WO2016158325A1 - 絶縁被膜付き方向性電磁鋼板およびその製造方法 - Google Patents

絶縁被膜付き方向性電磁鋼板およびその製造方法 Download PDF

Info

Publication number
WO2016158325A1
WO2016158325A1 PCT/JP2016/057850 JP2016057850W WO2016158325A1 WO 2016158325 A1 WO2016158325 A1 WO 2016158325A1 JP 2016057850 W JP2016057850 W JP 2016057850W WO 2016158325 A1 WO2016158325 A1 WO 2016158325A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
baking
electrical steel
grain
oriented electrical
Prior art date
Application number
PCT/JP2016/057850
Other languages
English (en)
French (fr)
Inventor
敬 寺島
一利 花田
龍一 末廣
渡邉 誠
俊人 ▲高▼宮
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to RU2017133478A priority Critical patent/RU2675887C1/ru
Priority to EP16772209.9A priority patent/EP3276043B1/en
Priority to JP2016534273A priority patent/JP6332453B2/ja
Priority to CN201680016940.7A priority patent/CN107429401B/zh
Priority to KR1020177025494A priority patent/KR102007107B1/ko
Priority to US15/561,369 priority patent/US10920323B2/en
Priority to BR112017020757-5A priority patent/BR112017020757B1/pt
Publication of WO2016158325A1 publication Critical patent/WO2016158325A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/22Orthophosphates containing alkaline earth metal cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/12Orthophosphates containing zinc cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/18Orthophosphates containing manganese cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/20Orthophosphates containing aluminium cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/24Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing hexavalent chromium compounds
    • C23C22/33Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing hexavalent chromium compounds containing also phosphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/40Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing molybdates, tungstates or vanadates
    • C23C22/42Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing molybdates, tungstates or vanadates containing also phosphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • C23C22/74Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process for obtaining burned-in conversion coatings

