 2002-01-31 | 2003-08-21 | Bayerische Motoren Werke Ag | Elektrischer Speicher in einem Kraftfahrzeug, insbesondere für einen Hybridantrieb |
| US6519136B1 (en) | 2002-03-29 | 2003-02-11 | Intel Corporation | Hybrid dielectric material and hybrid dielectric capacitor |
| US7371336B2 (en) | 2002-09-24 | 2008-05-13 | E.I. Du Pont Nemours And Company | Water dispersible polyanilines made with polymeric acid colloids for electronics applications |
| DE10248722A1 (de) | 2002-10-18 | 2004-05-06 | Infineon Technologies Ag | Integrierte Schaltungsanordnung mit Kondensator und Herstellungsverfahren |
| WO2004070749A1 (ja) | 2003-02-07 | 2004-08-19 | Showa Denko K.K. | コンデンサおよび該コンデンサの製造方法 |
| JP4734823B2 (ja) | 2003-06-11 | 2011-07-27 | 富士通株式会社 | 膜多層構造体及びこれを用いるアクチュエータ素子、容量素子、フィルタ素子 |
| US7025900B2 (en) | 2003-06-25 | 2006-04-11 | Nitto Denko Corporation | Perylenetetracarboxylic acid dibenzimidazole sulfoderivatives containing oxo-groups in the perylene core which form part of a para-quinoid system of bonds, lyotropic liquid crystal systems and anisotropic films containing the same, and methods for making the same |
| JP4715079B2 (ja) | 2003-06-26 | 2011-07-06 | パナソニック株式会社 | 車両用電源装置 |
| CN1591936A (zh) | 2003-09-05 | 2005-03-09 | 日本电池株式会社 | 含锂物质及含该物质的非水电解质电化学储能装置的制法 |
| WO2005089094A2 (en) | 2003-11-21 | 2005-09-29 | The Board Of Regents Of The University And Community College System Of Nevada | Materials and methods for the preparation of anisotropically-ordered solids |
| JP4820287B2 (ja) | 2004-02-25 | 2011-11-24 | 旭化成株式会社 | ポリアセン化合物及び有機半導体薄膜 |
| WO2005124453A2 (en) | 2004-06-14 | 2005-12-29 | Georgia Tech Research Corporation | Perylene charge-transport materials, methods of fabrication thereof, and methods of use thereof |
| US7466536B1 (en) | 2004-08-13 | 2008-12-16 | Eestor, Inc. | Utilization of poly(ethylene terephthalate) plastic and composition-modified barium titanate powders in a matrix that allows polarization and the use of integrated-circuit technologies for the production of lightweight ultrahigh electrical energy storage units (EESU) |
| US7211824B2 (en) | 2004-09-27 | 2007-05-01 | Nitto Denko Corporation | Organic semiconductor diode |
| DE102004048729A1 (de) | 2004-10-05 | 2006-04-06 | Basf Ag | Verfahren zur Herstellung von halogenierten Rylencarbonsäureimiden |
| JP2006147606A (ja) | 2004-11-16 | 2006-06-08 | Nec Toppan Circuit Solutions Inc | シート状コンデンサとその製造方法 |
| US7428137B2 (en) | 2004-12-03 | 2008-09-23 | Dowgiallo Jr Edward J | High performance capacitor with high dielectric constant material |
| US7342755B1 (en) | 2005-01-26 | 2008-03-11 | Horvat Branimir L | High energy capacitor and charging procedures |
| DE102005010162B4 (de) | 2005-03-02 | 2007-06-14 | Ormecon Gmbh | Leitfähige Polymere aus Teilchen mit anisotroper Morphologie |
| DE102005018172A1 (de) | 2005-04-19 | 2006-10-26 | Conti Temic Microelectronic Gmbh | Leistungskondensator |
| JP3841814B1 (ja) | 2005-04-28 | 2006-11-08 | 三井金属鉱業株式会社 | キャパシタ層形成材及びそのキャパシタ層形成材の製造方法 |
| CN101213638B (zh) | 2005-06-30 | 2011-07-06 | L·皮尔·德罗什蒙 | 电子元件及制造方法 |
| US7244999B2 (en) | 2005-07-01 | 2007-07-17 | Alps Electric Co., Ltd. | Capacitor applicable to a device requiring large capacitance |
