WO2016152914A1 - 静電潜像現像用トナー - Google Patents

静電潜像現像用トナー Download PDF

Info

Publication number
WO2016152914A1
WO2016152914A1 PCT/JP2016/059176 JP2016059176W WO2016152914A1 WO 2016152914 A1 WO2016152914 A1 WO 2016152914A1 JP 2016059176 W JP2016059176 W JP 2016059176W WO 2016152914 A1 WO2016152914 A1 WO 2016152914A1
Authority
WO
WIPO (PCT)
Prior art keywords
toner
resin
shell layer
latent image
electrostatic latent
Prior art date
Application number
PCT/JP2016/059176
Other languages
English (en)
French (fr)
Inventor
昌己 辻廣
Original Assignee
京セラドキュメントソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラドキュメントソリューションズ株式会社 filed Critical 京セラドキュメントソリューションズ株式会社
Priority to US15/547,091 priority Critical patent/US10254673B2/en
Priority to JP2017508389A priority patent/JP6458862B2/ja
Priority to CN201680007668.6A priority patent/CN107209465B/zh
Publication of WO2016152914A1 publication Critical patent/WO2016152914A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/093Encapsulated toner particles
    • G03G9/09307Encapsulated toner particles specified by the shell material
    • G03G9/09314Macromolecular compounds
    • G03G9/09321Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/0821Developers with toner particles characterised by physical parameters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles
    • G03G9/08702Binders for toner particles comprising macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • G03G9/08706Polymers of alkenyl-aromatic compounds
    • G03G9/08708Copolymers of styrene
    • G03G9/08711Copolymers of styrene with esters of acrylic or methacrylic acid
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles
    • G03G9/08742Binders for toner particles comprising macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • G03G9/08755Polyesters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles
    • G03G9/08784Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775
    • G03G9/08791Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775 characterised by the presence of specified groups or side chains
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/087Binders for toner particles
    • G03G9/08784Macromolecular material not specially provided for in a single one of groups G03G9/08702 - G03G9/08775
    • G03G9/08793Crosslinked polymers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/093Encapsulated toner particles
    • G03G9/09307Encapsulated toner particles specified by the shell material
    • G03G9/09314Macromolecular compounds
    • G03G9/09328Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/093Encapsulated toner particles
    • G03G9/0935Encapsulated toner particles specified by the core material
    • G03G9/09357Macromolecular compounds
    • G03G9/09371Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G9/00Developers
    • G03G9/08Developers with toner particles
    • G03G9/093Encapsulated toner particles
    • G03G9/09392Preparation thereof

