WO2016170579A1 - 半導体装置の製造方法 - Google Patents
半導体装置の製造方法 Download PDFInfo
- Publication number
- WO2016170579A1 WO2016170579A1 PCT/JP2015/062006 JP2015062006W WO2016170579A1 WO 2016170579 A1 WO2016170579 A1 WO 2016170579A1 JP 2015062006 W JP2015062006 W JP 2015062006W WO 2016170579 A1 WO2016170579 A1 WO 2016170579A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wafer
- film
- plating
- semiconductor device
- immersed
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02002—Preparing wafers
- H01L21/02005—Preparing bulk and homogeneous wafers
- H01L21/02008—Multistep processes
- H01L21/0201—Specific process step
- H01L21/02019—Chemical etching
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02041—Cleaning
- H01L21/02057—Cleaning during device manufacture
- H01L21/02068—Cleaning during device manufacture during, before or after processing of conductive layers, e.g. polysilicon or amorphous silicon layers
Definitions
- the present invention relates to a method of manufacturing a semiconductor device having a process of dicing a wafer.
- the wafer In a vertical conduction semiconductor device such as an IGBT (Insulated Gate Bipolar Transistor) or a diode, the wafer is thinly processed in order to reduce the resistance during energization and improve the electric voltage characteristics. In recent years, the thickness may be reduced to about 50 ⁇ m.
- a protective member such as a tape is attached to the front surface of the wafer, and the back side of the wafer is mechanically ground. Thereafter, the defective layer generated by the mechanical grinding is removed by wet etching.
- a wafer thinned to 130 ⁇ m or less is prone to warping and is liable to crack and chip.
- the inner periphery (center portion) of the wafer may be thinned by mechanical grinding while leaving the outer peripheral portion of the wafer thick. By leaving the wafer outer peripheral portion thick, the rigidity of the wafer is increased and warpage, chipping and cracking are prevented.
- Patent Document 1 discloses a method for accurately applying a dicing tape to a wafer having an annular convex portion on the outer periphery of the back surface.
- the chemical solution flows through the annular convex portion of the wafer, causing irregularities in the annular convex portion. If a dicing tape is attached to a wafer with irregularities on the annular protrusion, the adhesion between the annular protrusion and the dicing tape will be insufficient, and air may enter between the annular protrusion and the dicing tape, causing the dicing tape to peel off from the wafer. is there. When a part of the dicing tape is peeled off from the wafer, there is a problem that the yield is lowered due to chipping or cracking of the wafer in the dicing process.
- the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a semiconductor device manufacturing method capable of preventing a dicing tape from being peeled off from a wafer.
- a manufacturing method of a semiconductor device includes a thinning step of forming a wafer having an annular convex portion on an outer peripheral portion by grinding a central portion of the back surface of the wafer and then performing wet etching on the back surface of the wafer.
- a dicing step of dicing the wafer on which the dicing tape is affixed includes a thinning step of forming a wafer having an annular convex portion on an outer peripheral portion by grinding a central portion of the back surface of the wafer and then performing wet etching on the back surface of the wafer.
- the present invention since a uniform metal film is formed on the annular convex portion of the wafer by plating, it is possible to prevent the dicing tape from peeling off from the wafer.
- FIG. 3 is a flowchart showing a method for manufacturing a semiconductor device according to an embodiment. It is sectional drawing of the wafer in which the semiconductor element area
- FIG. 1 is a flowchart showing a method for manufacturing a semiconductor device according to an embodiment of the present invention.
- a semiconductor element region is formed on a wafer (Step S1).
- FIG. 2 is a cross-sectional view of the wafer 10 on which the semiconductor element region 12 is formed.
- the material of the wafer 10 is not particularly limited, but is Si, for example.
- a semiconductor element region 12 is formed on the surface side of the wafer 10.
- the semiconductor element region 12 is a diffusion layer.
- a protective film 16 that covers the edge of the surface electrode 14 and the surface electrode 14 is formed on the surface side of the wafer 10.
- the material of the surface electrode 14 is, for example, an Al alloy.
- the material of the protective film 16 is, for example, polyimide.
- step S2 the center part of the back surface of the wafer is ground.
- FIG. 3 is a cross-sectional view of the wafer 10 in which the center of the back surface is ground.
- the back surface of the wafer 10 faces upward, and the front surface of the wafer 10 faces downward.
