WO2016171120A1 - 無人航空機 - Google Patents

無人航空機 Download PDF

Info

Publication number
WO2016171120A1
WO2016171120A1 PCT/JP2016/062348 JP2016062348W WO2016171120A1 WO 2016171120 A1 WO2016171120 A1 WO 2016171120A1 JP 2016062348 W JP2016062348 W JP 2016062348W WO 2016171120 A1 WO2016171120 A1 WO 2016171120A1
Authority
WO
WIPO (PCT)
Prior art keywords
emergency
main body
power source
unmanned aircraft
rotor blades
Prior art date
Application number
PCT/JP2016/062348
Other languages
English (en)
French (fr)
Inventor
紀代一 菅木
河野 雅一
和雄 市原
Original Assignee
株式会社プロドローン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社プロドローン filed Critical 株式会社プロドローン
Priority to JP2017514125A priority Critical patent/JP6208402B2/ja
Priority to US15/566,660 priority patent/US10427781B2/en
Publication of WO2016171120A1 publication Critical patent/WO2016171120A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/04Helicopters
    • B64C27/08Helicopters with two or more rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D25/00Emergency apparatus or devices, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plant in aircraft; Aircraft characterised thereby
    • B64D27/02Aircraft characterised by the type or position of power plant
    • B64D27/24Aircraft characterised by the type or position of power plant using steam, electricity, or spring force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U20/00Constructional aspects of UAVs
    • B64U20/30Constructional aspects of UAVs for safety, e.g. with frangible components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • B64U10/16Flying platforms with five or more distinct rotor axes, e.g. octocopters