Definitions

  • the present invention relates to an electrostatic latent image developing toner, and more particularly to a capsule toner.
  • the toner particles contained in the capsule toner have a core and a shell layer (capsule layer) formed on the surface of the core.
  • the toner particles have a toner core having a softening temperature of 40 ° C. or higher and 150 ° C. or lower.
  • Patent Document 1 it is difficult to provide an electrostatic latent image developing toner having excellent durability only by the technique disclosed in Patent Document 1. Specifically, when an image is formed using the toner described in Patent Document 1, it is difficult to form a high-quality image over a long period of time.
  • the present invention has been made in view of the above problems, and an object thereof is to provide an electrostatic latent image developing toner having excellent durability. Another object of the present invention is to provide a toner for developing an electrostatic latent image having sufficient chargeability even in a high temperature and high humidity environment.
  • the electrostatic latent image developing toner according to the present invention includes a plurality of toner particles each having a core and a shell layer formed on the surface of the core.
  • the core includes a binder resin.
  • the shell layer is substantially composed of a resin containing one or more repeating units having an alcoholic hydroxyl group. The ratio of the repeating unit having an alcoholic hydroxyl group to all repeating units in the resin substantially constituting the shell layer is 0.1% by mass or more and 20% by mass or less.
  • an electrostatic latent image developing toner having excellent durability. Further, according to the present invention, in addition to or instead of this effect, it is possible to provide an electrostatic latent image developing toner having sufficient chargeability even in a high temperature and high humidity environment. Sometimes played.
  • (A) is a figure which shows an example of the chromatogram for calculating
  • (b) is a figure which shows an example of the mass spectrum for calculating
  • the number average particle diameter of the powder is the number average value of the equivalent circle diameter of primary particles (diameter of a circle having the same area as the projected area of the particles) measured using a microscope unless otherwise specified. . Moreover, the measured value of the volume median diameter (D 50 ) of the powder is not specified, and the “Coulter Counter Multisizer 3” manufactured by Beckman Coulter Co., Ltd. is used. ) Measured based on. Further, the measured values of the acid value and the hydroxyl value are values measured according to “JIS (Japanese Industrial Standard) K0070-1992” unless otherwise specified. Moreover, each measured value of a number average molecular weight (Mn) and a mass average molecular weight (Mw) is the value measured using the gel permeation chromatography, if not prescribed
  • a compound and its derivatives may be generically named by adding “system” after the compound name.
  • the name of a polymer is expressed by adding “system” after the compound name, it means that the repeating unit of the polymer is derived from the compound or a derivative thereof.
  • Acrylic and methacrylic are sometimes collectively referred to as “(meth) acrylic”.
  • acrylonitrile and methacrylonitrile may be collectively referred to as “(meth) acrylonitrile”.
  • functional groups that can be ionized to form salts and salts thereof are sometimes collectively referred to as “hydrophilic functional groups”.
  • hydrophilic functional group examples include an acid group (more specifically, a carboxyl group or a sulfo group), a hydroxyl group, or a salt thereof (more specifically, —COONa, —SO 3 Na, or —ONa). Etc.).
  • the subscript “n” of the repeating unit in each chemical formula independently indicates the number of repetitions (number of moles) of the repeating unit. Unless otherwise specified, n (number of repetitions) is arbitrary.
  • the toner according to this embodiment can be suitably used for developing an electrostatic latent image.
  • the toner of the present exemplary embodiment is a powder that includes a plurality of toner particles (each having a configuration described later).
  • the toner may be used as a one-component developer.
  • a two-component developer may be prepared by mixing toner and carrier using a mixing device (for example, a ball mill).
  • a mixing device for example, a ball mill.
  • a ferrite carrier it is preferable to use a ferrite carrier as a carrier.
  • magnetic carrier particles having a carrier core and a resin layer covering the carrier core.
  • the carrier core may be formed of a magnetic material (for example, ferrite), or the carrier core may be formed of a resin in which magnetic particles are dispersed. Further, magnetic particles may be dispersed in the resin layer covering the carrier core.
  • the amount of toner in the two-component developer is preferably 5 parts by mass or more and 15 parts by mass or less, and 8 parts by mass or more and 12 parts by mass with respect to 100 parts by mass of the carrier. The following is more preferable.
  • the positively chargeable toner contained in the two-component developer is positively charged by friction with the carrier.
  • the negatively chargeable toner contained in the two-component developer is negatively charged by friction with the carrier.
  • the toner particles contained in the toner according to the present embodiment have a core (hereinafter referred to as a toner core) and a shell layer (capsule layer) formed on the surface of the toner core.
  • the shell layer is substantially composed of a resin.
  • An external additive may be attached to the surface of the shell layer (or the surface region of the toner core not covered with the shell layer).
  • the shell layer may cover the entire surface of the toner core or may partially cover the surface of the toner core.
  • a plurality of shell layers may be laminated on the surface of the toner core. If not necessary, the external additive may be omitted.
  • the toner particles before the external additive adheres are referred to as toner mother particles.
  • a material for forming the toner core is referred to as a toner core material.
  • a material for forming the shell layer is referred to as a shell material.
  • the toner according to the present embodiment can be used for image formation in, for example, an electrophotographic apparatus (image forming apparatus).
  • an electrophotographic apparatus image forming apparatus
  • an example of an image forming method using an electrophotographic apparatus will be described.
  • an electrostatic latent image is formed on a photoconductor (for example, a surface layer portion of a photoconductor drum) based on image data.
  • the formed electrostatic latent image is developed using a developer containing toner.
  • toner for example, toner charged by friction with a carrier or blade
  • a developing sleeve for example, a surface layer portion of a developing roller in the developing device
  • a toner image is formed on the photoreceptor by adhering.
  • the toner image on the photosensitive member is transferred to an intermediate transfer member (for example, a transfer belt), and then the toner image on the intermediate transfer member is further transferred to a recording medium (for example, paper). Thereafter, the toner is heated to fix the toner on the recording medium. As a result, an image is formed on the recording medium.
  • a full color image can be formed by superposing four color toner images of black, yellow, magenta, and cyan.
  • the toner according to the present embodiment is an electrostatic latent image developing toner having the following configuration (hereinafter referred to as a basic configuration).
  • the toner includes a plurality of toner particles having a toner core and a shell layer.
  • the toner core includes a binder resin.
  • the shell layer is substantially composed of a resin (hereinafter referred to as a specific hydroxyl group-containing resin) containing at least one repeating unit having an alcoholic hydroxyl group (hereinafter referred to as a specific hydroxyl group-containing unit). Specifically, it is preferable that 90% by mass or more and 100% by mass or less of the resin contained in the shell layer is a specific hydroxyl group-containing resin.
  • the ratio of the specific hydroxyl group-containing unit to all repeating units in the specific hydroxyl group-containing resin (hereinafter sometimes simply referred to as “the ratio of the specific hydroxyl group-containing unit”) is 0.1% by mass or more and 20% by mass or less.
  • the method for measuring the ratio of the specific hydroxyl group-containing unit is the method shown in the examples described later or an alternative method thereof.
  • the specific hydroxyl group-containing resin may contain two or more specific hydroxyl group-containing units.
  • FIG. 1A shows an example of a chromatogram (horizontal axis: time, vertical axis: intensity) measured by the GC / MS method.
  • a peak P1 shown in FIG. 1A is a peak derived from 2-hydroxyethyl methacrylate (HEMA).
  • FIG. 1B shows an example of a mass spectrum (horizontal axis: ion mass / ion charge number, vertical axis: intensity) measured by the GC / MS method.
  • Each of the peaks P2 (three peaks) shown in FIG. 1B is a peak derived from a fragment ion of 2-hydroxyethyl methacrylate (HEMA).
  • the specific hydroxyl group-containing resin is a copolymer of a styrene monomer, an acrylic acid monomer, and an alcoholic hydroxyl group monomer, one or more repeating units derived from the alcoholic hydroxyl group monomer (specific hydroxyl group-containing unit) )
  • total mass M divided by the value B corresponds to the ratio of the specific hydroxyl group-containing units.
  • toner particles As for the toner in which the toner particles are almost uniformly mixed, a considerable number of toner particles (for example, 250,000 toner particles) contained in the toner (for example, 50 ⁇ g of toner) are collectively used as one evaluation sample. Can be handled. Specifically, if the ratio of the specific hydroxyl group-containing unit measured for such an evaluation sample is within the range defined by the basic configuration (0.1 mass% or more and 20 mass% or less), the effects described below can be obtained. It is thought that it is done.
  • the shell layer is hardly detached from the toner core.
  • the reason for this is considered that the alcoholic hydroxyl group of the shell layer is chemically reacted with the binder resin of the toner core and bonded.
  • the shell layer tends to be difficult to be detached from the toner core. Such a tendency is considered to be caused by the fact that the above-described chemical reaction is likely to occur between the resins and that the SP value (solubility parameter) between the resins is close to increase the affinity. Further, since the detachment of the shell layer from the toner core is suppressed, adhesion of the toner to the photosensitive drum is suppressed.
  • the inventor has found that, in addition to the function and effect of the toner, if the shell layer has too much alcoholic hydroxyl group, the charge amount of the toner particles tends to be attenuated in a high temperature and high humidity environment.
  • the reason for this is considered to be that the hydrophilicity of the surface of the toner particles is strengthened and water molecules are easily adsorbed on the surface of the toner particles.
  • the inventor can form a shell layer with a resin containing a specific hydroxyl group-containing unit at a ratio (0.1% by mass or more and 20% by mass or less) defined by the above basic configuration, which is sufficient even in a high temperature and high humidity environment. It has been found that a toner having excellent charging properties can be obtained.
  • the ratio of the specific hydroxyl group-containing unit is particularly preferably 5% by mass or more and 10% by mass or less.
  • a repeating unit represented by the following formula (1) is particularly preferable.
  • R 11 and R 12 each independently represent a hydrogen atom, a halogen atom, or an alkyl group that may have a substituent.
  • R 2 represents an alkylene group which may have a substituent.
  • R 11 and R 12 are each independently preferably a hydrogen atom or a methyl group, particularly preferably a combination in which R 11 represents a hydrogen atom and R 12 represents a hydrogen atom or a methyl group.
  • R 2 is preferably an alkylene group having 1 to 6 carbon atoms, and more preferably an alkylene group having 1 to 4 carbon atoms.
  • R 11 represents a hydrogen atom
  • R 12 represents a methyl group
  • R 2 represents an ethylene group (— (CH 2 ) 2 —).
  • the ratio of repeating units having a hydrophilic functional group among all repeating units contained in the specific hydroxyl group-containing resin constituting the shell layer Is preferably 10% by mass or less.
  • the specific hydroxyl group-containing resin constituting the shell layer is added to the specific hydroxyl group-containing unit in addition to one or more repeating units derived from a styrene monomer. It is preferable to further include units. Moreover, as a repeating unit derived from a styrene-type monomer, the repeating unit represented by following formula (2) is especially preferable.
  • R 31 to R 35 are each independently a hydrogen atom, a halogen atom, a hydroxyl group, an alkyl group which may have a substituent, an alkoxy group which may have a substituent, or a substituent. Represents an alkoxyalkyl group which may have a substituent or an aryl group which may have a substituent.
  • R 36 and R 37 each independently represent a hydrogen atom, a halogen atom, or an alkyl group that may have a substituent.
  • R 31 to R 35 are each independently a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, or a carbon number (specifically, alkoxy and alkyl The total number of carbon atoms) is preferably an alkoxyalkyl group having 2 to 6 carbon atoms.
  • R 36 and R 37 are each independently preferably a hydrogen atom or a methyl group, particularly preferably a combination in which R 37 represents a hydrogen atom and R 36 represents a hydrogen atom or a methyl group. In the repeating unit derived from styrene, each of R 31 to R 37 represents a hydrogen atom.
  • the repeating unit having the highest molar fraction among the repeating units contained in the specific hydroxyl group-containing resin constituting the shell layer is derived from the styrene monomer. It is preferable that it is a repeating unit (more preferably, a repeating unit represented by the formula (2)).
  • the specific hydroxyl group-containing resin constituting the shell layer is added to the specific hydroxyl group-containing unit and the repeating unit derived from the styrene monomer, It is preferable to further include one or more kinds of repeating units derived from (meth) acrylic acid esters. Moreover, as a repeating unit derived from (meth) acrylic acid ester, the repeating unit represented by the following formula (3) is particularly preferable.
  • R 41 and R 42 each independently represent a hydrogen atom, a halogen atom, or an alkyl group which may have a substituent.
  • R 43 represents an alkyl group having 1 to 8 carbon atoms which may have a substituent.
  • R 41 and R 42 are each independently preferably a hydrogen atom or a methyl group, particularly preferably a combination in which R 41 represents a hydrogen atom and R 42 represents a hydrogen atom or a methyl group.
  • R 43 is particularly preferably an alkyl group having 4 to 6 carbon atoms.
  • R 41 represents a hydrogen atom
  • R 42 represents a hydrogen atom
  • R 43 represents a butyl group (an alkyl group having 4 carbon atoms).
  • thermosetting resin for example, a hydrophilic thermosetting resin
  • a thermosetting resin for example, a hydrophilic thermosetting resin
  • 10% by mass or less of the resin contained in the shell layer is a thermosetting resin, and 0.01% by mass to 5%. It is more preferable that the resin having a mass% or less is a thermosetting resin.
  • the thickness of the shell layer is preferably 1 nm or more and 30 nm or less.
  • the thickness of the shell layer can be measured by analyzing a TEM image of the cross section of the toner particles using commercially available image analysis software (for example, “WinROOF” manufactured by Mitani Corporation). If the thickness of the shell layer is not uniform in one toner particle, four equally spaced locations (specifically, two straight lines that are perpendicular to each other at the approximate center of the cross section of the toner particle are drawn. The thickness of the shell layer is measured at each of the four points where the straight line intersects the shell layer, and the arithmetic average of the four measured values obtained is taken as the evaluation value of the toner particles (shell layer thickness).
  • the shell layer covers an area of 50% to 99% of the surface area of the toner core, and 70% to 95%. It is more preferable to cover the area.
  • toner core binder resin and internal additive
  • shell layer shell layer
  • external additive external additive
  • thermoplastic resin constituting the toner particles include, for example, a styrene resin, an acrylic resin (more specifically, an acrylic ester polymer or a methacrylic ester polymer), Olefin resins (more specifically, polyethylene resins or polypropylene resins), vinyl chloride resins, polyvinyl alcohol, vinyl ether resins, N-vinyl resins, polyester resins, polyamide resins, or urethane resins are preferred.
  • a copolymer of each of these resins that is, a copolymer in which an arbitrary repeating unit is introduced into the resin (more specifically, a styrene-acrylic acid resin or a styrene-butadiene resin) is preferably used.
  • a copolymer in which an arbitrary repeating unit is introduced into the resin more specifically, a styrene-acrylic acid resin or a styrene-butadiene resin.
  • the thermoplastic resin can be obtained by addition polymerization, copolymerization, or condensation polymerization of one or more thermoplastic monomers.
  • the thermoplastic monomer is a monomer that becomes a thermoplastic resin by homopolymerization (more specifically, an acrylic acid monomer or a styrene monomer), or a monomer that becomes a thermoplastic resin by condensation polymerization (for example, by condensation polymerization).
  • the styrene-acrylic acid resin is a copolymer of one or more styrene monomers and one or more acrylic monomers.
  • styrene monomers and acrylic monomers as shown below can be used preferably.
  • an acrylic acid monomer having a carboxyl group By using an acrylic acid monomer having a carboxyl group, a carboxyl group can be introduced into the styrene-acrylic acid resin.
  • the hydroxyl group can be introduced into the styrene-acrylic acid resin.
  • the acid value of the resulting styrene-acrylic acid resin can be adjusted.
  • the hydroxyl value of the resulting styrene-acrylic acid resin can be adjusted by adjusting the amount of the monomer having a hydroxyl group.
  • styrenic monomer examples include styrene, ⁇ -methylstyrene, p-hydroxystyrene, m-hydroxystyrene, vinyl toluene, ⁇ -chlorostyrene, o-chlorostyrene, m-chlorostyrene, p-chlorostyrene, Or p-ethylstyrene is mentioned.
  • acrylic acid monomer examples include (meth) acrylic acid, (meth) acrylonitrile, (meth) acrylic acid alkyl ester, or (meth) acrylic acid hydroxyalkyl ester.
  • alkyl (meth) acrylate examples include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, iso-propyl (meth) acrylate, (meth) acryl Examples include n-butyl acid, iso-butyl (meth) acrylate, or 2-ethylhexyl (meth) acrylate.
  • Suitable examples of the (meth) acrylic acid hydroxyalkyl ester include 2-hydroxyethyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, or (meth) acrylic.
  • the acid 4-hydroxybutyl is mentioned.
  • the polyester resin can be obtained by polycondensing one or more polyhydric alcohols and one or more polyhydric carboxylic acids.
  • the alcohol for synthesizing the polyester resin for example, dihydric alcohols (more specifically, diols or bisphenols) as shown below or trihydric or higher alcohols can be suitably used.
  • the carboxylic acid for synthesizing the polyester resin for example, divalent carboxylic acids or trivalent or higher carboxylic acids as shown below can be suitably used.
  • the acid value and the hydroxyl value of the polyester resin can be adjusted by changing the amount of alcohol used and the amount of carboxylic acid used. When the molecular weight of the polyester resin is increased, the acid value and hydroxyl value of the polyester resin tend to decrease.
  • diols include ethylene glycol, diethylene glycol, triethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, neopentyl glycol, 1,4-butenediol, Examples include 1,5-pentanediol, 1,6-hexanediol, 1,4-cyclohexanedimethanol, dipropylene glycol, polyethylene glycol, polypropylene glycol, or polytetramethylene glycol.
  • suitable bisphenols include bisphenol A, hydrogenated bisphenol A, bisphenol A ethylene oxide adduct, or bisphenol A propylene oxide adduct.
  • trihydric or higher alcohols include sorbitol, 1,2,3,6-hexanetetrol, 1,4-sorbitan, pentaerythritol, dipentaerythritol, tripentaerythritol, 1,2,4-butane. Triol, 1,2,5-pentanetriol, glycerol, diglycerol, 2-methylpropanetriol, 2-methyl-1,2,4-butanetriol, trimethylolethane, trimethylolpropane, or 1,3,5- Trihydroxymethylbenzene is mentioned.
  • the divalent carboxylic acid maleic acid, fumaric acid, citraconic acid, itaconic acid, glutaconic acid, phthalic acid, isophthalic acid, terephthalic acid, cyclohexanedicarboxylic acid, adipic acid, sebacic acid, azelaic acid, malonic acid Succinic acid, alkyl succinic acid (more specifically, n-butyl succinic acid, isobutyl succinic acid, n-octyl succinic acid, n-dodecyl succinic acid, isododecyl succinic acid, etc.), or alkenyl succinic acid (more specific Specific examples include n-butenyl succinic acid, isobutenyl succinic acid, n-octenyl succinic acid, n-dodecenyl succinic acid, and isododecenyl succinic acid.
  • Preferred examples of the trivalent or higher carboxylic acid include 1,2,4-benzenetricarboxylic acid (trimellitic acid), 2,5,7-naphthalenetricarboxylic acid, 1,2,4-naphthalenetricarboxylic acid, 2,4-butanetricarboxylic acid, 1,2,5-hexanetricarboxylic acid, 1,3-dicarboxyl-2-methyl-2-methylenecarboxypropane, 1,2,4-cyclohexanetricarboxylic acid, tetra (methylenecarboxyl)
  • Examples include methane, 1,2,7,8-octanetetracarboxylic acid, pyromellitic acid, or empole trimer acid.
  • the divalent or trivalent or higher carboxylic acid may be transformed into an ester-forming derivative (more specifically, an acid halide, an acid anhydride, or a lower alkyl ester).
  • ester-forming derivative more specifically, an acid halide, an acid anhydride, or a lower alkyl ester.
  • lower alkyl means an alkyl group having 1 to 6 carbon atoms.
  • thermosetting resin constituting the toner particles include melamine resin, urea resin, sulfonamide resin, glyoxal resin, guanamine resin, aniline resin, polyimide resin (more specifically, Specifically, a maleimide polymer or a bismaleimide polymer) or a xylene-based resin can be preferably used.
  • thermosetting resin can be obtained by crosslinking (polymerizing) one or more thermosetting monomers. Moreover, a thermosetting resin can also be synthesize
  • the thermosetting monomer is a monomer having crosslinkability. For example, when monomers of the same type are three-dimensionally connected to each other via “—CH 2 —” to become a thermosetting resin, the monomer corresponds to a “thermosetting monomer”.
  • thermosetting monomer examples include methylol melamine, melamine, methylolated urea (more specifically, dimethylol dihydroxyethylene urea), urea, benzoguanamine, acetoguanamine, or spiroguanamine.
  • the toner core includes a binder resin.
  • the toner core may also contain internal additives (for example, a colorant, a release agent, a charge control agent, and magnetic powder).
  • Binder resin In the toner core, the binder resin generally occupies most of the components (for example, 85% by mass or more). For this reason, it is considered that the properties of the binder resin greatly affect the properties of the entire toner core. For example, when the binder resin has an ester group, a hydroxyl group, an ether group, an acid group, or a methyl group, the toner core tends to become anionic, and the binder resin has an amino group or an amide group. The toner core tends to become cationic.
  • At least one of the hydroxyl value and the acid value of the binder resin is preferably 10 mgKOH / g or more, and more preferably 20 mgKOH / g or more.
  • the binder resin a resin having one or more groups selected from the group consisting of an ester group, a hydroxyl group, an ether group, an acid group, and a methyl group is preferable, and a resin having a hydroxyl group and / or a carboxyl group is more preferable.
  • the binder resin having such a functional group easily reacts with the shell material and is chemically bonded. When such a chemical bond occurs, the bond between the toner core and the shell layer becomes strong.
  • a resin having a functional group containing active hydrogen in the molecule is also preferable.
  • the glass transition point (Tg) of the binder resin is preferably 20 ° C. or higher and 55 ° C. or lower.
  • the method for measuring the glass transition point (Tg) is the same method as in Examples described later or an alternative method thereof.
  • the softening point (Tm) of the binder resin is preferably 100 ° C. or lower, and more preferably 95 ° C. or lower.
  • the Tm of the binder resin is 100 ° C. or less (more preferably 95 ° C. or less)
  • the toner core is formed during the curing reaction of the shell layer when the shell layer is formed on the surface of the toner core in the aqueous medium. Since the toner core is partially softened, the toner core is easily rounded due to surface tension.
  • the measuring method of a softening point (Tm) is the same method as the Example mentioned later, or its alternative method. By combining a plurality of types of resins having different Tm, the Tm of the binder resin can be adjusted.
  • the binder resin for the toner core is preferably a thermoplastic resin (more specifically, the “preferable thermoplastic resin” described above).
  • a thermoplastic resin more specifically, the “preferable thermoplastic resin” described above.
  • the number average molecular weight (Mn) of the styrene-acrylic acid resin is 2000 or more and 3000 or less in order to improve the strength of the toner core and the toner fixing property. It is preferable that The molecular weight distribution (the ratio Mw / Mn of the mass average molecular weight (Mw) to the number average molecular weight (Mn)) of the styrene-acrylic acid resin is preferably 10 or more and 20 or less.
  • the number average molecular weight (Mn) of the polyester resin is preferably 1000 or more and 2000 or less in order to improve the strength of the toner core and the toner fixing property.
  • the molecular weight distribution of the polyester resin is preferably 9 or more and 21 or less.
  • the toner core may contain a colorant.
  • a colorant a known pigment or dye can be used according to the color of the toner.
  • the amount of the colorant is preferably 1 part by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the binder resin. It is more preferable that the amount is not more than part by mass.
  • the toner core may contain a black colorant.
  • a black colorant is carbon black.
  • the black colorant may be a colorant that is toned to black using a yellow colorant, a magenta colorant, and a cyan colorant.
  • the toner core may contain a color colorant such as a yellow colorant, a magenta colorant, or a cyan colorant.
  • the yellow colorant for example, one or more compounds selected from the group consisting of condensed azo compounds, isoindolinone compounds, anthraquinone compounds, azo metal complexes, methine compounds, and arylamide compounds can be used.
  • the yellow colorant include C.I. I. Pigment Yellow (3, 12, 13, 14, 15, 17, 62, 74, 83, 93, 94, 95, 97, 109, 110, 111, 120, 127, 128, 129, 147, 151, 154, 155 168, 174, 175, 176, 180, 181, 191, or 194), naphthol yellow S, Hansa yellow G, or C.I. I. Vat yellow can be preferably used.
  • the magenta colorant is, for example, selected from the group consisting of condensed azo compounds, diketopyrrolopyrrole compounds, anthraquinone compounds, quinacridone compounds, basic dye lake compounds, naphthol compounds, benzimidazolone compounds, thioindigo compounds, and perylene compounds.
  • One or more compounds can be used.
  • Examples of the magenta colorant include C.I. I. Pigment Red (2, 3, 5, 6, 7, 19, 23, 48: 2, 48: 3, 48: 4, 57: 1, 81: 1, 122, 144, 146, 150, 166, 169, 177 184, 185, 202, 206, 220, 221 or 254) can be preferably used.
  • cyan colorant for example, one or more compounds selected from the group consisting of a copper phthalocyanine compound, an anthraquinone compound, and a basic dye lake compound can be used.
  • cyan colorants include C.I. I. Pigment blue (1, 7, 15, 15: 1, 15: 2, 15: 3, 15: 4, 60, 62, or 66), phthalocyanine blue, C.I. I. Bat Blue, or C.I. I. Acid blue can be preferably used.
  • the toner core may contain a release agent.
  • the release agent is used, for example, for the purpose of improving the fixing property or offset resistance of the toner.
  • the amount of the release agent is preferably 1 part by mass or more and 30 parts by mass or less with respect to 100 parts by mass of the binder resin. More preferably, it is 20 parts by mass or less.
  • the release agent examples include low molecular weight polyethylene, low molecular weight polypropylene, polyolefin copolymer, polyolefin wax, microcrystalline wax, paraffin wax, or aliphatic hydrocarbon wax such as Fischer-Tropsch wax; oxidized polyethylene wax or a block thereof Oxides of aliphatic hydrocarbon waxes such as copolymers; plant waxes such as candelilla wax, carnauba wax, wood wax, jojoba wax, or rice wax; animal properties such as beeswax, lanolin, or whale wax Waxes; mineral waxes such as ozokerite, ceresin, or petrolatum; waxes based on fatty acid esters such as montanic ester waxes or castor waxes; such as deoxidized carnauba wax; Some or all of the fatty acid ester can be preferably used de oxidized wax.
  • One type of release agent may be used alone, or multiple types of release agents may be used in combination.
  • a compatibilizer may be added to the toner core.
  • the toner core may contain a charge control agent.
  • the charge control agent is used, for example, for the purpose of improving the charge stability or charge rising property of the toner.
  • the charge rising characteristic of the toner is an index as to whether or not the toner can be charged to a predetermined charge level in a short time.
  • the anionicity of the toner core can be strengthened.
