WO2016099202A1 - 탄소 구조물 및 공유결합성 유기 골격구조체의 복합체, 이의 제조방법 및 이의 용도 - Google Patents

탄소 구조물 및 공유결합성 유기 골격구조체의 복합체, 이의 제조방법 및 이의 용도 Download PDF

Info

Publication number
WO2016099202A1
WO2016099202A1 PCT/KR2015/013945 KR2015013945W WO2016099202A1 WO 2016099202 A1 WO2016099202 A1 WO 2016099202A1 KR 2015013945 W KR2015013945 W KR 2015013945W WO 2016099202 A1 WO2016099202 A1 WO 2016099202A1
Authority
WO
WIPO (PCT)
Prior art keywords
cof
organic framework
covalent organic
carbon
complex
Prior art date
Application number
PCT/KR2015/013945
Other languages
English (en)
French (fr)
Inventor
심진기
이창기
유종태
Original Assignee
한국생산기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생산기술연구원 filed Critical 한국생산기술연구원
Priority to CN201580076517.1A priority Critical patent/CN107249730B/zh
Priority to US15/537,725 priority patent/US10335765B2/en
Publication of WO2016099202A1 publication Critical patent/WO2016099202A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/40Substitution reactions at carbon centres, e.g. C-C or C-X, i.e. carbon-hetero atom, cross-coupling, C-H activation or ring-opening reactions
    • B01J2231/42Catalytic cross-coupling, i.e. connection of previously not connected C-atoms or C- and X-atoms without rearrangement
    • B01J2231/4205C-C cross-coupling, e.g. metal catalyzed or Friedel-Crafts type
    • B01J2231/4211Suzuki-type, i.e. RY + R'B(OR)2, in which R, R' are optionally substituted alkyl, alkenyl, aryl, acyl and Y is the leaving group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/824Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1691Coordination polymers, e.g. metal-organic frameworks [MOF]