Definitions

  • the present invention relates to an unmanned aerial vehicle equipped with a safety device.
  • a multicopter is a kind of helicopter, generally having three or more rotor blades, and flying by rotating these rotor blades simultaneously while maintaining a balance.
  • a multicopter does not require a complicated mechanism on the rotor blade itself, so it is excellent in maintainability and can be configured at a lower cost.
  • an object of the present invention is to provide an unmanned aerial vehicle capable of preventing the airframe from dropping rapidly even when normal flight cannot be performed for some reason.
  • an unmanned aerial vehicle of the present invention includes a plurality of rotor blades, and can be driven by an emergency power source that is different from the power source of the plurality of rotor blades and the power source.
  • a wing an abnormality detection sensor for detecting an abnormality of the unmanned aircraft body, and an emergency control device, wherein the emergency control device detects an abnormality of the unmanned aircraft body
  • the operations of the plurality of rotor blades are stopped, and the emergency rotor blades are driven by the emergency power source.
  • the unmanned aerial vehicle of the present invention includes an altitude sensor capable of measuring the altitude of the unmanned aircraft main body and operated by the emergency power source.
  • the emergency control device includes the unmanned aircraft main body configured by the altitude sensor. It is preferable to adjust the number of rotations of the emergency rotor blades so as to obtain an optimum drop speed corresponding to the measured altitude.
  • the unmanned aerial vehicle of the present invention includes a distance measuring sensor that can measure a distance between the unmanned aircraft main body and the ground surface and that operates with the emergency power source, and the emergency control device includes the unmanned aircraft main body. It is preferable to adjust the number of revolutions of the emergency rotor so that the impact on landing of the unmanned aerial vehicle body is reduced when the distance sensor detects that it has approached a predetermined distance from the ground surface. .
  • an emergency module in which the emergency power source and the emergency rotor blade are integrated is detachably fixed to the unmanned aircraft body, and the emergency module is separated. It is preferable that the unmanned aircraft main body is provided with a suspending means for suspending the unmanned aircraft body on the emergency module.
  • the emergency module is fixed to an upper portion of the unmanned aircraft main body, and the suspension means is connected to a vertically lower portion of the center of gravity of the emergency module.
  • the unmanned aircraft of the present invention is such that the emergency module and the unmanned aircraft main body are separated, whereby the power line or signal line of the unmanned aircraft main body is cut, and the plurality of rotor blades of the unmanned aircraft main body are disconnected. It is preferable that the operation stops.
  • the unmanned aircraft of the present invention when the emergency module and the multicopter main body are separated, the power line or signal line of the multicopter main body is cut, and the operation of the rotor blades of the multicopter main body is stopped. It is preferable to form so as to.
  • the unmanned aircraft of the present invention drives the emergency rotor blade by the power source during flight in normal times, and detects the abnormality of the multicopter body from the power source when the emergency power source is detected.
  • the emergency rotor blades can be driven by switching to
  • the present invention provides a plurality of emergency rotor blades driven by an emergency power source different from the power source of the unmanned aircraft body, an abnormality detection sensor for detecting an abnormality of the unmanned aircraft body, and an emergency control device,
  • the abnormality detection sensor detects an abnormality of the unmanned aircraft main body
  • the emergency control device stops the operation of the rotor blade and drives the emergency rotor blade by the emergency power source Therefore, according to the present invention, even if the unmanned aircraft main body becomes uncontrollable for some reason during the flight and the normal flight cannot be performed, it is possible to avoid a sudden drop of the aircraft.
  • FIG. 1 shows an embodiment of a multicopter M which is an unmanned aerial vehicle of the present invention.
  • the multicopter M according to this embodiment includes four rotor blades P1 to P4 driven by a power source B such as a battery, and airframe control that manages the attitude and operation of the multicopter M during flight.
  • a power source B such as a battery
  • an emergency power source Be comprising a multicopter main body F (hereinafter also abbreviated as main body F) having the device C and the like, and a spare battery that is not used during normal operation, separate from the power source B
  • main body F a multicopter main body F
  • a spare battery that is not used during normal operation, separate from the power source B
  • the abnormality detection sensor S2 is supplied with power from the power source B, and the abnormality detection sensor Se1 is supplied with power from the emergency power source Be.
  • the reliability of the abnormality detection of the main body F is improved by making the abnormality detection sensors redundant.
  • emergency equipment is modularized, and an emergency module E formed separately from the main body F is connected to the upper part of the main body F.
  • the emergency module E is detachably fixed to the main body F.
  • the multicopter M has suspension means (described later) made of a rope, a wire or the like so that the main body F is suspended by the emergency module E after the emergency module E is disconnected.
  • a cutting device D is provided between the emergency module E and the main body F.
  • the cutting device D is configured to be able to physically and quickly disconnect the emergency module E and the main body F in an emergency.
  • the emergency module E includes an emergency power source Be, an emergency controller Ce, an abnormality detection sensor Se1, a distance measuring sensor Se2 that measures the distance from the ground surface, and a posture sensor Se3 that measures the inclination of the posture.
  • Emergency rotor blades Pe1, Pe2 and the like are provided.
  • the main body F includes a plurality of rotor blades P1 to P4 connected by a support housing, a power source B that supplies power to each equipment of the main body F, an attitude measurement sensor S1 for measuring the attitude of the airframe, An anomaly detection sensor S2 for detecting an anomaly of the airframe, an airframe controller C that controls the attitude and movement of the airframe by adjusting the rotation speed of the rotor blades P1 to P4, and receives the anomaly of the airframe from the anomaly detection sensor S2 Is provided.
  • the emergency control device Ce receives an abnormality detection signal from the abnormality detection sensor S2 or the abnormality detection sensor Se1 and controls emergency rotor blades Pe1 and Pe2 for controlling the descending speed in an emergency. It has a function as a crash prevention device.
  • the emergency rotor blades Pe1 and Pe2 are formed so as to rotate reversely to each other during operation in order to prevent the airframe itself from rotating.
  • the plurality of emergency rotor blades Pe1 and Pe2 are designed to support the weight of the entire fuselage with their lift.
  • the emergency control device Ce stops the rotation by stopping the operation of the rotor blades P1 to P4 by notifying the emergency control device Ce. Further, the emergency control device Ce performs control to drive the emergency rotor blades Pe1 and Pe2 by the emergency power source Be in order to prevent the multicopter M from being suddenly dropped. By rotating the emergency rotor blades Pe1 and Pe2 to generate lift, it is possible to prevent the multicopter main body F from dropping suddenly.
  • the abnormality of the main body F detected by the abnormality detection sensors S2 and Se1 is an abnormality of a control device and sensors for controlling the posture, an abnormality of a motor for rotating a rotor blade, an abnormality of a power source such as a battery, an abnormality of connection, Abnormal flight conditions such as abnormal vibration of the aircraft, abnormal posture, sudden drop, etc. due to wing damage, missing parts, etc. occur.
  • the abnormality detection sensors S2 and Se1 have a mechanism for detecting the attitude and vibration of the aircraft, acceleration of movement, and the like. From these values, the abnormal abnormality of the aircraft, the continuous abnormal vibration of the aircraft, and the freedom of the aircraft It is possible to detect a sudden drop close to a drop, a continuous abnormal speed of the aircraft, and the like. Then, when it is detected that these values are out of the pre-defined range or have exceeded the pre-defined duration range, an abnormality has occurred in the main body F. Judgment can be made.
  • any abnormality detection sensor may be used as long as it has a function of detecting the abnormality described above.
  • the abnormality detection sensor S2 of the main body F and the abnormality detection sensor Se1 of the emergency module E are, for example, a current meter provided in the rotor blades P1 to P4, and a voltmeter capable of measuring the voltage of the power source B. Further, it can be constituted by a fuel gauge or the like capable of measuring the remaining fuel amount of the power source B.
  • the machine control device C of the main body F detects the motor abnormality from the correlation between the set rotational speed and the consumption current, and the power source is depleted from the voltage value or the fuel gauge, or the performance is deteriorated by comparing with a predetermined reference value. Equipped with a mechanism for detecting a fault and a mechanism for detecting a continuous communication abnormality with each connected sensor, etc., so that an abnormality of the aircraft can be detected and notified to the emergency control device Ce Has been.
