WO2009025389A1 - 方向性電磁鋼板用絶縁被膜処理液、および絶縁被膜を有する方向性電磁鋼板の製造方法 - Google Patents

方向性電磁鋼板用絶縁被膜処理液、および絶縁被膜を有する方向性電磁鋼板の製造方法 Download PDF

Info

Publication number
WO2009025389A1
WO2009025389A1 PCT/JP2008/065232 JP2008065232W WO2009025389A1 WO 2009025389 A1 WO2009025389 A1 WO 2009025389A1 JP 2008065232 W JP2008065232 W JP 2008065232W WO 2009025389 A1 WO2009025389 A1 WO 2009025389A1
Authority
WO
WIPO (PCT)
Prior art keywords
grain
electrical steel
oriented electrical
steel sheet
insulating coating
Prior art date
Application number
PCT/JP2008/065232
Other languages
English (en)
French (fr)
Inventor
Minoru Takashima
Mineo Muraki
Makoto Watanabe
Tomofumi Shigekuni
Original Assignee
Jfe Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfe Steel Corporation filed Critical Jfe Steel Corporation
Priority to KR1020107003811A priority Critical patent/KR101169236B1/ko
Priority to US12/673,982 priority patent/US8535455B2/en
Priority to CN2008801040723A priority patent/CN101784698B/zh
Priority to EP08792758.8A priority patent/EP2182091B1/en
Publication of WO2009025389A1 publication Critical patent/WO2009025389A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/18Orthophosphates containing manganese cations
    • C23C22/188Orthophosphates containing manganese cations containing also magnesium cations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1288Application of a tension-inducing coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/18Orthophosphates containing manganese cations
    • C23C22/182Orthophosphates containing manganese cations containing also zinc cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/20Orthophosphates containing aluminium cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/07Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
    • C23C22/08Orthophosphates
    • C23C22/22Orthophosphates containing alkaline earth metal cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • C23C22/74Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process for obtaining burned-in conversion coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • H01F1/18Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets with insulating coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/23Corrosion protection
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14791Fe-Si-Al based alloys, e.g. Sendust