Definitions

  • the present invention relates to a grain-oriented electrical steel sheet with an insulating coating and a method for producing the same.
  • a coating is provided on the surface in order to provide insulation, workability, rust prevention, and the like.
  • a surface film is composed of a base film mainly composed of forsterite formed during final finish annealing and a phosphate-based topcoat film formed thereon.
  • insulating coating of the coatings provided on the surface of the grain-oriented electrical steel sheet, only the latter top coating film is referred to as “insulating coating”.
  • Patent Documents 1 and 2 include an insulating film formed from a treatment solution containing phosphate (aluminum phosphate, magnesium phosphate, etc.), colloidal silica, and chromic anhydride. Is disclosed.
  • Patent Document 3 discloses a technique using an oxide colloid instead of chromic anhydride.
  • the grain-oriented electrical steel sheet with an insulating coating may also be simply referred to as “directional magnetic steel sheet” or “steel sheet”.
  • JP 48-39338 A Japanese Patent Laid-Open No. 50-79442 JP 2000-169972 A
  • Patent Documents 1 to 3 The inventors have examined the insulating coatings disclosed in Patent Documents 1 to 3, and found that the heat resistance is insufficient and sticking may not be sufficiently suppressed.
  • the present invention has been made in view of the above points, and an object thereof is to provide a grain-oriented electrical steel sheet with an insulating coating having an insulating coating excellent in heat resistance and a method for producing the same.
  • the present inventors have found that the change in the bonding state between P and O in the insulating film affects the quality of heat resistance, and A technique for controlling the bonding state of P and O to a state having good heat resistance has been found, and the present invention has been completed.
  • the present invention provides the following (1) to (6).
  • (1) having a grain-oriented electrical steel sheet and an insulating film disposed on the surface of the grain-oriented electrical steel sheet, wherein the insulation film is made of Mg, Ca, Ba, Sr, Zn, Al, and Mn.
  • a directional electromagnetic wave with an insulating coating which contains at least one selected from Si, P and O, and the XAFS spectrum of the K absorption edge of P of the insulating coating shows three absorption peaks between 2156 eV and 2180 eV steel sheet.
  • (2) A directional electrical steel sheet with an insulation coating obtained by applying a treatment liquid to the surface of a finish annealed directional electrical steel sheet and then baking to obtain the directional electrical steel sheet with an insulation coating according to (1) above.
  • the treatment liquid contains at least one phosphate selected from the group consisting of Mg, Ca, Ba, Sr, Zn, Al and Mn, and colloidal silica
  • the content of the colloidal silica in the treatment liquid is 50 to 150 parts by mass in terms of solid content with respect to 100 parts by mass of the total solid content of the phosphate
  • the baking temperature T (Unit: ° C) is 850 ⁇ T ⁇ 1000
  • hydrogen concentration H 2 in the baking atmosphere (unit: volume%) is 0.3 ⁇ H 2 ⁇ 230 ⁇ 0.2 T
  • baking time Time at baking temperature T (unit) : Seconds) is 5 ⁇ Time ⁇ 860 ⁇ 0.8T Plus, manufacturing method of the insulating film with oriented electrical steel sheets.
  • a method for producing a coated grain-oriented electrical steel sheet wherein the treatment liquid is at least one phosphate selected from the group consisting of Mg, Ca, Ba, Sr, Zn, Al, and Mn, colloidal silica,
  • the content of the colloidal silica in the treatment liquid is 50 to 150 parts by mass in terms of solid content with respect to 100 parts by mass in total of the solid content of the phosphate.
  • the baking temperature T (unit: ° C.) is 800 ⁇ T ⁇ 1000
  • the hydrogen concentration H 2 (unit: volume%) in the baking atmosphere is 0 ⁇ H 2 ⁇ 230 ⁇ 0.2 T
  • the baking is performed at the baking temperature T.
  • Time Time (unit: second) is Time ⁇ 00
  • the plasma treatment is a treatment in which the surface of the grain-oriented electrical steel sheet after baking is irradiated with plasma generated from a plasma gas containing 0.3% by volume or more of hydrogen for 0.10 seconds or more.
  • a method for producing a coated grain-oriented electrical steel sheet (5) The finish-annealed grain-oriented electrical steel sheet coated with the treatment liquid is held at a temperature of 150 to 450 ° C. for 10 seconds or longer, and then subjected to the baking and the plasma treatment.
  • a method for producing a grain-oriented electrical steel sheet with an insulating coating is
  • the treatment liquid further comprises:
  • the M compound is contained, and the content of the M compound in the treatment liquid is 10 to 100 parts by mass in terms of oxide with respect to 100 parts by mass in total of the solid content of the phosphate (2 ) To (5).
  • the thickness of 0.23 mm finished annealed grain-oriented electrical steel sheet manufactured by a known method is sheared to a size of 300 mm ⁇ 100 mm, unreacted annealing separator is removed, and then strain relief annealing is performed. (800 ° C., 2 hours, N 2 atmosphere).
  • a treatment liquid for forming an insulating coating was applied to the steel sheet after light pickling with 5% by mass phosphoric acid.
  • the basis weight after baking is 10 g / m 2 in total on both sides. It applied so that it might become.
  • the steel plate coated with the treatment liquid is placed in a drying furnace, dried at 300 ° C. for 1 minute, and then baked under two different baking conditions, thereby providing directionality with two insulating coatings. An electromagnetic steel sheet was obtained. Under the first baking condition (baking condition 1), baking was performed at 850 ° C. for 1 minute in a 100% N 2 atmosphere. Under the second baking condition (baking condition 2), baking was performed at 900 ° C.
  • the insulating coating of the steel plate obtained under the baking condition 1 may be referred to as “insulating coating A”, and the insulating coating of the steel plate obtained under the baking condition 2 may be referred to as “insulating coating B”.
  • the heat resistance of the insulating coating A and the insulating coating B was evaluated by a drop weight test. Specifically, after the obtained steel plate was sheared into 50 mm ⁇ 50 mm test pieces, 10 sheets were laminated, and compression-load annealing at 2 kg / cm 2 was performed at 830 ° C. for 3 hours in a nitrogen atmosphere. Then, 500 g of weight was dropped from a height of 20 to 120 cm at intervals of 20 cm, and the heat resistance of the insulating coating was evaluated based on the height of the weight (drop weight height) when all the 10 test pieces were separated. In addition, it was set to 0 cm when all the 10 test pieces were separated after the compression weight annealing before the drop weight test.
  • the insulating coating When separated at a drop height of 40 cm or less, the insulating coating can be evaluated as having excellent heat resistance.
  • the insulation coating A had a drop weight height of 100 cm and was inferior in heat resistance.
  • the insulation coating B has a drop height of 40 cm and exhibits good heat resistance.
  • FePO 4 is measured as a standard substance and the white line is set to 2153 eV, or various magnesium phosphates of the reagent are measured to confirm the absolute accuracy of the peak position. It is preferable. Also, the absorption intensity may be normalized for each measurement using a Ni mesh or the like.
  • FIG. 1 is an XAFS spectrum of the K absorption edge of P for each insulating coating and reference reagent. Specifically, FIG. 1 shows insulating coating A and insulating coating B, and five kinds of reference reagents (primary magnesium phosphate, magnesium metaphosphate, dibasic magnesium phosphate, magnesium pyrophosphate, and tertiary magnesium phosphate. ) Shows the XAFS spectrum of the K absorption edge of P. In any spectrum, an absorption peak (corresponding to a fine structure) exists between 2156 eV and 2180 eV.
  • the absorption peak existing between 2156 eV and 2180 eV is different. Then, it was found that there is one strong peak in the vicinity of 2172 eV, whereas in the insulating coating B, there are three peaks in the vicinity of 2158 eV, 2165 eV, and 2172 eV.
  • P in the insulating coating A having poor heat resistance is in a state close to the primary phosphate of the raw material, despite being baked.
  • P in the insulating coating B with good heat resistance is estimated to be close to the state of P in the tertiary phosphate.
  • the phosphate dehydrates and condenses, the primary phosphate changes to the secondary phosphate and tertiary phosphate, so in the insulating coating B with good heat resistance, the phosphate It is considered that the condensation reaction proceeds.
  • the grain-oriented electrical steel sheet with an insulating coating of the present invention (hereinafter simply referred to as “the grain-oriented electrical steel sheet of the present invention” or “the steel sheet of the present invention”) is provided on the surface of the grain-oriented electrical steel sheet and the grain-oriented electrical steel sheet.
  • the insulating coating contains at least one selected from the group consisting of Mg, Ca, Ba, Sr, Zn, Al and Mn, and Si, P and O, and This is a grain-oriented electrical steel sheet with an insulating coating, in which the XAFS spectrum at the K absorption edge of P of the insulating coating shows three absorption peaks between 2156 eV and 2180 eV.
  • each element contained in the insulating coating can be confirmed by a conventionally known method, but in the present invention, at least one selected from the group consisting of Mg, Ca, Ba, Sr, Zn, Al, and Mn.
  • the insulating coating formed using the treatment liquid containing the phosphate of the above and colloidal silica is at least one selected from the group consisting of Mg, Ca, Ba, Sr, Zn, Al and Mn, and Si. , P and O.
  • the insulating film in the present invention shows three absorption peaks in the XAFS spectrum of the K absorption edge of P between 2156 eV and 2180 eV (see FIG. 1). Thereby, as above-mentioned, heat resistance is excellent.
  • grain-oriented electrical steel sheet A conventionally well-known grain-oriented electrical steel sheet can be used.
  • grain-oriented electrical steel sheets are obtained by hot rolling a silicon-containing steel slab by a known method and finishing it to a final thickness by one or multiple cold rolling sandwiching intermediate annealing, followed by primary recrystallization annealing. It is manufactured by applying an annealing separator and then performing a final finish annealing.
  • the first aspect of the production method of the present invention is that the surface of the grain-oriented electrical steel sheet that has been subjected to finish annealing is coated with a treatment liquid and then baked to obtain the grain-oriented electrical steel sheet with the insulation film of the present invention.
  • the content of the colloidal silica in the treatment liquid is 50 to 150 parts by mass in terms of solid content with respect to 100 parts by mass in total of the solid content of the phosphate.
  • the baking temperature T (unit: ° C.) is 850 ⁇ T ⁇ 1000
  • the hydrogen concentration H 2 (unit: volume%) in the baking atmosphere is 0.3 ⁇ H 2 ⁇ 230-0.2 T
  • the baking is performed at the baking temperature T.
  • Time Time (unit: second) is 5 ⁇ Time ⁇ 86 Meet -0.8T, a manufacturing method of the insulating film with oriented electrical steel sheets.
  • the treatment liquid is a treatment liquid for forming an insulating film, and contains at least one phosphate selected from the group consisting of Mg, Ca, Ba, Sr, Zn, Al, and Mn, and colloidal silica. It is a processing liquid.
  • the metal species of the phosphate is not particularly limited as long as it is at least one selected from the group consisting of Mg, Ca, Ba, Sr, Zn, Al, and Mn.
  • phosphates of alkali metals Li, Na, etc.
  • a phosphate may be used individually by 1 type and may use 2 or more types together. By using two or more kinds in combination, the physical property values of the resulting insulating coating can be precisely controlled.
  • a primary phosphate (heavy phosphate) is preferably exemplified.
  • the average particle size of the colloidal silica is preferably 5 to 200 nm, more preferably 10 to 100 nm, from the viewpoint of availability and cost.
  • the average particle diameter of colloidal silica can be measured by the BET method (converted from the specific surface area by the adsorption method). It is also possible to substitute an average value actually measured from an electron micrograph.
  • the content of colloidal silica in the treatment liquid is 50 to 150 parts by mass, preferably 50 to 100 parts by mass in terms of SiO 2 solid content, with respect to 100 parts by mass of the total solid content of phosphate. If the colloidal silica content is too small, the effect of reducing the thermal expansion coefficient of the insulating coating is reduced, and the tension applied to the steel sheet may be reduced. On the other hand, when the content of colloidal silica is too large, crystallization of the insulating film is likely to proceed during baking, which will be described later, and the tension applied to the steel sheet may also decrease. However, if the colloidal silica content is within the above range, an appropriate tension is imparted to the steel sheet by the insulating coating, and the effect of improving iron loss is excellent.
  • the liquid may further contain an M compound.
  • tensile_strength which an insulating film provides to a steel plate improves, and it is excellent also in the moisture absorption resistance of an insulating film besides being excellent in the improvement effect of an iron loss.