  • the emergency rotors Pe1 and Pe2, the emergency control device Ce, the abnormality detection sensor Se1, the distance measuring sensor Se2, the attitude sensor Se3, the cutting device D, and the like are connected to receive power from the emergency power source Be. .
  • the rotor blades P1 to P4, the airframe control device C, the attitude measurement sensor S1, the abnormality detection sensor S2, and the like are connected so as to be supplied with power from the power source B during normal times.
  • the emergency control device Ce is connected to the machine control device C of the main body F via a communication network (not shown). Further, the abnormality detection sensor S2 of the main body F is connected to the airframe control device C via a communication network, and the abnormality detection sensor Se1 of the emergency module E is connected to the emergency control device Ce via a communication network (not shown). These sensors provide information to the emergency control device Ce.
  • the emergency control device Ce When the emergency control device Ce receives a signal indicating an abnormality of the aircraft from the abnormality detection sensor Se1, the emergency control device Ce transmits a signal for instructing a function stop to the aircraft control device C connected via the communication network.
  • the emergency control device Ce adjusts the descent speed of the multicopter during emergency landing by controlling the rotation speed of the emergency rotor blades Pe1 and Pe2 based on the distance information to the ground surface of the distance measuring sensor Se2. It can be adjusted to an appropriate fall speed. Further, the distance information to the ground surface may be obtained using an altitude sensor or the like instead of the distance measuring sensor Se2.
  • the emergency controller Ce controls the rotation of the emergency rotor so as to reduce the speed. As a result, the impact at the time of landing of the multicopter main body F can be reduced.
  • the emergency controller Ce determines that the main body F has reached the ground surface when the attitude sensor Se3 is tilted beyond a predetermined angle, and gently stops the rotation of the emergency rotor blades Pe1 and Pe2. Thereby, the damage of the emergency module E can be made lighter.
  • the emergency controller Ce quickly stops the rotation of the emergency rotor blades Pe1 and Pe2, so that the emergency rotor blades Pe1 and Pe2 damage surrounding objects. This can be prevented.
  • FIGS. 2 and 3 are diagrams showing a state in which a forced shutdown device is provided.
  • the main body F can be provided with a forced shutdown device Ds that forcibly stops the operation of the main body F.
  • the forced shutdown device Ds is connected to receive power from the emergency power source Be.
  • the forced shutdown device Ds can be configured as a mechanism for cutting off the communication network between the airframe control device C and each equipment in the main body F such as the rotor blades P1 to P4.
  • the forced shutdown device Ds can also be configured as a mechanism that cuts off the power line between the power source B and each equipment such as the rotor blades P1 to P4 in the main body F, for example.
  • the function of the multicopter main body F can be forcibly stopped after waiting for a predetermined time. Even when there is no communication network with the airframe control device C, or when there is no response to the function stop instruction, the function shutdown of the main body F can be surely performed with the forced shutdown device Ds. .
  • the emergency control device Ce controls the emergency rotor blades Pe1 and Pe2 to rotate at a predetermined rotational speed.
  • an abnormality notification is received from the machine control device C, so that an abnormality in the aircraft is detected and an emergency situation occurs. It can be determined that it occurred.
  • the emergency control device Ce determines an emergency situation, it sends an operation signal to the cutting device D and controls the emergency module E and the main body F to be physically separated.
  • connection structure between the main body F and the emergency module E is not particularly limited, and various means can be used.
  • the main body F and the emergency module E are usually fixed integrally.
  • the cutting device D only needs to have a structure in which the fixing is released in the event of an emergency and the two can be separated.
  • the cutting device D include, for example, a method of unlocking a fixture that fixes the main body F and the emergency module E by an electromagnetic mechanism, and an airbag used for ensuring the collision safety of a vehicle.
  • a means for destroying the connection structure using an explosion caused by a small amount of explosives are examples of the cutting device D.
  • FIG. 4 is an explanatory view showing a state in which the main body is suspended from the emergency module by the operation of the multi-copter crash prevention device of FIG.
  • the emergency module E and the main body F after being separated are connected by a hanging means such as a cable or a wire, and the emergency module E and the main body F are physically connected.
  • the main body F is formed to be suspended from the emergency module E.
  • the suspending means a cable or wire having sufficient strength to withstand the weight of the main body F is used.
  • the suspension means is configured such that when the main body F is suspended from the emergency module E, one end of the cable or wire is connected to a vertically lower part of the center of gravity of the emergency module E.
  • the power line or signal line of the main body F is disconnected and the operation of the rotor blades of the main body F is stopped.
  • the same function as the forced shutdown device Ds described above can be realized.
  • the power line or signal line is fitted and connected with a connector or the like, and when the main body F and the emergency module E are disconnected, the force that pulls the line up and down due to gravity or the like is used.
  • the power line or the signal line may be electrically disconnected so that the connector is disengaged.
  • FIG. 5 is an explanatory view showing a mechanism for removing the connector when the multicopter main body of FIG. 1 is detached.
  • the wire in which the wire W1 and the wire W2 are connected by the connector CN1 and the connector CN2 is the wire It is arranged in parallel with We.
  • the total length after the wire W1 and the wire W2 are connected is shorter than the length of the wire We.
  • the signal line SL1 is connected to the connector CN1, and the signal line SL2 is connected to the connector CN2.
  • the signal line SL1 and the signal line SL2 are in an electrically connected state, and the main body F is normally operated by the signal line.
  • the main body F and the emergency module E are separated, the main body F is suspended from the emergency module E by the wire We. Since the lengths of the wire W1 and the wire W2 are shorter than the wire We, the connector CN1 and the connector CN2 are pulled in the vertical direction due to the weight of the main body F or the like to be disengaged.
  • the connector CN1 and the connector CN2 are disconnected, the electrical connection between the signal line SL1 and the signal line SL2 is cut.
  • the signal line SL1 and the signal line SL2 are disconnected, the signal line stops functioning, the function of the main body F is forcibly shut down, and the operations of the rotor blades P1 to P4 and the like are also stopped.
  • the signal line or the power line of the multicopter is automatically disconnected, so that the rotor blade P1 of the main body F is automatically cut. Since all the functions including P4 can be stopped, the main body F can be used even when the main body control device C, attitude measurement sensor S1, abnormality detection sensor S2, forced shutdown device Ds, etc. are out of order. However, it is possible to suppress an operation that continues abnormal movement or damages the emergency module E.
  • the multicopter may be configured to drive and rotate the emergency rotor blades Pe1 and Pe2 using the normal power source B during normal flight. Then, when a failure or abnormality of the main body F is detected, the normal power source C may be switched to the emergency power source Ce, and the emergency rotor blades Pe1 and Pe2 may be driven to rotate. As a result, during the flight in normal time, the emergency rotor can be allowed to bear a part of the necessary lift, and thus efficient flight is possible.
  • the motor of the rotary wing used for normal flight has a characteristic that the reaction speed is fast and precise rotation speed control is possible.
  • the motors for the emergency rotor blades Pe1 and Pe2 have a characteristic of generating stable lift. Due to such a difference in characteristics, the rotor blades P1 to P4 used for normal flight have lower power efficiency than the emergency rotor blades Pe1 and Pe2.
  • the power efficiency is improved.
  • the normal rotors P1 to P4 and their motors can be lighter and cheaper.
  • a general configuration such as a backup power source can be used as means for instantaneously switching the connection of a plurality of power sources during normal times and emergencies to the emergency rotor blades without affecting each other.
  • emergency equipment is gathered at the top and modularized to form the emergency module E.
  • the emergency equipment is not gathered at the top. Is also possible.
  • the main body F includes four rotor blades, but the present invention can include any number of rotor blades.
  • the arrangement of the rotor blades is also an example, and can be equipped with various layouts.
  • the emergency module E includes two emergency rotor blades, but the present invention can include any number of emergency rotor blades equal to or greater than two.
  • the arrangement of the emergency rotor blades is also an example, and can be equipped with various layouts.
  • the present invention is applicable to multicopters.