Definitions

  • the present invention relates to composites of carbon structures and covalent organic frameworks, methods for their preparation, and uses thereof.
  • COFs Covalent-organic frameworks
  • MOFs Metal-organic frameworks
  • COF is being studied to be applied to new applications without being limited to gas absorbents to form a variety of complexes.
  • CNT carbon nanotubes
  • graphene have a high surface area, and due to the remarkable electrical, thermal, optical and mechanical properties, has been considered as a hybrid material for polymer reinforcement, biological applications and electromagnetic applications.
  • the low dispersibility of CNTs and graphene caused by strong van der Waals forces on the ⁇ -conjugate surface limits their applications.
  • a first aspect of the present invention provides a composite prepared by synthesizing a covalent-organic framework (COF) on a carbon structure surface.
  • COF covalent-organic framework
  • a second aspect of the present invention provides a method for preparing a complex according to the first aspect, comprising the step of adding a carbon structure and a reactant of a covalent organic framework to a solvent and sonicating (step 1).
  • a third aspect of the invention provides a composition for gas absorption, storage, separation or concentration comprising a complex according to the first aspect.
  • a fourth aspect of the invention provides a gas sensor comprising the composite according to the first aspect.
  • Covalent-Organic Framework is an expanded organic structure formed by connecting organic building units by covalent bonds to H, B, C, N and O, which are light elements. Mainly by Such covalent organic frameworks not only have rigid porous (micro- and meso-porous) structures, but also have excellent thermal stability and low density. In addition, the specific surface area is larger than that of conventionally known materials such as zeolites and porous silicates.
  • covalent organic frameworks The basic concept of the synthesis of covalent organic frameworks is the formation of covalent bonds in building units.
  • Different covalent organic frameworks can be constructed from various rigid organic building units in different structural arrangements.
  • Various organic synthesis reactions between building units form strong covalent bonds, which can provide COF materials with well-defined 2D or 3D crystal structures.
  • MOFs metal organic structures
  • the structural regularity of COFs can be more difficult to control through strong covalent bonds.
  • various reversible reactions such as the following reaction schemes may be preferable.
  • various compounds may be used as a reactant of a building unit, that is, a covalent organic framework, capable of constructing COF through such a synthesis reaction.
  • COFs formed through various organic synthesis reactions between the organic building units include the COFs in Table 1 below. Table 1 shows the structural information of each COF together.
  • the covalent organic framework structure COF-1, COF-102, COF-103, PPy-COF, COF-102-C 12 , COF-102-allyl, COF -5, COF-105, COF-108, COF-6, COF-8, COF-10, COF-11 ⁇ , COF-14 ⁇ , COF-16 ⁇ , COF-18 ⁇ , TP-COF, Pc-PBBA COF, NiPc- PBBA COF, 2D-NiPc-BTDA COF, NiPc COF, BTP-COF, HHTP-DPB COF, x % N 3 -COF-5 ( x 5, 25, 50, 75 or 100), 100% N 3 -NiPc -COF, COF-66, ZnPc-Py COF, ZnPc-DPB COF, ZnPc-NDI COF, ZnPc-PPE COF, CTC-COF, H 2 P-COF, ZnP-
  • COF-320, COF-102-Li, COF-103-Li, COF-102 -Na, COF-103-Na, COF-301-PdCl 2 , COF-103-Eth-trans, COF-102-Ant and the like are known as covalent organic frameworks.
  • covalent organic frameworks can be used as gas uptake, storage, separation and / or enrichment materials, such as hydrogen, methane and / or CO 2 , as described above.
  • Covalent organic frameworks can be divided into three groups, which are classified according to their structural dimensions and pore sizes.
  • Group 1 is a 2D structure with a small pore size (10 mm 3 or less) of 1D, such as COF-1 and COF-6 (9 mm 3 respectively).
  • Group 2 is a 2D structure having a large pore size (15 mm 3 or more, preferably 15 to 40 mm 3) of 1D, such as COF-5 (27 mm 3), COF-8 (16 mm 3) and COF-10 (32 mm 3) This can belong to this.
  • Group 3 is also a 3D structure with a median pore size (10 to 15 microseconds) of 3D, such as COF-102 and COF-103 (12 microseconds respectively).
  • group 3 may outperform groups 1 and 2.
  • the synthesis of group 3 may not be as easy as the synthesis of groups 1 and 2.
  • the gas absorption capacity of COF-102 at 35 bar is 72 mg g -1 at 77 K for hydrogen, 187 mg g -1 at 298 K for methane and 1180 mg g -1 at 298 K for carbon dioxide.
  • COF-1 is 15 mg g -1
  • COF-5 is 36 mg g -1
  • COF-6 is 23 mg g -1
  • COF-8 is 35 mg g -1
  • COF-10 Is 39 mg g- 1 , for methane at 298 K
  • COF-1 is 40 mg g- 1
  • COF-5 is 89 mg g- 1
  • COF-6 is 65 mg g- 1
  • COF-8 is 87 mg g -1
  • COF-10 is 80 mg g -1 , 298 K for CO2, 210 mg g -1 for COF- 1 , 779 mg g -1 for COF-5 and 298 mg g -for COF-6 1
  • COF-8 may be 598 mg g ⁇ 1
  • COF-10 may be 759 mg g g
  • the maximum H 2 absorption capacity at 77 K is 10.0 wt% at 80 bar for COF-105 and 10.0 wt% at 100 bar for COF-108. This is because COF has high surface area and free volume.
  • CO 2 may be metalized with alkali metals such as Li, Na, K, and the like to form a composite to increase H 2 uptake capacity.
  • alkali metals such as Li, Na, K, and the like.
  • complexes include COF-102-Li, COF-103-Li, COF-102-Na, and COF-103-Na.
  • COF-301-PdCl 2 or the like may be used as the modified COF to improve the H 2 absorption capacity.
  • COF-1 a good COF in terms of the total volume of CH 4 per unit volume COF absorbent is COF-1.
  • COF-1 can store 195 v / v of methane at 298 K and 30 bar.
  • Good COFs in terms of delivery volume are COF-102 and COF-103. They have values of 230 and 234 v (STP: 298 K, 1.01 bar) / v, respectively.
  • COF-103-Eth-trans and COF-102-Ant are excellent COFs in terms of delivery amount.
  • covalent organic frameworks may be applied in the field of catalysts.
  • the covalent organic framework has excellent optical and electrical properties and can be applied to the field of electrical and electronic devices.
  • Pd / COF-LZU1 a COF modified with metal
  • the highly ordered ⁇ -conjugate TP-COF consisting of pyrene and triphenylene functional groups alternately linked to a mesoporous hexagonal framework, exhibits high luminescence, collects photons of a wide range of wavelengths, transmits energy and Allow movement
  • TP-COF is electrically conductive and allows repeated on-off current switching at room temperature.
  • Synthesis methods of covalent organic frameworks include solvent thermal synthesis, microwave synthesis, and sonochemical synthesis.
  • Solvent thermal synthesis of COF is a method of synthesizing COF under heating (80 ° C. to 120 ° C.) in a sealed vessel. In this case, the pressure in the sealed container may affect the reaction yield, and the type of solvent may affect the solubility and crystallinity of the COF reactant.
  • Covalent organic frameworks are generally synthesized by solvent thermal synthesis. When using this solvent-thermal synthesis method, the crystallization rate is slow and a reaction period of several days is required. Accordingly, the development of a COF synthesis method capable of faster crystallization, that is, COF synthesis is required.
  • Dual sonochemical synthesis is a method of accelerating the rate of crystallization, that is, the rate of COF synthesis, in the ultrasonic chemical synthesis reaction through the formation and collapse of bubbles in solution called acoustic cavitation.
  • Acoustic wave cavitation produces very high local temperatures (> 5000 K) and pressures (> 1000 bar), thus providing extremely fast heating and cooling rates.
  • the present invention synthesizes a covalent organic framework (COF) on the surface of the carbon structure to prepare a composite, pore volume than the COF prepared without the carbon structure under the same synthetic conditions Found that can be made larger.
  • COF covalent organic framework
  • the present invention may provide a composite prepared by synthesizing a covalent-organic framework (COF) on a surface of a carbon structure. That is, in the present invention may provide a composite material prepared by the in situ (in situ) of the COF synthesis reaction on the carbon structure.
  • COF covalent-organic framework
  • Carbon structure is a structure of a variety of shapes made of carbon, because it has a variety of excellent properties, high utilization in various technical fields.
  • the carbon structure may have a micro to nano level size, and preferably may be a carbon nano structure having a nano level size.
  • the carbon nanostructure may refer to a structure having a size of nanometers (nm) to several hundred nanometers.
  • the carbon structure may be at least one selected from the group consisting of carbon nanotubes, carbon nanowires, graphene, graphene oxide, and carbon black, but is not limited thereto.
  • carbon nanotubes may be used as the carbon structure.
  • Carbon nanotubes (CNTs) are a type of carbon allotrope that combines carbon in hexagons to form a cylindrical tube structure.
  • Single-walled carbon nanotubes have low production yields and complex purification processes, so that multi-walled carbon nanotubes can be used.
  • Carbon nanotubes have a high surface area of 50 to 1315 m 2 / g and have excellent gas storage capacity, and have specific nano-spaces in CNT bundles such as inter-lattice channels and outer grooves, resulting in aromatic molecules and Ar, Ne, He, CF It interacts significantly with gas molecules such as 4 , H 2 , N 2 , O 2 and C n H 2n + 2 and exhibits selectivity towards the molecule.
  • gas molecules such as 4 , H 2 , N 2 , O 2 and C n H 2n + 2 and exhibits selectivity towards the molecule.
  • gas molecules such as 4 , H 2 , N 2 , O 2 and C n H 2n + 2
  • the ⁇ -conjugate surface on the surface of the CNT is coated with a covalent organic framework, so that the gas absorption ability and the gas selectivity can be further improved as compared with the case of using CNT alone.
  • Carbon nanowires are made of carbon, and may refer to one-dimensional nanostructures having a very large aspect ratio of about several micrometers to several tens of micrometers in length and about 100 nm in diameter.
  • Graphene is a conductive material in which carbon atoms form a honeycomb arrangement in two dimensions, with a layer thickness of one atom. Graphene is well-received as a material that is well bent, has excellent heat dissipation, and has high electrical conductivity.
  • the crystal structure of graphene has a hexagonal connection extending in two-dimensional direction by an atomic structure (sp 2 bond) in which three bonds are attached at one vertex.
  • the result is a widely spread honeycomb, two-dimensional crystal, and hexagonal voids are formed.
  • graphene may exist as a thin film of one atom thick, exist in a stable molecular structure, and may be very transparent.
  • Graphene oxide is an oxide of graphene may be in the form of a two-dimensional phase, and has characteristics such as excellent water solubility, amphiphilicity, easy surface functionalization, surface enhanced Raman scattering (SERS) and fluorescence quenching ability.
  • Carbon black collects soot produced by incomplete combustion of hydrocarbons such as natural gas, tar, oil, etc., or forms a carbon six-membered ring by pyrolysis, followed by a polycyclic aromatic compound by dehydrogenation. It is a collection of obtained carbon atom hexagonal network crystallites.
  • a composite may be prepared by synthesizing COF on the surface of the carbon structure as described above, and the specific surface area or pore volume of the prepared COF may be larger than that of the COF prepared without the carbon structure under the same synthetic conditions. It was confirmed. Specifically, in one embodiment of the present invention, it was confirmed that the CNT @ COF-5 exhibits a more enhanced CO 2 adsorption capacity than the original CNT as well as COF-5 (Fig. 7). This seems to be because COF-5 is difficult to form large microcrystalline on the surface of high curvature CNT, and is synthesized into small microcrystalline aggregates.
  • the composites of the present invention comprising such covalent organic frameworks with greater specific surface or pore volume are subject to gas absorbers, gas reservoirs, gas separations due to the above mentioned gas absorption, storage, separation and / or concentration properties. It can be effectively applied as an agent and / or a gas thickener.