  • the cationic property of the toner core can be enhanced by including a positively chargeable charge control agent in the toner core.
  • the toner core may contain magnetic powder.
  • magnetic powder materials include ferromagnetic metals (more specifically, iron, cobalt, nickel, or alloys containing one or more of these metals), ferromagnetic metal oxides (more specifically, Ferrite, magnetite, chromium dioxide, or the like) or a material subjected to ferromagnetization treatment (more specifically, a carbon material or the like imparted with ferromagnetism by heat treatment) can be suitably used.
  • One type of magnetic powder may be used alone, or a plurality of types of magnetic powder may be used in combination.
  • the magnetic powder In order to suppress elution of metal ions (for example, iron ions) from the magnetic powder, it is preferable to surface-treat the magnetic powder.
  • metal ions for example, iron ions
  • a shell layer is formed on the surface of the toner core under acidic conditions, if the metal ions are eluted on the surface of the toner core, the toner cores are easily fixed to each other. It is considered that fixing of the toner cores can be suppressed by suppressing elution of metal ions from the magnetic powder.
  • the shell layer is substantially composed of a specific hydroxyl group-containing resin.
  • the shell layer may further contain a trace amount of a thermosetting resin (more specifically, the aforementioned “preferable thermosetting resin” or the like).
  • the shell layer contains one or more thermosetting resins selected from the group consisting of melamine resins, urea resins, and glyoxal resins. It is preferable.
  • the specific hydroxyl group-containing resin in the basic structure is a thermoplastic resin into which a specific hydroxyl group-containing unit has been introduced (more specifically, It is preferably a “plastic resin”.
  • at least one of the repeating units having an alcoholic hydroxyl group (specific hydroxyl group-containing unit) in the basic structure described above is 2-hydroxyethyl acrylate (HEA). It is preferably a repeating unit derived from 2-hydroxypropyl acrylate (HPA), 2-hydroxyethyl methacrylate (HEMA), or 2-hydroxypropyl methacrylate (HPMA). These repeating units derived from HEA or the like are unlikely to lower the glass transition point (Tg) of the shell layer even when incorporated in the resin constituting the shell layer.
  • An external additive may be attached to the surface of the toner base particles.
  • the external additive adheres (physically bonds) to the surface of the toner base particles with a physical force.
  • the external additive is used, for example, to improve the fluidity or handleability of the toner.
  • the amount of the external additive is preferably 0.5 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the toner base particles.
  • the particle diameter of the external additive is preferably 0.01 ⁇ m or more and 1.0 ⁇ m or less.
  • inorganic particles are preferable, and particles of silica particles or metal oxides (more specifically, alumina, titanium oxide, magnesium oxide, zinc oxide, strontium titanate, barium titanate, etc.) are particularly preferable. preferable.
  • resin particles may be used as an external additive.
  • One type of external additive may be used alone, or a plurality of types of external additives may be used in combination.
  • a toner core is prepared.
  • the toner core and the shell material are put in the liquid.
  • the shell material is preferably dissolved or dispersed in the liquid, for example, by stirring the liquid.
  • a shell layer is formed on the surface of the toner core in the liquid (the shell layer is cured).
  • the aqueous medium is a medium containing water as a main component (more specifically, pure water or a mixed liquid of water and a polar medium).
  • the aqueous medium may function as a solvent.
  • a solute may be dissolved in the aqueous medium.
  • the aqueous medium may function as a dispersion medium.
  • the dispersoid may be dispersed in the aqueous medium.
  • a polar medium in the aqueous medium for example, alcohol (more specifically, methanol or ethanol) can be used.
  • the toner core is preferably produced by an aggregation method or a pulverization method, and more preferably produced by a pulverization method.
  • a binder resin and an internal additive for example, at least one of a colorant, a release agent, a charge control agent, and magnetic powder
  • an internal additive for example, at least one of a colorant, a release agent, a charge control agent, and magnetic powder
  • the obtained mixture is melt-kneaded.
  • the obtained melt-kneaded product is pulverized and classified. As a result, a toner core having a desired particle size can be obtained.
  • the fine particles of the binder resin, the release agent, and the colorant are aggregated in an aqueous medium to obtain aggregated particles containing the binder resin, the release agent, and the colorant.
  • the obtained aggregated particles are heated to unite the components contained in the aggregated particles.
  • a toner core dispersion is obtained.
  • an unnecessary substance such as a dispersant is removed from the dispersion liquid of the toner core to obtain the toner core.
  • the liquid into which the toner core and the shell material are put for example, ion exchange water is prepared.
  • the pH of the liquid is adjusted to a predetermined pH using, for example, hydrochloric acid.
  • the pH is preferably adjusted to 3 or more and 5 or less (weakly acidic).
  • a toner core and a suspension of resin particles are added to a liquid whose pH is adjusted (for example, an acidic aqueous medium).
  • the resin constituting the resin particles is a copolymer of one or more styrene monomers, one or more (meth) acrylic acid esters, and one or more alcoholic hydroxyl group-containing monomers (for example, styrene and butyl acrylate). And 2-hydroxyethyl methacrylate).
  • the number average particle diameter of the suspension used is preferably 25 nm or more and 40 nm or less. If necessary, at least one of a material for synthesizing the thermosetting resin and a crosslinking agent (more specifically, divinylbenzene or the like) may be added to the liquid.
  • the toner core or the like may be added to an aqueous medium at room temperature or an aqueous medium adjusted to a predetermined temperature.
  • the appropriate addition amount of the shell material can be calculated based on the specific surface area of the toner core.
  • a polymerization accelerator may be added to the liquid.
  • a dispersant may be included in the liquid, or the liquid is stirred using a powerful stirring device (for example, “Hibis Disper Mix” manufactured by Primics Co., Ltd.). Also good.
  • the temperature of the liquid is set at a predetermined holding temperature (for example, 50 ° C. at a speed selected from 0.1 ° C./min to 3 ° C./min). To a temperature selected from 85 ° C. to 85 ° C. Furthermore, the temperature of the liquid is maintained at the above holding temperature for a predetermined time (for example, a time selected from 30 minutes to 4 hours) while stirring the liquid. It is considered that reaction (immobilization of the shell layer) proceeds between the toner core and the shell material (resin particles) while maintaining the temperature of the liquid at a high temperature (or during the temperature increase). The shell material is chemically bonded to the toner core to form a shell layer.
  • a predetermined holding temperature for example, 50 ° C. at a speed selected from 0.1 ° C./min to 3 ° C./min.
  • a predetermined time for example, a time selected from 30 minutes to 4 hours
  • the shell material melts in the liquid by heating and is cured in a film form. If the shell material (resin particles) is completely melted and cured in the form of a film, it is considered that a film having no graininess is formed as the shell layer. On the other hand, if the shell material (resin particles) is not completely melted and cured in a film-like form, a film having a form in which the resin particles are two-dimensionally connected (film with a granular feeling) is formed as a shell layer. It is thought. By forming a shell layer on the surface of the toner core in the liquid, a dispersion of toner base particles can be obtained.
  • the resin particles are adhered to the surface of the toner core in the liquid, and the liquid is heated, whereby the resin particles can be dissolved (or deformed) to form a film.
  • the resin particles may be formed into a film by being heated in the drying step or receiving a physical impact force in the external addition step.
  • the holding temperature is preferably less than the glass transition point (Tg) of the toner core.
  • the toner core may be intentionally deformed by setting the holding temperature to be equal to or higher than the glass transition point (Tg) of the toner core.
  • Tg glass transition point
  • the holding temperature is increased, the deformation of the toner core is promoted, and the shape of the toner base particles tends to approach a true sphere. It is desirable to adjust the holding temperature so that the toner base particles have a desired shape. Further, when the shell material is reacted at a high temperature, the shell layer tends to become hard. Based on the holding temperature, the molecular weight of the shell layer can also be controlled.
  • the dispersion of the toner base particles is neutralized using, for example, sodium hydroxide.
  • the toner mother particle dispersion is cooled to, for example, room temperature (about 25 ° C.).
  • the dispersion of the toner base particles is filtered using, for example, a Buchner funnel. Thereby, the toner base particles are separated from the liquid (solid-liquid separation), and wet cake-like toner base particles are obtained. Subsequently, the obtained wet cake-like toner base particles are washed. Subsequently, the washed toner base particles are dried.
  • the toner base particles and the external additive are mixed using a mixer (for example, FM mixer manufactured by Nippon Coke Kogyo Co., Ltd.), and the external additive is adhered to the surface of the toner base particles. May be.
  • a spray dryer is used in the drying step, the drying step and the external addition step can be performed at the same time by spraying a dispersion of an external additive (for example, silica particles) onto the toner base particles.
  • an external additive for example, silica particles
  • the content and order of the toner manufacturing method can be arbitrarily changed according to the required configuration or characteristics of the toner.
  • the timing of adjusting the pH of the liquid may be before or after the aforementioned shell material or the like (shell material and toner core) is added to the liquid.
  • the toner core and the shell material may be added together at the same time or may be added separately.
  • the material when reacting a material (for example, a shell material) in the liquid, the material may be reacted in the liquid for a predetermined time after the material is added to the liquid, or the material is added to the liquid over a long period of time. Then, the material may be reacted in the liquid while adding the material to the liquid. Further, the shell material may be added to the liquid at once, or may be added to the liquid in a plurality of times.
  • the method for forming the shell layer is arbitrary.
  • the shell layer may be formed using any of an in-situ polymerization method, a submerged cured coating method, and a coacervation method. Further, the toner may be sieved after the external addition step.
  • the toner base particles correspond to the toner particles.
  • the toner core material and the shell material are not limited to the aforementioned compounds (monomers for synthesizing the resin, etc.).
  • a derivative of the aforementioned compound may be used as the toner core material or shell material, or a prepolymer may be used instead of the monomer.
  • Various materials may be used in a solid state or in a liquid state.
  • a solid material powder may be used, a material solution (liquid material dissolved in a solvent) may be used, or a material dispersion (material dispersed liquid) may be used. May be.
  • a material solution liquid material dissolved in a solvent
  • a material dispersion material dispersed liquid
  • Table 1 shows toners A to J (electrostatic latent image developing toners) according to examples, reference examples, and comparative examples.
  • ⁇ Measurement method of Tg> Using a differential scanning calorimeter (“DSC-6220” manufactured by Seiko Instruments Inc.), an endothermic curve (vertical axis: heat flow (DSC signal), horizontal axis: temperature) of a sample (for example, resin) was obtained. Subsequently, the Tg (glass transition point) of the sample was read from the obtained endothermic curve. The temperature of the specific heat change point (intersection of the extrapolation line of the base line and the extrapolation line of the falling line) in the obtained endothermic curve corresponds to the Tg (glass transition point) of the sample.
  • DSC-6220 differential scanning calorimeter
  • ⁇ Tm measurement method A sample (for example, resin) is set on a Koka-type flow tester (“CFT-500D” manufactured by Shimadzu Corporation), a die pore diameter of 1 mm, a plunger load of 20 kg / cm 2 , and a temperature rising rate of 6 ° C./min. Then, a 1 cm 3 sample was melted and discharged, and an S-shaped curve (horizontal axis: temperature, vertical axis: stroke) of the sample was obtained. Subsequently, the Tm (softening point) of the sample was read from the obtained S-shaped curve.
  • CFT-500D Koka-type flow tester
  • the stroke value in the S-curve is “(S 1 + S 2 ) / 2”.
  • the stroke value in the S-curve is “(S 1 + S 2 ) / 2”.
  • the Tm softening point
  • the obtained mixture was subjected to a material supply speed of 5 kg / hour, a shaft rotation speed of 160 rpm, and a set temperature range (cylinder temperature) of 100 ° C. or higher using a twin-screw extruder (“PCM-30” manufactured by Ikegai Co., Ltd.). It was melt-kneaded under conditions of 130 ° C. or lower. Subsequently, the obtained melt-kneaded product was cooled, and the cooled melt-kneaded product was coarsely pulverized using a pulverizer (“Rotoplex (registered trademark)” manufactured by Hosokawa Micron Corporation).
  • a pulverizer Rotoplex (registered trademark)” manufactured by Hosokawa Micron Corporation
  • the obtained coarsely pulverized product was finely pulverized using a jet mill (“Ultrasonic Jet Mill Type I” manufactured by Nippon Pneumatic Industry Co., Ltd.). Subsequently, the obtained finely pulverized product was classified using a classifier (“Elbow Jet EJ-LABO type” manufactured by Nippon Steel Mining Co., Ltd.). As a result, a toner core having a volume median diameter (D 50 ) of 6 ⁇ m was obtained.
  • first liquid and second liquid two kinds of liquids
  • the first liquid was a mixed liquid of 17 mL of styrene, 1 mL of 2-hydroxyethyl methacrylate (HEMA), and 2 mL of butyl acrylate.
  • the second liquid was a solution in which 0.5 g of potassium persulfate was dissolved in 30 mL of ion exchange water.
  • the temperature in the flask was kept at 80 ° C. for another 2 hours to polymerize the flask contents.
  • suspension A a suspension of resin fine particles
  • toner base particles were dispersed in an aqueous ethanol solution having a concentration of 50% by mass. As a result, a slurry of toner base particles was obtained. Subsequently, the toner base particles in the slurry were removed under the conditions of a hot air temperature of 45 ° C. and a blower air volume of 2 m 3 / min using a continuous surface reformer (“Coat Mizer (registered trademark)” manufactured by Freund Sangyo Co., Ltd.). Dried. As a result, toner mother particle powder was obtained.
  • Coat Mizer registered trademark
  • toner base particles were externally added. Specifically, 100 parts by mass of toner base particles and 1.0 part by mass of dry silica fine particles (“AEROSIL (registered trademark) REA90” manufactured by Nippon Aerosil Co., Ltd.) and a 10 L capacity FM mixer (manufactured by Nippon Coke Industries, Ltd.) By using and mixing for 5 minutes, an external additive (silica particles) was adhered to the surface of the toner base particles. Thereafter, the obtained powder was sieved using a 200-mesh (aperture 75 ⁇ m) sieve. As a result, Toner A containing a large number of toner particles was obtained.
  • AEROSIL registered trademark
  • FM mixer manufactured by Nippon Coke Industries, Ltd.
  • the manufacturing method of the toner B was the same as the manufacturing method of the toner A except that 150 mL of the suspension B was used instead of the 150 mL of the suspension A in the shell layer forming step.
  • the suspension B was prepared by using 18 mL of styrene and 2-hydroxy methacrylate as the first liquid instead of a mixture of 17 mL of styrene, 1 mL of 2-hydroxyethyl methacrylate (HEMA) and 2 mL of butyl acrylate.
  • the suspension A was prepared in the same manner except that a mixed solution of 0.1 mL of ethyl (HEMA) and 2 mL of butyl acrylate was used.
  • the number average particle diameter of the resin fine particles contained in the obtained suspension B was 38 nm.
  • the manufacturing method of the toner C was the same as the manufacturing method of the toner A except that 150 mL of the suspension C was used instead of the 150 mL of the suspension A in the shell layer forming step.
  • the suspension C was prepared by using 14 mL of styrene and 2-hydroxy methacrylate as the first liquid instead of a mixture of 17 mL of styrene, 1 mL of 2-hydroxyethyl methacrylate (HEMA) and 2 mL of butyl acrylate. It was the same as the method for preparing suspension A except that a mixed solution of 4 mL of ethyl (HEMA) and 2 mL of butyl acrylate was used.
  • the number average particle diameter of the resin fine particles contained in the obtained suspension C was 27 nm.
  • the manufacturing method of the toner D was the same as the manufacturing method of the toner A except that 150 mL of the suspension D was used instead of the 150 mL of the suspension A in the shell layer forming step.
  • the suspension D was prepared by using, as a first liquid, 18 mL of styrene and 2-hydroxy acrylate instead of a mixture of 17 mL of styrene, 1 mL of 2-hydroxyethyl methacrylate (HEMA) and 2 mL of butyl acrylate.
  • the suspension A was prepared in the same manner as the suspension A except that 1 mL of ethyl (HEA) and 1 mL of butyl acrylate were used.
  • the number average particle diameter was 34 nm.
  • the manufacturing method of the toner F was the same as the manufacturing method of the toner A except that 150 mL of the suspension F was used instead of the 150 mL of the suspension A in the shell layer forming step.
  • the suspension F was prepared by using 16 mL of styrene and 2-hydroxy methacrylate as the first liquid instead of a mixture of 17 mL of styrene, 1 mL of 2-hydroxyethyl methacrylate (HEMA) and 2 mL of butyl acrylate.
  • the suspension A was prepared in the same manner as the suspension A except that a mixed solution of 1 mL of propyl (HPMA) and 3 mL of butyl acrylate was used.
  • the number average particle diameter of the resin fine particles contained in the obtained suspension F was 39 nm.
  • toner G is produced by adding 150 mL of suspension A as a shell material and an aqueous solution of hexamethylol melamine initial polymer ("Milben (registered trademark) Resin SM-607" manufactured by Showa Denko KK). The solid content concentration of 80% by mass) was also the same as that of toner A except that 0.1 mL was added to the flask.
  • the manufacturing method of the toner H was the same as the manufacturing method of the toner A except that 150 mL of the suspension H was used instead of the 150 mL of the suspension A in the shell layer forming step.
  • the suspension H was prepared by using 15.5 mL of styrene and 2 mL of methacrylic acid instead of a mixture of 17 mL of styrene, 1 mL of 2-hydroxyethyl methacrylate (HEMA) and 2 mL of butyl acrylate as the first liquid.
  • HEMA 2-hydroxyethyl methacrylate
  • the manufacturing method of the toner I was the same as the manufacturing method of the toner A except that 150 mL of the suspension I was used instead of the 150 mL of the suspension A in the shell layer forming step.
  • Suspension I was prepared by using 11 mL of styrene and 2-hydroxy methacrylate as the first solution instead of a mixture of 17 mL of styrene, 1 mL of 2-hydroxyethyl methacrylate (HEMA) and 2 mL of butyl acrylate. It was the same as the method for preparing suspension A, except that a mixed solution of 6 mL of ethyl (HEMA) and 3 mL of butyl acrylate was used. With respect to the resin fine particles contained in the obtained suspension I, the number average particle diameter was 24 nm.
  • the manufacturing method of the toner J was the same as the manufacturing method of the toner A except that 150 mL of the suspension J was used instead of the 150 mL of the suspension A in the shell layer forming step.
  • the suspension J was prepared by using 17 mL of styrene, 3 mL of butyl acrylate instead of a mixture of 17 mL of styrene, 1 mL of 2-hydroxyethyl methacrylate (HEMA) and 2 mL of butyl acrylate as the first liquid.
  • the suspension was prepared in the same manner as the suspension A except that the mixed solution was used.
  • the number average particle diameter of the resin fine particles contained in the obtained suspension J was 52 nm.
  • the measurement results of the ratio (unit: mass%) of the specific hydroxyl group-containing unit in the specific hydroxyl group-containing resin constituting the shell layer are as shown in Table 1.
  • the ratio of the specific hydroxyl group-containing unit was 4.8% by mass.
  • the shell layer did not contain a specific hydroxyl group-containing resin (a resin containing a repeating unit having an alcoholic hydroxyl group).
  • the method for measuring the ratio of the specific hydroxyl group-containing unit was as follows.
  • the ratio of specific hydroxyl group-containing units was measured by quantitative analysis by the GC / MS method.
  • a gas chromatograph mass spectrometer (“GCMS-QP2010 Ultra” manufactured by Shimadzu Corporation) and a multi-shot pyrolyzer (“PY-3030D” manufactured by Frontier Laboratories) were used.
  • a metal capillary column (“Ultra ALLOY (registered trademark) -5 (MS / HT)” manufactured by Frontier Laboratories, Inc., inner diameter: 0.25 mm, film thickness: 0.25 ⁇ m, length: 30 m) was used. .
  • the measurement conditions were as follows.
  • a developer carrier (a carrier for “TASKalfa 5550ci” manufactured by Kyocera Document Solutions Co., Ltd.) and a sample (toner) were mixed for 30 minutes using a ball mill to prepare a developer for evaluation (two-component developer).
  • the ratio of the sample (toner) in the developer for evaluation was 12% by mass.
  • a color printer (evaluator that modifies “FS-C5250DN” manufactured by Kyocera Document Solutions Co., Ltd.) and can change the fixing temperature was used.
  • the evaluation developer prepared as described above was charged into the developing device of the evaluation machine, and the sample (replenishment toner) was charged into the toner container of the evaluation machine.
  • a solid image having a size of 25 mm ⁇ 25 mm was printed on 90 g / m 2 paper (A4 size evaluation paper) under the conditions of a linear velocity of 200 mm / second and a toner applied amount of 1.0 mg / cm 2. Formed. Subsequently, the paper on which the image was formed was passed through the fixing device.
  • the fixing temperature setting range was 100 ° C. or higher and 200 ° C. or lower. Specifically, the fixing temperature of the fixing device was gradually increased from 100 ° C., and the lowest temperature (minimum fixing temperature) at which the toner (solid image) can be fixed on the paper was measured.
  • the toner could be fixed in the measurement of the minimum fixing temperature was confirmed by a rubbing test as shown below. Specifically, the paper was folded in half so that the surface on which the image was formed was inside, and a 1 kg weight covered with a cloth was used to rub the crease 5 times. Subsequently, the paper was spread and the bent portion of the paper (the portion where the solid image was formed) was observed. Then, the toner peeling length (peeling length) of the bent portion was measured. The lowest temperature among the fixing temperatures at which the peeling length was less than 1 mm was defined as the lowest fixing temperature.
  • An evaluation developer (two-component developer) was prepared in the same manner as in the evaluation of low-temperature fixability.
  • As an evaluation machine a color multifunction machine (“TASKalfa 5550ci” manufactured by Kyocera Document Solutions Inc.) was used. The developer for evaluation was put into the developing device of the evaluation machine, and the sample (replenishment toner) was put into the toner container of the evaluation machine.
  • the voltage between the developing sleeve of the evaluator and the magnet roll so that the initial image density (measuring device: “SpectroEye (registered trademark)” manufactured by X-Rite) is 1.0 to 1.2 was adjusted in the range of 200V to 300V.
  • a printing durability test was performed in which 10,000 sheets were continuously printed at a printing rate of 5% in an environment of a temperature of 20 ° C. and a humidity of 60% RH.
  • the entire sample (toner) scattered in the developing device of the evaluation machine was collected. Then, the mass of the collected toner was measured, and the measured toner mass (toner scattering amount) was evaluated according to the following criteria.
  • the developer was taken out from the developing device of the evaluation machine, and the charge amount of the toner in the developer was measured.
  • the charge amount of the toner in the developer was measured using a Q / m meter (“MODEL 210HS-1” manufactured by Trek) under the following conditions.
  • the charge amount of the toner in the developer after the printing durability test is 10 ⁇ C / g or more and 27 ⁇ C / g or less, it is evaluated as “Good”, and if it is less than 10 ⁇ C / g or more than 27 ⁇ C / g, “ ⁇ (Not good) ".
  • the toner in the developer on the developing sleeve is changed to the toner using a charge amount / particle size distribution measuring device (“Espart Analyzer (registered trademark) EST-3” manufactured by Hosokawa Micron Corporation). The ratio (unit: mass%) of the reversely charged toner contained was measured.
  • the dash mark is an image defect that can be caused by the toner adhering to the surface of the photosensitive drum.
  • An evaluation developer (two-component developer) was prepared in the same manner as in the evaluation of low-temperature fixability.
  • a color multifunction machine (“TASKalfa 5550ci” manufactured by Kyocera Document Solutions Inc.) was used. The developer for evaluation was put into the developing device of the evaluation machine, and the sample (replenishment toner) was put into the toner container of the evaluation machine.
  • transfer efficiency 100 ⁇ (mass of consumed toner ⁇ mass of collected toner) / mass of consumed toner
  • the transfer efficiency When the transfer efficiency is 85% by mass or more, it is evaluated as ⁇ (very good), when it is 70% by mass or more and less than 85% by mass, it is evaluated as ⁇ (good), and when it is less than 70% by mass, ⁇ (bad). ).
  • the charge decay constant of the sample (toner) is measured by a method based on JIS (Japanese Industrial Standard) C 61340-2-1-2006 using an electrostatic diffusivity measuring device (“NS-D100” manufactured by Nano Seeds Co., Ltd.). did.
  • a method for measuring the charge decay constant of the toner will be described in detail.
  • a sample (toner) was placed in a measurement cell.
  • the measurement cell was a metal cell in which a recess having an inner diameter of 10 mm and a depth of 1 mm was formed.
  • the sample was pushed in from above using a slide glass, and the concave portion of the cell was filled with the sample.
  • the sample overflowed from the cell was removed by reciprocating the slide glass on the surface of the cell.
  • the sample filling amount was 0.04 g or more and 0.06 g or less.
  • V V 0 exp ( ⁇ t)
  • the charge decay constant (charge decay rate) ⁇ was calculated.
  • V represents the surface potential [V]
  • V 0 represents the initial surface potential [V]
  • t represents the decay time [second].
  • Tables 2 and 3 show the evaluation results of the toners A to J, respectively.
  • Table 2 shows the evaluation results of each of heat-resistant storage stability (cohesion degree), low-temperature fixability (minimum fixing temperature), and charge decay characteristics (charge decay constant).
  • Table 3 shows evaluation results of durability (toner scattering amount, charge amount, ratio of reversely charged toner, and presence / absence of drum adhesion) and transfer efficiency. “800 sheets” in Table 3 regarding the evaluation result of drum adhesion indicates that a dash mark was observed when 800 sheets were printed. “ ⁇ ” In Table 3 regarding the transfer efficiency evaluation results indicates that the drum adhesion occurred and measurement was not possible.
  • each of the toners A to H had the basic configuration described above.
  • the shell layer was substantially composed of a resin (a specific hydroxyl group-containing resin) including a repeating unit having an alcoholic hydroxyl group (a specific hydroxyl group-containing unit).
  • the ratio of the specific hydroxyl group-containing unit to all the repeating units in the specific hydroxyl group-containing resin was 0.1% by mass or more and 20% by mass or less.
  • the thickness of the shell layer was 1 nm or more and 30 nm or less.
  • the toners according to Examples 1 to 8 were excellent in heat-resistant storage stability, low-temperature fixability, and charge attenuation characteristics. Further, as shown in Table 3, the toners according to Examples 1 to 8 were excellent in durability and transfer efficiency. Each of the toners according to Examples 1 to 8 had sufficient positive chargeability even under a high temperature and high humidity environment, and could form a high quality image over a long period of time.
  • Each of the toners according to Examples 1 to 8 was excellent in transfer efficiency as compared with toner I (toner according to Reference Example 1).
  • Toner I the proportion of the specific hydroxyl group-containing unit exceeded 20% by mass.
  • Toner J (toner according to Comparative Example 1) was inferior in durability as compared with toners A to H (toners according to Examples 1 to 8). This reason is presumed to be because, in toner J, the shell layer did not contain the specific hydroxyl group-containing resin.
  • the electrostatic latent image developing toner according to the present invention can be used for forming an image in, for example, a copying machine, a printer, or a multifunction machine.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Developing Agents For Electrophotography (AREA)

