WO2016090809A1 - 含氨基中性膦萃取剂用于萃取分离四价铈的用途和方法 - Google Patents

含氨基中性膦萃取剂用于萃取分离四价铈的用途和方法 Download PDF

Info

Publication number
WO2016090809A1
WO2016090809A1 PCT/CN2015/077212 CN2015077212W WO2016090809A1 WO 2016090809 A1 WO2016090809 A1 WO 2016090809A1 CN 2015077212 W CN2015077212 W CN 2015077212W WO 2016090809 A1 WO2016090809 A1 WO 2016090809A1
Authority
WO
WIPO (PCT)
Prior art keywords
cerium
extraction
acid
alkyl
extractant
Prior art date
Application number
PCT/CN2015/077212
Other languages
English (en)
French (fr)
Inventor
廖伍平
卢有彩
张志峰
李艳玲
吴国龙
Original Assignee
中国科学院长春应用化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院长春应用化学研究所 filed Critical 中国科学院长春应用化学研究所
Publication of WO2016090809A1 publication Critical patent/WO2016090809A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B59/00Obtaining rare earth metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention relates to an extraction and separation method of tetravalent cerium, in particular to an application of a kind of amino-containing neutral phosphine extracting agent in the separation of tetravalent cerium, and the extraction and separation of tetravalent cerium by using the amino-containing neutral phosphorus extracting agent. method.
  • Solvent extraction separation method has become the main method for the separation and extraction of rare earths in China due to its advantages of large treatment volume, fast reaction speed and good separation effect. It is also one of the main methods for preparing high purity single rare earth.
  • rare earth separation extractants such as tributyl phosphate (TBP), di(2-ethylhexyl)phosphoric acid (D2EHPA, P204), 2-ethylhexylphosphonic acid mono 2-ethylhexyl ester (HEH (EHP)) , P507), bis(2,4,4-trimethylpentyl)phosphonic acid (Cyanex 272), tri-n-octylphosphine oxide (TOPO), trialkyl phosphine oxide (Cyanex 923) are all phosphorus-containing extractants.
  • CN1131200A discloses a novel solvent extraction method for separating heavy rare earth elements lanthanum, cerium and lanthanum.
  • a novel nitrogen-containing extractant is used, which overcomes the main disadvantages in the process of producing high-purity heavy rare earth by the chromatography method, and obtains high-purity rare earth elements such as lanthanum, cerium and lanthanum.
  • This patent mainly investigates the purification of trivalent rare earth elements by nitrogen-containing extractants, and does not study the extraction and separation of tetravalent cerium. Since the difference in the properties of cerium (IV) and trivalent rare earth is relatively large, the separation of cerium (IV) by this property is the primary focus of the separation process.
  • CN1098361C discloses a process for extracting and separating tetravalent cerium from a fluorocarbon sulphate sulfuric acid leaching solution by using a trihydrocarbylphosphine oxide
  • CN1911814A discloses a neutral phosphorus (phosphine) extraction system for simultaneously extracting tetravalent cerium and fluoride ions. And a method for simultaneously preparing a fine powder of lanthanum trifluoride in a back extraction process.
  • the invention adopts a novel amino group-containing neutral phosphine extracting agent to extract and separate tetravalent cerium, lanthanum and trivalent rare earth, and obtains a good extraction and separation effect, and the extracting agent used is stable in nature and easy to synthesize.
  • One aspect of the present invention provides the use of an amino-containing neutral phosphine extractant of the general formula I for the extraction and separation of tetravalent quinones:
  • R 1 and R 2 are each independently selected from C 1 -C 12 alkyl
  • R 3 and R 4 are each independently selected from C 1-16 alkyl and hydrogen, and
  • n is an integer of 1-8.
  • Another aspect of the invention relates to a method of extracting and separating tetravalent cerium, which comprises the step of extracting tetravalent cerium by extraction using an amino-containing neutral phosphine extracting agent of formula I.
  • the method for separating ruthenium (IV) according to the present invention may be carried out by a solvent extraction method, for example, the amino group-containing neutral phosphine extractant of the present invention is formulated into a liquid extraction system, and may also be carried out by a solid-liquid extraction method, for example, The amino group-containing neutral phosphorus extracting agent of the present invention is used as a solid separating material such as a leaching resin.
  • the amino group-containing neutral phosphine extracting agent used in the invention not only has good extraction and separation ability for cerium (IV), but also has simple synthesis method, and the chemical raw materials used for the synthesis are simple and easy to obtain, and the cost is low, thereby effectively reducing the extraction of hydrazine. Separation costs have high industrial application value.
  • the invention provides the use of an amino-containing neutral phosphine extracting agent of formula I for the extraction and separation of cerium (IV):
  • R1 and R2 are each independently selected from C1-C12 alkyl, preferably C4-C10 alkyl, more preferably C5-C9 alkyl, most preferably C6-C8 alkyl;
  • R3 and R4 are each independently selected from C1-16 alkyl and hydrogen, and
  • n is an integer of 1 to 8, preferably an integer of 1 to 4, and more preferably 1 or 2.
  • R 1 and R 2 are the same or different.
  • the total number of carbon atoms of R 1 and R 2 is an integer between 8 and 20, preferably an integer between 10 and 18.
  • R 1 and R 2 are preferably the same alkyl group, more preferably the same C 5 -C 9 alkyl group.
  • R 3 and R 4 are the same or different.
  • R 3 is selected from C 1 -C 10 alkyl and hydrogen, preferably C 1 -C 8 alkyl and hydrogen
  • R 4 is selected from C 1 -C 14 alkyl, preferably C 1 -C 12 alkyl.
  • the total number of carbon atoms of R 3 and R 4 is an integer between 1 and 16, preferably an integer between 2 and 13.
  • R 1 , R 2 , R 3 , R 4 and -(CH 2 ) n - have a total carbon number of 14 to 36, including Not limited to 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 and 36 carbons
  • the atom is preferably 16 to 34, more preferably 18 to 33.
  • the amino-containing neutral phosphine extracting agent of the formula I is selected from the group consisting of (2-ethylhexyl)aminomethylphosphonic acid di(2-ethylhexyl) ester and hexylaminomethylphosphonic acid di(2) -ethylhexyl)ester, (N,N-diisobutylamino)methylphosphonic acid di(2-ethylhexyl) ester, butylaminomethylphosphonic acid di(2-ethylhexyl) ester, ten One or more of dihexylaminomethylphosphonic acid dihexyl ester.
  • the amino group-containing neutral phosphine extracting agent of the formula I may be a commercially available product or may be synthesized according to a method known in the art (for example, Bulletin De La Societe Chimique De France, 1988, N4, p699-703, etc.).
  • an amino-containing neutral phosphine extractant of formula I can be synthesized as follows, as shown in Scheme 1:
  • R 1 , R 2 , R 3 , R 4 and n have the same meanings as in the formula I.
  • the compound III may be a commercially available product or synthesized according to a known method in the prior art.
  • Compound III can be synthesized as shown in Reaction Scheme 2:
  • R 1 , R 2 , and n have the same definitions as in Formula I,
  • R 5 is selected from a C 1 -C 12 alkyl group, preferably a C 4 -C 10 alkyl group, more preferably a C 5 -C 9 alkyl group, and most preferably a C 6 -C 8 alkyl group.
  • the compound IV may be a commercially available product or may be synthesized according to a method known in the art.
