WO2018190319A1 - 飛行体および飛行体の制御方法 - Google Patents

飛行体および飛行体の制御方法 Download PDF

Info

Publication number
WO2018190319A1
WO2018190319A1 PCT/JP2018/014997 JP2018014997W WO2018190319A1 WO 2018190319 A1 WO2018190319 A1 WO 2018190319A1 JP 2018014997 W JP2018014997 W JP 2018014997W WO 2018190319 A1 WO2018190319 A1 WO 2018190319A1
Authority
WO
WIPO (PCT)
Prior art keywords
aircraft
fall
generating member
unit
airframe
Prior art date
Application number
PCT/JP2018/014997
Other languages
English (en)
French (fr)
Inventor
中村 博
泰彦 八木橋
久保 大理
Original Assignee
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化薬株式会社 filed Critical 日本化薬株式会社
Priority to JP2019512512A priority Critical patent/JP7046923B2/ja
Priority to US16/603,876 priority patent/US20200115049A1/en
Priority to CN201880024214.9A priority patent/CN110709322B/zh
Priority to EP18783834.7A priority patent/EP3611096B1/en
Publication of WO2018190319A1 publication Critical patent/WO2018190319A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D17/00Parachutes
    • B64D17/80Parachutes in association with aircraft, e.g. for braking thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D17/00Parachutes
    • B64D17/02Canopy arrangement or construction
    • B64D17/025Canopy arrangement or construction for gliding chutes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D17/00Parachutes
    • B64D17/40Packs
    • B64D17/52Opening, e.g. manual
    • B64D17/54Opening, e.g. manual automatic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D17/00Parachutes
    • B64D17/62Deployment
    • B64D17/72Deployment by explosive or inflatable means
    • B64D17/725Deployment by explosive or inflatable means by explosive means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D45/00Aircraft indicators or protectors not otherwise provided for
    • B64D45/04Landing aids; Safety measures to prevent collision with earth's surface
    • B64D45/06Landing aids; Safety measures to prevent collision with earth's surface mechanical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D47/00Equipment not otherwise provided for
    • B64D47/08Arrangements of cameras
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/50Glider-type UAVs, e.g. with parachute, parasail or kite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U70/00Launching, take-off or landing arrangements
    • B64U70/80Vertical take-off or landing, e.g. using rockets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U70/00Launching, take-off or landing arrangements
    • B64U70/80Vertical take-off or landing, e.g. using rockets
    • B64U70/83Vertical take-off or landing, e.g. using rockets using parachutes, balloons or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/04Helicopters
    • B64C27/08Helicopters with two or more rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D45/00Aircraft indicators or protectors not otherwise provided for
    • B64D2045/008Devices for detecting or indicating hard landing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/30UAVs specially adapted for particular uses or applications for imaging, photography or videography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/20Remote controls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U30/00Means for producing lift; Empennages; Arrangements thereof
    • B64U30/20Rotors; Rotor supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/19Propulsion using electrically powered motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U60/00Undercarriages
    • B64U60/50Undercarriages with landing legs