Abstract

様々な理由で正常な飛行が不能となった場合であっても、機体の落下を防止することが可能である落下防止装置を備えるマルチコプターを提供する。 動力源Bにより駆動する回転翼P1~P4を有するマルチコプター本体Fと、前記動力源Bとは別の緊急用動力源Beにより駆動する複数の緊急用回転翼Pe1、Pe2と、前記マルチコプター本体Fの異常を検知するための異常検知センサS2、Se1と、緊急時制御装置Ceを有し、前記異常検知センサS2、Se1がマルチコプター本体Fの異常を検知した際に、前記緊急時制御装置Ceは、前記回転翼P1~P4の動作を停止すると共に、マルチコプターの急激な落下を防ぐために前記緊急用動力源Beにより前記緊急用回転翼Pe1、Pe2を駆動させる制御を行うようにマルチコプターを構成した。

Description

無人航空機
 本発明は、安全装置を備える無人航空機に関する。
 マルチコプターは、ヘリコプターの一種であり、一般的に3つ以上の回転翼を持ち、バランスをとりながらこれらの回転翼を同時に回転させることにより飛行する装置である。
 マルチコプターは、2つ以下のメインロータを持つヘリコプターと異なり、回転翼自体に複雑な仕組みを必要としないため、整備性に優れ、またより廉価なコストで機体を構成することが可能である。
 近年、高性能で扱いも容易な、加速度センサや角加速度センサ等が廉価に普及したため、制御の機構をこれらと組み合わせることにより、特に模型や無人機などの比較的小さな機体において、安定した動作と非常に容易な操作性を実現しつつある。
 マルチコプターは、こうした特徴から、模型などの趣味としてだけでなく、様々な業務に利用されつつある。なお、装備されるローターの数は、3つ、4つ、6つ、もしくは8つのものが普及しつつあり、高速で移動したり、重量物を運搬できるなど、用途に特化した機体も現れつつある。
特開2010-137844号公報 特開平5-193579号公報
 マルチコプターにおいて、姿勢を制御する制御装置やセンサ類の異常、回転翼を回転させるモータの異常、バッテリーなどの動力源の異常、結線のゆるみや損傷、回転翼の損傷、各部の締め付け弛みによる部品の欠落や揺れは、墜落に至る重大な原因となる。
 特に過酷な動作となる可動部を持つモータは製品寿命が他の部品に比較して短く、故障しやすい。モータに故障や異常が発生すると、回転翼が4つ以下のマルチコプターでは姿勢の維持が難しく、熟練した操作者によっても墜落は免れない。
 例えばスイスのFlying Machine Arena社では、チューリッヒ工科大学の教授らが、4つの回転翼のうち、ひとつが故障した場合でも機体の墜落を回避する制御方法を検討している。しかし、かかる方法では大きな姿勢変化を伴うことから、大型の機体では実現は困難である。
 また、5つ以上の回転翼を装備しているマルチコプターであっても、姿勢を制御する制御装置やセンサ類、動力源としてのバッテリーが故障した場合、墜落は免れない。
 そこで、本発明は、何らかの理由により正常な飛行ができなくなった場合でも、機体が急速に落下することを防止可能な無人航空機を提供することを目的とする。
 上記課題を解決するために、本願発明の無人航空機は、複数の回転翼を備え、前記複数の回転翼の動力源と、前記動力源とは別の緊急用動力源により駆動可能な緊急用回転翼と、前記無人航空機本体の異常を検知するための異常検知センサと、緊急時制御装置と、を備え、前記緊急時制御装置は、前記異常検知センサが前記無人航空機本体の異常を検知したときに、前記複数の回転翼の動作を停止すると共に、前記緊急用動力源により前記緊急用回転翼を駆動させることを特徴とする。
 また、本発明の無人航空機は、前記無人航空機本体の高度を測定可能であり前記緊急用動力源で作動する高度センサを有し、前記緊急時制御装置は、前記無人航空機本体が前記高度センサにより測定された高度に応じた最適な落下速度になるように、前記緊急用回転翼の回転数を調節することが好ましい。
 また、本発明の無人航空機は、前記無人航空機本体と地表との距離を測定可能であり前記緊急用動力源で作動する測距センサを有し、前記緊急時制御装置は、前記無人航空機本体が地表と所定の距離まで近づいたことを前記測距センサにより検知したときに、前記無人航空機本体の着地の際の衝撃を緩和するように、前記緊急用回転翼の回転数を調節することが好ましい。
 また、本発明の無人航空機は、前記緊急用動力源と前記緊急用回転翼とが一体化された緊急用モジュールが、前記無人航空機本体に切り離し可能に固定されており、前記緊急用モジュールの切り離し後に、前記無人航空機本体が前記緊急用モジュールに吊り下げられた状態とするための吊り下げ手段を備えることが好ましい。
 また、本発明の無人航空機は、前記緊急用モジュールが前記無人航空機本体の上部に固定され、前記緊急用モジュールの重心の鉛直下部に前記吊り下げ手段が接続されていることが好ましい。
 また、本発明の無人航空機は、前記緊急用モジュールと前記無人航空機本体とが切り離されることにより、前記無人航空機本体の動力線又は信号線が切断され、前記無人航空機本体の前記複数の回転翼の動作が停止することが好ましい。
 また、本発明の無人航空機は、前記緊急用モジュールと前記マルチコプター本体が切り離された際に、マルチコプター本体の動力線又は信号線が切断されて、前記マルチコプター本体の回転翼の動作が停止するように形成されていることが好ましい。
 また、本発明の無人航空機は、平時の飛行の際は、前記動力源により前記緊急用回転翼を駆動させ、前記マルチコプター本体の異常を検知した際は、前記動力源から前記緊急用動力源に切り替えて前記緊急用回転翼を駆動させることができる。
 本発明は、無人航空機本体の動力源とは別の緊急用動力源により駆動する複数の緊急用回転翼と、前記無人航空機本体の異常を検知するための異常検知センサと、緊急時制御装置とを有し、前記異常検知センサが無人航空機本体の異常を検知した際に、前記緊急時制御装置が、前記回転翼の動作を停止すると共に、前記緊急用動力源により前記緊急用回転翼を駆動させる制御を行うものであるから、本発明によれば、無人航空機本体が飛行中に何らかの理由で制御不能となり、正常な飛行ができなくなった場合でも、機体の急激な落下を避けることができる。
本発明のマルチコプターの一例を示す正面図である。 図1のマルチコプター本体の制御装置と各装備間の通信ネットワークを遮断する仕組みを示す説明図である。 図1のマルチコプター本体の動力源と各装備間の動力線を遮断する仕組みを示す説明図である。 図1のマルチコプターの落下防止装置が作動して本体が緊急用モジュールから吊り下げられた状態を示す説明図である。 図1のマルチコプターの本体切り離しの際にコネクタを外す仕組みを示す説明図である。
 添付の図面を参照して、本発明の実施形態を説明する。以下に説明する実施形態は本発明の実施の一例であり、本発明は以下の実施形態に制限されるものではない。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。
 図1に本発明の無人航空機であるマルチコプターMの一実施形態を示す。本実施形態に係るマルチコプターMは、図1に示すように、バッテリー等の動力源Bにより駆動する4つの回転翼P1~P4、飛行の際のマルチコプターMの姿勢や動作を管理する機体制御装置C等を有するマルチコプター本体F(以下、本体Fと略記することもある)と、動力源Bとは別の平時の運行中に使用しない予備のバッテリー等からなる緊急用動力源Beにより駆動する2つの緊急用回転翼Pe1、Pe2と、本体Fの異常を検知するための異常検知センサS2、Se1と、本体Fの制御装置から直接管理されない緊急時の制御に用いられる緊急時制御装置Ceとから構成されている。
 異常検知センサS2は動力源Bから動力が供給され、異常検知センサSe1は、緊急用動力源Beから動力が供給される。このように、異常検知センサが冗長化されていることにより、本体Fの異常検知の信頼性が高められている。
 図1のマルチコプターMは、緊急用の装備がモジュール化され、本体Fとは別体に形成されている緊急用モジュールEが、本体Fの上部に連結されている。緊急用モジュールEは、本体Fに切り離し可能に固定されている。マルチコプターMは、緊急用モジュールEの切り離し後に、本体Fが緊急用モジュールEによって吊り下げられた状態になるように、ロープ、ワイヤ等からなる吊り下げ手段(後述する)を有している。
 緊急用モジュールEと本体Fとの間には切断装置Dが設けられている。切断装置Dは、緊急時に緊急用モジュールEと本体Fを物理的に速やかに切り離すことが可能に構成されている。
 緊急用モジュールEには、緊急用動力源Beと、緊急時制御装置Ceと、異常検知センサSe1と、地表との距離を測定する測距センサSe2と、姿勢の傾きを測定する姿勢センサSe3と、緊急用回転翼Pe1、Pe2等が設けられている。
 本体Fには、支持筐体によって接続されている複数の回転翼P1~P4と、本体Fの各装備に動力を与える動力源Bと、機体の姿勢を測定するための姿勢測定センサS1と、機体の異常を検知するための異常検知センサS2と、回転翼P1~P4の回転数を調節して機体の姿勢や動きを制御し、異常検知センサS2から機体の異常を受け取る機体制御装置C等が設けられている。
 緊急時制御装置Ceは、異常検知センサS2又は異常検知センサSe1から機体の異常の検知信号を受け取り、緊急時の降下速度を制御するために、緊急用回転翼Pe1とPe2を制御する緊急用の墜落防止装置としての機能を備えている。緊急用回転翼Pe1とPe2は、機体自体の回転を防ぐために、作動時は相互に逆回転するように形成されている。また複数の緊急用回転翼Pe1、Pe2は、その揚力で機体全体の重量を支えることが可能となるように設計されている。
 マルチコプターMは、本体Fの故障や異常により、機体の姿勢の制御や、飛行の継続が難しくなった場合に、異常検知センサS2、Se1のどちらか一方が本体Fの異常を検知して最終的に緊急用制御装置Ceに通知することにより、緊急用制御装置Ceは、回転翼P1~P4の動作を停止して回転を停止させる。更に緊急用制御装置Ceは、マルチコプターMの急激な落下を防ぐために、緊急用動力源Beにより緊急用回転翼Pe1、Pe2を駆動させる制御を行う。緊急用回転翼Pe1、Pe2を回転させて揚力を発生させることにより、マルチコプター本体Fが急激に落下することを防ぐことができる。
 異常検知センサS2、Se1が検知する本体Fの異常とは、姿勢を制御する制御装置やセンサ類の異常、回転翼を回転させるモータの異常、バッテリー等の動力源の異常、結線の異常、回転翼の損傷、部品の欠落等に起因する、機体の異常な振動、異常な姿勢、急激な落下等の異常な飛行状態が発生することである。
 異常検知センサS2、Se1は、機体の姿勢、振動と、移動の加速度等を検知する仕組みを備え、これらの値から、機体の継続的な異常姿勢、機体の継続的な異常振動、機体の自由落下に近い急激な落下、機体の継続的な異常速度等を検知することが可能なものである。そしてこれらの値が、予め規定しておいた範囲外の値となるか、或いは予め規定した継続時間の範囲を超えた状態となったことを検出した場合に、本体Fに異常が発生したと判断することができる。
