WO2018097100A1 - 方向性電磁鋼板および方向性電磁鋼板の製造方法 - Google Patents

方向性電磁鋼板および方向性電磁鋼板の製造方法 Download PDF

Info

Publication number
WO2018097100A1
WO2018097100A1 PCT/JP2017/041671 JP2017041671W WO2018097100A1 WO 2018097100 A1 WO2018097100 A1 WO 2018097100A1 JP 2017041671 W JP2017041671 W JP 2017041671W WO 2018097100 A1 WO2018097100 A1 WO 2018097100A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
coating
grain
coating layer
film
Prior art date
Application number
PCT/JP2017/041671
Other languages
English (en)
French (fr)
Inventor
拓実 馬田
重宏 ▲高▼城
敬 寺島
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to JP2018505759A priority Critical patent/JP6579260B2/ja
Priority to KR1020197013739A priority patent/KR102231543B1/ko
Priority to EP17874944.6A priority patent/EP3546614B1/en
Priority to RU2019116213A priority patent/RU2709911C1/ru
Priority to CN201780072874.XA priority patent/CN109983159A/zh
Priority to US16/462,601 priority patent/US11781196B2/en
Publication of WO2018097100A1 publication Critical patent/WO2018097100A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1288Application of a tension-inducing coating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0664Carbonitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0676Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • H01F1/18Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets with insulating coating