Definitions

  • the present disclosure relates to a flying object such as a drone and a method for controlling the flying object.
  • Aircraft is not limited to manned aircraft such as passenger aircraft and helicopters, but also includes unmanned aircraft.
  • unmanned aircraft Particularly in recent years, with the development of autonomous control technology and flight control technology, the use of unmanned aerial vehicles such as drones in the industry is accelerating.
  • the drone has, for example, a plurality of rotor blades, and flies by simultaneously rotating these rotor blades with a good balance. At that time, ascent and descent are performed by uniformly increasing / decreasing the number of rotations of the plurality of rotor blades, and advancement and retreat are performed by tilting the aircraft by individually increasing / decreasing the number of rotations of each of the plurality of rotor blades. Is done by. The use of such unmanned aerial vehicles is expected to expand worldwide.
  • unmanned aerial vehicle fall accidents is regarded as dangerous and hinders the spread of unmanned aerial vehicles.
  • parachutes for unmanned aerial vehicles are being commercialized.
  • Such an unmanned aerial vehicle parachute apparatus reduces the impact at the time of landing by reducing the speed of the unmanned aerial vehicle by the deployed parachute when the unmanned aircraft falls.
  • Patent Document 1 Japanese Patent Laid-Open No. 5-185993
  • the guidance device determines the current traveling direction of the gliding parachute based on the three-dimensional position detected by the position detector and the horizontal direction detected by the posture detector,
  • the actuator is configured to be driven in accordance with a deviation from a preset drop target position.
  • the guidance device operates the right or left control rope by driving the actuator so as to match the direction of the fall target position.
  • the gliding parachute has a function of turning.
  • the above-described parachute device for unmanned aerial vehicles does not guide the unmanned aerial vehicle to the fall target position. For this reason, the unmanned aerial vehicle is swept away by a crosswind and enters, for example, a no-fly zone or the like. There was a problem of slipping.
  • the above-described guidance device guides the fallen object from the rocket to the fall target position, and detects the fall of the flying object equipped with a propulsion mechanism like an unmanned aerial vehicle. It does not guide the flying object to the fall target position.
  • the present disclosure has been made in view of such circumstances, and an object of the present disclosure is to provide a flying body capable of guiding the airframe when dropped and a control method thereof.
  • An aircraft is connected to the aircraft, a propulsion mechanism provided in the aircraft, a lift generating member provided in the aircraft to be deployable, the lift generating member, and the lift An operating mechanism that operates the lift generating member in a state in which the generating member is deployed, a deploying device that deploys the lift generating member, a control unit that controls the operating mechanism, a drop of the airframe, and the deployment A fall detection unit that provides a fall detection signal to the apparatus and the control unit.
  • the deployment device deploys the lift generating member by receiving the fall detection signal, and the control unit receives the fall detection signal. Control of the operation mechanism is started.
  • the lift generating member may have any form as long as lift is generated in the deployed state.
  • Examples of the lift generating member include a parafoil, a logaro paraglider, a logaro parachute, a triangle paraglider, and a triangle. Type parachute and the like.
  • the expansion device expands the lift generating member with a propulsive force based on a gas pressure generated by combustion of explosives.
  • the deployment device is preferably attached to the outer surface of the aircraft.
  • the fall detection unit detects an abnormal vibration of the acceleration sensor, the gyro sensor, the atmospheric pressure sensor, the laser sensor, the ultrasonic sensor, and the propulsion mechanism. It preferably includes at least one of the sensing devices.
  • the flying body includes a power supply unit that supplies power for operating the propulsion mechanism, and the deployment device, the control unit, and the fall detection unit separately from the power supply unit. And a power supply source for supplying power.
  • the fall detection unit includes an acceleration sensor, a gyro sensor, an atmospheric pressure sensor, a laser sensor, an ultrasonic sensor, and the propulsion. It is preferable to include at least one of an abnormal vibration detection device that detects abnormal vibration of the mechanism and a voltage abnormality detection device that detects a voltage abnormality of the power supply unit.
  • the flying body based on an aspect of the present disclosure preferably further includes a position detection unit that detects position information of the airframe.
  • the control unit is detected by the position detection unit. It is preferable to control the operation mechanism based on the position information.
  • the position detection unit acquires the position information using an artificial satellite, and acquires the position information using a mobile phone base station. It is preferable that at least one of an apparatus for detecting the altitude of the aircraft, a camera for imaging the periphery of the aircraft, a geomagnetic sensor for detecting the azimuth angle of the aircraft, and an altitude detecting device for detecting the altitude of the aircraft.
  • the altitude detection device includes at least one of a barometric sensor, a laser sensor, an ultrasonic sensor, an infrared sensor, a millimeter wave radar, and a submillimeter wave radar. It is preferable that
  • the flying body based on an aspect of the present disclosure further includes a downward situation detection unit that detects a situation below the aircraft.
  • the downward state detection unit is at least one of a camera, an image sensor, an infrared sensor, a laser sensor, an ultrasonic sensor, a millimeter wave radar, and a submillimeter wave radar. It is preferable that one is included.
  • control unit determines the target position of the aircraft to fall based on the information detected by the lower situation detection unit, and the target position of the fall is It is preferable to control the operation mechanism so that the airframe is directed.
  • the flying body based on an aspect of the present disclosure further includes a determination unit that determines the presence or absence of a person at the fall target position based on information detected by the downward situation detection unit.
  • the control unit when the determination unit determines that there is a person at the fall target position, the control unit changes the fall target position, and after the change It is preferable to control the operation mechanism so that the airframe is directed to the fall target position.
  • the flying object according to an aspect of the present disclosure may further include a notification unit that emits a warning sound when the determination unit determines that there is a person at the fall target position.
  • control unit may control the operation mechanism so that the aircraft is directed to a predetermined flight destination.
  • the flying body according to an aspect of the present disclosure may further include a remote operation device for remotely operating the propulsion mechanism, in which case the remote operation device is detected by the lower situation detection unit. It is preferable to have a display unit for displaying the information.
  • a flight control device that controls the propulsion mechanism may be provided in the airframe, and in that case, the control unit includes the flight control device. It is preferable that it is incorporated in.
  • An aircraft based on an aspect of the present disclosure may be an unmanned aerial vehicle.
  • An aircraft control method includes: a vehicle, a propulsion mechanism provided in the aircraft, a lift generating member provided in the aircraft to be deployable, and the lift generating member. And an operating mechanism that operates the lift generating member in a state where the lift generating member is deployed, a deployment device that deploys the lift generating member, a control unit that controls the operating mechanism, and A drop detection unit that detects a fall and provides a drop detection signal to the deployment device and the control unit.By receiving the fall detection signal, the deployment device causes the lift generating member to The step of unfolding and the step of starting the control of the operation mechanism by the control unit upon receiving the fall detection signal are provided.
  • FIG. It is a figure which shows the state at the time of fall of the unmanned aircraft which concerns on Embodiment 1.
  • FIG. It is a figure which shows the accommodation state of the lift generating member of the expansion
  • FIG. It is a figure which shows the accommodation state of the lift generating member of the expansion
  • an unmanned aerial vehicle 1 ⁇ / b> A includes an aircraft main body 1200 and a paraglider apparatus 1100 assembled to the aircraft main body 1200.
  • the lift generating member 1110 for example, parafoil
  • the storage container 1151 of the paraglider apparatus 1100 is stored in the storage container 1151 of the paraglider apparatus 1100 during the normal flight of the unmanned aircraft 1A.
  • 1A is dropped, as shown in FIG. 1, it is injected outside the storage container 1151 of the paraglider apparatus 1100 and deployed.
  • the paraglider apparatus 1100 is connected to the above-described lift generation member 1110, the lift generation member 1110, and the control ropes 1111 and 1112 that operate the operation and direction of the lift generation member 1110, and the unfolding that expands the lift generation member 1110.
  • Device 1115 In FIG. 1, the control rope 1111 is located on the left, and the control rope 1112 is located on the right.
  • the aircraft main body 1200 is assembled to the fuselage 1201, one or more propulsion mechanisms 1202 (for example, a propeller) that propel the fuselage 1201, and a plurality of legs 1203 provided at the lower part of the fuselage 1201. And.
  • propulsion mechanisms 1202 for example, a propeller
  • legs 1203 provided at the lower part of the fuselage 1201.
  • the unmanned aerial vehicle 1A includes a control unit (CPU (Central Processing Unit), ROM (Read Only Memory), RAM) that controls the control ropes 1111 and 1112 in addition to the aircraft main body 1200 and the paraglider apparatus 1100 described above.
  • control unit CPU (Central Processing Unit), ROM (Read Only Memory), RAM
  • RAM Random Access Memory
  • 1420 drop detection unit 1421, power supply source 1422, position detection unit 1423, downward situation detection unit 1424, image analysis unit 1425 as a determination unit, and notification unit 1426 and a remote control device 1300 are provided.
  • control unit 1420 the fall detection unit 1421, the power supply source 1422, the position detection unit 1423, the downward state detection unit 1424, the image analysis unit 1425, and the notification unit 1426 are the paraglider apparatus 1100 in this embodiment. Is provided.
  • the lift generating member 1110 is configured to be deployable by a deployment device 1115. As described above, in the initial state, the lift generating member 1110 is arranged in a non-deployed state as shown in FIG. 2, and is deployed by the deploying device 1115 to be in the state shown in FIG. .
  • the deployment device 1115 is provided on the body 1201 of the aircraft main body 1200.
  • the expansion device 1115 includes a cup-shaped storage container 1151 that stores the lift generating member 1110 before expansion, a plurality of first suspension ropes 1113 having one end fixed to the bottom of the storage container 1151, and a first suspension suspended from the first end.
  • a plurality of second suspension ropes 1114 connected to the rope 1113 and having the other end connected to the lift generating member 1110 are provided.
  • One end of each of the control ropes 1111, 1112 is connected to some second suspension ropes 1114, and the other end of each of the control ropes 1111, 1112 is a drive provided on the fuselage 1201 of the aircraft main body 1200.
  • Each is connected to a motor (not shown).
  • the control ropes 1111 and 1112 and the drive motor described above correspond to the operation mechanism.
  • the developing device 1115 is further provided on the inner bottom portion of the storage container 1151, and has a cylindrical cylinder portion 1152 having a pyroactuator (not shown) inside, and connected to the cylinder portion 1152.
  • the three pipe portions 1153, 1154, and 1155 are provided.
  • the tube portions 1153, 1154, and 1155 are arranged like an umbrella bone, for example. Since the above-mentioned pyroactuator is well-known, detailed description is omitted, but the gas pressure is generated by combustion of the ignition agent by the igniter.
  • one pyroactuator is provided inside each of the pipe parts 1153, 1154, and 1155, and projectiles 1153a, 1154a, and 1155a described later are provided. You may be able to fire separately.
  • the projectile 1153a is inserted into the tube portion 1153 with a part thereof exposed.
  • a projectile 1154a is inserted into the tube portion 1154 with a part thereof exposed.
  • a projectile 1155a is inserted into the tube portion 1155 with a part thereof exposed.
  • the lift generating member 1110 is connected to the projectile 1153a by a string 1113a, and is connected to the projectile 1155a by a string 1113b.
  • the lift generating member 1110 is connected to the projectile 1155a by a string 1113c and is connected to the projectile 1154a by a string 1113d.
  • the projectiles 1153a, 1154a, and 1155a are ejected by the gas pressure generated in the cylinder portion 1152 by the above-described pyroactuator, whereby the strings 1113a, 1113b, 1113c, and 1113d are pulled in the ejection direction.
  • the lift generating member 1110 is deployed.
  • the lift generating member 1110 is locked by being restrained by the first suspension line 1113 because one end of the first suspension line 1113 is fixed to the bottom of the storage container 1151.
  • the operation and direction of the deployed lift generating member 1110 are adjusted by controlling the winding or sending out of the control ropes 1111 and 1112 by the drive motor described above by the control unit 1420.
  • the aircraft body 1200 is turned so that the traveling direction of the aircraft main body 1200 coincides with the direction of a fall target position described later.
  • the fall detection unit 1421 includes, for example, an acceleration sensor, a gyro sensor, an atmospheric pressure sensor, a laser sensor, an ultrasonic sensor, and a propulsion mechanism 1202 provided in the body 1201 (here, a motor that rotates a propeller).
  • An abnormal vibration detection unit that detects abnormal vibration of the power supply unit, and a voltage abnormality detection unit that detects voltage abnormality of a power supply unit (not shown) that supplies power for operating the propulsion mechanism 1202 provided in the airframe 1201 It is comprised by at least one.
  • the acceleration detection unit 1421 is set in advance, for example, when an acceleration higher than a predetermined value (for example, a preset acceleration that is assumed to be falling) is detected by the acceleration sensor.
  • a predetermined value for example, a preset acceleration that is assumed to be falling
  • the fall detection unit 1421 gives the deployment device 1115 and the control unit 1420 a fall detection signal indicating that the airframe 1201 is falling.
  • the deployment device 1115 deploys the lift generation member 1110 by receiving the fall detection signal
  • the control unit 1420 starts control of the operation and direction of the lift generation member 1110 by the control ropes 1111 and 1112 by receiving the fall detection signal.
  • the fall detection unit 1421 may give the fall detection signal to the deployment device 1115 and the control unit 1420.
  • the power supply source 1422 is provided separately from the above-described power supply unit that supplies power for operating the propulsion mechanism 1202 provided in the airframe 1201, and includes the above-described deployment device 1115, control unit 1420, and fall detection unit. 1421, the position detection unit 1423, the downward situation detection unit 1424, the image analysis unit 1425, and the notification unit 1426 are supplied with electric power.
  • the power supply source 1422 for example, a lithium ion battery can be used.
  • the position detection unit 1423 detects position information of the airframe 1201.
  • the position detection unit 1423 is, for example, a GNSS (Global Navigation Satellite System) device that detects the three-dimensional position information of the airframe 1201 using an artificial satellite, and the 3D position information of the airframe 1201 as a base of a mobile phone. It is composed of at least one of a device that obtains information using a station, a camera that captures the periphery of the airframe 1201, a geomagnetic sensor that detects the azimuth angle of the airframe 1201, and an altitude detection device that detects the altitude of the airframe 1201.
  • GNSS Global Navigation Satellite System
  • the altitude detection device is configured by at least one of, for example, a barometric sensor, a laser sensor, an ultrasonic sensor, an infrared sensor, a millimeter wave radar, and a submillimeter wave radar.
  • the control unit 1420 controls the control ropes 1111 and 1112 based on the position information detected by the position detection unit 1423.
  • the downward situation detection unit 1424 detects the situation below the fuselage 1201.
  • the downward direction of the airframe 1201 means the direction on the ground surface viewed from the airframe 1201 regardless of the attitude of the airframe 1201.
  • the downward situation detection unit 1424 includes, for example, at least one of a camera, an image sensor, an infrared sensor, a laser sensor, an ultrasonic sensor, a millimeter wave radar, and a sub millimeter wave radar.
  • the control unit 1420 determines the fall target position of the aircraft 1201 based on the information detected by the downward situation detection unit 1424 and controls the control ropes 1111 and 1112 so that the aircraft 1201 faces the fall target position.
  • the image analysis unit 1425 determines the presence / absence of a person at the fall target position based on the information detected by the downward situation detection unit 1424.
  • the notification unit 1426 emits a warning sound when the image analysis unit 1425 determines that there is a person at the fall target position.
  • the image analysis unit 1425 may be configured by hardware or may be functionally realized by software.
  • the remote operation device 1300 is used when an operator remotely operates the propulsion mechanism 1202 provided in the aircraft main body 1200.
  • the remote operation device 1300 includes a communication unit (not shown) that can perform wireless communication with the control unit 1420 and a display unit 1301 that displays information detected by the downward situation detection unit 1424.
  • the deployment device 1115 can immediately deploy the lift generation member 1110, and the developed lift generation The member 1110 is controlled by the control unit 1420 via the control ropes 1111 and 1112.
  • the lift generated by the lift generating member 1110 and the air resistance force against the lift generating member 1110 can be combined to reduce the speed of the airframe 1201, and the speed of the airframe 1201 can be controlled. . Therefore, the impact on the airframe 1201 at the time of landing is reduced, and the airframe 1201 is not blown by a crosswind to enter a flight prohibited area or the like, and does not significantly deviate from the fall target position.
  • the fall detection unit 1421 it is possible to detect the fall of the airframe 1201 instantaneously, and based on the detection, the lift generating member 1110 can be ejected and deployed by the deployment device 1115. Furthermore, the airframe 1201 can be safely guided based on the situation determination of the falling point.
  • the deployment device 1115, the control unit 1420, and the fall detection unit are provided separately from the power supply unit that supplies the unmanned aircraft 1A with power for operating the propulsion mechanism 1202 provided in the fuselage 1201.
  • a power supply source 1422 for supplying power to the 1421 is provided. If the unmanned aircraft 1A is only provided with a power supply unit that supplies power for operating the propulsion mechanism 1202 provided in the airframe 1201, for example, if all the power is consumed, the power supply However, according to the present configuration, such a situation can be avoided.
  • the deployment device 1115, the control unit 1420, and the drop detection unit 1421 are operated by the power of the power supply source 1422 provided separately from the power supply unit. Can be made. Further, the power supply source 1422 can be used as a sub power source of the power supply unit.
  • the situation below the machine body 1201 can be recognized based on the information from the situation sensing unit 1424 below. As a result, it is possible to determine whether or not the airframe 1201 is appropriate as a position to land. Moreover, a fall target position can also be changed according to a downward condition.
  • the image analysis unit 1425 since the presence / absence of a person is determined by the image analysis unit 1425, it is possible to avoid the aircraft 1201 from colliding with a person. In addition, even if the aircraft 1201 has to land at a place where a person is present, a warning sound is generated by the notification unit 1426, so that the person can be withdrawn from the place. Thereby, it can avoid that the body 1201 collides with a person.
  • control unit 1420 determines a target drop position of airframe 1201 based on information detected by downward situation detection unit 1424, and performs control so that airframe 1201 lands at the target drop position. To do. Therefore, this makes it possible to guide the aircraft 1201 to a safe landing point.
  • the remote control device 1300 has a display unit 1301 for displaying information detected by the downward situation detection unit 1424. Therefore, the operator can easily grasp the situation below the airframe 1201 by viewing the display unit 1301. That is, when the operator grasps the situation below the airframe 1201, the airframe 1201 can be guided to a safe place.
  • the deployment device 1190 includes a pyroactuator 1188 and a lift generating member (for example, parafoil) 1186.
  • the pyroactuator 1188 includes an igniter 1184 having a cup-shaped case 1185 that accommodates an igniting agent (not shown), a piston 1181 having a concave portion 1182 and a piston head 1183 formed integrally with the concave portion 1182, and a piston 1181. And a bottomed cylindrical housing 1180 that regulates the propulsion direction of the piston 1181.
  • the lift generating member 1186 is housed in the housing 1180 in a state of being disposed on the piston head 1183.
  • the piston 1181 is propelled by the gas pressure generated by the igniter 1184, whereby the lift generating member 1186 can be directly pushed out and deployed.
  • the opening end of the housing 1180 is closed by a lid 1187 in the initial state, and is detached from the opening end by pushing out the lift generating member 1186.
  • the control unit, the fall detection unit, the power supply source, the position detection unit, the downward situation detection unit, the image analysis unit, and the notification unit are provided in the paraglider apparatus.
  • the present invention is not limited to this, and some or all of these may be provided in the aircraft body.
  • the control part of these in an aircraft main body it is good also as incorporating the said control part in the flight control apparatus provided in the inside of the body.
  • the flight control device is a device that controls the flight of the aircraft body by controlling a propulsion mechanism provided in the airframe.
  • the notification unit that emits a warning sound when the image analysis unit serving as the determination unit determines that there is a person at the fall target position is used.
  • the present invention is not limited to this, and a warning may be given that evacuation is necessary, for example, by a light or smoke cylinder.
  • the lift generating member In the first embodiment and the first modification described above, the case where a parafoil is used as the lift generating member has been described as an example. However, as the lift generating member, lift is generated in a deployed state. As long as it is of any form, a logaro type paraglider, a logaro type parachute, a triangle type paraglider, a triangle type parachute, etc. can be used.
  • the control unit determines the target fall position of the aircraft based on the information detected by the downward situation detection unit, and the aircraft faces the fall target position. However, when it is determined by the determination unit that there is a person at the fall target position, the control unit changes the drop target position, You may comprise so that an operation mechanism may be further controlled so that an airframe may go to the fall target position after a change.
  • control unit is configured to determine the target position of the airframe drop based on information detected by the downward situation detection unit.
  • the control unit is configured to control the operation mechanism so that the aircraft faces the predetermined flight destination. May be.
  • the present invention is applied to a drone as an unmanned aerial vehicle is described as an example, but other types of unmanned aerial vehicles or The present invention can be similarly applied to manned aircraft.
  • the aircraft according to the first aspect of the present disclosure is connected to the aircraft, a propulsion mechanism provided in the aircraft, a lift generating member provided in the aircraft to be deployable, and the lift generating member.
  • An operation mechanism that operates the lift generation member in a state in which the lift generation member is deployed, a deployment device that deploys the lift generation member, a control unit that controls the operation mechanism, and a drop of the airframe, A drop detection unit that provides a drop detection signal to the deployment device and the control unit.
  • the deployment device deploys the lift generating member by receiving the fall detection signal, and the control unit receives the fall detection signal.
  • the control of the operation mechanism is started.
  • the deployment device when the fall detection unit detects the fall of the airframe, the deployment device can immediately deploy the lift generating member, and the deployed lift generating member can be operated via the operation mechanism. It is controlled by the control unit. Therefore, the lift generated by the lift generating member and the air resistance force against the lift generating member can be combined to reduce the speed of the aircraft, and the speed of the aircraft can be controlled. This reduces the impact on the aircraft at the time of landing, and the aircraft does not flow into the no-fly zone due to crosswinds and does not deviate significantly from the fall target position. Can be guided to.
  • the expansion device expands the lift generating member with a propulsive force based on a gas pressure generated by combustion of explosives.
  • This configuration makes it possible to instantaneously deploy the lift generating member when the fuselage is dropped.
  • the deployment device is attached to the outer surface of the airframe.
  • the deployment device is mounted on the surface of the aircraft, for example, on the side surface of the aircraft, so that the lift generating member can be deployed with the aircraft tilted to land the aircraft.
  • the airframe By tilting the airframe in this way, it is possible to avoid various devices provided in the lower part of the airframe or a lithium ion battery that may ignite from being directly impacted when landing.
  • the fall detection unit detects abnormal vibrations of the acceleration sensor, the gyro sensor, the atmospheric pressure sensor, the laser sensor, the ultrasonic sensor, and the propulsion mechanism. It is preferable to include at least one of the abnormal vibration detection devices.
  • the flying body according to the first aspect of the present disclosure includes a power supply unit that supplies power for operating the propulsion mechanism, and the deployment device, the control unit, and the fall detection separately from the power supply unit. And a power supply source for supplying power to the unit.
  • the power supply unit that supplies power for operating the propulsion mechanism to the unmanned aircraft is provided, for example, if the power supply unit consumes all of the power, the power is received from the power supply unit.
  • the power supply source it is also possible to use the power supply source as a sub power source of the power supply unit.
  • the fall detection unit detects an abnormal vibration of the acceleration sensor, the gyro sensor, the atmospheric pressure sensor, the laser sensor, the ultrasonic sensor, and the propulsion mechanism. It is preferable to include at least one of a detection device and a voltage abnormality detection device that detects a voltage abnormality of the power supply unit.
  • the flying body based on the first aspect of the present disclosure preferably further includes a position detection unit that detects position information of the airframe.
  • the control unit is detected by the position detection unit. It is preferable to control the operation mechanism based on the position information.
  • control unit can appropriately control the operation mechanism based on the position information.
  • the position detection unit acquires the position information using an artificial satellite, Among devices that acquire position information using a mobile phone base station, a camera that images the periphery of the aircraft, a geomagnetic sensor that detects the azimuth of the aircraft, and an altitude detection device that detects the altitude of the aircraft It is preferable that at least one is included.
  • the altitude detection device is at least one of a barometric sensor, a laser sensor, an ultrasonic sensor, an infrared sensor, a millimeter wave radar, and a submillimeter wave radar. It is preferable that it contains.
  • the flying body based on the first aspect of the present disclosure further includes a lower situation detection unit that detects a situation below the aircraft.