  • the mode of the M compound contained in the treatment liquid is not particularly limited, but a water-soluble metal salt mode is particularly preferable, and an oxide mode is next preferable.
  • the oxide include oxide particles having a primary particle diameter of 1 ⁇ m, and preferably 500 nm or less.
  • Examples of the Ti compound include TiO 2 and Ti 2 O 3 .
  • Examples of the V compound include NH 4 VO 3 and V 2 O 5 .
  • Examples of the Cr compound include a chromic acid compound, and specific examples thereof include chromic anhydride (CrO 3 ), chromate, and dichromate.
  • Examples of the Mn compound include Mn (NO 3 ) 2 , MnSO 4 , MnCO 3 and the like.
  • Examples of the Fe compound include (NH 4 ) 2 Fe (SO 4 ) 2 , Fe (NO 3 ) 3 , FeSO 4 .7H 2 O, Fe 2 O 3 and the like.
  • Examples of the Co compound include Co (NO 3 ) 2 and CoSO 4 .
  • Examples of the Ni compound include Ni (NO 3 ) 2 and NiSO 4 .
  • Examples of the Cu compound include Cu (NO 3 ) 2 and CuSO 4 .5H 2 O.
  • Examples of the Zn compound include Zn (NO 3 ) 2 , ZnSO 4 , ZnCO 3 and the like.
  • Examples of the Zr compound include Zr (SO 4 ) 2 .4H 2 O, ZrO 2 and the like.
  • Examples of the Mo compound include MoS 2 and MoO 2 .
  • Examples of the W compound include K 2 WO 4 and WO 3 .
  • Such M compounds may be used alone or in combination of two or more.
  • the content of the M compound is preferably 5 to 150 parts by mass, and more preferably 10 to 100 parts by mass in terms of oxide with respect to 100 parts by mass of the total solid content of the phosphate. If the content of the M compound is too small, the above improvement effect may not be obtained sufficiently. On the other hand, when there is too much content of M compound, it will become difficult to obtain a precise
  • the “oxide conversion” in the content of the M compound is specifically as follows when enumerated for each metal species of M.
  • Ti TiO 2 conversion, V: V 2 O 5 conversion, Cr: CrO 3 conversion, Mn: MnO conversion, Fe: FeO conversion, Co: CoO conversion, Ni: NiO conversion, Cu: CuO conversion, Zn: ZnO conversion, Zr: ZrO 2 conversion, Mo: MoO 3 conversion, W: WO 3 conversion
  • ⁇ Application of treatment liquid> It does not specifically limit as a method of apply
  • the treatment liquid is preferably applied to both sides of the steel sheet, and more preferably applied so that the basis weight after baking is 4 to 15 g / m 2 in total. This is because if the amount is too small, the interlayer resistance may decrease, and if the amount is too large, the space factor may decrease greatly.
  • ⁇ Dry> Moisture dries in the temperature rising process of baking, so drying does not have to be performed separately before baking.
  • the viewpoint of preventing film formation failure due to sudden heating, and one of the features of the present invention, is during baking. From the viewpoint of stably controlling the bonding state of the phosphate by reducing the insulating film, it is preferable to sufficiently dry the treatment liquid before baking, and the treatment liquid was applied before baking. More preferably, the grain-oriented electrical steel sheet is dried (temporarily baked). Specifically, for example, it is preferable to dry the steel plate coated with the treatment liquid in a drying furnace and hold at 150 to 450 ° C. for 10 seconds or more. If it is less than 150 ° C.
  • drying may be insufficient and a desired bonded state may be difficult to obtain, and at temperatures higher than 450 ° C., the steel sheet may be oxidized during drying. However, if it is 150 to 450 ° C. for 10 seconds or longer, it can be sufficiently dried while suppressing oxidation of the steel sheet. The longer the drying time, the better. However, if the drying time is longer than 120 seconds, the productivity tends to decrease, so 120 seconds or less is preferable.
  • the grain-oriented electrical steel sheet dried after application of the treatment liquid is baked to form an insulating coating.
  • the XAFS spectrum of the K absorption edge of P of the insulating film needs to show three absorption peaks between 2156 eV and 2180 eV.
  • a method for forming such an insulating film is not particularly limited, but as an example of a method for obtaining the above-described configuration, a condition for baking may be a specific condition.
  • the baking temperature T (unit: ° C.) is 850 ⁇ T ⁇ 1000.
  • the baking temperature (T) may be 850 ° C. or higher.
  • the temperature is set to 1000 ° C. or lower. .
  • the hydrogen concentration H 2 (unit: volume%) in the baking atmosphere is 0.3 ⁇ H 2 ⁇ 230 ⁇ 0.2T.
  • the hydrogen concentration (H 2 ) may be 0.3 vol% or more.
  • the limit concentration is related to the baking temperature (T), and H 2 ⁇ 230 ⁇ 0.2T.
  • the remainder other than hydrogen is preferably an inert gas, and more preferably nitrogen.
  • the baking time Time (unit: second) is 5 ⁇ Time ⁇ 860 ⁇ 0.8T.
  • the baking temperature T should be 5 seconds or more.
  • the limit time is related to the baking temperature (T), and Time ⁇ 860 ⁇ 0.8T.
  • the treatment liquid is at least one phosphate selected from the group consisting of Mg, Ca, Ba, Sr, Zn, Al, and Mn.
  • colloidal silica and the content of the colloidal silica in the treatment liquid is 50 to 150 parts by mass in terms of solid content with respect to 100 parts by mass in total of the solid content of the phosphate.
  • the baking temperature T (unit: ° C.) is 800 ⁇ T ⁇ 1000
  • the hydrogen concentration H 2 (unit: volume%) in the baking atmosphere is 0 ⁇ H 2 ⁇ 230 ⁇ 0.2 T
  • Baking time at baking temperature T (Unit: seconds) satisfies Time ⁇ 300
  • the plasma treatment is performed for 0.10 seconds or more of plasma generated from a plasma gas containing 0.3% by volume or more of hydrogen on the surface of the grain-oriented electrical steel sheet after baking. It is a manufacturing method of the grain-oriented electrical steel sheet with an insulation film which is the process to irradiate.
  • the conditions other than the baking and plasma treatment are the same as those in the first aspect, and thus the description thereof is omitted.
  • the baking temperature T (unit: ° C.) can also be set in a wider range than the condition of the first aspect (850 ⁇ T ⁇ 1000), and in the second aspect, 800 ⁇ T ⁇ 1000. Furthermore, the baking time Time (unit: second) at the baking temperature T may be Time ⁇ 300.
  • the XAFS spectrum of the K absorption edge of P has three absorption peaks between 2156 eV and 2180 eV by further performing a specific plasma treatment.
  • An insulating film having excellent heat resistance is obtained.
  • the surface of the grain-oriented electrical steel sheet after baking is irradiated with plasma generated from a plasma gas containing 0.3% by volume or more of hydrogen for 0.10 seconds or more.
  • the plasma treatment is often performed in a vacuum state, and in the present invention, vacuum plasma can be preferably used, but is not limited thereto, and for example, atmospheric pressure plasma can also be used.
  • the atmospheric pressure plasma is plasma generated under atmospheric pressure.
  • the “atmospheric pressure” may be a pressure near atmospheric pressure, for example, a pressure of 1.0 ⁇ 10 4 to 1.5 ⁇ 10 5 Pa.
  • plasma is generated by applying a high frequency voltage between opposing electrodes to discharge in plasma gas (working gas) under atmospheric pressure, and this is irradiated onto the surface of the steel sheet.
  • the plasma gas (working gas) needs to contain 0.3% by volume or more of hydrogen.
  • the hydrogen concentration is less than 0.3% by volume, excellent heat resistance cannot be obtained even if plasma treatment is performed.
  • the upper limit value of the hydrogen concentration in the plasma gas is not particularly limited, but is preferably 50% by volume or less, and more preferably 10% by volume or less.
  • the remaining gas other than hydrogen in the plasma gas is preferably helium, argon, or the like because the plasma is easily generated.
  • the plasma treatment is preferably performed after the baked steel sheet has become 100 ° C. or less. That is, it is preferable to irradiate the surface of the steel sheet after baking, which has become a temperature of 100 ° C. or less. If this temperature is too high, the plasma generation part may become high temperature and a problem may occur, but if it is 100 ° C. or less, the problem can be suppressed.
  • the plasma gas temperature is preferably 200 ° C. or lower, and more preferably 150 ° C. or lower, from the viewpoint of not imparting thermal strain to the steel sheet.
  • the directional electrical steel sheet with insulating coating of each example was sheared into 50 mm ⁇ 50 mm test pieces, 10 sheets were laminated, and compression-load annealing at 2 kg / cm 2 was performed at 830 ° C. for 3 hours in a nitrogen atmosphere. Thereafter, 500 g of a weight was dropped from a height of 20 to 120 cm at intervals of 20 cm, and the heat resistance of the insulating coating was evaluated based on the height of the weight (drop weight height) when all the 10 test pieces were separated. In addition, it was set to 0 cm when all the 10 test pieces were separated after the compression weight annealing before the drop weight test. When separated at a drop height of 40 cm or less, the insulating coating can be evaluated as having excellent heat resistance. The results are shown in Table 1 below.
  • the directional electrical steel sheet with insulating coating of each example was sheared into 50 mm ⁇ 50 mm test pieces, 10 sheets were laminated, and compression-load annealing at 2 kg / cm 2 was performed at 830 ° C. for 3 hours in a nitrogen atmosphere. Thereafter, 500 g of a weight was dropped from a height of 20 to 120 cm at intervals of 20 cm, and the heat resistance of the insulating coating was evaluated based on the height of the weight (drop weight height) when all the 10 test pieces were separated. In addition, it was set to 0 cm when all the 10 test pieces were separated after the compression weight annealing before the drop weight test. When separated at a drop height of 40 cm or less, the insulating coating can be evaluated as having excellent heat resistance. The results are shown in Table 2 below.
  • the steel plate temperature after baking was room temperature.
  • the steel sheet was irradiated with atmospheric pressure plasma.
  • a PF-DFL manufactured by Plasma Factory was used as the atmospheric pressure plasma apparatus, and a linear plasma head having a width of about 300 mm was used as the plasma head.
  • the gas type of the plasma gas (working gas) was Ar, Ar—N 2 , or Ar—H 2 , and the total flow rate was 30 L / min.
  • the width of the plasma was 3 mm.
  • the irradiation time was changed by changing the conveying speed of the steel sheet while fixing the plasma head, and the plasma treatment was uniformly performed on the entire surface of the steel sheet.
  • the irradiation time was calculated by dividing the plasma width (3 mm) by the conveyance speed (unit: mm / second).
  • the directional electrical steel sheet with insulating coating of each example was sheared into 50 mm ⁇ 50 mm test pieces, 10 sheets were laminated, and compression-load annealing at 2 kg / cm 2 was performed at 830 ° C. for 3 hours in a nitrogen atmosphere. Thereafter, 500 g of a weight was dropped from a height of 20 to 120 cm at intervals of 20 cm, and the heat resistance of the insulating coating was evaluated based on the height of the weight (drop weight height) when all the 10 test pieces were separated. In addition, it was set to 0 cm when all the 10 test pieces were separated after the compression weight annealing before the drop weight test. When separated at a drop height of 40 cm or less, the insulating coating can be evaluated as having excellent heat resistance. The results are shown in Table 3 below.
  • the insulating film in the invention example in which three peaks appear by the subsequent plasma treatment is heat resistant. It turned out to be excellent.
  • the M compound added to the treatment liquid is shown below for each M metal species.
  • the steel plate temperature after baking was room temperature.
  • the steel sheet was irradiated with atmospheric pressure plasma.
  • a PF-DFL manufactured by Plasma Factory was used as the atmospheric pressure plasma apparatus, and a linear plasma head having a width of about 300 mm was used as the plasma head.
  • the gas type of the plasma gas (working gas) was Ar, Ar—N 2 , or Ar—H 2 , and the total flow rate was 30 L / min.
  • the width of the plasma was 3 mm.
  • the irradiation time was changed by changing the conveying speed of the steel sheet while fixing the plasma head, and the plasma treatment was uniformly performed on the entire surface of the steel sheet.
  • the irradiation time was calculated by dividing the plasma width (3 mm) by the conveyance speed (unit: mm / second).
  • the directional electrical steel sheet with insulating coating of each example was sheared into 50 mm ⁇ 50 mm test pieces, 10 sheets were laminated, and compression-load annealing at 2 kg / cm 2 was performed at 830 ° C. for 3 hours in a nitrogen atmosphere. Thereafter, 500 g of a weight was dropped from a height of 20 to 120 cm at intervals of 20 cm, and the heat resistance of the insulating coating was evaluated based on the height of the weight (drop weight height) when all the 10 test pieces were separated. In addition, it was set to 0 cm when all the 10 test pieces were separated after the compression weight annealing before the drop weight test. When separated at a drop height of 40 cm or less, the insulating coating can be evaluated as having excellent heat resistance. The results are shown in Table 4 below.
  • the insulating film in the invention example in which three peaks appear by the subsequent plasma treatment is heat resistant. It turned out to be excellent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