 したがって、異常検知センサとしては、上記した異常を検知する機能を有するものであればよい。具体的には、本体Fの異常検知センサS2、緊急用モジュールEの異常検知センサSe1は、例えば、回転翼P1~P4に装備される消費電流計、動力源Bの電圧測定が可能な電圧計、動力源Bの燃料残量を測定可能な燃料計等から構成することができる。
 本体Fの機体制御装置Cは、設定回転数と消費電流の相関からモータの異常を検知する仕組みや、予め規定した基準値との比較で、電圧値や燃料計から動力源の枯渇や性能低下を検知する仕組みや、接続されている各センサとの継続的な通信異常を検知する仕組み等を装備し、機体の異常を検知し、これを緊急時制御装置Ceに通知することが可能に構成されている。
 緊急用回転翼Pe1、Pe2、緊急時制御装置Ce、異常検知センサSe1、測距センサSe2、姿勢センサSe3、切断装置D等は緊急用動力源Beから動力の供給を受けるように接続されている。
 回転翼P1~P4、機体制御装置C、姿勢測定センサS1、異常検知センサS2等は平時の動力源Bから動力の供給を受けるように接続されている。
 緊急時制御装置Ceは、本体Fの機体制御装置Cと通信ネットワークで接続されている(図示せず)。更に、本体Fの異常検知センサS2は機体制御装置Cと通信ネットワークで接続され、緊急用モジュールEの異常検知センサSe1は緊急時制御装置Ceと通信ネットワークで接続されている(図示せず)。これらのセンサは、緊急時制御装置Ceに情報を提供する。
 緊急時制御装置Ceは、異常検知センサSe1から機体の異常を示す信号を受け取ると、通信ネットワークで接続されている機体制御装置Cに機能停止の指示を行なう信号を送信する。
 緊急時制御装置Ceは、測距センサSe2の地表までの距離情報を基に緊急用回転翼Pe1とPe2の回転数を制御することにより、緊急時の着陸においてマルチコプターの降下速度を調整して適切な落下速度に調節することができる。また上記測距センサSe2の代わりに高度センサ等を用いて地表までの距離情報を入手してもよい。
 緊急時のマルチコプターMが地表に近くなって、地表との距離を測定することが可能なセンサにより予め規定した高さに到達した場合、緊急用回転翼Pe1とPe2の回転数を上げ、降下速度を低下させるように緊急時制御装置Ceが緊急用回転翼の回転を制御することが好ましい。その結果、マルチコプター本体Fの着地の際の衝撃を緩和することができる。
 緊急時制御装置Ceは、姿勢センサSe3が予め規定した角度を超えて傾斜した場合に、本体Fが地表に到達したと判断して、緩やかに緊急用回転翼Pe1、Pe2の回転を停止させる。これにより緊急用モジュールEの損傷をより軽微とすることができる。
 さらに緊急用モジュールEが完全に着地した後は、緊急時制御装置Ceは緊急用回転翼Pe1、Pe2の回転を速やかに停止させることで、緊急用回転翼Pe1、Pe2が周囲の物体を損傷させることを防止することができる。
 図2及び図3は、強制シャットダウン装置を設けた状態を示す図である。本体Fに、該本体Fの動作を強制的に停止させる強制シャットダウン装置Dsを設けることができる。強制シャットダウン装置Dsは緊急用動力源Beから動力の供給を受けるように接続されている。強制シャットダウン装置Dsは、例えば図2に示すように、機体制御装置Cと、本体F内の例えば回転翼P1~P4等の各装備間の通信ネットワークを遮断する仕組みとして構成することができる。また強制シャットダウン装置Dsは、図3に示すように、動力源Bと、本体F内の例えば回転翼P1~P4等の各装備間の動力線を遮断する仕組みとして構成することも可能である。
 強制シャットダウン装置Dsを装備することにより、予め規定した時間待機した後、マルチコプター本体Fの機能を強制的に停止することができる。機体制御装置Cとの間に通信ネットワークがない場合、もしくは前記の機能停止指示に応答がない場合であっても、強制シャットダウン装置Dsがあれば、本体Fの機能停止を確実に実施可能である。
 前記の機能停止あるいは機能強制停止を実施すると同時に、緊急時制御装置Ceは緊急用回転翼Pe1と、Pe2を予め規定した回転数で回転させるように制御する。
 また、緊急時制御装置Ceが、本体Fの機体制御装置Cと通信ネットワークで接続されている場合、機体制御装置Cから異常の通知を受け取ることにより、機体の異常を検知して緊急な状況が発生したと判断することができる。
 緊急時制御装置Ceが、緊急な状況と判断すると、切断装置Dに動作信号を送り、緊急用モジュールEと、本体Fを物理的に切り離すように制御する。
 本体Fと緊急用モジュールEの接続構造は特に限定されず、各種の手段を用いることができる。切断装置Dは、通常は本体Fと緊急用モジュールEは一体化して固定されているが、緊急時にはその固定が解除されて、両者の切り離しを可能とする構造を有していればよい。
 切断装置Dの具体例として、例えば、電磁的な仕組みで本体Fと緊急用モジュールEを固定している固定具のロックを解除する方法や、車両の衝突安全性確保に用いられるエアバッグのように、少量の火薬による爆発等を利用して接続構造を破壊する手段等が挙げられる
 図4は図1のマルチコプターの墜落防止装置が作動して本体が緊急用モジュールから吊り下げられた状態を示す説明図である。図4に示すように、切り離した後の緊急用モジュールEと本体Fとが、ケーブルやワイヤ等の吊り下げ手段により接続されるように構成し、緊急用モジュールEと本体Fとが物理的に分離した後に、本体Fが緊急用モジュールEから吊り下げられた状態となるように形成されている。吊り下げ手段は、本体Fの重量に耐えられる十分な強度を持つケーブルやワイヤが用いられる。
 吊り下げ手段は、本体Fが緊急用モジュールEから吊り下げられた際に、緊急用モジュールEの重心の鉛直下部に、前記のケーブル又はワイヤの一端が接続されるように構成されている。このように構成することで、緊急用モジュールEが本体Fを吊り下げた状態で飛行しているときに、衝突や部品の欠落、損傷などにより、著しく本体Fの重量バランスが崩れた場合であっても、緊急用モジュールEは姿勢が傾くことなく容易に水平を保つことができる。したがって機体の重量バランスが崩れ、大きく傾いた場合であっても、緊急用回転翼Pe1、Pe2が水平を保ち、設計した揚力を発生し、安全な緊急着陸が可能となる。
 また、強制シャットダウン装置Dsの代わりに、本体Fと緊急用モジュールEが切り離された際に、本体Fの動力線又は信号線が切断されて、本体Fの回転翼の動作が停止するように形成して、前記した強制シャットダウン装置Dsと同様の機能を実現するように構成することができる。具体的には、動力線又は信号線をコネクタ等で嵌合接続しておいて、本体Fと緊急用モジュールEが切り離された際に、重力等により線が上下方向に引っ張られる力を利用して、前記コネクタの嵌合が外れるようにして、動力線又は信号線を電気的に切断するように構成すればよい。
 図5は図1のマルチコプター本体の切り離しの際にコネクタを外す仕組みを示す説明図である。図5に示すように、本体Fと緊急用モジュールEの間には、吊り下げ用のワイヤWeに加えて、ワイヤW1とワイヤW2がコネクタCN1とコネクタCN2により接続されているワイヤが、上記ワイヤWeと並列に配置されている。ワイヤW1と、ワイヤW2が接続された後の合計の長さは、ワイヤWeの長さよりも短い。コネクタCN1には信号線SL1が接続され、とコネクタCN2には信号線SL2が接続されている。コネクタCN1とコネクタCN2を接続した状態では、信号線SL1と信号線SL2は電気的に接続されている状態となっていて、信号線により本体Fが正常に作動するように構成されている。
 本体Fと緊急用モジュールEが分離すると、ワイヤWeにより緊急用モジュールEに本体Fが吊り下げられた状態となる。ワイヤW1と、ワイヤW2の長さはワイヤWeよりも短いので、本体Fの重量等によりコネクタCN1とコネクタCN2が上下方向に引っ張られて嵌合が外れる。コネクタCN1とコネクタCN2が外れると、信号線SL1と信号線SL2の電気的な接続が切断される。信号線SL1と信号線SL2が切断されると、信号線が機能しなくなって本体Fの機能も強制的にシャットダウンされ、回転翼P1~P4等の動作も停止する。尚、上記の信号線の変わりに、動力線を用いて構成してもよい。
 図5に示すように、本体Fと緊急用モジュールEが切り離された際に、マルチコプターの信号線又は動力線が切断されるような仕組みとすることにより、自動的に本体Fの回転翼P1~P4を含む全機能を停止させることが可能であるから、本体の制御装置Cや姿勢測定センサS1、異常検知センサS2、強制シャットダウン装置Ds等が故障している場合であっても、本体Fが異常な動きを継続したり、緊急用モジュールEに損傷を与えるような動作を抑止できる。
 マルチコプターは、平時の飛行の際は、通常の動力源B利用し、緊急用回転翼Pe1、Pe2を駆動して回転させるように構成してもよい。そして本体Fの故障や異常を検出した際に、通常の動力源Cを、緊急用動力源Ceに切り替えて、緊急用回転翼Pe1、Pe2を駆動して回転させるようにしてもよい。これにより、平時の飛行の際、緊急用回転翼に、必要な揚力の一部を担わせることができるため、効率的な飛行が可能となる。
 マルチコプターは、姿勢制御や移動が、複数の回転翼それぞれの回転数変化で実現されている。このため通常の飛行に用いる回転翼のモータは、反応速度が速く、緻密な回転数制御を可能とする特性を有する。これに対し、緊急用回転翼Pe1、Pe2のモータは、安定した揚力を発生する特性を有する。このような特性の違いにより、通常の飛行に用いる回転翼P1~P4は、緊急用回転翼Pe1、Pe2よりも電力効率が悪い。緊急用回転翼Pe1、Pe2を平時に回転させると、電力効率が向上する。更に、通常の飛行で緊急用回転翼Pe1、Pe2の揚力を利用する場合、通常の回転翼P1~P4とそのモータは、より軽量で安価なものが利用できる。
 尚、緊急用回転翼に対する平時と緊急時の複数の動力源の接続を相互に影響なく瞬時に切り替える手段としては、一般的なバックアップ電源等の構成を利用することができる。
 以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で種々の改変が可能である。
 図1の実施形態では、緊急用の装備が上部に集まりモジュール化され緊急用モジュールEを構成しているが、モジュールEを本体Fと切り離さない場合は、緊急用の装備を上部に集めない構造も可能である。
 図1の構成例では本体Fに回転翼を4つ備えているが、本発明は回転翼の数は任意に備えることができる。また回転翼の配置も一例であり、様々なレイアウトで装備することができる。
 図1の構成例では緊急用モジュールEに緊急用回転翼を2つ備えているが、本発明は緊急用回転翼の数は2以上の任意の数を備えることができる。また緊急用回転翼の配置も一例であり、様々なレイアウトで装備することができる。
 本発明はマルチコプターに適用可能である。