| DE102005053995A1 (de) | 2005-11-10 | 2007-05-24 | Basf Ag | Verwendung von Rylenderivaten als Photosensibilisatoren in Solarzellen |
| JP4241714B2 (ja) | 2005-11-17 | 2009-03-18 | パナソニック電工株式会社 | 電動工具用の電池パック |
| DE102005055075A1 (de) | 2005-11-18 | 2007-05-24 | Bayerische Motoren Werke Ag | Kraftfahrzeug mit einer Kondensatoreinrichtung zur Speicherung elektrischer Energie |
| CN101356603B (zh) | 2005-12-28 | 2012-11-21 | 宾夕法尼亚州研究基金会 | 基于作为介质材料的独特聚(1,1-二氟乙烯)共聚物和三元共聚物的快速放电和高效率的高电能密度聚合物电容器 |
| US7460352B2 (en) | 2006-01-09 | 2008-12-02 | Faradox Energy Storage, Inc. | Flexible dielectric film and method for making |
| US20070181973A1 (en) | 2006-02-06 | 2007-08-09 | Cheng-Chou Hung | Capacitor structure |
| NZ570556A (en) | 2006-03-01 | 2010-05-28 | Basf Se | Use of rylenes as markers for liquids |
| JP2007287829A (ja) | 2006-04-14 | 2007-11-01 | Matsushita Electric Ind Co Ltd | 金属化フィルムコンデンサ |
| JP4501893B2 (ja) | 2006-04-24 | 2010-07-14 | トヨタ自動車株式会社 | 電源システムおよび車両 |
| JP5470606B2 (ja) | 2006-05-04 | 2014-04-16 | ビーエーエスエフ ソシエタス・ヨーロピア | 有機電界効果トランジスタの製造方法 |
| US20080002329A1 (en) | 2006-07-02 | 2008-01-03 | Pohm Arthur V | High Dielectric, Non-Linear Capacitor |
| US7990679B2 (en) | 2006-07-14 | 2011-08-02 | Dais Analytic Corporation | Nanoparticle ultracapacitor |
| GB0616358D0 (en) | 2006-08-16 | 2006-09-27 | Crysoptix Ltd | Anisotropic polymer film and method of production thereof |
| GB0622150D0 (en) | 2006-11-06 | 2006-12-20 | Kontrakt Technology Ltd | Anisotropic semiconductor film and method of production thereof |
| US7994657B2 (en) | 2006-12-22 | 2011-08-09 | Solarbridge Technologies, Inc. | Modular system for unattended energy generation and storage |
| CN101622253B (zh) | 2007-01-08 | 2015-04-29 | 破立纪元有限公司 | 用于制备基于芳烃-双(二羧酰亚胺)的半导体材料的方法和用于制备它们的相关中间体 |
| FR2912265B1 (fr) | 2007-02-06 | 2009-04-24 | Batscap Sa | Batterie a modules de cellules en serie, et vehicule equipe de celle-ci |
| WO2009005555A2 (en) | 2007-04-11 | 2009-01-08 | The Penn State Research Foundation | Methods to improve the efficiency and reduce the energy losses in high energy density capacitor films and articles comprising the same |
| US7804678B2 (en) | 2007-04-25 | 2010-09-28 | Industrial Technology Research Institute | Capacitor devices |
| JP4825167B2 (ja) * | 2007-05-11 | 2011-11-30 | 株式会社リコー | 電子写真感光体、画像形成装置及びプロセスカートリッジ |
| US7745821B2 (en) | 2007-05-15 | 2010-06-29 | Eastman Kodak Company | Aryl dicarboxylic acid diimidazole-based compounds as n-type semiconductor materials for thin film transistors |
| US20100193777A1 (en) | 2007-09-12 | 2010-08-05 | Fujifilm Corporation | Method of producing a desubstituted compound, organic semiconductor film and method of producing the same |
| EP2215168B1 (en) | 2007-11-12 | 2014-07-30 | CoatZyme Aps | Anti-fouling composition comprising an aerogel |
| EP2062944A1 (en) | 2007-11-20 | 2009-05-27 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. | Water-soluble rylene dyes, methods for preparing the same and uses thereof as fluorescent labels for biomolecules |