耐熱性に優れた絶縁被膜を有する、絶縁被膜付き方向性電磁鋼板およびその製造方法を提供する。上記絶縁被膜付き方向性電磁鋼板は、方向性電磁鋼板と、上記方向性電磁鋼板の表面上に配置された絶縁被膜とを有し、上記絶縁被膜が、Mg、Ca、Ba、Sr、Zn、AlおよびMnからなる群から選ばれる少なくとも1種と、Si、PおよびOとを含有し、上記絶縁被膜のPのK吸収端のXAFSスペクトルが、2156eVから2180eVの間に3つの吸収ピークを示す。

Description

絶縁被膜付き方向性電磁鋼板およびその製造方法
 本発明は、絶縁被膜付き方向性電磁鋼板およびその製造方法に関する。
 一般に、方向性電磁鋼板(以下、単に「鋼板」ともいう)においては、絶縁性、加工性および防錆性等を付与するために、表面に被膜を設ける。かかる表面被膜は、最終仕上焼鈍時に形成されるフォルステライトを主体とする下地被膜と、その上に形成されるリン酸塩系の上塗り被膜とからなる。
 なお、以下では、方向性電磁鋼板の表面に設けられる被膜のうち、後者の上塗り被膜のみを「絶縁被膜」と呼ぶ。
 これらの被膜は、高温で形成され、しかも低い熱膨張率を持つことから、室温まで下がったときの鋼板と被膜との熱膨張率の差異により鋼板に張力を付与し、鋼板の鉄損を低減させる効果がある。このため、被膜には、できるだけ高い張力を鋼板に付与することが要求されている。
 このような要求を満たすため、例えば、特許文献1および2には、リン酸塩(リン酸アルミニウム、リン酸マグネシウム等)、コロイド状シリカおよび無水クロム酸を含有する処理液から形成される絶縁被膜が開示されている。
 また、近年、環境保全意識の高まりからCrを含有しない絶縁被膜の開発も行なわれており、例えば、特許文献3には、無水クロム酸に代えて、酸化物コロイドを用いる技術が開示されている。
 なお、以下では、絶縁被膜付き方向性電磁鋼板も、単に、「方向性電磁鋼板」または「鋼板」と呼ぶ場合がある。
特開昭48-39338号公報 特開昭50-79442号公報 特開2000-169972号公報
 方向性電磁鋼板の需要家、特に、巻きトランスを製造する顧客は、鋼板を積層して巻きトランス用コアを形成した後に、800℃を超える温度で歪取焼鈍を行なうことで、コアを成形したときに生じる歪を開放して磁気特性の劣化を解消する。
 この際、絶縁被膜の耐熱性が低いと、積層された鋼板どうしが癒着(スティッキング)を起こし、その後の作業性が低下する場合がある。また、スティッキングによって磁気特性が劣化する場合もある。
 本発明者らが、特許文献1~3に開示された絶縁被膜の検討を行なったところ、耐熱性が不十分であり、スティッキングを十分に抑制できない場合があることが分かった。
 本発明は、以上の点を鑑みてなされたものであり、耐熱性に優れた絶縁被膜を有する、絶縁被膜付き方向性電磁鋼板およびその製造方法を提供することを目的とする。
 本発明者らは、上記目的を達成するために鋭意検討を行なった結果、絶縁被膜中のPとOとの結合状態の変化が耐熱性の良否に影響を与えること、および、絶縁被膜中のPとOとの結合状態を耐熱性が良好な状態に制御する手法を見出し、本発明を完成させた。
 すなわち、本発明は、以下の(1)~(6)を提供する。
 (1)方向性電磁鋼板と、上記方向性電磁鋼板の表面上に配置された絶縁被膜とを有し、上記絶縁被膜が、Mg、Ca、Ba、Sr、Zn、AlおよびMnからなる群から選ばれる少なくとも1種と、Si、PおよびOとを含有し、上記絶縁被膜のPのK吸収端のXAFSスペクトルが、2156eVから2180eVの間に3つの吸収ピークを示す、絶縁被膜付き方向性電磁鋼板。
 (2)仕上焼鈍済みの方向性電磁鋼板の表面に、処理液を塗布した後に、焼付を施し、上記(1)に記載の絶縁被膜付き方向性電磁鋼板を得る、絶縁被膜付き方向性電磁鋼板の製造方法であって、上記処理液が、Mg、Ca、Ba、Sr、Zn、AlおよびMnからなる群から選ばれる少なくとも1種のリン酸塩と、コロイド状シリカと、を含有し、上記処理液中の上記コロイド状シリカの含有量が、上記リン酸塩の固形分合計100質量部に対して、固形分換算で、50~150質量部であり、上記焼付の条件として、焼付温度T(単位:℃)が850≦T≦1000、焼付雰囲気中の水素濃度H2(単位:体積%)が0.3≦H2≦230-0.2T、焼付温度Tでの焼付時間Time(単位:秒)が5≦Time≦860-0.8Tを満たす、絶縁被膜付き方向性電磁鋼板の製造方法。
 (3)上記処理液を塗布した上記仕上焼鈍済みの方向性電磁鋼板を、150~450℃の温度で10秒以上保持した後、上記焼付を施す、上記(2)に記載の絶縁被膜付き方向性電磁鋼板の製造方法。
 (4)仕上焼鈍済みの方向性電磁鋼板の表面に、処理液を塗布した後に、焼付およびプラズマ処理をこの順で施し、上記(1)に記載の絶縁被膜付き方向性電磁鋼板を得る、絶縁被膜付き方向性電磁鋼板の製造方法であって、上記処理液が、Mg、Ca、Ba、Sr、Zn、AlおよびMnからなる群から選ばれる少なくとも1種のリン酸塩と、コロイド状シリカと、を含有し、上記処理液中の上記コロイド状シリカの含有量が、上記リン酸塩の固形分合計100質量部に対して、固形分換算で、50~150質量部であり、上記焼付の条件として、焼付温度T(単位:℃)が800≦T≦1000、焼付雰囲気中の水素濃度H2(単位:体積%)が0≦H2≦230-0.2T、焼付温度Tでの焼付時間Time(単位:秒)がTime≦300を満たし、上記プラズマ処理は、上記焼付後の上記方向性電磁鋼板の表面に、水素0.3体積%以上含むプラズマガスから発生させたプラズマを0.10秒以上照射する処理である、絶縁被膜付き方向性電磁鋼板の製造方法。
 (5)上記処理液を塗布した上記仕上焼鈍済みの方向性電磁鋼板を、150~450℃の温度で10秒以上保持した後、上記焼付および上記プラズマ処理を施す、上記(4)に記載の絶縁被膜付き方向性電磁鋼板の製造方法。
 (6)Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Zr、MoおよびWからなる群から選ばれる少なくとも1種を、Mとした場合において、上記処理液が、さらに、M化合物を含有し、上記処理液中の上記M化合物の含有量が、上記リン酸塩の固形分合計100質量部に対して、酸化物換算で、10~100質量部である、上記(2)~(5)のいずれかに記載の絶縁被膜付き方向性電磁鋼板の製造方法。
 本発明によれば、耐熱性に優れた絶縁被膜を有する、絶縁被膜付き方向性電磁鋼板およびその製造方法を提供できる。
各絶縁被膜および参照用試薬のPのK吸収端のXAFSスペクトルである。
[本発明者らによる知見]
 最初に、本発明を完成するきっかけとなったXAFS(エックス線吸収微細構造(X-ray absorption fine structure))による知見について説明する。
 まず、公知の方法で製造された板厚:0.23mmの仕上焼鈍済みの方向性電磁鋼板を、300mm×100mmの大きさにせん断し、未反応の焼鈍分離剤を除去した後、歪取焼鈍(800℃、2時間、N2雰囲気)を施した。
 次に、5質量%リン酸で軽酸洗した後の鋼板に、絶縁被膜形成用の処理液を塗布した。処理液には、第一リン酸アルミニウム水溶液を固形分換算で100質量部、コロイド状シリカを固形分換算で80質量部添加し、これを、焼付後の目付量が両面合計で10g/m2となるように塗布した。
 処理液を塗布した鋼板を、乾燥炉に装入して、300℃で1分間の乾燥を施し、その後、2種の異なる焼付条件で焼付を施し、これにより、2種の絶縁被膜付き方向性電磁鋼板を得た。1つ目の焼付条件(焼付条件1)では、100%N2雰囲気下、850℃で1分間の焼付を施した。2つ目の焼付条件(焼付条件2)では、窒素95体積%-水素5体積%の混合雰囲気下、900℃で30秒間の焼付を施した。
 以下、便宜的に、焼付条件1で得られた鋼板の絶縁被膜を「絶縁被膜A」と称し、焼付条件2で得られた鋼板の絶縁被膜を「絶縁被膜B」と称する場合がある。
 次に、絶縁被膜Aおよび絶縁被膜Bの耐熱性を、落重試験により評価した。具体的には、得られた鋼板を、50mm×50mmの試験片にせん断し、これを10枚積層して、2kg/cm2の圧縮加重焼鈍を窒素雰囲気下、830℃で3時間行なった後、500gの分銅を20~120cmの高さから20cm間隔で落下させ、10枚の試験片が全て分離したときの分銅の高さ(落重高さ)により絶縁被膜の耐熱性を評価した。なお、圧縮加重焼鈍後、落重試験する前に10枚の試験片がすべて分離している場合は、0cmとした。
 40cm以下の落重高さで分離した場合、その絶縁被膜は耐熱性に優れるものとして評価できる。絶縁被膜Aは、落重高さが100cmであり、耐熱性が劣っていた。一方、絶縁被膜Bは、落重高さが40cmであり、良好な耐熱性を示すことが確認された。
 このように落重高さ(耐熱性)に差のある絶縁被膜Aおよび絶縁被膜Bについて、差異を鋭意検討したところ、絶縁被膜のPのK吸収端のXAFSスペクトルに差異があることをつきとめた。これについて説明する。
 絶縁被膜Aおよび絶縁被膜B中におけるPの結合状態を確認するため、高エネルギー加速器研究機構 物質構造科学研究所 放射光科学研究施設(KEK-PF)の軟X線ビームラインBL-27Aにおいて、全電子収量法(TEY)にて、PのK吸収端(2146eV)のXAFS測定を実施した。なお、本測定は、測定施設およびビームラインに依存性があるものではなく、他の放射光施設(例えば、SPring-8、立命館大学SRセンター等)でも実施できる。実施の際には、念のため、標準物質として、例えばFePOを測定してホワイトラインを2153eVに設定したり、試薬のリン酸マグネシウム各種を測定し、ピーク位置の絶対精度を確認したりすることが好ましい。また吸収強度についてもNiメッシュなどを用いて測定ごとに規格化を実施するとよい。
 図1は、各絶縁被膜および参照用試薬のPのK吸収端のXAFSスペクトルである。具体的には、図1は、絶縁被膜Aおよび絶縁被膜B、ならびに、参照用試薬5種(第一リン酸マグネシウム、メタリン酸マグネシウム、第二リン酸マグネシウム、ピロリン酸マグネシウム、第三リン酸マグネシウム)における、PのK吸収端のXAFSスペクトルを示す。いずれのスペクトルにおいても、2156eVから2180eVの間に、吸収ピーク(微細構造に対応)が存在している。耐熱性が劣る絶縁被膜A(焼付条件1)と、耐熱性が良好な絶縁被膜B(焼付条件2)とを比較すると、2156eVから2180eVの間に存在する吸収ピークが異なっており、絶縁被膜Aでは、2172eV付近に強いピークが1本であるのに対し、絶縁被膜Bでは、2158eV、2165eV、2172eV付近に3本のピークが存在することが分かった。
 参照用試薬のピークと比較してPの状態を考察すると、耐熱性が劣る絶縁被膜A中のPは、焼付を施したにもかかわらず、原料の第一リン酸塩に近い状態にあり、一方で、耐熱性が良好な絶縁被膜B中のPは、第三リン酸塩中のPの状態に近いと推定される。
 リン酸塩が脱水縮合していくと、第一リン酸塩から第二リン酸塩、第三リン酸塩へと変化していくことから、耐熱性が良好な絶縁被膜Bでは、リン酸塩の縮合反応が進行しているものと考えられる。縮合反応が進行すると、PとOとの結合が増加するため、構造が強化され、ガラス質を主成分とする絶縁被膜の高温での粘度が上昇し、これにより、スティッキングが発生しにくくなり、耐熱性が向上したと考えられる。
 次に、改めて、本発明の絶縁被膜付き方向性電磁鋼板について説明した後、その製造方法についても説明を行なう。
[絶縁被膜付き方向性電磁鋼板]
 本発明の絶縁被膜付き方向性電磁鋼板(以下、単に「本発明の方向性電磁鋼板」または「本発明の鋼板」ともいう)は、方向性電磁鋼板と、上記方向性電磁鋼板の表面上に配置された絶縁被膜とを有し、上記絶縁被膜が、Mg、Ca、Ba、Sr、Zn、AlおよびMnからなる群から選ばれる少なくとも1種と、Si、PおよびOとを含有し、上記絶縁被膜のPのK吸収端のXAFSスペクトルが、2156eVから2180eVの間に3つの吸収ピークを示す、絶縁被膜付き方向性電磁鋼板である。
 絶縁被膜に含有される各元素は、従来公知の方法により、その存在を確認できるが、本発明においては、Mg、Ca、Ba、Sr、Zn、AlおよびMnからなる群から選ばれる少なくとも1種のリン酸塩と、コロイド状シリカとを含有する処理液を用いて形成された絶縁被膜は、Mg、Ca、Ba、Sr、Zn、AlおよびMnからなる群から選ばれる少なくとも1種と、Si、PおよびOとを含有するものとみなす。
 そして、本発明における絶縁被膜は、PのK吸収端のXAFSスペクトルが2156eVから2180eVの間に3つの吸収ピークを示す(図1参照)。これにより、上述したように、耐熱性が優れる。
 なお、方向性電磁鋼板としては、特に限定されず、従来公知の方向性電磁鋼板を使用できる。通常、方向性電磁鋼板は、含珪素鋼スラブを、公知の方法で熱間圧延し、1回または中間焼鈍を挟む複数回の冷間圧延により最終板厚に仕上げた後、一次再結晶焼鈍を施し、次いで焼鈍分離剤を塗布してから最終仕上焼鈍を行なうことにより製造される。
[絶縁被膜付き方向性電磁鋼板の製造方法]
 次に、本発明の鋼板を得るための、本発明の絶縁被膜付き方向性電磁鋼板の製造方法の一例(以下、単に「本発明の製造方法」ともいう)について説明する。
 本発明の製造方法として、第1態様および第2態様を説明する。
 〔第1態様〕
 本発明の製造方法の第1態様は、仕上焼鈍済みの方向性電磁鋼板の表面に、処理液を塗布した後に、焼付を施し、本発明の絶縁被膜付き方向性電磁鋼板を得る、絶縁被膜付き方向性電磁鋼板の製造方法であって、上記処理液が、Mg、Ca、Ba、Sr、Zn、AlおよびMnからなる群から選ばれる少なくとも1種のリン酸塩と、コロイド状シリカと、を含有し、上記処理液中の上記コロイド状シリカの含有量が、上記リン酸塩の固形分合計100質量部に対して、固形分換算で、50~150質量部であり、上記焼付の条件として、焼付温度T(単位:℃)が850≦T≦1000、焼付雰囲気中の水素濃度H2(単位:体積%)が0.3≦H2≦230-0.2T、焼付温度Tでの焼付時間Time(単位:秒)が5≦Time≦860-0.8Tを満たす、絶縁被膜付き方向性電磁鋼板の製造方法である。