  • amino-containing neutral phosphine extractant of formula I can be synthesized as follows, as shown in Scheme 3:
  • the compound II, compound VI and formaldehyde are subjected to a condensation reaction to obtain an amino group-containing neutral phosphine extracting agent of the formula I.
  • R 1 , R 2 , R 3 and R 4 have the same meanings as in the formula I, and n is 1.
  • the formaldehyde may be free formaldehyde or paraformaldehyde.
  • Compound VI can be a commercially available product or can be synthesized according to methods known in the art.
  • a method of extracting and separating cerium (IV) comprising the step of extracting and separating cerium (IV) using an amino group-containing neutral phosphine extracting agent of the above formula I.
  • the method of extracting and separating cerium (IV) of the present invention may be carried out by a solvent extraction method comprising: a neutral phosphine extraction system comprising an amino-containing neutral phosphine extracting agent of the formula I ( Hereinafter, the organic phase is sometimes mixed with a cerium (IV)-containing material solution for extraction to obtain a cerium (IV)-containing extract and a tailing liquid.
  • a solvent extraction method comprising: a neutral phosphine extraction system comprising an amino-containing neutral phosphine extracting agent of the formula I
  • the organic phase is sometimes mixed with a cerium (IV)-containing material solution for extraction to obtain a cerium (IV)-containing extract and a tailing liquid.
  • the neutral phosphine extractant is contacted with cerium (IV) in the feed liquid to form an iridium (IV)-containing extract complex, thereby separating cerium (IV) from the feed liquid into the organic phase.
  • the neutral phosphine extraction system comprises an amino-containing neutral phosphine extractant of formula I, a non-essential auxiliary extractant, a non-essential phase modifier, and a diluent.
  • the neutral phosphine extraction system consists of the above ingredients.
  • the auxiliary extracting agent mainly assists the extraction and enhances the extraction of cerium (IV) by the amino-containing neutral phosphine extractant.
  • the auxiliary extractant may be selected from the group consisting of phosphorus (phosphine) extractants of the general formula VII:
  • Z is O or S
  • R 5 is selected from the group consisting of hydrogen, C 1 -C 12 alkyl, C 1 -C 12 alkoxy, -SH, and -NH 2 substituted with at least one substituent selected from a C 1 -C 12 alkyl group, preferably is selected from hydrogen, C1-C 10 alkyl, C 1 -C 10 alkoxy, -SH and selected from C 4 ⁇ C 10 alkyl group substituted with at least one substituent is -NH 2 and the like; and more preferably is selected from C1-C 10 alkyl and C 1 -C 10 alkoxy;
  • R 6 and R 7 are each independently selected from C 4 -C 12 alkyl, C 4 -C 12 alkoxy, and is selected from C 4 ⁇ C 12 alkyl group substituted with at least one substituent is -NH 2 and the like, preferably selected from C 4 -C 10 alkyl, C 4 -C 10 alkoxy, and 4 ⁇ C 10 alkyl group selected from C at least one substituent is -NH 2 and the like, more preferably selected from C 4 - C 10 alkyl and C 4 - C 10 alkoxy.
  • Suitable auxiliary extractants may be selected, for example, from linear trialkyl phosphine oxides (Cyanex 923), branched trialkyl phosphine oxides (Cyanex 925), trioctyl phosphine oxide (TOPO), methyl phosphonium dimethyl phosphate Neutral phosphorus (phosphine) extractant of ester (P350), bis(2-ethylhexyl) 2-ethylhexylphosphonate, tributyl phosphate (TBP); for example, di(2,4,4-tri) Methylpentyl)dithiophosphinic acid (Cyanex 301), bis(2,4,4-trimethylpentyl)phosphinic acid (Cyanex 302), di(2-ethylhexyl)phosphoric acid (P204) 2-ethylhexylphosphonic acid mono-2-ethylhexyl ester (P507), bis(2,4,4
  • the phase modifier mainly serves to improve the physical phenomenon of extraction, and may be one or more selected from the group consisting of C 4 - C 10 alkanols, preferably selected from n-octanol, isooctanol, 2-methyl Heptanol, and one or more of a mixed alcohol and tributyl phosphate mixed in any ratio of the above three alcohols; more preferably a mixed alcohol or 2-methylheptanol.
  • the diluent is selected from the group consisting of C 5 -C 16 alkanes such as pentane, hexane, heptane, octane, decane, decane, undecane, dodecane, tridecane, tetradecane, ten Pentatane, hexadecane, etc.; aviation kerosene; sulfonated kerosene, liquid paraffin, such as light lubricating oil fraction of 250-400 ° C; C 5 - C 16 alicyclic alkane, such as cyclopentane, C 1 -C 4 Alkyl-substituted cyclopentane, cyclohexane, C1-C4 alkyl-substituted cyclohexane, decalin, etc.; C 6 -C 10 aromatic hydrocarbons such as benzene, toluene, xylene (including o-, m
  • the feed liquid comprises cerium (IV) and mineral acids and other non-cerium (IV) elements.
  • concentration of cerium (IV) may be from about 0.0001 to about 1 mol/L
  • the acidity of the feed liquid expressed as a molar concentration of hydrogen ions, is from about 0.2 to about 8 mol/L, preferably from about 0.5 to about 4 mol/L of nitric acid.
  • cerium (IV) in the feed liquid is too high, cerium (IV) is easily crystallized and precipitates, which affects the progress of the extraction.
  • the acidity of the feed liquid is too low or too high, which also reduces the extraction performance of the neutral phosphine extraction system for cerium (IV).
  • the feed liquid may also contain other elements such as rare earths, alkali metals, alkaline earth metals, transition metals, and non-metal elements.
  • the ruthenium (IV) can be separated by high selectivity extraction by the method of the present invention to be separated from the non-ruthenium (IV) impurity element.
  • a corresponding anion in the feed liquid it is also possible to have a corresponding anion in the feed liquid.
  • an appropriate amount of fluorine may be contained in the liquid, and after extraction according to the method of the present invention, the cerium-containing extract is treated, as in the Chinese patent application CN200610017116.1. A subsequent treatment method to obtain a fine powder of lanthanum trifluoride.
  • the raw material for preparing the liquid contains hydrazine.
  • the raw materials suitable for the preparation of the feed liquid include various cerium-containing raw materials, such as bastnasite, monazite, southern ion-adsorbed ore, mixed ore of bastnasite and monazite, fluorocarbon antimony and other ores.
  • various cerium-rich enriched materials such as bastnasite, monazite, southern ion-adsorbed ore, mixed ore of bastnasite and monazite, fluorocarbon antimony and other ores.
  • mixed ore various cerium-rich enriched materials, various mixed rare earth oxides containing cerium, hydroxides, halides, nitrates, carbonates or sulfates.
  • the above ruthenium-containing raw material can be oxidized and dissolved in a mixed acid of nitric acid, sulfuric acid or sulfuric acid/nitric acid to prepare a feed liquid suitable
  • the number of extraction stages may be from 1 to 20, preferably from 3 to 12. Excessive extraction levels increase the amount of separation equipment and extractant.
  • the flow ratio of the neutral phosphine extraction system to the feed liquid may range from about 0.2 to 20:1, preferably from about 0.5 to 10:1.
  • the change of the flow ratio mainly depends on the concentration of cerium (IV) in the feed liquid.
  • concentration of cerium (IV) in the feed liquid is high, the flow rate of the neutral phosphine extraction system is appropriately increased to ensure sufficient enthalpy (IV). ) is extracted into the organic phase.