  • the composite of the present invention can be applied to a catalyst due to the support ability of the catalytic material possessed by the covalent organic framework, and also applicable to a light emitting material or a semiconductor material due to the optical and electrical properties exhibited by the covalent organic framework. Do.
  • the complex of the present invention may be variously applied to a wide range of applications in which covalent organic frameworks may be applied.
  • the reactant of the covalent organic framework is preferably an aromatic compound capable of ⁇ - ⁇ stacking with the surface of the carbon structure.
  • Aromatic compounds used as building blocks of COF such as benzene, pyrene, anthracene, triphenylene and porphyrin derivatives, have good adsorption to carbon structures such as CNTs due to their strong ⁇ - ⁇ stacking. Thus, they can be effectively adsorbed and solvated on the surface of the carbon structure by a dispersion process by stirring and / or sonication, so that they can be used as a solubilizer of the carbon structure.
  • the ⁇ - ⁇ interaction between the reactants and the surface of the carbon structure serves to limit the formation of COF on the surface of the carbon structure, thereby forming a complex in a well-controlled form on the surface of the carbon structure. have.
  • COF-5 it may be particularly preferable to use COF-5 as a covalent organic framework, due to carbon dioxide (CO 2 ) absorption properties and simple synthesis methods.
  • COF-5 can be synthesized by sonochemical methods as well as solvent thermal reactions and microwave irradiation. Therefore, in the present invention, by using COF-5 as a covalent organic skeleton structure, a simple synthesis method is performed by simultaneously performing both molecular adsorption and synthesis reaction of the COF-5 reactant on the surface of CNT and graphene by sonication.
  • the composite of the present invention can be prepared.
  • COF-5 is a carbon structure CNT (CNT @ COF-5 through in situ ultrasonic chemical reaction during the dispersion process And graphene (graphene @ COF-5).
  • step 1 Adding a carbon structure and a reactant of the covalent organic framework to a solvent and sonicating (step 1).
  • the reactant of the covalent organic framework may be adsorbed onto the surface of the carbon structure by the ultrasonic treatment in step 1), and the covalent organic framework may be formed by the ultrasonic chemical reaction.
  • the method for preparing a composite of the present invention is a covalently bonded organic skeletal structure by adsorption to the surface of a carbon structure and ultrasonic chemical reaction by dispersion of reactants forming a covalently bonded organic framework by a single process of sonication. Can be carried out simultaneously. Accordingly, covalently bonded organic frameworks can be synthesized in situ on the surface of the carbon structure, and thus there is an advantage in that the composite can be prepared in a relatively simple process.
  • COF-5 which is one of the COFs
  • the concentration of the carbon structure may be 0.2 mg / ml to 2 mg / ml. If the concentration of the carbon structure is less than 0.2 mg / ml may be inefficient due to the low yield of the composite, if the concentration of more than 2 mg / ml may occur between the carbon structures.
  • the reactants forming the covalent organic framework can be used a variety of compounds capable of forming a covalent organic framework, which is known in the art, mentioned in the description of the complex of the present invention It may be preferably an aromatic compound capable of ⁇ - ⁇ stacking with the surface of the carbon structure. More preferably, the reactants forming the covalent organic framework may be an aromatic compound capable of forming the covalent organic framework by ultrasonic chemical synthesis. Specifically, in one embodiment of the present invention, 1,4-benzenediboronic acid (BDBA), 2,3,6,7,10,11-hexahydroxytriphenyl as a reactant to form the covalent organic framework structure. Lene (HHTP) or mixtures thereof was used.
  • BDBA 1,4-benzenediboronic acid
  • HHTP 2,3,6,7,10,11-hexahydroxytriphenyl
  • the concentration of the reactant to form the covalent organic framework can be 10 mg / ml to 60 mg / ml. If the concentration of the reactant to form the covalent organic framework is less than 10 mg / ml may be difficult to form a covalent organic framework yiyeoseo 60 mg / ml may be inefficient.
  • the solvent may be mesitylene, 1,4-dioxane or a mixed solvent thereof, but is not limited thereto.
  • Ultrasound may be defined as sound at frequencies that humans cannot hear, ie, frequencies above 16 kHz.
  • ultrasonic regions having three different frequency values are used. This may be a high frequency or diagnostic ultrasound (1-10 MHz) region, second, low frequency ultrasonic waves (20-100 kHz), and third, medium frequency ultrasonic waves (100-1000 kHz).
  • the high temperature and high pressure produced by the formation, growth, and collapse of cavities can be used to promote chemical reactions, mainly in the low or medium frequency, preferably in the middle frequency ultrasonic range.
  • the ultrasonic wave of step 1) may preferably have a frequency of 20kHz to 1000kHz, more preferably 50kHz to 200kHz.
  • the ultrasonic treatment may be preferably performed for 30 minutes to 6 hours at an output power of 50 W to 500 W. If the output power is less than 50 W, dispersion and sonochemical reaction by sonication may be difficult to occur sufficiently, and if it is more than 500 W, it may be inefficient. Also, if the sonication time is less than 30 minutes, it may be difficult for the sonic chemical reaction to occur sufficiently and if it is more than 6 hours, it may be inefficient.
  • the method may further include collecting and washing the product of step 1) after step 1) (step 2).
  • step 2 may be performed by centrifuging the reaction solution of step 1, removing the supernatant, and then washing.
  • the present invention can provide a composition for gas absorption, storage, separation or concentration comprising a composite prepared by synthesizing a covalent organic framework on the surface of the carbon structure.
  • the gas is selected from the group consisting of CO 2 , Ar, Ne, He, CF 4 , H 2 , N 2 , O 2 and C n H 2n + 2 (where n is an integer of 1 to 4). It may be one or more selected, but is not limited thereto.
  • the composite of the present invention can exhibit more improved gas adsorption capacity compared to carbon structure alone and covalent organic framework alone, and thus can be efficiently used for gas absorption, storage, separation or concentration (FIG. 7).
  • the complex may serve as a catalyst in addition to the role of gas absorption, storage, separation or thickening agent. That is, in the composition for gas absorption, storage, separation or concentration of the present invention, the complex may be used as a catalyst.
  • the COF in order for the complex to be used as a catalyst, the COF may be modified with a metal such as Pd.
  • the composite can be used as a gas sensor material.
  • a “gas sensor” may refer to an element that detects a specific component gas contained in a gas and converts it into an appropriate electric signal according to its concentration.
  • the composite of the present invention has better gas storage capacity than the single use alone, and especially in the case of carbon nanotubes, aromatic molecules and Ar, Ne, He, It interacts with gas molecules such as CF 4 , H 2 , N 2 , O 2 and C n H 2n + 2 and increases the selectivity to the molecules, which is advantageous in application as gas sensors. Therefore, the composite of the present invention can be used as a chemical / physical molecular gas sensor using this property.
  • the gas sensor is from the group consisting of CO 2 , Ar, Ne, He, CF 4 , H 2 , N 2 , O 2 and C n H 2n + 2 (where n is an integer of 1 to 4). It can be used to detect the gas to be selected, and is not limited to this can be detected if the gas can be detected by the COF and the carbon structure.
  • the present invention can provide a sensor chip comprising the sensor.
  • the sensor chip may be in the form of a film.
  • the present invention synthesizes a covalently bonded organic framework on the surface of the carbon structure to prepare a composite, and as a result, the specific surface area or pore volume of the covalently bonded organic framework is the covalently bonded organic framework produced without the carbon structure. There is an effect that can be provided even larger to provide a composite with improved gas absorption properties.
  • FIG. 1 is a conceptual diagram schematically showing the synthesis of CNT @ COF-5 as a complex of the present invention.
  • FIG. 2 is a scanning electron microscope (SEM) image of (A) CNT, (B) CNT @ COF-5, (C) graphene and (D) graphene @ COF-5. At this time, the scale bar is 500 nm.
  • 3 is a 3D AFM image of graphene @ COF-5 and a height profile extracted from the image.
  • FT-IR Fourier transform infrared
  • XRD 6 is an X-ray diffraction (XRD) pattern of (A) COF-5, (B) CNT, (C) CNT @ COF-5, (D) graphene, and (E) graphene @ COF-5. .
  • FIG. 7 shows CO 2 adsorption of (A and B) BDBA, (A and B) HHTP, (A and B) COF-5, (A) CNT @ COF-5, and (B) graphene @ COF-5 TGA showing the change in mass due.
  • Multi-walled carbon nanotubes (MWNT) (C tube 120, metal oxide ⁇ 3 wt%, average diameter: ⁇ 20 nm, length: 1-25 ⁇ m, CNT Co., Ltd) and graphene (3 nm graphene nanopowder , Grade AO-1, Graphene Supermarket) was used as received.
  • Benzene-1,4-diboronic acid (95%), acetone (99.9%) and 1,4-dioxane (99.8%) were purchased from Sigma-Aldrich and 2,3,6,7,10,11-hexa Hydroxy triphenylene (95%) (Tokyo Chemical Industry Co., Ltd.) and mesitylene (98%) (Kanto Chemical Co., Inc.) were used as received.
  • FE-SEM Field emission scanning electron microscopy
  • SU-8020 Hitachi, Tokyo, Japan
  • FT-IR Fourier transform infrared
  • FT-IR Fourier transform infrared
  • XRD X-ray diffraction
  • Thermogravimetric analysis was performed in N 2 atmosphere by heating to 900 ° C. at a rate of 5 ° C./min.
  • the specific surface area was determined by the BET method based on nitrogen adsorption and desorption measurement at 77 K using BELSORP-miniII (BEL, Osaka, Japan).
  • the composite of the carbon material and the core-shell structure of COF-5 was prepared by the following in situ COF-5 synthesis.
  • BDBA 1,4-benzenediboronic acid
  • HHTP 2,3,6,7,10,11-hexahydroxytriphenylene
  • CNT 15 mg
  • mesitylene 10 mL
  • 1,4-dioxane 10 mL
  • a chip-type sonicator Digital Sonifier® Branson
  • Ultrasound with was sonicated at 160 W for 2 hours.
  • the resulting precipitate was collected after repeated centrifugation (20,000 g , 0.5 h), washed with acetone (500 mL or more), and dried in a 40 ° C. vacuum oven.
  • a composite of graphene and COF-5 was also prepared in the same process.
  • Aromatic molecules used as building blocks of COF such as benzene, pyrene, anthracene, triphenylene and porphyrin derivatives, have been used as excellent dispersants for CNTs and graphene due to strong ⁇ - ⁇ interactions, The solvation of the CNT to which the aromatic molecules are adsorbed is performed, and thus a well dispersed CNT solution can be obtained.
  • the composite of CNT and COF-5 (CNT @ COF-5) exhibited a thicker diameter than the original CNT while maintaining its shape. This represents a well-controlled decoration of COF-5 on the CNT surface.
  • graphene flakes (graphene @ COF-5) on which COF-5 was arranged appeared in the form of thicker 2D plates of ⁇ 10 nm or more.
  • the arranged COF-5 showed a morphology similar to COF-5 synthesized without support material (FIG. 4).
  • FT-IR Fourier Transform Infrared
  • FT-IR Fourier Transform Infrared
  • the furnace gas was changed to CO 2 .
  • the furnace gas was switched from CO 2 to N 2 during heating from 25 ° C to 70 ° C.
  • COF-5 exhibits CNT (0.24 wt%) and graphene (0.48 wt%) as well as COF-5 reactants such as BDBA (0.04 wt%) and HHTP (0.58 wt%) under the same conditions. Higher CO 2 absorption capacity (1.25 wt%). This indicates the formation of porous nanostructures in COF-5. Interestingly, it was found that CNT @ COF-5 (1.42 wt%) exhibits an improved absorption capacity compared to COF-5 (1.25 wt%). Since the weight ratio of CNTs at CNT @ COF-5 is negligible (FIG. 8), this improvement in CO 2 absorption capacity was thought to occur in COF-5, which gave a change in the nanostructure and surface phenomena of the composite.
  • ZIF-8 Zeolitic imidazolate framework-8
  • MOFs metal organic structures
  • GQD graphene quantum dots
  • the enhanced CO 2 uptake capacity of CNT @ COF-5 can be explained by the specific surface area as described in Table 2 below.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Food Science & Technology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