 〈処理液〉
 処理液は、絶縁被膜形成用の処理液であって、Mg、Ca、Ba、Sr、Zn、AlおよびMnからなる群から選ばれる少なくとも1種のリン酸塩と、コロイド状シリカとを少なくとも含有する処理液である。
 (リン酸塩)
 リン酸塩の金属種としては、Mg、Ca、Ba、Sr、Zn、AlおよびMnからなる群から選ばれる少なくとも1種であれば特に限定されない。なお、アルカリ金属(Li、Na等)のリン酸塩は、得られる絶縁被膜の耐熱性および耐吸湿性が著しく劣るため、不適である。
 リン酸塩は、1種単独で用いてもよく、2種以上を併用してもよい。2種以上を併用することで、得られる絶縁被膜の物性値を緻密に制御できる。
 このようなリン酸塩としては、入手容易性の観点からは、第一リン酸塩(重リン酸塩)が好適に挙げられる。
 (コロイド状シリカ)
 コロイド状シリカの平均粒子径は、入手の容易性およびコストの観点から、5~200nmが好ましく、10~100nmがより好ましい。なお、コロイド状のシリカの平均粒子径は、BET法(吸着法による比表面積から換算)により測定できる。また、電子顕微鏡写真から実測した平均値で代用することも可能である。
 処理液中のコロイド状シリカの含有量は、リン酸塩の固形分合計100質量部に対して、SiO2固形分換算で、50~150質量部であり、50~100質量部が好ましい。
 コロイド状シリカの含有量が少なすぎると、絶縁被膜の熱膨張係数低減の効果が小さくなって、鋼板に付与される張力が低下する場合がある。一方、コロイド状シリカの含有量が多すぎると、後述する焼付に際して絶縁被膜の結晶化が進行しやすくなり、やはり、鋼板に付与される張力が低下する場合がある。
 しかしながら、コロイド状シリカの含有量が上記範囲内であれば、絶縁被膜によって、鋼板に適度な張力が付与され、鉄損の改善効果に優れる。
 (M化合物)
 また、本発明においては、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Zr、MoおよびWからなる群から選ばれる少なくとも1種を「M」とした場合において、上記処理液は、さらに、M化合物を含有していてもよい。これにより、絶縁被膜が鋼板に付与する張力が向上して鉄損の改善効果に優れるほか、絶縁被膜の耐吸湿性にも優れる。
 処理液に含有されるM化合物の態様としては、特に限定されないが、水溶性の金属塩の態様が特に好ましく、酸化物の態様が次に好ましい。なお、酸化物としては、例えば、一次粒子径が1μmの酸化物粒子が挙げられ、好ましくは500nm以下である。
 Ti化合物としては、例えば、TiO2、Ti23等が挙げられる。
 V化合物としては、例えば、NH4VO3、V25等が挙げられる。
 Cr化合物としては、例えば、クロム酸化合物が挙げられ、その具体例としては、無水クロム酸(CrO3)、クロム酸塩、重クロム酸塩などが挙げられる。
 Mn化合物としては、例えば、Mn(NO32、MnSO4、MnCO3等が挙げられる。
 Fe化合物としては、例えば、(NH42Fe(SO42、Fe(NO33、FeSO4・7H2O、Fe23等が挙げられる。
 Co化合物としては、例えば、Co(NO32、CoSO4等が挙げられる。
 Ni化合物としては、例えば、Ni(NO32、NiSO4等が挙げられる。
 Cu化合物としては、例えば、Cu(NO32、CuSO4・5H2O等が挙げられる。
 Zn化合物としては、例えば、Zn(NO32、ZnSO4、ZnCO3等が挙げられる。
 Zr化合物としては、例えば、Zr(SO42・4H2O、ZrO2等が挙げられる。
 Mo化合物としては、例えば、MoS2、MoO2等が挙げられる。
 W化合物としては、例えば、K2WO4、WO3等が挙げられる。
 このようなM化合物としては、1種単独で用いてもよく、2種以上を併用してもよい。
 処理液中において、M化合物の含有量は、リン酸塩の固形分合計100質量部に対して、酸化物換算で、5~150質量部が好ましく、10~100質量部がより好ましい。
 M化合物の含有量が少なすぎると、上記改善効果が十分に得られにくい場合がある。一方、M化合物の含有量が多すぎると、絶縁被膜として緻密なガラス質な被膜が得られにくくなり、鋼板に付与する張力が十分に向上しない場合がある。
 しかしながら、M化合物の含有量が上記範囲内であれば、絶縁被膜による鉄損の改善効果がより優れる。
 なお、M化合物の含有量における「酸化物換算」とは、具体的には、Mの金属種ごとに列挙すると、以下のとおりである。
 Ti:TiO2換算、V:V25換算、Cr:CrO3換算、Mn:MnO換算、Fe:FeO換算、Co:CoO換算、Ni:NiO換算、Cu:CuO換算、Zn:ZnO換算、Zr:ZrO2換算、Mo:MoO3換算、W:WO3換算
 〈処理液の塗布〉
 上述した処理液を方向性電磁鋼板の表面に塗布する方法としては、特に限定されず、従来公知の方法を用いることができる。
 なお、処理液は、鋼板の両面に塗布するのが好ましく、焼付後の目付量が両面合計で4~15g/m2となるように塗布することがより好ましい。この量が少なすぎると層間抵抗が低下する場合があり、多すぎると占積率の低下が大きくなる場合があるからである。
 〈乾燥〉
 焼付の昇温過程で水分は乾燥するので焼付前に乾燥を別途行わなくてもよいが、急な加熱による造膜不良を防止する観点、および、本願発明の特徴の1つでもある、焼付時の絶縁被膜を還元処理することでリン酸塩の結合状態を制御することを安定的に行なう観点から、焼付前に処理液を十分乾燥することが好ましく、焼付前に、処理液が塗布された方向性電磁鋼板の乾燥(仮焼付)を行なうことがより好ましい。
 乾燥は、具体的には、例えば、処理液を塗布した鋼板を、乾燥炉に装入して、150~450℃で、10秒以上保持することが好ましい。
 150℃未満および/または10秒未満では、乾燥が不十分となることで所望の結合状態が得られにくい場合があり、また、450℃よりも高い温度では乾燥時に鋼板が酸化してしまう場合があるが、150~450℃、10秒以上であれば、鋼板の酸化を抑制しつつ、十分に乾燥できる。
 なお、乾燥時間は長いほど好ましいが、120秒よりも長いと生産性が低下しやすいため、120秒以下が好ましい。
 〈焼付〉
 次に、処理液の塗布後に乾燥した方向性電磁鋼板について、焼付を施し、これにより、絶縁被膜を形成する。
 ところで、上述したように、耐熱性に優れる絶縁被膜とするためには、絶縁被膜のPのK吸収端のXAFSスペクトルが、2156eVから2180eVの間に3つの吸収ピークを示すことが必要である。そして、このような絶縁被膜を形成する方法は特に限定されないが、上述した構成を得るための方法の一例として、焼付に際しての条件を、特定の条件とすればよい。具体的には、1)焼付温度(以下「T」と表記)を高くし、2)焼付雰囲気中の水素濃度(以下「H2」と表記)を高くし、3)焼付温度Tでの焼付時間(以下「Time」と表記)を長くすればよい。
 以下、各条件については、より詳細に説明する。
 (焼付温度T)
 焼付温度T(単位:℃)は、850≦T≦1000とする。絶縁被膜のPのK吸収端のXAFSスペクトルが2156eVから2180eVの間に3つの吸収ピークを示すようにするためには、焼付温度(T)としては、850℃以上とすればよい。一方で、焼付温度(T)が高くなりすぎると、ガラス質主体の絶縁被膜の結晶化が過度に進行してしまい、鋼板に付与される張力が低下してしまうことから、1000℃以下とする。
 (水素濃度H2
 焼付雰囲気中の水素濃度H2(単位:体積%)は、0.3≦H2≦230-0.2Tとする。絶縁被膜のPのK吸収端のXAFSスペクトルが2156eVから2180eVの間に3つの吸収ピークを示すようにするためには、水素濃度(H2)としては、0.3体積%以上とすればよい。一方で、水素濃度(H2)が高くなりすぎると、ガラス質主体の絶縁被膜の結晶化が過度に進行してしまう。その限界濃度は、焼付温度(T)と関係があり、H2≦230-0.2Tとする。
 なお、焼付雰囲気において、水素以外の残部は、不活性ガスであることが好ましく、窒素であることがより好ましい。
 (焼付時間Time)
 焼付時間Time(単位:秒)としては、5≦Time≦860-0.8Tとする。絶縁被膜のPのK吸収端のXAFSスペクトルが2156eVから2180eVの間に3つの吸収ピークを示すようにするためには、焼付時間(Time)としては、焼付温度Tを5秒以上とすればよい。一方で、焼付時間(Time)が長くなりすぎると、やはり、絶縁被膜の結晶化が過度に進行してしまう。その限界時間は、焼付温度(T)と関係があり、Time≦860-0.8Tとする。
 〔第2態様〕
 次に、本発明の製造方法の第2態様について説明する。
 上述した第1態様では、耐熱性に優れる絶縁被膜として、PのK吸収端のXAFSスペクトルが2156eVから2180eVの間に3つの吸収ピークを示す絶縁被膜を形成するための特定の焼付条件を説明した。しかしながら、例えば、水素濃度H2等が不足していたりして第1態様の焼付条件を満たさない場合であっても、さらに、特定条件のプラズマ処理を施すことで、第1態様の場合と同様の絶縁被膜が得られる。
 すなわち、本発明の製造方法の第2態様は、仕上焼鈍済みの方向性電磁鋼板の表面に、処理液を塗布した後に、焼付およびプラズマ処理をこの順で施し、本発明の絶縁被膜付き方向性電磁鋼板を得る、絶縁被膜付き方向性電磁鋼板の製造方法であって、上記処理液が、Mg、Ca、Ba、Sr、Zn、AlおよびMnからなる群から選ばれる少なくとも1種のリン酸塩と、コロイド状シリカと、を含有し、上記処理液中の上記コロイド状シリカの含有量が、上記リン酸塩の固形分合計100質量部に対して、固形分換算で、50~150質量部であり、上記焼付の条件として、焼付温度T(単位:℃)が800≦T≦1000、焼付雰囲気中の水素濃度H2(単位:体積%)が0≦H2≦230-0.2T、焼付温度Tでの焼付時間Time(単位:秒)がTime≦300を満たし、上記プラズマ処理は、上記焼付後の上記方向性電磁鋼板の表面に、水素0.3体積%以上含むプラズマガスから発生させたプラズマを0.10秒以上照射する処理である、絶縁被膜付き方向性電磁鋼板の製造方法である。
 なお、第2態様において、焼付およびプラズマ処理以外の条件(用いる処理液、ならびに、塗布および乾燥の方法)については、第1態様と同じであるため、説明を省略する。
 〈焼付〉
 第2態様は、所望の性能が得られていない場合の救済処理としてプラズマ処理することを見出したものであり、焼付条件の許容範囲が第1態様よりも広くなっている。なお、本発明の製造方法の第1態様で得られた鋼板にさらにプラズマ処理しても良好な性能が損なわれることはない。
 具体的には、焼付雰囲気中の水素濃度H2(単位:体積%)は、第1態様では、0.3≦H2≦230-0.2Tを満たすのに対して、第2態様では、0≦H2≦230-0.2Tであり、第1態様では所望の特性が得られなかった0≦H2<0.3の場合でも良好な性能を得ることが可能となる。
 また、焼付温度T(単位:℃)も、第1態様の条件(850≦T≦1000)よりも広い範囲とすることが可能であり、第2態様では、800≦T≦1000である。さらに、焼付温度Tでの焼付時間Time(単位:秒)は、Time≦300であればよい。
 〈プラズマ処理〉
 上述したように、焼付条件が第1態様の条件を満たしていなくても、さらに、特定のプラズマ処理を施すことで、PのK吸収端のXAFSスペクトルが2156eVから2180eVの間に3つの吸収ピークを示し、耐熱性に優れる絶縁被膜が得られる。
 具体的には、焼付後の方向性電磁鋼板の表面に、水素0.3体積%以上含むプラズマガスから発生させたプラズマを、0.10秒以上照射する。
 プラズマ処理は真空状態で行われることが多く、本発明においても真空プラズマが好適に使用できるが、これに限定されることはなく、例えば大気圧プラズマも使用できる。大気圧プラズマについて簡易的に説明すると、大気圧プラズマとは、大気圧下で発生させたプラズマである。ここで、「大気圧」とは、大気圧付近の圧力であってもよく、例えば、1.0×10~1.5×10Paの圧力であってもよい。
 そして、例えば、大気圧下、プラズマガス(作動ガス)中で、対向する電極間に高周波電圧を印加して放電させることにより、プラズマを発生させ、これを鋼板の表面に照射する。
 この際、プラズマガス(作動ガス)としては、水素を0.3体積%以上含むことを要する。水素濃度が0.3体積%未満の場合は、プラズマ処理を施しても、優れた耐熱性は得られない。
 一方、プラズマガス中の水素濃度の上限値は、特に限定されないが、50体積%以下が好ましく、10体積%以下がより好ましい。
 なお、プラズマガス中の水素以外の残部のガスとしては、プラズマの生成が容易になるという理由から、ヘリウム、アルゴン等が好ましい。
 プラズマ処理は、焼付が施された鋼板が100℃以下となった後に行なわれることが好ましい。すなわち、100℃以下の温度となった焼付後の鋼板の表面に、プラズマを照射するのが好ましい。この温度が高過ぎると、プラズマ生成部が高温となり不具合が生じる場合があるが、100℃以下であれば不具合を抑制できる。
 プラズマの照射時間は、短すぎると効果が得られないため、0.10秒以上とする。一方、照射時間の上限値としては、長くても絶縁被膜の特性に問題が生じることはないが、生産性の観点からは、10秒以下が好ましい。
 なお、鋼板へ熱ひずみを与えないという観点から、プラズマのガス温度(出口温度)は、200℃以下が好ましく、150℃以下がより好ましい。
 以下に、実施例を挙げて本発明を具体的に説明する。ただし、本発明はこれらに限定されるものではない。
[実験例1]
 〔絶縁被膜付き方向性電磁鋼板の製造〕