| DE102008061452A1 (de) | 2007-12-12 | 2010-07-08 | Langhals, Heinz, Prof. Dr. | Imidazoloperylenbisimide |
| FR2925790B1 (fr) | 2007-12-19 | 2010-01-15 | Sagem Defense Securite | Convertisseur alternatif/continu a isolement galvanique |
| KR101638199B1 (ko) | 2008-02-05 | 2016-07-08 | 바스프 에스이 | 페릴렌 반도체 및 이의 제조 방법 및 용도 |
| GB0802912D0 (en) | 2008-02-15 | 2008-03-26 | Carben Semicon Ltd | Thin-film transistor, carbon-based layer and method of production thereof |
| GB0804082D0 (en) | 2008-03-04 | 2008-04-09 | Crysoptix Kk | Polycyclic organic compounds, polarizing elements and method of production t hereof |
| EP2108673A1 (en) | 2008-04-11 | 2009-10-14 | DuPont Teijin Films U.S. Limited Partnership | Plastic film having a high breakdown voltage |
| WO2009144205A1 (en) * | 2008-05-30 | 2009-12-03 | Basf Se | Rylene-based semiconductor materials and methods of preparation and use thereof |
| US20100173134A1 (en) | 2008-06-26 | 2010-07-08 | Carben Semicon Limited | Film and Device Using Layer Based on Ribtan Material |
| JP5588443B2 (ja) | 2008-08-19 | 2014-09-10 | クリスオプティクス株式会社 | 有機化合物の組成物、光学フィルムおよびその製造方法 |
| JP4868183B2 (ja) | 2008-09-30 | 2012-02-01 | 日産化学工業株式会社 | 新規なフッ素化テトラカルボン酸二無水物、これより得られるポリイミド前駆体、ポリイミドとその利用 |
| US8611068B2 (en) | 2008-10-16 | 2013-12-17 | Case Western Reserve University | Multilayer polymer dialectric film having a charge-delocalizing interface |
| JP5024454B2 (ja) | 2008-10-31 | 2012-09-12 | トヨタ自動車株式会社 | 電動車両の電源システムおよびその制御方法 |
| US20100157527A1 (en) | 2008-12-23 | 2010-06-24 | Ise Corporation | High-Power Ultracapacitor Energy Storage Pack and Method of Use |
| JP2010160989A (ja) | 2009-01-09 | 2010-07-22 | Toyo Ink Mfg Co Ltd | 導電性被膜の製造方法 |
| US8524398B2 (en) | 2009-04-01 | 2013-09-03 | The Board Of Trustees Of The Leland Stanford Junior University | All-electron battery having area-enhanced electrodes |
| WO2010083055A1 (en) | 2009-01-16 | 2010-07-22 | The Board Of Trustees Of The Leland Stanford Junior University | Quantum dot ultracapacitor and electron battery |
| KR20100096625A (ko) | 2009-02-25 | 2010-09-02 | 삼성전기주식회사 | 커패시터 및 그 제조방법 |
| TWI471424B (zh) | 2009-03-30 | 2015-02-01 | 三菱綜合材料股份有限公司 | 鋁多孔質燒結體的製造方法及鋁多孔質燒結體 |
| KR101662863B1 (ko) | 2009-03-31 | 2016-10-07 | 히다찌 겐끼 가부시키가이샤 | 전원 시스템을 구비한 건설 기계 및 산업 차량 |
| US7989919B2 (en) | 2009-06-03 | 2011-08-02 | Infineon Technologies Ag | Capacitor arrangement and method for making same |
| KR101482300B1 (ko) | 2009-06-15 | 2015-01-14 | 학 혼 차우 | 무정지형 모듈러 배터리 관리 시스템 |
| US7911029B2 (en) | 2009-07-11 | 2011-03-22 | Ji Cui | Multilayer electronic devices for imbedded capacitor |
| JP2011029442A (ja) | 2009-07-27 | 2011-02-10 | Daikin Industries Ltd | フィルムコンデンサ用フィルム、該フィルムを用いたフィルムコンデンサ、該フィルム及びフィルムコンデンサの製造方法 |
| US20110079773A1 (en) | 2009-08-21 | 2011-04-07 | Wasielewski Michael R | Selectively Functionalized Rylene Imides and Diimides |
| WO2011056903A1 (en) | 2009-11-03 | 2011-05-12 | Henry Tran | Compositions and methods for generating conductive films and coatings of oligomers |
| CN101786864B (zh) | 2009-12-22 | 2012-12-05 | 广东风华高新科技股份有限公司 | 一种与镍内电极匹配的陶瓷介质材料及所得电容器的制备方法 |
| CN102666716A (zh) | 2009-12-28 | 2012-09-12 | 阿克佐诺贝尔化学国际公司 | 官能化的聚乙烯醇膜 |