- a known mechanical grinding apparatus is used for grinding the wafer 10. While the central portion 10a on the back surface of the wafer 10 is ground and thinned, the outer peripheral portion (annular convex portion 10b) of the wafer 10 is not ground and is therefore thicker than the central portion 10a.
- step S3 wet etching is performed on the back surface of the wafer in order to remove the defective layer generated by the mechanical grinding described above.
- the wet etching amount is preferably about 5 to 20 ⁇ m.
- Steps S2 and S3 are thinning steps for thinning the wafer.
- step S4 a back surface diffusion region is formed on the back surface side of the wafer.
- FIG. 3 shows the back surface diffusion region 20.
- FIG. 4 is a cross-sectional view of the wafer 10 on which the back electrode 30 is formed.
- the back electrode 30 is formed by forming an Al alloy layer such as AlSi or AlCu by sputtering, for example.
- the material of the back electrode 30 may be a material other than the Al alloy layer.
- the thickness of the back electrode 30 (Al alloy layer) is preferably 1 ⁇ m or more.
- the back electrode 30 has a portion 30a on the central portion 10a of the wafer 10, a portion 30b formed on the wall surface generated by grinding, and a portion 30c on the annular convex portion 10b. That is, the back electrode 30 is formed on the entire back surface of the wafer 10.
- step S6 the process proceeds to step S6.
- step S6 first, the wafer is immersed in an alkaline degreasing solution to remove oils and organic substances on the surface of the back electrode 30 (Al alloy layer).
- the wafer is immersed in hydrochloric acid, and the oxide formed on the surface of the back electrode 30 (Al alloy layer) is removed. Thereafter, the wafer is subjected to a zincate process.
- the zincate process is a process of substituting and depositing Zn on the surface of the back electrode 30 made of an Al alloy. The contents of the zincate process will be described in detail below.
- the wafer 10 is immersed in an (alkaline) zincate treatment solution to deposit Zn on the surface of the back electrode 30 (Al alloy layer). Thereafter, the deposited Zn is removed with, for example, nitric acid. Thereafter, the wafer 10 is again immersed in the zincate treatment solution, and Zn is substituted and deposited on the surface of the back electrode 30 (Al alloy layer). Thus, the zincate process is performed twice.
- the back electrode 30 (Al alloy layer) is flattened, and Zn is uniformly deposited on the flattened back electrode 30. Note that, as described above, by setting the thickness at the time of forming the back electrode 30 to 1 ⁇ m or more, it is possible to avoid the disappearance of all of the back electrode 30 by the process of step S6.
- FIG. 5 is a cross-sectional view of a wafer on which Zn has been deposited by zincate treatment.
- the Zn film 32 is in contact with the back electrode 30.
- the Zn film 32 includes a portion 32a on the central portion 10a of the wafer 10, a portion 32b formed on the wall surface generated by grinding, and a portion 32c on the annular convex portion 10b.
- step S7 the wafer is immersed in an acidic electroless Ni plating solution. Then, the Ni film is uniformly deposited on the back electrode 30 flattened by the above-described two zincate processes. Specifically, Zn is first replaced with Ni, and a Ni film is deposited on the surface of the back electrode 30 (Al alloy layer). Thereafter, Ni is reduced and precipitated by the reducing agent contained in the electroless Ni plating solution. It will be done. Thus, the Ni film is formed starting from Zn.
- FIG. 6 is a cross-sectional view of the wafer 10 on which the Ni film 40 is formed.
- the Ni film 40 includes a portion 40a above the central portion 10a of the wafer 10, a portion 40b formed on the wall surface generated by grinding, and a portion 40c formed above the annular convex portion 10b. Since the deposition of the Ni film 40 proceeds in a spherical shape (radial), the surfaces of the portions 40a, 40b, and 40c have a gentle shape. Simultaneously with the formation of the Ni film 40, the Ni film 42 is formed on the surface side of the wafer 10.
- the thickness of the Ni film 40 depends on the thickness of the wafer (the degree of unevenness) removed by the above-described wet etching, but is preferably 2 to 10 ⁇ m in consideration of the film stress on the wafer 10. With the plating method, a thick film of several ⁇ m class can be easily formed.
- step S8 the wafer is immersed in an electroless Au plating solution. Thereby, an Au film is formed on the Ni film.