 板厚:0.23mmの仕上焼鈍済みの方向性電磁鋼板(磁束密度B8:1.912T)を準備し、この鋼板を100mm×300mmの大きさに切り出し、5質量%リン酸で酸洗した。その後、下記表1に記載のリン酸塩100質量部に対して、コロイド状シリカ(ADEKA社製AT-30、平均粒子径:10nm)50質量部と、TiO25質量部とを添加した処理液を、焼付後の目付量が両面合計で10g/m2となるように塗布した後、乾燥炉に装入して、300℃で1分間の乾燥を施し、その後、下記表1に記載の条件で焼付を行なった。これにより、各例の絶縁被膜付き方向性電磁鋼板を製造した。
 なお、リン酸塩としては、いずれも第一リン酸塩水溶液を使用し、下記表1には、固形分換算した量を記載した。また、焼付雰囲気において、水素以外の残部は窒素とした。
 〔ΔW〕
 各例において、下記式から、鉄損の変化量(ΔW)を求めた。結果を下記表1に示す。
 △W=W17/50(C)-W17/50(R)
 ・W17/50(C):焼付した直後の鉄損
 ・W17/50(R):処理液を塗布する直前の鉄損(0.840W/kg)
 〔XAFSピーク数〕
 各例の絶縁被膜付き方向性電磁鋼板の絶縁被膜について、KEK-PFの軟X線ビームラインBL-27Aにおいて、全電子収量法(TEY)にて、PのK吸収端のXAFS測定を実施し、得られたXAFSスペクトルについて、2156eVから2180eVの間に視認できた吸収ピークの本数を数えた。結果を下記表1に示す。
 〔落重高さ(耐熱性)〕
 各例の絶縁被膜付き方向性電磁鋼板を、50mm×50mmの試験片にせん断し、これを10枚積層して、2kg/cm2の圧縮加重焼鈍を窒素雰囲気下、830℃で3時間行なった後、500gの分銅を20~120cmの高さから20cm間隔で落下させ、10枚の試験片が全て分離したときの分銅の高さ(落重高さ)により絶縁被膜の耐熱性を評価した。なお、圧縮加重焼鈍後、落重試験する前に10枚の試験片がすべて分離している場合は、0cmとした。40cm以下の落重高さで分離した場合には、その絶縁被膜は耐熱性に優れるものとして評価できる。結果を下記表1に示す。
 〔占積率〕
 各例の絶縁被膜付き方向性電磁鋼板について、JIS C 2550-5:2011に準拠して、占積率を測定した。その結果、いずれの例においても、絶縁被膜が酸化物微粒子等を含まないため、占積率は97.8%以上であり良好であった。
 〔耐食性〕
 各例の絶縁被膜付き方向性電磁鋼板を、40℃、湿度100%の雰囲気下に50時間暴露した後の発錆率を測定した。その結果、いずれの例においても、発錆率は1%以下であり、耐食性は良好であった。
Figure JPOXMLDOC01-appb-T000001
 上記表1に示すように、XAFSスペクトルが2156eVから2180eVの間に3つの吸収ピークを示す発明例における絶縁被膜は、耐熱性に優れることが分かった。
[実験例2]
 〔絶縁被膜付き方向性電磁鋼板の製造〕
 板厚:0.23mmの仕上焼鈍済みの方向性電磁鋼板(磁束密度B8:1.912T)を準備し、この鋼板を100mm×300mmの大きさに切り出し、5質量%リン酸で酸洗した。その後、下記表2に記載のリン酸塩100質量部に対して、コロイド状シリカ(日産化学工業社製スノーテックス50、平均粒子径:30nm)を70質量部添加し、さらに、M化合物を下記表2に示す含有量(酸化物換算)で添加した処理液を、焼付後の目付量が両面合計で12g/m2となるように塗布した後、乾燥炉に装入して、300℃で1分間の乾燥を施し、その後、下記表2に記載の条件で焼付を行なった。これにより、各例の絶縁被膜付き方向性電磁鋼板を製造した。
 なお、リン酸塩としては、いずれも第一リン酸塩水溶液を使用し、下記表2には、固形分換算した量を記載した。また、焼付雰囲気において、水素以外の残部は窒素とした。
 処理液に添加したM化合物を、Mの金属種ごとに、以下に示す。
 ・Ti:TiO2
 ・V:NH4VO3
 ・Cr:CrO3
 ・Mn:Mn(NO32
 ・Fe:FeSO4・7H2
 ・Co:Co(NO32
 ・Ni:Ni(NO32
 ・Cu:CuSO4・5H2
 ・Zn:ZnSO4
 ・Zr:ZrO2
 ・Mo:MoO2
 ・W:WO3
 〔ΔW〕
 各例において、下記式から、鉄損の変化量(ΔW)を求めた。結果を下記表2に示す。
 △W=W17/50(C)-W17/50(R)
 ・W17/50(C):焼付した直後の鉄損
 ・W17/50(R):処理液を塗布する直前の鉄損(0.840W/kg)
 〔XAFSピーク数〕
 各例の絶縁被膜付き方向性電磁鋼板の絶縁被膜について、KEK-PFの軟X線ビームラインBL-27Aにおいて、全電子収量法(TEY)にて、PのK吸収端のXAFS測定を実施し、得られたXAFSスペクトルについて、2156eVから2180eVの間に視認できた吸収ピークの本数を数えた。結果を下記表2に示す。
 〔落重高さ(耐熱性)〕
 各例の絶縁被膜付き方向性電磁鋼板を、50mm×50mmの試験片にせん断し、これを10枚積層して、2kg/cm2の圧縮加重焼鈍を窒素雰囲気下、830℃で3時間行なった後、500gの分銅を20~120cmの高さから20cm間隔で落下させ、10枚の試験片が全て分離したときの分銅の高さ(落重高さ)により絶縁被膜の耐熱性を評価した。なお、圧縮加重焼鈍後、落重試験する前に10枚の試験片がすべて分離している場合は、0cmとした。40cm以下の落重高さで分離した場合には、その絶縁被膜は耐熱性に優れるものとして評価できる。結果を下記表2に示す。
 〔占積率〕
 各例の絶縁被膜付き方向性電磁鋼板について、JIS C 2550-5:2011に準拠して、占積率を測定した。その結果、いずれの例においても、絶縁被膜が酸化物微粒子等を含まないため、占積率は97.7%以上であり良好であった。
 〔耐食性〕
 各例の絶縁被膜付き方向性電磁鋼板を、40℃、湿度100%の雰囲気下に50時間暴露した後の発錆率を測定した。その結果、いずれの例においても、発錆率は1%以下であり、耐食性は良好であった。
Figure JPOXMLDOC01-appb-T000002
 上記表2に示すように、XAFSスペクトルが2156eVから2180eVの間に3つの吸収ピークを示す発明例における絶縁被膜は、耐熱性に優れることが分かった。
[実験例3]
 板厚:0.23mmの仕上焼鈍済みの方向性電磁鋼板(磁束密度B8:1.912T)を準備した。この鋼板を100mm×300mmの大きさに切り出し、5質量%リン酸で酸洗した。その後、下記表3に記載のリン酸塩100質量部に対して、コロイド状シリカ(ADEKA社製AT-50、平均粒子径:23nm)75質量部と、酸化鉄ゾルをFeO換算で50質量部とを添加した処理液を、焼付後の目付量が両面合計で9g/m2となるように塗布した後、乾燥炉に装入して、300℃で1分間の乾燥を施し、その後、下記表3に記載の条件で焼付およびプラズマ処理を行なった。これにより、各例の絶縁被膜付き方向性電磁鋼板を製造した。
 なお、リン酸塩としては、いずれも第一リン酸塩水溶液を使用し、下記表3には、固形分換算した量を記載した。また、焼付雰囲気において、水素以外の残部は窒素とした。
 プラズマ処理を開始する時点で、焼付後の鋼板温度は室温であった。
 プラズマ処理では、大気圧プラズマを鋼板に照射した。大気圧プラズマ装置としては、プラズマファクトリー社製PF-DFLを使用し、プラズマヘッドとしては、幅およそ300mmのリニア型プラズマヘッドを用いた。
 プラズマガス(作動ガス)のガス種は、Ar、Ar-N2、または、Ar-H2であり、その流量は合計で、30L/minとした。
 プラズマの幅は3mmとした。プラズマヘッドを固定して鋼板の搬送速度を変えることで、照射時間を変更して、鋼板の全面に均一にプラズマ処理を行なった。照射時間は、プラズマの幅(3mm)を搬送速度(単位:mm/秒)で除することにより算出した。
 〔ΔW〕
 各例において、下記式から、鉄損の変化量(ΔW)を求めた。結果を下記表3に示す。
 △W=W17/50(P)-W17/50(R)
 ・W17/50(P):プラズマ処理直後の鉄損
 ・W17/50(R):処理液を塗布する直前の鉄損(0.840W/kg)
 〔XAFSピーク数〕
 各例の絶縁被膜付き方向性電磁鋼板の絶縁被膜について、立命館大学SrセンターのビームラインBL-10またはBL-13において、全電子収量法(TEY)にて、PのK吸収端のXAFS測定を実施し、得られたXAFSスペクトルについて、2156eVから2180eVの間に視認できた吸収ピークの本数を数えた。
 なお、各例ともに、プラズマ照射の前後で測定を行なった。結果を下記表3に示す。
 〔落重高さ(耐熱性)〕
 各例の絶縁被膜付き方向性電磁鋼板を、50mm×50mmの試験片にせん断し、これを10枚積層して、2kg/cm2の圧縮加重焼鈍を窒素雰囲気下、830℃で3時間行なった後、500gの分銅を20~120cmの高さから20cm間隔で落下させ、10枚の試験片が全て分離したときの分銅の高さ(落重高さ)により絶縁被膜の耐熱性を評価した。なお、圧縮加重焼鈍後、落重試験する前に10枚の試験片がすべて分離している場合は、0cmとした。40cm以下の落重高さで分離した場合には、その絶縁被膜は耐熱性に優れるものとして評価できる。結果を下記表3に示す。
 〔占積率〕
 各例の絶縁被膜付き方向性電磁鋼板について、JIS C 2550-5:2011に準拠して、占積率を測定した。その結果、いずれの例においても、絶縁被膜が酸化物微粒子等を含まないため、占積率は97.9%以上であり良好であった。
 〔耐食性〕
 各例の絶縁被膜付き方向性電磁鋼板を、40℃、湿度100%の雰囲気下に50時間暴露した後の発錆率を測定した。その結果、いずれの例においても、発錆率は1%以下であり、耐食性は良好であった。
Figure JPOXMLDOC01-appb-T000003
 上記表3に示すように、プラズマ処理前には2156eVから2180eVの間に1つのピークしか認められなくても、その後のプラズマ処理によって3つのピークが現れている発明例における絶縁被膜は、耐熱性に優れることが分かった。
[実験例4]
 板厚:0.23mmの仕上焼鈍済みの方向性電磁鋼板(磁束密度B8:1.912T)を準備した。この鋼板を100mm×300mmの大きさに切り出し、5質量%リン酸で酸洗した。その後、下記表4に記載のリン酸塩100質量部に対して、コロイド状シリカ(日産化学工業社製、スノーテックス30、平均粒子径:15nm)を55質量部添加し、さらに、M化合物を下記表4に示す含有量(酸化物換算)で添加した処理液を、焼付後の目付量が両面合計で14g/m2となるように塗布した後、乾燥炉に装入して、300℃で1分間の乾燥を施し、その後、下記表4に記載の条件で焼付およびプラズマ処理を行なった。これにより、各例の絶縁被膜付き方向性電磁鋼板を製造した。
 なお、リン酸塩としては、いずれも第一リン酸塩水溶液を使用し、下記表4には、固形分換算した量を記載した。また、焼付雰囲気において、水素以外の残部は窒素とした。
 処理液に添加したM化合物を、Mの金属種ごとに、以下に示す。
 ・Ti:TiO2
 ・V:V25
 ・Cr:CrO3
 ・Mn:MnCO3
 ・Fe:Fe23
 ・Co:CoSO4
 ・Ni:NiSO4
 ・Cu:Cu(NO32
 ・Zn:ZnCO3
 ・Zr:Zr(SO42・4H2
 ・Mo:MoS2
 ・W:K2WO4
 プラズマ処理を開始する時点で、焼付後の鋼板温度は室温であった。
 プラズマ処理では、大気圧プラズマを鋼板に照射した。大気圧プラズマ装置としては、プラズマファクトリー社製PF-DFLを使用し、プラズマヘッドとしては、幅およそ300mmのリニア型プラズマヘッドを用いた。
 プラズマガス(作動ガス)のガス種は、Ar、Ar-N2、または、Ar-H2であり、その流量は合計で、30L/minとした。
 プラズマの幅は3mmとした。プラズマヘッドを固定して鋼板の搬送速度を変えることで、照射時間を変更して、鋼板の全面に均一にプラズマ処理を行なった。照射時間は、プラズマの幅(3mm)を搬送速度(単位:mm/秒)で除することにより算出した。
 〔ΔW〕
 各例において、下記式から、鉄損の変化量(ΔW)を求めた。結果を下記表4に示す。
 △W=W17/50(P)-W17/50(R)
 ・W17/50(P):プラズマ処理直後の鉄損
 ・W17/50(R):処理液を塗布する直前の鉄損(0.840W/kg)
 〔XAFSピーク数〕
 各例の絶縁被膜付き方向性電磁鋼板の絶縁被膜について、立命館大学SrセンターのビームラインBL-10またはBL-13において、全電子収量法(TEY)にて、PのK吸収端のXAFS測定を実施し、得られたXAFSスペクトルについて、2156eVから2180eVの間に視認できた吸収ピークの本数を数えた。
 なお、各例ともに、プラズマ照射の前後で測定を行なった。結果を下記表4に示す。
 〔落重高さ(耐熱性)〕
 各例の絶縁被膜付き方向性電磁鋼板を、50mm×50mmの試験片にせん断し、これを10枚積層して、2kg/cm2の圧縮加重焼鈍を窒素雰囲気下、830℃で3時間行なった後、500gの分銅を20~120cmの高さから20cm間隔で落下させ、10枚の試験片が全て分離したときの分銅の高さ(落重高さ)により絶縁被膜の耐熱性を評価した。なお、圧縮加重焼鈍後、落重試験する前に10枚の試験片がすべて分離している場合は、0cmとした。40cm以下の落重高さで分離した場合には、その絶縁被膜は耐熱性に優れるものとして評価できる。結果を下記表4に示す。
 〔占積率〕
 各例の絶縁被膜付き方向性電磁鋼板について、JIS C 2550-5:2011に準拠して、占積率を測定した。その結果、いずれの例においても、絶縁被膜が酸化物微粒子等を含まないため、占積率は97.7%以上であり良好であった。
 〔耐食性〕
 各例の絶縁被膜付き方向性電磁鋼板を、40℃、湿度100%の雰囲気下に50時間暴露した後の発錆率を測定した。その結果、いずれの例においても、発錆率は1%以下であり、耐食性は良好であった。
Figure JPOXMLDOC01-appb-T000004
 上記表4に示すように、プラズマ処理前には2156eVから2180eVの間に1つのピークしか認められなくても、その後のプラズマ処理によって3つのピークが現れている発明例における絶縁被膜は、耐熱性に優れることが分かった。
 