  • the tailing liquid can be further processed to further separate and extract elements such as cerium and rare earth.
  • Methods of treating the tailings include, but are not limited to, methods known in the art, such as the method of extracting bismuth disclosed in patent application 201210552752.x.
  • the cerium-containing extract After the cerium-containing extract is obtained, it can be subjected to subsequent treatment by methods known in the art to obtain a hydrazine product, such as the method disclosed in Patent 200410010618.2.
  • cerium-containing extract may be subjected to subsequent treatment as follows.
  • the solvent extraction method according to the present invention further comprises the step of optionally washing the cerium (IV)-containing extract with a washing liquid (also referred to as washing liquid, acid washing, detergent).
  • a washing liquid also referred to as washing liquid, acid washing, detergent.
  • the washing process can further reduce the content of impurity elements in the cerium-containing extract, thereby contributing to the improvement of the purity of the final hydrazine product.
  • the washing liquid may be a mixed solution of nitric acid, sulfuric acid, hydrochloric acid or a mixture of the above acids in any ratio.
  • the acidity of the washing liquid is, in terms of the molar concentration of hydrogen ions, from about 0.2 to about 8 mol/L.
  • the number of washing stages may be from 0 to 15, preferably from 0 to 5. Excessive washing stages can affect the yield of hydrazine and waste energy and extractant.
  • Increasing the flow rate of the washing liquid can improve the purity of the hydrazine product on the one hand, but also reduce the yield of hydrazine on the other hand, and consume more washing acid and neutralize the amount of alkali required for washing the acid, thereby increasing the production cost. .
  • the process according to the invention further comprises the step of stripping the ruthenium (IV) in the ruthenium-containing extract with a stripping agent (also referred to as a reverse liquor, stripping solution, stripping solution) to obtain a ruthenium-containing stripping product.
  • a stripping agent also referred to as a reverse liquor, stripping solution, stripping solution
  • the stripped organic phase can be recycled and reused to extract and separate the ruthenium from the ruthenium (IV) containing feed.
  • the stripping solution may be an aqueous solution of hydrogen peroxide solution or hydroxylamine hydrochloride or a mixed solution in which the two are mixed in an arbitrary ratio or a mixed solution in which the above three are mixed with sulfuric acid and/or nitric acid in an arbitrary ratio.
  • the concentration of hydrogen peroxide in the stripping solution may be from 1 to 15% by volume, or the concentration of aqueous hydroxylamine hydrochloride may be from 1 to 30% by weight.
  • the stripping solution is a 3 to 10% by volume aqueous hydrogen peroxide solution.
  • the concentration of the acid in the stripping solution may be from about 0 to about 4 mol/L, preferably from about 0.2 to about 1.5 mol/L, based on the hydrogen ion concentration.
  • the stripping sequence may be from 1 to 10, preferably from 2 to 6.
  • the extraction, washing and back extraction may be carried out using a liquid separation device known in the art, preferably in a series of separatory funnels, mixed clarification extraction tanks or centrifugal extractors, more preferably Mix in a clarification extraction tank or a centrifugal extractor.
  • the above extraction, washing and stripping may be carried out batchwise or continuously, preferably continuously.
  • the method of the present invention for extracting and separating cerium (IV) comprises separating and purifying cerium (IV) using a solid separation material prepared using an amino-containing neutral phosphine extracting agent of the formula I. More specifically, the method comprises contacting a solid separation material prepared using a neutral phosphine extracting agent of the formula I with a cerium (IV)-containing feed liquid, extracting to obtain a solid phase separation material containing cerium (IV) and extracting Tail liquid.
  • the solid-liquid extraction method is carried out in a resin column, wherein a solid separation material is added to a resin column, and then a cerium (IV)-containing material liquid is added to make the solid separation material and cerium (IV)-containing material The liquid contact is subjected to solid-liquid extraction.
  • the content of cerium in the tailing liquid is not particularly limited, but is preferably not more than about 2 g/l, more preferably not more than about 1 g/l.
  • cerium (IV)-containing liquid in the solvent extraction method is also applicable to the solid-liquid extraction method, and therefore will not be repeated here.
  • the solid separation material may be a resin loaded with a neutral phosphine extractant of the formula I, porous silica spheres, diatomaceous earth or the like.
  • the solid separation material can be prepared by a conventional method in the art, for example, by impregnation, in situ polymerization, chemical bonding, etc., the neutral phosphine extractant of the formula I is supported on a resin, porous silica sphere, diatom
  • the preparation on the soil is preferably carried out by dipping, in-situ polymerization or the like.
  • the solid separation material is a leaching resin.
  • the preparation method of the leaching resin is not particularly limited as long as it is loaded with the amino group-containing neutral phosphine extracting agent of the formula I.
  • resin fine particles may be prepared by a method such as dispersion polymerization, emulsion polymerization, bulk polymerization, suspension polymerization, etc., and then a neutral phosphine extractant of the formula I is supported on the resin particles to prepare a leaching resin, or before polymerization or polymerization.
  • a neutral phosphine extracting agent of the formula I is added to obtain an eliminating resin by in-situ polymerization.
  • the leaching resin can be prepared by dispersion polymerization of a neutral phosphine extractant of Formula I with a styrenic monomer and a divinylbenzene monomer.
  • a neutral phosphine extractant of the formula I is mixed with a mixture of a styrenic monomer and a divinylbenzene monomer, and an initiator having a total mass of the oil phase of 2% is added to prepare an oil phase; 10 times the oil phase volume is obtained.
  • styrene monomer may be styrene, methyl styrene, ethyl styrene or the like.
  • the solid separation material is a porous silica sphere, diatomaceous earth, or the like loaded with a neutral phosphine extractant of Formula I.
  • the method of supporting the neutral phosphine extracting agent of the formula I on porous silicon spheres, diatomaceous earth or the like is not particularly limited as long as the neutral phosphine extracting agent of the formula I can be supported on porous silica spheres or diatomaceous earth. can.
  • a neutral phosphine extractant of formula I can be dissolved in a diluent (e.g., a volatile inert solvent such as dichloromethane, chloroform, benzene, toluene, etc.).
  • a separation material such as porous silicon spheres or diatomaceous earth is added, and the diluent is slowly evaporated under stirring to obtain a desired solid separation material.
  • the solid-liquid extraction method according to the present invention further comprises the step of optionally washing the solid-state separation material containing ruthenium with a washing liquid.
  • the washing process can further reduce the content of impurity elements in the cerium-containing extract, thereby contributing to the improvement of the purity of the final hydrazine product.
  • washing liquid in the solvent extraction method is also applicable to the solid-liquid extraction method, and therefore will not be repeated here.
  • the washed washing liquid was collected, and when the cerium content in the washing liquid was less than 0.1 g/l, the addition of the washing liquid was stopped.
  • the solid-liquid extraction method according to the present invention further comprises the step of back-extracting the ruthenium in the ruthenium-containing solid separation material with the stripping solution.
  • the stripping solution after the stripping is collected, and when the content of rhodium in the stripping solution is less than 0.01 g/l, the addition of the stripping solution can be stopped.
  • the stripped solid separation material can be recycled for reuse and extraction of ruthenium (IV) from the ruthenium (IV) containing feed.
  • the solid-liquid extraction method according to the present invention can be carried out by adding a solid separation material to a resin column, then adding a feed liquid from the inlet for solid-liquid extraction, collecting the extraction residual liquid from the outlet, and periodically analyzing the extraction residual liquid.