- FIG. 7 is a cross-sectional view of the wafer 10 on which the Au film 50 is formed.
- the Au film 50 is formed on the Ni film 40.
- the Au film 50 includes a portion 50a on the central portion 10a of the wafer 10, a portion 50b formed on the wall surface generated by grinding, and a portion 50c on the annular convex portion 10b.
- the thickness of the Au film 50 is preferably 20 to 100 nm.
- an Au film 52 is formed on the front surface side of the wafer.
- the Au film 52 is formed on the Ni film 42.
- the Au films 50 and 52 are mainly formed to prevent the Ni films 40 and 42 from being oxidized.
- the layer thickness of the Au films 50 and 52 is not particularly limited, but is, for example, 20 to 100 nm.
- the Ni film 40 and the Au film 50 can be uniformly formed on the back surface of the wafer 10. Note that the steps S6-S8 are referred to as a plating step.
- step S9 a dicing tape is attached to the Au film 50, which is a metal film.
- This process is called a pasting process.
- FIG. 8 is a cross-sectional view of the wafer 10 to which the dicing tape 60 is attached.
- the dicing tape 60 is supported by the ring frame 70.
- the dicing tape 60 is attached to the entire Au film 50.
- the dicing tape 60 includes a portion 60a on the central portion 10a of the wafer, a portion 60b provided on the wall surface generated by grinding, and a portion 60c on the annular convex portion 10b. Since the back electrode 30, the Ni film 40, and the Au film 50 on the annular protrusion 10b form smooth surfaces, the Au film 50 and the dicing tape 60 can be brought into close contact with each other.
- Step S10 is a dicing process for dicing the wafer 10 to which the dicing tape 60 is attached. A plurality of diced chips can be obtained by executing the dicing process.
- the metal film (Ni film 40 and Au film 50) is uniformly formed on the back surface of the wafer 10 by plating. It becomes flat and it can prevent that the dicing tape 60 peels from the wafer 10.
- the back surface electrode 30 having low flatness is formed on the annular convex portion 10b whose flatness has been lowered by wet etching.
- the flatness of the back surface electrode 30 can be improved by performing the zincate treatment twice. Therefore, the flatness of the Ni film 40 and the Au film 50 formed on the back electrode 30 is also increased, and the dicing tape attached to the Au film 50 is in close contact with the Au film 50. Therefore, it is possible to reliably prevent the dicing tape 60 from peeling from the wafer 10.
- the semiconductor device manufacturing method according to the embodiment of the present invention can be variously modified.
- a Ni film and an Au film are formed on the back electrode 30
- another material may be formed on the back electrode 30 by a plating method.
- a uniform metal film on the back electrode 30 by a plating method By forming a uniform metal film on the back electrode 30 by a plating method, a flat and gentle metal film can be provided on the annular protrusion.
- the plating process may be performed with protection by a PET film or the like in advance.
- the Ni film 40 is formed after a PET film or the like is attached to the surface side of the wafer.
- the Ni film 40 was formed after the zincate treatment was performed on the back electrode 30 made of an Al alloy.
- a material other than an Al alloy may be selected as the material for the back electrode, and the flatness of the back electrode may be enhanced by a method other than the zincate process.
- a step of improving the flatness of the back electrode 30 such as a zincate process may be omitted.