본 발명은 탄소 구조물 및 공유결합성 유기 골격구조체의 복합체, 이의 제조방법 및 이의 용도에 관한 것으로, 더욱 상세하게는 탄소 구조물 표면상에서 공유결합성 유기 골격구조체를 합성하여 복합체를 제조함으로써 합성된 공유결합성 유기 골격구조체의 비표면적 또는 기공 부피가, 상기 탄소 구조물 없이 제조된 공유결합성 유기 골격구조체보다 더욱 커진 탄소 구조물 및 공유결합성 유기 골격구조체의 복합체, 이의 제조방법 및 이의 용도에 관한 것이다.

Description

탄소 구조물 및 공유결합성 유기 골격구조체의 복합체, 이의 제조방법 및 이의 용도
본 발명은 탄소 구조물 및 공유결합성 유기 골격구조체의 복합체, 이의 제조방법 및 이의 용도에 관한 것이다.
다공성 물질은 기체 저장 및 분리, 센서 및 촉매 등의 다양한 응용 분야에서 관심을 받아 왔으며, 높은 표면적 및 용이하게 제어가능한 화학적 친화도를 갖는 새로운 다공성 물질의 개발이 크게 요구되고 있다. 공유결합성 유기 골격구조체(covalent-organic framework, COF)는 폴리보론산 및 폴리디올 화합물과 같은 유기 분자 단위 간의 공유 결합에 의해 구축될 수 있다. 한편, MOF(metal-organic framework)는 기공 크기 및 화학적 친화도가 금속 및 링커를 개질시킴으로써 쉽게 조절가능하기 때문에 기체 흡수제로서 가장 촉망받는 물질 중의 하나로서 대두되고 있다. 또한, COF는 다양한 복합체 형성이 가능하여 기체 흡수제에 제한되지 않고 새로운 응용 분야에 적용되기 위해 연구되고 있다.
한편, 탄소나노튜브(CNT) 및 그래핀은 높은 표면적을 가지며, 주목할만한 전기적, 열적, 광학적 및 기계적 특성으로 인하여, 고분자 강화재, 생물학적 응용 및 전자기기적 응용을 위한 하이브리드 물질로서 고려되어 왔다. 그러나, π-공역체 표면의 강력한 반데르발스 힘에 의해 야기되는 CNT 및 그래핀의 낮은 분산성은 이들의 응용을 제한한다.
본 발명의 목적은 비표면적 또는 기공 부피가 증가된, 탄소 구조물과 공유결합성 유기 골격구조체의 복합체, 이의 제조방법 및 이의 용도를 제공하는 것이다.
본 발명의 제1양태는 탄소 구조물 표면상에서 공유결합성 유기 골격구조체(Covalent-Organic Framework, COF)를 합성하여 제조된 복합체를 제공한다.
본 발명의 제2양태는 탄소 구조물, 및 공유결합성 유기 골격구조체의 반응물을 용매에 첨가하고 초음파 처리하는 단계(단계 1)를 포함하는 상기 제1양태에 따른 복합체의 제조방법을 제공한다.
본 발명의 제3양태는 상기 제1양태에 따른 복합체를 포함하는 기체 흡수, 저장, 분리 또는 농축용 조성물을 제공한다.
본 발명의 제4양태는 상기 제1양태에 따른 복합체를 포함하는 가스 센서를 제공한다.
이하 본 발명의 구성을 상세히 설명한다.
공유결합성 유기 골격구조체(Covalent-Organic Framework, COF)는 공유 결합에 의해 유기 빌딩 단위(organic building unit)가 연결되어 형성한 확장된 유기 구조체로서 가벼운 원소인 H, B, C, N 및 O에 의해 주로 형성될 수 있다. 이러한 공유결합성 유기 골격구조체는 경직성(rigid)의 다공성(마이크로- 및 메조-다공성) 구조를 가질 뿐만 아니라, 열적 안정성이 우수하며, 밀도도 낮다. 또한, 종래 알려진 제올라이트, 다공성 실리케이트(porous silicates) 등의 물질보다 비표면적이 크다.
공유결합성 유기 골격구조체의 합성의 기본적 개념은 빌딩 단위의 공유 결합 형성이다. 상이한 구조적 배열로 다양한 경직성 유기 빌딩 단위로부터 다양한 공유결합성 유기 골격구조체가 구축될 수 있다. 빌딩 단위 간의 다양한 유기 합성 반응을 통해 강한 공유결합이 형성되고 이를 통해 규칙적으로 정렬된 (well-defined) 2D 또는 3D 결정 구조를 갖는 COF 물질을 제공할 수 있다. 금속 유기 구조체(MOF)에서 빌딩 단위의 조립이 배위 결합을 통해 자가-조정될 수 있는데 반해, COF의 구조적 규칙성은 강한 공유 결합을 통해 제어하기가 더욱 어려울 수 있다. COF 구조의 구축에 적용가능한 합성 반응으로는 하기 반응식과 같은 다양한 가역 반응이 바람직할 수 있다.
Figure PCTKR2015013945-appb-I000001
또한, 이러한 합성 반응을 통해 COF를 구축할 수 있는 빌딩 단위, 즉 공유결합성 유기 골격구조체의 반응물로는 하기와 같이 다양한 화합물들이 사용될 수 있다.
Figure PCTKR2015013945-appb-I000002
상기 유기 빌딩 단위 간의 다양한 유기 합성 반응을 통해 형성된 COF의 예들로는 하기 표 1의 COF들을 들 수 있다. 하기 표 1에 각 COF의 구조 정보를 함께 나타내었다.
표 1
Figure PCTKR2015013945-appb-T000001
상기 표 1을 통해 알 수 있듯이, 구체적으로 상기 공유결합성 유기 골격구조체로는 COF-1, COF-102, COF-103, PPy-COF, COF-102-C12, COF-102-allyl, COF-5, COF-105, COF-108, COF-6, COF-8, COF-10, COF-11Å, COF-14Å, COF-16Å, COF-18Å, TP-COF, Pc-PBBA COF, NiPc-PBBA COF, 2D-NiPc-BTDA COF, NiPc COF, BTP-COF, HHTP-DPB COF, x%N3-COF-5(x = 5, 25, 50, 75 또는 100), 100%N3-NiPc-COF, COF-66, ZnPc-Py COF, ZnPc-DPB COF, ZnPc-NDI COF, ZnPc-PPE COF, CTC-COF, H2P-COF, ZnP-COF, CuP-COF, COF-202, CTF-1, CTF-2, COF-300, COF-LZU1, COF-366, COF-42, COF-43 등이 있으며, 이외에도 COF-320, COF-102-Li, COF-103-Li, COF-102-Na, COF-103-Na, COF-301-PdCl2, COF-103-Eth-trans, COF-102-Ant 등이 공유결합성 유기 골격구조체로서 알려져 있다.
이러한 유기 빌딩 단위를 통한 COF 물질의 성공적인 구현은 기체 저장, 포토닉스 및 촉매적 응용을 위해 최적화된 경량 물질로 작용기화될 수 있는 공유 구조체를 제공할 수 있다.
먼저, 공유결합성 유기 골격구조체는 상기한 바와 같이 수소, 메탄 및/또는 CO2 등의 기체 흡수, 저장, 분리 및/또는 농축 물질로서 사용될 수 있다. 공유결합성 유기 골격구조체는 이들의 구조적 차원(structural dimension)과 기공 크기에 따라 분류할 경우, 하기의 3개의 그룹으로 나뉠 수 있다. 그룹 1은 1D의 작은 기공 크기(10 Å 이하)를 갖는 2D 구조체로서 예컨대 COF-1 및 COF-6(각각, 9 Å)이 이에 속할 수 있다. 그룹 2는 1D의 큰 기공 크기(15 Å 이상, 바람직하기로 15 내지 40 Å)를 갖는 2D 구조체로서 예컨대 COF-5(27 Å), COF-8(16 Å) 및 COF-10(32 Å)이 이에 속할 수 있다. 또한, 그룹 3은 3D의 중간 기공 크기(10 내지 15 Å)를 갖는 3D 구조체로서 예컨대 COF-102 및 COF-103(각각, 12 Å)이 이에 속할 수 있다. 기체 흡수, 저장, 분리 및/또는 농축 성능면에서, 그룹 3이 그룹 1 및 2의 성능을 능가할 수 있다. 그러나, 그룹 3의 합성이 그룹 1 및 2의 합성에 비해 용이하지 않을 수 있다. 구체적으로, 35 bar에서 COF-102의 기체 흡수 용량은 수소의 경우 77 K에서 72 mg g-1, 메탄의 경우 298 K에서 187 mg g-1, 이산화탄소의 경우 298 K에서 1180 mg g-1이며, 이는 COF-103의 기체 흡수 용량과 유사하지만 COF-1, COF-5, COF-6, COF-8 및 COF-10의 기체 흡수 용량보다 더욱 높다. 77 K에서 수소의 경우, COF-1는 15 mg g-1, COF-5는 36 mg g-1, COF-6은 23 mg g-1, COF-8은 35 mg g-1, COF-10은 39 mg g-1이며, 298 K에서 메탄의 경우, COF-1은 40 mg g-1, COF-5는 89 mg g-1, COF-6은 65 mg g-1, COF-8은 87 mg g-1, COF-10은 80 mg g-1, 298 K에서 이산화탄소의 경우, COF-1은 210 mg g-1, COF-5는 779 mg g-1, COF-6은 298 mg g-1, COF-8은 598 mg g-1, COF-10은 759 mg g-1일 수 있다. 상기에서 알 수 있듯이, 그룹 1 및 그룹 2의 COF 중에서 COF-5가 전반적으로 우수한 기체 흡수 용량을 보일 수 있다.
이외에도, 77 K에서의 최고 H2 흡수 용량이 COF-105의 경우 80 bar에서 10.0 wt%이고 COF-108의 경우 100 bar에서 10.0 wt%이다. 이는 COF가 높은 표면적과 자유 부피를 가지기 때문이다. H2 흡수 용량을 향상시키기 위한 전략으로서 H2와의 상호작용을 더욱 높일 수 있도록 COF를 개질시키는 방법이 있다. 구체적으로, COF를 Li, Na, K 등과 같은 알칼리 금속으로 금속화시켜 복합체를 형성시킴으로써 H2 흡수 용량을 증가시킬 수 있다. 이러한 복합체로는 COF-102-Li, COF-103-Li, COF-102-Na 및 COF-103-Na 등이 있다. 또한, H2 흡수 용량을 향상시키기 위해 개질된 COF로서 COF-301-PdCl2 등을 사용할 수 있다. 한편, 단위 부피 COF 흡수제 당 CH4의 총 부피의 관점에서 우수한 COF는 COF-1이다. COF-1은 298 K 및 30 bar에서 195 v/v의 메탄을 저장할 수 있다. 전달량의 기준에서 우수한 COF는 COF-102 및 COF-103이다. 이들은 각각 230 및 234 v(STP: 298 K, 1.01 bar)/v의 값을 갖는다. 또한, 전달량의 기준에서 우수한 COF로서 COF-103-Eth-trans 및 COF-102-Ant 등이 있다.
또한, 공유결합성 유기 골격구조체는 촉매 분야에 적용될 수 있다. 더 나아가, 공유결합성 유기 골격구조체는 광학적 및 전기적 특성이 우수하여 전기전자 소자 분야에 적용될 수 있다. 구체적으로, 금속으로 개질시킨 COF인 Pd/COF-LZU1은 스즈키-미야우라 커플링 반응(Suzuki-Miyaura Coupling Reaction)에서 촉매로서 사용될 수 있다. 또한, 메조다공성 육방정계 골격으로 교대로 연결된 파이렌과 트리페닐렌 작용기로 이루어진 고도로 정렬된 π-공역체 TP-COF는 높은 발광성을 나타내고, 광범위 파장의 광자(photon)를 수집하며, 에너지 전달 및 이동을 허용한다. 또한, TP-COF는 전기 전도성을 지니며 상온에서 반복적인 온-오프 전류 스위칭이 가능하다.
공유결합성 유기 골격구조체의 합성 방법으로는 용매열(solvothermal) 합성법, 마이크로파(microwave) 합성법 및 초음파화학적(sonochemical) 합성법 등이 있다. COF의 용매열 합성법은 밀봉된 용기 내에서 가열(80℃ 내지 120℃) 하에 COF를 합성하는 방법이다. 이때 밀봉된 용기 내 압력이 반응 수율에 영향을 줄 수 있으며, 용매의 종류가 COF 반응물의 용해도 및 결정화도에 영향을 줄 수 있다. 공유결합성 유기 골격구조체는 대체로 용매열 합성법으로 합성된다. 이러한 용매열 합성법을 사용할 경우, 결정화 속도가 느려 수일의 반응 기간이 소요된다. 이에 따라 보다 빠른 결정화, 즉 COF 합성이 가능한 COF 합성법의 개발이 요구된다. 최근에 마이크로파 또는 초음파를 가하여 COF 합성 반응을 촉진시켜 급속한 COF 합성이 가능한 합성법들이 보고된 바 있다. 이중 초음파화학적(sonochemical) 합성법은 음파 공동현상(acoustic cavitation)이라 불리는 용액 내 기포(bubble)의 형성 및 붕괴을 통해 초음파화학적 합성 반응에서 결정화 속도, 즉 COF 합성 반응 속도를 가속화시키는 방법이다. 음파 공동현상은 매우 높은 국부 온도(>5000 K) 및 압력(>1000 bar)을 생성시키고, 이에 따라 극히 빠른 가열 및 냉각 속도를 제공할 수 있다.