Definitions

  • Insulation coating solution for grain-oriented electrical steel sheet and
  • the present invention relates to a grain-oriented electrical steel sheet excellent in tension induced by a coating, moisture absorption (4 moisture-absorption resistance), rust resistance and lamination factor.
  • the present invention relates to a treatment solution for insulation coating for grain oriented electrical steel sheets used in manufacturing.
  • the present invention also relates to a method for producing a grain-oriented electrical steel sheet having an insulating coating using the insulating coating treatment liquid for grain-oriented electrical steel.
  • noise generated from power transformers has become a problem as pollution.
  • the main cause of noise in power transformers is magnetostriction of grain-oriented electrical steel sheets used as transformer core materials.
  • an industrially advantageous solution is to coat the grain-oriented electrical steel sheet with an insulating film.
  • the film tension is the tension applied to the grain-oriented electrical steel sheet by the formation of the insulating film.
  • the coating of grain-oriented electrical steel sheets is usually a ceramic forsterite film formed by secondary recrystallization annealing and a phosphate-based insulation applied on the ceramic forsterite film. It consists of a film.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 48-39338
  • Patent Document 2 Japanese Patent Application Laid-Open No. 50-79442
  • colloidal silica, phosphate, and chromium compound eg, one or two selected from chromic anhydride, chromate, dichromate.
  • An insulating film treatment solution containing at least a seed is coated on the steel sheet and then baked.
  • the insulating coating formed by these methods has an effect of improving magnetostriction characteristics by applying tensile stress to the grain-oriented electrical steel sheet.
  • these insulating film treatment liquids contain a chromium compound such as chromic anhydride, chromate or dichromate as a component for maintaining the moisture absorption resistance of the insulating film satisfactorily. Contains hexavalent chromium.
  • Patent Document 2 discloses a technique in which no chromium compound is added, but the viewpoint of moisture absorption resistance is extremely disadvantageous.
  • hexavalent chromium contained in the absolute coating solution is reduced to trivalent chromium by baking and rendered harmless.
  • JP-B-57-9631 discloses colloidal silica, phosphorus
  • An insulating coating solution containing aluminum acid and boric acid, and further containing one or more selected from the sulfates of Mg, Al, Fe, Co, Ni and Zn is disclosed.
  • Japanese Patent Publication No. 58-44744 contains colloidal silica and magnesium phosphate, and is further selected from one or two kinds selected from Mg, Al, Mn and Zn sulfates.
  • An insulating coating treatment liquid containing the above is disclosed.
  • Patent Document 3 and Patent Document 4 were used, there were problems in film tension and moisture absorption resistance with respect to the recent demand for film characteristics.
  • Patent Document 5 describes an aqueous solution of magnesium phosphate and aluminum or aluminum phosphate.
  • An insulating coating treatment liquid to which a compound containing permanganate ions is added is disclosed.
  • the insulating coating solution of Patent Document 5 does not contain colloidal silica, it is disadvantageous from the viewpoint of coating tension. Disclosure of the invention
  • the present invention has been developed in view of the above-described present situation, and aims at the following items.
  • an insulating film treatment solution for grain-oriented electrical steel sheets capable of obtaining a direction-oriented electrical steel sheet having excellent insulating film properties, that is, film tension, moisture absorption resistance, fender resistance and space factor.
  • the inventors of the present invention have secondary recrystallized an insulating film treatment solution to which various water-soluble metal salts are added in addition to phosphate and colloidal silica. It was applied to a directional electrical steel sheet after annealing and then baked. And the characteristic of the obtained film was investigated.
  • an insulating film having desired characteristics can be obtained by adding permanganates of divalent metals such as Mg, Sr, Zn, Ba and Ca.
  • the present invention is based on the above findings. That is, the gist configuration of the present invention is as follows.
  • colloidal silica is 0.5 to 10 mol in terms of SiO 2 and Mg, Sr,
  • At least one selected from the strengths of Zn, Ba and Ca permanganate is 0.02 to 2.5 mol in terms of metal elements in the permanganate,
  • An insulating coating solution for grain-oriented electrical steel sheets characterized by comprising.
  • the insulating film treatment liquid is chromium-free and particularly contains substantially no Cr.
  • the processing solution should be an aqueous solution. /.
  • colloidal silica is 0.5 ⁇ in terms of SiO 2 : I0 mol, Mg, Sr,
  • the insulating film treatment liquid is chromium-free and particularly contains substantially no Cr.
  • the treatment liquid is preferably an aqueous solution.
  • one cold rolling or intermediate annealing (intermediate) It is preferable that the final thickness is finished by two or more cold rollings that sandwich the annealing). Further, after the primary recrystallization annealing, it is preferable to apply the secondary recrystallization annealing after applying an annealing separator containing MgO as a primary component.
  • Figure 1 shows the effect of magnesium permanganate hexahexahydrate [Mg (Mn0) on the insulating film treatment solution on the moisture absorption resistance of the insulating film (vertical axis: P elution amount per 150 cm 2 , unit: / zg). 4) 2 .6H 2 0] amount (horizontal axis: P0 4 Mg converted amount relative Imol, unit: is a graph showing the effect of mol).
  • Figure 2 shows the amount of magnesium permanganate hexahydrate [Mg (MnO 4 ) 2 ⁇ 6H 2 0] added to the insulation coating solution, which affects the coating tension (vertical axis, unit: MPa) of the insulation coating It is a graph showing the effect of (horizontal axis: the same as in Fig. 1).
  • An insulating coating solution containing “magnesium permanganate” hexahydrate [Mg (Mn0 4 ) 2 ′ 6H 20 ] in a range of 0.01 to 3 mol in terms of Mg was prepared.
  • a treatment liquid not containing magnesium permanganate hexahydrate was also prepared.
  • Magnesium permanganate hexahydrate was supplied as a solid and dissolved in the treatment solution.
  • the amount of the processing solution only the amount necessary for the following experiment was prepared while maintaining the above blending ratio.
  • a test piece having a width of 30 mm and a length of 280 mm with the length direction set as the rolling direction was collected by shearing, and the insulating coating on one side was removed with the next tray.
  • the amount of curvature deformation at the end of the test piece was measured with one end 30 mm in the length direction of the steel plate fixed, and the coating tension ⁇ was calculated from the following equation (1).
  • the amount of warpage was measured with the length direction of the steel sheet in the horizontal direction and the width direction in the vertical direction.
  • the area ratio of cocoons is generally less than 5% for evaluation (OK) and approximately 5% or more for evaluation (NG).
  • the space factor was evaluated by a method based on JIS C 2550.
  • FIGS. Figure 1 shows the amount of P dissolved in the insulation coating (vertical axis: per 150 cm 2 , unit: ⁇ g), that is, the amount of magnesium permanganate 'hexahydrate added to the insulation coating treatment solution (horizontal Axis: Shows the effect of (added amount on P0 4 lmol).
  • Fig. 2 shows the effect of the amount of magnesium permanganate hexahydrate (horizontal axis) on the coating tension (vertical axis, unit: MPa) of the insulation coating.
  • the insulating coating solution of the present invention is preferably an aqueous solution. That is, the insulating film treatment liquid of the present invention preferably contains at least one selected from the group consisting of phosphates of Mg, Ca, Ba, Sr Zn, Al, and Mn, using water as a solvent, colloidal silica, Mg , Sr, Zn, Ba, and Ca permanganate force.
  • phosphates of Mg, Ca, Ba, Sr Zn, Al, and Mn
  • Mg (H 2 P0 4 ) 2 Ca (H 2 P0 4 ) 2 Ba (H 2 P0 4 ) 2 , Sr (H, which are the primary phosphates of Mg, Ca Ba, Sr, Zn, Al and Mn 2 P0 4 ) 2 , Zn (H 2 P0 4 ) 2 , A1 (H 2 P0 4 ) 3 , and Mn (H 2 P0 4 ) 2 are easily dissolved in water and are therefore suitable for the present invention.
  • P0 4 in the phosphate For I mol, it is necessary to 0.5 ⁇ 10mol containing colloidal silica as Si0 2.
  • Colloidal silica is an indispensable component because it forms a low thermal expansion glass with the above phosphate to generate a film tension. Also, Meniwa which exert left effect, the amount ', P0 in the phosphate 4: Si0 2 in terms of at 0.5mol or more relative to I mol, preferably 10 1 or less and be Rukoto.
  • the type of colloidal silica is not particularly limited as long as the stability of the solution and the compatibility with the above-described phosphate are obtained.
  • a commercially available acidic type (acid - type) and a ST-0 (Nissan Chemical (Co.) (Nissan Chemical Industries, LTD) manufactured by Si0 2 content:. 20 mass%) force and the like alkaline type colloids like silica But it can be used.
  • colloidal silica containing a sol containing aluminum (A1) can also be used.
  • the amount of A1 is preferably 1.0 or less in terms of Al 2 0 3 / SiO 2 ratio.
  • one or more selected from permanganates of Mg, Sr, Zn and Ba opium Ca, which are divalent metals, are used to increase moisture absorption resistance. Inclusion is particularly important.
  • the content of the permanganate of the divalent metal is such that Mg, Sr, Zn, Ba, and Ca in the permanganate selected with respect to P04 : lmol in the phosphate It is particularly important that the total amount be in the range of 0.02 to 2.5 mol. In order to obtain good moisture absorption resistance, permanganate should be added in an amount such that the total force of Mg, Sr, Zn, Ba and Ca is 0.02 mol or more with respect to P0 4 : lmoI in the phosphate. Inclusion is essential.
  • a more preferable addition amount of permanganate is in the range of 0.2 to 1.0 mol in total of Mg, Sr, Zn, Ba and Ca.
  • the permanganate of the present invention is a compound (metal salt) of (Mn0 4 ) — and Mg, Sr, Zn, Ba or Ca, and may be a hydrate thereof.
  • magnesium permanganate and strontium permanganate or their hydrates are particularly preferable.
  • the reason why the moisture absorption resistance is improved by containing at least one selected from Mg, Sr, Zn, Ba and Ca permanganate is considered as follows.
  • colloidal silica and phosphate form a vitreous during the baking process.
  • the free state of P0 4 in phosphate which was not incorporated into this vitreous, is divalent metal Mg, Sr, Zn, Ba, and Ca in permanganate and in permanganate Combines with Mn to form a compound that is insoluble in water in the insulating coating, improving moisture absorption resistance.
  • Mg permanganate is considered to produce Mg 3 (P0 4 ) 2 in the insulating coating.
  • permanganate is uniformly dispersed in the coating film during the baking process. Therefore, free P0 4 and Mg, Sr, Zn, Ba, Ca or Mn is believed to bind to easily form a material which is insoluble in water. This also contributes to the improvement of moisture absorption resistance.