- a metal film may be formed only on the annular convex portion by a plating method. If a uniform metal film with high flatness is formed by plating the annular convex portion, the dicing tape 60 can be brought into close contact with the annular convex portion 10b.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Mechanical Treatment Of Semiconductor (AREA)
- Dicing (AREA)
- Chemically Coating (AREA)
Abstract
Description
図1は、本発明の実施の形態に係る半導体装置の製造方法を示すフローチャートである。まず、ウエハに半導体素子領域を形成する(ステップS1)。図2は、半導体素子領域12が形成されたウエハ10の断面図である。ウエハ10の材料は特に限定されないが例えばSiである。ウエハ10の表面側に半導体素子領域12が形成されている。半導体素子領域12は拡散層である。ステップS1では、半導体素子領域12に加えて、ウエハ10の表面側に、表面電極14と表面電極14の縁を覆う保護膜16を形成する。表面電極14の材料は例えばAl合金である。保護膜16の材料は例えばポリイミドである。
Claims (7)
- ウエハの裏面の中央部を研削しその後前記ウエハの裏面にウェットエッチングを施すことで、外周部に環状凸部を有するウエハを形成する薄化工程と、
前記ウエハの裏面に裏面電極を形成する工程と、
前記環状凸部の上の前記裏面電極に、めっき法により一様に金属膜を形成するめっき工程と、
前記金属膜にダイシングテープを貼り付ける貼付け工程と、
前記ダイシングテープが貼り付けられた前記ウエハをダイシングするダイシング工程と、を備えたことを特徴とする半導体装置の製造方法。 - 前記裏面電極はAl合金層であり、
前記めっき工程では、前記ウエハをジンケート処理液に浸漬させ前記Al合金層の表面にZnを置換析出させ、析出したZnを除去し、その後再び前記ウエハをジンケート処理液に浸漬させ前記Al合金層の表面にZnを置換析出させ、その後前記ウエハを無電解Niめっき液に浸漬することを特徴とする請求項1に記載の半導体装置の製造方法。 - 前記ウエハを前記無電解Niめっき液に浸漬することで形成されるNi膜の厚さは2~10μmであることを特徴とする請求項2に記載の半導体装置の製造方法。
- 前記めっき工程では、前記ウエハを前記無電解Niめっき液に浸漬した後に、前記ウエハを無電解Auめっき液に浸漬させることを特徴とする請求項2又は3に記載の半導体装置の製造方法。
- 前記ウエハを前記無電解Auめっき液に浸漬することで形成されるAu膜の厚さは20~100nmであることを特徴とする請求項4に記載の半導体装置の製造方法。
- 前記Al合金層の厚みは1μm以上であることを特徴とする請求項2~5のいずれか1項に記載の半導体装置の製造方法。
- 前記めっき工程では、前記ウエハを前記ジンケート処理液に浸漬する前に、前記ウエハをアルカリ性の脱脂液に浸漬させ、さらに塩酸に浸漬させることを特徴とする請求項2~5のいずれか1項に記載の半導体装置の製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201580079099.1A CN107533963A (zh) | 2015-04-20 | 2015-04-20 | 半导体装置的制造方法 |
JP2017513849A JP6332556B2 (ja) | 2015-04-20 | 2015-04-20 | 半導体装置の製造方法 |
US15/550,801 US11380585B2 (en) | 2015-04-20 | 2015-04-20 | Semiconductor device manufacturing method |
DE112015006472.9T DE112015006472T5 (de) | 2015-04-20 | 2015-04-20 | Verfahren zum herstellen einer halbleiteranordnung |
PCT/JP2015/062006 WO2016170579A1 (ja) | 2015-04-20 | 2015-04-20 | 半導体装置の製造方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2015/062006 WO2016170579A1 (ja) | 2015-04-20 | 2015-04-20 | 半導体装置の製造方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016170579A1 true WO2016170579A1 (ja) | 2016-10-27 |
Family
ID=57142956
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/062006 WO2016170579A1 (ja) | 2015-04-20 | 2015-04-20 | 半導体装置の製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11380585B2 (ja) |
JP (1) | JP6332556B2 (ja) |
CN (1) | CN107533963A (ja) |
DE (1) | DE112015006472T5 (ja) |
WO (1) | WO2016170579A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019216154A (ja) * | 2018-06-12 | 2019-12-19 | 株式会社ディスコ | ウェーハの加工方法 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11380585B2 (en) * | 2015-04-20 | 2022-07-05 | Mitsubishi Electric Corporation | Semiconductor device manufacturing method |
JP7005356B2 (ja) | 2018-01-19 | 2022-01-21 | 三菱電機株式会社 | 半導体装置の製造方法 |
FR3085575B1 (fr) | 2018-09-03 | 2021-06-18 | St Microelectronics Tours Sas | Boitier de puce electronique |
FR3093230B1 (fr) | 2019-02-27 | 2023-01-06 | St Microelectronics Tours Sas | Boîtier de puce électronique |