이러한 공유결합성 유기 골격구조체의 합성에 있어서, 본 발명에서는 탄소 구조물 표면상에서 공유결합성 유기 골격구조체(COF)를 합성하여 복합체를 제조함으로써, 동일 합성 조건에서 상기 탄소 구조물 없이 제조된 COF보다 기공부피가 더욱 커질 수 있음을 발견하였다. 본 발명은 이에 기초한 것이다.
상기한 바와 같이 본 발명은 일 양태로서, 탄소 구조물 표면상에서 공유결합성 유기 골격구조체(Covalent-Organic Framework, COF)를 합성하여 제조된 복합체를 제공할 수 있다. 즉, 본 발명에서는 탄소 구조물 상에서 COF 반응물의 인 시츄(in situ) 합성을 통해 제조된 복합체를 제공할 수 있다.
탄소 구조물(carbon structure)은 탄소로 이루어진 다양한 형상의 구조물로서, 여러 가지 우수한 성질을 보유하기 때문에 다양한 기술분야에서 활용도가 높다.
본 발명에서, 탄소 구조물은 마이크로 내지 나노 수준의 크기를 가질 수 있으며, 바람직하기로 나노 수준의 크기를 가지는 탄소 나노구조물일 수 있다. 상기 탄소 나노구조물은 나노미터(nm) 내지 수백 나노미터의 크기를 가진 구조물을 의미할 수 있다.
본 발명에서, 상기 탄소 구조물은 탄소나노튜브, 탄소나노와이어, 그래핀, 산화 그래핀 및 카본 블랙으로 이루어진 군으로부터 선택되는 1종 이상일 수 있으며, 이에 제한되는 것은 아니다.
본 발명에서, 상기 탄소 구조물로서 특히 바람직하기로 탄소나노튜브(CNT)를 사용할 수 있다. 탄소나노튜브(CNT, Carbon Nano Tube)는 탄소끼리 육각형으로 결합하여 원통형 튜브구조를 이룬 탄소 동소체의 일종이다. 하나의 튜브로 이루어진 단일벽(single walled: SW) 탄소나노튜브, 두개의 튜브가 겹쳐진 이중벽 (Double Walled: DW) 탄소나노튜브, 3개 이상의 튜브로 구성된 다중벽(Multi Walled: MW) 탄소나노튜브 등으로 구분할 수 있다. 단일벽 탄소나노튜브는 생산수율이 낮고 정제과정이 복잡하여 주로 다중벽 탄소나노튜브를 사용할 수 있다. 탄소나노튜브는 50 ~ 1315 m2/g의 고표면적을 가져 우수한 기체 저장 능력을 가지며 격자간 채널 및 외부 홈과 같은 CNT 번들 내의 특이적인 나노-공간을 가져 방향족 분자 및 Ar, Ne, He, CF4, H2, N2, O2 및 CnH2n+2와 같은 기체 분자와 상당한 상호작용을 하고 분자에 대해 선택성을 나타낸다. 그러나, CNT의 π-공역체 표면으로 인한 다소 낮은 기체 선택성 및 저장 용량 때문에 기체 센서 및 분리에 적용하는데 제한이 있다. 그러나, 본 발명의 복합체는 상기 CNT 표면 상의 π-공역체 표면이 공유결합성 유기 골격구조체로 코팅됨으로써, CNT를 단독으로 사용하는 경우에 비해 기체 흡수 능력이 더욱 향상되고 기체 선택성도 향상될 수 있다.
이외에도, 상기한 바와 같이 탄소나노와이어, 그래핀, 산화 그래핀 및 카본 블랙 등이 탄소 구조물로서 효과적으로 사용될 수 있다. 탄소나노와이어(carbon nanowire)는 탄소로 이루어지며, 길이는 수 ㎛ 내지 수십 ㎛, 지름은 100 nm 내외의 종횡비(aspect ratio)가 매우 큰 1차원 나노 구조물을 의미할 수 있다. 그래핀(graphene)은 탄소 원자들이 2차원 상에서 벌집 모양의 배열을 이루면서 원자 한 층의 두께를 가지는 전도성 물질이다. 그래핀은 잘 휘고 방열이 뛰어나고 전기전도성이 높아 응용분야가 무궁무진한 소재로 각광받고 있다. 그래핀의 결정 구조는, 한 꼭지점에 세개의 결합이 붙는 원자 구조(sp2 결합)에 의해 육각형 형태의 연결이 2차원 방향으로 뻗어나간 모양을 한다. 결과적으로 넓게 퍼진 벌집 모양의 2차원 결정 모양을 갖게 되며, 육각형 형태의 공극이 형성된다. 이에 따라 그래핀은 원자 하나 두께의 얇은 막으로 존재할 수 있고 안정적인 분자 구조로 존재할 수 있으며, 굉장히 투명할 수 있다. 산화 그래핀(graphene oxide)은 그래핀의 산화물로서 2차원 상의 형태일 수 있으며, 뛰어난 수용성, 양친매성, 손쉬운 표면 기능화, 표면 증강 라만 산란(SERS) 및 형광 소광 능력 등의 특성을 가지고 있다. 카본 블랙(carbon black)은 천연가스, 타르, 오일 등의 탄화수소 등을 불완전연소시켜 생긴 그을음을 모으거나, 열분해에 의해서 탄소육원환의 형성이 행해지고 이어 탈수소축합 등의 과정에 의해 다환식방향족 화합물을 거쳐 얻은 탄소원자 6각 그물구조 결정자의 집합체이다.
본 발명에서는 상기한 바와 같이 탄소 구조물 표면상에서 COF를 합성하여 복합체를 제조할 수 있으며, 상기 제조된 COF의 비표면적 또는 기공 부피가, 동일 합성 조건에서 상기 탄소 구조물 없이 제조된 COF보다 더욱 커질 수 있음을 확인하였다. 구체적으로, 본 발명의 일 실시예에서는, CNT@COF-5가 원래의 CNT는 물론 COF-5에 비해서도 더욱 향상된 CO2 흡착 용량을 나타내는 것을 확인할 수 있었다(도 7). 이는 높은 곡률의 CNT 표면에서는 COF-5가 큰 미정질(microcrystalline)을 형성하기 어려워 작은 미정질의 집합체로 합성되기 때문으로 보인다.
따라서, 이러한 비표면적 또는 기공 부피가 더욱 커진 공유결합성 유기 골격구조체를 포함하는 본 발명의 복합체는 상기 언급된 기체 흡수, 저장, 분리 및/또는 농축 특성으로 인하여 기체 흡수제, 기체 저장제, 기체 분리제 및/또는 기체 농축제로서 효과적으로 적용될 수 있다.
또한, 본 발명의 복합체는 공유결합성 유기 골격구조체가 가지는 촉매 물질의 담지 능력으로 인하여 촉매에도 적용 가능하며, 공유결합성 유기 골격구조체가 나타내는 광학적 및 전기적 특성으로 인하여 발광재료 또는 반도체 재료에도 적용 가능하다. 이외에도 본 발명의 복합체는 공유결합성 유기 골격구조체가 적용될 수 있는 광범위한 용도에 다양하게 적용될 수 있다.
본 발명에서, 상기 공유결합성 유기 골격구조체의 반응물은 바람직하기로 탄소 구조물의 표면과 π-π 스태킹(stacking)이 가능한 방향족 화합물일 수 있다. 벤젠, 파이렌, 안트라센, 트리페닐렌 및 포피린 유도체 등과 같은 COF의 빌딩 블록으로서 사용되는 방향족 화합물은 강력한 π-π 스태킹(stacking)으로 인하여 CNT와 같은 탄소 구조물에 대한 흡착성이 우수하다. 따라서, 이들은 교반 및/또는 초음파 처리에 의한 분산 과정에 의해 탄소 구조물 표면에 효과적으로 흡착 및 용매화될 수 있어 탄소 구조물의 용해화제(solubilizer)로서 사용될 수 있다. 또한, 상기 반응물과 탄소 구조물 표면 간의 π-π 상호작용은 탄소 구조물의 표면상에서 COF가 형성되도록 제한시켜 주는 역할을 하여 탄소 구조물 표면상에 잘 제어된(well-controlled) 형태로 복합체를 형성시킬 수 있다.
본 발명에서는 특히 공유결합성 유기 골격구조체로서 COF-5를 사용하는 것이 이산화탄소(CO2) 흡수 특성 및 간단한 합성 방법으로 인하여 바람직할 수 있다. COF-5는 용매열 반응 및 마이크로파 조사뿐만 아니라 초음파화학적인 방법(sonochemical method)에 의해 합성될 수 있다. 따라서, 본 발명에서는 공유결합성 유기 골격구조체로서 COF-5를 사용함으로써 초음파 처리 과정에 의해 CNT 및 그래핀의 표면 상에 COF-5 반응물의 분자 흡착 및 합성 반응을 모두 동시에 수행하여 보다 간단한 합성 방법으로 본 발명의 복합체를 제조할 수 있다.
본 발명의 일 실시예에서는, 도 1에 도시된 바와 같이, 공유결합성 유기 골격체 중의 하나인 COF-5가 분산 과정 동안 인 시츄 초음파화학적인 반응을 통해 탄소 구조물인 CNT(CNT@COF-5) 및 그래핀(그래핀@COF-5)의 표면상에서 합성될 수 있음을 확인하였다.
또한, 본 발명의 다른 일 양태로서 하기 단계를 포함하는 상기 복합체의 제조방법을 제공할 수 있다:
탄소 구조물, 및 공유결합성 유기 골격구조체의 반응물을 용매에 첨가하고 초음파 처리하는 단계(단계 1).
본 발명의 복합체 제조방법은 상기 단계 1)의 초음파 처리에 의하여 공유결합성 유기 골격구조체의 반응물이 탄소 구조물 표면에 흡착되고 초음파화학적인 반응에 의해 공유결합성 유기 골격구조체를 형성할 수 있다. 즉, 본 발명의 복합체의 제조방법은 초음파 처리의 단일 공정에 의하여 공유결합성 유기 골격구조체를 형성하는 반응물의 분산에 의한 탄소 구조물 표면으로의 흡착과 초음파화학적인 반응에 의한 공유결합성 유기 골격구조체의 합성을 동시에 수행할 수 있다. 이에 따라, 탄소 구조물 표면상에서 인 시츄로 공유결합성 유기 골격구조체를 합성할 수 있어 비교적 간단한 공정으로 복합체를 제조할 수 있는 이점이 있다. 구체적으로, COF 중의 하나인 COF-5를 CNT 및 그래핀과 함께 분산시킨 후 초음파 처리에 의하여 초음파화학적인 반응에 의해 합성시킬 수 있음을 확인하였다(실시예 1). 즉, COF-5를 형성하는 반응물의 흡착 및 합성 반응이 CNT 및 그래핀의 표면 상에서 동시에 일어날 수 있다.
본 발명에서, 상기 탄소 구조물의 농도는 0.2 ㎎/㎖ 내지 2 ㎎/㎖일 수 있다. 만일 상기 탄소 구조물의 농도가 0.2 ㎎/㎖ 미만이면 복합체의 수율이 적어 비효율적일 수 있고 2 ㎎/㎖ 초과이면 탄소 구조물 간의 응집이 일어날 수 있다.
본 발명에서, 상기 공유결합성 유기 골격구조체를 형성하는 반응물은 당업계에 알려져 있는 공유결합성 유기 골격구조체를 형성할 수 있는 다양한 화합물을 사용할 수 있으며, 상기 본 발명의 복합체에 대한 설명에서 언급한 바와 같이 바람직하기로 탄소 구조물의 표면과 π-π 스태킹(stacking)이 가능한 방향족 화합물일 수 있다. 더욱 바람직하기로, 상기 공유결합성 유기 골격구조체를 형성하는 반응물은 초음파화학 합성법으로 공유결합성 유기 골격구조체를 형성할 수 있는 방향족 화합물일 수 있다. 구체적으로, 본 발명의 일 실시예에서는 상기 공유결합성 유기 골격구조체를 형성하는 반응물로서 1,4-벤젠디보론산 (BDBA), 2,3,6,7,10,11-헥사히드록시트리페닐렌 (HHTP) 또는 이의 혼합물을 사용하였다.
본 발명에서, 상기 공유결합성 유기 골격구조체를 형성하는 반응물의 농도는 10 ㎎/㎖ 내지 60 ㎎/㎖일 수 있다. 만일 상기 공유결합성 유기 골격구조체를 형성하는 반응물의 농도가 10 ㎎/㎖ 미만이면 공유결합성 유기 골격구조체의 형성이 어려울 수 있고 60 ㎎/㎖ 초과이면 비효율적일 수 있다.
본 발명에서, 상기 용매는 메시틸렌, 1,4-디옥산 또는 이의 혼합용매일 수 있으며, 이에 제한되는 것은 아니다.
초음파(ultrasound)는 인간이 들을 수 없는 주파수, 즉 16kHz 이상의 주파수의 소리로 정의될 수 있다. 실제로는, 세가지 범위의 다른 주파수 값을 갖는 초음파 영역이 이용되고 있다. 이는 고주파수 또는 진단용 초음파(1~10MHz) 영역, 둘째, 저주파수 초음파(20~100kHz), 셋째, 중주파수 초음파(100-1000kHz) 영역일 수 있다. 공동의 형성, 성장, 붕괴에 의해 생성된 고온과 고압을 이용해서 화학반응을 촉진하는데 사용되는 것은 주로 저주파수 또는 중주파수, 바람직하기로 중주파수의 초음파 영역일 수 있다. 본 발명에서, 상기 단계 1)의 초음파는 바람직하기로 20kHz 내지 1000kHz, 더욱 바람직하기로 50kHz 내지 200kHz의 주파수를 가지는 것일 수 있다.
본 발명에서, 상기 초음파 처리는 바람직하기로 출력 전력 50 W 내지 500 W 에서 30분 내지 6시간 동안 수행할 수 있다. 만일 출력 전력이 50 W 미만이면 초음파 처리에 의한 분산 및 초음파화학반응이 충분히 일어나기 어려울 수 있고 500 W 초과이면 비효율적일 수 있다. 또한, 만일 초음파 처리 시간이 30분 미만이면 초음파화학반응이 충분히 일어나기 어려울 수 있고 6시간 초과이면 비효율적일 수 있다.
바람직하기로, 상기 단계 1) 이후에 상기 단계 1)의 생성물을 수집하고 세척하는 단계(단계 2)를 추가로 포함할 수 있다.
본 발명에서, 상기 단계 2는 단계 1의 반응액을 원심분리한 후 상층액을 제거한 다음 세척함으로써 수행할 수 있다.
또한, 본 발명은 탄소 구조물 표면상에서 공유결합성 유기 골격구조체를 합성하여 제조된 복합체를 포함하는 기체 흡수, 저장, 분리 또는 농축용 조성물을 제공할 수 있다.
본 발명에서, 상기 기체는 CO2, Ar, Ne, He, CF4, H2, N2, O2 및 CnH2n+2(여기에서, n은 1 내지 4의 정수)로 이루어진 군으로부터 선택되는 1종 이상일 수 있으며, 이에 제한되는 것은 아니다.