  • the lower situation detection unit includes a camera, an image sensor, an infrared sensor, a laser sensor, an ultrasonic sensor, a millimeter wave radar, and a submillimeter wave radar. It is preferable that at least one is included.
  • This configuration makes it possible to obtain highly accurate information indicating the situation below the aircraft. This makes it possible to make a highly reliable determination in determining the target position of the aircraft.
  • control unit determines the fall target position of the aircraft based on the information detected by the downward situation detection unit, and the fall target position It is preferable to control the operation mechanism so that the airframe is directed toward the vehicle.
  • the target position of the airframe is determined based on the information detected by the downward situation detection unit, so that the airframe can be landed at a safe landing point.
  • the flying body based on the first aspect of the present disclosure further includes a determination unit that determines the presence or absence of a person at the fall target position based on information detected by the downward situation detection unit.
  • the aircraft according to the first aspect of the present disclosure may further include a notification unit that emits a warning sound when the determination unit determines that there is a person at the fall target position.
  • the flying body according to the first aspect of the present disclosure may further include a remote operation device for remotely operating the propulsion mechanism, and in that case, the remote operation device includes the downward situation detection unit. It is preferable to have a display unit for displaying the information detected by.
  • a flight control device that controls the propulsion mechanism may be provided in the aircraft, and in that case, the control unit is configured to perform the flight. It is preferably incorporated in the control device.
  • the weight of the control unit of the paraglider device can be reduced, so that the weight of the paraglider device can be reduced.
  • the aircraft according to the first aspect of the present disclosure may be an unmanned aerial vehicle. By comprising in this way, the risk by the fall accident in an unmanned aerial vehicle can be reduced significantly.
  • a flying body control method includes: a flying body, a propulsion mechanism provided in the aircraft, a lift generating member provided in the aircraft so as to be deployable, and the lifting force.
  • An operating mechanism that is connected to the generating member and that operates the lift generating member in a state in which the lift generating member is deployed; a deployment device that deploys the lift generating member; a control unit that controls the operating mechanism; A drop detection unit that detects a fall of the fuselage and provides a drop detection signal to the deployment device and the control unit, and receiving the fall detection signal, the deployment device generates the lift.
  • the step of expanding the member and the step of the control unit starting control of the operation mechanism by receiving the fall detection signal are provided.
  • the deployment device when the fall detection unit detects the fall of the airframe, the deployment device can immediately deploy the lift generating member, and the deployed lift generating member can be operated via the operation mechanism. It is controlled by the control unit. Therefore, the lift generated by the lift generating member and the air resistance force against the lift generating member can be combined to reduce the speed of the aircraft, and the speed of the aircraft can be controlled. This reduces the impact on the aircraft at the time of landing, and the aircraft does not flow into the no-fly zone due to crosswinds and does not deviate significantly from the fall target position. Can be guided to.
  • unmanned aerial vehicle 1B includes an aircraft main body 2200, a paraglider device 2100 assembled to aircraft main body 2200, and a propulsion mechanism control device provided on aircraft main body 2200.
  • the lift generating member 2110 (for example, parafoil) included in the paraglider apparatus 2100 is stored in the storage container 2151 of the paraglider apparatus 2100 as shown in FIG. 6 during normal flight of the unmanned aircraft 1B.
  • 1B falls, as shown in FIG. 5, it is injected outside the storage container 2151 of the paraglider apparatus 2100 and deployed.
  • the paraglider apparatus 2100 includes the above-described lift generation member 2110 and a deployment device 2115 that is connected to the lift generation member 2110 and deploys the lift generation member 2110.
  • the aircraft main body 2200 is assembled to a fuselage 2201 and one or more propulsion mechanisms 2202 (for example, a propeller and a drive motor 2204 (see FIG. 7) that drives the propeller) that propel the fuselage 2201. And a plurality of legs 2203 provided at the lower part of the body 2201.
  • propulsion mechanisms 2202 for example, a propeller and a drive motor 2204 (see FIG. 7) that drives the propeller
  • legs 2203 provided at the lower part of the body 2201.
  • the propulsion mechanism control apparatus includes a control unit (computer having a CPU, ROM, RAM, and the like) 2420 that controls the drive motor 2204 of the propulsion mechanism 2202, a fall detection unit 2421, and a power supply source 2422. , A position detection unit 2423, a downward situation detection unit 2424, an image analysis unit 2426 as a determination unit, and a notification unit 2427.
  • a control unit computer having a CPU, ROM, RAM, and the like
  • the lift generating member 2110 is configured to be deployable by a deployment device 2115. As described above, in the initial state, the lift generating member 2110 is arranged in a non-deployed state as shown in FIG. 6 and is deployed by the deployment device 2115 to be in the state shown in FIG. .
  • the deployment device 2115 is provided on the body 2201 of the aircraft body 2200. More specifically, the deployment device 2115 is provided on the side surface of the body 2201.
  • the expansion device 2115 includes a cup-shaped storage container 2151 that stores the lift generating member 2110 before expansion, a plurality of first suspension ropes 2112 having one end fixed to the bottom of the storage container 2151, and one end suspended from the first suspension rope 2112. A plurality of second suspension ropes 2113 connected to the rope 2112; and a plurality of third suspension ropes 2114 having one end connected to the second suspension rope 2113 and the other end connected to the lift generating member 2110. ing.
  • the deployment device 2115 further includes a support column 2152 provided at the inner bottom of the storage container 2151, and pyroactuators 2160, 2161, and 1162 inside, and is connected to the support column 2152.
  • Two pipe portions 2153, 2154, and 2155 are provided.
  • a pyroactuator 2160 is provided inside the tube portion 2153
  • a pyroactuator 2161 is provided inside the tube portion 2154
  • a pyroactuator 2162 is provided inside the tube portion 2155.
  • the pipe portions 2153, 2154, and 2155 are arranged like an umbrella bone, for example. Since the pyroactuators 2160, 2161, and 162 are well known, a detailed description thereof is omitted. However, the gas pressure is generated by combustion of the ignition agent by the igniter, and the piston is propelled by the gas pressure.
  • the projectile 2153a is inserted into the tube portion 2153 with a part thereof exposed.
  • a projectile 2154a is inserted into the tube portion 2154 in a partially exposed state.
  • a projectile 2155a is inserted into the tube portion 2155 with a part thereof exposed.
  • the lift generating member 2110 is connected to the projectile 2153a by a string 2113a, and is connected to the projectile 2155a by a string 2113b.
  • the lift generating member 2110 is connected to the projectile 2155a by a string 2113c, and is connected to the projectile 2154a by a string 2113d.
  • the projectile 2153a is ejected by propulsion of the piston of the pyroactuator 2160
  • the projectile 2154a is ejected by propulsion of the piston of the pyroactuator 2161
  • the projectile 2155a is ejected by propulsion of the piston of the pyroactuator 2162.
  • the strings 2113a, 2113b, 2113c, and 2113d are pulled in the injection direction, whereby the lift generating member 2110 is deployed.
  • the lift generating member 2110 is locked by being restrained by the first suspension line 2112 because one end of the first suspension line 2112 is fixed to the bottom of the storage container 2151.
  • the fall detection unit 2421 includes, for example, an acceleration sensor, a gyro sensor, an atmospheric pressure sensor, a laser sensor, an ultrasonic sensor, and a propulsion mechanism 2202 provided in the body 2201 (here, a motor that rotates a propeller).
  • An abnormal vibration detection unit that detects abnormal vibration of the power supply unit, and a voltage abnormality detection unit that detects voltage abnormality of a power supply unit (not shown) that supplies power for operating the propulsion mechanism 2202 provided in the airframe 2201 It is comprised by at least one.
  • the fall detection unit 2421 includes an acceleration sensor, it is set in advance when the acceleration sensor detects a predetermined acceleration or more (for example, a preset acceleration that is assumed to be falling). When falling, the fall detection unit 2421 gives the deployment device 2115 and the control unit 2420 a fall detection signal indicating that the airframe 2201 is falling.
  • a predetermined acceleration or more for example, a preset acceleration that is assumed to be falling.
  • the deployment device 2115 deploys the lift generating member 2110 by receiving the fall detection signal, and the control unit 2420 controls the drive motor 2204 of the propulsion mechanism 2202 by receiving the fall detection signal, thereby describing the airframe 2201 later. Guide to the drop target position.
  • control unit 2420 controls drive motor 2204 even during normal flight of unmanned aerial vehicle 1B.
  • the number of rotations of the drive motor 2204 during normal flight and the number of rotations of the drive motor 2204 at the time of dropping may be the same or different from each other.
  • the power supply source 2422 is provided separately from the above-described power supply unit that supplies power for operating the propulsion mechanism 2202 provided in the airframe 2201 during normal flight.
  • the deployment device 2115 and the control unit described above are provided. Power is supplied to each of 2420, a drop detection unit 2421, a position detection unit 2423, a downward situation detection unit 2424, an image analysis unit 2426, and a notification unit 2427.
  • the power supply source 2422 can supply power to the drive motor 2204 of the propulsion mechanism 2202 in addition to the above-described units when dropped.
  • a lithium ion battery can be used as the power supply source 2422.
  • the position detection unit 2423 detects position information of the airframe 2201.
  • the position detection unit 2423 is, for example, a GNSS device that detects 3D position information of the airframe 2201 using an artificial satellite, an apparatus that acquires 3D position information of the airframe 2201 using a mobile phone base station, and an airframe 2201.
  • the altitude detection device is configured by at least one of a barometric sensor, a laser sensor, an ultrasonic sensor, an infrared sensor, a millimeter wave radar, and a submillimeter wave radar.
  • the control unit 2420 determines the fall target position of the airframe 2201 based on the position information detected by the position detection unit 2423 and controls the drive motor 2204 of the propulsion mechanism 2202 so that the airframe 2201 faces the fall
  • the lower situation detection unit 2424 detects the lower situation of the airframe 2201.
  • the downward direction of the airframe 2201 means the direction of the ground surface viewed from the airframe 2201 regardless of the attitude of the airframe 2201.
  • the downward situation detection unit 2424 includes, for example, at least one of a camera, an image sensor, an infrared sensor, a laser sensor, an ultrasonic sensor, a millimeter wave radar, and a sub millimeter wave radar.
  • the control unit 2420 determines the target fall position of the machine body 2201 based on the position information of the machine body 2201 detected by the position detection unit 2423 and the information detected by the downward situation detection unit 2424.
  • the image analysis unit 2426 determines the presence / absence of a person at the fall target position based on the information detected by the downward situation detection unit 2424.
  • the notification unit 2427 emits a warning sound when the image analysis unit 2426 determines that there is a person at the drop target position.
  • the image analysis unit 2426 may be configured by hardware or may be functionally realized by software.
  • the lift generating member 2110 can be immediately deployed by the deployment device 2115 when the airframe 2201 is dropped.
  • the lift generated by the lift generating member 2110 and the air resistance force against the lift generating member 2110 can be combined to reduce the speed of the airframe 2201, so that the impact on the airframe 2201 at the time of landing is sufficiently reduced. It becomes possible to do.
  • the operation of the propulsion mechanism 2202 is controlled by the control unit 2420, so that the airframe 2201 can be guided to the fall target position. This prevents the airframe 2201 from being swept by a crosswind and entering a no-fly zone or from being significantly displaced from the fall target position.
  • the fall detection unit 2421 it is possible to instantaneously detect the fall of the airframe 2201, and based on the detection, the lift generating member 2110 can be ejected and deployed by the deployment device 2115. . Further, the airframe 2201 can be safely guided based on the situation determination of the falling point.
  • the propulsion mechanism 2202 provided in the airframe 2201 can be used both during normal flight and when dropped. As described above, the propulsion mechanism 2202 is used for guiding the airframe 2201 to the target position when the airframe 2201 is dropped and for the purpose of normal flight, thereby providing a propulsion mechanism for guidance when the airframe 2201 is dropped. There is no need to provide it separately.
  • the airframe 2201 can be landed with the airframe 2201 tilted in a state where the lift generating member 2110 is expanded.
  • the airframe 2201 tilted in a state where the lift generating member 2110 is expanded.
  • power supply for supplying power to the propulsion mechanism control device is provided separately from the power supply unit for supplying power for operating the propulsion mechanism 2202 provided in the airframe 2201 to the unmanned aircraft 1B.
  • a source 2422 is provided. If the unmanned aerial vehicle 1B is only provided with a power supply unit that supplies power for operating the propulsion mechanism 2202 provided in the airframe 2201, for example, if all the power is consumed, the power supply However, according to the present configuration, such a situation can be avoided. That is, even if the power of the power supply unit is not supplied for some reason, the propulsion mechanism control device can be operated with the power of the power supply source 2422 provided separately from the power supply source. In addition, the power supply source 2422 can be used as a sub power source of the power supply unit.
  • the situation below the body 2201 can be recognized based on the information from the situation sensing unit 2424 below. As a result, it is possible to determine whether or not the body 2201 is appropriate as a position to land. Moreover, a fall target position can also be changed according to a downward condition.
  • the image analysis unit 2426 since the presence / absence of a person is determined by the image analysis unit 2426, it is possible to avoid the aircraft 2201 from colliding with a person. In addition, even if the airframe 2201 has to land at a place where a person is present, a warning sound is generated by the notification unit 2427, so that the person can be withdrawn from the place. In this way, it is possible to avoid the aircraft 2201 from colliding with a person.
  • the current position of the airframe 2201 can be easily recognized based on the position information of the airframe 2201 by the position detection unit 2423.
  • the position information can be used as information when determining the target position of the airframe 2201 for dropping.
  • the drop target position of the airframe 2201 is determined based on the position information detected by the position detection unit 2423, it is easy to guide the airframe 2201 to the drop target position.
  • the deployment device 2190 includes, for example, a pyroactuator and a lift generation member provided in a housing having one end opened, and generates lift by the propulsion force of the piston of the pyroactuator. The member is directly pushed out and developed.
  • the deployment device 2190 includes a pyroactuator 2163 and a lift generating member 2186.
  • the pyroactuator 2163 includes an igniter 2184 having a cup-shaped case 2185 for housing an ignition agent (not shown), a piston 2181 having a recess 2182 and a piston head 2183 formed integrally with the recess 2182, and a piston 2181. And a bottomed cylindrical housing 2180 that regulates the propulsion direction of the piston 2181.
  • the lift generating member 2186 is housed in the housing 2180 in a state of being disposed on the piston head 2183, and is a so-called parachute.
  • the piston 2181 is propelled by the gas pressure generated by the igniter 2184, whereby the lift generating member 2186 can be directly pushed out and deployed.
  • the opening end of the housing 2180 is closed by a lid 2187 in the initial state, and is detached from the opening end by pushing out the lift generating member 2186.
  • the unmanned aerial vehicle 1C according to the third modified example has a drop that propels the unmanned aerial vehicle 1C at the time of the fall (that is, at the time of guidance to the target fall position) separately from the propulsion mechanism 3202 that operates during normal flight.
  • a time propulsion device (motor, propeller, etc.) 3116 is provided.
  • the paraglider apparatus 3100 having such a configuration is a so-called motor paraglider apparatus.
  • the propulsion device 3116 at the time of dropping is provided on the side surface of the storage container 3151, for example.
  • the body 3201 When configured in this manner, even when the propulsion mechanism 3202 that operates normally during flight is damaged, the body 3201 is brought to the drop target position by appropriately operating and controlling the propulsion device 3116 during the fall. Will be able to guide.
  • the control unit, the fall detection unit, the power supply source, the position detection unit, the downward situation detection unit, the image analysis unit, and the notification unit are provided in the aircraft body.
  • the present invention is not limited to this, and some or all of them may be provided in the paraglider apparatus.
  • a notification unit that emits a warning sound when the image analysis unit as the determination unit determines that there is a person at the fall target position is used.
  • the present invention is not limited to this, and a warning may be given that evacuation is necessary, for example, by a light or a smoke cylinder.
  • the lift generating member In the second embodiment and the second and third modified examples described above, the case where a parafoil is used as the lift generating member has been described as an example. However, as the lift generating member, the lift is generated in a deployed state. Any form may be used as long as it is generated, and a logaro type paraglider, a logaro type parachute, a triangle type paraglider, a triangle type parachute, and the like can be used.
  • the control unit determines the fall target position of the airframe based on the information detected by the downward situation detection unit, and the airframe is set at the fall target position.
  • the case where the propulsion mechanism is controlled so as to be directed has been described by way of example, but when the determination unit determines that there is a person at the fall target position, the control unit changes the fall target position.
  • the propulsion mechanism may be further controlled such that the airframe is directed to the changed fall target position.
  • control unit is configured to determine the target fall position of the aircraft based on the information detected by the downward situation detection unit.
  • the control unit controls the propulsion mechanism so that the aircraft is directed to the predetermined flight destination. You may comprise as follows.
  • the unmanned aircraft according to the second embodiment and the second and third modifications described above may be provided with a remote control device as in the first embodiment described above.
  • the remote operation device is used when the operator remotely operates the propulsion mechanism provided in the airframe.
  • the remote control device has a display unit for displaying information detected by the downward state detection unit. If comprised in this way, it will become possible to grasp
  • the present invention is applied to a drone as an unmanned aerial vehicle has been described as an example.
  • the present invention can be similarly applied to an unmanned aircraft or a manned aircraft.
  • a flying body includes a fuselage, a propulsion mechanism provided in the fuselage, a lift generating member provided in the fuselage to be deployable, and a deployment device that deploys the lift generating member. And a control unit that controls the propulsion mechanism, and a fall detection unit that detects a fall of the airframe and provides a drop detection signal to the deployment device and the control unit.
  • the deployment device deploys the lift generating member by receiving the fall detection signal, and the control unit receives the fall detection signal.
  • the target fall position of the aircraft is determined, and the propulsion mechanism is controlled so that the aircraft faces the fall target position.
  • the lift generating member can be immediately deployed by the deployment device when the fuselage is dropped.
  • the lift generated by the lift generating member and the air resistance force against the lift generating member can be combined to reduce the speed of the aircraft, so that it is possible to sufficiently reduce the impact on the aircraft at the time of landing.
  • the operation of the propulsion mechanism is controlled by the control unit, so that the airframe can be guided to the fall target position. This prevents the aircraft from being swept by crosswinds and entering a no-fly zone or from being significantly displaced from the fall target point.
  • the propulsion mechanism may be used during normal flight of the flying object.
  • the propulsion mechanism can be used both for the purpose of guiding the airframe to the target position of dropping when the airframe is dropped and for the purpose of normal flight. There is no need to provide a separate mechanism.
  • the propulsion mechanism includes the one used when the flying object is normally flying and the one used only when the flying object is dropped.
  • the propulsion mechanism that controls the airframe to be directed to the fall target position when the control unit receives the fall detection signal is used only when the flying object falls. May be.
  • This configuration makes it possible to guide the aircraft to the drop target position even when the propulsion mechanism that normally operates during flight is damaged.
  • the expansion device expands the lift generating member with a propulsive force based on a gas pressure generated by combustion of explosives.
  • This configuration makes it possible to instantaneously deploy the lift generating member when the fuselage is dropped.
  • the deployment device is attached to the outer surface of the airframe.
  • the deployment device is mounted on the surface of the aircraft, for example, on the side surface of the aircraft, so that the lift generating member can be deployed with the aircraft tilted to land the aircraft.
  • the airframe By tilting the airframe in this way, it is possible to avoid various devices provided in the lower part of the airframe or a lithium ion battery that may ignite from being directly impacted when landing.
  • the fall detection unit detects abnormal vibrations of the acceleration sensor, the gyro sensor, the atmospheric pressure sensor, the laser sensor, the ultrasonic sensor, and the propulsion mechanism. It is preferable to include at least one of the abnormal vibration detection devices.
  • the flying body according to the second aspect of the present disclosure includes a power supply unit that supplies power for operating the propulsion mechanism, and the deployment device, the control unit, and the fall detection separately from the power supply unit. And a power supply source for supplying power to the unit.
  • the power supply unit that supplies power for operating the propulsion mechanism to the unmanned aircraft is provided, for example, if the power supply unit consumes all of the power, the power is received from the power supply unit.
  • the propulsion mechanism control device can be operated with the power of the power supply source. It is also possible to use the power supply source as a sub power source of the power supply unit.
  • the fall detection unit includes an acceleration sensor, a gyro sensor, an atmospheric pressure sensor, a laser sensor, an ultrasonic sensor, It is preferable to include at least one of an abnormal vibration detection device that detects abnormal vibration of the propulsion mechanism and a voltage abnormality detection device that detects voltage abnormality of the power supply unit.
  • the flying body based on the second aspect of the present disclosure preferably further includes a position detection unit that detects position information of the airframe.
  • the control unit is detected by the position detection unit. Determining the target fall position based on the position information, and controlling the propulsion mechanism so that the airframe is directed to the target fall position based on the position information detected by the position detector. preferable.
  • control unit can appropriately control the propulsion mechanism based on the position information.
  • the position detection unit uses a GNSS device that acquires the position information using an artificial satellite, and uses the base station of the mobile phone for the position information. It is preferable that at least one of a device for acquiring the image of the aircraft, a camera for imaging the periphery of the aircraft, a geomagnetic sensor for detecting the azimuth angle of the aircraft, and an altitude detection device for detecting the altitude of the aircraft.
  • the altitude detection device is at least one of a barometric sensor, a laser sensor, an ultrasonic sensor, an infrared sensor, a millimeter wave radar, and a submillimeter wave radar. It is preferable that it contains.
  • the flying body based on the second aspect of the present disclosure further includes a downward situation detection unit that detects a situation below the aircraft.
  • the lower situation detection unit includes a camera, an image sensor, an infrared sensor, a laser sensor, an ultrasonic sensor, a millimeter wave radar, and a submillimeter wave radar. It is preferable that at least one is included.
  • This configuration makes it possible to obtain highly accurate information indicating the situation below the aircraft. This makes it possible to make a highly reliable determination in determining the target position of the aircraft.
  • the flying body based on the second aspect of the present disclosure further includes a determination unit that determines the presence or absence of a person at the fall target position based on the information detected by the downward situation detection unit.
  • the aircraft according to the second aspect of the present disclosure may further include a notification unit that emits a warning sound when the determination unit determines that there is a person at the fall target position.
  • the flying body according to the second aspect of the present disclosure may further include a remote operation device for remotely operating the propulsion mechanism, and in that case, the remote operation device may include the downward situation detection unit. It is preferable to have a display unit for displaying the information detected by.
  • the flying body according to the second aspect of the present disclosure may be an unmanned aerial vehicle. By comprising in this way, the risk by the fall accident in an unmanned aerial vehicle can be reduced significantly.
  • the aircraft control method includes: a vehicle, a propulsion mechanism provided in the aircraft, a lift generating member provided in the aircraft so as to be deployable, and the lift A deployment device that deploys the generating member; a control unit that controls the propulsion mechanism; and a fall detection unit that detects a fall of the airframe and provides a fall detection signal to the deployment device and the control unit.
  • the step of deploying the lift generating member by receiving the fall detection signal and the control unit determines the fall target position of the fuselage by receiving the fall detection signal.
  • the lift generating member can be immediately deployed by the deployment device when the fuselage is dropped.
  • the lift generated by the lift generating member and the air resistance force against the lift generating member can be combined to reduce the speed of the aircraft, so that it is possible to sufficiently reduce the impact on the aircraft at the time of landing.
  • the operation of the propulsion mechanism is controlled by the control unit, so that the airframe can be guided to the fall target position. This prevents the aircraft from being swept by crosswinds and entering a no-fly zone or from being significantly displaced from the fall target point.
  • 1A, 1B, 1C unmanned aerial vehicle 1100 paraglider device, 1110 lift generating member, 1111, 1112 control rope, 1113 first suspension rope, 1113a, 1113b, 1113c, 1113d string, 1114 second suspension rope, 1115 deployment device, 1151 storage Vessel, 1152 cylinder, 1153 tube, 1153a projectile, 1154 tube, 1154a projectile, 1155 tube, 1155a projectile, 1180 housing, 1181 piston, 1182 recess, 1183 piston head, 1184 igniter, 1185 case, 1186 lift generating member, 1187 lid, 1188 pyroactuator, 1190 deployment device, 1200 aircraft body, 1201 aircraft, 1202 propulsion mechanism, 1203 legs, 300 remote control device, 1301 display unit, 1420 control unit, 1421 fall detection unit, 1422 power supply source, 1423 position detection unit, 1424 downward status detection unit, 1425 image analysis unit, 1426 notification unit, 2100 paraglider device, 2110 lift generation Member, 2112 first suspension rope, 2113 second suspension