Definitions

  • the present invention relates to a grain-oriented electrical steel sheet and a method for producing the grain-oriented electrical steel sheet.
  • Oriented electrical steel sheets are soft magnetic materials used as iron core materials for transformers and generators.
  • the grain-oriented electrical steel sheet is characterized in that the ⁇ 001> orientation, which is the easy axis of iron, has a crystal structure highly aligned with the rolling direction of the steel sheet.
  • Such a texture is formed through finish annealing in a manufacturing process of a grain-oriented electrical steel sheet, in which crystal grains having a ⁇ 110 ⁇ ⁇ 001> orientation called a so-called Goss orientation are preferentially grown.
  • As magnetic properties of products of grain-oriented electrical steel sheets high magnetic flux density and low iron loss are required.
  • the magnetic properties of the grain-oriented electrical steel sheet are improved by applying a tensile stress (tension) to the steel sheet surface.
  • a tensile stress tension
  • a forsterite film having a thickness of about 2 ⁇ m is formed on the surface of the steel sheet, and a film mainly composed of silicic acid salt having a thickness of about 2 ⁇ m is formed thereon.
  • the forming technique is common. That is, a silicate film having a low thermal expansion coefficient compared with that of a steel sheet is formed at a high temperature and lowered to room temperature, and the tensile stress is applied to the steel sheet due to the difference in thermal expansion coefficient between the steel sheet and the silicate film. Is added.
  • This silicate coating also functions as an insulative coating essential for grain-oriented electrical steel sheets. That is, the generation prevents local eddy currents in the steel sheet.
  • the iron loss can be greatly reduced by smoothing the surface of the grain-oriented electrical steel sheet after finish annealing by chemical polishing or electrolytic polishing and then applying a tensile stress by a coating on the steel sheet.
  • the forsterite coating between the steel plate and the silicate coating forms a diffusion layer with the steel plate. Therefore, the smoothness of the steel sheet surface inevitably deteriorates.
  • the adhesion between silicic acid salt and metal is low, and a silicic acid coating film cannot be formed directly on a steel sheet having a mirror surface.
  • the coating structure of a conventional grain-oriented electrical steel sheet (steel sheet / forsterite film / silicic acid salt film), the surface of the steel sheet cannot be smoothed.
  • Patent Document 1 in order to maintain the smoothness of the steel sheet surface and to apply a large tensile stress to the steel sheet, a ceramic film made of TiN or the like is formed on the steel sheet by a CVD method or a PVD method. Yes. At this time, since the tensile stress applied to the steel plate is proportional to the thickness of the ceramic coating, the ceramic coating is formed at least 1 ⁇ m. However, since the CVD method and the PVD method are high in manufacturing cost, it is desired to make the film as thin as possible. In this case, the tensile stress applied to the steel sheet is reduced.
  • the film in order to compensate for such a decrease in tension due to thinning, or to apply a larger tension to the steel sheet, the film is made of silicic acid salt on a ceramic film having a thickness of 1 ⁇ m or less. An insulating tension film is formed.
  • the present inventors examined a grain-oriented electrical steel sheet in which an insulating tension film was formed on a ceramic film. As a result, when the strain relief annealing is performed on the grain oriented electrical steel sheet by a customer or the like, the ceramic coating may be peeled off from the steel sheet or the magnetic properties of the grain oriented electrical steel sheet may be inferior.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide a grain-oriented electrical steel sheet excellent in film adhesion and magnetic properties after strain relief annealing, and a method for producing the same.
  • the present inventors have adopted a unique structure as a ceramic film and an insulating tension film, so that the film adhesion and magnetic properties are improved even after strain relief annealing. Both have been found to be excellent and the present invention has been completed.
  • the present invention provides the following [1] to [9].
  • a steel plate, a coating layer A which is a ceramic coating disposed on the steel plate and whose oxide content is less than 30% by mass, and an oxide disposed on the coating layer A are contained.
  • a grain-oriented electrical steel sheet having a tension per 1.0 ⁇ m of 4.0 MPa / ⁇ m or more.
  • the present invention it is possible to provide a grain-oriented electrical steel sheet excellent in coating film adhesion and magnetic properties after strain relief annealing, and a manufacturing method thereof.
  • silicic acid salt having a low coefficient of thermal expansion as the material of the insulation tension coating is effective for increasing the tensile stress exerted on the steel sheet by the insulation tension coating to improve the magnetic properties.
  • the components in the insulation tension coating oxidize the ceramic coating and produce a reaction product.
  • this reaction product diffuses from the interface between the insulating tension coating and the ceramic coating through the ceramic coating in the direction of the steel plate, and the interface between the ceramic coating and the steel plate. Reacts with Fe of the steel sheet to form precipitates.
  • the present inventors have studied to suppress the oxidation reaction of the ceramic film by the insulating tension film by adjusting the component (oxide) of the insulating tension film.
  • the reactivity of the oxide correlates with the bond energy of 1s orbital of oxygen (O) measured by XPS method. That is, the higher the 1s bond energy of oxygen, the less likely the oxidation reaction occurs because oxygen has a higher covalent bond with surrounding elements.
  • the inventors formed a ceramic film made of nitride or the like with a thickness of 1.00 ⁇ m or less on a steel plate from which the surface forsterite film was removed by pickling.
  • FIG. 1 is a cross-sectional view schematically showing a preferred embodiment of the grain-oriented electrical steel sheet of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing a conventional grain-oriented electrical steel sheet.
  • a conventional grain-oriented electrical steel sheet usually has a forsterite film 2 on a steel sheet 1 and an insulating tension film 3 formed thereon.
  • the thickness T2 of the forsterite coating 2 is about 2 ⁇ m
  • the thickness T3 of the insulating tension coating 3 is about 2 ⁇ m.
  • the conventional forsterite film 2 (see FIG. 2) is replaced with a ceramic film 4.
  • the ceramic coating 4 is formed on the surface of the steel plate 1 smoothed by chemical polishing or electrolytic polishing using the CVD method or the PVD method.
  • the thickness T 4 of the ceramic coating 4 is, for example, 1.00 ⁇ m or less. Therefore, even if the thickness T 3 of the insulating tension coating 3 is increased to 2 ⁇ m or more, the grain-oriented electrical steel sheet is transformed into a transformer. The effective steel sheet volume (space factor) when used as is not reduced.
  • the tension applied to the steel sheet by the coating is usually proportional to the thickness of the coating, it is considered that increasing the thickness of the insulating tension coating is useful for improving the magnetic properties.
  • the inventors have increased the tension applied to the steel sheet by increasing the thickness of the insulating tension film formed by adjusting the rotation speed of the coating-type roll or the specific gravity of the coating chemical solution, thereby increasing the directionality. It has been found that the magnetic properties of the electrical steel sheet can be improved.
  • the grain-oriented electrical steel sheet of the present invention is disposed on a steel sheet, a coating layer A that is a ceramic coating having an oxide content of less than 30% by mass, and is disposed on the coating layer A.
  • the grain-oriented electrical steel sheet has a tension per 1.0 ⁇ m thickness of the coating layer B of 4.0 MPa / ⁇ m or more.
  • the grain-oriented electrical steel sheet of the present invention has excellent film adhesion after strain relief annealing (hereinafter also simply referred to as “film adhesion”), and also has magnetic properties after strain relief annealing (hereinafter simply referred to as “magnetic characteristics”). Say) is excellent.
  • film adhesion film adhesion after strain relief annealing
  • magnetic characteristics magnetic properties after strain relief annealing
  • ⁇ steel sheet> Although it does not specifically limit as a steel plate, for example, the steel plate demonstrated below is mentioned.
  • Such a steel ingot is hot-rolled, and then made into a final cold-rolled sheet by cold rolling several times while sandwiching several degrees of annealing, followed by decarburization annealing and finish annealing, thereby Goss orientation To develop secondary recrystallized grains having In this way, a steel plate is obtained.
  • the number of cold rolling is preferably 2 times or less in order to balance the magnetic characteristics and cost.
  • C is removed by decarburization annealing
  • Al, N, Se, and S are purified by finish annealing, so that the steel sheet after finish annealing has a content of inevitable impurities. Become.
  • the forsterite film on the steel sheet surface is removed by pickling or the like.
  • a forsterite film is formed on the surface of the steel sheet and then the forsterite film is removed by pickling.
  • the formation of the forsterite film is useful for the decarburization of the steel sheet, but when using other decarburization means, the forsterite film need not be formed.
  • the steel plate surface is smoothed by a method such as chemical polishing or electrolytic polishing.
  • a method such as chemical polishing or electrolytic polishing.
  • the rougher the surface state of the steel plate the better the film adhesion due to the anchor effect.
  • the smoother the surface state of the steel sheet the easier the magnetic domain moves, and the greater the amount of magnetic properties improved when a tensile stress is applied.
  • the coating layer A ceramic coating
  • the grain-oriented electrical steel sheet of the present invention has a coating layer A that is a ceramic coating disposed on the surface of the steel sheet described above.
  • composition (Oxide)
  • the oxide content in the coating layer A is less than 30% by mass because the coating adhesion is better when the ceramic coating lattice matches the body-centered cubic lattice of the steel sheet. 15% by mass or less, preferably 5% by mass or less, more preferably 2% by mass or less.
  • the oxide content in the ceramic coating can be measured using fluorescent X-rays using a standard plate having a known composition.
  • the elements other than oxygen (O) in the oxide include elements exemplified as elements other than C and N in the non-oxide described later.
  • Non-oxide examples of the component (component other than oxide) contained in the coating layer A (ceramic coating) include at least one selected from the group consisting of carbides, nitrides, and carbonitrides. When the ceramic film contains a nitride or carbonitride, the film adhesion becomes better.
  • non-oxide is at least one selected from the group consisting of carbide, nitride, and carbonitride
  • elements other than C and N in the non-oxide include, for example, Cr, Ti, Al, Si, Zr , Mo, Y, Nb, W, Fe, Mn, Ta, Ge, and Hf, and at least one selected from the group consisting of Cr, Ti, Al, Si, Zr, Mo, Y, Nb and At least one selected from the group consisting of W is preferred.
  • a nitride or carbonitride having a rock salt structure is preferable because it easily matches the body-centered cubic lattice of the steel sheet.
  • the non-oxide is a component that improves the oxidation resistance of the ceramic coating as much as possible.
  • the Arrhenius plot created by P. Panjan et al. P. Panjan et al., Thin Solid Films 281-282 (1996) 298.
  • Ti etc. added to the nitride containing Cr Oxidation resistance can be increased.
  • a non-oxide containing three or more elements such as TiCrN or AlCrN can also be suitably used.
  • the non-oxide content in the ceramic coating is preferably 70% by mass or more. More preferably, the ceramic coating is substantially composed of a non-oxide. In the present invention, the value obtained by subtracting the oxide content from the total mass of the ceramic coating can be regarded as the non-oxide content in the ceramic coating.
  • the thickness of the coating layer A (ceramic coating) is preferably 1.00 ⁇ m or less, and more preferably 0.30 ⁇ m or less, from the viewpoint of suppressing an increase in cost.
  • the thickness of the ceramic film is preferably 0.01 ⁇ m or more because the film adhesion is more excellent.
  • a film forming method of the coating layer A (ceramic coating), a CVD (Chemical Vapor Deposition) method or a PVD (Physical Vapor Deposition) method is preferable.
  • the CVD method is preferably a thermal CVD method.
  • the film forming temperature is preferably 900 to 1100 ° C.
  • the pressure during film formation can be formed even at atmospheric pressure, but it is preferable to reduce the pressure for uniform film formation, and more preferably from 10 to 1000 Pa for manufacturing convenience.
  • the PVD method is preferably an ion plating method.
  • the film forming temperature is preferably 300 to 600 ° C. for the convenience of production.
  • the pressure during film formation is preferably reduced, and more preferably from 0.1 to 100 Pa.
  • the PVD method is preferable, and the ion plating method is more preferable.
  • the CVD method for forming a film using a thermodynamic reaction may have difficulty in obtaining the desired composition.
  • the PVD method ionizes the alloy material to cause consistent precipitation. Can be easily obtained.
  • the grain-oriented electrical steel sheet of the present invention has a coating layer B, which is an insulating tension coating containing an oxide, disposed on the coating layer A (ceramic coating).
  • the bond energy of oxygen 1s orbit in coating layer B is greater than 530 eV.
  • the binding energy is preferably 532 eV or more, more preferably 533 eV or more, and more preferably 536 eV or more, because the film adhesion is more excellent.
  • the upper limit of the said binding energy is not specifically limited, For example, it is 545 eV or less.
  • Oxygen 1s orbital bond energy is greater than 530 eV means “Oxygen (O) 1s orbital bond energy determined by X-ray photoelectron spectroscopy (XPS) has a peak in a range greater than 530 eV” This means that (see FIG. 4).
  • the coating layer B contains an oxide.
  • a strong covalent bond with oxygen (O) is formed in the insulating tension film.
  • Si silicon
  • phosphorus (P) have a large electronegativity of around 2, increasing the ratio of these increases the binding energy of oxygen in the 1s orbital.
  • inclusion of phosphorus (P) is preferred.
  • phosphorus oxide (phosphate) has a relatively large thermal expansion coefficient
  • the tension applied to the steel sheet May be disadvantageous in terms of
  • the insulating tension coating if the content of silicon oxide (silica) is increased, the tension is improved, but the effect of increasing the binding energy of oxygen 1s orbitals is weaker than that of phosphorus. It may be difficult to achieve both reduction in oxidizing power. Therefore, it is preferable to contain an oxide of an atom having an electronegativity exceeding 1.5 other than P and Si.