본 발명의 복합체는 탄소 구조물 단독 물질 및 공유결합성 유기 골격구조체 단독 물질에 비해 더욱 향상된 기체 흡착 용량을 나타낼 수 있어 기체 흡수, 저장, 분리 또는 농축 용도로 효율적으로 사용될 수 있다(도 7).
또한, 본 발명의 기체 흡수, 저장, 분리 또는 농축용 조성물에서 상기 복합체는 기체 흡수, 저장, 분리 또는 농축제로서의 역할 이외에도 촉매로서의 역할을 수행할 수 있다. 즉, 본 발명의 기체 흡수, 저장, 분리 또는 농축용 조성물에서 상기 복합체는 촉매로서 사용될 수 있다.
본 발명에서, 상기 복합체가 촉매로서 사용되기 위해 COF는 Pd 등의 금속으로 개질된 것일 수 있다.
본 발명에서, 상기 복합체는 가스 센서 물질로서 사용될 수 있다.
본 발명에서 "가스 센서(gas sensor)"는 기체 중에 포함된 특정의 성분가스를 검지하여 그 농도에 따라 적당한 전기신호로 변환하는 소자를 의미할 수 있다.
전술한 바와 같이, 유기 빌딩 단위를 통한 COF 물질의 성공적인 구현은 기체 저장을 위해 최적화된 경량 물질로 작용기화될 수 있는 공유 구조체를 제공할 수 있다. 또한, 탄소 구조물로서 사용 가능한 탄소나노튜브, 탄소나노와이어, 그래핀, 산화 그래핀 및 카본 블랙 등이 고표면적을 가져 우수한 기체 저장 능력을 가진다. 이러한 공유결합성 유기 골격구조체와 탄소 구조물의 결합으로 인해 본 발명의 복합체는 각각의 단독 사용에 비해 기체 저장 능력이 더욱 우수할 뿐만 아니라 특히 탄소나노튜브와 같은 경우 방향족 분자 및 Ar, Ne, He, CF4, H2, N2, O2 및 CnH2n+2와 같은 기체 분자와 상당한 상호작용을 하고 분자에 대해 선택성도 증가하므로 가스 센서로서 적용시 유리하다. 따라서, 본 발명의 복합체는 이러한 특성을 이용해서 화학적/물리적 분자 가스센서로의 응용이 가능하다.
구체적으로, 상기 가스 센서는 CO2, Ar, Ne, He, CF4, H2, N2, O2 및 CnH2n+2(여기에서, n은 1 내지 4의 정수)로 이루어진 군으로부터 선택되는 가스를 검출하기 위해 이용될 수 있으며, 이에 제한되지 않고 COF와 탄소 구조물이 감지할 수 있는 가스이면 검출이 가능하다.
또한, 본 발명은 상기 센서를 포함하는 센서칩을 제공할 수 있다. 바람직하기로, 상기 센서칩은 필름 형태일 수 있다.
본 발명은 탄소 구조물 표면상에서 공유결합성 유기 골격구조체를 합성하여 복합체를 제조함으로써 결과적으로 합성된 공유결합성 유기 골격구조체의 비표면적 또는 기공 부피가, 상기 탄소 구조물 없이 제조된 공유결합성 유기 골격구조체보다 더욱 커져 기체 흡수 특성이 더욱 향상된 복합체를 제공할 수 있는 효과가 있다.
도 1은 본 발명의 복합체로서 CNT@COF-5의 합성을 도식적으로 나타낸 개념도이다.
도 2는 (A) CNT, (B) CNT@COF-5, (C) 그래핀 및 (D) 그래핀@COF-5의 주사전자현미경(SEM) 이미지이다. 이때 스케일바는 500 nm이다.
도 3은 그래핀@COF-5의 3D AFM 이미지 및 상기 이미지로부터 추출된 고도 프로파일(height profile)이다.
도 4는 지지 물질이 없이 합성된 COF-5의 SEM 이미지이다. 이때 스케일바는 500 nm이다.
도 5는 (A) BDBA, (B) HHTP, (C) COF-5, (D) CNT@COF-5, 및 (E) 그래핀@COF-5의 푸리에 변환 적외선(FT-IR) 스펙트럼이다.
도 6은 (A) COF-5, (B) CNT, (C) CNT@COF-5, (D) 그래핀, 및 (E) 그래핀@COF-5의 X-선 회절(XRD) 패턴이다.
도 7은 (A 및 B) BDBA, (A 및 B) HHTP, (A 및 B) COF-5, (A) CNT@COF-5, 및 (B) 그래핀@COF-5의 CO2 흡착으로 인한 질량 변화를 보여주는 TGA이다.
도 8은 (A) CNT, (A) CNT@COF-5, (B) 그래핀, 및 (B) 그래핀@COF-5의 TGA이다. 비교를 위하여, COF-5, HHTP, 및 BDBA의 TGA를 함께 나타내었다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것은 아니다.
실시예 1: CNT 또는 그래핀 표면 상에서 COF-5 합성을 통한 복합체의 제조
재료
다중벽 탄소나노튜브(MWNT)(Ctube120, 금속 산화물<3 중량%, 평균직경: ~20 nm, 길이: 1-25 μm, CNT Co., Ltd) 및 그래핀(3 nm 그래핀 나노분말, 등급 AO-1, Graphene Supermarket)을 공급받은 그대로 사용하였다. 벤젠-1,4-디보론산(95 %), 아세톤(99.9 %) 및 1,4-디옥산(99.8 %)을 시그마-알드리치로부터 구입하였으며, 2,3,6,7,10,11-헥사히드록시 트리페닐렌(95 %) (Tokyo Chemical Industry Co., Ltd.) 및 메시틸렌(98 %) (Kanto Chemical Co., Inc.)을 공급받은 그대로 사용하였다.
측정방법
전계 방출 주사전자현미경(FE-SEM)을 1 kV에서 SU-8020(Hitachi, Tokyo, Japan)을 사용하여 수행하였으며, 푸리에 변환 적외선(Fourier transform infrared, FT-IR) 측정을 Varian 660-IR (Varian Medical Systems, Inc., California, USA)로 수행하였다. 2.5°< 2θ < 20°범위의 X-ray 회절(XRD) 측정은 40 kV 및 30 mA (CuKα radiation, λ = 0.154 nm)에서 SmartLab (Rigaku, Tokyo, Japan)으로 수행하였으며, 복합체의 모폴로지는 0.5 Hz의 스캔 속도로 비접촉 캔틸레버를 구비한 원자간력 현미경(AFM) (NX10, Park Systems Corp., Suwon, Korea)으로 분석하였다. 열중량 분석(TGA)은 5 ℃/min의 속도로 900℃까지 가열함으로써 N2 대기 중에서 수행하였다. 비표면적을 BELSORP-miniII (BEL, Osaka, Japan)를 사용하여 77 K에서의 질소 흡탈착 측정에 기초한 BET 법으로 측정하였다.
CNT 또는 그래핀 표면 상에서 COF-5 합성을 통한 복합체의 제조
탄소 재료와 COF-5의 코어-쉘 구조의 복합체는 하기와 같은 인 시츄 COF-5 합성으로 제조하였다.
먼저, 1,4-벤젠디보론산 (BDBA) (185 mg, 1.116 mmol) 및 2,3,6,7,10,11-헥사히드록시트리페닐렌 (HHTP) (241.5 mg, 0.745 mmol)을 첨가한 메시틸렌 (10 mL)과 1,4-디옥산 (10 mL)의 혼합 용매 중에 CNT (15 mg)를 첨가한 다음, 칩-타입 초음파 처리기(Digital Sonifier® Branson)를 사용하여 20 kHz의 주파수를 갖는 초음파를 2 시간 동안 160 W로 초음파 처리하였다. 생성된 침전물을 반복적인 원심분리(20,000 g, 0.5 h) 후 회수하여 아세톤 (500 mL 이상)으로 세척한 다음, 40℃ 진공 오븐에서 건조시켰다.
그래핀과 COF-5의 복합체도 동일한 과정으로 제조하였다.
그래핀 및 CNT의 복합체 모두 출발 물질 기준으로 55-65% 수율을 나타냈다.
실험예 1: CNT 또는 그래핀 표면상에서 COF-5 합성을 통해 제조된 복합체의 형태 조사
벤젠, 파이렌, 안트라센, 트리페닐렌 및 포피린 유도체와 같은 COF의 빌딩 블록으로 사용되는 방향족 분자는 강한 π-π 상호작용으로 인하여 CNT 및 그래핀의 우수한 분산제로서 사용되었으며, 초음파 처리 과정에 상응하여 상기 방향족 분자가 흡착된 CNT의 용매화가 이루어지고 이를 통해 잘 분산된 CNT 용액을 얻을 수 있다.
도 2에 도시된 바와 같이, CNT 및 COF-5의 복합체(CNT@COF-5)는 그 형태를 유지하면서 원래의 CNT보다 더욱 두꺼운 직경을 나타내었다. 이는 CNT 표면 상에서의 COF-5의 잘 제어된 배열(well-controlled decoration)을 나타낸다. 또한, 도 3에 도시된 바와 같이, COF-5가 배열된 그래핀 플레이크(그래핀@COF-5)는 ~10 nm 이상의 더욱 두꺼운 2D 플레이트의 형태로 나타났다.
배열된 COF-5는 지지 물질이 없이 합성된 COF-5와 유사한 모폴로지를 나타내었다(도 4). 또한, 도 5에 도시된 바와 같이, 푸리에 변환 적외선(FT-IR) 스펙트럼이 COF-5의 형성을 나타내었다. 즉, 1325 및 1236 cm-1에서의 새롭게 나타난 피크는 각각, BDBA의 보론산과 HHTP의 히드록실기 간의 공유 결합에 의해 생성되는, B-O 및 C-O 진동을 나타낸다. 더 나아가, 상기 복합체의 X-선 회절 (XRD) 패턴이 COF-5와 유사한 패턴을 보였으며(도 6), 이러한 모든 얻어진 결과를 통해 COF-5 나노복합체의 형성을 알 수 있다.
실험예 2: 본 발명의 복합체의 CO 2 흡수 능력 조사
CO2 흡수 실험은 이전에 보고된 방법을 사용하여 TGA Q500(TA Instruments, New Castle, USA)로 수행하였다(E. P. Dillon et al., ACS Nano, 2008, 2, 156-164; E. A. Roth et al., Energy Fuels, 2013, 27, 4129-4136; W. Wang et al., Appl. Energy, 2014, 113, 334-341). 질소(N2) 및 이산화탄소(CO2) 기체는 각각 40 및 60 mL/min의 유속으로 퍼지(purge) 및 퍼니스(furnace) 기체로서 사용하였다. 시료에서 수분 및 기체를 제거하기 위해 100℃에서 4 시간 동안 N2 흘린 후에 중량 감소가 없는 것을 확인한 후에 모든 실험을 수행하였다. 퍼니스의 온도는 20℃/min의 속도로 70℃로 올리고, 이어서 퍼니스 기체를 CO2로 바꾸었다. 각각의 온도(70, 55, 40, 및 25℃)에서 3시간 동안의 등온 과정 후에, 퍼니스 기체를 25℃로부터 70℃로 가열 동안 CO2로부터 N2로 바꾸었다.
도 7에 도시된 바와 같이, COF-5는 동일한 조건에서 BDBA (0.04 wt%) 및 HHTP (0.58 wt%)와 같은 COF-5 반응물뿐만 아니라 CNT (0.24 wt%) 및 그래핀 (0.48 wt%)보다 더욱 높은 CO2 흡수 용량 (1.25 wt%)을 보였다. 이는 COF-5 내의 다공성 나노구조의 형성을 나타낸다. 흥미롭게도, CNT@COF-5 (1.42 wt%)에서 COF-5 (1.25 wt%)에 비해 더욱 향상된 흡수 용량을 나타내는 것으로 확인되었다. CNT@COF-5에서 CNT의 중량 비율이 무시할 만한 수준이기 때문에(도 8), 이러한 CO2 흡수 용량의 향상은 복합체의 나노구조 및 표면 현상의 변화를 주는 COF-5에서 발생하는 것으로 여겨졌다.
금속 유기 구조체(MOF) 중의 하나인 제올라이트 이미다졸레이트 구조체-8(zeolitic imidazolate framework-8, ZIF-8)은 코어 물질로서 그래핀 양자점(GQD)을 사용한 경우 ZIF-8 표면의 변화된 친수성으로 인하여 원래의 ZIF-8에 비해 더욱 향상된 수증기 흡수 용량을 나타내는 것으로 보고된 바 있다(B. P. Biswal et al., Nanoscale, 2013, 5, 10556-10561). 그러나, 공유 결합된 COF-5의 보로네이트 에스테르는 ZIF-8의 2-메틸이미다졸의 플렉서블한 배위 결합보다 충분히 강직하며, 이에 따라 CNT 코어로 인해 상기 그래핀 양자점과 동일한 효과를 얻기 어렵다.
CNT@COF-5의 향상된 CO2 흡수 용량은 하기 표 2에 기재된 바와 같은 비표면적에 의해 설명될 수 있다.
표 2
COF CNT@COF 그래핀@COF
표면적(m2g-1) 8.17 57.6 9.83
기공 부피(cm2g-1) 0.0223 0.220 0.0773
기공 크기(nm) 10.9 14.8 31.5
CO2 흡착량(wt%) 1.25 1.42 0.92
상기 표 2를 통해, 가장 높은 비표면적 및 총 기공 부피가 CNT@COF-5에서 관찰되며, 이는 각각 원래의 COF-5보다 각각 7배 및 10배 증가한 값임을 알 수 있다. 이러한 효과는, 높은 곡률의 CNT 표면에서 2D 결정구조의 COF-5가 큰 미정질(microcrystalline)을 형성하기 어려워 작은 미정질의 집합체로 합성되기 때문으로 보인다.