Abstract

 静電潜像現像用トナーが、コアと、コアの表面に形成されたシェル層とを有するトナー粒子を、複数含む。コアは結着樹脂を含む。シェル層は、アルコール性水酸基を有する1種以上の繰返し単位(より具体的には、アクリル酸2-ヒドロキシエチル、アクリル酸2-ヒドロキシプロピル、メタクリル酸2-ヒドロキシエチル、又はメタクリル酸2-ヒドロキシプロピルに由来する繰返し単位等)を含む樹脂から実質的に構成される。シェル層を実質的に構成する樹脂中の全ての繰返し単位に対する、アルコール性水酸基を有する繰返し単位の割合は、0.1質量%以上20質量%以下である。

Description

静電潜像現像用トナー
 本発明は、静電潜像現像用トナーに関し、特にカプセルトナーに関する。
 カプセルトナーに含まれるトナー粒子は、コアと、コアの表面に形成されたシェル層(カプセル層)とを有する。例えば、特許文献1に記載されるカプセルトナーでは、トナー粒子が、軟化温度40℃以上150℃以下のトナーコアを有する。
特開2004-138985号公報
 しかしながら、特許文献1に開示される技術だけでは、耐久性に優れる静電潜像現像用トナーを提供することは困難である。詳しくは、特許文献1に記載されたトナーを用いて画像を形成した場合、長期にわたって高画質の画像を形成することは困難である。
 本発明は、上記課題に鑑みてなされたものであり、耐久性に優れる静電潜像現像用トナーを提供することを目的とする。また、本発明は、高温高湿環境下でも十分な帯電性を有する静電潜像現像用トナーを提供することを他の目的とする。
 本発明に係る静電潜像現像用トナーは、コアと、前記コアの表面に形成されたシェル層とを有するトナー粒子を、複数含む。前記コアは結着樹脂を含む。前記シェル層は、アルコール性水酸基を有する1種以上の繰返し単位を含む樹脂から実質的に構成される。前記シェル層を実質的に構成する前記樹脂中の全ての繰返し単位に対する、前記アルコール性水酸基を有する繰返し単位の割合は、0.1質量%以上20質量%以下である。
 本発明によれば、耐久性に優れる静電潜像現像用トナーを提供することが可能になる。また、本発明によれば、この効果に加えて又はこの効果に代えて、高温高湿環境下でも十分な帯電性を有する静電潜像現像用トナーを提供することが可能になるという効果が奏される場合がある。
(a)は、特定水酸基含有単位の割合を求めるためのクロマトグラムの一例を示す図であり、(b)は、特定水酸基含有単位の割合を求めるためのマススペクトルの一例を示す図である。
 本発明の実施形態について詳細に説明する。なお、粉体(より具体的には、トナーコア、トナー母粒子、外添剤、又はトナー等)に関する評価結果(形状又は物性などを示す値)は、何ら規定していなければ、粉体から平均的な粒子を相当数選び取って、それら平均的な粒子の各々について測定した値の個数平均である。
 粉体の個数平均粒子径は、何ら規定していなければ、顕微鏡を用いて測定された1次粒子の円相当径(粒子の投影面積と同じ面積を有する円の直径)の個数平均値である。また、粉体の体積中位径(D50)の測定値は、何ら規定していなければ、ベックマン・コールター株式会社製の「コールターカウンターマルチサイザー3」を用いてコールター原理(細孔電気抵抗法)に基づき測定した値である。また、酸価及び水酸基価の各々の測定値は、何ら規定していなければ、「JIS(日本工業規格)K0070-1992」に従って測定した値である。また、数平均分子量(Mn)及び質量平均分子量(Mw)の各々の測定値は、何ら規定していなければ、ゲルパーミエーションクロマトグラフィーを用いて測定した値である。
 以下、化合物名の後に「系」を付けて、化合物及びその誘導体を包括的に総称する場合がある。化合物名の後に「系」を付けて重合体名を表す場合には、重合体の繰返し単位が化合物又はその誘導体に由来することを意味する。また、アクリル及びメタクリルを包括的に「(メタ)アクリル」と総称する場合がある。また、アクリロニトリル及びメタクリロニトリルを包括的に「(メタ)アクリロニトリル」と総称する場合がある。また、イオン化して塩を形成し得る官能基及びその塩を包括的に「親水性官能基」と総称する場合がある。親水性官能基の例としては、酸基(より具体的には、カルボキシル基又はスルホ基等)、水酸基、又はこれらの塩(より具体的には、-COONa、-SO3Na、又は-ONa等)が挙げられる。各化学式中の繰返し単位の添え字「n」は、各々独立して、その繰返し単位の繰返し数(モル数)を示している。何ら規定していなければ、n(繰返し数)は任意である。
 本実施形態に係るトナーは、静電潜像の現像に好適に用いることができる。本実施形態のトナーは、複数のトナー粒子(それぞれ後述する構成を有する粒子)を含む粉体である。トナーは、1成分現像剤として使用してもよい。また、混合装置(例えば、ボールミル)を用いてトナーとキャリアとを混合して2成分現像剤を調製してもよい。高画質の画像を形成するためには、キャリアとしてフェライトキャリアを使用することが好ましい。また、長期にわたって高画質の画像を形成するためには、キャリアコアと、キャリアコアを被覆する樹脂層とを有する磁性キャリア粒子を使用することが好ましい。キャリア粒子に磁性を付与するためには、磁性材料(例えば、フェライト)でキャリアコアを形成してもよいし、磁性粒子を分散させた樹脂でキャリアコアを形成してもよい。また、キャリアコアを被覆する樹脂層中に磁性粒子を分散させてもよい。高画質の画像を形成するためには、2成分現像剤におけるトナーの量は、キャリア100質量部に対して、5質量部以上15質量部以下であることが好ましく、8質量部以上12質量部以下であることがより好ましい。なお、2成分現像剤に含まれる正帯電性トナーは、キャリアとの摩擦により正に帯電する。また、2成分現像剤に含まれる負帯電性トナーは、キャリアとの摩擦により負に帯電する。
 本実施形態に係るトナーに含まれるトナー粒子は、コア(以下、トナーコアと記載する)と、トナーコアの表面に形成されたシェル層(カプセル層)とを有する。シェル層は、実質的に樹脂から構成される。シェル層の表面(又は、シェル層で覆われていないトナーコアの表面領域)に外添剤が付着していてもよい。シェル層は、トナーコアの表面全体を覆っていてもよいし、トナーコアの表面を部分的に覆っていてもよい。また、トナーコアの表面に複数のシェル層が積層されてもよい。なお、必要がなければ外添剤を割愛してもよい。以下、外添剤が付着する前のトナー粒子を、トナー母粒子と記載する。また、トナーコアを形成するための材料を、トナーコア材料と記載する。また、シェル層を形成するための材料を、シェル材料と記載する。
 本実施形態に係るトナーは、例えば電子写真装置(画像形成装置)において画像の形成に用いることができる。以下、電子写真装置による画像形成方法の一例について説明する。
 まず、画像データに基づいて感光体(例えば、感光体ドラムの表層部)に静電潜像を形成する。次に、形成された静電潜像を、トナーを含む現像剤を用いて現像する。現像工程では、感光体の近傍に配置された現像スリーブ(例えば、現像装置内の現像ローラーの表層部)上のトナー(例えば、キャリア又はブレードとの摩擦により帯電したトナー)を静電潜像に付着させて、感光体上にトナー像を形成する。そして、続く転写工程では、感光体上のトナー像を中間転写体(例えば、転写ベルト)に転写した後、さらに中間転写体上のトナー像を記録媒体(例えば、紙)に転写する。その後、トナーを加熱して、記録媒体にトナーを定着させる。その結果、記録媒体に画像が形成される。例えば、ブラック、イエロー、マゼンタ、及びシアンの4色のトナー像を重ね合わせることで、フルカラー画像を形成することができる。
 本実施形態に係るトナーは、次に示す構成(以下、基本構成と記載する)を有する静電潜像現像用トナーである。
 (トナーの基本構成)
 トナーが、トナーコアとシェル層とを有するトナー粒子を複数含む。トナーコアは結着樹脂を含む。シェル層は、アルコール性水酸基を有する1種以上の繰返し単位(以下、特定水酸基含有単位と記載する)を含む樹脂(以下、特定水酸基含有樹脂と記載する)から実質的に構成される。詳しくは、シェル層に含まれる樹脂のうち90質量%以上100質量%以下の樹脂が特定水酸基含有樹脂であることが好ましい。特定水酸基含有樹脂中の全ての繰返し単位に対する特定水酸基含有単位の割合(以下、単に「特定水酸基含有単位の割合」と記載する場合がある)は0.1質量%以上20質量%以下である。特定水酸基含有単位の割合の測定方法は、後述する実施例で示す方法又はその代替方法である。特定水酸基含有樹脂は、2種以上の特定水酸基含有単位を含んでいてもよい。
 特定水酸基含有単位の割合は、GC/MS法により測定できる。図1(a)に、GC/MS法により測定されたクロマトグラム(横軸:時間、縦軸:強度)の一例を示す。図1(a)中に示されるピークP1は、メタクリル酸2-ヒドロキシエチル(HEMA)に由来するピークである。また、図1(b)に、GC/MS法により測定されたマススペクトル(横軸:イオンの質量/イオンの電荷数、縦軸:強度)の一例を示す。図1(b)中に示されるピークP2(3つのピーク)はそれぞれ、メタクリル酸2-ヒドロキシエチル(HEMA)のフラグメントイオンに由来するピークである。
 例えば、特定水酸基含有樹脂が、スチレン系モノマーとアクリル酸系モノマーとアルコール性水酸基含有モノマーとの共重合体である場合、アルコール性水酸基含有モノマーに由来する1種以上の繰返し単位(特定水酸基含有単位)の質量MAを、スチレン系モノマーに由来する1種以上の繰返し単位とアクリル酸系モノマーに由来する1種以上の繰返し単位とアルコール性水酸基含有モノマーに由来する1種以上の繰返し単位との合計質量MBで除算した値(=MA/MB)が、上記特定水酸基含有単位の割合に相当する。百分率(質量%)で表記する場合には、算出された値(=MA/MB)を100倍すればよい。
 なお、トナー粒子が概ね均一に混ざっているトナーに関しては、トナー(例えば、50μgのトナー)に含まれる相当数のトナー粒子(例えば、25万個のトナー粒子)をまとめて1つの評価用試料として扱うことができる。詳しくは、こうした評価用試料について測定された特定水酸基含有単位の割合が上記基本構成で規定される範囲(0.1質量%以上20質量%以下)内であれば、以下に説明する効果が奏されると考えられる。
 上記基本構成を有するトナーでは、シェル層がトナーコアから脱離しにくい。この理由は、シェル層のアルコール性水酸基がトナーコアの結着樹脂と化学的に反応して結合するためであると考えられる。上記基本構成において、トナーコアが結着樹脂としてポリエステル樹脂を含む場合、特に、シェル層がトナーコアから脱離しにくくなる傾向がある。こうした傾向は、樹脂間で上述の化学反応が起こり易くなることと、樹脂同士のSP値(溶解度パラメーター)が近くなって親和性が高まることとに起因すると考えられる。また、トナーコアからのシェル層の脱離が抑制されることで、感光体ドラムに対するトナーの付着が抑制される。
 発明者は、上記トナーの作用及び効果に加えて、シェル層に含まれるアルコール性水酸基が多すぎると、高温高湿環境下においてトナー粒子の帯電量が減衰する傾向があることを見出した。この理由は、トナー粒子の表面の親水性が強まり、トナー粒子の表面に水分子が吸着し易くなるためであると考えられる。また、発明者は、上記基本構成で規定される割合(0.1質量%以上20質量%以下)で特定水酸基含有単位を含む樹脂によりシェル層を形成することで、高温高湿環境下でも十分な帯電性を有するトナーが得られることを見出した。十分な帯電性を有するトナーを用いて画像を形成することで、高画質の画像を形成することが可能になる。高温高湿環境下におけるトナーの帯電性を向上させるためには、特定水酸基含有単位の割合が5質量%以上10質量%以下であることが特に好ましい。
 特定水酸基含有単位(アルコール性水酸基を有する繰返し単位)としては、例えば下記式(1)で表される繰返し単位を含むことが特に好ましい。
Figure JPOXMLDOC01-appb-C000001
 式(1)中、R11及びR12は、各々独立して、水素原子、ハロゲン原子、又は置換基を有してもよいアルキル基を表す。また、R2は、置換基を有してもよいアルキレン基を表す。R11及びR12としては、各々独立して、水素原子又はメチル基が好ましく、R11が水素原子を表し、かつ、R12が水素原子又はメチル基を表す組合せが特に好ましい。R2としては、炭素数1以上6以下のアルキレン基が好ましく、炭素数1以上4以下のアルキレン基がより好ましい。なお、メタクリル酸2-ヒドロキシエチルに由来する繰返し単位では、R11が水素原子を、R12がメチル基を、R2がエチレン基(-(CH22-)を、それぞれ表す。
 空気中の水分がシェル層の表面に吸着することを十分抑制するためには、シェル層を構成する特定水酸基含有樹脂が、アルコール性水酸基を有する繰返し単位以外には、酸基、水酸基、及びこれらの塩の少なくとも1つを有する繰返し単位を含まないことが好ましい。
 空気中の水分がシェル層の表面に吸着することを十分抑制するためには、シェル層を構成する特定水酸基含有樹脂に含まれる全ての繰返し単位のうち、親水性官能基を有する繰返し単位の割合が、10質量%以下であることが好ましい。
 トナーの耐熱保存性、定着性、及び帯電安定性を向上させるためには、シェル層を構成する特定水酸基含有樹脂が、特定水酸基含有単位に加えて、スチレン系モノマーに由来する1種以上の繰返し単位をさらに含むことが好ましい。また、スチレン系モノマーに由来する繰返し単位としては、下記式(2)で表される繰返し単位が特に好ましい。
Figure JPOXMLDOC01-appb-C000002
 式(2)中、R31~R35は、各々独立して、水素原子、ハロゲン原子、水酸基、置換基を有してもよいアルキル基、置換基を有してもよいアルコキシ基、置換基を有してもよいアルコキシアルキル基、又は置換基を有してもよいアリール基を表す。また、R36及びR37は、各々独立して、水素原子、ハロゲン原子、又は置換基を有してもよいアルキル基を表す。R31~R35としては、各々独立して、水素原子、ハロゲン原子、炭素数1以上4以下のアルキル基、炭素数1以上4以下のアルコキシ基、又は炭素数(詳しくは、アルコキシとアルキルとの合計炭素数)2以上6以下のアルコキシアルキル基が好ましい。R36及びR37としては、各々独立して、水素原子又はメチル基が好ましく、R37が水素原子を表し、かつ、R36が水素原子又はメチル基を表す組合せが特に好ましい。なお、スチレンに由来する繰返し単位では、R31~R37の各々が水素原子を表す。
 シェル層が十分強い疎水性と適度な強度とを有するためには、シェル層を構成する特定水酸基含有樹脂に含まれる繰返し単位のうち最も高いモル分率を有する繰返し単位が、スチレン系モノマーに由来する繰返し単位(より好ましくは、式(2)で表される繰返し単位)であることが好ましい。
 トナーの耐熱保存性、定着性、及び帯電安定性を向上させるためには、シェル層を構成する特定水酸基含有樹脂が、特定水酸基含有単位と、スチレン系モノマーに由来する繰返し単位とに加えて、(メタ)アクリル酸エステルに由来する1種以上の繰返し単位をさらに含むことが好ましい。また、(メタ)アクリル酸エステルに由来する繰返し単位としては、下記式(3)で表される繰返し単位が特に好ましい。
Figure JPOXMLDOC01-appb-C000003
 式(3)中、R41及びR42は、各々独立して、水素原子、ハロゲン原子、又は置換基を有してもよいアルキル基を表す。R43は、置換基を有してもよい炭素数1以上8以下のアルキル基を表す。また、R41及びR42としては、各々独立して、水素原子又はメチル基が好ましく、R41が水素原子を表し、かつ、R42が水素原子又はメチル基を表す組合せが特に好ましい。R43としては、炭素数4以上6以下のアルキル基が特に好ましい。なお、アクリル酸ブチルに由来する繰返し単位では、R41が水素原子を表し、R42が水素原子を表し、R43がブチル基(炭素数4のアルキル基)を表す。
 シェル層の強度を向上させるために、特定水酸基含有樹脂に加えて、さらに熱硬化性樹脂(例えば、親水性熱硬化性樹脂)をシェル層に含ませてもよい。トナーの帯電安定性及び耐熱保存性の両立を図るためには、シェル層に含まれる樹脂のうち、10質量%以下の樹脂が熱硬化性樹脂であることが好ましく、0.01質量%以上5質量%以下の樹脂が熱硬化性樹脂であることがより好ましい。
 トナーの耐熱保存性及び低温定着性の両立を図るためには、シェル層の厚さは1nm以上30nm以下であることが好ましい。シェル層の厚さは、市販の画像解析ソフトウェア(例えば、三谷商事株式会社製「WinROOF」)を用いてトナー粒子の断面のTEM撮影像を解析することによって計測できる。なお、1つのトナー粒子においてシェル層の厚さが均一でない場合には、均等に離間した4箇所(詳しくは、トナー粒子の断面の略中心で直交する2本の直線を引き、それら2本の直線がシェル層と交差する4箇所)の各々でシェル層の厚さを測定し、得られた4つの測定値の算術平均を、そのトナー粒子の評価値(シェル層の厚さ)とする。
 トナーの耐熱保存性及び低温定着性の両立を図るためには、シェル層が、トナーコアの表面領域のうち、50%以上99%以下の面積を覆っていることが好ましく、70%以上95%以下の面積を覆っていることがより好ましい。
 次に、トナーコア(結着樹脂及び内添剤)、シェル層、及び外添剤について、順に説明する。トナーの用途に応じて必要のない成分を割愛してもよい。
 <好適な熱可塑性樹脂>