  • atoms having an electronegativity exceeding 1.5 include Ti, Mn, Ni, Nb, V, and W.
  • the content of phosphorus oxide (P 2 O 5 ) in the insulating tension coating is preferably 25 to 55% by mass, and preferably 35 to 45% by mass because the film adhesion and magnetic properties are more excellent. Is more preferable.
  • the content of silicon oxide (SiO 2 ) in the insulating tension coating is preferably 42 to 58 mass%, more preferably 48 to 58 mass%.
  • oxides for example, TiO 2 , MnO 2 , NiO 2 , Nb 2 O 5 , V 2 O 5
  • oxides for example, TiO 2 , MnO 2 , NiO 2 , Nb 2 O 5 , V 2 O 5
  • oxides for example, TiO 2 , MnO 2 , NiO 2 , Nb 2 O 5 , V 2 O 5
  • an oxide of an atom having a low electronegativity for example, Na or K
  • the inclusion of an oxide of an atom having a low electronegativity reduces the bond energy of the oxygen 1s orbital and increases the oxidizing power of the insulating tension film. Since it becomes easy, it may be unpreferable.
  • the content of the oxide in the insulating tension coating can be determined by fluorescent X-ray analysis using a standard plate having a known composition of the insulating tension coating.
  • the oxides in the insulating tension coating may be collectively referred to as “silicic acid salt”.
  • the tension per 1.0 ⁇ m thickness of the coating layer B (insulating tension coating) applied to the steel sheet is 4.0 MPa / ⁇ m or more.
  • the grain-oriented electrical steel sheet of the present invention has excellent magnetic properties.
  • the upper limit of the tension is not particularly limited, but is, for example, 10.0 MPa / ⁇ m or less.
  • the tension evaluation method is as follows. First, a non-warped test piece (rolling direction: 280 mm, rolling perpendicular direction: 30 mm) in which a ceramic film and an insulating tension film are formed in this order on both surfaces of a steel plate (no forsterite film) is prepared. Affix corrosion prevention tape to the entire surface of one side of the prepared specimen. Thereafter, the test piece with the corrosion prevention tape attached is immersed in an aqueous sodium hydroxide solution at about 110 ° C. for about 10 minutes. Thereby, the insulation tension film on the surface on which the corrosion prevention tape is not attached is removed.
  • the steel sheet Since there is no insulation tension coating on one side, the steel sheet has a curvature (warp) in the plane in the sheet thickness direction-rolling direction.
  • the corrosion prevention tape is removed, and the curvature radius R of the steel sheet is obtained.
  • E is the Young's modulus of the steel sheet in the rolling direction
  • d is the film thickness of the coating on one side.
  • tensile_strength (unit: MPa / micrometer) is calculated
  • FIG. 3 is a graph showing the relationship between the thickness of the insulating tension coating and the tension applied to the steel sheet by the insulating tension coating of that thickness. As shown in FIG. 3, as the thickness of the insulating tension coating increases, the tension (tensile stress) applied to the steel sheet increases, thereby improving the magnetic properties of the grain-oriented electrical steel sheet (decreasing iron loss). it is conceivable that.
  • the thickness of the insulating tension coating is preferably 1.0 ⁇ m or more because the magnetic properties of the grain-oriented electrical steel sheet are more excellent.
  • the upper limit of the thickness of the insulating tension coating is preferably 10.0 ⁇ m or less.
  • a method for forming the insulating tension film is not particularly limited, and for example, a method in which a coating chemical solution is applied on the ceramic film, optionally dried, and then baked in a nitrogen atmosphere can be preferably used.
  • this method will be described as an example.
  • the coating chemical solution preferably contains phosphoric acid and / or phosphate and colloidal silica.
  • metal species of the phosphate include Mn and Ni.
  • the coating chemical may further contain an M compound in addition to phosphoric acid and / or phosphate and colloidal silica.
  • M is an element (atom) having an electronegativity exceeding 1.5, and specific examples thereof include Ti, Mn, Ni, Nb, V, or W.
  • Examples of the Ti compound include TiO 2 and Ti 2 O 3 .
  • Examples of the Mn compound include Mn (NO 3 ) 2 , MnSO 4 , MnCO 3 and the like.
  • Examples of the Ni compound include Ni (NO 3 ) 2 and NiSO 4 .
  • Examples of the Nb compound include Nb 2 O 5 and the like.
  • Examples of the V compound include NH 4 VO 3 and V 2 O 5 .
  • Examples of the W compound include K 2 WO 4 and WO 3 .
  • the content of phosphoric acid and / or phosphate in the coating chemical is preferably 20 mol% or more with respect to the total solid content in the coating chemical. However, it is not limited to this.
  • a method of applying such a coating chemical on the coating layer A is not particularly limited, but it is preferable to use a coating type roll from the viewpoint of manufacturing cost.
  • the baking temperature and baking time are preferably 700 to 900 ° C. and 10 to 30 seconds, respectively, for the following reasons.
  • the reaction to generate precipitates that lead to deterioration of the film adhesion between the ceramic film and the insulating tension film is further suppressed, and the film adhesion More excellent.
  • As an initial stage of forming the insulating tension film there is drying of the coating chemical.
  • the coating chemical solution can be sufficiently dried to sufficiently remove the water contained in the coating chemical solution, and the insulation tension coating Can further improve the tensile stress applied to the steel sheet.
  • oxidation of the ceramic film due to moisture can be suppressed during strain relief annealing.
  • the baking atmosphere is preferably a nitrogen atmosphere.
  • the ceramic film may be easily oxidized due to moisture and / or oxygen contained in the air.
  • the atmosphere is a nitrogen atmosphere, the oxidation of the ceramic film is suppressed and the film adheres. More excellent.
  • strain relief annealing The grain-oriented electrical steel sheet of the present invention may be subjected to strain relief annealing by, for example, a customer.
  • the conditions for strain relief annealing are not particularly limited. For example, annealing is performed at 700 to 900 ° C. for 2 to 4 hours in an atmosphere such as a nitrogen atmosphere.
  • grooves are formed near the surface of the steel sheet so as to cross the rolling direction of the grain-oriented electrical steel sheet, or distortion is caused by laser irradiation or electron beam irradiation.
  • a technology for subdividing the magnetic domains of grain-oriented electrical steel sheets can also be used.
  • the magnetic domain refinement effect due to the groove formation remains even after annealing, but the strain due to laser irradiation or electron beam irradiation is alleviated by strain relief annealing performed by customers etc., and there is difficulty in use as a wound core, for example There is a case.
  • the grain-oriented electrical steel sheet of the present invention is excellent in film adhesion and magnetic properties even when strain relief annealing is not performed (for example, only for the iron core). Therefore, in the present invention, when the strain relief annealing is not performed, the magnetic characteristics can be improved by using the magnetic domain subdivision technique by introducing strain.
  • steel sheet As components in steel, by mass%, C: 0.05%, Si: 3.2%, Mn: 0.05%, Al: 0.03%, N: 0.005%, and Se: 0.00.
  • a steel ingot containing 01% and the balance of inevitable impurities and Fe was used. This steel ingot is hot-rolled, subjected to hot-rolled sheet annealing, made into a final cold-rolled sheet having a thickness of 0.23 mm by two cold rollings sandwiching intermediate annealing, and then Goss orientation by decarburization annealing and finish annealing. Secondary recrystallized grains with Thus, a forsterite-coated steel plate was obtained.
  • the plate thickness of the steel plate after chemical polishing was 0.22 mm.
  • ⁇ Coating layer A Ceramics coating >> Next, a TiN ceramic film having a thickness of 0.20 ⁇ m was formed on the steel plate by CVD. The oxide content in the ceramic coating was 2% by mass or less. As the CVD method, a thermal CVD method was used to form a film under the conditions of 1050 ° C. and 1000 Pa.
  • Coating layer B Insulation tension coating >> Next, a coating chemical solution was applied onto a ceramic film formed on a steel plate using an application type roll and dried, followed by baking at 850 ° C. for 15 seconds in a nitrogen atmosphere. Thus, an insulating tension film having a thickness of 2.0 ⁇ m was formed.
  • one or more components are selected from phosphoric acid, colloidal silica (ADEKA, AT-30, average particle size: 10 nm), and M compound. It prepared by mix
  • FIG. 4 is a graph showing the binding energy of the 1s orbital of oxygen by the XPS method.
  • FIG. 4 representatively shows a graph of one invention example (No. 17 in Table 1 below) and a graph of one comparative example (No. 9 in Table 1 below).
  • the graph of the invention example has a peak in a range larger than 530 eV
  • the graph of the comparative example has a peak in a range of 530 eV or less.
  • ⁇ Film adhesion> The directional electrical steel sheet after strain relief annealing is wound around round bars (including 3mm ⁇ round bars) with different diameters at intervals of 5mm, such as 5mm, 10mm ... : Mm ⁇ ). The results are shown in Table 1 below. It can be evaluated that the smaller the minimum diameter (non-peeling diameter) at which the film does not peel off, the better the film adhesion after strain relief annealing, and the non-peeling diameter is preferably less than 30 mm ⁇ .
  • Iron loss W 17/50 was measured for the grain- oriented electrical steel sheet after strain relief annealing. The results are shown in Table 1 below. When the iron loss W 17/50 was not measured, “-” is shown in Table 1 below. If the value of iron loss W 17/50 (unit: W / kg) is less than 0.80, it can be evaluated that the magnetic properties after strain relief annealing are excellent.
  • the grain-oriented electrical steel sheet according to the example of the present invention in which the binding energy of the 1s orbit of oxygen in the insulating tension coating is larger than 530 eV and the tension of the insulating tension coating is 4.0 MPa / ⁇ m or more.
  • non-peeling diameter is good small film adhesion to the 5 ⁇ having a diameter of 15 mm, and magnetic properties are iron loss W 17/50 of less than 0.80 was good.
  • steel sheet As components in steel, by mass%, C: 0.05%, Si: 3.2%, Mn: 0.05%, Al: 0.03%, N: 0.005%, and Se: 0.00.
  • a steel ingot containing 01% and the balance of inevitable impurities and Fe was used. This steel ingot is hot-rolled, subjected to hot-rolled sheet annealing, made into a final cold-rolled sheet having a thickness of 0.23 mm by two cold rollings sandwiching intermediate annealing, and then Goss orientation by decarburization annealing and finish annealing. Secondary recrystallized grains with Thus, a forsterite-coated steel plate was obtained.
  • the plate thickness of the steel plate after chemical polishing was 0.22 mm.
  • Ceramics coating >> Next, No. of the following Table 2 was formed on the steel plate by the CVD method or the PVD method. Ceramic coatings having the compositions shown in 1 to 26 were formed in thicknesses shown in Table 2 below. The oxide content in the ceramic coating was 2% by mass or less.
  • the CVD method a thermal CVD method was used to form a film under the conditions of 1050 ° C. and 1000 Pa.
  • an ion plating method was used to form a film at 450 ° C., 3 Pa, and a bias voltage of ⁇ 20V.
  • the PVD method was used to determine the No. in Table 2 below. Ceramic coatings having compositions shown in 27 to 28 were formed in thicknesses shown in Table 2 below. The oxide content in the ceramic coating was controlled by including a trace amount of oxygen in the atmosphere during film formation by the PVD method while changing its partial pressure.
  • Coating layer B Insulation tension coating >> Next, a coating chemical solution was applied onto a ceramic film formed on a steel plate using an application type roll and dried, followed by baking at 850 ° C. for 15 seconds in a nitrogen atmosphere. Thus, an insulating tension film having a thickness of 2.0 ⁇ m was formed.
  • As the coating chemical No. 1 in Test Example 1 was used. The same coating chemical as 20 was used.
  • the formed insulating tension coating had a composition of 40P 2 O 5 -55SiO 2 -5WO 3 , an oxygen 1s orbital bond energy of 544 eV, and a tension of 4.5 MPa / ⁇ m.
  • the grain-oriented electrical steel sheet of the present invention example non-peeling diameter has good film adhesion is less than 30 mm?, And iron loss W 17/50 is the magnetic properties of less than 0.80 It was good.
  • Table 2 above when the inventive examples in which the thickness of the ceramic coating is 0.10 ⁇ m are compared, the inventive examples in which the composition of the ceramic coating is TiCrN or AlCrN have better coating adhesion and magnetic properties.
  • Example 3 ⁇ Manufacture of grain-oriented electrical steel sheets> As described below, a coating layer A (ceramic coating) and a coating layer B (insulating tension coating) were formed in this order on the steel sheet to obtain a grain-oriented electrical steel sheet.
  • a coating layer A ceramic coating
  • a coating layer B insulating tension coating
  • steel sheet As components in steel, by mass%, C: 0.05%, Si: 3.2%, Mn: 0.05%, Al: 0.03%, N: 0.005%, and Se: 0.00.
  • a steel ingot containing 01% and the balance of inevitable impurities and Fe was used. This steel ingot is hot-rolled, subjected to hot-rolled sheet annealing, made into a final cold-rolled sheet having a thickness of 0.23 mm by two cold rollings sandwiching intermediate annealing, and then Goss orientation by decarburization annealing and finish annealing. Secondary recrystallized grains with Thus, a forsterite-coated steel plate was obtained.
  • the plate thickness of the steel plate after chemical polishing was 0.20 mm.
  • ⁇ Coating layer A Ceramics coating >> Next, a ceramic film of AlCrN was formed to a thickness of 0.10 ⁇ m on the steel plate by the PVD method. The oxide content in the ceramic coating was 2% by mass or less. In the PVD method, an ion plating method was used to form a film at 450 ° C., 3 Pa, and a bias voltage of ⁇ 20V.
  • Coating layer B Insulation tension coating >> Next, a coating chemical solution was applied onto a ceramic film formed on a steel plate using an application type roll and dried, followed by baking at 850 ° C. for 15 seconds in a nitrogen atmosphere. Thus, an insulating tension film having a thickness shown in Table 3 below was formed.
  • As the coating chemical No. 1 in Test Example 1 was used. The same coating chemical as 20 was used.
  • the grain- oriented electrical steel sheet of the present invention example has a non-peeling diameter of less than 30 mm ⁇ and good film adhesion, and an iron loss W 17/50 of less than 0.80 and magnetic properties. It was good.
  • Table 3 above when the examples of the present invention were compared with each other, there was a tendency that the magnetic properties were improved as the insulating tension film was increased.
  • Sheet 2 forsterite film 3: insulating tension coating 4: ceramic film T 2: the thickness of the forsterite film T 3: insulation tension coating thickness T 4: ceramic coating thickness