| US20110228442A1 (en) | 2010-03-16 | 2011-09-22 | Strategic Polymer Sciences, Inc. | Capacitor having high temperature stability, high dielectric constant, low dielectric loss, and low leakage current |
| DE102010012949A1 (de) | 2010-03-26 | 2011-09-29 | Siemens Aktiengesellschaft | Kondensatormodul |
| US20110269966A1 (en) * | 2010-04-30 | 2011-11-03 | Deepak Shukla | Semiconducting articles |
| KR20110122051A (ko) | 2010-05-03 | 2011-11-09 | 제일모직주식회사 | 유기광전소자용 화합물 및 이를 포함하는 유기광전소자 |
| US20120008251A1 (en) | 2010-07-12 | 2012-01-12 | Wei-Ching Yu | Film capacitors comprising melt-stretched films as dielectrics |
| US8929054B2 (en) | 2010-07-21 | 2015-01-06 | Cleanvolt Energy, Inc. | Use of organic and organometallic high dielectric constant material for improved energy storage devices and associated methods |
| JP5562169B2 (ja) | 2010-08-09 | 2014-07-30 | 小島プレス工業株式会社 | 積層形フィルムコンデンサ及びその製造方法 |
| JP5257708B2 (ja) | 2010-08-25 | 2013-08-07 | 株式会社豊田中央研究所 | ナノ複合体およびそれを含む分散液 |
| PL3222266T3 (pl) | 2010-08-27 | 2018-10-31 | Sienna Biopharmaceuticals, Inc. | Kompozycje i sposoby do termomodulacji celowanej |
| US9572880B2 (en) | 2010-08-27 | 2017-02-21 | Sienna Biopharmaceuticals, Inc. | Ultrasound delivery of nanoparticles |
| US20120056600A1 (en) | 2010-09-03 | 2012-03-08 | Nevin Donald M | Capacitor vehicle having high speed charging ability and method of operating a capacitor vehicle |
| EP2638126B1 (en) | 2010-11-09 | 2015-02-18 | Crysoptix K.K. | Negative dispersion retardation plate and achromatic circular polarizer |
| US8766566B2 (en) | 2010-12-20 | 2014-07-01 | Nippon Soken, Inc. | System for causing temperature rise in battery |
| DE102010063718A1 (de) | 2010-12-21 | 2012-06-21 | Siemens Aktiengesellschaft | Dielektrische Schicht für ein elektrisches Bauelement, elektrisches Bauelement mit dielektrischer Schicht und Verfahren zum Herstellen eines elektrischen Bauelements mit dielektrischer Schicht |
| US9193727B2 (en) | 2011-03-10 | 2015-11-24 | Cryscade Solar Limited | Organic compound and photovoltaic device comprising the same |
| US9457496B2 (en) | 2011-03-23 | 2016-10-04 | Akron Polymer Systems, Inc. | Aromatic polyamide films for transparent flexible substrates |
| EP2697236A1 (en) * | 2011-04-15 | 2014-02-19 | Georgia Tech Research Corporation | Stannyl derivatives of naphthalene diimides and related compositions and methods |
| US8922063B2 (en) | 2011-04-27 | 2014-12-30 | Green Charge Networks, Llc | Circuit for rendering energy storage devices parallelable |
| DE102011101304A1 (de) | 2011-05-12 | 2012-11-15 | Hans-Josef Sterzel | Halbleiterspeicher hoher Energiedichte |
| WO2012162500A2 (en) | 2011-05-24 | 2012-11-29 | Fastcap Systems Corporation | Power system for high temperature applications with rechargeable energy storage |
| WO2013005468A1 (ja) | 2011-07-05 | 2013-01-10 | 株式会社村田製作所 | 誘電体薄膜、誘電体薄膜素子および薄膜コンデンサ |
| WO2013009772A1 (en) | 2011-07-11 | 2013-01-17 | Quantumscape Corporation | Solid state energy storage devices |
| MX344931B (es) | 2011-09-09 | 2017-01-11 | Sz Dji Technology Co Ltd | Plataforma de doble eje para su uso en un pequeño vehículo aéreo no tripulado y plataforma de triple eje para su uso en un pequeño vehículo aéreo no tripulado. |