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Remote Sensing (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

飛行体(1A)は、展開可能に機体(1201)に設けられた揚力発生部材(1110)と、揚力発生部材(1110)に接続されるとともに揚力発生部材(1110)を操作する操作機構(1111,1112)と、揚力発生部材(1110)を展開させる展開装置(1115)と、操作機構(1111,1112)を制御する制御部(1420)と、機体(1201)の落下を検知する落下検知部(1421)とを備える。展開装置(1115)は、落下検知信号に基づいて揚力発生部材(1110)を展開させ、制御部(1420)は、落下検知信号に基づいて操作機構(1111,1112)の制御を開始する。

Description

飛行体および飛行体の制御方法
 本開示は、例えばドローン等に代表されるような飛行体および当該飛行体の制御方法に関する。
 従来、各種の飛行体が知られている。飛行体には、旅客機やヘリコプターのような有人航空機に限られず、無人航空機も含まれる。特に近年、自律制御技術および飛行制御技術の発展に伴って、例えばドローンのような無人航空機の産業上における利用が加速しつつある。
 ドローンは、例えば複数の回転翼を備えており、これら複数の回転翼を同時にバランスよく回転させることによって飛行する。その際、上昇および下降は、複数の回転翼の回転数を一律に増減させることによって行われ、前進および後退は、複数の回転翼の各々の回転数を個別に増減させることで機体を傾けることによって行なわれる。このような無人航空機の利用は、今後世界的に拡大することが見込まれている。
 しかしながら、無人航空機の落下事故のリスクが危険視されており、無人航空機の普及の妨げとなっている。こうした落下事故のリスクを低減するために、無人航空機用パラシュート装置が製品化されつつある。このような無人航空機用パラシュート装置は、無人航空機の落下時において、展開させたパラシュートによって無人航空機の速度を減速させることで着地時の衝撃を低減するものである。
 一方、無人航空機用ではないものの、ロケットからの落下物(ペイロード)を回収するために予め設定された落下目標位置にまで落下物を誘導する、グライディングパラシュートを利用した誘導装置が知られている。当該誘導装置は、例えば特開平5-185993号公報(特許文献1)に開示されている。
 具体的には、上記誘導装置は、位置検出器によって検出した3次元位置、および、姿勢検出器によって検出した水平方向の向きに基づき、グライディングパラシュートの現在の進行方向を判断し、その進行方向と予め設定された落下目標位置とのずれに応じてアクチュエータが駆動されるように構成されたものである。
 より詳細には、当該誘導装置は、グライディングパラシュートの進行方向が落下目標位置の方向に一致しない場合に、これを一致させるように右または左の操縦索をアクチュエータを駆動することで操作することにより、当該グライディングパラシュートを旋回させる機能を有している。
特開平5-185993号公報
 しかしながら、上述した無人航空機用のパラシュート装置は、無人航空機を落下目標位置にまで誘導するものではなく、そのため、無人航空機が横風に流されて例えば飛行禁止区域等に侵入したり、目標位置から大幅にずれたりするといった問題があった。
 一方、上述した誘導装置は、ロケットからの落下物を回収するために落下目標位置にまでこれを誘導するものであって、無人航空機のように推進機構を備えた飛行体の落下を検知して当該飛行体を落下目標位置にまで誘導するものではない。
 本開示は、このような事情に鑑みてなされたものであり、落下時に機体を誘導することができる飛行体およびその制御方法を提供することを目的とする。
 本開示のある局面に基づく飛行体は、機体と、上記機体に設けられた推進機構と、展開可能に上記機体に設けられた揚力発生部材と、上記揚力発生部材に接続されるとともに、上記揚力発生部材が展開した状態において上記揚力発生部材を操作する操作機構と、上記揚力発生部材を展開させる展開装置と、上記操作機構を制御する制御部と、上記機体の落下を検知するとともに、上記展開装置および上記制御部に落下検知信号を与える落下検知部と、を備えている。上記本開示のある局面に基づく飛行体にあっては、上記展開装置が、上記落下検知信号を受け取ることで上記揚力発生部材を展開させるとともに、上記制御部が、上記落下検知信号を受け取ることで上記操作機構の制御を開始する。
 ここで、揚力発生部材は、展開した状態において揚力が発生するものであれば如何なる形態のものでもよく、当該揚力発生部材としては、例えばパラフォイル、ロガロ型パラグライダー、ロガロ型パラシュート、トライアングル型パラグライダー、トライアングル型パラシュート等が挙げられる。
 上記本開示のある局面に基づく飛行体にあっては、上記展開装置が、火薬の燃焼によって生じるガス圧に基づく推進力により、上記揚力発生部材を展開させることが好ましい。
 上記本開示のある局面に基づく飛行体にあっては、上記展開装置が、上記機体の外表面に取付けられていることが好ましい。
 上記本開示のある局面に基づく飛行体にあっては、上記落下検知部が、加速度センサ、ジャイロセンサ、気圧センサ、レーザーセンサ、超音波センサ、および、上記推進機構の異常振動を検知する異常振動検知装置のうちの少なくとも1つを含んでいることが好ましい。
 上記本開示のある局面に基づく飛行体は、上記推進機構を動作させるための電力を供給する電力供給部と、上記電力供給部とは別に、上記展開装置、上記制御部および上記落下検知部に電力を供給する電力供給源と、をさらに備えていてもよい。
 上記本開示のある局面に基づく飛行体にあっては、上記電力供給部を備えている場合において、上記落下検知部が、加速度センサ、ジャイロセンサ、気圧センサ、レーザーセンサ、超音波センサ、上記推進機構の異常振動を検知する異常振動検知装置、および、上記電力供給部の電圧異常を検知する電圧異常検知装置のうちの少なくとも1つを含んでいることが好ましい。
 上記本開示のある局面に基づく飛行体は、上記機体の位置情報を検出する位置検出部をさらに備えていることが好ましく、その場合には、上記制御部が、上記位置検出部によって検出された上記位置情報に基づいて上記操作機構を制御することが好ましい。
 上記本開示のある局面に基づく飛行体にあっては、上記位置検出部が、上記位置情報を人工衛星を利用して取得するGNSS装置、上記位置情報を携帯電話の基地局を利用して取得する装置、上記機体の周辺を撮像するカメラ、上記機体の方位角を検出する地磁気センサ、および、上記機体の高度を検出する高度検出装置のうち少なくとも1つを含んでいることが好ましい。
 上記本開示のある局面に基づく飛行体にあっては、上記高度検出装置が、気圧センサ、レーザーセンサ、超音波センサ、赤外線センサ、ミリ波レーダー、および、サブミリ波レーダーのうち少なくとも1つを含んでいることが好ましい。
 上記本開示のある局面に基づく飛行体は、上記機体の下方の状況を検出する下方状況検出部をさらに備えていることが好ましい。
 上記本開示のある局面に基づく飛行体にあっては、上記下方状況検出部が、カメラ、画像センサ、赤外線センサ、レーザーセンサ、超音波センサ、ミリ波レーダー、および、サブミリ波レーダーのうち少なくとも1つを含んでいることが好ましい。
 上記本開示のある局面に基づく飛行体にあっては、上記制御部が、上記下方状況検出部によって検出された情報に基づいて上記機体の落下目標位置を決定するとともに、上記落下目標位置に上記機体が向かうように上記操作機構を制御することが好ましい。
 上記本開示のある局面に基づく飛行体は、上記下方状況検出部によって検出された情報に基づいて上記落下目標位置における人の有無を判別する判別部をさらに備えていることが好ましい。
 上記本開示のある局面に基づく飛行体にあっては、上記判別部によって上記落下目標位置に人がいると判別された場合に、上記制御部が、落下目標位置を変更するとともに、変更後の落下目標位置に上記機体が向かうように上記操作機構を制御することが好ましい。
 上記本開示のある局面に基づく飛行体は、上記判別部によって上記落下目標位置に人がいると判別された場合に警告音を発する報知部をさらに備えていてもよい。
 上記本開示のある局面に基づく飛行体にあっては、上記制御部が、予め定められた飛行目的地に上記機体が向かうように上記操作機構を制御してもよい。
 上記本開示のある局面に基づく飛行体は、上記推進機構を遠隔操作するための遠隔操作装置をさらに備えていてもよく、その場合には、上記遠隔操作装置が、上記下方状況検出部によって検出された情報を表示する表示部を有していることが好ましい。
 上記本開示のある局面に基づく飛行体にあっては、上記推進機構を制御する飛行制御装置が、上記機体に設けられていてもよく、その場合には、上記制御部が、上記飛行制御装置に組み込まれていることが好ましい。
 上記本開示のある局面に基づく飛行体は、無人航空機であってもよい。
 本開示のある局面に基づく飛行体の制御方法は、当該飛行体が、機体と、上記機体に設けられた推進機構と、展開可能に上記機体に設けられた揚力発生部材と、上記揚力発生部材に接続されるとともに、上記揚力発生部材が展開した状態において上記揚力発生部材を操作する操作機構と、上記揚力発生部材を展開させる展開装置と、上記操作機構を制御する制御部と、上記機体の落下を検知するとともに、上記展開装置および上記制御部に落下検知信号を与える落下検知部と、を含んでいる場合において、上記落下検知信号を受け取ることにより、上記展開装置が、上記揚力発生部材を展開させるステップと、上記落下検知信号を受け取ることにより、上記制御部が、上記操作機構の制御を開始するステップとを備えるものである。
 本開示に従えば、落下時に機体を誘導することができる飛行体およびその制御方法を実現することができる。
実施の形態1に係る無人航空機の落下時の状態を示す図である。 図1に示す展開装置の揚力発生部材の収納状態を示す図である。 図1に示す無人航空機の制御系の構成を示すブロック図である。 第1変形例に係る無人航空機の展開装置を示す図である。 実施の形態2に係る無人航空機の落下時の状態を示す図である。 図5に示す展開装置の揚力発生部材の収納状態を示す図である。 図5に示す無人航空機の制御系の構成を示すブロック図である。 第2変形例に係る無人航空機の展開装置を示す図である。 第3変形例に係る無人航空機の落下時の状態を示す図である。
 以下、本発明の実施の形態について、図を参照して詳細に説明する。以下に示す実施の形態は、飛行体としての無人航空機であるドローンに本発明を適用した場合を例示するものである。なお、以下に示す実施の形態においては、同一のまたは共通する部分について図中同一の符号を付し、その説明は繰り返さない。
 <実施の形態1>
 図1に示すように、本実施の形態に係る無人航空機1Aは、航空機本体1200と、当該航空機本体1200に組付けられたパラグライダー装置1100とを備えている。パラグライダー装置1100に含まれる揚力発生部材1110(例えばパラフォイル)は、無人航空機1Aの通常飛行時においては、図2に示すように、パラグライダー装置1100の収納容器1151の内部に収納されており、無人航空機1Aの落下時においては、図1に示すように、パラグライダー装置1100の収納容器1151の外部に射出されてこれが展開される。
 パラグライダー装置1100は、上述した揚力発生部材1110と、揚力発生部材1110に接続されるとともに、当該揚力発生部材1110の動作および方向を操作する操縦索1111,1112と、揚力発生部材1110を展開させる展開装置1115とを備えている。なお、図1においては、操縦索1111が左方に位置しており、操縦索1112が右方に位置している。
 航空機本体1200は、機体1201と、機体1201に組付けられるとともに、当該機体1201を推進させる1つ以上の推進機構1202(例えばプロペラ等)と、機体1201の下部に設けられた複数の脚部1203とを備えている。
 図3に示すように、無人航空機1Aは、上述した航空機本体1200およびパラグライダー装置1100に加え、操縦索1111,1112を制御する制御部(CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)等を有するコンピュータ)1420と、落下検知部1421と、電力供給源1422と、位置検出部1423と、下方状況検出部1424と、判別部としての画像解析部1425と、報知部1426と、遠隔操作装置1300とを備えている。このうちの制御部1420、落下検知部1421、電力供給源1422、位置検出部1423、下方状況検出部1424、画像解析部1425、および、報知部1426は、本実施の形態においては、パラグライダー装置1100に設けられている。
 揚力発生部材1110は、展開装置1115により展開可能に構成されている。上述したように、揚力発生部材1110は、初期状態においては、図2に示すように非展開の状態で配置されており、展開装置1115によって展開されることで図1に示すような状態となる。
 図1に示すように、展開装置1115は、航空機本体1200の機体1201上に設けられている。展開装置1115は、展開前の揚力発生部材1110を収納するカップ状の収納容器1151と、一端部が収納容器1151の底部に固定された複数の第1吊り索1113と、一端部が第1吊り索1113に接続されるとともに他端部が揚力発生部材1110に接続された複数の第2吊り索1114とを備えている。操縦索1111,1112の各々の一端部は、一部の第2吊り索1114に接続されており、操縦索1111,1112の各々の他端部は、航空機本体1200の機体1201に設けられた駆動モータ(不図示)にそれぞれ接続されている。ここで、操縦索1111,1112と、上述した駆動モータとが、操作機構に相当することになる。
 図2に示すように、展開装置1115は、さらに、収納容器1151の内側底部に設けられるとともに、内部にパイロアクチュエータ(不図示)を備えた筒状のシリンダー部1152と、当該シリンダー部1152に連結された3つの管部1153,1154,1155とを備えている。管部1153,1154,1155は、例えば傘骨のように配置されている。なお、上記パイロアクチュエータは公知であるため、詳細な説明は省略するが、点火器による点火薬の燃焼によってガス圧を発生させるものである。ここで、一変形例として、シリンダー部1152にパイロアクチュエータを設ける代わりに、管部1153,1154,1155の各々の内部にパイロアクチュエータを1つずつ設けて、後述する発射体1153a,1154a,1155aを別々に発射できるようにしてもよい。
 管部1153には、一部が露出した状態で発射体1153aが挿入されている。また同様に、管部1154には、一部が露出した状態で発射体1154aが挿入されている。さらに同様に、管部1155には、一部が露出した状態で発射体1155aが挿入されている。揚力発生部材1110は、紐1113aによって発射体1153aに連結されているとともに、紐1113bによって発射体1155aに連結されている。また、揚力発生部材1110は、紐1113cによって発射体1155aに連結されているとともに、紐1113dによって発射体1154aに連結されている。
 このような構成において、上述したパイロアクチュエータによってシリンダー部1152内で生じるガス圧によって発射体1153a,1154a,1155aが射出されることにより、紐1113a,1113b,1113c,1113dが射出方向に引っ張られ、これにより揚力発生部材1110が展開されることになる。このとき、揚力発生部材1110は、第1吊り索1113の一端部が収納容器1151の底部に固定されていることにより、当該第1吊り索1113によって拘束されることで繋ぎ止められる。そして、制御部1420によって上述した駆動モータによる操縦索1111,1112の巻き取りまたは送り出しが制御されることにより、展開された揚力発生部材1110の動作および方向が調整される。これにより、航空機本体1200の進行方向が後述する落下目標位置の方向に一致するよう旋回されるようになっている。
 図3を参照して、落下検知部1421は、例えば、加速度センサ、ジャイロセンサ、気圧センサ、レーザーセンサ、超音波センサ、機体1201に設けられた推進機構1202(ここでは、プロペラを回転させるモータ)の異常振動を検知する異常振動検知部、および、機体1201に設けられた推進機構1202を動作させるための電力を供給する電源供給部(不図示)の電圧異常を検知する電圧異常検知部のうちの少なくとも1つにて構成される。例えば、落下検知部1421が加速度センサを含む場合においては、当該加速度センサによって所定以上の加速度(例えば予め設定された落下していることが想定される加速度)が検出された場合等、予め設定した状態に陥っている場合に、落下検知部1421は、機体1201が落下していることを示す落下検知信号を展開装置1115および制御部1420に与える。展開装置1115は、落下検知信号を受け取ることによって揚力発生部材1110を展開させ、制御部1420は、落下検知信号を受け取ることによって操縦索1111,1112による揚力発生部材1110の動作および方向の制御を開始する。なお、この他にも、例えば遠隔操作装置1300からの操作信号を一定時間受信しない場合等において、落下検知部1421が落下検知信号を展開装置1115および制御部1420に与えてもよい。
 電力供給源1422は、機体1201に設けられた推進機構1202を動作させるための電力を供給する上述した電力供給部とは別に設けられており、上述した展開装置1115、制御部1420、落下検知部1421、位置検出部1423、下方状況検出部1424、画像解析部1425、および、報知部1426の各々に電力を供給する。電力供給源1422として、例えばリチウムイオン電池を用いることができる。
 位置検出部1423は、機体1201の位置情報を検出する。位置検出部1423は、例えば、機体1201の3次元位置情報を人工衛星を利用して検出するGNSS(Global Navigation Satellite System:全球測位衛星システム)装置、機体1201の3次元位置情報を携帯電話の基地局を利用して取得する装置、機体1201の周辺を撮像するカメラ、機体1201の方位角を検出する地磁気センサ、および、機体1201の高度を検出する高度検出装置のうち少なくとも1つにて構成される。なお、高度検出装置は、例えば、気圧センサ、レーザーセンサ、超音波センサ、赤外線センサ、ミリ波レーダー、および、サブミリ波レーダーのうち少なくとも1つにて構成される。制御部1420は、位置検出部1423によって検出された位置情報に基づいて操縦索1111,1112を制御する。
 下方状況検出部1424は、機体1201の下方の状況を検出する。ここで、機体1201の下方とは、機体1201の姿勢にかかわらず、機体1201から見た地表側の方向を意味する。下方状況検出部1424は、例えば、カメラ、画像センサ、赤外線センサ、レーザーセンサ、超音波センサ、ミリ波レーダー、および、サブミリ波レーダーのうち少なくとも1つにて構成される。制御部1420は、下方状況検出部1424によって検出された情報に基づいて機体1201の落下目標位置を決定するとともに、当該落下目標位置に機体1201が向かうように操縦索1111,1112を制御する。
 画像解析部1425は、下方状況検出部1424によって検出された情報に基づいて落下目標位置における人の有無を判別する。報知部1426は、画像解析部1425によって落下目標位置に人がいると判別された場合に警告音を発する。なお、画像解析部1425は、ハードウェアによって構成されていてもよいし、ソフトウェアによって機能的に実現されてもよい。
 遠隔操作装置1300は、オペレータが航空機本体1200に設けられた推進機構1202を遠隔操作する際に用いられる。遠隔操作装置1300は、制御部1420と無線通信を行なうことができる通信部(不図示)と、下方状況検出部1424によって検出された情報を表示する表示部1301とを有している。
 本実施の形態に係る無人航空機1Aによれば、落下検知部1421によって機体1201の落下が検知されると、展開装置1115によって揚力発生部材1110を即時に展開させることができ、展開された揚力発生部材1110が操縦索1111,1112を介して制御部1420によって制御される。これにより、揚力発生部材1110によって発生した揚力と当該揚力発生部材1110に対する空気抵抗力とが相俟って機体1201の速度を減速させることができるとともに、当該機体1201の速度を制御することができる。そのため、着地時の機体1201に対する衝撃が低減されるとともに、機体1201が横風に流されて飛行禁止区域等に侵入したり、落下目標位置から大幅にずれたりすることがなく、機体1201を落下目標位置にまで誘導することができる。また、落下検知部1421を備えているため、機体1201の落下を瞬時に検知することができ、当該検知に基づいて揚力発生部材1110を展開装置1115によって射出して展開することが可能となる。さらに、落下地点の状況判断に基づき、機体1201を安全に誘導することができる。
 また、本実施の形態においては、無人航空機1Aに、機体1201に設けられた推進機構1202を動作させるための電力を供給する電力供給部とは別に、展開装置1115、制御部1420および落下検知部1421に電力を供給する電力供給源1422が設けられている。仮に、無人航空機1Aに、機体1201に設けられた推進機構1202を動作させるための電力を供給する電力供給部しか設けられていない場合には、例えば電力をすべて消費してしまうと、当該電力供給部から電力を受け取ることが不可能になるおそれがあるが、本構成によれば、そのような事態を回避することができる。すなわち、当該電力供給部の電力が何らかの理由で供給されなくなっても、当該電力供給部とは別に設けられた電力供給源1422の電力でこれら展開装置1115、制御部1420および落下検知部1421を動作させることができる。また、電力供給源1422を当該電力供給部のサブ電源として使用することも可能である。
 また、本実施の形態においては、下方状況検出部1424による情報に基づいて機体1201の下方の状況を認識することができる。これにより、機体1201を着地させるべき位置として適切か否かの判別を行なうことが可能となる。また、下方の状況に応じて落下目標位置を変更することもできる。