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Power Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Physical Vapour Deposition (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

歪取焼鈍後の被膜密着性および磁気特性に優れた方向性電磁鋼板、および、その製造方法を提供する。上記方向性電磁鋼板は、鋼板と、上記鋼板上に配置された、酸化物の含有量が30質量%未満であるセラミックス被膜である被膜層Aと、上記被膜層A上に配置された、酸化物を含有する絶縁張力被膜である被膜層Bと、を有し、上記被膜層B中の酸素の1s軌道の結合エネルギーが、530eVより大きく、上記被膜層Bが上記鋼板に印加する、上記被膜層Bの厚さ1.0μmあたりの張力が、4.0MPa/μm以上である。

Description

方向性電磁鋼板および方向性電磁鋼板の製造方法
 本発明は、方向性電磁鋼板および方向性電磁鋼板の製造方法に関する。
 方向性電磁鋼板は、変圧器または発電機等の鉄心材料として用いられる軟磁性材料である。方向性電磁鋼板は、鉄の磁化容易軸である〈001〉方位が、鋼板の圧延方向に高度に揃った結晶組織を有することが特徴である。このような集合組織は、方向性電磁鋼板の製造工程において、いわゆるGoss方位と称される{110}〈001〉方位の結晶粒を優先的に巨大成長させる、仕上げ焼鈍を通じて形成される。方向性電磁鋼板の製品の磁気特性としては、磁束密度が高く、鉄損が低いことが要求される。
 方向性電磁鋼板の磁気特性は、鋼板表面に引張応力(張力)を印加することによって良好になる。鋼板に引張応力を印加する従来の公知公用の技術としては、鋼板表面に厚さ2μm程度のフォルステライト被膜を形成し、その上に、厚さ2μm程度の珪リン酸塩を主体とする被膜を形成する技術が一般的である。
 すなわち、鋼板と比べて低い熱膨張率を有する珪リン酸塩被膜を高温で形成し、それを室温まで低下させ、鋼板と珪リン酸塩被膜との熱膨張率の差によって、鋼板に引張応力を付加する。
 この珪リン酸塩被膜は、方向性電磁鋼板に必須の絶縁被膜としても機能する。すなわち、絶縁によって、鋼板中の局部的な渦電流の発生が防止される。
 仕上げ焼鈍後の方向性電磁鋼板の表面を化学研磨または電解研磨により平滑化し、その後、鋼板上の被膜により引張応力を印加することにより、鉄損を大きく低下できる。
 しかし、鋼板と珪リン酸塩被膜との間にあるフォルステライト被膜は、鋼板と拡散層を形成する。そのため、必然的に鋼板表面の平滑度は劣化する。珪リン酸塩と金属との密着性は低く、表面を鏡面化した鋼板に直接珪リン酸塩被膜を成膜できない。このように、従来の方向性電磁鋼板の被膜構造(鋼板/フォルステライト被膜/珪リン酸塩被膜)においては、鋼板の表面を平滑化できない。
 そこで、特許文献1においては、鋼板表面の平滑度を維持し、更に鋼板に大きな引張応力を印加するために、鋼板上にCVD法またはPVD法によって、TiNなどからなるセラミックス被膜を成膜している。このとき、鋼板に印加される引張応力は、セラミックス被膜の厚さに比例するため、セラミックス被膜を少なくとも1μm成膜している。
 しかし、CVD法およびPVD法は、製造コストが高いために極力の薄膜化が望まれており、その場合、鋼板に印加される引張応力が低下する。
 特許文献2においては、このような薄膜化による張力低下を補償するために、または、更に大きな張力を鋼板に印加するために、1μm以下の厚さのセラミックス被膜上に、珪リン酸塩からなる絶縁張力被膜を成膜している。
特開平01-176034号公報 特開昭64-068425号公報
 本発明者らは、セラミックス被膜上に絶縁張力被膜を成膜した方向性電磁鋼板について検討した。その結果、需要家等によって、方向性電磁鋼板に対して歪取焼鈍が行なわれた場合に、セラミックス被膜が鋼板から剥離したり、方向性電磁鋼板の磁気特性が劣ったりすることがあった。
 本発明は、以上の点を鑑みてなされたものであり、歪取焼鈍後の被膜密着性および磁気特性に優れた方向性電磁鋼板、および、その製造方法を提供することを目的とする。
 本発明者らは、上記目的を達成するために鋭意検討を行なった結果、セラミックス被膜および絶縁張力被膜として特有の構成を採用することにより、歪取焼鈍後においても、被膜密着性および磁気特性が共に優れることを見出し、本発明を完成させた。
 すなわち、本発明は、以下の[1]~[9]を提供する。
 [1]鋼板と、上記鋼板上に配置された、酸化物の含有量が30質量%未満であるセラミックス被膜である被膜層Aと、上記被膜層A上に配置された、酸化物を含有する絶縁張力被膜である被膜層Bと、を有し、上記被膜層B中の酸素の1s軌道の結合エネルギーが、530eVより大きく、上記被膜層Bが上記鋼板に印加する、上記被膜層Bの厚さ1.0μmあたりの張力が、4.0MPa/μm以上である、方向性電磁鋼板。
 [2]上記被膜層Aの厚さが、0.01μm以上である、上記[1]に記載の方向性電磁鋼板。
 [3]上記被膜層Aの厚さが、0.30μm以下である、上記[1]または[2]に記載の方向性電磁鋼板。
 [4]上記被膜層Bの厚さが、1.0μm以上である、上記[1]~[3]のいずれかに記載の方向性電磁鋼板。
 [5]上記被膜層Bの厚さが、10.0μm以下である、上記[1]~[4]のいずれかに記載の方向性電磁鋼板。
 [6]上記被膜層Bにおいて、Pの含有量が、25~55質量%であり、SiOの含有量が、42~58質量%であり、PおよびSiを除く、電気陰性度が1.5を超える原子の酸化物の含有量が、2~18質量%である、上記[1]~[5]のいずれかに記載の方向性電磁鋼板。
 [7]上記被膜層Aが、窒化物または炭窒化物を含有する、上記[1]~[6]のいずれかに記載の方向性電磁鋼板。
 [8]上記[1]~[7]のいずれかに記載の方向性電磁鋼板を製造する、方向性電磁鋼板の製造方法であって、上記被膜層Aを、CVD法またはPVD法によって成膜する、方向性電磁鋼板の製造方法。
 [9]上記被膜層A上に、塗布型ロールを用いてコーティング薬液を塗布し、窒素雰囲気中で焼付けを行なうことにより、上記被膜層Bを成膜する、上記[8]に記載の方向性電磁鋼板の製造方法。
 本発明によれば、歪取焼鈍後の被膜密着性および磁気特性に優れた方向性電磁鋼板、および、その製造方法を提供できる。
本発明の方向性電磁鋼板の好適な一態様を模式的に示す断面図である。 従来の方向性電磁鋼板を模式的に示す断面図である。 珪リン酸塩からなる絶縁張力被膜の厚さと、その厚さの絶縁張力被膜が鋼板に印加する張力との関係を示すグラフである。 XPS法による酸素の1s軌道の結合エネルギーを示すグラフである。
[本発明者らが得た知見]
 鋼板上に、厚さ1.00μm以下のセラミックス被膜を成膜し、その上に、珪リン酸塩からなる絶縁張力被膜を成膜して歪取焼鈍すると、セラミックス被膜と鋼板とが剥離する(被膜密着性が劣化する)場合があった。その原因について、本発明者らは、数多くの実験を重ねた結果、以下のように考える。
 絶縁張力被膜の材料として低熱膨張率の珪リン酸塩を使用することは、絶縁張力被膜が鋼板に及ぼす引張応力を増大させて磁気特性を良好にするために有効であるが、その一方で、高温環境下で、絶縁張力被膜中の成分が、セラミックス被膜を酸化し、反応生成物が生成する。
 次いで、800℃で3時間の歪取焼鈍中に、この反応生成物が、絶縁張力被膜とセラミックス被膜との界面から、セラミックス被膜中を、鋼板の方向に拡散し、セラミックス被膜と鋼板との界面まで拡散した際に、鋼板のFeと反応して、析出物を形成する。
 その結果、歪取焼鈍の冷却のとき、つまり熱膨張率差により鋼板とセラミックス被膜との界面にかかる応力が印加され始めるときに、析出物がその応力に耐え切れず鋼板から剥離する。このようにして、セラミックス被膜と鋼板とが剥離する。すなわち、被膜密着性が劣化する。
 そこで、本発明者らは、絶縁張力被膜の成分(酸化物)を調整することで、絶縁張力被膜によるセラミックス被膜の酸化反応を抑制することを検討した。
 酸化物の反応性は、XPS法により測定される、酸素(O)の1s軌道の結合エネルギーと相関する。すなわち、酸素の1sの結合エネルギーが高いほど、酸素が周囲の元素と共有結合性の高い結合をしているため、酸化反応が起こりにくい。
 まず、本発明者らは、仕上げ焼鈍の後、表面のフォルステライト被膜を酸洗によって除去した鋼板の上に、窒化物などからなるセラミックス被膜を1.00μm以下の厚さで成膜した。その後、セラミックス被膜上に、コーティング薬液を、塗布型ロールを用いて塗布し、窒素雰囲気で焼付けを行なうことにより、酸素の1s軌道の結合エネルギーが530eVよりも大きい絶縁張力被膜を成膜した。次いで、窒素雰囲気中において、800℃で3時間の歪取焼鈍を行なった。
 セラミックス被膜が厚いほど、「反応生成物が、絶縁張力被膜とセラミックス被膜との界面から、セラミックス被膜中を、鋼板の方向に拡散し、セラミックス被膜と鋼板との界面まで拡散した際に、鋼板のFeと反応して、析出物を形成する」ことが防げられる。このため、セラミックス被膜が薄くなるほど、被膜密着性を確保することが難しくなる。
 しかし、上記態様を採用した場合は、セラミックス被膜の厚さが0.30μm以下と非常に薄膜厚でありながら、歪取焼鈍後においても、優れた被膜密着性を維持できることが見出された。
 図1は、本発明の方向性電磁鋼板の好適な一態様を模式的に示す断面図である。図2は、従来の方向性電磁鋼板を模式的に示す断面図である。
 まず、図2に示すように、従来の方向性電磁鋼板は、通常、鋼板1上に、フォルステライト被膜2があり、その上に、絶縁張力被膜3が成膜されている。図2において、フォルステライト被膜2の厚さTは2μm程度であり、絶縁張力被膜3の厚さTは2μm程度である。
 これに対して、図1においては、従来のフォルステライト被膜2(図2参照)の部分が、セラミックス被膜4に置換されている。より詳細には、化学研磨または電解研磨などにより平滑化された鋼板1の表面上に、CVD法またはPVD法を用いて、セラミックス被膜4が成膜されている。図1において、セラミックス被膜4の厚さTは、例えば、1.00μm以下であるため、絶縁張力被膜3の厚さTを2μm以上に増厚しても、方向性電磁鋼板を変圧器として使用した際の実効鋼板体積(占積率)を減少させない。
 被膜により鋼板に印加される張力は、通常、被膜の厚さに比例することから、絶縁張力被膜の増厚は、磁気特性の向上に有用と考えられる。
 本発明者らは、塗布型ロールの回転速度またはコーティング薬液の比重などを調整することによって、成膜される絶縁張力被膜を増厚することにより、鋼板に印加される張力が増大し、方向性電磁鋼板の磁気特性を良好にできることを見出した。
[方向性電磁鋼板およびその製造方法]
 以下、改めて、本発明の方向性電磁鋼板を説明する。
 本発明の方向性電磁鋼板は、鋼板と、上記鋼板上に配置された、酸化物の含有量が30質量%未満であるセラミックス被膜である被膜層Aと、上記被膜層A上に配置された、酸化物を含有する絶縁張力被膜である被膜層Bと、を有し、上記被膜層B中の酸素の1s軌道の結合エネルギーが、530eVより大きく、上記被膜層Bが上記鋼板に印加する、上記被膜層Bの厚さ1.0μmあたりの張力が、4.0MPa/μm以上である、方向性電磁鋼板である。
 本発明の方向性電磁鋼板は、歪取焼鈍後の被膜密着性(以下、単に「被膜密着性」ともいう)が優れ、かつ、歪取焼鈍後の磁気特性(以下、単に「磁気特性」ともいう)が優れる。
 以下、本発明の方向性電磁鋼板を、より詳細に説明する。以下の説明は、本発明の方向性電磁鋼板の製造方法の説明も兼ねる。
 〈鋼板〉
 鋼板としては、特に限定されないが、例えば、以下に説明する鋼板が挙げられる。
 まず、鋼板となる鋼塊としては、鋼中成分として、質量%で、C:0.002~0.10%、Si:2.5~4.0%、および、Mn:0.005~0.50%を含有し、かつ、Al:0.010~0.050%、および、N:0.003~0.020%を含有し、または、Al:0.010~0.050%、N:0.003~0.020%、Se:0.003~0.030%、および/または、S:0.002~0.03%を含有し、残部は不可避の不純物とFeとからなる鋼塊を用いることが、磁気特性の観点から好ましい。もっとも、これに限定されない。
 このような鋼塊を、熱間圧延し、その後、数度の焼鈍を挟みつつ、数回の冷間圧延により最終冷延板とした後、脱炭焼鈍および仕上げ焼鈍を行なうことにより、Goss方位を有する二次再結晶粒を発達させる。こうして、鋼板が得られる。この際、冷間圧延の回数は、磁気特性とコストとのバランスをとるため、2回以下が好ましい。
 上記鋼中成分のうち、Cは脱炭焼鈍で除去され、Al、N、SeおよびSは仕上げ焼鈍で純化されることにより、仕上げ焼鈍後の鋼板においてはいずれも不可避的不純物程度の含有量となる。