  • the concentration of colloidal silica and the above-mentioned divalent metal permanganate is determined automatically by determining the concentration of phosphate.
  • boric acid may be added to improve the heat resistance of the insulating coating.
  • the insulating film treatment solution of the present invention in order to improve the melt contamination resistance (sticking resistance check) and slipperiness of the grain-oriented electrical steel sheet, the range of primary particle diameter of 50 to 2000 nm Si0 2, A1 2 One or more selected from 0 3 and Ti0 2 may be contained.
  • the reason why fusion resistance is required is as follows. When grain-oriented electrical steel sheets are used in a pig iron core type transformer, the steel sheets are rolled and formed into the shape of an iron core, followed by strain relief annealing (for example, about 800 ° CX for 3 hours). In that case, it may stick with the adjacent coating. Such a fusion lowers the interlayer insulation resistance of the iron core, which in turn causes the magnetic properties to deteriorate.
  • the insulating film treatment liquid is chromium-free and does not substantially contain any.
  • substantially does not contain means that soot originating from impurities contained in the raw material is allowed but not added actively.
  • many of the above-mentioned components such as phosphate, colloidal silica, permanganate are available as commercial products for industrial use, and are acceptable if the amount of Cr is about the level of impurities contained in these commercial products. .
  • a steel slab for grain-oriented electrical steel sheets having a predetermined component composition is rolled to a final thickness. Then, after performing primary recrystallization annealing and secondary recrystallization annealing, the above-mentioned insulating coating treatment liquid of the present invention is applied to the surface of the steel sheet, and then baked at a temperature of 350 to 1100.
  • the slab for grain-oriented electrical steel sheet is hot-rolled, and if necessary, hot-rolled sheet annealing is performed, and the final sheet thickness is further reduced by cold rolling at least once with intermediate or intermediate annealing.
  • the composition of the slab component is not particularly limited, and any conventionally known composition is suitable.
  • the production method is not particularly limited, and any conventionally known production method can be used.
  • the main components of a typical slab for grain-oriented electrical steel are C: 0.10 mass% or less, Si: 2.0 to 5.0 mass% and Mn: 0.01 to: L. Omass. /. It is.
  • Si 2.0 to 4.5 mass ° /. It is.
  • various inhibitors are usually used, and an element corresponding to the inhibitor is added in addition to the main component. For example, as an inhibitor
  • sol.Al about 200ppm (ie about 100-300ppm),
  • MnSe and Sb are used, Mn, Se (about 100 to 300 ppm) and Sb (about 0.01 to 0.2 mass%) can be added.
  • S, Al, N, and Se are generally extracted from the steel sheet in the secondary recrystallization annealing process and reduced to the impurity level.
  • the hot rolling of slabs for grain-oriented electrical steel sheets is a force that can apply a known method.
  • the thickness after hot rolling is preferably in the range of 1.5 to 3.0 mm.
  • the hot-rolled sheet after hot rolling may be subjected to hot-rolled sheet annealing as necessary for further improvement of magnetic properties.
  • the hot-rolled sheet that has been subjected to hot rolling or further hot-rolled sheet annealing is subjected to cold rolling to obtain a final thickness.
  • the cold rolling may be performed once or may be performed twice or more with intermediate annealing.
  • the primary recrystallization annealing following the cold rolling is performed to promote the primary recrystallization, but it may be combined with decarburization by controlling the atmosphere or the like.
  • the treatment conditions for primary recrystallization annealing can be set according to the purpose, but it is desirable to perform continuous annealing at a temperature of 800 to 950 ° C for 10 to 600 seconds. It is also possible to perform nitriding treatment using ammonia gas or the like during the primary recrystallization annealing or after the primary recrystallization annealing. .
  • Subsequent secondary recrystallization annealing is a crystal orientation that has excellent magnetic properties in the rolling direction by secondary recrystallization from the crystal grains obtained by primary recrystallization annealing (primary recrystallized grains), so-called Goss This is a process of preferential growth of the Goss orientation.
  • the conditions for the secondary recrystallization annealing are preferably about 5 to 300 hours at a temperature of 800 to 1250 ° C, which can be set according to the purpose.
  • a forsterite film is formed. Generate on a steel plate.
  • a forsterite film has been formed for the purpose of further improving the iron loss of grain-oriented electrical steel sheets. /, Insulating film treatment in the state is also being considered.
  • an annealing separator that does not mainly contain MgO (for example, alumina type) is applied.
  • the insulating treatment film treatment liquid of the present invention can be applied regardless of the presence or absence of a forsterite film.
  • the insulating coating treatment liquid of the present invention is applied to the grain-oriented electrical steel sheet after the secondary recrystallization manufactured through the series of steps as described above, and then the baking treatment is performed.
  • the density of the insulating coating solution may be adjusted by adding water or the like to improve the coating property.
  • a known means such as a roll coater can be used.
  • the baking temperature is desirably 750 ° C or higher. This is because film tension is generated by baking at 750 ° C or higher. However, when grain-oriented electrical steel is used for the iron core of the transformer, the baking temperature should be 350 ° C or higher. This is because the core is often subjected to strain relief annealing for about 3 hours at a temperature of 800 ° C. In this case, the film tension is manifested during this strain relief annealing.
  • the maximum baking temperature range is 350 ° C to 1100 ° C.
  • the thickness of the insulating coating is not particularly limited, but is preferably in the range of:! To 5 ⁇ per one side. Since the film tension is proportional to the film thickness, if less than m, the film tension may be insufficient depending on the purpose. On the other hand, if it exceeds 5 / z m, the space factor may decrease more than necessary.
  • the thickness of the insulation coating can be controlled to the target value by the concentration of the insulation coating treatment solution, the coating amount, and the coating conditions (for example, the pressing condition of the roll coater).
  • this cold-rolled sheet was subjected to primary recrystallization annealing at 820 ° CX for 150 seconds, which also served as decarburization. Then, apply MgO slurry as an annealing separator Then, secondary recrystallization annealing at 1200 ° C. for 15 hours was performed to obtain a grain-oriented electrical steel sheet having a forsterite film.
  • magnesium sulfate heptahydrate is added in an amount of Imol in terms of Mg.
  • a test piece having a width of 30 mm and a length of 280 mm was collected by shearing from the grain-oriented electrical steel sheet having the insulating coating, with the length direction being the rolling direction, and then the insulating coating on one side was removed. Then, the length of one end of the steel sheet was fixed at 30 mm, the amount of warpage at the end of the test piece was measured, and the film tension ⁇ was calculated from the following equation (1). Here, the amount of warpage was measured with the length direction of the steel plate being horizontal and the width direction being vertical.
  • the grain-oriented electrical steel sheet having the above insulating coating was held in air at a temperature of 50 ° C and a dew point of 50 ° C for 50 hours. Then, the steel plate surface was visually observed and evaluated by the area ratio of the portion where wrinkles occurred.
  • the space factor was evaluated by a method based on JIS C 2550. The above measurement results are shown in Table 1.
  • a slab for grain-oriented electrical steel sheets having a composition that is Fe and inevitable impurities was hot-rolled to form a hot-rolled sheet having a thickness of 2.5 mm, and then subjected to hot-rolled sheet annealing at 1050 ° C. for 60 seconds.
  • the first cold rolling was performed to obtain a cold rolled sheet having an intermediate sheet thickness of 0.8 mm, followed by intermediate annealing at 1000 ° C. for 30 seconds.
  • the second cold rolling was performed to a final thickness of 0.30 mm.
  • the cold-rolled sheet having the final thickness was subjected to primary recrystallization annealing at 850 ° C. for 60 seconds. Thereafter, MgO slurry was applied as an annealing separator, and secondary recrystallization annealing was performed at 880 ° C. for 50 hours to obtain a grain-oriented electrical steel sheet having a forsterite coating.
  • Example 1 With respect to the grain-oriented electrical steel sheet after this baking treatment, the film tension, moisture absorption resistance, fender resistance and space factor were evaluated in the same manner as in Example 1.
  • Hot rolling slabs for electrical steel sheets Then, after forming a hot-rolled sheet having a sheet thickness of 2.0 mm, hot-rolled sheet annealing at 1000 ° C. for 60 seconds was performed. Next, the first cold rolling was performed to obtain a cold-rolled sheet having an intermediate thickness of 1.5 mm, and then subjected to intermediate annealing at 1100 ° C. for 60 seconds. In addition, the second cold rolling was performed to a final thickness of 0.22 mm.
  • a primary recrystallization annealing was performed on the cold-rolled sheet having the final thickness of 820 ° C ⁇ 150 seconds, which also served as decarburization. Thereafter, MgO slurry was applied as an annealing separator and subjected to secondary recrystallization annealing at 1200 ° C. for 15 hours to obtain a directional electrical steel sheet having a forsterite coating.
  • magnesium phosphate [Mg (H 2 P0 4) 2] aqueous solution: and 250 ml (P0 4 0.5 mol in terms), phosphoric acid Aruminiu beam [A1 (H 2 P0 4) 3 ] solution: 250 ml (P0 4 in terms in 0.5 mol) were mixed to prepare a mixed aqueous solution 500ml of 1 1 contained in P0 4 total.
  • colloidal silica 700 ml (Si0 2 3 mol in terms of) Contact and magnesium permanganate.
  • the hexahydrate [Mg (Mn0 4) 2 .63 ⁇ 40 ] was 0.5mol contained in terms of Mg
  • An insulating film treatment solution was prepared. Next, these treatment liquids were applied to the surface of the grain-oriented electrical steel sheet and subjected to baking treatment at the temperature shown in Table 3 (soaking temperature) for 30 seconds. The film thickness after baking was 1.5 / zm per side.
  • the film tension, moisture absorption resistance, fender resistance and space factor were evaluated in the same manner as in Example 1.
  • evaluation was also performed after 800 C x 3 hours of strain relief annealing.
  • an insulating film having excellent film tension, moisture absorption resistance, and anti-mold space factor can be formed on the surface of the grain-oriented electrical steel sheet. Reduction, and in turn, noise pollution can be achieved.
  • the insulating film has excellent film characteristics comparable to those obtained when using an insulating film treatment liquid containing a chromium compound without generating a waste liquid of harmful chromium compounds.
  • the grain-oriented electrical steel sheet having