 また、本実施の形態においては、画像解析部1425によって人の有無が判別されるため、機体1201が人に衝突することを回避することができる。また、万一、機体1201が人の居る場所に着地せざるを得ない状況になった場合にも、報知部1426によって警告音が発せられるため、人をその場所から退避させることができる。これにより、機体1201が人に衝突することを回避することができる。
 また、本実施の形態においては、制御部1420が、下方状況検出部1424によって検出された情報に基づいて機体1201の目標落下位置を決定し、当該目標落下位置に機体1201が着地するように制御する。そのため、これによって機体1201を安全な着地点まで誘導することが可能となる。
 さらに、本実施の形態においては、遠隔操作装置1300が下方状況検出部1424によって検出された情報を表示する表示部1301を有している。そのため、オペレータが表示部1301を視認することにより、機体1201の下方の状況を容易に把握することができる。すなわち、機体1201の下方の状況をオペレータが把握することにより、機体1201を安全な場所へ誘導操作することが可能である。
 <実施の形態1に基づいた変形例>
 上述した実施の形態1は、あくまでも例示であって種々変更を加えることができる。例えば、以下に説明するような第1変形例とすることもできる。
 (第1変形例)
 図4に示すように、第1変形例に係る展開装置1190は、パイロアクチュエータ1188と、揚力発生部材(例えばパラフォイル)1186とを備えている。パイロアクチュエータ1188は、点火薬(不図示)を収容するカップ状のケース1185を有する点火器1184と、凹部1182および当該凹部1182と一体的に形成されたピストンヘッド1183を有するピストン1181と、ピストン1181を収容するとともに、当該ピストン1181の推進方向を規制する有底筒状のハウジング1180とを備えている。
 揚力発生部材1186は、ピストンヘッド1183上に配置された状態でハウジング1180内に収納されている。このような構成において、点火器1184によって発生されたガス圧によってピストン1181を推進させることにより、揚力発生部材1186を直接押し出して展開させることができる。なお、ハウジング1180の開口端部は、初期状態において蓋1187によって閉じられており、揚力発生部材1186の押し出しによって上記開口端部から外れるようになっている。
 (その他の変形例)
 上述した実施の形態1および第1変形例においては、制御部、落下検知部、電力供給源、位置検出部、下方状況検出部、画像解析部、および、報知部をパラグライダー装置に設けることとしたが、これに限定されるものではなく、これらのうちの一部または全部を航空機本体に設けることとしてもよい。また、このうちの制御部を航空機本体に設ける場合には、当該制御部を機体の内部に設けられた飛行制御装置に組み込むこととしてもよい。ここで、飛行制御装置は、機体に設けられた推進機構を制御することで航空機本体の飛行を制御する装置である。
 また、上述した実施の形態1および第1変形例においては、判別部としての画像解析部によって落下目標位置に人がいると判別された場合に警告音を発する報知部を用いることとしたが、これに限定されるものではなく、例えばライトまたは発煙筒等によって、退避が必要であることを警告してもよい。
 また、上述した実施の形態1および第1変形例においては、揚力発生部材としてパラフォイルを利用した場合を例示して説明を行なったが、揚力発生部材としては、展開した状態において揚力が発生するものであれば如何なる形態のものであってもよく、この他にもロガロ型パラグライダー、ロガロ型パラシュート、トライアングル型パラグライダー、トライアングル型パラシュート等が利用可能である。
 また、上述した実施の形態1および第1変形例においては、制御部が、下方状況検出部によって検出された情報に基づいて機体の落下目標位置を決定するとともに、落下目標位置に機体が向かうように操作機構を制御するように構成した場合を例示して説明を行なったが、判別部によって落下目標位置に人がいると判別された場合に、制御部が、落下目標位置を変更するとともに、変更後の落下目標位置に機体が向かうように操作機構をさらに制御するように構成してもよい。
 また、上述した実施の形態1および第1変形例においては、制御部が、下方状況検出部によって検出された情報に基づいて機体の落下目標位置を決定するように構成した場合を例示して説明を行なったが、例えば予め定められた飛行目的地が近い場合等には、これに代えて、制御部が、予め定められた飛行目的地に機体が向かうように操作機構を制御するように構成してもよい。
 さらには、上述した実施の形態1および第1変形例においては、本発明を飛行体である無人航空機としてのドローンに適用した場合を例示して説明を行なったが、他の種類の無人航空機あるいは有人航空機においても、本発明を同様に適用することができる。
 <実施の形態1および当該実施の形態1に基づいた変形例の小括>
 以上において開示した実施の形態1および当該実施の形態1に基づいた変形例を要約すれば、以下のとおりとなる。
 本開示の第1の局面に基づく飛行体は、機体と、上記機体に設けられた推進機構と、展開可能に上記機体に設けられた揚力発生部材と、上記揚力発生部材に接続されるとともに、上記揚力発生部材が展開した状態において上記揚力発生部材を操作する操作機構と、上記揚力発生部材を展開させる展開装置と、上記操作機構を制御する制御部と、上記機体の落下を検知するとともに、上記展開装置および上記制御部に落下検知信号を与える落下検知部と、を備えている。上記本開示の第1の局面に基づく飛行体にあっては、上記展開装置が、上記落下検知信号を受け取ることで上記揚力発生部材を展開させるとともに、上記制御部が、上記落下検知信号を受け取ることで上記操作機構の制御を開始する。
 このように構成することにより、落下検知部によって機体の落下が検知されると、展開装置によって揚力発生部材を即時に展開させることができ、展開された揚力発生部材の動作が操作機構を介して制御部によって制御される。そのため、揚力発生部材により発生した揚力と当該揚力発生部材に対する空気抵抗力とが相俟って機体の速度を減速させることができるとともに、当該機体の速度を制御することができる。これにより、着地時の機体に対する衝撃が低減されるとともに、機体が横風に流されて飛行禁止区域等に侵入したり、落下目標位置から大幅にずれたりすることがなく、機体を落下目標位置にまで誘導することができる。
 上記本開示の第1の局面に基づく飛行体にあっては、上記展開装置が、火薬の燃焼によって生じるガス圧に基づく推進力により、上記揚力発生部材を展開させることが好ましい。
 このように構成することにより、機体の落下時に、揚力発生部材を瞬時に展開させることが可能になる。
 上記本開示の第1の局面に基づく飛行体にあっては、上記展開装置が、上記機体の外表面に取付けられていることが好ましい。
 このように構成することにより、展開装置を機体の表面上、例えば当該機体の側面上に取付けることにより、機体を傾けた状態で揚力発生部材を展開させて機体を着地させることができる。このように機体を傾けることにより、機体の下部等に設けられた各種デバイスまたは発火の恐れのあるリチウムイオン電池等が着地時に直接衝撃を受けることを回避することが可能となる。
 上記本開示の第1の局面に基づく飛行体にあっては、上記落下検知部が、加速度センサ、ジャイロセンサ、気圧センサ、レーザーセンサ、超音波センサ、および、上記推進機構の異常振動を検知する異常振動検知装置のうちの少なくとも1つを含んでいることが好ましい。
 このように構成することにより、機体が落下することを的確に認識することができる。
 上記本開示の第1の局面に基づく飛行体は、上記推進機構を動作させるための電力を供給する電力供給部と、上記電力供給部とは別に、上記展開装置、上記制御部および上記落下検知部に電力を供給する電力供給源と、をさらに備えていてもよい。
 仮に、無人航空機に推進機構を動作させるための電力を供給する電力供給部しか設けられていない場合に、例えば当該電力供給部が電力をすべて消費してしまうと、当該電力供給部から電力を受け取ることが不可能になって動作不能に陥るおそれがあるが、上記のように構成することにより、そのような事態を回避することができる。すなわち、当該電力供給部の電力が何らかの理由で供給されなくなっても、電力供給源の電力でパラグライダー装置を動作させることができる。また、電力供給源を当該電力供給部のサブ電源として使用することも可能である。
 上記本開示の第1の局面に基づく飛行体にあっては、上記落下検知部が、加速度センサ、ジャイロセンサ、気圧センサ、レーザーセンサ、超音波センサ、上記推進機構の異常振動を検知する異常振動検知装置、および、上記電力供給部の電圧異常を検知する電圧異常検知装置のうちの少なくとも1つを含んでいることが好ましい。
 このように構成することにより、機体が落下することを的確に認識することができる。
 上記本開示の第1の局面に基づく飛行体は、上記機体の位置情報を検出する位置検出部をさらに備えていることが好ましく、その場合には、上記制御部が、上記位置検出部によって検出された上記位置情報に基づいて上記操作機構を制御することが好ましい。
 このように構成することにより、位置検出部による機体の位置情報に基づいて機体の現在の位置を容易に認識することが可能になり、当該位置情報を用いての落下目標位置の決定が行なえることになる。また、制御部が、当該位置情報に基づいて操作機構を適切に制御することができる。
 上記本開示の第1の局面に基づく飛行体にあっては、上記電力供給部を備えている場合において、上記位置検出部が、上記位置情報を人工衛星を利用して取得するGNSS装置、上記位置情報を携帯電話の基地局を利用して取得する装置、上記機体の周辺を撮像するカメラ、上記機体の方位角を検出する地磁気センサ、および、上記機体の高度を検出する高度検出装置のうち少なくとも1つを含んでいることが好ましい。
 このように構成することにより、機体の位置を示す高精度な情報を得ることができる。
 上記本開示の第1の局面に基づく飛行体にあっては、上記高度検出装置が、気圧センサ、レーザーセンサ、超音波センサ、赤外線センサ、ミリ波レーダー、および、サブミリ波レーダーのうち少なくとも1つを含んでいることが好ましい。
 このように構成することにより、機体の高度を示す高精度な情報を得ることができる。
 上記本開示の第1の局面に基づく飛行体は、上記機体の下方の状況を検出する下方状況検出部をさらに備えていることが好ましい。
 このように構成することにより、下方状況検出部による情報によって、機体の下方の状況を認識することができる。これにより、機体を着地させるべき位置として適切か否かの判別を行なうことが可能となる。また、下方の状況に応じて落下目標位置を変更することもできる。
 上記本開示の第1の局面に基づく飛行体にあっては、上記下方状況検出部が、カメラ、画像センサ、赤外線センサ、レーザーセンサ、超音波センサ、ミリ波レーダー、および、サブミリ波レーダーのうち少なくとも1つを含んでいることが好ましい。
 このように構成することにより、機体の下方の状況を示す高精度な情報を得ることができる。これにより、機体の落下目標位置を決定する上で信頼性の高い判断が可能となる。
 上記本開示の第1の局面に基づく飛行体にあっては、上記制御部が、上記下方状況検出部によって検出された情報に基づいて上記機体の落下目標位置を決定するとともに、上記落下目標位置に上記機体が向かうように上記操作機構を制御することが好ましい。
 このように構成することにより、下方状況検出部によって検出された情報に基づいて機体の落下目標位置が決定されるため、当該機体を安全な着地点に着地させることが可能となる。
 上記本開示の第1の局面に基づく飛行体は、上記下方状況検出部によって検出された情報に基づいて上記落下目標位置における人の有無を判別する判別部をさらに備えていることが好ましい。
 このように構成することにより、判別部によって人の有無が判別されるため、機体が人に衝突することを回避することができる。
 上記本開示の第1の局面に基づく飛行体は、上記判別部によって上記落下目標位置に人がいると判別された場合に警告音を発する報知部をさらに備えていてもよい。
 このように構成することにより、万一、機体が人の居る場所に着地せざるを得ない状況になった場合にも、報知部によって警告音が発せられるため、人をその場所から退避させることができる。これにより、機体が人に衝突することを回避することができる。
 上記本開示の第1の局面に基づく飛行体は、上記推進機構を遠隔操作するための遠隔操作装置をさらに備えていてもよく、その場合には、上記遠隔操作装置が、上記下方状況検出部によって検出された情報を表示する表示部を有していることが好ましい。
 このように構成することにより、オペレータが表示部を視認することにより、機体の下方の状況を容易に把握することができる。
 上記本開示の第1の局面に基づく飛行体にあっては、上記推進機構を制御する飛行制御装置が、上記機体に設けられていてもよく、その場合には、上記制御部が、上記飛行制御装置に組み込まれていることが好ましい。
 このように構成することにより、パラグライダー装置の制御部の重量が減る分、当該パラグライダー装置の軽量化を図ることができる。
 上記本開示の第1の局面に基づく飛行体は、無人航空機であってもよい。
 このように構成することにより、無人航空機における落下事故によるリスクを大幅に低減することができる。
 本開示の第1の局面に基づく飛行体の制御方法は、当該飛行体が、機体と、上記機体に設けられた推進機構と、展開可能に上記機体に設けられた揚力発生部材と、上記揚力発生部材に接続されるとともに、上記揚力発生部材が展開した状態において上記揚力発生部材を操作する操作機構と、上記揚力発生部材を展開させる展開装置と、上記操作機構を制御する制御部と、上記機体の落下を検知するとともに、上記展開装置および上記制御部に落下検知信号を与える落下検知部と、を含んでいる場合において、上記落下検知信号を受け取ることにより、上記展開装置が、上記揚力発生部材を展開させるステップと、上記落下検知信号を受け取ることにより、上記制御部が、上記操作機構の制御を開始するステップと、を備えるものである。
 このように構成することにより、落下検知部によって機体の落下が検知されると、展開装置によって揚力発生部材を即時に展開させることができ、展開された揚力発生部材の動作が操作機構を介して制御部によって制御される。そのため、揚力発生部材により発生した揚力と当該揚力発生部材に対する空気抵抗力とが相俟って機体の速度を減速させることができるとともに、当該機体の速度を制御することができる。これにより、着地時の機体に対する衝撃が低減されるとともに、機体が横風に流されて飛行禁止区域等に侵入したり、落下目標位置から大幅にずれたりすることがなく、機体を落下目標位置にまで誘導することができる。
 <実施の形態2>
 図5に示すように、本実施の形態に係る無人航空機1Bは、航空機本体2200と、当該航空機本体2200に組付けられたパラグライダー装置2100と、航空機本体2200に設けられた推進機構制御装置とを備えている。パラグライダー装置2100に含まれる揚力発生部材2110(例えばパラフォイル)は、無人航空機1Bの通常飛行時においては、図6に示すように、パラグライダー装置2100の収納容器2151の内部に収納されており、無人航空機1Bの落下時においては、図5に示すように、パラグライダー装置2100の収納容器2151の外部に射出されてこれが展開される。
 パラグライダー装置2100は、上述した揚力発生部材2110と、揚力発生部材2110に接続されるとともに、当該揚力発生部材2110を展開させる展開装置2115とを備えている。
 航空機本体2200は、機体2201と、機体2201に組付けられるとともに、当該機体2201を推進させる1つ以上の推進機構2202(例えばプロペラおよび当該プロペラを駆動する駆動モータ2204(図7参照)等)と、機体2201の下部に設けられた複数の脚部2203とを備えている。
 推進機構制御装置は、図7に示すように、推進機構2202の駆動モータ2204を制御する制御部(CPU、ROM、RAM等を有するコンピュータ)2420と、落下検知部2421と、電力供給源2422と、位置検出部2423と、下方状況検出部2424と、判別部としての画像解析部2426と、報知部2427とを備えている。上述したように推進機構制御装置は、航空機本体2200に設けられているため、これら制御部2420、落下検知部2421、電力供給源2422、位置検出部2423、下方状況検出部2424、画像解析部2426、および、報知部2427も、航空機本体2200に設けられている。
 揚力発生部材2110は、展開装置2115により展開可能に構成されている。上述したように、揚力発生部材2110は、初期状態においては、図6に示すように非展開の状態で配置されており、展開装置2115によって展開されることで図5に示すような状態となる。
 図5に示すように、展開装置2115は、航空機本体2200の機体2201上に設けられている。より詳細には、展開装置2115は、機体2201の側面上に設けられている。展開装置2115は、展開前の揚力発生部材2110を収納するカップ状の収納容器2151と、一端部が収納容器2151の底部に固定された複数の第1吊り索2112と、一端部が第1吊り索2112に接続された複数の第2吊り索2113と、一端部が第2吊り索2113に接続されるとともに他端部が揚力発生部材2110に接続された複数の第3吊り索2114とを備えている。
 図6に示すように、展開装置2115は、さらに、収納容器2151の内側底部に設けられた支持柱2152と、内部にパイロアクチュエータ2160,2161,2162を備えるとともに、支持柱2152に連結された3つの管部2153,2154,2155とを備えている。管部2153の内部には、パイロアクチュエータ2160が設けられており、管部2154の内部には、パイロアクチュエータ2161が設けられており、管部2155の内部には、パイロアクチュエータ2162が設けられている。管部2153,2154,2155は、例えば傘骨のように配置されている。なお、パイロアクチュエータ2160,2161,2162は公知であるため、詳細な説明は省略するが、点火器による点火薬の燃焼によってガス圧を発生させるとともに、そのガス圧によってピストンを推進させるものである。
 管部2153には、一部が露出した状態で発射体2153aが挿入されている。また同様に、管部2154には、一部が露出した状態で発射体2154aが挿入されている。さらに同様に、管部2155には、一部が露出した状態で発射体2155aが挿入されている。揚力発生部材2110は、紐2113aによって発射体2153aに連結されているとともに、紐2113bによって発射体2155aに連結されている。また、揚力発生部材2110は、紐2113cによって発射体2155aに連結されているとともに、紐2113dによって発射体2154aに連結されている。
 このような構成において、パイロアクチュエータ2160のピストンの推進によって発射体2153aが射出され、パイロアクチュエータ2161のピストンの推進によって発射体2154aが射出され、パイロアクチュエータ2162のピストンの推進によって発射体2155aが射出されることにより、紐2113a,2113b,2113c,2113dが射出方向に引っ張られ、これにより揚力発生部材2110が展開されることになる。このとき、揚力発生部材2110は、第1吊り索2112の一端部が収納容器2151の底部に固定されていることにより、当該第1吊り索2112によって拘束されることで繋ぎ止められる。
 図7を参照して、落下検知部2421は、例えば、加速度センサ、ジャイロセンサ、気圧センサ、レーザーセンサ、超音波センサ、機体2201に設けられた推進機構2202(ここでは、プロペラを回転させるモータ)の異常振動を検知する異常振動検知部、および、機体2201に設けられた推進機構2202を動作させるための電力を供給する電源供給部(不図示)の電圧異常を検知する電圧異常検知部のうちの少なくとも1つにて構成される。例えば、落下検知部2421が加速度センサを含む場合においては、当該加速度センサによって所定以上の加速度(例えば予め設定された落下していることが想定される加速度)が検出された場合等、予め設定した状態に陥っている場合に、落下検知部2421は、機体2201が落下していることを示す落下検知信号を展開装置2115および制御部2420に与える。
 展開装置2115は、落下検知信号を受け取ることによって揚力発生部材2110を展開させ、制御部2420は、落下検知信号を受け取ることによって推進機構2202の駆動モータ2204を制御することにより、機体2201を後述する落下目標位置にまで誘導する。なお、本実施の形態においては、制御部2420は、無人航空機1Bの通常飛行時においても駆動モータ2204を制御する。通常飛行時における駆動モータ2204の回転数と、落下の際の誘導時における駆動モータ2204の回転数とは、互いに同じであってもよいし、異なっていてもよい。
 電力供給源2422は、通常飛行時において、機体2201に設けられた推進機構2202を動作させるための電力を供給する上述した電力供給部とは別に設けられており、上述した展開装置2115、制御部2420、落下検知部2421、位置検出部2423、下方状況検出部2424、画像解析部2426、および、報知部2427の各々に電力を供給する。さらに、電力供給源2422は、落下時においては、上述した各部に加えて、推進機構2202の駆動モータ2204にも電力を供給することができる。電力供給源2422として、例えばリチウムイオン電池を用いることができる。
 位置検出部2423は、機体2201の位置情報を検出する。位置検出部2423は、例えば、機体2201の3次元位置情報を人工衛星を利用して検出するGNSS装置、機体2201の3次元位置情報を携帯電話の基地局を利用して取得する装置、機体2201の周辺を撮像するカメラ、機体2201の方位角を検出する地磁気センサ、および、機体2201の高度を検出する高度検出装置のうち少なくとも1つにて構成される。なお、高度検出装置は、気圧センサ、レーザーセンサ、超音波センサ、赤外線センサ、ミリ波レーダー、および、サブミリ波レーダーのうち少なくとも1つにて構成される。制御部2420は、位置検出部2423によって検出された位置情報に基づいて機体2201の落下目標位置を決定するとともに、当該落下目標位置に機体2201が向かうように推進機構2202の駆動モータ2204を制御する。