 その後、鋼板表面のフォルステライト被膜を酸洗等によって除去する。
 このように、従来どおり、鋼板表面にフォルステライト被膜を形成させ、その後、酸洗によって、フォルステライト被膜を除去することが、製造上、好ましい。フォルステライト被膜の成膜は、鋼板の脱炭に有用であるが、他の脱炭手段を用いる場合は、フォルステライト被膜を成膜しなくてもよい。
 鋼板表面のフォルステライト被膜を除去した後、化学研磨または電解研磨などの方法によって鋼板表面を平滑化する。
 鋼板の表面状態は、一般的に、粗いほどアンカー効果によって、被膜密着性がより良好になる。反対に、鋼板の表面状態が平滑であるほど、磁区が移動しやすくなり、引張応力を印加したときに磁気特性が良化する量が大きくなる。
 本発明においては、最も鋼板表面を平滑にできる化学研磨後の鋼板を用いても、歪取焼鈍後に、被膜層A(セラミックス被膜)が剥離せず高い被膜密着性を維持できる。そのため、化学研磨または電解研磨によって、鋼板表面をなるべく平滑化し、算術平均粗さRaを0.4μm以下にすることが好ましい。
 〈被膜層A:セラミックス被膜〉
 本発明の方向性電磁鋼板は、上述した鋼板の表面上に配置された、セラミックス被膜である被膜層Aを有する。
 《組成》
 (酸化物)
 被膜層A(セラミックス被膜)における酸化物の含有量は、セラミックス被膜の格子が鋼板の体心立方格子と整合した方が、被膜密着性がより良好になるという理由から、30質量%未満であり、15質量%以下が好ましく、5質量%以下がより好ましく、2質量%以下が更に好ましい。
 セラミックス被膜における酸化物の含有量は、既知の組成の標準板を用いて、蛍光X線を用いて測定できる。
 酸化物における酸素(O)以外の元素としては、例えば、後述する非酸化物におけるCおよびN以外の元素として例示する元素が挙げられる。
 (非酸化物)
 被膜層A(セラミックス被膜)が含有する成分(酸化物以外の成分)としては、例えば、炭化物、窒化物および炭窒化物からなる群から選ばれる少なくとも1種が挙げられる。
 セラミックス被膜が、窒化物または炭窒化物を含有することにより、被膜密着性がより良好になる。
 非酸化物が、炭化物、窒化物および炭窒化物からなる群から選ばれる少なくとも1種である場合、非酸化物におけるCおよびN以外の元素としては、例えば、Cr、Ti、Al、Si、Zr、Mo、Y、Nb、W、Fe、Mn、Ta、GeおよびHfからなる群から選ばれる少なくとも1種が挙げられ、なかでも、Cr、Ti、Al、Si、Zr、Mo、Y、NbおよびWからなる群から選ばれる少なくとも1種が好ましい。
 非酸化物としては、鋼板の体心立方格子に整合しやすいという理由から、岩塩型構造をとる窒化物または炭窒化物が好ましい。
 非酸化物としては、セラミックス被膜の耐酸化性をできるだけ向上させる成分であることが好ましい。P. Panjanらによって作成されたアレニウスプロット(P. Panjan et al., Thin Solid Films 281-282 (1996) 298.)によれば、例えば、Crを含有する窒化物にTiなどを加えることによって、耐酸化性を増すことができる。このため、例えば、TiCrNまたはAlCrNなどの3種以上の元素を含む非酸化物も好適に使用できる。
 セラミックス被膜における非酸化物の含有量は、70質量%以上が好ましい。セラミックス被膜は、実質的に、非酸化物からなることがより好ましい。
 本発明においては、セラミックス被膜の全質量から、酸化物の含有量を差し引いた値を、セラミックス被膜における非酸化物の含有量とみなすことができる。
 《厚さ》
 被膜層A(セラミックス被膜)の厚さは、高コスト化を抑制する観点から、1.00μm以下が好ましく、0.30μm以下がより好ましい。
 一方、セラミックス被膜の厚さは、被膜密着性がより優れるという理由から、0.01μm以上が好ましい。
 《成膜法》
 被膜層A(セラミックス被膜)の成膜法としては、CVD(Chemical Vapor Deposition)法またはPVD(Physical Vapor Deposition)法が好ましい。
 CVD法としては、熱CVD法が好ましい。成膜温度は、900~1100℃が好ましい。成膜の際の圧力は、大気圧でも成膜可能ではあるが、一様に成膜するためには減圧することが好ましく、製造上の都合から、10~1000Paがより好ましい。
 PVD法は、イオンプレーティング法が好ましい。成膜温度は、製造の都合上、300~600℃が好ましい。成膜の際の圧力は、減圧することが好ましく、0.1~100Paがより好ましい。成膜に際しては、鋼板を陰極として-10~-100Vのバイアス電圧を印加することが好ましい。成膜速度を上げることができるという理由から、原料のイオン化にプラズマを用いることが好ましい。
 セラミックス被膜として、例えばTiAlNまたはTiCrNなどの3種類以上の元素を含むセラミックス被膜を成膜する場合、成膜法としては、PVD法が好ましく、イオンプレーティング法がより好ましい。熱力学的な反応を用いて成膜を行なうCVD法は、狙い通りの組成を得ることが難しい場合があるが、PVD法は、合金材料をイオン化させて整合析出させるため、狙い通りの組成を容易に得ることができる。
 〈被膜層B:絶縁張力被膜〉
 本発明の方向性電磁鋼板は、被膜層A(セラミックス被膜)上に配置された、酸化物を含有する絶縁張力被膜である被膜層Bを有する。
 《酸素の1s軌道の結合エネルギー》
 被膜層B(絶縁張力被膜)中の酸素の1s軌道の結合エネルギーは、530eVより大きい。これにより、上述したように、絶縁張力被膜によるセラミックス被膜の酸化反応が抑制され、本発明の方向性電磁鋼板は、被膜密着性に優れる。
 上記結合エネルギーは、被膜密着性がより優れるという理由から、532eV以上が好ましく、533eV以上がより好ましく、536eV以上がより好ましい。
 一方、上記結合エネルギーの上限は、特に限定されないが、例えば、545eV以下である。
 「酸素の1s軌道の結合エネルギーが、530eVより大きい」とは、「X線光電子分光(XPS)法により求められる酸素(O)の1s軌道の結合エネルギーが、530eVより大きい範囲にピークを有する」ことを意味する(図4参照)。
 《組成》
 被膜層B(絶縁張力被膜)は、酸化物を含有する。
 ところで、絶縁張力被膜中の酸素の1s軌道の結合エネルギーを増大させ、絶縁張力被膜の酸化力を低下させるためには、絶縁張力被膜中において、酸素(O)と共有結合性の強い結合を形成する原子の割合を増加させることが好ましい。すなわち、電気陰性度が大きい原子を添加することが好ましい。
 例えば、珪素(Si)およびリン(P)は、電気陰性度が2前後と大きいため、これらの割合を増せば、酸素の1s軌道の結合エネルギーは増大する。
 そして、絶縁張力被膜中の酸素の1s軌道の結合エネルギーを530eVよりも大きくするためには、リン(P)の含有が好ましい。
 ただし、リンの酸化物(リン酸塩)は、熱膨張係数が比較的大きいため、絶縁張力被膜におけるリンの酸化物(リン酸塩)の含有量が多くなりすぎると、鋼板に印加される張力の点で不利な場合がある。
 一方、絶縁張力被膜において、珪素の酸化物(シリカ)の含有量が多くなると、張力は向上するものの、酸素の1s軌道の結合エネルギーを増大させる効果はリンに比べて弱いため、張力の向上と酸化力の低下とを両立することが困難になる場合がある。
 そこで、PおよびSi以外の電気陰性度が1.5を超える原子の酸化物を含有させることが好ましい。原子がイオン化した際の価数が大きいほど、より多くの酸素に共有結合できるため、少ない含有量で被膜密着性の改善が見られるうえに、絶縁張力被膜の充填密度が上がりヤング率が上昇し、鋼板に印加する張力が上昇する。
 電気陰性度が1.5を超える原子(ただし、PおよびSiを除く)の具体例としては、Ti、Mn、Ni、Nb、VまたはWなどが好適に挙げられる。
 以上の点から、被膜密着性および磁気特性がより優れるという理由から、絶縁張力被膜におけるリンの酸化物(P)の含有量は、25~55質量%が好ましく、35~45質量%がより好ましい。
 絶縁張力被膜における珪素の酸化物(SiO)の含有量は、42~58質量%が好ましく、48~58質量%がより好ましい。
 更に、絶縁張力被膜における、電気陰性度が1.5を超える原子(ただし、PおよびSiを除く)の酸化物(例えば、TiO、MnO、NiO、Nb、V、WOなど)の含有量は、2~18質量%が好ましく、2~12質量%がより好ましい。
 一方、絶縁張力被膜において、電気陰性度が低い原子(例えば、NaまたはKなど)の酸化物を含有させることは、酸素の1s軌道の結合エネルギーを低下させ、絶縁張力被膜の酸化力が増大しやすくなるため、好ましくない場合がある。
 絶縁張力被膜における上記酸化物の含有量は、絶縁張力被膜の既知の組成の標準板を用いて、蛍光X線分析により、求めることができる。
 本明細書においては、絶縁張力被膜における上記酸化物をまとめて「珪リン酸塩」と呼ぶ場合がある。
 《張力》
 被膜層B(絶縁張力被膜)は、鋼板に印加する、被膜層B(絶縁張力被膜)の厚さ1.0μmあたりの張力が、4.0MPa/μm以上である。これにより、本発明の方向性電磁鋼板は、磁気特性が優れる。
 一方、上記張力の上限は、特に限定されないが、例えば、10.0MPa/μm以下である。
 上記張力の評価方法(測定方法)は、次の通りである。
 まず、鋼板(フォルステライト被膜なし)の両面にセラミックス被膜および絶縁張力被膜がこの順に形成された反りのない試験片(圧延方向:280mm、圧延直角方向:30mm)を準備する。準備した試験片の片面の全面に、腐食防止テープを貼り付ける。その後、腐食防止テープを貼り付けた試験片を、110℃程度の水酸化ナトリウム水溶液に、10分間程度、浸漬させる。これにより、腐食防止テープを貼り付けていない側の面の絶縁張力被膜を除去する。片面側の絶縁張力被膜が無いので、鋼板は、板厚方向-圧延方向面内において曲率(反り)を生じる。腐食防止テープを除去し、鋼板の曲率半径Rを求める。絶縁張力被膜の張力σは、式「σ=Ed/3R」として与えられる。ここで、Eは、圧延方向の鋼板のヤング率、dは片面の被膜の膜厚である。
 そして、得られた張力σの値を、絶縁張力被膜の厚さで除することにより、上記張力(単位:MPa/μm)が求められる。
 《厚さ》
 図3は、絶縁張力被膜の厚さと、その厚さの絶縁張力被膜が鋼板に印加する張力との関係を示すグラフである。図3に示すように、絶縁張力被膜の厚さが増すに従い、鋼板に印加される張力(引張応力)が増大し、これにより、方向性電磁鋼板の磁気特性が優れる(鉄損が低下する)と考えられる。
 絶縁張力被膜の厚さは、方向性電磁鋼板の磁気特性がより優れるという理由から、1.0μm以上が好ましい。
 一方、絶縁張力被膜を厚くしすぎると、方向性電磁鋼板を変圧器として使用した際の実効鋼板体積の減少に繋がり、引張応力による鉄損の低減効果も飽和してくるため、変圧器特性はむしろ劣化する場合も考えられる。このため、絶縁張力被膜の厚さの上限は、10.0μm以下が好ましい。
 《成膜法》
 絶縁張力被膜の成膜法は、特に限定されないが、例えば、セラミックス被膜上に、コーティング薬液を塗布し、任意で乾燥させた後、窒素雰囲気中で焼付けを行なう方法が好適に挙げられる。以下、この方法を例に説明する。
 (コーティング薬液)
 コーティング薬液は、リン酸および/またはリン酸塩と、コロイダルシリカとを含有することが好ましい。リン酸塩の金属種としては、例えば、Mn、Niなどが挙げられる。
 コーティング薬液は、リン酸および/またはリン酸塩とコロイダルシリカとのほかに、更に、M化合物を含有してもよい。ここで、Mは、例えば、電気陰性度が1.5を超える元素(原子)であり、その具体例としては、Ti、Mn、Ni、Nb、VまたはWなどが挙げられる。
 Ti化合物としては、例えば、TiO、Ti等が挙げられる。
 Mn化合物としては、例えば、Mn(NO、MnSO、MnCO等が挙げられる。
 Ni化合物としては、例えば、Ni(NO、NiSO等が挙げられる。
 Nb化合物としては、例えば、Nb等が挙げられる。
 V化合物としては、例えば、NHVO、V等が挙げられる。
 W化合物としては、例えば、KWO、WO等が挙げられる。
 コーティング薬液中の各成分の含有量は、特に限定されず、得られる絶縁張力被膜が上述した組成となるように、適宜調整される。
 例えば、コーティング薬液中のリン酸および/またはリン酸塩の含有量は、コーティング薬液中の全固形分量に対して、20mol%以上が好ましい。もっとも、これに限定されるものではない。
 (成膜条件)
 このようなコーティング薬液を、被膜層A(セラミックス被膜)上に塗布する方法としては、特に限定されないが、製造コストの都合上の観点から、塗布型ロールを用いて行なうことが好ましい。