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Abstract

Mg、Ca、Ba、Sr、Zn、AlおよびMnのリン酸塩のうちから選ばれる1種または2種以上を含有し、この選択した該リン酸塩中のPO4を基準とし、該PO4:1molに対し、コロイド状シリカをSiO2換算で0.5~10molと、並びにMg、Sr、Zn、BaおよびCaの過マンガン酸塩のうちから選ばれる1種または2種以上を、該過マンガン酸塩中の金属元素換算で0.02~2.5molとを、それぞれ配合した処理液とすることにより、絶縁被膜処理液をクロムフリーとした場合に問題となる被膜張力および耐吸湿性の低下を防止し、優れた絶縁被膜特性、すなわち被膜張力、耐吸湿性、防錆性および占積率に優れる方向性電磁鋼板を得ることができる、方向性電磁鋼板用絶縁被膜処理液を得る。

Description

明 細 書 方向性電磁鋼板用絶縁被膜処理液、および
絶縁被膜を有する方向性電磁鋼板の製造方法 技術分野
本発明は、被月莫張力 ( tension induced by a coating)、耐吸湿' (4 moisture - absorption resistance) ,防鐯性(rust resistance)および占積率(lamination factor)に優れた方向性電磁鋼板 の製造に用いられる、方向性電磁鋼板(grain oriented electrical steel sheet)用の絶縁被膜処理 液(treatment solution for insulation coating)に関するものである。 本発明はまた、この方向性 電磁鋼板用絶縁被膜処理液を用いた、絶縁被膜を有する方向性電磁鋼板の製造方法に関する ものである。 . 背景技術
近年、電力用変圧器から発生する騷音が公害として問題となっている。 電力用変圧器の騒 音の主原因は、変圧器の鉄心材料として用いられる方向性電磁鋼板の磁歪(magnetostriction) である。 変圧器の騒音を減らすためには、方向性電磁鋼板の磁歪を小さくすることが必要であり、 工業上有利な解決方法は、方向性電磁鋼板に絶縁被膜を被覆することである。
方向性電磁鋼板の絶縁被膜に必要とされる特性として、被膜張力、耐吸湿性、防鲭性および 占積率がある。 これらの特性のなかで、磁歪の低減には、被膜張力を確保することが重要であ る。 ここで、被膜張力とは、絶縁被膜の形成によって方向性電磁鋼板に付与される張力のことで ある。 方向性電磁鋼板の被膜は、通常、二次再結晶焼鈍(secondary recrystallization annealing)に より形成されたセラミック質のフォルステライト被膜と、その上に施されるリン酸塩系 (phosphate-based)の絶縁被膜から成り立っている。 この絶縁被膜を形成する方法として、特開 昭 48- 39338号公報 (特許文献 1)およぴ特開昭 50- 79442号公報 (特許文献 2)に開示された技術 が知られている。 これらの技術においては、コロイド状シリカ(colloidal silica)と、リン酸塩と、クロ ム化合物(chromium compound) (例えば無水クロム酸、クロム酸塩、重クロム酸塩のうちから選ば れる 1種または 2種以上)とを含有する絶縁被膜処理液を鋼板に塗布(coating)し、その後、焼付 け (baking)をする。 これらの方法によって形成される絶縁被膜は、方向性電磁鋼板に引張応力を与えることにより、 磁歪特性を改善する効果を有する。 しかし、これらの絶縁被膜処理液は、絶縁被膜の耐吸湿性 を良好に維持するための成分として、無水クロム酸、クロム酸塩または重クロム酸塩などのクロム 化合物を含み、したがって、これらに由来する 6価クロムを含有する。 特許文献 2にはクロム化合 物を添加しない技術も開示されてレ、るが、耐吸湿性の観点力 は極めて不利である。 ここで、絶 緣被膜処理液中に含まれる 6価クロムは、焼付けにより 3価クロムに還元されて無害化される。 し かし、処理液の廃液処理作業において取り扱いに種々の負担が生じるという問題がある。
—方、クロムを実質上含有しない、いわゆるクロムフリー (chromium- free)の方向性電磁鋼板用 絶縁被膜処理液として、特公昭 57-9631号公報(特許文献 3)には、コロイド状シリカ、リン酸アルミ ニゥムおよびホウ酸を含有し、さらに Mg、 Al、 Fe、 Co、 Niおよび Znの硫酸塩のうち力 選ばれる 1 種または 2種以上を含有する絶縁被膜処理液が開示されており、また、また特公昭 58- 44744号 公報(特許文献 4)には、コロイド状シリカおよびリン酸マグネシウムを含有し、さらに Mg、 Al、 Mnお よび Znの硫酸塩のうちから選ばれる 1種または 2種以上を含有する絶縁被膜処理液が開示されて いる。 し力しながら、特許文献 3および特許文献 4の絶縁被膜処理液を用いた場合には、近年 の被膜特性に対する要求に対して、被膜張力、耐吸湿性の点で問題があった。
クロムフリー化した絶縁被膜処理液において絶縁被膜の耐吸湿性を改善する技術として、特 開昭 54- 130615号公報(特許文献 5)には、リン酸マグネシウムおよびノまたはリン酸アルミニウム の水溶液に、過マンガン酸イオンを含む化合物を添加した絶縁被膜処理液が開示されている。 ただし、特許文献 5の絶縁被膜処理液はコロイド状シリカを含有しないため、被膜張力の観点か らは不利である。 発明の開示
〔発明が解決しょうとする課題〕
なお、本発明者らの研究では、コロイド状シリカを含む絶縁被膜処理液に対して、特許文献 5 に具体的に記載のある過マンガン酸ナトリウムや過マンガン酸カリウムを含有させた場合には、被 膜張力の低下ゃ防鲭性の劣化を生ずるという問題がある。
本発明は、上記の現状に鑑み開発されたもので、以下の各項を目的とする。
-絶緣被膜処理液をクロムフリー化した場合に問題となる被膜張力および耐吸湿性の低下を 防止すること
-優れた絶縁被膜特性、すなわち被膜張力、耐吸湿性、防鑌性および占積率に優れる方向性 電磁鋼板を得ることができる方向性電磁鋼板用絶縁被膜処理液を提供すること
•上記の方向性電磁鋼板用絶縁被膜処理液を用いた、絶縁被膜を有する方向性電磁鋼板の 製造方法を提供すること
〔課題を解決するための手段〕
さて、上記の課題を解決すベぐ発明者らは、リン酸塩とコロイド状シリカの他、さらに種々の水 溶性 (water- soluble)金属塩を添加した絶縁被膜処理液を、二次再結晶焼鈍後の方向性電磁鋼 板に塗布し、その後焼付けした。 そして得られた被膜の特性について調査した。
その結果、 Mg、 Sr、 Zn、 Baおよび Caといった 2価金属の過マンガン酸塩(permanganate)を添 加することにより、所望の特性を有する絶縁被膜を得られることを見出した。
本発明は、上記の知見に立脚するものである。 すなわち、本発明の要旨構成は、次のとおりである。
(1) -
•Mg、 Ca、 Ba、 Sr、 Zn、 Alおよび Mnのリン酸塩のうち力 選ばれる少なくとも 1種と、
'該リン酸塩中の P04: lmolに対し、コロイド状シリカを Si02換算で 0.5〜10mol、並びに Mg、 Sr、
Zn、 Baおよび Caの過マンガン酸塩のうち力 選ばれる少なくとも 1種を該過マンガン酸塩中の金 属元素換算で 0.02〜2.5molを、
含有することを特徴とする方向性電磁鋼板用絶縁被膜処理液。 ここで、絶縁被膜処理液はクロムフリーであり、とくに Crを実質的に含有しないことが望ましい。 なお、処理液は水性溶液であることが '望まし!/、。
(2)方向性電磁鋼板用スラブを、圧延により最終板厚 (final sheet thickness)に仕上げ、つい で一次再結晶焼鈍 (primary recrystallization annealing)後、二次再結晶焼鈍を施し、さらに絶縁 被膜処理液を塗布したのち、焼付け処理を行う一連の工程により、方向性電磁鋼板を製造する に際し、
前記絶縁被膜処理液として、
•Mg、 Ca、 Ba、 Sr、 Zn、 Alおよび Mnのリン酸塩のうち力 選ばれる少なくとも 1種と、
'該リン酸塩中の P04: lmolに対し、コロイド状シリカを Si02換算で 0.5〜: I0mol、並びに Mg、 Sr、
Zn、 Baおよび Caの過マンガン酸塩のうちから選ばれる少なくとも 1種を該過マンガン酸塩中の金 属元素換算で 0.02〜2.5molを、
含有する絶縁被膜処理液を用い、 .
焼付け処理を 350°C以上 1100°C以下の温度で行うことを特徴とする絶縁被膜を有する方 性 電磁鋼板の製造方法。 ここで、絶縁被膜処理液はクロムフリーであり、とくに Crを実質的に含有しないことが望ましい。 なお、処理液は水性溶液であることが望まし 、。
また、上記の圧延としては、熱間圧延 (hot rolling)を施し、その後、あるいはさらに熱延板焼鈍 ( normalizing annealing )を施したのち、 1回の冷間圧延( cold rolling )または中間焼鈍 (intermediate annealing)を挟む 2回以上の冷間圧延により前記最終板厚に仕上げることが好適 である。 さらに、上記一次再結晶焼鈍後、 MgOを主体とする(containing MgO as a primary component)焼鈍分離剤 (annealing separator)を塗布してから上記二次再結晶焼鈍を施すことが 好ましい。 図面の簡単な説明
図 1は、絶縁被膜の耐吸湿性 (縦軸: 150cm2当たりの P溶出量、単位:/ z g)に及ぼす、絶縁被 膜処理液への過マンガン酸マグネシウム ·六氷和物 [Mg(Mn04)2.6H20〕添加量(横軸: P04 Imol に対する Mg換算添加量、単位: mol)の影響を示すグラフである。
図 2は、絶縁被膜の(縦軸、単位: MPa)被膜張力に及ぼす、絶縁被膜処理液への過マンガン 酸マグネシウム ·六水和物 [Mg(Mn〇4)2 · 6H20]添加量 (横軸:図 1に同じ)の影響を示すグラフで ある。 発明を実施するための最良の形態
以下、本発明の基礎となった実験結果について説明する。
まず、絶縁被膜処理液として、
'リン酸マグネシウム [Mg(H2P04)2]の 24mass。/^溶液: 450ml (P04: lmol)に対して、 •Si02 : 27mass%のコロイド状シリカ(水性) 450ml (Si02: 2mol)、および、
'過マンガン酸マグネシウム '六水和物 [Mg(Mn04)2' 6H20]を Mg換算で 0.01〜3molの範囲 を含有させた絶縁被膜処理液を用意した。 また、比較のため過マンガン酸マグネシウム.六 水和物を含まない処理液も用意した。 なお、過マンガン酸マグネシウム '六水和物は固体で供 給し、処理液に溶解させた。 また処理液の液量としては、上記配合比率を維持しつつ、以下の 実験に必要な量だけ用意した。
これらの絶縁被膜処理液を、フォルステライト被膜を有する二次再結晶焼鈍後の方向性電磁 鋼板 (板厚: 0.22mm)に塗布し、 800°C、 60秒の焼付け処理を施し、片面あたり厚さ: 2 μ mの絶縁 被膜を形成させた。 力べして得られた方向性電磁鋼板について、次に示す方法により、被膜張 力、耐吸湿性、防鑌性おょぴ占積率を評価した。
(1)被膜張力
上記の絶縁被膜を有する方向性電磁鋼板から、長さ方向を圧延方向として、幅: 30mm X長 さ: 280mmの試験片をせん断により採取し、次レ、で片面の絶縁被膜を除去した。 鋼板の長さ方 向の片端 30mmを固定して試験片端部の反り量(amount of curvature deformation)の大きさを測 定し、次の式(1)から被膜張力 σを算出した。 なお、鋼板の自重の影響を排除するため、水平 方向に鋼板の長さ方向を、鉛直方向に幅方向をそれぞれ向けて、反り量を測定した。
σ (MPa) = 1.2152 X 105(MPa) X板厚 (mm) X反り (mm)/250(mm)/250(mm) · · ·式 (1〉
(2)耐吸湿性
上記の絶縁被膜を有する方向性電磁鋼板から、 50raniX 50mmの試験片 3枚を採取し、これら を 100°Cの蒸留水中で 5分間浸漬煮沸(dip and boil)した。 そして、 膜表面力 溶出した Pi (P溶出量 (amount of elution of P) )を定量分析し、平均値を求めて耐吸湿性の指標とした。
(3)防鐯性