Claims (19)

  1. 탄소 구조물 표면상에서 공유결합성 유기 골격구조체(Covalent-Organic Framework, COF)를 합성하여 제조된 복합체.
  2. 제1항에 있어서, 상기 공유결합성 유기 골격구조체가 초음파화학반응에 의해 합성되는 것이 특징인 복합체.
  3. 제1항에 있어서, 상기 공유결합성 유기 골격구조체의 비표면적 또는 기공 부피가, 동일한 합성 조건으로 상기 탄소 구조물 없이 제조된 공유결합성 유기 골격구조체보다 더욱 커지는 것이 특징인 복합체.
  4. 제1항에 있어서, 상기 탄소 구조물은 탄소나노튜브, 탄소나노와이어, 그래핀, 산화 그래핀, 카본 블랙 또는 이의 조합인 것이 특징인 복합체.
  5. 제1항에 있어서, 상기 공유결합성 유기 골격구조체의 반응물은 π-π 스태킹(stacking)이 가능한 방향족 화합물인 것이 특징인 복합체.
  6. 제1항에 있어서, 상기 공유결합성 유기 골격구조체는 COF-1, COF-102, COF-103, PPy-COF, COF-102-C12, COF-102-allyl, COF-5, COF-105, COF-108, COF-6, COF-8, COF-10, COF-11Å, COF-14Å, COF-16Å, COF-18Å, TP-COF, Pc-PBBA COF, NiPc-PBBA COF, 2D-NiPc-BTDA COF, NiPc COF, BTP-COF, HHTP-DPB COF, x%N3-COF-5(x = 5, 25, 50, 75 또는 100), 100%N3-NiPc-COF, COF-66, ZnPc-Py COF, ZnPc-DPB COF, ZnPc-NDI COF, ZnPc-PPE COF, CTC-COF, H2P-COF, ZnP-COF, CuP-COF, COF-202, CTF-1, CTF-2, COF-300, COF-LZU1, COF-366, COF-42, COF-43, COF-320, COF-102-Li, COF-103-Li, COF-102-Na, COF-103-Na, COF-301-PdCl2, COF-103-Eth-trans, COF-102-Ant 또는 이의 조합인 것이 특징인 복합체.
  7. 탄소 구조물, 및 공유결합성 유기 골격구조체의 반응물을 용매에 첨가하고 초음파 처리하는 단계(단계 1)를 포함하는 제1항 내지 제6항 중 어느 한 항에 기재된 복합체의 제조방법.
  8. 제7항에 있어서, 상기 단계 1)의 초음파 처리에 의하여 공유결합성 유기 골격구조체의 반응물이 탄소 구조물 표면상에서 초음파화학반응에 의해 공유결합성 유기 골격구조체를 형성하는 것이 특징인 방법.
  9. 제7항에 있어서, 상기 탄소 구조물의 농도는 0.2 ㎎/㎖ 내지 2 ㎎/㎖인 방법.
  10. 제7항에 있어서, 상기 공유결합성 유기 골격구조체의 반응물은 π-π 스태킹(stacking)이 가능한 방향족 화합물인 것이 특징인 방법.
  11. 제10항에 있어서, 상기 공유결합성 유기 골격구조체의 반응물은 1,4-벤젠디보론산 (BDBA), 2,3,6,7,10,11-헥사히드록시트리페닐렌 (HHTP) 또는 이의 조합인 방법.
  12. 제7항에 있어서, 상기 공유결합성 유기 골격구조체의 반응물의 농도는 10 ㎎/㎖ 내지 60 ㎎/㎖인 방법.
  13. 제7항에 있어서, 상기 용매는 메시틸렌, 1,4-디옥산 또는 이의 혼합용매인 방법.
  14. 제7항에 있어서, 상기 초음파는 20kHz 내지 1000kHz의 주파수를 가지는 것인 방법.
  15. 제7항에 있어서, 상기 초음파 처리는 출력 전력 50 내지 500 W에서 30분 내지 6시간 동안 수행하는 방법.
  16. 제1항 내지 제6항 중 어느 한 항의 복합체를 포함하는 기체 흡수, 저장, 분리 또는 농축용 조성물.
  17. 제16항에 있어서, 상기 복합체가 촉매로서 사용되는 것이 특징인 기체 흡수, 저장, 분리 또는 농축용 조성물.
  18. 제1항 내지 제6항 중 어느 한 항의 복합체를 포함하는 가스 센서.
  19. 제18항에 있어서, CO2, Ar, Ne, He, CF4, H2, N2, O2 및 CnH2n+2(여기에서, n은 1 내지 4의 정수)로 이루어진 군으로부터 선택되는 가스를 검출하는 것이 특징인 가스 센서.
PCT/KR2015/013945 2014-12-19 2015-12-18 탄소 구조물 및 공유결합성 유기 골격구조체의 복합체, 이의 제조방법 및 이의 용도 WO2016099202A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580076517.1A CN107249730B (zh) 2014-12-19 2015-12-18 碳结构和共价有机骨架的复合物、其制备方法和其用途
US15/537,725 US10335765B2 (en) 2014-12-19 2015-12-18 Complex of carbon structure and covalent organic framework, preparation method therefor, and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020140184684A KR101669169B1 (ko) 2014-12-19 2014-12-19 탄소 구조물 및 공유결합성 유기 골격구조체의 복합체, 이의 제조방법 및 이의 용도
KR10-2014-0184684 2014-12-19

Publications (1)

Publication Number Publication Date
WO2016099202A1 true WO2016099202A1 (ko) 2016-06-23

Family

ID=56126989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/013945 WO2016099202A1 (ko) 2014-12-19 2015-12-18 탄소 구조물 및 공유결합성 유기 골격구조체의 복합체, 이의 제조방법 및 이의 용도

Country Status (4)

Country Link
US (1) US10335765B2 (ko)
KR (1) KR101669169B1 (ko)
CN (1) CN107249730B (ko)
WO (1) WO2016099202A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112705179A (zh) * 2020-12-16 2021-04-27 南开大学 一种分层级异孔共价有机骨架材料及其制备方法和应用
CN113075309A (zh) * 2021-03-12 2021-07-06 江南大学 膜保护固相微萃取装置及其在检测牛奶中雌二醇的应用
CN114778614A (zh) * 2022-04-20 2022-07-22 杭州汇馨传感技术有限公司 一种导电mof修饰气敏材料及其制备方法和应用