 トナー粒子(特に、トナーコア及びシェル層)を構成する熱可塑性樹脂としては、例えば、スチレン系樹脂、アクリル酸系樹脂(より具体的には、アクリル酸エステル重合体又はメタクリル酸エステル重合体等)、オレフィン系樹脂(より具体的には、ポリエチレン樹脂又はポリプロピレン樹脂等)、塩化ビニル樹脂、ポリビニルアルコール、ビニルエーテル樹脂、N-ビニル樹脂、ポリエステル樹脂、ポリアミド樹脂、又はウレタン樹脂が好ましい。また、これら各樹脂の共重合体、すなわち上記樹脂中に任意の繰返し単位が導入された共重合体(より具体的には、スチレン-アクリル酸系樹脂又はスチレン-ブタジエン系樹脂等)を好適に使用できる。
 熱可塑性樹脂は、1種以上の熱可塑性モノマーを、付加重合、共重合、又は縮重合させることで得られる。なお、熱可塑性モノマーは、単独重合により熱可塑性樹脂になるモノマー(より具体的には、アクリル酸系モノマー又はスチレン系モノマー等)、又は縮重合により熱可塑性樹脂になるモノマー(例えば、縮重合によりポリエステル樹脂になる多価アルコール及び多価カルボン酸の組合せ)である。
 スチレン-アクリル酸系樹脂は、1種以上のスチレン系モノマーと1種以上のアクリル酸系モノマーとの共重合体である。スチレン-アクリル酸系樹脂を合成するためには、例えば以下に示すような、スチレン系モノマー及びアクリル酸系モノマーを好適に使用できる。カルボキシル基を有するアクリル酸系モノマーを用いることで、スチレン-アクリル酸系樹脂にカルボキシル基を導入できる。また、水酸基を有するモノマー(より具体的には、p-ヒドロキシスチレン、m-ヒドロキシスチレン、又は(メタ)アクリル酸ヒドロキシアルキルエステル等)を用いることで、スチレン-アクリル酸系樹脂に水酸基を導入できる。アクリル酸系モノマーの使用量を調整することで、得られるスチレン-アクリル酸系樹脂の酸価を調整できる。また、水酸基を有するモノマーの使用量を調整することで、得られるスチレン-アクリル酸系樹脂の水酸基価を調整できる。
 スチレン系モノマーの好適な例としては、スチレン、α-メチルスチレン、p-ヒドロキシスチレン、m-ヒドロキシスチレン、ビニルトルエン、α-クロロスチレン、o-クロロスチレン、m-クロロスチレン、p-クロロスチレン、又はp-エチルスチレンが挙げられる。
 アクリル酸系モノマーの好適な例としては、(メタ)アクリル酸、(メタ)アクリロニトリル、(メタ)アクリル酸アルキルエステル、又は(メタ)アクリル酸ヒドロキシアルキルエステルが挙げられる。(メタ)アクリル酸アルキルエステルの好適な例としては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸iso-プロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸iso-ブチル、又は(メタ)アクリル酸2-エチルヘキシルが挙げられる。(メタ)アクリル酸ヒドロキシアルキルエステルの好適な例としては、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸3-ヒドロキシプロピル、(メタ)アクリル酸2-ヒドロキシプロピル、又は(メタ)アクリル酸4-ヒドロキシブチルが挙げられる。
 ポリエステル樹脂は、1種以上の多価アルコールと1種以上の多価カルボン酸とを縮重合させることで得られる。ポリエステル樹脂を合成するためのアルコールとしては、例えば以下に示すような、2価アルコール(より具体的には、ジオール類又はビスフェノール類等)又は3価以上のアルコールを好適に使用できる。ポリエステル樹脂を合成するためのカルボン酸としては、例えば以下に示すような、2価カルボン酸又は3価以上のカルボン酸を好適に使用できる。また、ポリエステル樹脂を合成する際に、アルコールの使用量とカルボン酸の使用量とをそれぞれ変更することで、ポリエステル樹脂の酸価及び水酸基価を調整することができる。ポリエステル樹脂の分子量を上げると、ポリエステル樹脂の酸価及び水酸基価は低下する傾向がある。
 ジオール類の好適な例としては、エチレングリコール、ジエチレングリコール、トリエチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,4-ブタンジオール、ネオペンチルグリコール、1,4-ブテンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,4-シクロヘキサンジメタノール、ジプロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール、又はポリテトラメチレングリコールが挙げられる。
 ビスフェノール類の好適な例としては、ビスフェノールA、水素添加ビスフェノールA、ビスフェノールAエチレンオキサイド付加物、又はビスフェノールAプロピレンオキサイド付加物が挙げられる。
 3価以上のアルコールの好適な例としては、ソルビトール、1,2,3,6-ヘキサンテトロール、1,4-ソルビタン、ペンタエリスリトール、ジペンタエリスリトール、トリペンタエリスリトール、1,2,4-ブタントリオール、1,2,5-ペンタントリオール、グリセロール、ジグリセロール、2-メチルプロパントリオール、2-メチル-1,2,4-ブタントリオール、トリメチロールエタン、トリメチロールプロパン、又は1,3,5-トリヒドロキシメチルベンゼンが挙げられる。
 2価カルボン酸の好適な例としては、マレイン酸、フマル酸、シトラコン酸、イタコン酸、グルタコン酸、フタル酸、イソフタル酸、テレフタル酸、シクロヘキサンジカルボン酸、アジピン酸、セバシン酸、アゼライン酸、マロン酸、コハク酸、アルキルコハク酸(より具体的には、n-ブチルコハク酸、イソブチルコハク酸、n-オクチルコハク酸、n-ドデシルコハク酸、又はイソドデシルコハク酸等)、又はアルケニルコハク酸(より具体的には、n-ブテニルコハク酸、イソブテニルコハク酸、n-オクテニルコハク酸、n-ドデセニルコハク酸、又はイソドデセニルコハク酸等)が挙げられる。
 3価以上のカルボン酸の好適な例としては、1,2,4-ベンゼントリカルボン酸(トリメリット酸)、2,5,7-ナフタレントリカルボン酸、1,2,4-ナフタレントリカルボン酸、1,2,4-ブタントリカルボン酸、1,2,5-ヘキサントリカルボン酸、1,3-ジカルボキシル-2-メチル-2-メチレンカルボキシプロパン、1,2,4-シクロヘキサントリカルボン酸、テトラ(メチレンカルボキシル)メタン、1,2,7,8-オクタンテトラカルボン酸、ピロメリット酸、又はエンポール三量体酸が挙げられる。
 なお、上記2価又は3価以上のカルボン酸は、エステル形成性の誘導体(より具体的には、酸ハライド、酸無水物、又は低級アルキルエステル等)に変形して用いてもよい。ここで、「低級アルキル」とは、炭素数1以上6以下のアルキル基を意味する。
 <好適な熱硬化性樹脂>
 トナー粒子(特に、シェル層)を構成する熱硬化性樹脂としては、例えば、メラミン系樹脂、尿素系樹脂、スルホンアミド系樹脂、グリオキザール系樹脂、グアナミン系樹脂、アニリン系樹脂、ポリイミド樹脂(より具体的には、マレイミド重合体又はビスマレイミド重合体等)、又はキシレン系樹脂を好適に使用できる。
 熱硬化性樹脂は、1種以上の熱硬化性モノマーを架橋反応(重合)させることで得られる。また、架橋剤を用いることで、熱可塑性モノマーにより熱硬化性樹脂を合成することもできる。なお、熱硬化性モノマーは、架橋性を有するモノマーである。例えば、同種のモノマー同士が「-CH2-」を介して3次元的につながって熱硬化性樹脂になる場合、そのモノマーは「熱硬化性モノマー」に相当する。
 熱硬化性モノマーの好適な例としては、メチロールメラミン、メラミン、メチロール化尿素(より具体的には、ジメチロールジヒドロキシエチレン尿素等)、尿素、ベンゾグアナミン、アセトグアナミン、又はスピログアナミンが挙げられる。
 [トナーコア]
 トナーコアは、結着樹脂を含む。また、トナーコアは、内添剤(例えば、着色剤、離型剤、電荷制御剤、及び磁性粉)を含んでもよい。
 (結着樹脂)
 トナーコアでは、一般的に、成分の大部分(例えば、85質量%以上)を結着樹脂が占める。このため、結着樹脂の性質がトナーコア全体の性質に大きな影響を与えると考えられる。例えば、結着樹脂がエステル基、水酸基、エーテル基、酸基、又はメチル基を有する場合には、トナーコアはアニオン性になる傾向が強くなり、結着樹脂がアミノ基又はアミド基を有する場合には、トナーコアはカチオン性になる傾向が強くなる。トナーコアとシェル層との反応性を高めるためには、結着樹脂の水酸基価及び酸価の少なくとも一方が、10mgKOH/g以上であることが好ましく、20mgKOH/g以上であることがより好ましい。
 結着樹脂としては、エステル基、水酸基、エーテル基、酸基、及びメチル基からなる群より選択される1種以上の基を有する樹脂が好ましく、水酸基及び/又はカルボキシル基を有する樹脂がより好ましい。このような官能基を有する結着樹脂は、シェル材料と反応して化学的に結合し易い。こうした化学的な結合が生じると、トナーコアとシェル層との結合が強固になる。また、結着樹脂としては、活性水素を含む官能基を分子中に有する樹脂も好ましい。
 高速定着時におけるトナーの定着性を向上させるためには、結着樹脂のガラス転移点(Tg)が、20℃以上55℃以下であることが好ましい。ガラス転移点(Tg)の測定方法は、後述する実施例と同じ方法又はその代替方法である。
 高速定着時におけるトナーの定着性を向上させるためには、結着樹脂の軟化点(Tm)が、100℃以下であることが好ましく、95℃以下であることがより好ましい。また、結着樹脂のTmが100℃以下(より好ましくは95℃以下)である場合には、水性媒体中でトナーコアの表面にシェル層を形成する際に、シェル層の硬化反応中にトナーコアが部分的に軟化し易くなるため、トナーコアが表面張力により丸みを帯び易くなる。なお、軟化点(Tm)の測定方法は、後述する実施例と同じ方法又はその代替方法である。異なるTmを有する複数種の樹脂を組み合わせることで、結着樹脂のTmを調整することができる。
 トナーコアの結着樹脂としては、熱可塑性樹脂(より具体的には、前述の「好適な熱可塑性樹脂」等)が好ましい。トナーコア中の着色剤の分散性、トナーの帯電性、及び記録媒体に対するトナーの定着性を向上させるためには、結着樹脂としてスチレン-アクリル酸系樹脂又はポリエステル樹脂を用いることが特に好ましい。
 トナーコアの結着樹脂としてスチレン-アクリル酸系樹脂を使用する場合、トナーコアの強度及びトナーの定着性を向上させるためには、スチレン-アクリル酸系樹脂の数平均分子量(Mn)が2000以上3000以下であることが好ましい。スチレン-アクリル酸系樹脂の分子量分布(数平均分子量(Mn)に対する質量平均分子量(Mw)の比率Mw/Mn)は10以上20以下であることが好ましい。
 トナーコアの結着樹脂としてポリエステル樹脂を使用する場合、トナーコアの強度及びトナーの定着性を向上させるためには、ポリエステル樹脂の数平均分子量(Mn)が1000以上2000以下であることが好ましい。ポリエステル樹脂の分子量分布(数平均分子量(Mn)に対する質量平均分子量(Mw)の比率Mw/Mn)は9以上21以下であることが好ましい。
 (着色剤)
 トナーコアは、着色剤を含んでいてもよい。着色剤としては、トナーの色に合わせて公知の顔料又は染料を用いることができる。トナーを用いて高画質の画像を形成するためには、着色剤の量が、結着樹脂100質量部に対して、1質量部以上20質量部以下であることが好ましく、3質量部以上10質量部以下であることがより好ましい。
 トナーコアは、黒色着色剤を含んでいてもよい。黒色着色剤の例としては、カーボンブラックが挙げられる。また、黒色着色剤は、イエロー着色剤、マゼンタ着色剤、及びシアン着色剤を用いて黒色に調色された着色剤であってもよい。
 トナーコアは、イエロー着色剤、マゼンタ着色剤、又はシアン着色剤のようなカラー着色剤を含んでいてもよい。
 イエロー着色剤としては、例えば、縮合アゾ化合物、イソインドリノン化合物、アントラキノン化合物、アゾ金属錯体、メチン化合物、及びアリールアミド化合物からなる群より選択される1種以上の化合物を使用できる。イエロー着色剤としては、例えば、C.I.ピグメントイエロー(3、12、13、14、15、17、62、74、83、93、94、95、97、109、110、111、120、127、128、129、147、151、154、155、168、174、175、176、180、181、191、又は194)、ナフトールイエローS、ハンザイエローG、又はC.I.バットイエローを好適に使用できる。
 マゼンタ着色剤としては、例えば、縮合アゾ化合物、ジケトピロロピロール化合物、アントラキノン化合物、キナクリドン化合物、塩基染料レーキ化合物、ナフトール化合物、ベンズイミダゾロン化合物、チオインジゴ化合物、及びペリレン化合物からなる群より選択される1種以上の化合物を使用できる。マゼンタ着色剤としては、例えば、C.I.ピグメントレッド(2、3、5、6、7、19、23、48:2、48:3、48:4、57:1、81:1、122、144、146、150、166、169、177、184、185、202、206、220、221、又は254)を好適に使用できる。
 シアン着色剤としては、例えば、銅フタロシアニン化合物、アントラキノン化合物、及び塩基染料レーキ化合物からなる群より選択される1種以上の化合物を使用できる。シアン着色剤としては、例えば、C.I.ピグメントブルー(1、7、15、15:1、15:2、15:3、15:4、60、62、又は66)、フタロシアニンブルー、C.I.バットブルー、又はC.I.アシッドブルーを好適に使用できる。
 (離型剤)
 トナーコアは、離型剤を含んでいてもよい。離型剤は、例えば、トナーの定着性又は耐オフセット性を向上させる目的で使用される。トナーコアのアニオン性を強めるためには、アニオン性を有するワックスを用いてトナーコアを作製することが好ましい。トナーの定着性又は耐オフセット性を向上させるためには、離型剤の量が、結着樹脂100質量部に対して、1質量部以上30質量部以下であることが好ましく、5質量部以上20質量部以下であることがより好ましい。
 離型剤としては、例えば、低分子量ポリエチレン、低分子量ポリプロピレン、ポリオレフィン共重合物、ポリオレフィンワックス、マイクロクリスタリンワックス、パラフィンワックス、又はフィッシャートロプシュワックスのような脂肪族炭化水素ワックス;酸化ポリエチレンワックス又はそのブロック共重合体のような脂肪族炭化水素ワックスの酸化物;キャンデリラワックス、カルナバワックス、木ろう、ホホバろう、又はライスワックスのような植物性ワックス;みつろう、ラノリン、又は鯨ろうのような動物性ワックス;オゾケライト、セレシン、又はペトロラタムのような鉱物ワックス;モンタン酸エステルワックス又はカスターワックスのような脂肪酸エステルを主成分とするワックス類;脱酸カルナバワックスのような、脂肪酸エステルの一部又は全部が脱酸化したワックスを好適に使用できる。1種類の離型剤を単独で使用してもよいし、複数種の離型剤を併用してもよい。
 結着樹脂と離型剤との相溶性を改善するために、相溶化剤をトナーコアに添加してもよい。
 (電荷制御剤)
 トナーコアは、電荷制御剤を含んでいてもよい。電荷制御剤は、例えば、トナーの帯電安定性又は帯電立ち上がり特性を向上させる目的で使用される。トナーの帯電立ち上がり特性は、短時間で所定の帯電レベルにトナーを帯電可能か否かの指標になる。
 トナーコアに負帯電性の電荷制御剤を含ませることで、トナーコアのアニオン性を強めることができる。また、トナーコアに正帯電性の電荷制御剤を含ませることで、トナーコアのカチオン性を強めることができる。ただし、トナーにおいて十分な帯電性が確保される場合には、トナーコアに電荷制御剤を含ませる必要はない。
 (磁性粉)
 トナーコアは、磁性粉を含んでいてもよい。磁性粉の材料としては、例えば、強磁性金属(より具体的には、鉄、コバルト、ニッケル、又はこれら金属の1種以上を含む合金等)、強磁性金属酸化物(より具体的には、フェライト、マグネタイト、又は二酸化クロム等)、又は強磁性化処理が施された材料(より具体的には、熱処理により強磁性が付与された炭素材料等)を好適に使用できる。1種類の磁性粉を単独で使用してもよいし、複数種の磁性粉を併用してもよい。
 磁性粉からの金属イオン(例えば、鉄イオン)の溶出を抑制するためには、磁性粉を表面処理することが好ましい。酸性条件下でトナーコアの表面にシェル層を形成する場合に、トナーコアの表面に金属イオンが溶出すると、トナーコア同士が固着し易くなる。磁性粉からの金属イオンの溶出を抑制することで、トナーコア同士の固着を抑制することができると考えられる。
 [シェル層]
 前述の基本構成を有するトナーでは、シェル層が、特定水酸基含有樹脂から実質的に構成される。また、シェル層は、特定水酸基含有樹脂に加えて、さらに微量の熱硬化性樹脂(より具体的には、前述の「好適な熱硬化性樹脂」等)を含んでもよい。トナーの帯電安定性及び耐熱保存性の両立を図るためには、メラミン系樹脂、尿素系樹脂、及びグリオキザール系樹脂からなる群より選択される1種以上の熱硬化性樹脂をシェル層に含ませることが好ましい。
 トナーコアからのシェル層の脱離を抑制するためには、前述の基本構成における特定水酸基含有樹脂が、特定水酸基含有単位が導入された熱可塑性樹脂(より具体的には、前述の「好適な熱可塑性樹脂」等)であることが好ましい。また、トナーコアからのシェル層の脱離を抑制するためには、前述の基本構成において、アルコール性水酸基を有する繰返し単位(特定水酸基含有単位)の少なくとも1つが、アクリル酸2-ヒドロキシエチル(HEA)、アクリル酸2-ヒドロキシプロピル(HPA)、メタクリル酸2-ヒドロキシエチル(HEMA)、又はメタクリル酸2-ヒドロキシプロピル(HPMA)に由来する繰返し単位であることが好ましい。これらHEA等に由来する繰返し単位は、シェル層を構成する樹脂中に組み込まれても、シェル層のガラス転移点(Tg)を低下させにくい。