| WO2013033954A1 (zh) | 2011-09-09 | 2013-03-14 | 深圳市大疆创新科技有限公司 | 陀螺式动态自平衡云台 |
| WO2013085467A1 (en) | 2011-12-09 | 2013-06-13 | Nanyang Technological University | Graft copolymers of a poly(vinylidene fluoride)-based polymer and at least one type of electrically conductive polymer, and methods for forming the graft copolymers |
| US9508488B2 (en) | 2012-01-10 | 2016-11-29 | Samsung Electronics Co., Ltd. | Resonant apparatus for wireless power transfer |
| WO2013110273A1 (en) | 2012-01-27 | 2013-08-01 | Kk-Electronic A/S | Control system for power stacks in a power converter, power converter with such control system and wind turbine with such power converter |
| US9087645B2 (en) | 2012-01-30 | 2015-07-21 | QuantrumScape Corporation | Solid state energy storage devices |
| FR2987180B1 (fr) | 2012-02-16 | 2014-12-05 | Alstom Transport Sa | Chaine de stockage d'energie pour vehicule, comprenant au moins un module de supercondensateurs, systeme de stockage d'energie comprenant une telle chaine et vehicule ferroviaire comprenant un tel systeme |
| US20130224473A1 (en) | 2012-02-23 | 2013-08-29 | Research Foundation Of The City University Of New York | Prevention of hydrophobic dewetting through nanoparticle surface treatment |
| JP2013247206A (ja) | 2012-05-25 | 2013-12-09 | Kojima Press Industry Co Ltd | フィルムコンデンサ素子及びフィルムコンデンサ並びにフィルムコンデンサ素子の製造方法 |
| US20130334657A1 (en) | 2012-06-15 | 2013-12-19 | Taiwan Semiconductor Manufacturing Co., Ltd. | Planar interdigitated capacitor structures and methods of forming the same |
| TWI450907B (zh) | 2012-06-26 | 2014-09-01 | Far Eastern New Century Corp | 製造導電聚合物分散液的方法、由其形成之導電聚合物材料及利用該導電聚合物材料之固態電容 |
| GB201212487D0 (en) | 2012-07-13 | 2012-08-29 | Secr Defence | A device for measuring the hydration level of humans |
| RU2512880C2 (ru) | 2012-08-16 | 2014-04-10 | Общество с ограниченной ответственностью "Системы Постоянного Тока" | Система накопления электрической энергии на базе аккумуляторных батарей и суперконденсатора с функцией улучшения качества сети |
| DE102012016438A1 (de) | 2012-08-18 | 2014-02-20 | Audi Ag | Energiespeicheranordnung und Kraftfahrzeug |
| CN203118781U (zh) | 2012-08-21 | 2013-08-07 | 深圳圣融达科技有限公司 | 一种多层复合介质薄膜电容器 |
| CN104718246B (zh) | 2012-10-09 | 2017-03-08 | 沙特基础工业公司 | 基于石墨烯的复合材料、其制造方法及应用 |
| US9805869B2 (en) | 2012-11-07 | 2017-10-31 | Carver Scientific, Inc. | High energy density electrostatic capacitor |
| US20150302990A1 (en) | 2012-11-21 | 2015-10-22 | 3M Innovative Properties Company | Multilayer film including first and second dielectric layers |
| US20140158340A1 (en) | 2012-12-11 | 2014-06-12 | Caterpillar Inc. | Active and passive cooling for an energy storage module |
| JP2014139296A (ja) | 2012-12-21 | 2014-07-31 | Toray Ind Inc | 芳香族ポリアミド、芳香族ポリアミドフィルムおよび積層体 |
| US9928966B2 (en) | 2012-12-28 | 2018-03-27 | Intel Corporation | Nanostructured electrolytic energy storage devices |
| WO2014130046A1 (en) | 2013-02-25 | 2014-08-28 | Ut-Battelle, Llc | Buffering energy storage systems for reduced grid and vehicle battery stress for in-motion wireless power transfer systems |