 下方状況検出部2424は、機体2201の下方の状況を検出する。ここで、機体2201の下方とは、機体2201の姿勢にかかわらず、機体2201から見た地表側の方向を意味する。下方状況検出部2424は、例えば、カメラ、画像センサ、赤外線センサ、レーザーセンサ、超音波センサ、ミリ波レーダー、および、サブミリ波レーダーのうち少なくとも1つにて構成される。制御部2420は、位置検出部2423によって検出された機体2201の位置情報と、下方状況検出部2424によって検出された情報とに基づいて、機体2201の目標落下位置を決定する。
 画像解析部2426は、下方状況検出部2424によって検出された情報に基づいて落下目標位置における人の有無を判別する。報知部2427は、画像解析部2426によって上記落下目標位置に人がいると判別された場合に警告音を発する。なお、画像解析部2426は、ハードウェアによって構成されていてもよいし、ソフトウェアによって機能的に実現されてもよい。
 本実施の形態に係る無人航空機1Bによれば、機体2201の落下時に、展開装置2115によって揚力発生部材2110を即時に展開させることができる。これにより、揚力発生部材2110によって発生した揚力と当該揚力発生部材2110に対する空気抵抗力とが相俟って機体2201の速度を減速させることができるため、着地時の機体2201に対する衝撃を十分に低減することが可能となる。また、機体2201の落下時において、推進機構2202の動作が制御部2420によって制御されることにより、機体2201を落下目標位置にまで誘導することができる。このことにより、機体2201が横風に流されて飛行禁止区域等に侵入したり、落下目標位置から大幅にずれたりすることがなくなる。また、落下検知部2421を備えていることにより、機体2201の落下を瞬時に検知することができ、当該検知に基づいて揚力発生部材2110を展開装置2115によって射出して展開することが可能となる。さらに、落下地点の状況判断に基づき、機体2201を安全に誘導することができる。
 また、本実施の形態においては、通常飛行時および落下時の双方において、機体2201に設けられた推進機構2202を用いることができる。このように、推進機構2202を、機体2201の落下時において当該機体2201を落下目標位置にまで誘導する用途、および、通常飛行の用途において兼用することにより、落下時における誘導のための推進機構を別途設ける必要がなくなる。
 また、本実施の形態においては、展開装置2115を機体2201の側面上に取付けることにより、揚力発生部材2110を展開させた状態において、機体2201を傾けた状態として機体2201を着地させることができる。このように機体2201を傾けることにより、機体2201の下部等に設けられた各種デバイスまたは発火の恐れのあるリチウムイオン電池等が着地時において直接的に衝撃を受けることを回避することが可能となる。
 また、本実施の形態においては、無人航空機1Bに、機体2201に設けられた推進機構2202を動作させるための電力を供給する電力供給部とは別に、推進機構制御装置に電力を供給する電力供給源2422が設けられている。仮に、無人航空機1Bに、機体2201に設けられた推進機構2202を動作させるための電力を供給する電力供給部しか設けられていない場合には、例えば電力をすべて消費してしまうと、当該電力供給部から電力を受け取ることが不可能になるおそれがあるが、本構成によれば、そのような事態を回避することができる。すなわち、当該電力供給部の電力が何らかの理由で供給されなくなっても、当該電力供給源とは別に設けられた電力供給源2422の電力で推進機構制御装置を動作させることができる。また、電力供給源2422を当該電力供給部のサブ電源として使用することも可能である。
 また、本実施の形態においては、下方状況検出部2424による情報に基づいて機体2201の下方の状況を認識することができる。これにより、機体2201を着地させるべき位置として適切か否かの判別を行なうことが可能となる。また、下方の状況に応じて落下目標位置を変更することもできる。
 また、本実施の形態においては、画像解析部2426によって人の有無が判別されるため、機体2201が人に衝突することを回避することができる。また、万一、機体2201が人の居る場所に着地せざるを得ない状況になった場合にも、報知部2427によって警告音が発せられるため、人をその場所から退避させることができる。これにり、機体2201が人に衝突することを回避することができる。
 また、本実施の形態においては、位置検出部2423による機体2201の位置情報に基づいて、機体2201の現在の位置を容易に認識することができる。また、当該位置情報を機体2201の落下目標位置を決定する際の情報として用いることができる。
 さらに、本実施の形態においては、位置検出部2423によって検出された位置情報に基づいて機体2201の落下目標位置が決定されるため、当該機体2201を落下目標位置にまで誘導し易くなる。
 <実施の形態2に基づいた変形例>
 上述した実施の形態2は、あくまでも例示であって種々変更を加えることができる。例えば、以下に説明するような第2,第3変形例とすることもできる。
 (第2変形例)
 図8に示すように、第2変形例に係る展開装置2190は、例えば、一方端部が開口されたハウジング内にパイロアクチュエータおよび揚力発生部材を設け、当該パイロアクチュエータのピストンの推進力によって揚力発生部材を直接押し出して展開させる構成とされている。
 具体的には、展開装置2190は、パイロアクチュエータ2163と、揚力発生部材2186とを備えている。パイロアクチュエータ2163は、点火薬(不図示)を収容するカップ状のケース2185を有する点火器2184と、凹部2182および当該凹部2182と一体的に形成されたピストンヘッド2183を有するピストン2181と、ピストン2181を収容するとともに、当該ピストン2181の推進方向を規制する有底筒状のハウジング2180とを備えている。
 揚力発生部材2186は、ピストンヘッド2183上に配置された状態でハウジング2180内に収納されているものであり、いわゆるパラシュートである。このような構成において、点火器2184によって発生されたガス圧によってピストン2181を推進させることにより、揚力発生部材2186を直接押し出して展開させることができる。なお、ハウジング2180の開口端部は、初期状態において蓋2187によって閉じられており、揚力発生部材2186の押し出しによって上記開口端部から外れるようになっている。
 (第3変形例)
 図9に示すように、第3変形例に係る無人航空機1Cは、通常飛行時に作動する推進機構3202とは別に、落下時(すなわち目標落下位置への誘導時)に無人航空機1Cを推進させる落下時推進装置(モーターおよびプロペラ等)3116を備えている。このような構成のパラグライダー装置3100は、いわゆるモーターパラグライダー装置である。落下時推進装置3116は、例えば収納容器3151の側面上に設けられる。
 ここで、第3変形例に係る無人航空機1Cの他の構成は、上述した実施の形態2に係る無人航空機1Bと基本的に同様のものであり、ここではその説明は繰り返さない。なお、図9において、図5において示された構成に付された符号の下3桁と同じ下3桁の符号が付された構成は、当該図5において説明した構成と基本的に同様のものである。
 このように構成した場合には、特に通常飛行時に作動する推進機構3202が破損した場合等においても、落下時推進装置3116を適切に動作させて制御することにより、機体3201を落下目標位置にまで誘導することができることになる。
 (その他の変形例)
 上述した実施の形態2および第2,第3変形例においては、制御部、落下検知部、電力供給源、位置検出部、下方状況検出部、画像解析部、および、報知部を航空機本体に設けることとしたが、これに限定されるものではなく、これらのうちの一部または全部をパラグライダー装置に設けることとしてもよい。
 また、上述した実施の形態2および第2,第3変形例においては、判別部としての画像解析部によって落下目標位置に人がいると判別された場合に警告音を発する報知部を用いることとしたが、これに限定されるものではなく、例えばライトまたは発煙筒等によって、退避が必要であることを警告してもよい。
 また、上述した実施の形態2および第2,第3変形例においては、揚力発生部材としてパラフォイルを利用した場合を例示して説明を行なったが、揚力発生部材としては、展開した状態において揚力が発生するものであれば如何なる形態のものであってもよく、この他にもロガロ型パラグライダー、ロガロ型パラシュート、トライアングル型パラグライダー、トライアングル型パラシュート等が利用可能である。
 また、上述した実施の形態2および第2,第3変形例においては、制御部が、下方状況検出部によって検出された情報に基づいて機体の落下目標位置を決定するとともに、落下目標位置に機体が向かうように推進機構を制御するように構成した場合を例示して説明を行なったが、判別部によって落下目標位置に人がいると判別された場合に、制御部が、落下目標位置を変更するとともに、変更後の落下目標位置に機体が向かうように推進機構をさらに制御するように構成してもよい。
 また、上述した実施の形態2および第2,第3変形例においては、制御部が、下方状況検出部によって検出された情報に基づいて機体の落下目標位置を決定するように構成した場合を例示して説明を行なったが、例えば予め定められた飛行目的地が近い場合等には、これに代えて、制御部が、予め定められた飛行目的地に機体が向かうように推進機構を制御するように構成してもよい。
 また、上述した実施の形態2および第2,第3変形例に係る無人航空機においても、上述した実施の形態1の場合と同様に、遠隔操作装置を設けることとしてもよい。ここで、遠隔操作装置は、オペレータが機体に設けられた推進機構を遠隔操作する際に用いられるものである。また、その場合には、遠隔操作装置が下方状況検出部によって検出された情報を表示する表示部を有していることが好ましい。そのように構成すれば、オペレータが表示部を視認することにより、機体の下方の状況を容易に把握することができることになり、その結果、機体を安全な場所へ誘導操作することが可能になる。
 さらには、上述した実施の形態2および第2,第3変形例においては、本発明を飛行体である無人航空機としてのドローンに適用した場合を例示して説明を行なったが、他の種類の無人航空機あるいは有人航空機においても、本発明を同様に適用することができる。
 <実施の形態2および当該実施の形態2に基づいた変形例の小括>
 以上において開示した実施の形態2および当該実施の形態2に基づいた変形例を要約すれば、以下のとおりとなる。
 本開示の第2の局面に基づく飛行体は、機体と、上記機体に設けられた推進機構と、展開可能に上記機体に設けられた揚力発生部材と、上記揚力発生部材を展開させる展開装置と、上記推進機構を制御する制御部と、上記機体の落下を検知するとともに、上記展開装置および上記制御部に落下検知信号を与える落下検知部と、を備えている。上記本開示の第2の局面に基づく飛行体にあっては、上記展開装置が、上記落下検知信号を受け取ることで上記揚力発生部材を展開させるとともに、上記制御部が、上記落下検知信号を受け取ることで上記機体の落下目標位置を決定し、上記落下目標位置に上記機体が向かうように上記推進機構を制御する。
 このように構成することにより、機体の落下時に、展開装置によって揚力発生部材を即時に展開させることができる。これにより、揚力発生部材によって発生した揚力と当該揚力発生部材に対する空気抵抗力とが相俟って機体の速度を減速させることができるため、着地時に機体に対する衝撃を十分に低減することが可能となる。また、推進機構の動作が制御部によって制御されることにより、機体を落下目標位置にまで誘導することができる。これにより、機体が横風に流されて飛行禁止区域等に侵入したり、落下目標地点から大幅にずれたりすることがなくなる。
 上記本開示の第2の局面に基づく飛行体にあっては、上記推進機構が、当該飛行体の通常飛行時に用いられるものであってもよい。
 このように構成することにより、上記推進機構を、機体の落下時に当該機体を落下目標位置にまで誘導する用途、および、通常飛行の用途において兼用することが可能になり、上記誘導のための推進機構を別途設ける必要がなくなる。
 上記本開示の第2の局面に基づく飛行体にあっては、上記推進機構が、当該飛行体の通常飛行時に用いられるものと、当該飛行体の落下時にのみに用いられるものとを含んでいてもよく、その場合には、上記制御部が上記落下検知信号を受け取ることで上記落下目標位置に上記機体が向かうように制御する上記推進機構が、当該飛行体の落下時にのみ用いられるものであってもよい。
 このように構成することにより、特に通常飛行時に作動する推進機構が破損した場合等においても、機体を落下目標位置にまで誘導することができることになる。
 上記本開示の第2の局面に基づく飛行体にあっては、上記展開装置が、火薬の燃焼によって生じるガス圧に基づく推進力により、上記揚力発生部材を展開させることが好ましい。
 このように構成することにより、機体の落下時に、揚力発生部材を瞬時に展開させることが可能になる。
 上記本開示の第2の局面に基づく飛行体にあっては、上記展開装置が、上記機体の外表面に取付けられていることが好ましい。
 このように構成することにより、展開装置を機体の表面上、例えば当該機体の側面上に取付けることにより、機体を傾けた状態で揚力発生部材を展開させて機体を着地させることができる。このように機体を傾けることにより、機体の下部等に設けられた各種デバイスまたは発火の恐れのあるリチウムイオン電池等が着地時に直接衝撃を受けることを回避することが可能となる。
 上記本開示の第2の局面に基づく飛行体にあっては、上記落下検知部が、加速度センサ、ジャイロセンサ、気圧センサ、レーザーセンサ、超音波センサ、および、上記推進機構の異常振動を検知する異常振動検知装置のうちの少なくとも1つを含んでいることが好ましい。
 このように構成することにより、機体が落下することを的確に認識することができる。
 上記本開示の第2の局面に基づく飛行体は、上記推進機構を動作させるための電力を供給する電力供給部と、上記電力供給部とは別に、上記展開装置、上記制御部および上記落下検知部に電力を供給する電力供給源と、をさらに備えていてもよい。
 仮に、無人航空機に推進機構を動作させるための電力を供給する電力供給部しか設けられていない場合に、例えば当該電力供給部が電力をすべて消費してしまうと、当該電力供給部から電力を受け取ることが不可能になって動作不能に陥るおそれがあるが、上記のように構成することにより、そのような事態を回避することができる。すなわち、当該電力供給部の電力が何らかの理由で供給されなくなっても、電力供給源の電力で推進機構制御装置を動作させることができる。また、電力供給源を当該電力供給部のサブ電源として使用することも可能である。
 上記本開示の第2の局面に基づく飛行体にあっては、上記電力供給部を備えている場合において、上記落下検知部が、加速度センサ、ジャイロセンサ、気圧センサ、レーザーセンサ、超音波センサ、上記推進機構の異常振動を検知する異常振動検知装置、および、上記電力供給部の電圧異常を検知する電圧異常検知装置のうちの少なくとも1つを含んでいることが好ましい。
 このように構成することにより、機体が落下することを的確に認識することができる。
 上記本開示の第2の局面に基づく飛行体は、上記機体の位置情報を検出する位置検出部をさらに備えていることが好ましく、その場合には、上記制御部が、上記位置検出部によって検出された上記位置情報に基づいて上記落下目標位置を決定するとともに、上記位置検出部によって検出された上記位置情報に基づいて上記落下目標位置に上記機体が向かうように上記推進機構を制御することが好ましい。
 このように構成することにより、位置検出部による機体の位置情報に基づいて機体の現在の位置を容易に認識することが可能になり、当該位置情報を用いての落下目標位置の決定が行なえることになる。また、制御部が、当該位置情報に基づいて推進機構を適切に制御することができる。
 上記本開示の第2の局面に基づく飛行体にあっては、上記位置検出部が、上記位置情報を人工衛星を利用して取得するGNSS装置、上記位置情報を携帯電話の基地局を利用して取得する装置、上記機体の周辺を撮像するカメラ、上記機体の方位角を検出する地磁気センサ、および、上記機体の高度を検出する高度検出装置のうち少なくとも1つを含んでいることが好ましい。
 このように構成することにより、機体の位置を示す高精度な情報を得ることができる。
 上記本開示の第2の局面に基づく飛行体にあっては、上記高度検出装置が、気圧センサ、レーザーセンサ、超音波センサ、赤外線センサ、ミリ波レーダー、および、サブミリ波レーダーのうち少なくとも1つを含んでいることが好ましい。
 このように構成することにより、機体の高度を示す高精度な情報を得ることができる。
 上記本開示の第2の局面に基づく飛行体は、上記機体の下方の状況を検出する下方状況検出部をさらに備えていることが好ましい。
 このように構成することにより、下方状況検出部による情報によって、機体の下方の状況を認識することができる。これにより、機体を着地させるべき位置として適切か否かの判別を行なうことが可能となる。また、下方の状況に応じて落下目標位置を変更することもできる。
 上記本開示の第2の局面に基づく飛行体にあっては、上記下方状況検出部が、カメラ、画像センサ、赤外線センサ、レーザーセンサ、超音波センサ、ミリ波レーダー、および、サブミリ波レーダーのうち少なくとも1つを含んでいることが好ましい。
 このように構成することにより、機体の下方の状況を示す高精度な情報を得ることができる。これにより、機体の落下目標位置を決定する上で信頼性の高い判断が可能となる。
 上記本開示の第2の局面に基づく飛行体は、上記下方状況検出部によって検出された情報に基づいて上記落下目標位置における人の有無を判別する判別部をさらに備えていることが好ましい。
 このように構成することにより、判別部によって人の有無が判別されるため、機体が人に衝突することを回避することができる。
 上記本開示の第2の局面に基づく飛行体は、上記判別部によって上記落下目標位置に人がいると判別された場合に警告音を発する報知部をさらに備えていてもよい。
 このように構成することにより、万一、機体が人の居る場所に着地せざるを得ない状況になった場合にも、報知部によって警告音が発せられるため、人をその場所から退避させることができる。これにより、機体が人に衝突することを回避することができる。
 上記本開示の第2の局面に基づく飛行体は、上記推進機構を遠隔操作するための遠隔操作装置をさらに備えていてもよく、その場合には、上記遠隔操作装置が、上記下方状況検出部によって検出された情報を表示する表示部を有していることが好ましい。
 このように構成することにより、オペレータが表示部を視認することにより、機体の下方の状況を容易に把握することができる。
 上記本開示の第2の局面に基づく飛行体は、無人航空機であってもよい。
 このように構成することにより、無人航空機における落下事故によるリスクを大幅に低減することができる。
 本開示の第2の局面に基づく飛行体の制御方法は、当該飛行体が、機体と、上記機体に設けられた推進機構と、展開可能に上記機体に設けられた揚力発生部材と、上記揚力発生部材を展開させる展開装置と、上記推進機構を制御する制御部と、上記機体の落下を検知するとともに、上記展開装置および上記制御部に落下検知信号を与える落下検知部と、を含んでいる場合において、上記落下検知信号を受け取ることにより、上記展開装置が、上記揚力発生部材を展開させるステップと、上記落下検知信号を受け取ることにより、上記制御部が、上記機体の落下目標位置を決定するステップと、上記制御部が、上記落下目標位置に上記機体が向かうように上記推進機構を制御するステップと、を備えるものである。
 このように構成することにより、機体の落下時に、展開装置によって揚力発生部材を即時に展開させることができる。これにより、揚力発生部材によって発生した揚力と当該揚力発生部材に対する空気抵抗力とが相俟って機体の速度を減速させることができるため、着地時に機体に対する衝撃を十分に低減することが可能となる。また、推進機構の動作が制御部によって制御されることにより、機体を落下目標位置にまで誘導することができる。これにより、機体が横風に流されて飛行禁止区域等に侵入したり、落下目標地点から大幅にずれたりすることがなくなる。
 今回開示した上記実施の形態およびその変形例はすべての点で例示であって、制限的なものではない。本発明の技術的範囲は請求の範囲によって画定され、また請求の範囲の記載と均等の意味および範囲内でのすべての変更を含むものである。
 1A,1B,1C 無人航空機、1100 パラグライダー装置、1110 揚力発生部材、1111,1112 操縦索、1113 第1吊り索、1113a,1113b,1113c,1113d 紐、1114 第2吊り索、1115 展開装置、1151 収納容器、1152 シリンダー部、1153 管部、1153a 発射体、1154 管部、1154a 発射体、1155 管部、1155a 発射体、1180 ハウジング、1181 ピストン、1182 凹部、1183 ピストンヘッド、1184 点火器、1185 ケース、1186 揚力発生部材、1187 蓋、1188 パイロアクチュエータ、1190 展開装置、1200 航空機本体、1201 機体、1202 推進機構、1203 脚部、1300 遠隔操作装置、1301 表示部、1420 制御部、1421 落下検知部、1422 電力供給源、1423 位置検出部、1424 下方状況検出部、1425 画像解析部、1426 報知部、2100 パラグライダー装置、2110 揚力発生部材、2112 第1吊り索、2113 第2吊り索、2113a,2113b,2113c,2113d 紐、2114 第3吊り索、2115 展開装置、2151 収納容器、2152 支持柱、2153 管部、2153a 発射体、2154 管部、2154a 発射体、2155 管部、2155a 発射体、2160,2161,2162,2163 パイロアクチュエータ、2180 ハウジング、2181 ピストン、2182 凹部、2183 ピストンヘッド、2184 点火器、2185 ケース、2186 揚力発生部材、2187 蓋、2190 展開装置、2200 航空機本体、2201 機体、2202 推進機構、2203 脚部、2204 駆動モータ、2420 制御部、2421 落下検知部、2422 電力供給源、2423 位置検出部、2424 下方状況検出部、2426 画像解析部、2427 報知部、3100 パラグライダー装置、3110 揚力発生部材、3112 第1吊り索、3113 第2吊り索、3114 第3吊り索、3115 展開装置、3116 落下時推進装置、3151 収納容器、3200 航空機本体、3201 機体、3202 推進機構、3203 脚部。