 前述の基本構成における特定水酸基含有樹脂の好適な例としては、1種以上のスチレン系モノマー(例えば、スチレン)と1種以上の(メタ)アクリル酸エステル(例えば、アクリル酸ブチル)と1種以上のアルコール性水酸基含有モノマー(例えば、メタクリル酸2-ヒドロキシエチル)との共重合体が挙げられる。こうした共重合体は、正帯電し易く、かつ、比較的強い疎水性を有する。こうした樹脂(上記共重合体)をシェル層に含ませることで、高温高湿環境下におけるトナーの帯電性を向上させることが可能になる。さらに、上記共重合体に、架橋剤に由来する架橋構造を導入して、シェル層の強度を向上させてもよい。例えば、上記共重合体が、ジビニルベンゼンに由来する架橋構造を有していてもよい。
 [外添剤]
 トナー母粒子の表面に外添剤を付着させてもよい。例えば、トナー母粒子と外添剤とを一緒に攪拌することで、物理的な力でトナー母粒子の表面に外添剤が付着(物理的結合)する。外添剤は、例えばトナーの流動性又は取扱性を向上させるために使用される。トナーの流動性又は取扱性を向上させるためには、外添剤の量が、トナー母粒子100質量部に対して、0.5質量部以上10質量部以下であることが好ましい。また、トナーの流動性又は取扱性を向上させるためには、外添剤の粒子径は0.01μm以上1.0μm以下であることが好ましい。
 外添剤としては、無機粒子が好ましく、シリカ粒子、又は金属酸化物(より具体的には、アルミナ、酸化チタン、酸化マグネシウム、酸化亜鉛、チタン酸ストロンチウム、又はチタン酸バリウム等)の粒子が特に好ましい。ただし、外添剤として、樹脂粒子を使用してもよい。1種類の外添剤を単独で使用してもよいし、複数種の外添剤を併用してもよい。
 [トナーの製造方法]
 以下、上記構成を有する本実施形態に係るトナーを製造する方法の一例について説明する。まず、トナーコアを準備する。続けて、液中にトナーコアとシェル材料とを入れる。その後、液を攪拌するなどして、シェル材料を液に溶解又は分散させることが好ましい。続けて、液中でシェル層をトナーコアの表面に形成する(シェル層を硬化させる)。シェル層形成時におけるトナーコア成分(特に、結着樹脂及び離型剤)の溶解又は溶出を抑制するためには、水性媒体中でシェル層を形成することが好ましい。このため、シェル層の形成には、水溶性のシェル材料(例えば、水溶性モノマー)を使用することが好ましい。水性媒体は、水を主成分とする媒体(より具体的には、純水、又は水と極性媒体との混合液等)である。水性媒体は溶媒として機能してもよい。水性媒体中に溶質が溶けていてもよい。水性媒体は分散媒として機能してもよい。水性媒体中に分散質が分散していてもよい。水性媒体中の極性媒体としては、例えば、アルコール(より具体的には、メタノール又はエタノール等)を使用できる。
 以下、より具体的な例に基づいて、本実施形態に係るトナーの製造方法についてさらに説明する。
 (トナーコアの準備)
 好適なトナーコアを容易に得るためには、凝集法又は粉砕法によりトナーコアを製造することが好ましく、粉砕法によりトナーコアを製造することがより好ましい。
 以下、粉砕法の一例について説明する。まず、結着樹脂と、内添剤(例えば、着色剤、離型剤、電荷制御剤、及び磁性粉の少なくとも1つ)とを混合する。続けて、得られた混合物を溶融混練する。続けて、得られた溶融混練物を粉砕及び分級する。その結果、所望の粒子径を有するトナーコアが得られる。
 以下、凝集法の一例について説明する。まず、結着樹脂、離型剤、及び着色剤の各々の微粒子を水性媒体中で凝集させて、結着樹脂、離型剤、及び着色剤を含む凝集粒子を得る。続けて、得られた凝集粒子を加熱して、凝集粒子に含まれる成分を合一化させる。その結果、トナーコアの分散液が得られる。その後、トナーコアの分散液から、不要な物質(分散剤等)を除去することで、トナーコアが得られる。
 (シェル層の形成)
 トナーコアとシェル材料とが入れられる上記液として、例えばイオン交換水を準備する。続けて、例えば塩酸を用いて液のpHを所定のpHに調整する。シェル層の形成を促進するためには、pHを3以上5以下(弱酸性)に調整することが好ましい。
 続けて、pHが調整された液(例えば、酸性の水性媒体)に、トナーコアと、樹脂粒子のサスペンション(樹脂粒子を含む液)とを添加する。樹脂粒子を構成する樹脂としては、1種以上のスチレン系モノマーと1種以上の(メタ)アクリル酸エステルと1種以上のアルコール性水酸基含有モノマーとの共重合体(例えば、スチレンとアクリル酸ブチルとメタクリル酸2-ヒドロキシエチルとの共重合体)である。前述の基本構成を有するトナーを製造するためには、使用されるサスペンションの個数平均粒子径が25nm以上40nm以下であることが好ましい。また、必要に応じて、熱硬化性樹脂を合成するための材料と、架橋剤(より具体的には、ジビニルベンゼン等)との少なくとも一方も、液中に添加してもよい。
 上記トナーコア等は、室温の水性媒体に添加してもよいし、所定の温度に調整した水性媒体に添加してもよい。シェル材料の適切な添加量は、トナーコアの比表面積に基づいて算出できる。また、上記シェル材料等に加えて、重合促進剤を液中に添加してもよい。
 トナーコアの表面に均一にシェル材料(樹脂粒子)を付着させるためには、シェル材料を含む液中にトナーコアを高度に分散させることが好ましい。液中にトナーコアを高度に分散させるために、液中に分散剤を含ませてもよいし、強力な攪拌装置(例えば、プライミクス株式会社製「ハイビスディスパーミックス」)を用いて液を攪拌してもよい。
 続けて、上記シェル材料等を含む液を攪拌しながら液の温度を所定の速度(例えば、0.1℃/分以上3℃/分以下から選ばれる速度)で所定の保持温度(例えば、50℃以上85℃以下から選ばれる温度)まで上昇させる。さらに、液を攪拌しながら液の温度を上記保持温度に所定の時間(例えば、30分間以上4時間以下から選ばれる時間)保つ。液の温度を高温に保っている間に(又は、昇温中に)、トナーコアとシェル材料(樹脂粒子)との間で反応(シェル層の固定化)が進行すると考えられる。シェル材料がトナーコアと化学的に結合することで、シェル層が形成される。シェル材料は、加熱により液中で溶けて、膜状の形態で硬化すると考えられる。シェル材料(樹脂粒子)が完全に溶けて膜状の形態で硬化すれば、シェル層として、粒状感のない膜が形成されると考えられる。他方、シェル材料(樹脂粒子)が完全に溶けずに膜状の形態で硬化すれば、シェル層として、樹脂粒子が2次元的に連なった形態を有する膜(粒状感のある膜)が形成されると考えられる。液中でトナーコアの表面にシェル層が形成されることで、トナー母粒子の分散液が得られる。
 上記のように、液中でトナーコアの表面に樹脂粒子を付着させて、液を加熱することで、樹脂粒子を溶かして(又は、変形させて)膜化することができる。ただし、乾燥工程で加熱されて、又は外添工程で物理的な衝撃力を受けて、樹脂粒子の膜化が進行してもよい。
 トナーコア成分の溶出又はトナーコアの変形を抑制するためには、上記保持温度は、トナーコアのガラス転移点(Tg)未満であることが好ましい。しかし、上記保持温度をトナーコアのガラス転移点(Tg)以上にして、あえてトナーコアを変形させてもよい。上記保持温度を高くすると、トナーコアの変形が促進され、トナー母粒子の形状が真球に近づく傾向がある。トナー母粒子が所望の形状になるように上記保持温度を調整することが望ましい。また、高温でシェル材料を反応させると、シェル層が硬くなり易い。上記保持温度に基づいて、シェル層の分子量を制御することもできる。
 上記のようにしてシェル層を形成した後、例えば水酸化ナトリウムを用いてトナー母粒子の分散液を中和する。続けて、トナー母粒子の分散液を、例えば常温(約25℃)まで冷却する。続けて、例えばブフナー漏斗を用いて、トナー母粒子の分散液をろ過する。これにより、トナー母粒子が液から分離(固液分離)され、ウェットケーキ状のトナー母粒子が得られる。続けて、得られたウェットケーキ状のトナー母粒子を洗浄する。続けて、洗浄されたトナー母粒子を乾燥する。その後、必要に応じて、混合機(例えば、日本コークス工業株式会社製のFMミキサー)を用いてトナー母粒子と外添剤とを混合して、トナー母粒子の表面に外添剤を付着させてもよい。なお、乾燥工程でスプレードライヤーを用いる場合には、外添剤(例えば、シリカ粒子)の分散液をトナー母粒子に噴霧することで、乾燥工程と外添工程とを同時に行うことができる。こうして、トナー粒子を多数含むトナーが製造される。
 なお、上記トナーの製造方法の内容及び順序はそれぞれ、要求されるトナーの構成又は特性等に応じて任意に変更することができる。例えば、液(例えば、水性媒体)のpHを調整するタイミングは、前述のシェル材料等(シェル材料及びトナーコア)を液に添加する前でも後でもよい。トナーコアとシェル材料とは、まとめて同時に添加してもよいし、別々に添加してもよい。また、液にシェル材料等を添加する工程よりも前に、液を上記保持温度まで加熱する工程を行うようにしてもよい。また、液中で材料(例えば、シェル材料)を反応させる場合、液に材料を添加した後、所定の時間、液中で材料を反応させてもよいし、長時間かけて液に材料を添加して、液に材料を添加しながら液中で材料を反応させてもよい。また、シェル材料は、一度に液に添加されてもよいし、複数回に分けて液に添加されてもよい。シェル層の形成方法は任意である。例えば、in-situ重合法、液中硬化被膜法、及びコアセルベーション法のいずれの方法を用いて、シェル層を形成してもよい。また、外添工程の後で、トナーを篩別してもよい。また、必要のない工程は割愛してもよい。トナー母粒子の表面に外添剤を付着させない(外添工程を割愛する)場合には、トナー母粒子がトナー粒子に相当する。トナーコア材料とシェル材料とはそれぞれ、前述の化合物(樹脂を合成するためのモノマー等)に限られない。例えば、必要に応じて、前述の化合物の誘導体をトナーコア材料又はシェル材料として使用してもよいし、モノマーに代えてプレポリマーを使用してもよい。各種材料は、固体状態で使用してもよいし、液体状態で使用してもよい。例えば、固体状態の材料の粉末を使用してもよいし、材料の溶液(溶剤に溶かした液体状態の材料)を使用してもよいし、材料の分散液(材料が分散した液体)を使用してもよい。効率的にトナーを製造するためには、多数のトナー粒子を同時に形成することが好ましい。同時に製造されたトナー粒子は、互いに略同一の構成を有すると考えられる。
 本発明の実施例について説明する。表1に、実施例、参考例、又は比較例に係るトナーA~J(それぞれ静電潜像現像用トナー)を示す。
Figure JPOXMLDOC01-appb-T000004
 以下、トナーA~J(それぞれ静電潜像現像用トナー)の製造方法、評価方法、及び評価結果について、順に説明する。なお、誤差が生じる評価においては、誤差が十分小さくなる相当数の測定値を得て、得られた測定値の算術平均を評価値とした。また、Tg(ガラス転移点)及びTm(軟化点)の測定方法はそれぞれ、何ら規定していなければ、次に示すとおりである。
 <Tgの測定方法>
 示差走査熱量計(セイコーインスツル株式会社製「DSC-6220」)を用いて、試料(例えば、樹脂)の吸熱曲線(縦軸:熱流(DSC信号)、横軸:温度)を求めた。続けて、得られた吸熱曲線から試料のTg(ガラス転移点)を読み取った。得られた吸熱曲線中の比熱の変化点(ベースラインの外挿線と立ち下がりラインの外挿線との交点)の温度が、試料のTg(ガラス転移点)に相当する。
 <Tmの測定方法>
 高化式フローテスター(株式会社島津製作所製「CFT-500D」)に試料(例えば、樹脂)をセットし、ダイス細孔径1mm、プランジャー荷重20kg/cm2、昇温速度6℃/分の条件で、1cm3の試料を溶融流出させて、試料のS字カーブ(横軸:温度、縦軸:ストローク)を求めた。続けて、得られたS字カーブから試料のTm(軟化点)を読み取った。得られたS字カーブにおいて、ストロークの最大値をS1とし、低温側のベースラインのストローク値をS2とすると、S字カーブ中のストロークの値が「(S1+S2)/2」となる温度が、試料のTm(軟化点)に相当する。
 [トナーAの製造方法]
 (トナーコアの作製)
 低粘度ポリエステル樹脂(Tg=38℃、Tm=65℃)750gと、中粘度ポリエステル樹脂(Tg=53℃、Tm=84℃)100gと、高粘度ポリエステル樹脂(Tg=71℃、Tm=120℃)150gと、カルナバワックス(株式会社加藤洋行製「カルナウバワックス1号」)55gと、着色剤(DIC株式会社製「KET BLUE 111」、フタロシアニンブルー)40gとを、FMミキサー(日本コークス工業株式会社製)を用いて回転速度2400rpmで混合した。
 続けて、得られた混合物を、二軸押出機(株式会社池貝製「PCM-30」)を用いて、材料供給速度5kg/時、軸回転速度160rpm、設定温度範囲(シリンダー温度)100℃以上130℃以下の条件で、溶融混練した。続けて、得られた溶融混練物を冷却し、冷却された溶融混練物を粉砕機(ホソカワミクロン株式会社製「ロートプレックス(登録商標)」)を用いて粗粉砕した。続けて、得られた粗粉砕物を、ジェットミル(日本ニューマチック工業株式会社製「超音波ジェットミルI型」)を用いて微粉砕した。続けて、得られた微粉砕物を、分級機(日鉄鉱業株式会社製「エルボージェットEJ-LABO型」)を用いて分級した。その結果、体積中位径(D50)6μmのトナーコアが得られた。
 (シェル材料の調製)
 温度計及び攪拌羽根を備えた容量1Lの3つ口フラスコを、温度30℃のウォーターバスにセットし、フラスコ内に、イオン交換水875mLと、アニオン界面活性剤(花王株式会社製「ラテムル(登録商標)WX」、成分:ポリオキシエチレンアルキルエーテル硫酸ナトリウム、固形分濃度:26質量%)75mLとを入れた。その後、ウォーターバスを用いてフラスコ内の温度を80℃に昇温させた後、その温度(80℃)に保った。続けて、80℃のフラスコ内容物に2種類の液(第1の液及び第2の液)をそれぞれ5時間かけて滴下した。第1の液は、スチレン17mLと、メタクリル酸2-ヒドロキシエチル(HEMA)1mLと、アクリル酸ブチル2mLとの混合液であった。第2の液は、過硫酸カリウム0.5gをイオン交換水30mLに溶かした溶液であった。続けて、フラスコ内の温度を80℃にさらに2時間保って、フラスコ内容物を重合させた。その結果、樹脂微粒子のサスペンション(以下、サスペンションAと記載する)が得られた。得られたサスペンションAに含まれる樹脂微粒子に関して、個数平均粒子径は33nmであった。
 (シェル層形成工程)
 温度計及び攪拌羽根を備えた容量1Lの3つ口フラスコをウォーターバスにセットし、フラスコ内にイオン交換水300mLを入れた。その後、ウォーターバスを用いてフラスコ内の温度を30℃に保った。続けて、フラスコ内に希塩酸を加えて、フラスコ内容物のpHを4に調整した。続けて、フラスコ内に150mLのサスペンションAを添加した。
 続けて、フラスコ内に、前述の手順で作製したトナーコア300gを添加し、回転速度200rpmでフラスコ内容物を1時間攪拌した。その後、フラスコ内に、イオン交換水300mLを添加した。続けて、フラスコ内容物を回転速度100rpmで攪拌しながら、フラスコ内の温度を1℃/分の速度で70℃まで上げた。続けて、温度70℃、回転速度100rpmの条件でフラスコ内容物を2時間攪拌した。
 続けて、フラスコ内に水酸化ナトリウムを加えて、フラスコ内容物のpHを7に調整した。続けて、フラスコ内容物をその温度が常温(約25℃)になるまで冷却して、トナー母粒子を含む分散液を得た。
 (洗浄工程)
 上記のようにして得られたトナー母粒子の分散液を、ブフナー漏斗を用いてろ過(固液分離)して、ウェットケーキ状のトナー母粒子を得た。その後、得られたウェットケーキ状のトナー母粒子をイオン交換水に再分散させた。さらに、分散とろ過とを5回繰り返して、トナー母粒子を洗浄した。
 (乾燥工程)
 続けて、得られたトナー母粒子を、濃度50質量%のエタノール水溶液に分散させた。これにより、トナー母粒子のスラリーが得られた。続けて、連続式表面改質装置(フロイント産業株式会社製「コートマイザー(登録商標)」)を用いて、熱風温度45℃かつブロアー風量2m3/分の条件で、スラリー中のトナー母粒子を乾燥させた。その結果、トナー母粒子の粉体が得られた。
 (外添工程)
 続けて、得られたトナー母粒子を外添処理した。詳しくは、トナー母粒子100質量部と乾式シリカ微粒子(日本アエロジル株式会社製「AEROSIL(登録商標)REA90」)1.0質量部とを、容量10LのFMミキサー(日本コークス工業株式会社製)を用いて5分間混合することにより、トナー母粒子の表面に外添剤(シリカ粒子)を付着させた。その後、得られた粉体を、200メッシュ(目開き75μm)の篩を用いて篩別した。その結果、多数のトナー粒子を含むトナーAが得られた。
 [トナーBの製造方法]
 トナーBの製造方法は、シェル層形成工程において、150mLのサスペンションAの代わりに150mLのサスペンションBを使用した以外は、トナーAの製造方法と同じであった。サスペンションBの調製方法は、第1の液として、スチレン17mLと、メタクリル酸2-ヒドロキシエチル(HEMA)1mLと、アクリル酸ブチル2mLとの混合液の代わりに、スチレン18mLと、メタクリル酸2-ヒドロキシエチル(HEMA)0.1mLと、アクリル酸ブチル2mLとの混合液を使用した以外は、サスペンションAの調製方法と同じであった。得られたサスペンションBに含まれる樹脂微粒子に関して、個数平均粒子径は38nmであった。