JP7241649B2 (ja) | 2019-09-06 | 2023-03-17 | 株式会社東芝 | 半導体装置およびその製造方法 |
CN111540681A (zh) * | 2020-05-29 | 2020-08-14 | 上海华虹宏力半导体制造有限公司 | 应用于igbt芯片的金属化方法 |
CN111599679B (zh) * | 2020-05-29 | 2023-03-07 | 上海华虹宏力半导体制造有限公司 | 半导体器件的金属化方法 |
JP7346374B2 (ja) * | 2020-09-23 | 2023-09-19 | 株式会社東芝 | 半導体基板及び半導体装置の製造方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009142077A1 (ja) * | 2008-05-22 | 2009-11-26 | 富士電機デバイステクノロジー株式会社 | 半導体装置の製造方法 |
JP2011222843A (ja) * | 2010-04-13 | 2011-11-04 | Renesas Electronics Corp | 半導体装置の製造方法 |
JP2013161863A (ja) * | 2012-02-02 | 2013-08-19 | Mitsubishi Electric Corp | 半導体装置の製造方法 |
JP2013194291A (ja) * | 2012-03-21 | 2013-09-30 | Mitsubishi Electric Corp | 半導体装置およびその半導体装置の製造方法 |
JP2014053549A (ja) * | 2012-09-10 | 2014-03-20 | Lapis Semiconductor Co Ltd | 半導体装置および半導体装置の製造方法 |
JP2014207386A (ja) * | 2013-04-15 | 2014-10-30 | 株式会社ディスコ | ウエーハの加工方法 |
Family Cites Families (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10256985B4 (de) * | 2001-12-12 | 2013-01-10 | Denso Corporation | Verfahren zur Herstellung eines Leistungshalbleiterbauelements |
JP4185704B2 (ja) * | 2002-05-15 | 2008-11-26 | 株式会社ルネサステクノロジ | 半導体装置の製造方法 |
JP3948377B2 (ja) * | 2002-09-12 | 2007-07-25 | 株式会社豊田中央研究所 | 圧接型半導体装置 |
JP3829860B2 (ja) | 2004-01-30 | 2006-10-04 | 株式会社デンソー | 半導体チップの製造方法 |
US7902453B2 (en) * | 2005-07-27 | 2011-03-08 | Rensselaer Polytechnic Institute | Edge illumination photovoltaic devices and methods of making same |
JP4741332B2 (ja) * | 2005-09-30 | 2011-08-03 | 株式会社ディスコ | ウエーハの加工方法 |
US7198988B1 (en) * | 2005-11-16 | 2007-04-03 | Emcore Corporation | Method for eliminating backside metal peeling during die separation |
JP4758222B2 (ja) | 2005-12-21 | 2011-08-24 | 株式会社ディスコ | ウエーハの加工方法および装置 |
US7776746B2 (en) * | 2007-02-28 | 2010-08-17 | Alpha And Omega Semiconductor Incorporated | Method and apparatus for ultra thin wafer backside processing |
US20080242052A1 (en) * | 2007-03-30 | 2008-10-02 | Tao Feng | Method of forming ultra thin chips of power devices |
US7581296B2 (en) * | 2007-04-11 | 2009-09-01 | Ge Inspection Technologies, Lp | Acoustic stack for ultrasonic transducers and method for manufacturing same |
JP2009021462A (ja) * | 2007-07-13 | 2009-01-29 | Disco Abrasive Syst Ltd | ウェーハの加工方法 |
JP2009224511A (ja) | 2008-03-14 | 2009-10-01 | Fuji Electric Device Technology Co Ltd | 半導体装置の製造方法 |
JP2010016188A (ja) | 2008-07-03 | 2010-01-21 | Sanyo Electric Co Ltd | 半導体装置の製造方法および半導体装置 |
JP2011054914A (ja) * | 2009-09-04 | 2011-03-17 | Sanyo Electric Co Ltd | 半導体装置の製造方法および半導体ウエハ |
JP5587622B2 (ja) * | 2010-01-27 | 2014-09-10 | ルネサスエレクトロニクス株式会社 | 逆導通型igbt |
JP5552934B2 (ja) * | 2010-07-20 | 2014-07-16 | Tdk株式会社 | 被覆体及び電子部品 |
JP2013232582A (ja) | 2012-05-01 | 2013-11-14 | Nitto Denko Corp | 粘着テープ貼付け方法および粘着テープ貼付け装置 |
CN105103272B (zh) | 2013-09-27 | 2018-10-09 | 富士电机株式会社 | 半导体装置的制造方法 |
US20160108254A1 (en) * | 2014-10-17 | 2016-04-21 | Meltex Inc. | Zinc immersion coating solutions, double-zincate method, method of forming a metal plating film, and semiconductor device |
JP6443732B2 (ja) * | 2014-10-24 | 2018-12-26 | 日立金属株式会社 | 導電性粒子、導電性粉体、導電性高分子組成物および異方性導電シート |