  • (IV) content when the content of cerium (IV) in the extraction residual liquid reaches 0.01g / l, stop adding the liquid; unnecessary washing solution is added for washing operation, collecting the washing liquid, when the cerium content in the washing liquid is low At 0.1 g/l, the addition of the washing liquid was stopped; finally, the ruthenium extracted from the solid separation material was back-extracted by the stripping solution, and the stripping solution was collected. When the content of cerium in the stripping solution was less than 0.01 g/l, the addition was stopped. Extract.
  • the tailings can be further processed to extract valuable elements such as cerium or remaining rare earth elements, etc., according to methods known in the art.
  • C 1 -C 16 alkyl refers to a straight or branched alkyl group having 1 to 16 carbon atoms, for example, 1, 2, 3, 4, 5, 6, 7, 8, a linear or branched alkyl group of 9, 10, 11, 12, 13, 14, 15 or 16 carbon atoms, including, without limitation, methyl, ethyl, n-propyl, isopropyl, n-butyl, Tert-butyl, isobutyl, n-pentyl, neopentyl, isopentyl, hexyl, heptyl, octyl, decyl, decyl, undecyl, dodecyl, tridecyl, ten Tetraalkyl, pentadecyl, hexadecyl, and the like.
  • C 1 -C 12 alkoxy refers to a straight or branched alkoxy group having 1 to 12 carbon atoms, for example, 1, 2, 3, 4, 5, 6, 7, a linear or branched alkoxy group of 8, 9, 10, 11 or 12 carbon atoms, including but not limited to methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, Tert-butoxy, isobutoxy, n-pentyloxy, neopentyloxy, isopentyloxy, hexyloxy, heptyloxy, octyloxy, decyloxy, decyloxy, undecyloxy , dodecyloxy and the like.
  • the meanings of C 1 -C 10 alkoxy and C 4 -C 10 alkoxy and the like are analogous.
  • C4 to C10 alkanol refers to a linear or branched alkanol having 4 to 10 carbon atoms, for example, a straight having 4, 5, 6, 7, 8, 9 or 10 carbon atoms.
  • Chain or branched alkanol including, but not limited to, n-butanol, tert-butanol, isobutanol, n-pentanol, neopentyl alcohol, isoamyl alcohol, hexanol, heptanol, octanol, decyl alcohol, decyl alcohol Wait.
  • C 5 -C 16 alkane refers to a linear or branched alkane having 5 to 16 carbon atoms, having 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 a linear or branched alkane of 15 or 16 carbon atoms, such as pentane, hexane, heptane, octane, decane, decane, undecane, dodecane, tridecane, tetradecane, Pentadecane, hexadecane, etc.
  • C 5 - C 16 alicyclic alkane as used in the present invention refers to a saturated cyclic alkane having 5 to 16 carbon atoms including the number of carbon atoms of the substituent, and the saturated cyclic alkane may be a single ring. Or a bicyclic ring, such as cyclopentane, cyclohexane, cycloheptane, cyclooctane, cyclodecane, cyclodecane, decahydronaphthalene, etc., the substituent may be selected from one or more of C1-C4 alkyl groups. Substituents.
  • C 6 -C 10 arene refers to an aromatic hydrocarbon having 6 to 10 carbon atoms including the number of carbon atoms of the substituent, such as benzene and one or more selected from a C1-C4 alkyl group.
  • substituent such as benzene and one or more selected from a C1-C4 alkyl group.
  • Substituent substituted benzene such as benzene, toluene, xylene, and the like.
  • Ranges of values recited in the present invention include all point values in which the endpoint value and the endpoint value are incremented or decremented by the minimum unit of the endpoint value, and all subranges consisting of those point values, unless otherwise stated.
  • Diethylhexyl phosphite, di-n-octyl phosphite, di-n-heptyl phosphite, diisooctyl phosphite, aviation kerosene and TBP were purchased from Shanghai Laiyas Chemical Co., Ltd.
  • Cyanex 923 and 2-methylheptanol were purchased from Shanghai Cytec Chemical Co., Ltd.
  • the feed liquid, washing liquid and stripping agent are made in the laboratory.
  • reagents such as acids
  • analytical reagents are commercially available analytical reagents.
  • the NMR instrument is the Varian Mercury 300.
  • the target product was obtained by the same procedure as in Preparation Example 1, except that di-n-octyl phosphite was used in place of diethylhexyl phosphite and diisobutylamine was used instead of di-n-hexylamine.
  • the target product was obtained by the same procedure as in Preparation Example 1 except that n-butylamine was used instead of di-n-hexylamine.
  • the target product was obtained by the same procedure as in Preparation Example 1 except that iso-octylamine was used instead of di-n-hexylamine.
  • the target product was obtained by the same procedure as in Preparation Example 1 except that the dodecylamine was used instead of di-n-hexylamine.
  • the target product was obtained by the same procedure as in Preparation Example 4 except that dihexyl phosphite was used instead of di(2-ethylhexyl) phosphite.
  • the target product was obtained by the same procedure as in Preparation Example 1, except that di-n-heptyl phosphite was used instead of diethylhexyl phosphite.
  • 1,2-dibromoethane (0.3 mol) was placed in a three-necked flask, the temperature was raised to 100 ° C, diisooctyl phosphite (0.1 mol) was slowly added dropwise, refluxed at 110 ° C for 9 hours, and distilled under reduced pressure at 110 ° C to obtain a sub- Diisooctyl phosphate 2-bromoethyl ester.
  • the diisooctyl 2-phosphonium phosphite and sodium iodide (5 g) obtained in the previous step were dissolved in acetone, and an excess of dimethylamine (about 0.3 mol) was introduced thereto, and the temperature was raised to 60. °C, reaction for 24 hours. It was washed three times with deionized water and distilled under reduced pressure to give the aimed product.
  • the feed liquid was a 0.30 mol/L cerium (IV) sulfuric acid solution having an acidity of 1.5 mol/L.
  • the washing liquid was a 0.5 mol/L sulfuric acid solution.
  • the stripping agent was 5% (v/v) hydrogen peroxide + 0.5 mol/L sulfuric acid solution.
  • the extraction separation experiment was carried out using a 250 ml mixed-clarification extraction tank.
  • a 5-stage countercurrent extraction was carried out, and the flow ratio of the organic phase to the feed liquid was 10 mL/min: 5.6 mL/min to obtain a cerium-containing extract and a tailing solution.
  • a 2-stage countercurrent washing was carried out, and the flow ratio of the cerium-containing extract to the washing liquid was 10 mL/min: 5 mL/min.
  • the flow ratio of the extract to the stripping agent was 10 mL/min: 3.5 mL/min to obtain a ruthenium-containing stripping solution.
  • the obtained stripping solution was precipitated, filtered, washed, dried, and calcined to obtain cerium oxide, and the purity of cerium (calculated as cerium oxide) was 99.99%.
  • organic phase 2L (N,N-dihexylamino)methylphosphonic acid di(2-ethylhexyl) ester, 1 L Cyanex 923 and 7L aviation kerosene were mixed to prepare an organic phase.
  • the feed liquid was a 0.30 mol/L cerium (IV) nitric acid solution having an acidity of 1.0 mol/L.
  • the stripping agent was 5% (v/v) hydrogen peroxide + 0.5 mol/L nitric acid solution.
  • the extraction experiment was carried out using a 250 ml centrifugal extractor. First, a 10-stage countercurrent extraction was carried out. The flow ratio of the organic phase to the feed liquid was 10 mL/min: 5.6 mL/min to obtain a cerium-containing extract and a tailing solution.