Claims (8)

  1.  複数の回転翼を備える無人航空機であって、
     前記複数の回転翼の動力源と、
     前記動力源とは別の緊急用動力源により駆動可能な緊急用回転翼と、
     前記無人航空機本体の異常を検知するための異常検知センサと、
     緊急時制御装置と、を備え、
     前記緊急時制御装置は、前記異常検知センサが前記無人航空機本体の異常を検知したときに、前記複数の回転翼の動作を停止すると共に、前記緊急用動力源により前記緊急用回転翼を駆動させることを特徴とする無人航空機。
  2.  前記無人航空機本体の高度を測定可能であり、前記緊急用動力源で作動する高度センサを有し、
     前記緊急時制御装置は、前記無人航空機本体が前記高度センサにより測定された高度に応じた最適な落下速度になるように、前記緊急用回転翼の回転数を調節することを特徴とする請求項1に記載の無人航空機。
  3.  前記無人航空機本体の着地を検知可能であり、前記緊急用動力源で作動する姿勢センサを有し、
     前記緊急時制御装置は、前記姿勢センサにより前記無人航空機本体の着地を検知したときに、前記緊急用回転翼の回転を停止させることを特徴とする請求項1に記載の無人航空機。
  4.  前記無人航空機本体と地表との距離を測定可能であり、前記緊急用動力源で作動する測距センサを有し、
     前記緊急時制御装置は、前記無人航空機本体が地表と所定の距離まで近づいたことを前記測距センサにより検知したときに、前記無人航空機本体の着地の際の衝撃を緩和するように、前記緊急用回転翼の回転数を調節することを特徴とする請求項1に記載の無人航空機。
  5.  前記緊急用動力源と前記緊急用回転翼とが一体化された緊急用モジュールが、前記無人航空機本体に切り離し可能に固定されており、
     前記緊急用モジュールの切り離し後に、前記無人航空機本体が前記緊急用モジュールに吊り下げられた状態とするための吊り下げ手段を備えることを特徴とする請求項1に記載の無人航空機。
  6.  前記緊急用モジュールが前記無人航空機本体の上部に固定され、
     前記緊急用モジュールの重心の鉛直下部に前記吊り下げ手段が接続されていることを特徴とする請求項5に記載の無人航空機。
  7.  前記緊急用モジュールと前記無人航空機本体とが切り離されることにより、前記無人航空機本体の動力線又は信号線が切断され、前記無人航空機本体の前記複数の回転翼の動作が停止することを特徴とする請求項5又は6に記載の無人航空機。
  8.  平時の飛行の際は、前記動力源により前記緊急用回転翼を駆動させ、
     前記無人航空機本体の異常を検知した際は、前記動力源から前記緊急用動力源に切り替えて前記緊急用回転翼を駆動させることを特徴とする請求項1に記載の無人航空機。
PCT/JP2016/062348 2015-04-19 2016-04-19 無人航空機 WO2016171120A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017514125A JP6208402B2 (ja) 2015-04-19 2016-04-19 無人航空機
US15/566,660 US10427781B2 (en) 2015-04-19 2016-04-19 Unmanned aerial vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015085506 2015-04-19
JP2015-085506 2015-04-19