温度 50°C、露点 50°Cの空気中に上記の絶縁被膜を有する鋼板を 50時間保持した後、鋼板表 面を目視観察した。 そして、鯖の発生がないものを (OK)、鯖が発生したものを (NG)とした。 な ぉ鲭の面積率は、評価(OK)の場合概ね 5%未満、評価 (NG)の場合概ね 5%以上となる。
(4)占積率
占積率は、 JIS C 2550に準拠する方法で評価した。
結果を、図 1および 2に示す。 図 1に、絶縁被膜の P溶出量 (縦軸: 150cm2当たり、単位: μ g)すなわち耐吸湿性に及ぼす、 絶縁被膜処理液への過マンガン酸マグネシウム'六水和物の添加量 (横軸: P04 lmolに対する 添加量)の影響を示す。 また図 2には、絶縁被膜の被膜張力(縦軸、単位: MPa)に及ぼす過マ ンガン酸マグネシウム ·六水和物の添加量 (横軸)の影響を示す。 図中の過マンガン酸マグネシ ゥム *六水和物の添加量は、 Mg換算での mol数である。
過マンガン酸マグネシウム '六水和物の添加量力 P04: lmolに対して、 0.02mol以上になると、 耐吸湿性が著しく向上し、また被膜張力の改善も認められた。 一方、添加量が 2.5molを超えた 場合には、耐吸湿性は問題な力 たものの、被膜張力の低下が認められた。
なお、防鲭性および占積率については、過マンガン酸マグネシウム ·六水和物の添加量力 Mg換算で 0.02〜2.5molの範囲で良好であった。 次に、本発明の限定理由について説明する (絶縁被膜処理液)
本発明の絶縁被膜処理液は水性溶液とすることが好ましい。 すなわち、本発明の絶縁被膜 処理液は、好ましくは水を溶媒として、 Mg、 Ca、 Ba、 Sr Zn、 Alおよび Mnのリン酸塩のうち力 選 ぱれる少なくとも 1種と、コロイド状シリカと、 Mg、 Sr、 Zn、 Baおよび Caの過マンガン酸塩力 選ば れる少なくとも 1種とを含有して構成される。 まず、リン酸塩である力 Mg Ca、 Ba、 Sr、 Zn Alおよび Mnのリン酸塩のうちから 1種または 2種 以上選んで含有させることが必要である。 これら以外のリン酸塩では、クロム化合物(例えばクロ ム酸塩類)を添加しない場合に、耐吸湿性の良好な被膜が得られないからである。 特に、 Mg、 Ca Ba、 Sr、 Zn、 Alおよび Mnの第一リン酸塩である Mg(H2P04)2 Ca(H2P04)2 Ba(H2P04)2、 Sr(H2 P04)2、 Zn(H2P04)2、 A1(H2P04)3、 Mn(H2P04)2は、水に容易に溶解するため、本発明に好適に用 レ、ることができる。 また、これらの第一リン酸塩の水和物も同様に好適である。 上記リン酸塩中の P04 : lmolに対して、コロイド状シリカを Si02として 0.5〜10mol含有する必要 がある。 コロイド状シリカは、上記リン酸塩と共に低熱膨張率のガラス質 (low thermal expansion glass)を形成して、被膜張力を発生するため、必須の成分である。 また、左記効果を発揮するた めには、配合量を'、上記リン酸塩中の P04 : lmolに対して Si02換算で 0.5mol以上、 10 1以下とす ることが好ましい。
コロイド状シリカの種類は、溶液の安定性や、上記リン酸塩等との相溶性が得られる限り、特に 限定はされない。 例えば、市販の酸性タイプ(acid - type)である ST-0 (日産化学(株) (Nissan Chemical Industries, LTD.)製 Si02含有量: 20mass%)が挙げられる力 アルカリ性タイプのコロイ ド状シリカでも使用することができる。
なお、絶縁被膜の外観を改善するため、アルミニウム(A1)を含有するゾルを含んだコロイド状 シリカを使用することもできる。 この場合、 A1量は Al203/Si02比に換算して 1.0以下とすることが 好ましい。 本発明の絶縁被膜処理液では、耐吸湿性を高めるために、 2価金属である Mg、 Sr、 Zn、 Baお ょぴ Caの過マンガン酸塩のうちから選ばれる 1種または 2種以上を含有させることが特に重要で ある。 また、該 2価金属の過マンガン酸塩の含有量は、上記リン酸塩中の P04 : lmolに対して、こ の選択した過マンガン酸塩中の Mg、 Sr、 Zn、 Baおよび Caの合計で 0.02〜2.5molの範囲とすること も特に重要である。 良好な耐吸湿性を得るためには、リン酸塩中の P04: lmoIに対して、過マンガン酸塩を、 Mg、 Sr、 Zn、 Baおよび Caの合計力 S0.02mol以上となる量を含有させることが不可欠である。 一方、 Mg、 Sr、 Zn、 Baおよび Caの合計力 ½.5molを超えて過マンガン酸塩を含有させた場合には、被膜の熱膨張 率が増加し、被膜張力の低下を招く。 過マンガン酸塩のより好適な添加量は、 Mg、 Sr、 Zn、 Baお ょぴ Caの合計で 0.2〜1.0molの範囲である。
なお、本発明の過マンガン酸塩とは、(Mn04)—と Mg、 Sr、 Zn、 Baまたは Caの化合物(金属塩) であり、これらの水和物であってもよい。 なお、前記過マンガン酸塩の中では、過マンガン酸マグ ネシゥムおよび過マンガン酸ストロンチウム、あるいはそれらの水和物がとくに好ましい。
ここで、 Mg、 Sr、 Zn、 Baおよび Caの過マンガン酸塩のうちから選んだ少なくとも 1種を含有する ことにより耐吸湿性が向上する理由は、次のとおりと考えられる。
コロイド状シリカとリン酸塩は、焼付け処理時にガラス質を形成する。 このガラス質に取り込ま れなかった、リン酸塩中のフリー(free state)の P04が、過マンガン酸塩中の 2価金属 Mg、 Sr、 Zn、 Ba、および Caや過マンガン酸塩中の Mnと結合し、絶縁被膜中で水に対して不溶である化合物を 生成し、耐吸湿性が向上する。 例えば、 Mgの過マンガン酸塩の場合、絶縁被膜中で Mg3(P04)2 を生成すると考えられる。
また、硫酸塩など他の水溶性の塩と比較して過マンガン酸塩は、焼付け処理において、形成 途上の被膜中に均一に分散する。 そのため、フリーの P04と Mg、 Sr、 Zn、 Ba、 Caまたは Mnは、容 易に結合して水に対して不溶である物質を形成すると考えられる。 このことも、耐吸湿性向上に 寄与している。
一方、 Kや Naなどの 1価金属の過マンガン酸塩を用いた場合には、被膜張力が低下するととも に、防鲭性が劣化するという問題が生じる力 2価金属の過マンガン酸塩を用いることにより、これ らの問題が解決される。 そのメカニズムは必ずしも明らかではない力 Kや Naといった 1価金属 を用いた場合、前記ガラス質中での原子間の結合をこれらの金属が切断する作用を生じ、結果と して被膜張力の低下ゃ防鑌性の劣化をもたらすものと考えられる。 以上の主要成分の、絶縁被膜処理液中の濃度はとくに限定する必要は無い。 しかし、濃度 が低いと絶縁被膜が薄くなり、また濃度が高いと絶縁被膜処理液の粘性が大きくなつて塗布等の 作業性が低下する。 これらを考慮すると、上記リン酸塩について P04換算で概ね 0.02〜20molZ リットル程度の範囲内とすることが好ましい。 コロイド状シリカおよび上記 2価金属の過マンガン 酸塩の濃度は、リン酸塩の濃度が決まれば、自ず力 濃度範囲が決定される。 上記の他、本発明の絶縁被膜処理液には、以下の物質を添加してもよい。 まず、絶縁被膜の耐熱性を向上させるために、硼酸を添加してもよい。
また、本発明の絶縁被膜処理液に、方向性電磁鋼板の耐融着性(sticking resistance)や滑り 性を向上させるために、 1次粒径の範囲が 50〜2000nmである Si02、 A1203および Ti02のうちから 選ばれる 1種または 2種以上を含有してもよい。 なお、耐融着性が求められる理由は下記のとお りである。 方向性電磁鋼板が卷鉄心型の変圧器に用いられる場合、鋼板が卷かれ、鉄心の形 に成形された後、歪取焼鈍 (例えば 800°C X 3時間程度)が施される。 その際、隣接する被膜同 士で融着する(sticking)ことがある。 このような融着は、鉄心の層間絶縁抵抗を低下させることに なり、ひいては磁気特性を劣化させる原因となるので、絶縁被膜には、耐融着性を付与させること が望ましい。 また、滑り性については、方向性電磁鋼板が積鉄心 (laminated core)型の変圧器 に用いられる場合、鋼板の積み作業を円滑に行うために、鋼板同士の滑り性を良好にすることが 望ましい。
以上の他にも、絶縁被膜処理液に用いられることのある、種々の添加物を加えることができる。 以上の、硼酸 ' Si02等おょぴその他の添カ卩物については合計で、含有量が30mass%以下となる 程度とすることが好ましい。 絶縁被膜処理液はクロムフリーであり、とくに を実質的に含有しないことが望ましい。 ここで 「実質的に含有しない」とは、原料に含まれた不純物を由来とする Οは許容するが、積極的に添 加しないという意味である。 例えば上記リン酸塩、コロイド状シリカ、過マンガン酸塩等の各成分 の多くは、工業用の市販品として入手可能であり、これら市販品に含まれる不純物程度の Cr量で あれば許容される。
(方向性電磁鋼板の製造方法)
次に、本発明の絶縁被膜処理液を用いた絶縁被膜を有する方向性電磁鋼板の製造方法に ついて説明する。
所定の成分組成を有する方向性電磁鋼板用鋼スラブを圧延して最終板厚とする。 その後、 一次再結晶焼鈍と二次再結晶焼鈍を施した後、上述した本発明の絶縁被膜処理液を鋼板表面 に塗布し、次いで 350〜1100 の温度で焼付け処理する。 一般的には、前記方向性電磁鋼板 用スラブに熱間圧延を施し、必要に応じて熱延板焼鈍を施し、さらに 1回または中間焼鈍を挟む 2回以上の冷間圧延によって前記最終板厚とする。
本発明において、スラブの成分組成は、特に制限されることはなぐ従来公知のいずれもが適 合する。 また、製造方法についても特に制限されることはなく、従来公知の製造方法いずれをも 使用することができる。 ちなみに、代表的な方向性電磁鋼板用スラブの主要成分は、 C : 0.10mass%以下、 Si : 2.0〜5.0mass%および Mn: 0.01〜: L.Omass。/。である。 好ましくは Si : 2.0〜 4.5mass°/。である。 また、方向性電磁鋼板では種々のインヒビターが用いられるのが通常であり、 前記主要成分の他に、インヒビターに応じた元素が添加される。 例えば、インヒビターとして
. MnSを用いる場合は、 S : 200ppm程度(すなわち約 100〜300ppm :以下 ppmは mass ppmを意 味する)、
.A1Nを用いる場合は、 sol.Al: 200ppm程度(すなわち約 100〜300ppm)、
•MnSeと Sbを用いる場合は、 Mn、 Se (約 100〜300ppm)および Sb (約 0.01〜0.2mass%) を添加することができる。
なお、上記組成中、 S、 Al、 Nおよび Seは、一般に二次再結晶焼鈍工程で鋼板から大部分が抜 け、不純物レベルまで低減される。 方向性電磁鋼板用スラブの熱間圧延は、公知の方法を適用できる力 熱間圧延後の板厚は、 1.5〜3.0mmの範囲とすることが望ましい。熱間圧延後の熱延板には、磁気特性のさらなる改善な どの必要に応じて熱延板焼鈍を施してよい。
その後、熱間圧延またはさらに熱延板焼鈍を施された前記熱延板に、冷間圧延を施して最終 板厚とする。 冷間圧延は、 1回としてもよぐまた、中間焼鈍を挟む 2回以上の冷間圧延であって もよい。
冷間圧延に続く一次再結晶焼鈍は、一次再結晶を促進するために施すが、雰囲気等の制御 により、脱炭を兼ねて疔つてもよい。 一次再結晶焼鈍の処理条件は、目的等に応じて設定が可 能であるが、 800〜950°Cの温度で 10〜600秒間、連続焼鈍を行うことが望ましい。 なお、一次再 結晶焼鈍中、あるいは一次再結晶焼鈍後に、アンモ-ァガスなどを用いて窒化処理(nitriding treatment)を施すこともできる。 .
続く二次再結晶焼鈍は、一次再結晶焼鈍で得た結晶粒(一次再結晶粒: rimary recrystallized grain)の中から、二次再結晶によって圧延方向に磁気特性が優れる結晶方位、い わゆるゴス方位 (Goss orientation)を優先的に成長(preferential growth)させる工程である。 二 次再結晶焼鈍の条件は、目的等に応じて設定が可能である力 800〜1250°Cの温度で 5〜300時 間程度とするのが好ましい。