Claims (6)

  1.  方向性電磁鋼板と、前記方向性電磁鋼板の表面上に配置された絶縁被膜とを有し、
     前記絶縁被膜が、Mg、Ca、Ba、Sr、Zn、AlおよびMnからなる群から選ばれる少なくとも1種と、Si、PおよびOとを含有し、
     前記絶縁被膜のPのK吸収端のXAFSスペクトルが、2156eVから2180eVの間に3つの吸収ピークを示す、絶縁被膜付き方向性電磁鋼板。
  2.  仕上焼鈍済みの方向性電磁鋼板の表面に、処理液を塗布した後に、焼付を施し、請求項1に記載の絶縁被膜付き方向性電磁鋼板を得る、絶縁被膜付き方向性電磁鋼板の製造方法であって、
     前記処理液が、Mg、Ca、Ba、Sr、Zn、AlおよびMnからなる群から選ばれる少なくとも1種のリン酸塩と、コロイド状シリカと、を含有し、
     前記処理液中の前記コロイド状シリカの含有量が、前記リン酸塩の固形分合計100質量部に対して、固形分換算で、50~150質量部であり、
     前記焼付の条件として、焼付温度T(単位:℃)が850≦T≦1000、焼付雰囲気中の水素濃度H2(単位:体積%)が0.3≦H2≦230-0.2T、焼付温度Tでの焼付時間Time(単位:秒)が5≦Time≦860-0.8Tを満たす、絶縁被膜付き方向性電磁鋼板の製造方法。
  3.  前記処理液を塗布した前記仕上焼鈍済みの方向性電磁鋼板を、150~450℃の温度で10秒以上保持した後、前記焼付を施す、請求項2に記載の絶縁被膜付き方向性電磁鋼板の製造方法。
  4.  仕上焼鈍済みの方向性電磁鋼板の表面に、処理液を塗布した後に、焼付およびプラズマ処理をこの順で施し、請求項1に記載の絶縁被膜付き方向性電磁鋼板を得る、絶縁被膜付き方向性電磁鋼板の製造方法であって、
     前記処理液が、Mg、Ca、Ba、Sr、Zn、AlおよびMnからなる群から選ばれる少なくとも1種のリン酸塩と、コロイド状シリカと、を含有し、
     前記処理液中の前記コロイド状シリカの含有量が、前記リン酸塩の固形分合計100質量部に対して、固形分換算で、50~150質量部であり、
     前記焼付の条件として、焼付温度T(単位:℃)が800≦T≦1000、焼付雰囲気中の水素濃度H2(単位:体積%)が0≦H2≦230-0.2T、焼付温度Tでの焼付時間Time(単位:秒)がTime≦300を満たし、
     前記プラズマ処理は、前記焼付後の前記方向性電磁鋼板の表面に、水素0.3体積%以上含むプラズマガスから発生させたプラズマを0.10秒以上照射する処理である、絶縁被膜付き方向性電磁鋼板の製造方法。
  5.  前記処理液を塗布した前記仕上焼鈍済みの方向性電磁鋼板を、150~450℃の温度で10秒以上保持した後、前記焼付および前記プラズマ処理を施す、請求項4に記載の絶縁被膜付き方向性電磁鋼板の製造方法。
  6.  Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Zr、MoおよびWからなる群から選ばれる少なくとも1種を、Mとした場合において、
     前記処理液が、さらに、M化合物を含有し、
     前記処理液中の前記M化合物の含有量が、前記リン酸塩の固形分合計100質量部に対して、酸化物換算で、5~150質量部である、請求項2~5のいずれか1項に記載の絶縁被膜付き方向性電磁鋼板の製造方法。
PCT/JP2016/057850 2015-03-27 2016-03-11 絶縁被膜付き方向性電磁鋼板およびその製造方法 WO2016158325A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
RU2017133478A RU2675887C1 (ru) 2015-03-27 2016-03-11 Текстурированная листовая магнитная сталь с изолирующим покрытием и способ ее изготовления
EP16772209.9A EP3276043B1 (en) 2015-03-27 2016-03-11 Insulating-coated oriented magnetic steel sheet and method for manufacturing same
JP2016534273A JP6332453B2 (ja) 2015-03-27 2016-03-11 絶縁被膜付き方向性電磁鋼板およびその製造方法
CN201680016940.7A CN107429401B (zh) 2015-03-27 2016-03-11 带绝缘被膜的取向性电磁钢板及其制造方法
KR1020177025494A KR102007107B1 (ko) 2015-03-27 2016-03-11 절연 피막이 형성된 방향성 전기 강판 및 그 제조 방법
US15/561,369 US10920323B2 (en) 2015-03-27 2016-03-11 Insulating-coated oriented magnetic steel sheet and method for manufacturing same
BR112017020757-5A BR112017020757B1 (pt) 2015-03-27 2016-03-11 Métodos de fabricar uma chapa de aço elétrico de grão orientado com um revestimento isolante

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-067254 2015-03-27
JP2015067254 2015-03-27

Publications (1)

Publication Number Publication Date
WO2016158325A1 true WO2016158325A1 (ja) 2016-10-06

Family

ID=57005704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/057850 WO2016158325A1 (ja) 2015-03-27 2016-03-11 絶縁被膜付き方向性電磁鋼板およびその製造方法

Country Status (8)