Claims (18)

  1.  機体と、
     前記機体に設けられた推進機構と、
     展開可能に前記機体に設けられた揚力発生部材と、
     前記揚力発生部材に接続されるとともに、前記揚力発生部材が展開した状態において前記揚力発生部材を操作する操作機構と、
     前記揚力発生部材を展開させる展開装置と、
     前記操作機構を制御する制御部と、
     前記機体の落下を検知するとともに、前記展開装置および前記制御部に落下検知信号を与える落下検知部と、を備え、
     前記展開装置が、前記落下検知信号を受け取ることで前記揚力発生部材を展開させるとともに、前記制御部が、前記落下検知信号を受け取ることで前記操作機構の制御を開始する、飛行体。
  2.  前記展開装置が、火薬の燃焼によって生じるガス圧に基づく推進力により、前記揚力発生部材を展開させる、請求項1に記載の飛行体。
  3.  前記展開装置が、前記機体の外表面に取付けられている、請求項1または2に記載の飛行体。
  4.  前記落下検知部が、加速度センサ、ジャイロセンサ、気圧センサ、レーザーセンサ、超音波センサ、および、前記推進機構の異常振動を検知する異常振動検知装置のうちの少なくとも1つを含んでいる、請求項1から3のいずれかに記載の飛行体。
  5.  前記推進機構を動作させるための電力を供給する電力供給部と、
     前記電力供給部とは別に、前記展開装置、前記制御部および前記落下検知部に電力を供給する電力供給源と、をさらに備えた、請求項1から3のいずれかに記載の飛行体。
  6.  前記落下検知部が、加速度センサ、ジャイロセンサ、気圧センサ、レーザーセンサ、超音波センサ、前記推進機構の異常振動を検知する異常振動検知装置、および、前記電力供給部の電圧異常を検知する電圧異常検知装置のうちの少なくとも1つを含んでいる、請求項5に記載の飛行体。
  7.  前記機体の位置情報を検出する位置検出部をさらに備え、
     前記制御部が、前記位置検出部によって検出された前記位置情報に基づいて前記操作機構を制御する、請求項1から6のいずれかに記載の飛行体。
  8.  前記位置検出部が、前記位置情報を人工衛星を利用して取得するGNSS装置、前記位置情報を携帯電話の基地局を利用して取得する装置、前記機体の周辺を撮像するカメラ、前記機体の方位角を検出する地磁気センサ、および、前記機体の高度を検出する高度検出装置のうち少なくとも1つを含んでいる、請求項7に記載の飛行体。
  9.  前記高度検出装置が、気圧センサ、レーザーセンサ、超音波センサ、赤外線センサ、ミリ波レーダー、および、サブミリ波レーダーのうち少なくとも1つを含んでいる、請求項8に記載の飛行体。
  10.  前記機体の下方の状況を検出する下方状況検出部をさらに備えた、請求項1から9のいずれかに記載の飛行体。
  11.  前記下方状況検出部が、カメラ、画像センサ、赤外線センサ、レーザーセンサ、超音波センサ、ミリ波レーダー、および、サブミリ波レーダーのうち少なくとも1つを含んでいる、請求項10に記載の飛行体。
  12.  前記制御部が、前記下方状況検出部によって検出された情報に基づいて前記機体の落下目標位置を決定するとともに、前記落下目標位置に前記機体が向かうように前記操作機構を制御する、請求項10または11に記載の飛行体。
  13.  前記下方状況検出部によって検出された情報に基づいて前記落下目標位置における人の有無を判別する判別部をさらに備えた、請求項12に記載の飛行体。
  14.  前記判別部によって前記落下目標位置に人がいると判別された場合に警告音を発する報知部をさらに備えた、請求項13に記載の飛行体。
  15.  前記推進機構を遠隔操作するための遠隔操作装置をさらに備え、
     前記遠隔操作装置が、前記下方状況検出部によって検出された情報を表示する表示部を有している、請求項10から14のいずれかに記載の飛行体。
  16.  前記推進機構を制御する飛行制御装置が、前記機体に設けられ、
     前記制御部が、前記飛行制御装置に組み込まれている、請求項1から14のいずれかに記載の飛行体。
  17.  当該飛行体が、無人航空機である、請求項1から16のいずれかに記載の飛行体。
  18.  飛行体の制御方法であって、
     前記飛行体が、機体と、前記機体に設けられた推進機構と、展開可能に前記機体に設けられた揚力発生部材と、前記揚力発生部材に接続されるとともに、前記揚力発生部材が展開した状態において前記揚力発生部材を操作する操作機構と、前記揚力発生部材を展開させる展開装置と、前記操作機構を制御する制御部と、前記機体の落下を検知するとともに、前記展開装置および前記制御部に落下検知信号を与える落下検知部と、を含み、
     前記落下検知信号を受け取ることにより、前記展開装置が、前記揚力発生部材を展開させるステップと、
     前記落下検知信号を受け取ることにより、前記制御部が、前記操作機構の制御を開始するステップと、を備えた、飛行体の制御方法。
PCT/JP2018/014997 2017-04-11 2018-04-10 飛行体および飛行体の制御方法 WO2018190319A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2019512512A JP7046923B2 (ja) 2017-04-11 2018-04-10 飛行体および飛行体の制御方法
US16/603,876 US20200115049A1 (en) 2017-04-11 2018-04-10 Aerial vehicle and method of controlling aerial vehicle
CN201880024214.9A CN110709322B (zh) 2017-04-11 2018-04-10 飞行体以及飞行体的控制方法
EP18783834.7A EP3611096B1 (en) 2017-04-11 2018-04-10 Flight vehicle and method for controlling flight vehicle