| TWI478185B (zh) | 2013-03-12 | 2015-03-21 | Univ Nat Taiwan | 超級電容器及其製造方法 |
| US8818601B1 (en) | 2013-03-14 | 2014-08-26 | GM Global Technology Operations LLC | Extended-range electric vehicle with supercapacitor range extender |
| WO2014145559A2 (en) | 2013-03-15 | 2014-09-18 | Cleanvolt Energy, Inc. | Improved electrodes and currents through the use of organic and organometallic high dielectric constant materials in energy storage devices and associated methods |
| CN103258656B (zh) | 2013-04-25 | 2015-08-19 | 华中科技大学 | 一种基于泡沫镍的超级电容器电极的制备方法及其产品 |
| EP2821640B1 (en) | 2013-07-05 | 2016-12-21 | Alstom Renovables España, S.L. | Pitch drive system with a switching device controlled back-up power supply and method thereof |
| JP5867459B2 (ja) | 2013-07-08 | 2016-02-24 | トヨタ自動車株式会社 | 電力システム |
| CN203377785U (zh) | 2013-07-15 | 2014-01-01 | 深圳桑达国际电源科技有限公司 | 一种充放电式dc-dc转换电路及新能源发电系统 |
| US9592744B2 (en) | 2013-12-06 | 2017-03-14 | SZ DJI Technology Co., Ltd | Battery and unmanned aerial vehicle with the battery |
| CN103986224A (zh) | 2014-03-14 | 2014-08-13 | 北京工业大学 | 一种风光电互补型移动电源 |
| JP6953306B2 (ja) | 2014-05-12 | 2021-10-27 | キャパシター サイエンシズ インコーポレイテッドCapacitor Sciences Incorporated | エネルギー蓄積装置及びその製造方法 |
| US10340082B2 (en) | 2015-05-12 | 2019-07-02 | Capacitor Sciences Incorporated | Capacitor and method of production thereof |
| MX2016014827A (es) | 2014-05-12 | 2017-03-10 | Capacitor Sciences Inc | Capacitor y metodo de produccion del mismo. |
| US10319523B2 (en) | 2014-05-12 | 2019-06-11 | Capacitor Sciences Incorporated | Yanli dielectric materials and capacitor thereof |
| EP3246776B1 (en) | 2014-05-30 | 2020-11-18 | SZ DJI Technology Co., Ltd. | Systems and methods for uav docking |
| EP3216037B1 (en) | 2014-11-04 | 2024-01-03 | Capacitor Sciences Incorporated | Energy storage devices and methods of production thereof |
| AU2016222597A1 (en) | 2015-02-26 | 2017-08-31 | Capacitor Sciences Incorporated | Self-healing capacitor and methods of production thereof |
| US20180137984A1 (en) | 2015-05-21 | 2018-05-17 | Capacitor Sciences Incorporated | Solid state energy storage device |
| US9932358B2 (en) | 2015-05-21 | 2018-04-03 | Capacitor Science Incorporated | Energy storage molecular material, crystal dielectric layer and capacitor |
| US9941051B2 (en) | 2015-06-26 | 2018-04-10 | Capactor Sciences Incorporated | Coiled capacitor |
| US10460873B2 (en) | 2015-11-09 | 2019-10-29 | Facebook Technologies, Llc | Enhancing dielectric constants of elastomer sheets |
| US10636575B2 (en) | 2016-02-12 | 2020-04-28 | Capacitor Sciences Incorporated | Furuta and para-Furuta polymer formulations and capacitors |
| US20170236642A1 (en) | 2016-02-12 | 2017-08-17 | Capacitor Sciences Incorporated | para-FURUTA POLYMER AND CAPACITOR |
| US20170236641A1 (en) | 2016-02-12 | 2017-08-17 | Capacitor Sciences Incorporated | Furuta co-polymer and capacitor |
| US20180126857A1 (en) | 2016-02-12 | 2018-05-10 | Capacitor Sciences Incorporated | Electric vehicle powered by capacitive energy storage modules |
| US20170232853A1 (en) | 2016-02-12 | 2017-08-17 | Capacitor Sciences Incorporated | Electric vehicle powered by capacitive energy storage modules |