Country Link
US (1) US10920323B2 (ja)
EP (1) EP3276043B1 (ja)
JP (1) JP6332453B2 (ja)
KR (1) KR102007107B1 (ja)
CN (1) CN107429401B (ja)
BR (1) BR112017020757B1 (ja)
RU (1) RU2675887C1 (ja)
WO (1) WO2016158325A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018043167A1 (ja) * 2016-08-30 2018-03-08 Jfeスチール株式会社 被膜付金属、被膜形成用処理液及び被膜付金属の製造方法
JPWO2018097100A1 (ja) * 2016-11-28 2018-11-22 Jfeスチール株式会社 方向性電磁鋼板および方向性電磁鋼板の製造方法
EP3533903A4 (en) * 2016-12-28 2020-01-08 JFE Steel Corporation GRAIN-ORIENTED ELECTRIC STEEL SHEET, TRANSFORMER CORE, TRANSFORMER AND METHOD FOR REDUCING TRANSFORMER NOISE
WO2021100867A1 (ja) * 2019-11-21 2021-05-27 日本製鉄株式会社 無方向性電磁鋼板およびその製造方法
RU2803614C1 (ru) * 2023-05-26 2023-09-18 Публичное Акционерное Общество "Новолипецкий металлургический комбинат" Электроизоляционное покрытие для электротехнической стали
JP7473859B1 (ja) 2022-12-20 2024-04-24 Jfeスチール株式会社 絶縁被膜付き電磁鋼板の製造方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015115036A1 (ja) * 2014-01-31 2015-08-06 Jfeスチール株式会社 クロムフリー張力被膜用処理液、クロムフリー張力被膜の形成方法、およびクロムフリー張力被膜付き方向性電磁鋼板
EP3358041B1 (en) * 2015-09-29 2021-03-24 Nippon Steel Corporation Grain-oriented electrical steel sheet and method for producing grain-oriented electrical steel sheet
KR20190078059A (ko) * 2017-12-26 2019-07-04 주식회사 포스코 초저철손 방향성 전기강판 제조방법
WO2019132333A1 (ko) * 2017-12-26 2019-07-04 주식회사 포스코 초저철손 방향성 전기강판 제조방법
KR102218446B1 (ko) 2017-12-26 2021-02-22 주식회사 포스코 초저철손 방향성 전기강판 제조방법
US11923115B2 (en) 2018-02-06 2024-03-05 Jfe Steel Corporation Insulating coating-attached electrical steel sheet and manufacturing method therefor
CN112534083B (zh) * 2018-07-31 2022-05-17 杰富意钢铁株式会社 绝缘被膜处理液、带有绝缘被膜的取向性电磁钢板及其制造方法
CN112848550B (zh) * 2019-11-27 2022-06-24 宝山钢铁股份有限公司 一种多层轧制复合板及其制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5328375B2 (ja) * 1971-09-27 1978-08-14
JPH024924A (ja) * 1988-06-22 1990-01-09 Nippon Steel Corp 鉄心加工性が優れ、磁気特性が優れた方向性電磁鋼板の絶縁皮膜形成方法
JPH03207868A (ja) * 1989-12-30 1991-09-11 Nippon Steel Corp 鉄心加工性、耐熱性および張力付与性の優れた方向性電磁鋼板の絶縁皮膜形成方法及び方向性電磁鋼板
JPH05287546A (ja) * 1992-04-07 1993-11-02 Nippon Steel Corp 一方向性珪素鋼板の絶縁皮膜形成方法
JPH0645824B2 (ja) * 1985-12-26 1994-06-15 川崎製鉄株式会社 方向性けい素鋼板の鉄損改善装置
JP2004162112A (ja) * 2002-11-12 2004-06-10 Jfe Steel Kk 磁気特性および被膜特性に優れた方向性電磁鋼板の製造方法並びにこの方法に用いる焼鈍分離剤

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1042589A (en) * 1964-08-07 1966-09-14 Allegheny Ludlum Steel Improvements in or relating to insulating coatings for silicon steel
JPS4839338B1 (ja) 1968-05-20 1973-11-22
US3940291A (en) * 1972-03-23 1976-02-24 Armco Steel Corporation Insulative coatings for electrical steels
JPS5652117B2 (ja) 1973-11-17 1981-12-10
JPH0772300B2 (ja) * 1985-10-24 1995-08-02 川崎製鉄株式会社 低鉄損方向性珪素鋼板の製造方法
US4772338A (en) * 1985-10-24 1988-09-20 Kawasaki Steel Corporation Process and apparatus for improvement of iron loss of electromagnetic steel sheet or amorphous material
CN1039915C (zh) * 1989-07-05 1998-09-23 新日本制铁株式会社 方向性电磁钢板上的绝缘皮膜成型方法
JPH03107868A (ja) * 1989-09-21 1991-05-08 Mita Ind Co Ltd 静電潜像現像用トナーの製造方法
DE69326792T2 (de) 1992-04-07 2000-04-27 Nippon Steel Corp Kornorientiertes Siliziumstahlblech mit geringen Eisenverlusten und Herstellungsverfahren
JPH06296617A (ja) 1993-04-16 1994-10-25 Olympus Optical Co Ltd バスケット鉗子
JPH07188754A (ja) * 1993-12-27 1995-07-25 Kawasaki Steel Corp 磁気特性に優れる方向性けい素鋼板の製造方法
JPH07278830A (ja) 1994-04-12 1995-10-24 Nippon Steel Corp 低鉄損一方向性電磁鋼板の製造方法
JP2000169972A (ja) 1998-12-04 2000-06-20 Nippon Steel Corp クロムを含まない方向性電磁鋼板用表面処理剤及びそれを用いた方向性電磁鋼板の製造方法
JP5228364B2 (ja) * 2007-04-23 2013-07-03 新日鐵住金株式会社 方向性電磁鋼板
JP5181571B2 (ja) 2007-08-09 2013-04-10 Jfeスチール株式会社 方向性電磁鋼板用クロムフリー絶縁被膜処理液および絶縁被膜付方向性電磁鋼板の製造方法
JP4839338B2 (ja) 2008-05-30 2011-12-21 株式会社日立製作所 超音波探傷装置及び方法
CN102066610B (zh) 2008-06-20 2014-06-11 新日铁住金株式会社 无方向性电磁钢板及其制造方法
JP5328375B2 (ja) 2009-01-06 2013-10-30 大森機械工業株式会社 粘着シートの分離供給装置及び方法
JP5471839B2 (ja) * 2010-05-28 2014-04-16 Jfeスチール株式会社 方向性電磁鋼板の製造方法
EP2799574B1 (en) 2011-12-27 2017-02-01 JFE Steel Corporation Grain-oriented electrical steel sheet
EP3048180B2 (en) 2013-09-19 2022-01-05 JFE Steel Corporation Grain-oriented electrical steel sheet, and method for manufacturing same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5328375B2 (ja) * 1971-09-27 1978-08-14
JPH0645824B2 (ja) * 1985-12-26 1994-06-15 川崎製鉄株式会社 方向性けい素鋼板の鉄損改善装置
JPH024924A (ja) * 1988-06-22 1990-01-09 Nippon Steel Corp 鉄心加工性が優れ、磁気特性が優れた方向性電磁鋼板の絶縁皮膜形成方法
JPH03207868A (ja) * 1989-12-30 1991-09-11 Nippon Steel Corp 鉄心加工性、耐熱性および張力付与性の優れた方向性電磁鋼板の絶縁皮膜形成方法及び方向性電磁鋼板
JPH05287546A (ja) * 1992-04-07 1993-11-02 Nippon Steel Corp 一方向性珪素鋼板の絶縁皮膜形成方法
JP2004162112A (ja) * 2002-11-12 2004-06-10 Jfe Steel Kk 磁気特性および被膜特性に優れた方向性電磁鋼板の製造方法並びにこの方法に用いる焼鈍分離剤

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3276043A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018043167A1 (ja) * 2016-08-30 2018-03-08 Jfeスチール株式会社 被膜付金属、被膜形成用処理液及び被膜付金属の製造方法
US11280003B2 (en) 2016-08-30 2022-03-22 Jfe Steel Corporation Coated metal, coating-forming treatment solution, and method for producing coated metal
US11692272B2 (en) 2016-08-30 2023-07-04 Jfe Steel Corporation Coated metal, coating-forming treatment solution, and method for producing coated metal
JPWO2018097100A1 (ja) * 2016-11-28 2018-11-22 Jfeスチール株式会社 方向性電磁鋼板および方向性電磁鋼板の製造方法
EP3533903A4 (en) * 2016-12-28 2020-01-08 JFE Steel Corporation GRAIN-ORIENTED ELECTRIC STEEL SHEET, TRANSFORMER CORE, TRANSFORMER AND METHOD FOR REDUCING TRANSFORMER NOISE
US11894167B2 (en) 2016-12-28 2024-02-06 Jfe Steel Corporation Grain-oriented electrical steel sheet, iron core of transformer, transformer, and method for reducing noise of transformer
WO2021100867A1 (ja) * 2019-11-21 2021-05-27 日本製鉄株式会社 無方向性電磁鋼板およびその製造方法
JP7473859B1 (ja) 2022-12-20 2024-04-24 Jfeスチール株式会社 絶縁被膜付き電磁鋼板の製造方法
RU2803614C1 (ru) * 2023-05-26 2023-09-18 Публичное Акционерное Общество "Новолипецкий металлургический комбинат" Электроизоляционное покрытие для электротехнической стали

Also Published As

Publication number Publication date
CN107429401A (zh) 2017-12-01
BR112017020757A2 (ja) 2018-06-26
CN107429401B (zh) 2020-03-06
KR102007107B1 (ko) 2019-08-02
EP3276043A4 (en) 2018-04-04
JPWO2016158325A1 (ja) 2017-04-27
BR112017020757B1 (pt) 2022-11-01
JP6332453B2 (ja) 2018-05-30
US20180080127A1 (en) 2018-03-22
US10920323B2 (en) 2021-02-16
EP3276043B1 (en) 2021-12-15
KR20170116130A (ko) 2017-10-18
RU2675887C1 (ru) 2018-12-25
EP3276043A1 (en) 2018-01-31

Similar Documents

Publication Publication Date Title
JP6332453B2 (ja) 絶縁被膜付き方向性電磁鋼板およびその製造方法
JP5786950B2 (ja) 方向性電磁鋼板用焼鈍分離剤
WO2009025389A1 (ja) 方向性電磁鋼板用絶縁被膜処理液、および絶縁被膜を有する方向性電磁鋼板の製造方法
WO2019182154A1 (ja) 方向性電磁鋼板及び方向性電磁鋼板の製造方法
CN110832117B (zh) 方向性电磁钢板及其制造方法
JP6682888B2 (ja) 方向性電磁鋼板の絶縁被膜用処理剤、方向性電磁鋼板、及び、方向性電磁鋼板の絶縁被膜処理方法
WO2017038911A1 (ja) 絶縁被膜処理液および絶縁被膜付き金属の製造方法
JP6332452B2 (ja) 絶縁被膜付き方向性電磁鋼板およびその製造方法
WO2019106976A1 (ja) 方向性電磁鋼板およびその製造方法
JP6455414B2 (ja) 方向性電磁鋼板の製造方法
KR102542971B1 (ko) 방향성 전자 강판 및 그 제조 방법
WO2018097100A1 (ja) 方向性電磁鋼板および方向性電磁鋼板の製造方法
KR102390830B1 (ko) 방향성 전기강판용 소둔 분리제 조성물, 방향성 전기강판 및 그의 제조방법
JPS6086242A (ja) 片被膜一方向性けい素鋼板とその製法
CN113286903A (zh) 方向性电磁钢板、方向性电磁钢板用的中间钢板及它们的制造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016534273

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16772209

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177025494

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016772209

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15561369

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017133478

Country of ref document: RU

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017020757

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112017020757

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170927