Publications (1)

Publication Number Publication Date
WO2016171120A1 true WO2016171120A1 (ja) 2016-10-27

Family

ID=57143103

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/062348 WO2016171120A1 (ja) 2015-04-19 2016-04-19 無人航空機

Country Status (3)

Country Link
US (1) US10427781B2 (ja)
JP (1) JP6208402B2 (ja)
WO (1) WO2016171120A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018046426A (ja) * 2016-09-15 2018-03-22 株式会社Subaru 無人機制御システムの異常検知方法
KR101860548B1 (ko) * 2018-02-27 2018-05-23 주식회사 일도엔지니어링 드론의 식생 촬영 데이터와 gis 분석 기법을 이용한 골프장 잔디 관리 장치
WO2018109903A1 (ja) * 2016-12-15 2018-06-21 エスゼット ディージェイアイ テクノロジー カンパニー リミテッド 飛行制御方法、無人航空機、飛行システム、プログラム、及び記録媒体
WO2018128287A1 (ko) * 2017-01-03 2018-07-12 삼성전자 주식회사 무인 비행 장치 키트 및 시스템
JP2018144731A (ja) * 2017-03-08 2018-09-20 株式会社Soken 飛行装置
WO2018190319A1 (ja) * 2017-04-11 2018-10-18 日本化薬株式会社 飛行体および飛行体の制御方法
JP2018197045A (ja) * 2017-05-23 2018-12-13 株式会社イームズラボ 飛行装置、飛行方法及び飛行プログラム
JP2018199428A (ja) * 2017-05-29 2018-12-20 株式会社フカデン スイッチ装置及びマルチコプター
WO2019039063A1 (ja) * 2017-08-24 2019-02-28 日本化薬株式会社 飛行体用安全装置および飛行体
WO2019039062A1 (ja) * 2017-08-24 2019-02-28 日本化薬株式会社 飛行体用安全装置および飛行体
WO2019054232A1 (ja) * 2017-09-14 2019-03-21 ソフトバンク株式会社 故障落下対応型haps
WO2019092914A1 (ja) * 2017-11-10 2019-05-16 日本化薬株式会社 飛行体用安全装置および飛行体
KR20190069714A (ko) * 2017-12-12 2019-06-20 한국항공우주연구원 소형 멀티콥터의 분리 및 회수가 가능한 고정익 항공기 비행 시스템 및 그 방법
JP2019167101A (ja) * 2017-11-06 2019-10-03 株式会社エアロネクスト 飛行体及び飛行体の制御方法
CN112135774A (zh) * 2019-04-25 2020-12-25 乐天株式会社 无人飞行体、飞行体控制系统及搬运方法
JP2023113085A (ja) * 2022-02-02 2023-08-15 デジタルアーツ株式会社 ドローン及びドローンの制御方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106458324B (zh) * 2015-04-18 2020-12-15 Adtex公司 无人飞行物体及其控制装置
US10780979B2 (en) * 2016-11-14 2020-09-22 Intel IP Corporation Drone rotor cage
US9639087B1 (en) * 2016-12-06 2017-05-02 Kitty Hawk Corporation Emergency landing using inertial sensors
US20210309122A1 (en) * 2018-03-28 2021-10-07 Nileworks Inc. Unmanned aerial vehicle
CN109263979A (zh) * 2018-10-26 2019-01-25 珠海银通无人机科技有限公司 一种双冗余动力飞行器
DE102019103592A1 (de) * 2019-02-13 2020-08-13 Volocopter Gmbh Notfall-Abschaltmechanismus und Rettungsvorrichtung für ein Fluggerät, damit ausgerüstetes Fluggerät und zugehöriges Betriebsverfahren
DE102019120258A1 (de) * 2019-07-26 2021-01-28 Bayerische Motoren Werke Aktiengesellschaft Multikopter-Fluggerät mit Rotorschutz und Sicherheitsrotoren
CN112947509B (zh) * 2019-12-10 2024-04-12 广州极飞科技股份有限公司 确定无人驾驶设备故障原因的方法及装置
CN113359794B (zh) * 2021-06-04 2022-12-20 北京三快在线科技有限公司 无人机的控制方法、装置、介质、电子设备及无人机

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04274995A (ja) * 1991-03-01 1992-09-30 Mitsubishi Heavy Ind Ltd ヘリコプタ
CN103625640A (zh) * 2013-10-25 2014-03-12 南京航空航天大学 多旋翼无人飞行器
US20150012154A1 (en) * 2012-02-22 2015-01-08 E-Volo Gmbh Aircraft
JP2015137092A (ja) * 2014-01-20 2015-07-30 憲太 安田 パラレルハイブリット方式によるマルチローター航空機
JP2016088111A (ja) * 2014-10-29 2016-05-23 ヤンマー株式会社 ヘリコプター

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05193579A (ja) 1992-01-20 1993-08-03 Mitsubishi Heavy Ind Ltd ターボシャフト・エンジン
US8128033B2 (en) 2006-11-02 2012-03-06 Severino Raposo System and process of vector propulsion with independent control of three translation and three rotation axis
US8128019B2 (en) 2008-12-12 2012-03-06 Honeywell International Inc. Hybrid power for ducted fan unmanned aerial systems
FR3032687B1 (fr) * 2015-02-16 2018-10-12 Hutchinson Aerodyne vtol a soufflante(s) axiale(s) porteuse(s)

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04274995A (ja) * 1991-03-01 1992-09-30 Mitsubishi Heavy Ind Ltd ヘリコプタ
US20150012154A1 (en) * 2012-02-22 2015-01-08 E-Volo Gmbh Aircraft
CN103625640A (zh) * 2013-10-25 2014-03-12 南京航空航天大学 多旋翼无人飞行器
JP2015137092A (ja) * 2014-01-20 2015-07-30 憲太 安田 パラレルハイブリット方式によるマルチローター航空機
JP2016088111A (ja) * 2014-10-29 2016-05-23 ヤンマー株式会社 ヘリコプター