US11380585B2 (en) * | 2015-04-20 | 2022-07-05 | Mitsubishi Electric Corporation | Semiconductor device manufacturing method |
-
2015
- 2015-04-20 US US15/550,801 patent/US11380585B2/en active Active
- 2015-04-20 WO PCT/JP2015/062006 patent/WO2016170579A1/ja active Application Filing
- 2015-04-20 CN CN201580079099.1A patent/CN107533963A/zh active Pending
- 2015-04-20 JP JP2017513849A patent/JP6332556B2/ja active Active
- 2015-04-20 DE DE112015006472.9T patent/DE112015006472T5/de active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009142077A1 (ja) * | 2008-05-22 | 2009-11-26 | 富士電機デバイステクノロジー株式会社 | 半導体装置の製造方法 |
JP2011222843A (ja) * | 2010-04-13 | 2011-11-04 | Renesas Electronics Corp | 半導体装置の製造方法 |
JP2013161863A (ja) * | 2012-02-02 | 2013-08-19 | Mitsubishi Electric Corp | 半導体装置の製造方法 |
JP2013194291A (ja) * | 2012-03-21 | 2013-09-30 | Mitsubishi Electric Corp | 半導体装置およびその半導体装置の製造方法 |
JP2014053549A (ja) * | 2012-09-10 | 2014-03-20 | Lapis Semiconductor Co Ltd | 半導体装置および半導体装置の製造方法 |
JP2014207386A (ja) * | 2013-04-15 | 2014-10-30 | 株式会社ディスコ | ウエーハの加工方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019216154A (ja) * | 2018-06-12 | 2019-12-19 | 株式会社ディスコ | ウェーハの加工方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2016170579A1 (ja) | 2017-11-02 |
DE112015006472T5 (de) | 2017-12-28 |
US20180033694A1 (en) | 2018-02-01 |
CN107533963A (zh) | 2018-01-02 |
US11380585B2 (en) | 2022-07-05 |
JP6332556B2 (ja) | 2018-05-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6332556B2 (ja) | 半導体装置の製造方法 | |
US8507362B2 (en) | Process of forming ultra thin wafers having an edge support ring | |
KR101504461B1 (ko) | 반도체 웨이퍼를 개개의 반도체 다이로 개별화하는 방법 | |
JP2013008915A (ja) | 基板加工方法及び基板加工装置 | |
WO2012056867A1 (ja) | 積層体、およびその積層体の分離方法 | |
US20140113452A1 (en) | Wafer edge trimming method | |
TW201937674A (zh) | 具有背金屬之半導體裝置及相關方法 | |
JP2004119718A (ja) | 薄型半導体チップの製造方法 | |
US8420505B2 (en) | Process for manufacture of thin wafer | |
US20150235969A1 (en) | Backside metallization patterns for integrated circuits | |
US7897418B2 (en) | Method for manufacturing semiconductor light emitting device | |
JP3013786B2 (ja) | 半導体装置の製造方法 | |
JP2016115868A (ja) | 半導体装置の製造方法 | |
KR101685317B1 (ko) | 파워 디바이스의 제조방법 | |
TW201545221A (zh) | 可降低晶圓壞率的晶塊切割方法 | |
JP6591240B2 (ja) | デバイスの製造方法 | |
TW201838020A (zh) | 半導體裝置、半導體晶圓及半導體裝置製造方法 | |
JPS63117445A (ja) | 半導体ウエハ−の加工方法 | |
CN106531637A (zh) | 一种改善铝膜缺陷的方法 | |
CN111490011A (zh) | 对准半导体晶圆以进行分割的方法 | |
US9368361B2 (en) | Method of making a semiconductor device | |
JP2013125781A (ja) | 半導体装置の製造方法 | |
US20240321638A1 (en) | Method of manufacturing semiconductor device | |
US12119236B2 (en) | Method for producing a connection structure and semiconductor device | |
JP2009206257A (ja) | 半導体基板、その製造方法およびこの半導体基板を用いた半導体装置の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15889819 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017513849 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 112015006472 Country of ref document: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15889819 Country of ref document: EP Kind code of ref document: A1 |