  • the back extraction experiment was carried out with a 250 ml mixed-clarification extraction tank, and a 5-stage countercurrent back extraction was carried out.
  • the flow ratio of the cerium-containing extract to the stripping agent was 10 mL/min: 3.5 mL/min to obtain a ruthenium-containing stripping solution.
  • the obtained stripping solution was precipitated by oxalic acid, filtered, washed, dried, and calcined to obtain cerium oxide, and the purity of cerium (calculated as cerium oxide) was 99.9%.
  • organic phase 2 L (N,N-diisobutylamino)methylphosphonic acid dioctyl ester, 1 L of P507, 0.5 L of 2-methylheptanol and 6.5 L of sulfonated kerosene were mixed to prepare an organic phase.
  • the washing liquid was a 1.0 mol/L nitric acid solution.
  • the stripping agent was a 5% (v/v) aqueous hydrogen peroxide solution.
  • the extraction separation experiment was carried out using a 250 ml centrifugal extractor.
  • a 7-stage countercurrent extraction was carried out, and the flow ratio of the organic phase to the feed liquid was 10 mL/min: 5.6 mL/min to obtain a cerium-containing extract and a tailing solution.
  • a 3-stage countercurrent washing was carried out, and the flow ratio of the cerium-containing extract to the washing liquid was 10 mL/min: 10 mL/min.
  • a 5-stage countercurrent stripping was carried out, and the flow ratio of the cerium-containing extract to the stripping agent was 10 mL/min: 3.5 mL/min to obtain a ruthenium-containing stripping solution.
  • the obtained stripping solution was precipitated by oxalic acid, washed, dried, and burned to obtain cerium oxide, and the purity of cerium (calculated as cerium oxide) was 99.95%.
  • organic phase 3L (butylamino)methylphosphonic acid di(2-ethylhexyl) ester, 0.5LCyanex272, 0.5L mixed alcohol (equal volume of 2-methylheptanol and n-hexanol mixed to prepare )
  • the organic phase is prepared by mixing with 6L aviation kerosene.
  • the feed liquid was a 1.0 mol/L cerium (IV) nitric acid solution having an acidity of 1.5 mol/L.
  • the washing liquid was a 0.5 mol/L sulfuric acid solution.
  • the stripping agent was 5% (v/v) hydrogen peroxide + 0.5 mol/L sulfuric acid solution.
  • the extraction separation experiment was carried out using a 250 ml mixed-clarification extraction tank.
  • a 5-stage countercurrent extraction was carried out, and the flow ratio of the organic phase to the feed liquid was 18 mL/min: 3 mL/min to obtain a cerium-containing extract and a tailing solution.
  • a 2-stage countercurrent washing was carried out, and the flow ratio of the cerium-containing extract to the washing liquid was 18 mL/min: 4 mL/min.
  • a 3-stage countercurrent stripping was carried out, and the flow ratio of the cerium-containing extract to the stripping agent was 18 mL/min: 6 mL/min to obtain a ruthenium-containing stripping solution.
  • the obtained stripping solution is subjected to precipitation, filtration, washing, drying, and burning to obtain cerium oxide, and the purity of cerium (calculated as cerium oxide) is 99.98%.
  • organic phase 3 L (dodecylamino)methylphosphonic acid di(2-ethylhexyl) ester, 1 L 2-methylheptanol and 6 L of aviation kerosene were mixed to prepare an organic phase.
  • the feed liquid contained 0.2 mol/L cerium (IV), 5 g/L fluorine, and 1.62 mol/L sulfuric acid.
  • the washing liquid was a 0.5 mol/L sulfuric acid solution.
  • the stripping agent was 5% (v/v) hydrogen peroxide + 0.5 mol/L sulfuric acid solution.
  • the extraction separation experiment was carried out by a combination of a 250 ml centrifugal extractor and a mixed-clarification extraction tank.
  • a five-stage countercurrent extraction was carried out using a centrifugal extractor.
  • the flow ratio of the organic phase to the feed liquid was 7.5 mL/min: 12.5 mL/min, and the cerium-fluorine-containing extract and the tailing liquid were obtained.
  • a 10-stage countercurrent washing was carried out, and the flow ratio of the cerium-containing extract to the washing liquid was 7.5 mL/min: 5 mL/min.
  • the mixed-clarification extraction tank was used for 3-stage countercurrent stripping.
  • the flow ratio of the cerium-containing extract to the stripping agent was 7.5 mL/min: 2.5 mL/min, and the stripping solution of cerium fluoride containing cerium was obtained. It settled at the bottom of the extraction tank and had a purity (in terms of metal ions) of 99.95%.
  • organic phase 3 L (N,N-dihexylamino)methylphosphonic acid diheptyl ester, 1 L TBP and 6 L aviation kerosene were mixed to prepare an organic phase.
  • the feed liquid was a 0.2 mol/L cerium (IV) sulfuric acid-phosphoric acid mixed solution containing 1 mol/L sulfuric acid and 10 g/L phosphoric acid.
  • the washing liquid was a 0.5 mol/L sulfuric acid solution.
  • the stripping agent was 5% (v/v) hydrogen peroxide + 1.0 mol/L sulfuric acid solution.
  • the extraction separation experiment was carried out using a 250 ml centrifugal extractor.
  • a 10-stage countercurrent extraction was carried out, and the flow ratio of the organic phase to the feed liquid was 10 mL/min: 5.6 mL/min to obtain a cerium-containing extract and a tailing solution.
  • a 2-stage countercurrent washing was carried out, and the flow ratio of the cerium-containing extract to the washing liquid was 10 mL/min: 5 mL/min.
  • the flow ratio of the liquid to the stripping agent was 10 mL/min: 3.3 mL/min to obtain a ruthenium-containing stripping solution.
  • the obtained stripping solution is subjected to precipitation, filtration, washing, drying, and burning to obtain cerium oxide, and the purity (in terms of cerium oxide) of cerium is 99.95%.
  • organic phase 3 L (2-ethylhexyl) aminomethylphosphonic acid dihexyl ester, 1 L TBP and 6 L aviation kerosene were mixed to prepare an organic phase.
  • the feed liquid was a 0.2 mol/L cerium (IV) sulfuric acid-hydrochloric acid mixed solution (containing 1.2 mol/L sulfuric acid, 0.1 mol/L hydrochloric acid).
  • the washing liquid is a sulfuric acid-hydrochloric acid mixed solution. Among them, sulfuric acid was 1.0 mol/L, and hydrochloric acid was 0.1 mol/L.
  • the stripping agent was 5% (v/v) hydrogen peroxide + 1.0 mol/L sulfuric acid solution.
  • the extraction separation experiment was carried out using a 250 ml centrifugal extractor.
  • a 10-stage countercurrent extraction was carried out, and the flow ratio of the organic phase to the feed liquid was 10 mL/min: 5.6 mL/min to obtain a cerium-containing extract and a tailing solution.
  • a 2-stage countercurrent washing was carried out, and the flow ratio of the cerium-containing extract to the washing liquid was 10 mL/min: 5 mL/min.
  • a 3-stage countercurrent stripping was carried out, and the flow ratio of the cerium-containing extract to the stripping agent was 10 mL/min: 3.3 mL/min to obtain a ruthenium-containing stripping solution.