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018046426A (ja) * 2016-09-15 2018-03-22 株式会社Subaru 無人機制御システムの異常検知方法
JPWO2018109903A1 (ja) * 2016-12-15 2019-10-24 エスゼット ディージェイアイ テクノロジー カンパニー リミテッド 飛行制御方法、無人航空機、飛行システム、プログラム、及び記録媒体
WO2018109903A1 (ja) * 2016-12-15 2018-06-21 エスゼット ディージェイアイ テクノロジー カンパニー リミテッド 飛行制御方法、無人航空機、飛行システム、プログラム、及び記録媒体
WO2018128287A1 (ko) * 2017-01-03 2018-07-12 삼성전자 주식회사 무인 비행 장치 키트 및 시스템
JP2018144731A (ja) * 2017-03-08 2018-09-20 株式会社Soken 飛行装置
JP7046923B2 (ja) 2017-04-11 2022-04-04 日本化薬株式会社 飛行体および飛行体の制御方法
WO2018190319A1 (ja) * 2017-04-11 2018-10-18 日本化薬株式会社 飛行体および飛行体の制御方法
JPWO2018190319A1 (ja) * 2017-04-11 2020-03-05 日本化薬株式会社 飛行体および飛行体の制御方法
JP6999290B2 (ja) 2017-05-23 2022-01-18 イームズロボティクス株式会社 飛行装置、飛行方法及び飛行プログラム
JP2018197045A (ja) * 2017-05-23 2018-12-13 株式会社イームズラボ 飛行装置、飛行方法及び飛行プログラム
JP2018199428A (ja) * 2017-05-29 2018-12-20 株式会社フカデン スイッチ装置及びマルチコプター
JPWO2019039063A1 (ja) * 2017-08-24 2020-09-17 日本化薬株式会社 飛行体用安全装置および飛行体
JP7232374B2 (ja) 2017-08-24 2023-03-02 日本化薬株式会社 飛行体
US11530046B2 (en) 2017-08-24 2022-12-20 Nippon Kayaku Kabushiki Kaisha Aerial vehicle safety apparatus and aerial vehicle
JP2022140625A (ja) * 2017-08-24 2022-09-26 日本化薬株式会社 飛行体
JP7086083B2 (ja) 2017-08-24 2022-06-17 日本化薬株式会社 飛行体用安全装置および飛行体
JPWO2019039062A1 (ja) * 2017-08-24 2020-09-17 日本化薬株式会社 飛行体用安全装置および飛行体
WO2019039062A1 (ja) * 2017-08-24 2019-02-28 日本化薬株式会社 飛行体用安全装置および飛行体
JP7118976B2 (ja) 2017-08-24 2022-08-16 日本化薬株式会社 飛行体
WO2019039063A1 (ja) * 2017-08-24 2019-02-28 日本化薬株式会社 飛行体用安全装置および飛行体
US11286051B2 (en) 2017-08-24 2022-03-29 Nippon Kayaku Kabushiki Kaisha Aerial vehicle safety apparatus and aerial vehicle
JP2019051809A (ja) * 2017-09-14 2019-04-04 ソフトバンク株式会社 故障落下対応型haps
WO2019054232A1 (ja) * 2017-09-14 2019-03-21 ソフトバンク株式会社 故障落下対応型haps
JP2019167101A (ja) * 2017-11-06 2019-10-03 株式会社エアロネクスト 飛行体及び飛行体の制御方法
JPWO2019092914A1 (ja) * 2017-11-10 2020-11-12 日本化薬株式会社 飛行体用安全装置および飛行体
JP7104061B2 (ja) 2017-11-10 2022-07-20 日本化薬株式会社 飛行体用安全装置および飛行体
US11591110B2 (en) 2017-11-10 2023-02-28 Nippon Kayaku Kabushiki Kaisha Aerial vehicle safety apparatus and aerial vehicle
WO2019092914A1 (ja) * 2017-11-10 2019-05-16 日本化薬株式会社 飛行体用安全装置および飛行体
KR101996515B1 (ko) * 2017-12-12 2019-07-04 한국항공우주연구원 소형 멀티콥터의 분리 및 회수가 가능한 고정익 항공기 비행 시스템 및 그 방법
KR20190069714A (ko) * 2017-12-12 2019-06-20 한국항공우주연구원 소형 멀티콥터의 분리 및 회수가 가능한 고정익 항공기 비행 시스템 및 그 방법
KR101860548B1 (ko) * 2018-02-27 2018-05-23 주식회사 일도엔지니어링 드론의 식생 촬영 데이터와 gis 분석 기법을 이용한 골프장 잔디 관리 장치
CN112135774A (zh) * 2019-04-25 2020-12-25 乐天株式会社 无人飞行体、飞行体控制系统及搬运方法
JP2023113085A (ja) * 2022-02-02 2023-08-15 デジタルアーツ株式会社 ドローン及びドローンの制御方法
JP7440550B2 (ja) 2022-02-02 2024-02-28 デジタルアーツ株式会社 ドローン及びドローンの制御方法

Also Published As

Publication number Publication date
US20180134379A1 (en) 2018-05-17
JP6208402B2 (ja) 2017-10-04
JPWO2016171120A1 (ja) 2017-08-17
US10427781B2 (en) 2019-10-01

Similar Documents

Publication Publication Date Title
JP6208402B2 (ja) 無人航空機
WO2016067489A1 (ja) ヘリコプター
CN107074366B (zh) 直升机
DK201900074Z6 (da) Systemer og fremgangsmåder til stabilitet ved ophængt last
CN110785372B (zh) 提升、吊挂和移动载荷的防回转装置和方法
US10689102B2 (en) Vertical take-off and landing aircraft
CN107226206B (zh) 多旋翼无人机安全降落系统及方法
CN110198908B (zh) 用于控制悬挂负载的定向的设备
US20200298962A1 (en) Method and a device for moving the center of gravity of an aircraft
JP7075693B2 (ja) 無人飛行体
JP6557883B2 (ja) 飛行装置
WO2017026337A1 (ja) 飛行制御装置およびこれを備える無人航空機
JP2013079034A (ja) 空撮用回転翼機
US20170067530A1 (en) Redundant active vibration and noise control systems and methods
KR101824183B1 (ko) 추락방지 기능을 갖는 무인비행체
RU127039U1 (ru) Аэробайк
CN113573980A (zh) 使用音频数据检测即将发生的马达故障
US10556695B2 (en) Rotor ice protection system
JP2018111474A (ja) 無人航空機(ドローン)の落下防止
Foster et al. Recent nasa wind tunnel free-flight testing of a multirotor unmanned aircraft system
CN106941777A (zh) 无人机及其挂载装置、挂载平台、控制方法和控制系统
CN205837207U (zh) 一种高可靠性飞行器高空下落缓降系统
CN207045769U (zh) 一种无人机的安全运行保护电路结构
CN108583868A (zh) 一种地效式涵道风扇飞行器
CN113784891A (zh) 飞行设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16783141

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2017514125

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15566660

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16783141

Country of ref document: EP

Kind code of ref document: A1