 焼付温度および焼付時間は、以下の理由から、それぞれ、700~900℃および10~30秒間が好ましい。
 焼付温度を900℃以下、および/または、焼付時間を30秒以下にすることによって、セラミックス被膜と絶縁張力被膜との被膜密着性の劣化につながる析出物が生成する反応がより抑制され、被膜密着性がより優れる。
 絶縁張力被膜の形成の初段階として、コーティング薬液の乾燥がある。焼付温度を700℃以上、および/または、焼付時間を10秒以上にすることによって、コーティング薬液の乾燥を十分に進行させて、コーティング薬液に含まれる水分を十分に除くことができ、絶縁張力被膜が鋼板に印加する引張応力をより向上できる。加えて、歪取焼鈍中において、水分によるセラミックス被膜の酸化を抑制できる。
 焼付雰囲気は、窒素雰囲気が好ましい。
 焼付雰囲気が大気雰囲気であると、大気に含まれる水分および/または酸素などによって、セラミックス被膜の酸化が起こやすくなる場合があるが、窒素雰囲気であれば、セラミックス被膜の酸化が抑制され、被膜密着性がより優れる。
 〈歪取焼鈍〉
 本発明の方向性電磁鋼板は、例えば需要家などによって、歪取焼鈍が施される場合がある。歪取焼鈍の条件は、特に限定されないが、例えば、窒素雰囲気などの雰囲気中で、700~900℃で、2~4時間の焼鈍が行なわれる。
 〈その他の事項〉
 本発明の方向性電磁鋼板の磁気特性をより良好にするために、方向性電磁鋼板の圧延方向を横切るように鋼板表面付近に、溝を形成する、または、レーザー照射もしくは電子ビーム照射などによりひずみを導入することによって、方向性電磁鋼板の磁区を細分化する技術も利用できる。
 溝形成による磁区細分化効果は焼鈍後においても残るが、レーザー照射または電子ビーム照射によるひずみは、需要家等が行なう歪取焼鈍によって緩和してしまい、例えば、巻鉄心としての用途に難がある場合がある。
 しかし、本発明の方向性電磁鋼板は、歪取焼鈍を行なわない場合(例えば、積鉄心専用の場合)であっても、被膜密着性および磁気特性に優れる。したがって、本発明においては、歪取焼鈍を行なわない場合には、ひずみ導入による磁区細分化の技術を用いて、磁気特性をより良好にできる。
 以下に、実施例を挙げて本発明を具体的に説明する。ただし、本発明はこれらに限定されるものではない。
[試験例1]
 〈方向性電磁鋼板の製造〉
 以下のようにして、鋼板上に、被膜層A(セラミックス被膜)および被膜層B(絶縁張力被膜)をこの順に形成して、方向性電磁鋼板を得た。
 《鋼板》
 鋼中成分として、質量%で、C:0.05%、Si:3.2%、Mn:0.05%、Al:0.03%、N:0.005%、および、Se:0.01%を含有し、残部は不可避の不純物とFeとからなる鋼塊を用いた。
 この鋼塊を熱間圧延し、熱延板焼鈍を施し、中間焼鈍を挟む2回の冷間圧延により厚さ0.23mmの最終冷延板とした後、脱炭焼鈍および仕上げ焼鈍によりGoss方位を有する二次再結晶粒を発達させた。こうして、フォルステライト被膜付き鋼板を得た。
 その後、得られたフォルステライト被膜付き鋼板について、表面のフォルステライト被膜を酸洗により除去した後、フッ酸を用いた化学研磨により、表面を平滑化した。こうして、鋼板を得た。化学研磨後における鋼板の板厚は、0.22mmであった。
 《被膜層A:セラミックス被膜》
 次に、CVD法によって、鋼板上に、TiNのセラミックス被膜を、厚さ0.20μmで成膜した。セラミックス被膜における酸化物の含有量は、いずれも、2質量%以下であった。CVD法は、熱CVD法を用いて、1050℃および1000Paの条件で成膜を行なった。
 《被膜層B:絶縁張力被膜》
 次に、鋼板上に成膜されたセラミックス被膜上に、コーティング薬液を、塗布型ロールを用いて塗布し、乾燥させた後、窒素雰囲気中850℃で15秒間の焼付けを行なった。こうして、厚さ2.0μmの絶縁張力被膜を成膜した。
 コーティング薬液は、リン酸、コロイダルシリカ(ADEKA社製AT-30、平均粒子径:10nm)およびM化合物から1種以上の成分を選択し、成膜される絶縁張力被膜の組成が下記表1に示す組成となるように配合することにより、調製した。
 M化合物としては、以下の化合物を使用した。
 ・Li:LiOH
 ・Na:NaOH
 ・K:KOH
 ・Mg:Mg(MgOおよびPとして含有量を換算)
 ・Ca:Ca(CaOおよびPとして含有量を換算)
 ・Sr:Sr7    (SrOおよびPとして含有量を換算)
 ・Ba:Ba(BaOおよびPとして含有量を換算)
 ・Y:YPO(YおよびPとして含有量を換算)
 ・Ti:TiO
 ・Zr:ZrO
 ・Mn:Mn(NO(MnOとして含有量を換算)
 ・Ni:Ni(NO(NiOとして含有量を換算)
 ・Nb:Nb
 ・V:NHVO(Vとして含有量を換算)
 ・W:WO
 下記表1に記載した組成は、例えば、「40P-55SiO-5WO」と記載した場合は、Pの含有量が「40質量%」、SiOの含有量が「55質量%」、WOの含有量が「5質量%」であることを示す。
 XPS法により、絶縁張力被膜中の酸素の1s軌道の結合エネルギー(単位:eV)を求めた。結果を下記表1に示す。XPS法による測定には、Surface Science Instruments社製のSSX-100を用いた。
 図4は、XPS法による酸素の1s軌道の結合エネルギーを示すグラフである。図4には、代表的に、1つの発明例(下記表1のNo.17)のグラフと、1つの比較例(下記表1のNo.9)のグラフとを示している。図4に示すように、発明例のグラフは、530eVより大きい範囲にピークを有するのに対して、比較例のグラフは、530eV以下の範囲にピークを有している。
 得られた方向性電磁鋼板について、絶縁張力被膜が鋼板に印加する、絶縁張力被膜の厚さ1.0μmあたりの張力(単位:MPa/μm)を、上述した方法により求めた。結果を下記表1に示す。
 〈評価〉
 得られた方向性電磁鋼板に対して、窒素雰囲気中800℃で3時間の歪取焼鈍を行なった。その後、以下の評価を行なった。
 《被膜密着性》
 歪取焼鈍後の方向性電磁鋼板を、5mm、10mm…のように5mm間隔で径が異なる丸棒(ただし、3mmφの丸棒を含む)に巻き付けていき、セラミックス被膜が剥離しない最小径(単位:mmφ)を求めた。結果を下記表1に示す。被膜が剥離しない最小径(非剥離径)が小さいほど、歪取焼鈍後の被膜密着性に優れると評価でき、非剥離径が30mmφ未満であることが好ましい。
 《鉄損W17/50
 歪取焼鈍後の方向性電磁鋼板について、鉄損W17/50を測定した。結果を下記表1に示す。鉄損W17/50を測定しなかった場合は、下記表1に「-」を記載した。鉄損W17/50の値(単位:W/kg)が0.80未満であれば、歪取焼鈍後の磁気特性に優れると評価できる。
Figure JPOXMLDOC01-appb-T000001
 上記表1に示すように、絶縁張力被膜中の酸素の1s軌道の結合エネルギーが530eVより大きく、かつ、絶縁張力被膜の張力が4.0MPa/μm以上である本発明例の方向性電磁鋼板は、非剥離径が5~15mmφと小さく被膜密着性が良好であり、かつ、鉄損W17/50が0.80未満であり磁気特性が良好であった。
[試験例2]
 〈方向性電磁鋼板の製造〉
 以下のようにして、鋼板上に、被膜層A(セラミックス被膜)および被膜層B(絶縁張力被膜)をこの順に形成して、方向性電磁鋼板を得た。
 《鋼板》
 鋼中成分として、質量%で、C:0.05%、Si:3.2%、Mn:0.05%、Al:0.03%、N:0.005%、および、Se:0.01%を含有し、残部は不可避の不純物とFeとからなる鋼塊を用いた。
 この鋼塊を熱間圧延し、熱延板焼鈍を施し、中間焼鈍を挟む2回の冷間圧延により厚さ0.23mmの最終冷延板とした後、脱炭焼鈍および仕上げ焼鈍によりGoss方位を有する二次再結晶粒を発達させた。こうして、フォルステライト被膜付き鋼板を得た。
 その後、得られたフォルステライト被膜付き鋼板について、表面のフォルステライト被膜を酸洗により除去した後、フッ酸を用いた化学研磨により、表面を平滑化した。こうして、鋼板を得た。化学研磨後における鋼板の板厚は、0.22mmであった。
 《被膜層A:セラミックス被膜》
 次に、CVD法またはPVD法によって、鋼板上に、下記表2のNo.1~26に示す組成のセラミックス被膜を、下記表2に示す厚さで成膜した。セラミックス被膜における酸化物の含有量は、いずれも、2質量%以下であった。
 CVD法は、熱CVD法を用いて、1050℃および1000Paの条件で成膜を行なった。PVD法は、イオンプレーティング法を用いて、450℃、3Paおよびバイアス電圧-20Vで成膜を行なった。
 更に、セラミックス被膜における酸化物の含有量の影響を調べるため、PVD法によって、下記表2のNo.27~28に示す組成のセラミックス被膜を、下記表2に示す厚さで成膜した。セラミックス被膜における酸化物の含有量は、PVD法による成膜時の雰囲気中に微量の酸素をその分圧を変えて含ませることにより制御した。
 《被膜層B:絶縁張力被膜》
 次に、鋼板上に成膜されたセラミックス被膜上に、コーティング薬液を、塗布型ロールを用いて塗布し、乾燥させた後、窒素雰囲気中850℃で15秒間の焼付けを行なった。こうして、厚さ2.0μmの絶縁張力被膜を成膜した。
 コーティング薬液としては、試験例1のNo.20と同じコーティング薬液を用いた。
 成膜した絶縁張力被膜は、組成が40P-55SiO-5WO、酸素の1s軌道の結合エネルギーが544eV、張力が4.5MPa/μmであった。
 〈評価〉
 得られた方向性電磁鋼板に対して、窒素雰囲気中800℃で3時間の歪取焼鈍を行ない、その後、試験例1と同様にして、歪取焼鈍後の被膜密着性および磁気特性の評価を行なった。結果を下記表2に示す。
Figure JPOXMLDOC01-appb-T000002
 上記表2に示すように、本発明例の方向性電磁鋼板は、非剥離径が30mmφ未満で被膜密着性が良好であり、かつ、鉄損W17/50が0.80未満で磁気特性が良好であった。
 上記表2において、セラミックス被膜の厚さが0.10μmである発明例どうしを対比すると、セラミックス被膜の組成がTiCrNまたはAlCrNである発明例は、被膜密着性および磁気特性がより良好であった。
[実施例3]
 〈方向性電磁鋼板の製造〉
 以下のようにして、鋼板上に、被膜層A(セラミックス被膜)および被膜層B(絶縁張力被膜)をこの順に形成して、方向性電磁鋼板を得た。
 《鋼板》
 鋼中成分として、質量%で、C:0.05%、Si:3.2%、Mn:0.05%、Al:0.03%、N:0.005%、および、Se:0.01%を含有し、残部は不可避の不純物とFeとからなる鋼塊を用いた。
 この鋼塊を熱間圧延し、熱延板焼鈍を施し、中間焼鈍を挟む2回の冷間圧延により厚さ0.23mmの最終冷延板とした後、脱炭焼鈍および仕上げ焼鈍によりGoss方位を有する二次再結晶粒を発達させた。こうして、フォルステライト被膜付き鋼板を得た。
 その後、得られたフォルステライト被膜付き鋼板について、表面のフォルステライト被膜を酸洗により除去した後、フッ酸を用いた化学研磨により、表面を平滑化した。こうして、鋼板を得た。化学研磨後における鋼板の板厚は、0.20mmであった。
 《被膜層A:セラミックス被膜》
 次に、PVD法によって、鋼板上に、AlCrNのセラミックス被膜を、厚さ0.10μmで成膜した。セラミックス被膜における酸化物の含有量は、いずれも、2質量%以下であった。PVD法は、イオンプレーティング法を用いて、450℃、3Paおよびバイアス電圧-20Vで成膜を行なった。
 《被膜層B:絶縁張力被膜》
 次に、鋼板上に成膜されたセラミックス被膜上に、コーティング薬液を、塗布型ロールを用いて塗布し、乾燥させた後、窒素雰囲気中850℃で15秒間の焼付けを行なった。こうして、下記表3に示す厚さの絶縁張力被膜を成膜した。
 コーティング薬液としては、試験例1のNo.20と同じコーティング薬液を用いた。
 成膜した絶縁張力被膜は、組成が40P-55SiO-5WO、酸素の1s軌道の結合エネルギーが544eV、張力が4.5MPa/μmであった。
 〈評価〉
 得られた方向性電磁鋼板に対して、窒素雰囲気中800℃で3時間の歪取焼鈍を行ない、その後、試験例1と同様にして、歪取焼鈍後の被膜密着性および磁気特性の評価を行なった。結果を下記表3に示す。
Figure JPOXMLDOC01-appb-T000003
 上記表3に示すように、本発明例の方向性電磁鋼板は、非剥離径が30mmφ未満で被膜密着性が良好であり、かつ、鉄損W17/50が0.80未満で磁気特性が良好であった。
 上記表3において、本発明例どうしを対比すると、絶縁張力被膜を増厚するに従い、磁気特性がより良好になる傾向が見られた。
 1:鋼板
 2:フォルステライト被膜
 3:絶縁張力被膜
 4:セラミックス被膜
 T:フォルステライト被膜の厚さ
 T:絶縁張力被膜の厚さ
 T:セラミックス被膜の厚さ