ここで、一般には前記一次再結晶焼鈍後、 MgOを主体とする(すなわち十分に MgOを含有す る)焼鈍分離剤を塗布してから前記二次再結晶焼鈍を施すことにより、フォルステライト被膜を鋼 板上に生成させる。
また、近年では、方向性電磁鋼板の鉄損を、より一層改善することを目的として、フォルステラ イト被膜が形成されてレ、な!/、状態で絶縁被膜処理をすることも検討されてレ、る。 フォルステライト 被膜を形成させなレ、場合は、焼鈍分離剤を塗布しないか、 MgOを主体としなレ、(例えばアルミナ 系など)焼鈍分離剤を塗布する。
本発明の絶縁処理被膜処理液は、フォルステライト被膜の有無にかかわらず適用することがで きる。 上記のような一連の工程を経て製作した二次再結晶後の方向性電磁鋼板に、本発明の絶縁 被膜処理液を塗布し、その後、焼付け処理を行う。
なお、絶縁被膜処理液は、塗布性の向上のために、水等を加えて希釈し密度を調整しても良 い。 また、塗布する際には、ロールコーター (roll coater)など、公知の手段を使用することができ る。
焼付け温度は、 750°C以上であることが望ましい。 これは、 750°C以上で焼付けることによって、 被膜張力が発生するからである。 ただし、方向性電磁鋼板が変圧器の鉄心に使用される場合、 焼付け温度は、 350°C以上であれば良い。 これは、鉄心の製造に際しては、 800°Cの温度で 3時 間程度の歪取焼鈍が施されることが多ぐこの場合、被膜張力は、この歪取焼鈍時に発現するか らである。
—方、 1100°Cを超えると被膜張力と防鲭性が劣化するため、 1100°C以下とする。 以上より、 焼付け温度の最大範囲は 350°C以上 1100°C以下とする。 絶縁被膜の厚さは、特に限定されないが、片面あたり:!〜 5 μ πιの範囲とするのが好ましい。被 膜張力は被膜の厚さに比例するため、: m未満では、目的によっては被膜張力が不足する可能 性がある。 一方 5 /z mを超えると占積率が必要以上に低下する場合がある。 絶縁被膜の厚さは、 絶縁被膜処理液の濃度、塗布量、塗布条件 (例えばロールコーターの押し付け条件)などにより •目標値に制御することができる。
〔実施例〕
(実施例 1)
C:0.05mass%% Si:3mass%、 sol.Al:0.02mass%、 Mn:0.04mass%および S:0.02mass%を含有し、 残部は Feおよび不可避的不純物である組成を有する方向性電磁鋼板用スラブを熱間圧延して 板厚: 2.0mmの熱延板とし、その後、 1000°C X 60秒の熱延板焼鈍を施した。 その後、この熱延板 を 1回目の冷間圧延により中間板厚: 1.5mmとし、次いで 1100°C X 60秒の中間焼鈍を施し、その 後、 2回目の冷間圧延により最終板厚: 0.22mmの冷延板とした。 次に、この冷延板に脱炭を兼 ねた 820°C X 150秒の一次再結晶焼鈍を施した。 その後、焼鈍分離剤として MgOスラリーを塗布 した後、 1200°C X 15時間の二次再結晶焼鈍を施して、フォルステライト被膜を有する方向性電磁 鋼板を得た。
次に、リン酸マグネシウム Mg(H2P04)2を P04換算で lmol含有する水溶液 500miに対して、コロイ ド状シリカ(水性) 700ml (Si02換算で 3molを含有)、および表 1に示す過マンガン酸塩を、 Mg、 Sr、 Zn、 Baおよび Ca換算で 0.01〜3.0molの範囲で含有させた絶縁被膜処理液を用意した。 なお、 液量としては、上記配合比率を維持しつつ、以下の実験に必要な量だけ用意した。 以下同様で ある。 これらの絶縁被膜処理液を、上記の方向性電磁鋼板の表面に塗布し、 830°C X 1分の焼 付け処理を施した。 被膜厚さは、片面あたり 2 μ mとした。
また、比較例として次の絶縁被膜処理液を準備して、それぞれ上記と同様に絶縁被膜を有す る方向性電磁鋼板を製作した。
•上記の絶縁被膜処理液中に過マンガン酸塩を含有させな力 たもの。
.上記の絶縁被膜処理液中の過マンガン酸塩の代わりに、硫酸マグネシウム .七水和物を Mg 換算で Imol含有させたもの。
'リン酸マグネシウム Mg(H2P04)2水溶液 500ml (P〇4換算で lmolを含有)に対して、コロイド状シ リカ(7J性) 700ml (SiO2換算で 3molを含有)および過マンガン酸ナトリウムを Na換算で Ο.δπιοΐ含有 させたもの。
-リン酸マグネシウム Mg(H2P04)2水溶液 500ml (P04換算で lmolを含有)に対して、コロイド状シ リカ(水性) 700ml (SiO2換算で 3molを含有)およぴ過マンガン酸カリウムを K換算で 0.5mol含有さ せたもの。
•リン酸マグネシウム Mg(H2P04)2水溶液 500ml (P04換算で lmolを含有)に対して、コロイド状シ リカ(水性) 700ml (Si02換算で 3molを含有)および無水クロム酸(Cr03)あるいは重クロム酸マグネ シゥム MgCr207を Cr相当で lmol含有させたもの。
力べして得られた絶縁被膜を有する方向性電磁鋼板について、被膜張力、耐吸湿性、防鲭性 およぴ占積率を下記の方法で評価した。
(1)被膜張力
上記の絶縁被膜を有する方向性電磁鋼板から、長さ方向を圧延方向として、幅: 30mm X長 さ: 280mmの試験片をせん断により採取し、その後片面の絶縁被膜を除去した。 そして鋼板の 長さ方向の片端 30mmを固定して、試験片端部の反り量の大きさを測定し、次の式 (1)から被膜張 力 σを算出した。 ここで、反り量は鋼板の長さ方向を水平に、幅方向を鉛直方向として、測定し た。
び (MPa) = 1.2152 X 105( Pa) X板厚 (mm) X反り (ram)/250(mm)/250(mm) · · ·式 (1)
(2)耐吸湿性 上記の絶縁被膜を有する方向性電磁鋼板から、 50mm X 50mmの試験片 3枚を採取し、これら を 100°Cの蒸留水中で 5分間浸潰煮沸した。 そして、被膜表面からの P溶出量を定量分析し、平 均値を求めて指標とした。
(3)防鲭性
温度 50°C、露点 50°Cの空気中に、上記の絶縁被膜を有する方向性電磁鋼板を 50時間保持し た。 その後、鋼板表面を目視観察し、鑌が発生した部分の面積率で評価した。
(4)占積率
占積率は、 JIS C 2550に準拠する方法で評価した。 以上の測定結果を表 1に示す,
Figure imgf000015_0002
*1) P04:1mol に対する Mg、 Sr、 Zn、 Ba、 Gaおよび Gr換算 mol数
*2) P溶出量で評価
*3) 鯖発生部の面積率で評価
*4)過マン力'ン酸塩の代替物として添加
*5) P04;1mol
Figure imgf000015_0001
同表に示したとおり、本発明に従い、 2価金属の過マンガン酸塩を該塩中の金属元素換算で 0.02〜2.5molの範囲で添加した絶縁被膜処理液を用いた場合には、被膜張力、耐吸湿性、防鲭 性および占積率のレ、ずれの被膜特性にも優れる絶縁被膜を形成することができた。 これら本発 明例の絶縁被膜特性は、クロム化合物を添加した比較例と同等以上の水準であった。
(実施例 2)
C:0.03mass%、 Si: 3mass%、 sol.Al:0.01mass%未満、 Mn:0.04mass%、 S :0.01mass%未満、 Se:0.02mass%および Sb:0.03mass%を含有し、残部は Feおよび不可避的不純物である組成を有 する方向性電磁鋼板用スラブを熱間圧延し、板厚: 2.5mmの熱延板としたのち、 1050°C X 60秒の 熱延板焼鈍を施した。 次いで、 1回目の冷間圧延により中間板厚:0.8mmの冷延板としたのち、 1000°C X 30秒の中間焼鈍を施した。 さらに、 2回目の冷間圧延を施して最終板厚: 0.30mmとし た。 次いで、この最終板厚の冷延板に 850°C X 60秒の一次再結晶焼鈍を施した。 その後、焼 鈍分離剤として MgOスラリーを塗布し、 880°C X 50時間の二次再結晶焼鈍を施すことにより、フォ ルステライト被膜を有する方向性電磁鋼板を得た。 次に、表 2に示す種々のリン酸塩の水溶液 500ml (P04換算で lmolを含有)に対して、コロイド 状シリカを Si02換算で 0.5〜10mol (水溶液 1000ml)、並びに過マンガン酸塩(過マンガン酸マグネ シゥム.六水和物 [Mg(Mn04)2 · 6H20]を Mg換算で 0.2molおよび過マンガン酸亜鉛'六水和物 [Ζη(Μη04)2·6Η20]を Zn換算で 0.3膨1の合計 0.5mol)を含有させた絶縁被膜処理液を用意した。 そしてこれらの処理液を上記の方向性電磁鋼板の表面に塗布して、 800°C X 60秒の焼付け処理 を施した。 なお、焼付け処理後の被膜厚さは、片面あたり 3 μ mとした。
この焼付け処理後の方向性電磁鋼板について、実施例 1と同様の方法で、被膜張力、耐吸湿 性、防鲭性および占積率を評価した。
結果を表 2に示す。 表 2
Figure imgf000017_0002
*1 ) P04: 1 mol に対する mol数
*2) P溶出量で評価
*3) 鎬発生部の面積率で評価
*4) 過マンカ'ン酸塩に代ぇて、無水クロム酸(〇("03 04 :
Figure imgf000017_0001
に対し I .Omol)添加
同表に示したとおり、本発明で規定したリン酸塩とコロイド状シリカを適量含有したものに、 2価 金属の過マンガン酸塩を適量含有させた絶縁被膜処理液を用いた場合、被膜張力、耐吸湿性、 防鲭性および占積率のすべてについて優れた絶縁被膜特性を得ることができた。
(実施例 3)
C:0.05mass%, Si:3mass%、 sol.Al:0.02mass%未満、 Mn:0.04mass%および S:0.02mass%を含 有し、残部は Feおよび不可避的不純物である組成を有する方向性電磁鋼板用スラブを熱間圧延 し、板厚: 2.0mmの熱延板としたのち、 1000°C X 60秒の熱延板焼鈍を施した。 次いで、 1回目の 冷間圧延により中間板厚: 1.5mmの冷延板としたのち、 1100°C X 60秒の中間焼鈍を施した。 さら に、 2回目の冷間圧延を施して最終板厚: 0.22mmとした。 次いで、この最終板厚の冷延板に脱 炭を兼ねた 820°C X 150秒の一次再結晶焼鈍を施した。 その後、焼鈍分離剤として MgOスラリー を塗布し、 1200°C X 15時間の二次再結晶焼鈍を施すことにより、フォルステライト被膜を有する方 向性電磁鋼板を得た。 次に、リン酸マグネシウム [Mg(H2P04)2]水溶液: 250ml (P04換算で 0.5mol)と、リン酸アルミニゥ ム [A1(H2P04)3〕水溶液: 250ml (P04換算で 0.5mol)とを混合し、 P04合計で 1 1含有する混合水溶 液 500mlを用意した。 当該リン酸塩水溶液に対して、コロイド状シリカ 700ml (Si02換算で 3mol)お よび過マンガン酸マグネシウム .六水和物 [Mg(Mn04)2.6¾0]を Mg換算で 0.5mol含有させた絶縁 被膜処理液を用意した。 次いで、これらの処理液を上記の方向性電磁鋼板の表面に塗布し、 表 3に示す温度(均熱温度)で 30秒、焼付け処理を施した。なお、焼付け処理後の被膜厚さは、 片面あたり 1.5 /z mとした。
この焼付け処理後の方向性電磁鋼板について、実施例 1と同様の方法で、被膜張力、耐吸湿 性、防鲭性および占積率を評価した。 なお、被膜張力につ!/、ては、歪取焼鈍の影響を調査する ため、 800 C X 3時間の歪取焼鈍後にも評価を行った。
結果を表 3に示す。
3
Figure imgf000018_0001
*1 ) P溶出量で評価
*2)鯖発生部の面積率で評価 同表に示したとおり、焼付け処理の温度が、本発明の範囲内: 350〜1100°Cであるとき、歪取 焼鈍後の被膜張力、耐吸湿性、防鲭性および占積率のすべてにっレ、て優れた特性を得ることが できた。
産業上の利用の可能'
本発明によれば、方向性電磁鋼板の表面に、被膜張力、耐吸湿性、防鯖性おょぴ占積率が 共に優れた絶縁被膜を形成することができるので、方向性電磁鋼板の磁歪の低減、ひいては騒 音公害の低減を達成することができる。
また、本発明の絶縁被膜処理液によれば、有害なクロム化合物の廃液を発生させることなぐ クロム化合物を含有する絶縁被膜処理液を用いた場合に匹敵する優れた被膜特性を有する、絶 縁被膜を有する方向性電磁鋼板を製造することができる。