| US20180122143A1 (en) | 2016-03-15 | 2018-05-03 | Sutherland Cook Ellwood, JR. | Hybrid photonic vr/ar systems |
| US9978517B2 (en) | 2016-04-04 | 2018-05-22 | Capacitor Sciences Incorporated | Electro-polarizable compound and capacitor |
| US10566138B2 (en) | 2016-04-04 | 2020-02-18 | Capacitor Sciences Incorporated | Hein electro-polarizable compound and capacitor thereof |
| US10153087B2 (en) | 2016-04-04 | 2018-12-11 | Capacitor Sciences Incorporated | Electro-polarizable compound and capacitor |
| US10395841B2 (en) | 2016-12-02 | 2019-08-27 | Capacitor Sciences Incorporated | Multilayered electrode and film energy storage device |
-
2015
- 2015-05-21 US US14/719,072 patent/US9932358B2/en active Active
-
2016
- 2016-05-20 AU AU2016264757A patent/AU2016264757A1/en not_active Abandoned
- 2016-05-20 MX MX2017014729A patent/MX2017014729A/es unknown
- 2016-05-20 EP EP16797411.2A patent/EP3298616A4/en not_active Withdrawn
- 2016-05-20 WO PCT/US2016/033628 patent/WO2016187584A1/en not_active Ceased
- 2016-05-20 CN CN201680029192.6A patent/CN107924762B/zh not_active Expired - Fee Related
- 2016-05-20 RU RU2017139761A patent/RU2017139761A/ru not_active Application Discontinuation
- 2016-05-20 CA CA2986573A patent/CA2986573A1/en not_active Abandoned
- 2016-05-20 BR BR112017024842A patent/BR112017024842A2/pt not_active Application Discontinuation
- 2016-05-20 JP JP2017558522A patent/JP6612897B2/ja not_active Expired - Fee Related
- 2016-05-20 KR KR1020177033571A patent/KR102073078B1/ko not_active Expired - Fee Related
-
2017
- 2017-11-15 IL IL255681A patent/IL255681A/en unknown
- 2017-11-21 PH PH12017502124A patent/PH12017502124A1/en unknown
-
2018
- 2018-04-03 US US15/944,517 patent/US10597407B2/en active Active
-
2020
- 2020-02-14 US US16/790,929 patent/US20200255453A1/en not_active Abandoned
Patent Citations (5)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2002026774A2 (en) * | 2000-09-27 | 2002-04-04 | The Procter & Gamble Company | Melanocortin receptor ligands |
| US7837902B2 (en) * | 2004-04-13 | 2010-11-23 | E. I. Du Pont De Nemours And Company | Compositions of electrically conductive polymers and non-polymeric fluorinated organic acids |
| WO2008038047A2 (en) * | 2006-09-26 | 2008-04-03 | Cryscade Solar Limited | Organic compound, photovoltaic layer and organic photovoltaic device |
| WO2012012672A2 (en) * | 2010-07-21 | 2012-01-26 | Cleanvolt Energy, Inc. | Use of organic and organometallic high dielectric constant material for improved energy storage devices and associated methods |
| WO2015003725A1 (en) * | 2013-07-09 | 2015-01-15 | Friedrich-Schiller-Universität Jena | Electroactive polymers, manufacturing process thereof, electrode and use thereof |
Non-Patent Citations (1)
| Title |
|---|
| See also references of EP3298616A4 * |
Cited By (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2019209372A3 (en) * | 2017-11-20 | 2019-12-12 | Capacitor Sciences Incorporated | Plasma electric propulsion device |
Also Published As
| Publication number | Publication date |
|---|---|
| BR112017024842A2 (pt) | 2018-08-07 |