Claims (9)

  1.  鋼板と、
     前記鋼板上に配置された、酸化物の含有量が30質量%未満であるセラミックス被膜である被膜層Aと、
     前記被膜層A上に配置された、酸化物を含有する絶縁張力被膜である被膜層Bと、
    を有し、
     前記被膜層B中の酸素の1s軌道の結合エネルギーが、530eVより大きく、
     前記被膜層Bが前記鋼板に印加する、前記被膜層Bの厚さ1.0μmあたりの張力が、4.0MPa/μm以上である、方向性電磁鋼板。
  2.  前記被膜層Aの厚さが、0.01μm以上である、請求項1に記載の方向性電磁鋼板。
  3.  前記被膜層Aの厚さが、0.30μm以下である、請求項1または2に記載の方向性電磁鋼板。
  4.  前記被膜層Bの厚さが、1.0μm以上である、請求項1~3のいずれか1項に記載の方向性電磁鋼板。
  5.  前記被膜層Bの厚さが、10.0μm以下である、請求項1~4のいずれか1項に記載の方向性電磁鋼板。
  6.  前記被膜層Bにおいて、
     Pの含有量が、25~55質量%であり、
     SiOの含有量が、42~58質量%であり、
     PおよびSiを除く、電気陰性度が1.5を超える原子の酸化物の含有量が、2~18質量%である、請求項1~5のいずれか1項に記載の方向性電磁鋼板。
  7.  前記被膜層Aが、窒化物または炭窒化物を含有する、請求項1~6のいずれか1項に記載の方向性電磁鋼板。
  8.  請求項1~7のいずれか1項に記載の方向性電磁鋼板を製造する、方向性電磁鋼板の製造方法であって、
     前記被膜層Aを、CVD法またはPVD法によって成膜する、方向性電磁鋼板の製造方法。
  9.  前記被膜層A上に、塗布型ロールを用いてコーティング薬液を塗布し、窒素雰囲気中で焼付けを行なうことにより、前記被膜層Bを成膜する、請求項8に記載の方向性電磁鋼板の製造方法。
PCT/JP2017/041671 2016-11-28 2017-11-20 方向性電磁鋼板および方向性電磁鋼板の製造方法 WO2018097100A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2018505759A JP6579260B2 (ja) 2016-11-28 2017-11-20 方向性電磁鋼板および方向性電磁鋼板の製造方法
KR1020197013739A KR102231543B1 (ko) 2016-11-28 2017-11-20 방향성 전기 강판 및 방향성 전기 강판의 제조 방법
EP17874944.6A EP3546614B1 (en) 2016-11-28 2017-11-20 Grain-oriented electromagnetic steel sheet and method for producing grain-oriented electromagnetic steel sheet
RU2019116213A RU2709911C1 (ru) 2016-11-28 2017-11-20 Текстурированная электромагнитная листовая сталь и способ производства текстурированной электромагнитной листовой стали
CN201780072874.XA CN109983159A (zh) 2016-11-28 2017-11-20 方向性电磁钢板和方向性电磁钢板的制造方法
US16/462,601 US11781196B2 (en) 2016-11-28 2017-11-20 Grain-oriented electromagnetic steel sheet and method of producing grain-oriented electromagnetic steel sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016229757 2016-11-28
JP2016-229757 2016-11-28