Claims

請求の範囲
•Mg、 Ca、 Ba、 Sr、 Zn、 Alおよび Mnのリン酸塩のうちから選ばれる少なくとも 1種と、
'該リン酸塩中の P04 : lmolに対し、コロイド状シリカを Si〇2換算で 0.5〜10mol、並びに Mg、 Sr、
Zn、 Baおよび Caの過マンガン酸塩のうちから選ばれる少なくとも 1種を該過マンガン酸塩中の金 属元素換算で 0.02〜2.5molを
含有する方向性電磁鋼板用絶縁被膜処理液。
2. Crを実質的に含有しなレ \請求項 1に記載の方向性電磁鋼板用絶縁被膜処理液。
3. 方向性電磁鋼板用スラブを、圧延により最終板厚に仕上げ、ついで一次再結晶焼鈍後、 二次再結晶焼鈍を施し、さらに絶縁被膜処理液を塗布したのち、焼付け処理を行う一連の工程 により、絶縁被膜を有する方向性電磁鋼板を製造する方法であって、
前記絶縁被膜処理液として、 Mg、 Ca、 Ba、 Sr、 Zn、 Alおよび Mnのリン酸塩のうちから選ばれる 少なくとも 1種と、該リン酸塩中の P04 : lmolに対し、コロイド状シリカを Si02換算で 0.5〜10mol、並 ぴに Mg、 Sr、 Zn、 Baおよび Caの過マンガン酸塩のうち力 選ばれる少なくとも 1種を該過マンガン 酸塩中の金属元素換算で 0.02〜2.5励 1を含有する絶縁被膜処理液を用い、
前記焼付け処理を 350°C以上 1100°C以下の温度で行う、絶縁被膜を有する方向性電磁鋼板 の製造方法。
4. 請求項 3に記載の方向性電磁鋼板の製造方法であって、
前記絶縁被膜処理液が Crを実質的に含有しない、絶縁被膜を有する方向性電磁鋼板 の製造方法。
5. 請求項 3または 4に記載の方向性電磁鋼板の製造方法であって、
前記方向性電磁鋼板用スラブを、熱間圧延後、あるいはさらに熱延板焼鈍を施したのち、
1回の冷間圧延または中間焼鈍を挟む 2回以上の冷間圧延により前記最終板厚に仕上げる、 絶縁被膜を有する方向性電磁鋼板の製造方法。
6. 請求項 3または 4に記載の方向性電磁鋼板の製造方法であって、
前記一次再結晶焼鈍後、 MgOを主体とする焼鈍分離剤を塗布してから前記二次再結晶焼鈍 を施す、絶縁被膜を有する方向性電磁鋼板の製造方法。
7. 請求項 5に記載の方向性電磁鋼板の製造方法であって、
前記一次再結晶焼鈍後、 MgOを主体とする焼鈍分離剤を塗布してから前記二次再結晶焼鈍 を施す、絶縁被膜を有する方向性電磁鋼板の製造方法。
PCT/JP2008/065232 2007-08-23 2008-08-20 方向性電磁鋼板用絶縁被膜処理液、および絶縁被膜を有する方向性電磁鋼板の製造方法 WO2009025389A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020107003811A KR101169236B1 (ko) 2007-08-23 2008-08-20 방향성 전기 강판용 절연 피막 처리액 및 절연 피막을 갖는 방향성 전기 강판의 제조 방법
US12/673,982 US8535455B2 (en) 2007-08-23 2008-08-20 Treatment solution for insulation coating for grain oriented electrical steel sheet and method for producing grain oriented electrical steel sheet having insulation coating
CN2008801040723A CN101784698B (zh) 2007-08-23 2008-08-20 方向性电磁钢板用绝缘覆膜处理液以及具有绝缘覆膜的方向性电磁钢板的制造方法
EP08792758.8A EP2182091B1 (en) 2007-08-23 2008-08-20 Insulating film treating liquid for grain oriented electromagnetic steel plate, and process for producing grain oriented electromagnetic steel plate with insulating film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007217570A JP5194641B2 (ja) 2007-08-23 2007-08-23 方向性電磁鋼板用絶縁被膜処理液および絶縁被膜付方向性電磁鋼板の製造方法
JP2007-217570 2007-08-23

Publications (1)

Publication Number Publication Date
WO2009025389A1 true WO2009025389A1 (ja) 2009-02-26

Family

ID=40378286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/065232 WO2009025389A1 (ja) 2007-08-23 2008-08-20 方向性電磁鋼板用絶縁被膜処理液、および絶縁被膜を有する方向性電磁鋼板の製造方法

Country Status (7)