 [トナーCの製造方法]
 トナーCの製造方法は、シェル層形成工程において、150mLのサスペンションAの代わりに150mLのサスペンションCを使用した以外は、トナーAの製造方法と同じであった。サスペンションCの調製方法は、第1の液として、スチレン17mLと、メタクリル酸2-ヒドロキシエチル(HEMA)1mLと、アクリル酸ブチル2mLとの混合液の代わりに、スチレン14mLと、メタクリル酸2-ヒドロキシエチル(HEMA)4mLと、アクリル酸ブチル2mLとの混合液を使用した以外は、サスペンションAの調製方法と同じであった。得られたサスペンションCに含まれる樹脂微粒子に関して、個数平均粒子径は27nmであった。
 [トナーDの製造方法]
 トナーDの製造方法は、シェル層形成工程において、150mLのサスペンションAの代わりに150mLのサスペンションDを使用した以外は、トナーAの製造方法と同じであった。サスペンションDの調製方法は、第1の液として、スチレン17mLと、メタクリル酸2-ヒドロキシエチル(HEMA)1mLと、アクリル酸ブチル2mLとの混合液の代わりに、スチレン18mLと、アクリル酸2-ヒドロキシエチル(HEA)1mLと、アクリル酸ブチル1mLとの混合液を使用した以外は、サスペンションAの調製方法と同じであった。得られたサスペンションDに含まれる樹脂微粒子に関して、個数平均粒子径は34nmであった。
 [トナーEの製造方法]
 トナーEの製造方法は、シェル層形成工程において、150mLのサスペンションAの代わりに150mLのサスペンションEを使用した以外は、トナーAの製造方法と同じであった。サスペンションEの調製方法は、第1の液として、スチレン17mLと、メタクリル酸2-ヒドロキシエチル(HEMA)1mLと、アクリル酸ブチル2mLとの混合液の代わりに、スチレン18mLと、アクリル酸2-ヒドロキシプロピル(HPA)1mLと、アクリル酸ブチル1mLとの混合液を使用した以外は、サスペンションAの調製方法と同じであった。得られたサスペンションEに含まれる樹脂微粒子に関して、個数平均粒子径は31nmであった。
 [トナーFの製造方法]
 トナーFの製造方法は、シェル層形成工程において、150mLのサスペンションAの代わりに150mLのサスペンションFを使用した以外は、トナーAの製造方法と同じであった。サスペンションFの調製方法は、第1の液として、スチレン17mLと、メタクリル酸2-ヒドロキシエチル(HEMA)1mLと、アクリル酸ブチル2mLとの混合液の代わりに、スチレン16mLと、メタクリル酸2-ヒドロキシプロピル(HPMA)1mLと、アクリル酸ブチル3mLとの混合液を使用した以外は、サスペンションAの調製方法と同じであった。得られたサスペンションFに含まれる樹脂微粒子に関して、個数平均粒子径は39nmであった。
 [トナーGの製造方法]
 トナーGの製造方法は、シェル層形成工程において、シェル材料として、150mLのサスペンションAに加えて、ヘキサメチロールメラミン初期重合体の水溶液(昭和電工株式会社製「ミルベン(登録商標)レジンSM-607」、固形分濃度80質量%)0.1mLも、フラスコ内に添加した以外は、トナーAの製造方法と同じであった。
 [トナーHの製造方法]
 トナーHの製造方法は、シェル層形成工程において、150mLのサスペンションAの代わりに150mLのサスペンションHを使用した以外は、トナーAの製造方法と同じであった。サスペンションHの調製方法は、第1の液として、スチレン17mLと、メタクリル酸2-ヒドロキシエチル(HEMA)1mLと、アクリル酸ブチル2mLとの混合液の代わりに、スチレン15.5mLと、メタクリル酸2-ヒドロキシエチル(HEMA)1mLと、アクリル酸ブチル3mLと、ジビニルベンゼン0.5mLとの混合液を使用した以外は、サスペンションAの調製方法と同じであった。得られたサスペンションHに含まれる樹脂微粒子に関して、個数平均粒子径は39nmであった。
 [トナーIの製造方法]
 トナーIの製造方法は、シェル層形成工程において、150mLのサスペンションAの代わりに150mLのサスペンションIを使用した以外は、トナーAの製造方法と同じであった。サスペンションIの調製方法は、第1の液として、スチレン17mLと、メタクリル酸2-ヒドロキシエチル(HEMA)1mLと、アクリル酸ブチル2mLとの混合液の代わりに、スチレン11mLと、メタクリル酸2-ヒドロキシエチル(HEMA)6mLと、アクリル酸ブチル3mLとの混合液を使用した以外は、サスペンションAの調製方法と同じであった。得られたサスペンションIに含まれる樹脂微粒子に関して、個数平均粒子径は24nmであった。
 [トナーJの製造方法]
 トナーJの製造方法は、シェル層形成工程において、150mLのサスペンションAの代わりに150mLのサスペンションJを使用した以外は、トナーAの製造方法と同じであった。サスペンションJの調製方法は、第1の液として、スチレン17mLと、メタクリル酸2-ヒドロキシエチル(HEMA)1mLと、アクリル酸ブチル2mLとの混合液の代わりに、スチレン17mLと、アクリル酸ブチル3mLとの混合液を使用した以外は、サスペンションAの調製方法と同じであった。得られたサスペンションJに含まれる樹脂微粒子に関して、個数平均粒子径は52nmであった。
 上記のようにして得られたトナーA~Jに関して、シェル層を構成する特定水酸基含有樹脂における特定水酸基含有単位の割合(単位:質量%)の測定結果は、表1に示すとおりであった。例えば、トナーAに関しては、特定水酸基含有単位の割合が4.8質量%であった。また、トナーJでは、シェル層に特定水酸基含有樹脂(アルコール性水酸基を有する繰返し単位を含む樹脂)が含まれていなかった。特定水酸基含有単位の割合の測定方法は、次に示すとおりであった。
 (特定水酸基含有単位の割合)
 シェル層を構成する特定水酸基含有樹脂中の全ての繰返し単位に対する特定水酸基含有単位(アルコール性水酸基含有モノマーに由来する繰返し単位)の割合は、GC/MS法による定量分析で測定した。測定装置としては、ガスクロマトグラフ質量分析計(株式会社島津製作所製「GCMS-QP2010 Ultra」)及びマルチショット・パイロライザー(フロンティア・ラボ株式会社製「PY-3030D」)を用いた。カラムとしては、金属キャピラリーカラム(フロンティア・ラボ株式会社製「Ultra ALLOY(登録商標)-5(MS/HT)」、内径:0.25mm、膜厚:0.25μm、長さ:30m)を用いた。測定条件は、以下のとおりであった。
 <GC/MS条件>
・熱分解温度:加熱炉「600℃」、インターフェイス部「400℃」
・昇温条件:40℃(0分)→14℃/分→320℃(10分)
・キャリアガス:ヘリウム(He)ガス(線速度36.3cm/分)
・カラムヘッド圧力:53.5kPa
・注入モード:スプリット注入(スプリット比1:200)
・キャリア流量:全流量「204mL/分」、カラム流量「1mL/分」、パージ流量「3mL/分」
 測定されたマススペクトルを解析することにより成分の同定を行い、測定されたクロマトグラムにおける、特定水酸基含有樹脂中の繰返し単位に特徴的なピークの面積に基づいて、その樹脂における繰返し単位の量(詳しくは、質量)を測定した。定量には、標準物質を用いた。
 [評価方法]
 各試料(トナーA~J)の評価方法は、以下の通りである。
 (耐熱保存性)
 試料(トナー)2gを容量20mLのポリエチレン製容器に入れて、その容器を、60℃に設定された恒温器内に3時間静置した。これにより、容器内に評価用トナーが調製された。
 続けて、100メッシュ(目開き150μm)の質量既知の篩上に評価用トナーを載せた。そして、評価用トナーを載せた篩の質量を測定することにより、篩上の評価用トナーの質量(篩別前のトナーの質量)を求めた。続けて、パウダーテスター(ホソカワミクロン株式会社製)のマニュアルに従い、レオスタッド目盛り5の振動強度で、上記篩を30秒間振動させた。篩別後に、残留トナーを含む篩の質量を測定することで、篩上に残留したトナーの質量(篩別後のトナーの質量)を測定した。そして、次の式に基づいて試料(トナー)の凝集度(単位:質量%)を算出した。
  凝集度=100×篩別後のトナーの質量/篩別前のトナーの質量
 凝集度が50質量%以下であれば○(良い)と評価し、凝集度が50質量%を超えれば×(良くない)と評価した。
 (低温定着性)
 現像剤用キャリア(京セラドキュメントソリューションズ株式会社製の「TASKalfa5550ci」用キャリア)と、試料(トナー)とを、ボールミルを用いて30分間混合し、評価用現像剤(2成分現像剤)を調製した。評価用現像剤における試料(トナー)の割合は12質量%であった。
 評価機としては、カラープリンター(京セラドキュメントソリューションズ株式会社製「FS-C5250DN」を改造して定着温度を変更可能にした評価機)を用いた。上述のようにして調製した評価用現像剤を評価機の現像装置に投入し、評価機のトナーコンテナに試料(補給用トナー)を投入した。
 上記評価機を用いて、線速200mm/秒、トナー載り量1.0mg/cm2の条件で、90g/m2の紙(A4サイズの評価用紙)に、大きさ25mm×25mmのソリッド画像を形成した。続けて、画像が形成された紙を定着装置に通した。定着温度の設定範囲は100℃以上200℃以下であった。詳しくは、定着装置の定着温度を100℃から徐々に上昇させて、トナー(ソリッド画像)を紙に定着できる最低温度(最低定着温度)を測定した。
 最低定着温度の測定においてトナーを定着させることができたか否かは、以下に示すような折擦り試験で確認した。詳しくは、画像を形成した面が内側となるように紙を半分に折り曲げ、布帛で覆った1kgの分銅を用いて、折り目上を5往復摩擦した。続けて、紙を広げ、紙の折り曲げ部(ソリッド画像が形成された部分)を観察した。そして、折り曲げ部のトナー剥がれの長さ(剥がれ長)を測定した。剥がれ長が1mm未満となる定着温度のうちの最低温度を、最低定着温度とした。
 最低定着温度が160℃以下であれば○(良い)と評価し、最低定着温度が160℃を超えれば×(良くない)と評価した。
 (耐久性)
 低温定着性の評価と同様の手法により、評価用現像剤(2成分現像剤)を調製した。評価機としては、カラー複合機(京セラドキュメントソリューションズ株式会社製「TASKalfa5550ci」)を用いた。評価用現像剤を評価機の現像装置に投入し、評価機のトナーコンテナに試料(補給用トナー)を投入した。また、初期の画像濃度(測定装置:X-Rite社製「SpectroEye(登録商標)」)が1.0以上1.2以下になるように、評価機の現像スリーブとマグネットロールとの間の電圧を200V以上300V以下の範囲で調整した。
 上記評価機を用いて、温度20℃かつ湿度60%RHの環境下において、印字率5%で10000枚連続印刷する耐刷試験を行った。
 耐刷試験後、評価機の現像装置内に飛散した試料(トナー)の全部を回収した。そして、回収されたトナーの質量を測定し、測定されたトナーの質量(トナーの飛散量)を下記基準に従って評価した。
 トナー飛散量が100mg以下であれば○(良い)と評価し、トナー飛散量が100mgを超えれば×(良くない)と評価した。
 耐刷試験後、評価機の現像装置から現像剤を取り出し、その現像剤中のトナーの帯電量を測定した。現像剤中のトナーの帯電量は、Q/mメーター(トレック社製「MODEL 210HS-1」)を用いて次に示す条件で測定した。
 <現像剤中のトナーの帯電量の測定方法>
 Q/mメーターの測定セルに現像剤を投入し、投入された現像剤のうちトナーのみを篩を介して10秒間吸引した。そして、式「吸引されたトナーの総電気量(単位:μC)/吸引されたトナーの質量(単位:g)」に基づいて、現像剤中のトナーの帯電量(単位:μC/g)を算出した。
 耐刷試験後の現像剤中のトナーの帯電量が、10μC/g以上27μC/g以下であれば「○(良い)」と評価し、10μC/g未満又は27μC/g超であれば「×(良くない)」と評価した。
 また、耐刷試験後、帯電量・粒子径分布測定機(ホソカワミクロン株式会社製「イースパートアナライザ(登録商標)EST-3」)を用いて、現像スリーブ上の現像剤中のトナーについて、トナーに含まれる逆帯電トナーの割合(単位:質量%)を測定した。
 逆帯電トナーの割合が、1.00質量%以下であれば「○(良い)」と評価し、1.00質量%を超えれば「×(良くない)」と評価した。
 耐刷試験中には、トナーが感光体ドラムに付着したか否かを評価した。詳しくは、形成されたソリッド画像にダッシュマークが観察されなければ○(良い)と評価し、形成されたソリッド画像にダッシュマークが観察されれば×(良くない)と評価した。なお、ダッシュマークは、トナーが感光体ドラムの表面に付着することに起因して生じ得る画像欠陥である。
 (転写効率)
 低温定着性の評価と同様の手法により、評価用現像剤(2成分現像剤)を調製した。評価機としては、カラー複合機(京セラドキュメントソリューションズ株式会社製「TASKalfa5550ci」)を用いた。評価用現像剤を評価機の現像装置に投入し、評価機のトナーコンテナに試料(補給用トナー)を投入した。
 上記評価機を用いて、温度32℃かつ湿度80%RHの環境下で、印字率5%の連続印刷を1000枚の記録媒体(A4サイズの印刷用紙)に対して行った。その後、転写効率を測定した。
 転写効率の測定では、上記1000枚連続印刷後、消費トナーの質量と回収トナーの質量とをそれぞれ測定した。そして、下記式に基づいて転写効率(単位:質量%)を算出した。なお、消費トナーは、トナーコンテナにセットされた試料(トナー)のうち、トナーコンテナから排出されたトナーである。また、回収トナーは、消費トナーのうち、記録媒体に転写されなかったトナーである。
  転写効率=100×(消費トナーの質量-回収トナーの質量)/消費トナーの質量
 転写効率が、85質量%以上であれば◎(非常に良い)と評価し、70質量%以上85質量%未満であれば○(良い)と評価し、70質量%未満であれば×(悪い)と評価した。
 (電荷減衰特性)
 試料(トナー)の電荷減衰定数は、静電気拡散率測定装置(株式会社ナノシーズ製「NS-D100」)を用いて、JIS(日本工業規格)C 61340-2-1-2006に準拠した方法で測定した。以下、トナーの電荷減衰定数の測定方法について詳述する。
 試料(トナー)を測定セルに入れた。測定セルは、内径10mm、深さ1mmの凹部が形成された金属製のセルであった。スライドガラスを用いて試料を上から押し込み、セルの凹部に試料を充填した。セルの表面においてスライドガラスを往復移動させることによって、セルから溢れた試料を除去した。試料の充填量は0.04g以上0.06g以下であった。
 続けて、接地させた測定セルを静電気拡散率測定装置内に置き、コロナ放電によって試料にイオンを供給して、試料を帯電させた。帯電時間は0.5秒間であった。そして、コロナ放電終了後0.7秒経過した後から、試料の表面電位を連続的に測定した。測定された表面電位と、式「V=V0exp(-α√t)」とに基づいて、電荷減衰定数(電荷減衰速度)αを算出した。式中、Vは表面電位[V]、V0は初期表面電位[V]、tは減衰時間[秒]をそれぞれ示す。
 電荷減衰定数が0.02以下であれば◎(非常に良い)と評価し、電荷減衰定数が0.02超0.03以下であれば○(良い)と評価し、電荷減衰定数が0.03を超えれば×(悪い)と評価した。
 [評価結果]
 表2及び表3に、トナーA~Jの各々の評価結果を示す。表2は、耐熱保存性(凝集度)、低温定着性(最低定着温度)、及び電荷減衰特性(電荷減衰定数)の各々の評価結果を示している。表3は、耐久性(トナー飛散量、帯電量、逆帯電トナーの割合、及びドラム付着の有無)、及び転写効率の各々の評価結果を示している。なお、ドラム付着の評価結果に関する表3中の「800枚」は、800枚印刷した時点でダッシュマークが観察されたことを示している。転写効率の評価結果に関する表3中の「-」は、ドラム付着が生じたために測定できなかったことを示している。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 トナーA~H(実施例1~8に係るトナー)はそれぞれ、前述の基本構成を有していた。詳しくは、実施例1~8に係るトナーではそれぞれ、シェル層が、アルコール性水酸基を有する繰返し単位(特定水酸基含有単位)を含む樹脂(特定水酸基含有樹脂)から実質的に構成されていた。また、実施例1~8に係るトナーではそれぞれ、特定水酸基含有樹脂中の全ての繰返し単位に対する特定水酸基含有単位の割合が0.1質量%以上20質量%以下であった。また、実施例1~8に係るトナーではそれぞれ、シェル層の厚さが1nm以上30nm以下であった。
 表2に示されるように、実施例1~8に係るトナーはそれぞれ、耐熱保存性、低温定着性、及び電荷減衰特性に優れていた。また、表3に示されるように、実施例1~8に係るトナーはそれぞれ、耐久性及び転写効率に優れていた。実施例1~8に係るトナーはそれぞれ、高温高湿環境下でも十分な正帯電性を有し、長期にわたって高画質の画像を形成することができた。
 実施例1~8に係るトナーはそれぞれ、トナーI(参考例1に係るトナー)と比較して、転写効率に優れていた。トナーIでは、特定水酸基含有単位の割合が20質量%を超えていた。
 トナーJ(比較例1に係るトナー)は、トナーA~H(実施例1~8に係るトナー)と比較して、耐久性に劣っていた。この理由は、トナーJでは、シェル層が特定水酸基含有樹脂を含まなかったためであると推察される。
 本発明に係る静電潜像現像用トナーは、例えば複写機、プリンター、又は複合機において画像を形成するために用いることができる。