  • the obtained stripping solution was precipitated, filtered, washed, dried, and burned to obtain cerium oxide, and the purity of cerium (calculated as cerium oxide) was 99.94%.
  • the leaching resin 50 g was weighed into the separation column, and a mash-containing liquid (0.10 mol/L hydrazine nitric acid solution, acidity of 1.5 mol/L) was added, and the flow rate of the material liquid was 2 ml/min, and the sample was monitored every 5 minutes.
  • a mash-containing liquid 0.10 mol/L hydrazine nitric acid solution, acidity of 1.5 mol/L
  • the cerium-containing leaching resin was washed by adding a washing liquid (1.0 mol/L nitric acid solution) at a flow rate of 2 ml/min.
  • a washing liquid 1.0 mol/L nitric acid solution
  • the stripping solution (3% H 2 O 2 in water) was further added at a flow rate of 2 ml/min.
  • concentration of ruthenium in the stripping solution is less than 0.01 g/L, the back extraction is completed to obtain a ruthenium-containing stripping solution.
  • the obtained ruthenium-containing stripping solution is acid-adjusted, and then added with oxalic acid precipitation mash, filtered, washed, dried, and calcined to obtain a cerium oxide solid.
  • the yield of hydrazine was 95%, and the purity of hydrazine (calculated as CeO 2 ) was 99.999%.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

一种如下通式I的含氨基中性膦萃取剂用于萃取分离四价铈的用途,以及使用通式I的含氨基中性膦萃取剂萃取分离四价铈的方法,其中,R 1和R 2各自独立地选自C 1-C 12烷基,R 3和R 4各自独立地选自C 1-16烷基和氢,以及n为1~8的整数。

Description

含氨基中性膦萃取剂用于萃取分离四价铈的用途和方法 技术领域
本发明涉及四价铈的萃取分离方法,具体而言,涉及一类含氨基中性膦萃取剂在四价铈分离中的应用,以及使用该含氨基中性磷萃取剂萃取分离四价铈的方法。
背景技术
溶剂萃取分离法,由于具有处理量大、反应速度快、分离效果好等优点,已经成为国内稀土分离提取的主要方法,也是制备高纯单一稀土的主要方法之一。
目前常用稀土分离的萃取剂如磷酸三丁酯(TBP)、二(2-乙基己基)磷酸(D2EHPA、P204)、2-乙基己基膦酸单2-乙基己基酯(HEH(EHP)、P507)、二(2,4,4-三甲基戊基)膦酸(Cyanex 272)、三正辛基氧膦(TOPO)、三烷基氧膦(Cyanex 923)都属于含磷萃取剂,这是由于P原子配位数较大、P-O键极性较强,使得其空间位阻效应和电子效应增强,导致有机磷萃取剂分子中的磷可调性较大,从而可通过引入含不同直链、支链、环状等的烷基、烷氧基等,以满足对不同金属离子的萃取和分离要求。
CN1131200A公开了一种新型溶剂萃取分离重稀土元素铥、镱、镥的方法。在该专利中,使用了新型含氮萃取剂,克服了以色层法生产高纯重稀土工艺中存在的主要缺点,制得了高纯铥、镱、镥等稀土元素。该专利主要考察了含氮萃取剂对三价稀土元素的纯化,未对四价铈的萃取分离进行研究。由于铈(IV)与三价稀土的性质差异比较大,因此利用这一性质分离铈(IV)是分离流程的首要着眼点。CN1098361C公开了一种采用三烃基膦氧化物从氟碳铈矿硫酸浸出液中萃取分离四价铈的工艺;CN1911814A公开了一种利用中性磷(膦)萃取体系同时萃取四价铈和氟离子,并在反萃取过程中同步制备三氟化铈微粉的方法。
但是,这些常用的萃取剂也存在着不同的缺点,如中性磷萃取剂TBP的水溶解性大,工业上对铈(IV)有较好萃取分离能力的萃取剂Cyanex923,其售价高昂且不易得,导致萃取分离成本高,经济效益低,酸性磷萃取剂P204、P507在分离单一稀土时对重稀土的分离系数小,在反萃时易出沉淀,导致反萃取困难,需要采用高酸多次反萃等缺点。
因此找寻一种新型的萃取剂,以期在上述方面有所突破是科研人员长期关注的焦点。
发明内容
为了解决上述问题,本发明采用新型含氨基中性膦萃取剂萃取分离四价铈、钍和三价稀土,取得了良好的萃取分离效果,所用的萃取剂性质稳定、易于合成。
本发明的一个目的是提供含氨基中性膦萃取剂用于萃取分离四价铈的用途。本发明的另 一目的是提供利用所述含氨基中性膦萃取剂萃取分离四价铈的方法。
本发明的一个方面提供了如下通式I的含氨基中性膦萃取剂用于萃取分离四价铈的用途:
Figure PCTCN2015077212-appb-000001
其中,
R1和R2各自独立地选自C1-C12烷基,
R3和R4各自独立地选自C1-16烷基和氢,以及
n为1~8的整数。
本发明的另一方面涉及一种萃取分离四价铈的方法,所述方法包括使用通式I的含氨基中性膦萃取剂萃取分离四价铈的步骤。
根据本发明的分离铈(IV)的方法可以采用溶剂萃取的方法进行,例如将本发明的含氨基中性膦萃取剂配制成液体萃取体系使用,也可以采用固液萃取的方法进行,例如将本发明的含氨基中性磷萃取剂制成萃淋树脂等固态分离材料使用。
有益效果
本发明采用的含氨基中性膦萃取剂不仅对铈(IV)有良好的萃取分离能力,而且合成方法简单,合成所使用的化工原料简单易得,成本低廉,从而能有效地降低铈的萃取分离成本,具有较高的工业应用价值。
具体实施方式
下面将更详细地描述本发明,但本发明不限于下述内容。
本发明一方面提供了通式I的含氨基中性膦萃取剂用于萃取分离铈(IV)的用途:
Figure PCTCN2015077212-appb-000002
其中,
R1和R2各自独立地选自C1-C12烷基,优选C4-C10烷基,更优选C5-C9烷基,最优选为C6-C8烷基;
R3和R4各自独立地选自C1-16烷基和氢,以及
n为1~8的整数,优选为1~4的整数,更优选为1或2。
所述通式I中,R1和R2相同或不同。优选地,R1和R2的总碳原子数为8至20之间的整数,优选为10至18之间的整数。此外,R1和R2优选为相同的烷基,更优选为相同的C5-C9烷基。
R3和R4相同或不同。优选地,R3选自C1-C10烷基和氢,优选C1-C8烷基和氢,R4选自C1-C14烷基,优选C1-C12烷基。优选地,R3和R4的总碳原子数为1至16之间的整数,优选为2至13之间的整数。
优选地,在本发明的通式I的含氨基中性膦萃取剂中,R1、R2、R3、R4和-(CH2)n-的总碳原子数为14~36,包括并不限于14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35和36个碳原子,优选为16~34,更优选为18-33。
优选地,所述通式I的含氨基中性膦萃取剂为选自(2-乙基己基)氨基甲基膦酸二(2-乙基己基)酯、己基氨基甲基膦酸二(2-乙基己基)酯、(N,N-二异丁基氨基)甲基膦酸二(2-乙基己基)酯、丁基氨基甲基膦酸二(2-乙基己基)酯、十二烷基氨基甲基膦酸二己基酯中的一种或多种。
通式I的含氨基中性膦萃取剂可以是市售产品,或者可以根据现有技术(例如,Bulletin De La Societe Chimique De France,1988,N4,p699-703等)中已知的方法合成。
例如,通式I的含氨基中性膦萃取剂可以如下合成,如反应式1所示:
Figure PCTCN2015077212-appb-000003
化合物II与化合物III经取代反应得到通式I的含氨基中性膦萃取剂,
其中,R1、R2、R3、R4和n的定义与通式I中相同。
所述化合物III可以是市售产品或者根据现有技术中的已知方法合成。例如,化合物III可以如下合成,如反应式2所示:
Figure PCTCN2015077212-appb-000004
化合物IV与化合物V经取代反应得到化合物III,
其中,R1、R2、和n的定义与通式I中相同,
R5选自选自C1-C12烷基,优选C4-C10烷基,更优选C5-C9烷基,最优选为C6-C8烷基。
所述化合物IV可以是市售产品或者根据现有技术中的已知方法合成。
或者,通式I的含氨基中性膦萃取剂可以如下合成,如反应式3所示:
Figure PCTCN2015077212-appb-000005
化合物II、化合物VI和甲醛经缩合反应得到通式I的含氨基中性膦萃取剂。
其中,R1、R2、R3和R4的定义与通式I中相同,n为1。
所述甲醛可以是游离甲醛或多聚甲醛。化合物VI可以是市售产品或者根据现有技术中的已知方法合成。
根据本发明的另一方面,提供了一种萃取分离铈(IV)的方法,所述方法包括使用上述通式I的含氨基中性膦萃取剂萃取分离铈(IV)的步骤。
在一个实施方式中,本发明的萃取分离铈(IV)的方法可以采用溶剂萃取的方法进行,所述方法包括:将包含通式I的含氨基中性膦萃取剂的中性膦萃取体系(以下有时称为有机相)与含铈(IV)的料液混合来进行萃取得到含铈(IV)萃取液和提铈尾液。
所述中性膦萃取剂与料液中的铈(IV)接触后,形成含铈(IV)的萃取络合物,从而将铈(IV)从料液中分离出来进入到有机相中。
所述中性膦萃取体系包含通式I的含氨基中性膦萃取剂、非必需的辅助萃取剂、非必需的相改良剂和稀释剂。优选地,所述中性膦萃取体系由上述成分组成。
所述辅助萃取剂主要起协助萃取作用,能增强含氨基中性膦萃取剂对铈(IV)的萃取性 能。所述辅助萃取剂可以选自如下通式VII的磷(膦)萃取剂:
Figure PCTCN2015077212-appb-000006
其中,
Z为O或S;
R5选自氢、C1-C12烷基、C1-C12烷氧基、-SH和用选自C1~C12烷基中的至少一个取代基取代的-NH2等,优选选自氢、C1-C10烷基、C1-C10烷氧基、-SH和用选自C4~C10烷基中的至少一个取代基取代的-NH2等;更优选选自C1-C10烷基和C1-C10烷氧基;
R6和R7各自独立地选自C4-C12烷基、C4-C12烷氧基和用选自C4~C12烷基中的至少一个取代基取代的-NH2等,优选选自C4-C10烷基、C4-C10烷氧基和用选自C4~C10烷基中的至少一个取代基取代的-NH2等,更优选选自C4-C10烷基和C4-C10烷氧基。
适合的辅助萃取剂可以选自:例如直链三烷基氧化膦(Cyanex 923)、支链三烷基氧化膦(Cyanex 925)、三辛基氧化膦(TOPO)、甲基膦酸二甲庚酯(P350)、2-乙基己基膦酸二(-2-乙基己基)酯、磷酸三丁酯(TBP)的中性磷(膦)萃取剂;例如二(2,4,4-三甲基戊基)二硫代膦酸(Cyanex 301)、二(2,4,4-三甲基戊基)硫代膦酸(Cyanex 302)、二(2-乙基己基)磷酸(P204)、2-乙基己基膦酸单-2-乙基己基酯(P507)、二(2,4,4-三甲基戊基)膦酸(Cyanex 272)、二(2-乙基己基)膦酸(P227或P229)的酸性磷(膦)萃取剂;如CN 201410409451.0和CN201410040023.5中公开的中性磷酰胺萃取剂,例如三异辛基磷酰胺、二异辛基-异辛氧基磷酰胺、异辛基-二异辛氧基磷酰胺、三(二异丁基)磷酰胺、二(二异丁基)-异辛氧基磷酰胺、三癸基磷酰胺和二已基-癸氧基磷酰胺等;和以上萃取剂以任意比例混合的混合萃取剂。
所述相改良剂主要起改善萃取物理现象的作用,其可以为选自C4~C10烷醇中的一种或多种,优选为选自正辛醇、异辛醇、2-甲基庚醇、及上述三种醇任意比例混合的混合醇和磷酸三丁酯中的一种和多种;更优选地为混合醇或2-甲基庚醇。
所述稀释剂选自:C5~C16烷烃,例如戊烷、己烷、庚烷、辛烷、壬烷、癸烷、十一烷、十二烷、十三烷、十四烷、十五烷、十六烷等;航空煤油;磺化煤油,液体石蜡,例如250~400℃轻质润滑油馏分等;C5~C16脂环族烷烃,例如环戊烷、C1-C4烷基取代的环戊烷、环己烷、C1-C4烷基取代的环己烷、十氢萘等;C6-C10芳烃,例如苯、甲苯、二甲苯(包括邻 -、间-、对-二甲苯和混合二甲苯)等。优选地,稀释剂为选自航空煤油、磺化煤油、庚烷和二甲苯中的一种或多种。
在所述含氨基中性膦萃取体系中,所述含氨基中性膦萃取剂、非必需的辅助萃取剂、非必需的相改良剂及稀释剂的体积比可以为:中性膦萃取剂:辅助萃取剂:相改良剂:稀释剂=约1~60:约0~40:约0~20:约40~110,更优选为含氨基中性膦萃取剂:辅助萃取剂:相改良剂:稀释剂=约10~40:约0~20:约0~20:约50~100;还优选为含氨基中性膦萃取剂:辅助萃取剂:相改良剂:稀释剂=约15~35:约0~15:约0~15:约55~90,例如含氨基中性膦萃取剂:辅助萃取剂:相改良剂:稀释剂=约15~35:约3~15:0:约55~90,或者含氨基中性膦萃取剂:辅助萃取剂:相改良剂:稀释剂=约15~35:0:约3~15:约55~90,或者含氨基中性膦萃取剂:辅助萃取剂:相改良剂:稀释剂=约15~35:0:0:约55~90。