Country Link
US (1) US8535455B2 (ja)
EP (1) EP2182091B1 (ja)
JP (1) JP5194641B2 (ja)
KR (1) KR101169236B1 (ja)
CN (1) CN101784698B (ja)
RU (1) RU2431697C1 (ja)
WO (1) WO2009025389A1 (ja)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4695722B2 (ja) 2008-03-31 2011-06-08 新日本製鐵株式会社 方向性電磁鋼板及びその製造方法
JP5593942B2 (ja) * 2010-08-06 2014-09-24 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
JP5994981B2 (ja) * 2011-08-12 2016-09-21 Jfeスチール株式会社 方向性電磁鋼板の製造方法
JP5360272B2 (ja) 2011-08-18 2013-12-04 Jfeスチール株式会社 方向性電磁鋼板の製造方法
US9805851B2 (en) 2011-10-20 2017-10-31 Jfe Steel Corporation Grain-oriented electrical steel sheet and method of producing the same
KR101448600B1 (ko) * 2012-11-06 2014-10-08 주식회사 포스코 절연피막 조성물, 이를 이용한 무방향성 전기강판의 절연피막 형성방법 및 무방향성 전기강판
KR101419473B1 (ko) * 2012-11-12 2014-07-15 주식회사 포스코 절연피막 조성물, 이를 이용한 무방향성 전기강판의 절연피막 형성방법 및 무방향성 전기강판
KR101448599B1 (ko) * 2012-11-12 2014-10-08 주식회사 포스코 절연피막 조성물, 이를 이용한 무방향성 전기강판의 절연피막 형성방법 및 무방향성 전기강판
JP2014136815A (ja) 2013-01-16 2014-07-28 Jfe Steel Corp 亜鉛系めっき鋼板の製造方法。
DE102013208618A1 (de) * 2013-05-10 2014-11-13 Henkel Ag & Co. Kgaa Chromfreie Beschichtung zur elektrischen Isolierung von kornorientiertem Elektroband
JPWO2015162837A1 (ja) * 2014-04-24 2017-04-13 Jfeスチール株式会社 方向性電磁鋼板用のクロムフリー絶縁被膜処理液およびクロムフリー絶縁被膜付き方向性電磁鋼板
WO2016125504A1 (ja) 2015-02-05 2016-08-11 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法並びに変圧器騒音特性の予測方法
WO2016139818A1 (ja) * 2015-03-05 2016-09-09 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
JP6332452B2 (ja) 2015-03-27 2018-05-30 Jfeスチール株式会社 絶縁被膜付き方向性電磁鋼板およびその製造方法
JP6323423B2 (ja) * 2015-09-25 2018-05-16 Jfeスチール株式会社 方向性電磁鋼板およびその製造方法
JP6547835B2 (ja) 2015-09-29 2019-07-24 日本製鉄株式会社 方向性電磁鋼板、及び方向性電磁鋼板の製造方法
KR101796234B1 (ko) 2015-12-22 2017-11-09 주식회사 포스코 방향성 전기강판용 절연피막 조성물, 이를 이용한 방향성 전기강판의 절연피막 형성방법, 및 방향성 전기강판
EP3508614B1 (en) 2016-08-30 2021-07-14 JFE Steel Corporation Coated metal, processing liquid for coating formation and coated metal production method
WO2018051902A1 (ja) * 2016-09-13 2018-03-22 Jfeスチール株式会社 クロムフリー絶縁張力被膜付き方向性電磁鋼板およびその製造方法
JP6729710B2 (ja) 2016-10-31 2020-07-22 日本製鉄株式会社 方向性電磁鋼板
RU2709911C1 (ru) * 2016-11-28 2019-12-23 ДжФЕ СТИЛ КОРПОРЕЙШН Текстурированная электромагнитная листовая сталь и способ производства текстурированной электромагнитной листовой стали
JP6690739B2 (ja) * 2017-01-10 2020-04-28 日本製鉄株式会社 巻鉄心、及びその製造方法
KR102043782B1 (ko) * 2017-12-26 2019-11-12 주식회사 포스코 방향성 전기강판 및 방향성 전기강판의 제조방법
KR102557236B1 (ko) * 2018-03-28 2023-07-19 닛폰세이테츠 가부시키가이샤 방향성 전자 강판의 제조 방법 및 방향성 전자 강판
CN112567073B (zh) * 2018-08-17 2022-05-27 杰富意钢铁株式会社 绝缘覆膜形成用处理液的制造方法和制造装置以及带有绝缘覆膜的钢板的制造方法
RU2765649C1 (ru) * 2018-09-28 2022-02-01 ДжФЕ СТИЛ КОРПОРЕЙШН Средство для обработки для формирования бесхромового изолирующего покрытия, текстурированный лист из электротехнической стали с нанесенным изоляционным покрытием и способ его изготовления
WO2020149337A1 (ja) * 2019-01-16 2020-07-23 日本製鉄株式会社 方向性電磁鋼板の製造方法
EP3693496A1 (de) * 2019-02-06 2020-08-12 Rembrandtin Lack GmbH Nfg.KG Wässrige zusammensetzung zur beschichtung von kornorientiertem stahl
US20230106127A1 (en) * 2020-02-28 2023-04-06 Jfe Steel Corporation Grain-oriented electrical steel sheet with insulating film and method for manufacturing the same
RU2765555C1 (ru) 2021-05-31 2022-02-01 Публичное Акционерное Общество "Новолипецкий металлургический комбинат" Электроизоляционное покрытие для электротехнической анизотропной стали, не содержащее в составе соединений хрома и обладающее высокими потребительскими характеристиками
CN115449243A (zh) * 2022-09-28 2022-12-09 首钢智新迁安电磁材料有限公司 一种取向硅钢绝缘涂层液及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4839338A (ja) 1971-09-27 1973-06-09
JPS5079442A (ja) 1973-11-17 1975-06-27
JPS54130615A (en) 1978-03-31 1979-10-11 Nippon Steel Corp Insulating coating solution for nondirectional silicon steel plate and method of forming insulating coated layer
JPS579631B2 (ja) 1978-04-28 1982-02-22
JPS5844744B2 (ja) 1979-11-22 1983-10-05 川崎製鉄株式会社 方向性珪素鋼板にクロム酸化物を含まない張力付加型の上塗り絶縁被膜を形成する方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3932201A (en) * 1975-02-24 1976-01-13 Morton-Norwich Products, Inc. Magnesium oxide coating composition and process
SE402470B (sv) * 1976-10-29 1978-07-03 Asea Ab Sett att behandla ett med en isolerande skyddsbeleggning av silikat forsett foremal av kiselhaltigt stal
JPS5934604B2 (ja) 1980-06-19 1984-08-23 富士通株式会社 粉体回収装置
JPS6160887A (ja) * 1984-08-30 1986-03-28 Canon Electronics Inc 不導体被膜の形成方法
JP3239312B2 (ja) * 1994-03-31 2001-12-17 川崎製鉄株式会社 耐食性に優れた電気絶縁被膜を有する電磁鋼板
RU2082839C1 (ru) * 1995-02-20 1997-06-27 Акционерное общество "Химпром" Способ электролитического микродугового нанесения покрытия на изделия из углеродистой стали
US6074464A (en) * 1998-02-03 2000-06-13 Sermatech International, Inc. Phosphate bonded aluminum coatings
US6676771B2 (en) * 2001-08-02 2004-01-13 Jfe Steel Corporation Method of manufacturing grain-oriented electrical steel sheet
EP1645538A1 (de) * 2004-10-05 2006-04-12 Siemens Aktiengesellschaft Materialzusammensetzung für die Herstellung einer Beschichtung für ein Bauteil aus einem metallischen Basismaterial und beschichtetes metallisches Bauteil
DE102005059314B4 (de) * 2005-12-09 2018-11-22 Henkel Ag & Co. Kgaa Saure, chromfreie wässrige Lösung, deren Konzentrat, und ein Verfahren zur Korrosionsschutzbehandlung von Metalloberflächen
JP4695722B2 (ja) * 2008-03-31 2011-06-08 新日本製鐵株式会社 方向性電磁鋼板及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4839338A (ja) 1971-09-27 1973-06-09
JPS5079442A (ja) 1973-11-17 1975-06-27
JPS54130615A (en) 1978-03-31 1979-10-11 Nippon Steel Corp Insulating coating solution for nondirectional silicon steel plate and method of forming insulating coated layer
JPS579631B2 (ja) 1978-04-28 1982-02-22
JPS5844744B2 (ja) 1979-11-22 1983-10-05 川崎製鉄株式会社 方向性珪素鋼板にクロム酸化物を含まない張力付加型の上塗り絶縁被膜を形成する方法

Also Published As

Publication number Publication date
CN101784698B (zh) 2011-09-21
US8535455B2 (en) 2013-09-17
KR20100046209A (ko) 2010-05-06
EP2182091B1 (en) 2018-10-10
US20110067786A1 (en) 2011-03-24
JP2009052060A (ja) 2009-03-12
KR101169236B1 (ko) 2012-08-02
RU2431697C1 (ru) 2011-10-20
CN101784698A (zh) 2010-07-21
JP5194641B2 (ja) 2013-05-08
EP2182091A1 (en) 2010-05-05
EP2182091A4 (en) 2015-10-21

Similar Documents

Publication Publication Date Title
WO2009025389A1 (ja) 方向性電磁鋼板用絶縁被膜処理液、および絶縁被膜を有する方向性電磁鋼板の製造方法
JP5181571B2 (ja) 方向性電磁鋼板用クロムフリー絶縁被膜処理液および絶縁被膜付方向性電磁鋼板の製造方法
JP5104128B2 (ja) 方向性電磁鋼板用クロムフリー絶縁被膜処理液および絶縁被膜付方向性電磁鋼板の製造方法
JP6031951B2 (ja) 方向性電磁鋼板およびその製造方法
US9011585B2 (en) Treatment solution for insulation coating for grain-oriented electrical steel sheets
RU2698234C1 (ru) Лист из текстурированной электротехнической стали, имеющий не содержащее хрома изоляционное покрытие, создающее натяжение, и способы изготовления такого стального листа
JP6558325B2 (ja) クロムフリー張力被膜形成用処理液、クロムフリー張力被膜付方向性電磁鋼板、クロムフリー張力被膜付方向性電磁鋼板の製造方法およびトランス用コア
JP4983334B2 (ja) 方向性電磁鋼板用絶縁被膜処理液および方向性電磁鋼板の製造方法
CN115627332A (zh) 方向性电磁钢板及其制造方法
WO2019106976A1 (ja) 方向性電磁鋼板およびその製造方法
JP4321181B2 (ja) クロムを含まない上塗絶縁被膜の形成方法
WO2020138069A1 (ja) 方向性電磁鋼板及びその製造方法
JP2012158799A (ja) クロムレス張力被膜用処理液およびクロムレス張力被膜の形成方法
JPWO2020066469A1 (ja) クロムフリー絶縁被膜形成用処理剤、絶縁被膜付き方向性電磁鋼板およびその製造方法
JP4677765B2 (ja) クロムレス被膜付き方向性電磁鋼板およびその製造方法
CN112771203A (zh) 无铬绝缘被膜形成用处理剂、带绝缘被膜的方向性电磁钢板及其制造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880104072.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08792758

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008792758

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 12673982

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20107003811

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010110818

Country of ref document: RU