Claims (13)

  1.  結着樹脂を含むコアと、前記コアの表面に形成されたシェル層とを有するトナー粒子を、複数含み、
     前記シェル層は、アルコール性水酸基を有する1種以上の繰返し単位を含む樹脂から実質的に構成され、
     前記シェル層を実質的に構成する前記樹脂中の全ての繰返し単位に対する、前記アルコール性水酸基を有する繰返し単位の割合は、0.1質量%以上20質量%以下である、静電潜像現像用トナー。
  2.  前記アルコール性水酸基を有する前記繰返し単位の少なくとも1つは、アクリル酸2-ヒドロキシエチル、アクリル酸2-ヒドロキシプロピル、メタクリル酸2-ヒドロキシエチル、又はメタクリル酸2-ヒドロキシプロピルに由来する繰返し単位である、請求項1に記載の静電潜像現像用トナー。
  3.  前記シェル層を実質的に構成する前記樹脂中の全ての繰返し単位に対する、前記アルコール性水酸基を有する繰返し単位の前記割合は、5質量%以上10質量%以下である、請求項1に記載の静電潜像現像用トナー。
  4.  前記シェル層を実質的に構成する前記樹脂は、スチレン系モノマーに由来する1種以上の繰返し単位をさらに含む、請求項1に記載の静電潜像現像用トナー。
  5.  前記シェル層を実質的に構成する前記樹脂は、(メタ)アクリル酸エステルに由来する1種以上の繰返し単位をさらに含む、請求項4に記載の静電潜像現像用トナー。
  6.  前記シェル層を実質的に構成する前記樹脂は、1種以上のスチレン系モノマーと1種以上の(メタ)アクリル酸エステルと1種以上のアルコール性水酸基含有モノマーとの共重合体である、請求項5に記載の静電潜像現像用トナー。
  7.  前記シェル層を実質的に構成する前記樹脂は、架橋剤に由来する架橋構造を有する、請求項6に記載の静電潜像現像用トナー。
  8.  前記架橋剤は、ジビニルベンゼンである、請求項7に記載の静電潜像現像用トナー。
  9.  前記シェル層を実質的に構成する前記樹脂は、前記アルコール性水酸基を有する前記繰返し単位以外には、酸基、水酸基、及びこれらの塩の少なくとも1つを有する繰返し単位を含まない、請求項1に記載の静電潜像現像用トナー。
  10.  前記シェル層は、熱硬化性樹脂をさらに含む、請求項1に記載の静電潜像現像用トナー。
  11.  前記シェル層は、前記熱硬化性樹脂として、メラミン系樹脂、尿素系樹脂、及びグリオキザール系樹脂からなる群より選択される1種以上の樹脂を含む、請求項10に記載の静電潜像現像用トナー。
  12.  前記コアは、前記結着樹脂としてポリエステル樹脂を含む、請求項1に記載の静電潜像現像用トナー。
  13.  前記シェル層の厚さは1nm以上30nm以下である、請求項1に記載の静電潜像現像用トナー。
PCT/JP2016/059176 2015-03-26 2016-03-23 静電潜像現像用トナー WO2016152914A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/547,091 US10254673B2 (en) 2015-03-26 2016-03-23 Electrostatic latent image developing toner
JP2017508389A JP6458862B2 (ja) 2015-03-26 2016-03-23 静電潜像現像用トナー
CN201680007668.6A CN107209465B (zh) 2015-03-26 2016-03-23 静电潜像显影用调色剂

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-064787 2015-03-26
JP2015064787 2015-03-26

Publications (1)

Publication Number Publication Date
WO2016152914A1 true WO2016152914A1 (ja) 2016-09-29

Family

ID=56978311

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/059176 WO2016152914A1 (ja) 2015-03-26 2016-03-23 静電潜像現像用トナー

Country Status (4)

Country Link
US (1) US10254673B2 (ja)
JP (1) JP6458862B2 (ja)
CN (1) CN107209465B (ja)
WO (1) WO2016152914A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019039944A (ja) * 2017-08-22 2019-03-14 京セラドキュメントソリューションズ株式会社 トナー及びその製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021152592A (ja) * 2020-03-24 2021-09-30 キヤノン株式会社 トナー

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009053318A (ja) * 2007-08-24 2009-03-12 Fuji Xerox Co Ltd 画像形成方法及び画像形成装置
JP2010049065A (ja) * 2008-08-22 2010-03-04 Fuji Xerox Co Ltd 静電荷像現像用トナー、静電荷像現像用トナーの製造方法、静電荷像現像剤、画像形成方法及び画像形成装置
JP2011107517A (ja) * 2009-11-19 2011-06-02 Fuji Xerox Co Ltd 現像装置、画像形成装置及び画像形成方法
JP2013114230A (ja) * 2011-11-30 2013-06-10 Kyocera Document Solutions Inc 静電荷像現像用カプセルトナー、及びその製造方法
JP2015045844A (ja) * 2013-07-30 2015-03-12 京セラドキュメントソリューションズ株式会社 静電潜像現像用トナー

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03282556A (ja) * 1990-03-30 1991-12-12 Toppan Printing Co Ltd カプセル化磁性トナー
KR100684062B1 (ko) * 2000-04-27 2007-02-16 티코나 게엠베하 정전하 화상 현상용 토너
JP4072041B2 (ja) 2002-08-23 2008-04-02 トッパン・フォームズ株式会社 薄膜被覆微トナーの製造方法
KR20050048618A (ko) 2002-08-23 2005-05-24 돗빤호무즈가부시기가이샤 박막 피복 토너
JP4259934B2 (ja) * 2003-06-20 2009-04-30 シャープ株式会社 トナーの製造方法
US7901857B2 (en) * 2005-03-15 2011-03-08 Fuji Xerox Co., Ltd. Electrostatic latent image developing toner, production method thereof, electrostatic latent image developer, and image forming method
KR100727984B1 (ko) * 2005-09-24 2007-06-13 삼성전자주식회사 토너의 제조방법 및 이를 이용하여 제조된 토너
EP2512957A4 (en) * 2009-12-15 2013-10-23 Guardian Venture Oil & Gas Sdn Bhd CONDUCTIVE TANK AND INTAKE TUB AND METHOD FOR EARTHING PROCESS THEREFOR
JP2012247572A (ja) * 2011-05-26 2012-12-13 Ricoh Co Ltd トナー、トナーの製造方法、プロセスカートリッジ、及び画像形成装置
JP5790208B2 (ja) * 2011-06-30 2015-10-07 株式会社リコー マゼンタトナー及びイエロートナー、並びに、トナー入り容器、プロセスカートリッジ、及び画像形成装置
JP5717797B2 (ja) * 2013-06-26 2015-05-13 ファナック株式会社 物品を搬送するためのロボットハンド、ロボットハンドを備えたロボットおよびロボットシステム、ならびにロボットハンドの制御方法
JP5800864B2 (ja) * 2013-06-27 2015-10-28 京セラドキュメントソリューションズ株式会社 静電潜像現像用トナー

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009053318A (ja) * 2007-08-24 2009-03-12 Fuji Xerox Co Ltd 画像形成方法及び画像形成装置
JP2010049065A (ja) * 2008-08-22 2010-03-04 Fuji Xerox Co Ltd 静電荷像現像用トナー、静電荷像現像用トナーの製造方法、静電荷像現像剤、画像形成方法及び画像形成装置
JP2011107517A (ja) * 2009-11-19 2011-06-02 Fuji Xerox Co Ltd 現像装置、画像形成装置及び画像形成方法
JP2013114230A (ja) * 2011-11-30 2013-06-10 Kyocera Document Solutions Inc 静電荷像現像用カプセルトナー、及びその製造方法
JP2015045844A (ja) * 2013-07-30 2015-03-12 京セラドキュメントソリューションズ株式会社 静電潜像現像用トナー

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019039944A (ja) * 2017-08-22 2019-03-14 京セラドキュメントソリューションズ株式会社 トナー及びその製造方法

Also Published As

Publication number Publication date
US20180024453A1 (en) 2018-01-25
US10254673B2 (en) 2019-04-09
JPWO2016152914A1 (ja) 2017-11-24
CN107209465A (zh) 2017-09-26
CN107209465B (zh) 2020-11-06
JP6458862B2 (ja) 2019-01-30

Similar Documents

Publication Publication Date Title
JP6569645B2 (ja) 静電潜像現像用トナー
JP6038108B2 (ja) 静電潜像現像用トナー
JP6465045B2 (ja) 静電潜像現像用トナー
JP6365777B2 (ja) 正帯電性トナー
JP6458862B2 (ja) 静電潜像現像用トナー
JP6269459B2 (ja) 静電荷像現像用トナー
WO2016104499A1 (ja) 静電潜像現像用トナー及びその製造方法
JP6418336B2 (ja) 静電潜像現像用トナー
JP6409763B2 (ja) 静電潜像現像用トナー
JP6237677B2 (ja) 静電潜像現像用トナー
JP2016156878A (ja) 静電潜像現像用トナー及びその製造方法
JP6387901B2 (ja) 静電潜像現像用トナー
WO2017057475A1 (ja) 静電潜像現像用トナー
WO2016148013A1 (ja) トナー及びその製造方法
JP2018185426A (ja) 静電潜像現像用トナー及びトナー用外添剤
JP6330696B2 (ja) トナーの製造方法
JP6332007B2 (ja) トナー
US20160274479A1 (en) Electrostatic latent image developing toner
JP2017181872A (ja) 静電潜像現像用トナー
JP2016170328A (ja) トナー
JP6493321B2 (ja) 静電潜像現像用トナー
JP6394582B2 (ja) 静電潜像現像用トナー及びその製造方法
JP6436131B2 (ja) 静電潜像現像用トナー
JP2017116644A (ja) 正帯電性トナー
JP2017015977A (ja) 正帯電性トナー

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16768817

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017508389

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15547091

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16768817

Country of ref document: EP

Kind code of ref document: A1