Publications (1)

Publication Number Publication Date
WO2018097100A1 true WO2018097100A1 (ja) 2018-05-31

Family

ID=62195169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/041671 WO2018097100A1 (ja) 2016-11-28 2017-11-20 方向性電磁鋼板および方向性電磁鋼板の製造方法

Country Status (7)

Country Link
US (1) US11781196B2 (ja)
EP (1) EP3546614B1 (ja)
JP (1) JP6579260B2 (ja)
KR (1) KR102231543B1 (ja)
CN (1) CN109983159A (ja)
RU (1) RU2709911C1 (ja)
WO (1) WO2018097100A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3533902A4 (en) * 2016-12-21 2019-09-04 JFE Steel Corporation ORIENTED GRAIN ELECTRIC STEEL SHEET AND METHOD FOR PRODUCING AN ORIENTED GRAIN ELECTRIC STEEL SHEET

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6468425A (en) 1987-09-10 1989-03-14 Kawasaki Steel Co Manufacture of grain-oriented silicon steel sheet with superlow iron loss
JPS6479381A (en) * 1987-06-10 1989-03-24 Kawasaki Steel Co Protective coating material for annealing
JPH01176034A (ja) 1987-12-28 1989-07-12 Kawasaki Steel Corp 磁気特性の優れた一方向性電磁鋼板の製造方法
JPH07278830A (ja) * 1994-04-12 1995-10-24 Nippon Steel Corp 低鉄損一方向性電磁鋼板の製造方法
JP2005240157A (ja) * 2004-02-27 2005-09-08 Jfe Steel Kk クロムを含まず耐吸湿性に優れたリン酸塩系絶縁被膜を有する方向性電磁鋼板およびクロムを含まず耐吸湿性に優れたリン酸塩系絶縁被膜の被成方法。

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4909864A (en) * 1986-09-16 1990-03-20 Kawasaki Steel Corp. Method of producing extra-low iron loss grain oriented silicon steel sheets
JPH01147074A (ja) 1987-12-02 1989-06-08 Kawasaki Steel Corp 歪取り焼鈍による特性劣化がない方向性けい素鋼板
JP2003129196A (ja) * 2001-10-19 2003-05-08 Kawasaki Steel Corp 超低鉄損一方向性珪素鋼板およびその製造方法
TWI272311B (en) 2003-12-03 2007-02-01 Jfe Steel Corp Method for annealing grain oriented magnetic steel sheet and method for producing grain oriented magnetic steel sheet
TWI270578B (en) * 2004-11-10 2007-01-11 Jfe Steel Corp Grain oriented electromagnetic steel plate and method for producing the same
CN101541991B (zh) * 2006-11-22 2012-11-28 新日本制铁株式会社 被膜密着性优异的单向性电磁钢板及其制造方法
JP5194641B2 (ja) * 2007-08-23 2013-05-08 Jfeスチール株式会社 方向性電磁鋼板用絶縁被膜処理液および絶縁被膜付方向性電磁鋼板の製造方法
KR101235395B1 (ko) * 2008-03-31 2013-02-20 신닛테츠스미킨 카부시키카이샤 방향성 전자기 강판 및 그 제조 방법
JP4840518B2 (ja) * 2010-02-24 2011-12-21 Jfeスチール株式会社 方向性電磁鋼板の製造方法
DE102010038038A1 (de) 2010-10-07 2012-04-12 Thyssenkrupp Electrical Steel Gmbh Verfahren zum Erzeugen einer Isolationsbeschichtung auf einem kornorientierten Elektro-Stahlflachprodukt und mit einer solchen Isolationsbeschichtung beschichtetes Elektro-Stahlflachprodukt
KR20140099923A (ko) 2011-12-28 2014-08-13 제이에프이 스틸 가부시키가이샤 코팅 부착 방향성 전자 강판 및 그의 제조 방법
US10087529B2 (en) * 2014-01-31 2018-10-02 Jfe Steel Corporation Treatment solution for chromium-free tension coating, method for forming chromium-free tension coating, and grain oriented electrical steel sheet with chromium-free tension coating
RU2656433C2 (ru) * 2014-04-24 2018-06-05 ДжФЕ СТИЛ КОРПОРЕЙШН Обрабатывающий раствор для не содержащего хрома изоляционного покрытия для текстурованной электротехнической листовой стали и текстурованная электротехническая листовая сталь, покрытая не содержащим хрома изоляционным покрытием
US10920323B2 (en) * 2015-03-27 2021-02-16 Jfe Steel Corporation Insulating-coated oriented magnetic steel sheet and method for manufacturing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6479381A (en) * 1987-06-10 1989-03-24 Kawasaki Steel Co Protective coating material for annealing
JPS6468425A (en) 1987-09-10 1989-03-14 Kawasaki Steel Co Manufacture of grain-oriented silicon steel sheet with superlow iron loss
JPH01176034A (ja) 1987-12-28 1989-07-12 Kawasaki Steel Corp 磁気特性の優れた一方向性電磁鋼板の製造方法
JPH07278830A (ja) * 1994-04-12 1995-10-24 Nippon Steel Corp 低鉄損一方向性電磁鋼板の製造方法
JP2005240157A (ja) * 2004-02-27 2005-09-08 Jfe Steel Kk クロムを含まず耐吸湿性に優れたリン酸塩系絶縁被膜を有する方向性電磁鋼板およびクロムを含まず耐吸湿性に優れたリン酸塩系絶縁被膜の被成方法。

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
P. PANJAN ET AL., THIN SOLID FILMS, vol. 281-282, 1996, pages 298

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3533902A4 (en) * 2016-12-21 2019-09-04 JFE Steel Corporation ORIENTED GRAIN ELECTRIC STEEL SHEET AND METHOD FOR PRODUCING AN ORIENTED GRAIN ELECTRIC STEEL SHEET
US10968521B2 (en) 2016-12-21 2021-04-06 Jfe Steel Corporation Grain-oriented electrical steel sheet and production method for grain-oriented electrical steel sheet

Also Published As

Publication number Publication date
KR20190069486A (ko) 2019-06-19
EP3546614B1 (en) 2021-01-06
CN109983159A (zh) 2019-07-05
JPWO2018097100A1 (ja) 2018-11-22
JP6579260B2 (ja) 2019-09-25
RU2709911C1 (ru) 2019-12-23
US11781196B2 (en) 2023-10-10
US20200063268A1 (en) 2020-02-27
EP3546614A4 (en) 2019-10-02
EP3546614A1 (en) 2019-10-02
KR102231543B1 (ko) 2021-03-23

Similar Documents

Publication Publication Date Title
JP6394837B1 (ja) 方向性電磁鋼板および方向性電磁鋼板の製造方法
JP6350773B1 (ja) 方向性電磁鋼板および方向性電磁鋼板の製造方法
JP6410002B1 (ja) 方向性電磁鋼板および方向性電磁鋼板の製造方法
JP6579260B2 (ja) 方向性電磁鋼板および方向性電磁鋼板の製造方法
JP6856080B2 (ja) 方向性電磁鋼板の製造方法
JP2005240157A (ja) クロムを含まず耐吸湿性に優れたリン酸塩系絶縁被膜を有する方向性電磁鋼板およびクロムを含まず耐吸湿性に優れたリン酸塩系絶縁被膜の被成方法。
JP4206942B2 (ja) 鉄損が極めて低くかつ被膜密着性に優れた方向性電磁鋼板およびその製造方法
US20230047863A1 (en) Annealing separator composition for grain-oriented electrical steel sheet, grain-oriented electrical steel sheet, and manufacturing method therefor
JPS621820A (ja) 熱安定性、超低鉄損一方向性けい素鋼板の製造方法
JPH11243005A (ja) 超低鉄損一方向性珪素鋼板およびその製造方法
JPS6318049A (ja) 超低鉄損一方向性けい素鋼板の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018505759

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17874944

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197013739

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017874944

Country of ref document: EP