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017078037 2017-04-11
JP2017-078037 2017-04-11
JP2017-082935 2017-04-19
JP2017082935 2017-04-19

Publications (1)

Publication Number Publication Date
WO2018190319A1 true WO2018190319A1 (ja) 2018-10-18

Family

ID=63793736

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/014997 WO2018190319A1 (ja) 2017-04-11 2018-04-10 飛行体および飛行体の制御方法

Country Status (5)

Country Link
US (1) US20200115049A1 (ja)
EP (1) EP3611096B1 (ja)
JP (1) JP7046923B2 (ja)
CN (1) CN110709322B (ja)
WO (1) WO2018190319A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109911224A (zh) * 2019-03-26 2019-06-21 郭永宣 一种信号丢失防止坠毁的无人机保护机构
WO2019139073A1 (ja) * 2018-01-11 2019-07-18 ミネベアミツミ株式会社 飛行装置
JP2020069881A (ja) * 2018-10-30 2020-05-07 日本化薬株式会社 飛行体用安全装置、および、飛行体用安全装置を備えた飛行体
JP2020078973A (ja) * 2018-11-12 2020-05-28 日本化薬株式会社 射出装置および当該射出装置を備える飛行体
KR20210016183A (ko) * 2019-08-01 2021-02-15 메디케어 유한회사 드론, 드론용 낙하산 키트 및 드론의 제어방법
EP3805106A1 (en) * 2019-10-10 2021-04-14 Awesome Tech Inc. Unmanned aircraft system capable of autonomous flight
JP2021070338A (ja) * 2019-10-29 2021-05-06 ミネベアミツミ株式会社 パラシュート装置、飛行装置、および飛翔体射出機構
JP2021133910A (ja) * 2020-02-28 2021-09-13 豊田合成株式会社 ドローン用保護装置
EP3929079A4 (en) * 2019-02-19 2022-10-19 Minebea Mitsumi Inc. PARACHUTE DEVICE, FLYING DEVICE AND MISSILE EJECTION MECHANISM
US20230204331A1 (en) * 2021-05-21 2023-06-29 Jiangsu University Intelligent multi-rotor rescue thrower and control method thereof
WO2023218674A1 (ja) * 2022-05-11 2023-11-16 日本化薬株式会社 飛行体および飛行体の制御方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3674217A4 (en) * 2017-08-24 2021-05-19 Nippon Kayaku Kabushiki Kaisha SAFETY DEVICE FOR FLYING MACHINE AND FLYING MACHINE
EP3674218A4 (en) 2017-08-24 2021-05-26 Nippon Kayaku Kabushiki Kaisha FLYING MACHINE AND FLYING MACHINE SAFETY DEVICE
JP2020167806A (ja) * 2019-03-28 2020-10-08 日本電産株式会社 モータ、回転翼装置、および無人飛行体
US11591087B2 (en) * 2019-04-07 2023-02-28 Donald Lee Chalker Unmanned aerial vehicle with ducted rotors
JP7128149B2 (ja) * 2019-05-15 2022-08-30 ミネベアミツミ株式会社 パラシュート装置、飛行装置、および飛翔体射出機構
JP7128155B2 (ja) * 2019-07-24 2022-08-30 ミネベアミツミ株式会社 パラシュート装置および飛行装置
GB2594743A (en) * 2020-05-07 2021-11-10 Bae Systems Plc Rotorcraft
US11794889B2 (en) 2020-05-07 2023-10-24 Bae Systems Plc Rotorcraft
US11459114B2 (en) * 2020-05-22 2022-10-04 The Boeing Company Systems and methods for parachute-assisted landing of an unmanned aerial vehicle
US20240140629A1 (en) * 2021-02-24 2024-05-02 Zipline International Inc. Autonomous vehicle delivery system
CN113548180A (zh) * 2021-08-04 2021-10-26 郑桂良 一种新型单人飞行器
CN113636071B (zh) * 2021-08-30 2022-09-06 雷文(常州)车辆技术有限公司 一种复合型多功能三角翼飞行器
WO2023192513A1 (en) * 2022-03-30 2023-10-05 Mark Kusbel Precision guided mannequin arial unit
CN115042965B (zh) * 2022-08-15 2022-10-25 济南市勘察测绘研究院 一种基于无人机的摄影测量装置及测绘方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60174393A (ja) * 1984-02-20 1985-09-07 香内 豊 ジヤイロコプタ−のパラシユ−ト装置
JPS6474200A (en) * 1987-09-17 1989-03-20 Masahiro Misumi Simple flight device
JPH03118196U (ja) * 1990-03-20 1991-12-05
JPH0518593U (ja) 1991-08-21 1993-03-09 株式会社トミー 軌道走行玩具
JPH09207890A (ja) * 1996-01-30 1997-08-12 Masahiko Hayashi 飛行体
WO2016171120A1 (ja) * 2015-04-19 2016-10-27 株式会社プロドローン 無人航空機
WO2017022806A1 (ja) * 2015-08-06 2017-02-09 Simplex Quantum株式会社 小型飛行システム
WO2017030034A1 (ja) * 2015-08-14 2017-02-23 株式会社プロドローン 発電装置およびこれを備える無人航空機
WO2017057157A1 (ja) * 2015-09-30 2017-04-06 株式会社ニコン 飛行装置、移動装置、サーバおよびプログラム
JP2017065467A (ja) * 2015-09-30 2017-04-06 キヤノン株式会社 無人機およびその制御方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4086384B2 (ja) * 1998-11-24 2008-05-14 富士重工業株式会社 パラフォイルを備えた飛行体の自動誘導システム及びその航法誘導装置
US6416019B1 (en) * 2000-12-12 2002-07-09 The United States Of America As Represented By The Secretary Of The Navy Precision parachute recovery system
IL173357A0 (en) * 2006-01-25 2007-03-08 Israel Aerospace Ind Ltd Aircraft landing method and device
US9033281B1 (en) * 2011-03-01 2015-05-19 Richard D. Adams Remote controlled aerial reconnaissance vehicle
WO2014080409A1 (en) * 2012-11-26 2014-05-30 Wisec Ltd. Safety apparatus for a multi-blade aircraft
IL229068A (en) * 2013-10-24 2016-06-30 Amir Tsaliah Facility and method for rapid parachute deployment
ES2645654T3 (es) 2015-01-30 2017-12-07 Vysoke Uceni Technicke V Brne Equipo de emergencia para vehículos aéreos no tripulados
CN104670502A (zh) * 2015-02-09 2015-06-03 武汉天降科技有限公司 一种直升飞机空中停车安全组合软着陆设备及软着陆方法
WO2016182750A1 (en) * 2015-04-28 2016-11-17 SkyFallX, LLC Autonomous safety and recovery system for unmanned aerial vehicles
WO2017026337A1 (ja) * 2015-08-07 2017-02-16 株式会社プロドローン 飛行制御装置およびこれを備える無人航空機

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60174393A (ja) * 1984-02-20 1985-09-07 香内 豊 ジヤイロコプタ−のパラシユ−ト装置
JPS6474200A (en) * 1987-09-17 1989-03-20 Masahiro Misumi Simple flight device
JPH03118196U (ja) * 1990-03-20 1991-12-05
JPH0518593U (ja) 1991-08-21 1993-03-09 株式会社トミー 軌道走行玩具
JPH09207890A (ja) * 1996-01-30 1997-08-12 Masahiko Hayashi 飛行体
WO2016171120A1 (ja) * 2015-04-19 2016-10-27 株式会社プロドローン 無人航空機
WO2017022806A1 (ja) * 2015-08-06 2017-02-09 Simplex Quantum株式会社 小型飛行システム
WO2017030034A1 (ja) * 2015-08-14 2017-02-23 株式会社プロドローン 発電装置およびこれを備える無人航空機
WO2017057157A1 (ja) * 2015-09-30 2017-04-06 株式会社ニコン 飛行装置、移動装置、サーバおよびプログラム
JP2017065467A (ja) * 2015-09-30 2017-04-06 キヤノン株式会社 無人機およびその制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3611096A4

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019139073A1 (ja) * 2018-01-11 2019-07-18 ミネベアミツミ株式会社 飛行装置
US11745873B2 (en) 2018-01-11 2023-09-05 Minebea Mitsumi Inc. Flying apparatus
JP2020069881A (ja) * 2018-10-30 2020-05-07 日本化薬株式会社 飛行体用安全装置、および、飛行体用安全装置を備えた飛行体
JP7134837B2 (ja) 2018-10-30 2022-09-12 日本化薬株式会社 飛行体用安全装置、および、飛行体用安全装置を備えた飛行体
JP2020078973A (ja) * 2018-11-12 2020-05-28 日本化薬株式会社 射出装置および当該射出装置を備える飛行体
JP7156913B2 (ja) 2018-11-12 2022-10-19 日本化薬株式会社 射出装置および当該射出装置を備える飛行体
EP3929079A4 (en) * 2019-02-19 2022-10-19 Minebea Mitsumi Inc. PARACHUTE DEVICE, FLYING DEVICE AND MISSILE EJECTION MECHANISM
US11753173B2 (en) 2019-02-19 2023-09-12 Minebea Mitsumi Inc. Parachute device, flight device, and flying body ejection mechanism
CN109911224A (zh) * 2019-03-26 2019-06-21 郭永宣 一种信号丢失防止坠毁的无人机保护机构
CN109911224B (zh) * 2019-03-26 2022-08-26 山东经纬润林发展集团有限公司 一种信号丢失防止坠毁的无人机保护机构
KR102287426B1 (ko) * 2019-08-01 2021-08-12 메디케어 유한회사 드론, 드론용 낙하산 키트 및 드론의 제어방법
US11485501B2 (en) 2019-08-01 2022-11-01 Do Hyun Na Drone, parachute kit for drones, and method of controlling drones
KR20210016183A (ko) * 2019-08-01 2021-02-15 메디케어 유한회사 드론, 드론용 낙하산 키트 및 드론의 제어방법
US20210109549A1 (en) * 2019-10-10 2021-04-15 Awesome Tech Inc. Unmanned aircraft system capable of autonomous flight
EP3805106A1 (en) * 2019-10-10 2021-04-14 Awesome Tech Inc. Unmanned aircraft system capable of autonomous flight
WO2021084872A1 (ja) * 2019-10-29 2021-05-06 ミネベアミツミ株式会社 パラシュート装置、飛行装置、および飛翔体射出機構
JP7224271B2 (ja) 2019-10-29 2023-02-17 ミネベアミツミ株式会社 パラシュート装置、飛行装置、および飛翔体射出機構
JP2021070338A (ja) * 2019-10-29 2021-05-06 ミネベアミツミ株式会社 パラシュート装置、飛行装置、および飛翔体射出機構
US11820522B2 (en) 2019-10-29 2023-11-21 Minebea Mitsumi Inc. Parachute device, flight device, and flying body ejection mechanism
JP2021133910A (ja) * 2020-02-28 2021-09-13 豊田合成株式会社 ドローン用保護装置
JP7215449B2 (ja) 2020-02-28 2023-01-31 豊田合成株式会社 ドローン用保護装置
US20230204331A1 (en) * 2021-05-21 2023-06-29 Jiangsu University Intelligent multi-rotor rescue thrower and control method thereof
US11796292B2 (en) * 2021-05-21 2023-10-24 Jiangsu University Intelligent multi-rotor rescue thrower and control method thereof
WO2023218674A1 (ja) * 2022-05-11 2023-11-16 日本化薬株式会社 飛行体および飛行体の制御方法

Also Published As

Publication number Publication date
EP3611096A4 (en) 2020-12-16
EP3611096A1 (en) 2020-02-19
JP7046923B2 (ja) 2022-04-04
CN110709322B (zh) 2024-03-12
CN110709322A (zh) 2020-01-17
JPWO2018190319A1 (ja) 2020-03-05
EP3611096B1 (en) 2023-12-13
US20200115049A1 (en) 2020-04-16

Similar Documents

Publication Publication Date Title
JP7046923B2 (ja) 飛行体および飛行体の制御方法
US10703494B2 (en) Parachute control system for an unmanned aerial vehicle
US9033281B1 (en) Remote controlled aerial reconnaissance vehicle
US9527596B1 (en) Remote controlled aerial reconnaissance vehicle
JP7062495B2 (ja) パラシュートまたはパラグライダー展開装置およびこれを備えた飛行体
US20180022310A1 (en) Airbag system for use with unmanned aerial vehicles
RU2020115187A (ru) Авиационное средство поражения с дистанционным управлением
JPWO2019181989A1 (ja) 飛行体用作動装置、飛行体用作動装置の誤動作防止方法、飛行体用推力発生装置、パラシュートまたはパラグライダーの展開装置、およびエアバッグ装置
KR101917785B1 (ko) 관측용 무동력형 비행 유닛
CN114667256A (zh) 降落伞装置、飞行装置、以及飞行体射出机构
WO2020170603A1 (ja) パラシュート装置、飛行装置、飛翔体射出機構
CN114423681A (zh) 针对具有可展开降落伞的飞行器的损害减轻
WO2021161685A1 (ja) 飛行装置およびパラシュート装置
EP3481722B1 (en) Multi-rocket parachute deployment system
WO2020230614A1 (ja) パラシュート装置、飛行装置、および飛翔体射出機構
JP2020019463A (ja) パラシュートまたはパラグライダーの展開装置およびこれを備えた飛行体
US20230373666A1 (en) Safety device and flight vehicle
JP2020059315A (ja) パラシュートまたはパラグライダーの展開装置を備えた飛行体
US11807370B2 (en) Aircraft emergency parachute deployment system
WO2021014712A1 (ja) パラシュート装置、飛行装置、飛翔体射出機構
JP2023003136A (ja) パラシュート装置、射出装置及び飛行装置
JP2017032228A (ja) 移動型電波妨害装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18783834

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019512512

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018783834

Country of ref document: EP

Effective date: 20191111