| CN107924762A (zh) | 2018-04-17 |
| CN107924762B (zh) | 2019-12-20 |
| US20160340368A1 (en) | 2016-11-24 |
| EP3298616A4 (en) | 2018-10-24 |
| MX2017014729A (es) | 2018-06-28 |
| KR102073078B1 (ko) | 2020-02-04 |
| IL255681A (en) | 2018-01-31 |
| PH12017502124A1 (en) | 2018-05-28 |
| CA2986573A1 (en) | 2016-11-24 |
| US20180222924A1 (en) | 2018-08-09 |
| RU2017139761A (ru) | 2019-06-21 |
| US9932358B2 (en) | 2018-04-03 |
| JP2018520503A (ja) | 2018-07-26 |
| US10597407B2 (en) | 2020-03-24 |
| EP3298616A1 (en) | 2018-03-28 |
| US20200255453A1 (en) | 2020-08-13 |
| KR20180008510A (ko) | 2018-01-24 |
| AU2016264757A1 (en) | 2017-12-07 |
| JP6612897B2 (ja) | 2019-11-27 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| WO2016187584A1 (en) | Energy storage molecular material, crystal dielectric layer and capacitor | |
| TWI637005B (zh) | Sharp聚合物及電容器 | |
| US10685782B2 (en) | Capacitor and method of production thereof | |
| WO2017070249A1 (en) | Organic compound, crystal dielectric layer and capacitor background | |
| US10636575B2 (en) | Furuta and para-Furuta polymer formulations and capacitors | |
| US20180137984A1 (en) | Solid state energy storage device | |
| JP5848284B2 (ja) | 熱電変換素子及びこれを用いた熱電変換材料 | |
| WO2017176510A1 (en) | Electro-polarizable compound and capacitor | |
| KR20170005821A (ko) | 커패시터 및 이의 생산 방법 | |
| WO2017139451A1 (en) | para-FURUTA POLYMER AND CAPACITOR | |
| KR20170102209A (ko) | 에너지 저장 디바이스들 및 이의 생산 방법들 | |
| US7955945B1 (en) | Weak-link capacitor | |
| EP3717485A1 (en) | Hein electro-polarizable compound and capacitor thereof | |
| WO2019118922A1 (en) | Oligomeric dielectric materials and capacitor thereof |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| 121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16797411 Country of ref document: EP Kind code of ref document: A1 |
|
| ENP | Entry into the national phase |
Ref document number: 2017558522 Country of ref document: JP Kind code of ref document: A |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 255681 Country of ref document: IL |
|
| WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2017/014729 Country of ref document: MX |
|
| ENP | Entry into the national phase |
Ref document number: 2986573 Country of ref document: CA Ref document number: 20177033571 Country of ref document: KR Kind code of ref document: A |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 11201709567R Country of ref document: SG |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 12017502124 Country of ref document: PH |
|
| NENP | Non-entry into the national phase |
Ref country code: DE |
|
| ENP | Entry into the national phase |
Ref document number: 2016264757 Country of ref document: AU Date of ref document: 20160520 Kind code of ref document: A |
|
| WWE | Wipo information: entry into national phase |
Ref document number: 2017139761 Country of ref document: RU |
|
| REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112017024842 Country of ref document: BR |
|
| ENP | Entry into the national phase |
Ref document number: 112017024842 Country of ref document: BR Kind code of ref document: A2 Effective date: 20171121 |