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106391119B (zh) * 2016-09-13 2018-10-19 南昌大学 一种有机框架材料催化二氧化碳高效合成环碳酸酯的方法
US10982098B2 (en) 2017-11-30 2021-04-20 The Regents Of The University Of California Compositions and methods for the modification of imine covalent organic frameworks (COFs)
CN107970894A (zh) * 2017-12-11 2018-05-01 哈尔滨理工大学 一种cof/go吸附剂的制备方法及应用
CN108997590A (zh) * 2018-07-16 2018-12-14 东华理工大学 一种含有磺酸基团的二维层状有机共价骨架材料及其制备方法
CN109001277B (zh) * 2018-09-26 2021-01-12 西北师范大学 一种金属锌卟啉cof材料/氧化石墨烯修饰电极及其制备和应用
CN109289779B (zh) * 2018-10-16 2021-09-14 西南石油大学 一种基于氧化石墨烯动态共价键的改性吸附剂及其制备方法
CN109956465B (zh) * 2019-03-22 2020-09-08 北京航空航天大学 一种长链共轭π键交联超强韧高导电石墨烯复合薄膜的制备方法
CN110534683B (zh) * 2019-08-22 2022-05-10 天津大学 一种锂化共价有机框架纳米片隔膜及其制备和应用
KR102249922B1 (ko) * 2019-08-27 2021-05-10 성균관대학교산학협력단 전기 화학 촉매 및 이의 제조 방법
WO2021046516A1 (en) * 2019-09-05 2021-03-11 Northwestern University Tautomeric sensing using a covalent organic framework
CN111057246B (zh) * 2019-12-12 2021-04-02 武汉理工大学 Cof-5二维片状晶体材料及其制备方法
CN111540620B (zh) * 2020-01-08 2022-03-18 中南民族大学 共价有机框架复合膜超级电容器及制备方法
CN111097387B (zh) * 2020-01-19 2023-04-07 闽江师范高等专科学校 COF-1/GONs复合材料的制备及其在邻羟基植物激素检测中的应用
CN111604030B (zh) * 2020-05-27 2022-03-22 首都师范大学 一种氧化石墨烯-共价有机骨架材料复合材料、毛细管电色谱柱及制备方法
CN111848892A (zh) * 2020-06-11 2020-10-30 上海大学 碳纳米管负载二维共价有机框架电极材料的制备方法
CN111916737B (zh) * 2020-08-11 2023-03-17 合肥工业大学 一种一维核壳结构多孔碳的制备方法及其应用
CN111892715B (zh) * 2020-08-13 2021-04-16 广东泰金智能包装有限公司 一种金属有机框架材料及其制备方法和应用
WO2022038627A1 (en) * 2020-08-17 2022-02-24 Indian Institute Of Science Education And Research (Iiser) Kolkata Three dimensional cof-graphene and cof-cnt hybrids with remarkable chemical stability for methane storage
CN112281185A (zh) * 2020-09-29 2021-01-29 河北科技大学 多级孔共价有机框架化合物与金属复合析氢催化剂的制备方法及应用
CN112126236B (zh) * 2020-10-13 2022-03-25 济南大学 卟啉共价有机骨架/石墨烯气凝胶复合材料及其电化学传感器和应用
CN112316741B (zh) * 2020-11-04 2021-11-30 北京理工大学 一种串珠状mof填充硅橡胶的混合基质膜
CN112795184B (zh) * 2020-12-30 2023-08-25 珠海冠宇电池股份有限公司 一种聚合物颗粒、含有该聚合物颗粒的隔膜及锂离子电池
CN113030354B (zh) * 2021-03-12 2022-06-21 兰州大学 一种具有cof-lzu8涂层的毛细管柱及其室温原位制备方法
CN113444255B (zh) * 2021-05-28 2022-06-14 云南大学 亚胺共价有机框架负载的富勒烯c60材料及其制备方法与超级电容器应用
CN113624866B (zh) * 2021-07-27 2023-09-01 中国科学院成都生物研究所 Cnt@cofthb-tapb吸附剂及其在在线固相萃取与质谱联用装置中的应用
JP2023033072A (ja) * 2021-08-26 2023-03-09 株式会社東芝 二酸化炭素吸収放出デバイス
CN113788920B (zh) * 2021-09-18 2023-04-21 青岛农业大学 苯并噻唑类共价有机框架材料、其制备方法及应用
CN114177888B (zh) * 2021-11-15 2022-11-01 中国科学院兰州化学物理研究所 一种GO/COFs复合材料的制备及在有机污染物吸附中的应用
CN114288713B (zh) * 2021-12-07 2023-04-07 宁夏大学 一种基于金属有机骨架材料可切换表面润湿性的油水分离膜及其制备方法
CN114487044B (zh) * 2022-01-20 2022-11-01 大连理工大学 检测有机磷农药的电化学酶生物传感器制备方法及应用
CN114447348B (zh) * 2022-01-28 2023-08-11 曲阜师范大学 一种金属/共价有机骨架化合物联合钛碳化铝的氧还原催化剂及其制备方法和应用
CN114572959B (zh) * 2022-03-04 2023-04-07 江南大学 一种三维含氮有序多孔碳材料的制备方法
CN114976015A (zh) * 2022-06-27 2022-08-30 巢湖学院 一种二维金属有机框架基复合电极材料及制备方法和应用
CN115260510A (zh) * 2022-06-30 2022-11-01 哈尔滨理工大学 一种通过化学剥离制备cof-316纳米片的方法
CN117659325B (zh) * 2024-01-31 2024-04-12 德州学院 一种具有电化学活性的共价有机框架材料的制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090109090A (ko) * 2007-01-24 2009-10-19 더 리전트 오브 더 유니버시티 오브 캘리포니아 결정형 3d- 및 2d-공유결합성 유기 골격의 합성, 특성분석 및 디자인
KR20100055350A (ko) * 2008-11-17 2010-05-26 주식회사 인실리코텍 유기 골격 구조체

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2753863C (en) * 2009-03-04 2014-12-16 Xerox Corporation Structured organic films
CN102288661B (zh) * 2011-05-06 2013-01-23 北京化工大学 碳异质结构材料/β-环糊精复合修饰电极及制备方法
US8529997B2 (en) * 2012-01-17 2013-09-10 Xerox Corporation Methods for preparing structured organic film micro-features by inkjet printing
WO2014057504A1 (en) * 2012-10-12 2014-04-17 Council Of Scientific & Industrial Research Porous crystalline frameworks, process for the preparation therof and their mechanical delamination to covalent organic nanosheets (cons)

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090109090A (ko) * 2007-01-24 2009-10-19 더 리전트 오브 더 유니버시티 오브 캘리포니아 결정형 3d- 및 2d-공유결합성 유기 골격의 합성, 특성분석 및 디자인
KR20100055350A (ko) * 2008-11-17 2010-05-26 주식회사 인실리코텍 유기 골격 구조체

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LINO, MAURISAN A. ET AL.: "Porous Nanotubes and Fullerenes based on Covalent Organic Frameworks", CHEMICAL PHYSICS LETTERS, vol. 449, 2007, pages 171 - 174, XP022346514, DOI: doi:10.1016/j.cplett.2007.10.038 *
THEBAULT, FREDERIC ET AL.: "2,3,6,7,10,11-Hexahydroxytriphenylene Tetiahydrate: a New Form of an Important Starting Material for Supramolecular Chemistry and Covalent Organic Frameworks", ACTA CRYSTAL LOGRAPHICA SECTION C, vol. C67, 2011, pages o143 - o145 *
ZHANG, WANG ET AL.: "Microwave-assisted Synthesis of Highly Fluorescent Nanoparticles of a Melamine-based Porous Covalent Organic Framework for Trace-level Detection of Nitroaromatic Explosives", JOURNAL OF HAZARDOUS MATERIALS, vol. 221, no. 222, 2012, pages 147 - 154, XP028505943, DOI: doi:10.1016/j.jhazmat.2012.04.025 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112705179A (zh) * 2020-12-16 2021-04-27 南开大学 一种分层级异孔共价有机骨架材料及其制备方法和应用
CN113075309A (zh) * 2021-03-12 2021-07-06 江南大学 膜保护固相微萃取装置及其在检测牛奶中雌二醇的应用
CN114778614A (zh) * 2022-04-20 2022-07-22 杭州汇馨传感技术有限公司 一种导电mof修饰气敏材料及其制备方法和应用

Also Published As

Publication number Publication date
KR101669169B1 (ko) 2016-10-26
CN107249730A (zh) 2017-10-13
KR20160075960A (ko) 2016-06-30
CN107249730B (zh) 2020-07-28
US20180272313A1 (en) 2018-09-27
US10335765B2 (en) 2019-07-02

Similar Documents

Publication Publication Date Title
WO2016099202A1 (ko) 탄소 구조물 및 공유결합성 유기 골격구조체의 복합체, 이의 제조방법 및 이의 용도
Ren et al. Nanofibrous Aerogel Bulk Assembled by Cross-Linked SiC/SiO x Core–Shell Nanofibers with Multifunctionality and Temperature-Invariant Hyperelasticity
Ashok Kumar et al. A review on graphene and its derivatives as the forerunner of the two-dimensional material family for the future
Yin et al. Multifunctional boron nitride nanosheet/polymer composite nanofiber membranes
Deng et al. Thermoresponsive graphene oxide‐PNIPAM nanocomposites with controllable grafting polymer chains via moderate in situ SET–LRP
Xu et al. Three-dimensional self-assembly of graphene oxide and DNA into multifunctional hydrogels
Chen et al. Preparation of poly (acrylic acid) grafted multiwalled carbon nanotubes by a two-step irradiation technique
Deng et al. An efficient way to functionalize graphene sheets with presynthesized polymer via ATNRC chemistry
Xue et al. Synthesis of mesoporous hexagonal boron nitride fibers with high surface area for efficient removal of organic pollutants
Shen et al. Covalent synthesis of organophilic chemically functionalized graphene sheets
Branca et al. Characterization of carbon nanotubes by TEM and infrared spectroscopy
KR101999866B1 (ko) 나노플레이트-나노튜브 복합체, 그의 생산 방법 및 그로부터 수득한 생성물
Xu et al. Constructing polymer brushes on multiwalled carbon nanotubes by in situ reversible addition fragmentation chain transfer polymerization
US11220433B2 (en) Process for modification of carbon surfaces
Arslanov et al. Hybrid materials based on graphene derivatives and porphyrin metal-organic frameworks
Zhang et al. All-carbon composite paper as a flexible conducting substrate for the direct growth of polyaniline particles and its applications in supercapacitors
Chen et al. Two-dimensional covalent organic framework nanosheets: Synthesis and energy-related applications
CN101125649A (zh) 分离金属性单壁碳纳米管的方法
Jiao et al. Self-assembly and headgroup effect in nanostructured organogels via cationic amphiphile-graphene oxide composites
Yu et al. Synthetic possibility of polystyrene functionalization based on hydroxyl groups of graphene oxide as nucleophiles
Li et al. Synthesis of nanostructured boron nitride aerogels by rapid pyrolysis of melamine diborate aerogels via induction heating: from composition adjustment to property studies
CN104744728B (zh) 一种碳基纳米材料表面聚合物结晶包覆方法
CN109851596B (zh) 一种具有立体结构的取代石墨烷材料及其制备方法
Huang et al. Flower-like architecture magnesia-carbon composite material for highly sensitive solid-phase microextraction
Jiang et al. Preparation and Gas Separation Performance of Polysulfone Mixed Matrix Membrane

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15870369

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15537725

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 15870369

Country of ref document: EP

Kind code of ref document: A1