所述料液包含铈(IV)和矿物酸及其他非铈(IV)元素。其中,铈(IV)浓度可以为约0.0001~约1mol/L,料液的酸度,以氢离子的摩尔浓度表示,为约0.2~约8mol/L,优选为约0.5~约4mol/L的硝酸、硫酸、盐酸、氢氟酸、磷酸溶液或以上酸任意比例混合后的混合溶液。当料液中铈(IV)浓度过高时,铈(IV)易结晶析出,影响萃取的进行。此外,料液的酸度过低或过高,也会降低中性膦萃取体系对铈(IV)的萃取性能。
在实际应用中,所述料液还可以含有稀土、碱金属、碱土金属、过渡金属及非金属元素等其他元素。在此情况下,采用本发明的方法可以高选择性的萃取分离出铈(IV),从而与非铈(IV)杂质元素分离。
此外,根据最终所要得到的铈产品,还可以在料液含有相应的阴离子。例如,在制备三氟化铈微粉的情况下,可以在料液中含有适量的氟,并在按照本发明的方法萃取后,对含铈萃取液进行处理,如采用中国专利申请CN200610017116.1中的后续处理方法,以得到三氟化铈微粉。
对于制备料液的原料没有限制,只要其中含有铈即可。适用于制备料液的原料包括各种含铈原料,例如氟碳铈矿、独居石矿、南方离子吸附型矿、氟碳铈矿与独居石矿的混合矿、氟碳铈矿与其他矿石的混合矿、各种含铈富集物、各种含铈的混合稀土氧化物、氢氧化物、卤化物、硝酸盐、碳酸盐或硫酸盐。上述含铈原料可经氧化处理、并以硝酸、硫酸或者硫酸/硝酸的混酸溶解来制得适合本发明方法的料液。
在该萃取步骤中,优选地,萃取级数可以为1~20级,优选为3~12级。过多的萃取级数,会增加分离设备及萃取剂等的用量。
优选地,中性膦萃取体系与料液的流量比可以为约0.2~20:1,优选为约0.5~10:1。流量比的变化主要根据料液中铈(IV)的浓度而变化,当料液中铈(IV)的浓度高时,适当增加中性膦萃取体系的流量,以保证能充分地将铈(IV)萃入到有机相中。
提铈尾液可以进一步进行处理,以进一步分离提取钍与稀土等元素。处理提铈尾液的方法包括但不限于现有技术中已知的方法,例如专利申请201210552752.x中公开的提取钍的方法。
在得到含铈萃取液后,可以采用本领域中已知的方法进行后续处理以得到铈产品,例如在专利200410010618.2中公开的方法。
或者,可以按照如下的步骤对含铈萃取液进行后续处理。
根据本发明的溶剂萃取方法还包括非必需地用洗涤液(也可以称为洗液、洗酸、洗涤剂)洗涤含铈(IV)萃取液的步骤。洗涤过程可以进一步降低含铈萃取液中杂质元素的含量,从而有助于提高最终铈产品的纯度。
所述洗涤液可以为硝酸、硫酸、盐酸或以上酸任意比例混合的混合溶液。洗涤液的酸度,以氢离子的摩尔浓度表示,为约0.2~约8mol/L。
洗涤级数可以为0~15级,优选为0~5级。洗涤级数过长,会影响铈的收率及浪费能源和萃取剂。
洗涤流量比可以为含铈萃取液:洗涤液=约1:0.1~5,优选约1:0.2~2。增加洗涤液的流量,一方面可以提高铈产品的纯度,但是另一方面也会降低铈的收率,而且会消耗更多的洗涤酸及中和这些洗涤酸所需要的碱量,增加生产成本。
根据本发明的方法还包括用反萃剂(也可以称为反液、反萃液、反萃取液)反萃取含铈萃取液中的铈(IV)得到含铈反萃取产物的步骤。反萃后的有机相可以循环使用,再次用于从含铈(IV)料液中萃取分离铈。
所述反萃液可以为过氧化氢水溶液或盐酸羟胺的水溶液或二者以任意比例混合的混合溶液或上述三者分别与硫酸和/或硝酸以任意比例混合的混合溶液。反萃液中过氧化氢的浓度可以为1~15%(按体积比计),或者盐酸羟胺水溶液的浓度可以为1~30%(按重量比计)。优选反萃液为3~10%(体积比)过氧化氢水溶液。反萃液中酸的浓度,按氢离子浓度计,可以为约0~约4mol/L,优选约0.2~约1.5mol/L。反萃取级数可以为1~10级,优选2~6级。流量比可以为含铈萃取液:反萃液=约1:0.1~10,优选为1:0.2~1。
在根据本发明的溶剂萃取方法中,萃取、洗涤和反萃取可以采用本领域中公知的分液装置进行,优选在一系列分液漏斗、混合澄清萃取槽或离心萃取器中进行,更优选在混合澄清萃取槽或离心萃取器中进行。
在根据本发明的溶剂萃取方法中,上述萃取、洗涤和反萃取可以间歇或连续进行,优选连续进行。
在另一种实施方式中,本发明的萃取分离铈(IV)的方法包括采用使用通式I的含氨基中性膦萃取剂制得的固态分离材料进行铈(IV)的分离纯化。更具体地,所述方法包括将使用通式I的中性膦萃取剂制得的固态分离材料与含铈(IV)的料液接触,进行萃取得到含铈(IV)的固态分离材料和提铈尾液。
在一个实施方式中,所述固液萃取方法在树脂柱中进行,其中将固态分离材料加入树脂柱中,然后加入含铈(IV)料液使所述固态分离材料与含铈(IV)的料液接触进行固液萃取。
所述提铈尾液中铈的含量没有特殊限制,但是优选不大于约2g/l,更优选不大于约1g/l。
在溶剂萃取方法中对含铈(IV)料液的描述同样适用于固液萃取方法,因此这里不再重复。
所述固态分离材料可以为负载有通式I的中性膦萃取剂的树脂、多孔硅球、硅藻土等。优选地,所述固态分离材料可以采用本领域中的常规方法制备,例如通过浸渍、原位聚合、化学键合等方法将通式I的中性膦萃取剂负载在树脂、多孔硅球、硅藻土上制备,优选通过浸渍、原位聚合等方法制得。
在一个优选的实施方式中,所述固态分离材料为萃淋树脂。对所述萃淋树脂的制备方法没有特殊限制,只要其负载有通式I的含氨基中性膦萃取剂即可。例如,可以采用分散聚合、乳液聚合、本体聚合、悬浮聚合等方法先制备树脂微粒,然后将通式I的中性膦萃取剂负载在树脂微粒上制得萃淋树脂,或者在聚合前或聚合中加入通式I的中性膦萃取剂,通过原位聚合制得萃淋树脂。
在一种实施方式中,萃淋树脂可以通过将通式I的中性膦萃取剂与苯乙烯类单体和二乙烯苯单体通过分散聚合的方法制备。例如,将通式I的中性膦萃取剂与苯乙烯类单体和二乙烯苯单体混合物混合,加入油相总质量2%的引发剂,制得油相;取10倍于油相体积的去离子水,加入水相质量的3%明胶、0.5%硫氰酸胺,混合制得水相;将水相加热至50℃,等明胶溶解后,缓慢加入油相,保温半小时,然后升温至80℃,聚合反应5小时;再升温至90℃固化树脂半小时,取出树脂,洗涤筛分树脂,风干即得到所需的萃淋树脂。所述苯乙烯类单体可以为苯乙烯、甲基苯乙烯、乙基苯乙烯等。
在另一种实施方式中,所述固态分离材料为负载有通式I的中性膦萃取剂的多孔硅球、硅藻土等。对于将通式I的中性膦萃取剂负载多孔硅球、硅藻土等上的方法没有特殊限制,只要能够将通式I的中性膦萃取剂负载在多孔硅球、硅藻土上即可。例如,可以将通式I的中性膦萃取剂溶解在稀释剂中(如二氯甲烷、三氯甲烷、苯、甲苯等易挥发的惰性溶剂), 加入多孔硅球、硅藻土等分离材料,搅拌条件下缓慢挥发稀释剂,制得所需的固态分离材料。
在一个实施方式中,根据本发明的固液萃取方法还包括非必需地用洗涤液洗涤含铈的固态分离材料的步骤。洗涤过程可以进一步降低含铈萃取液中杂质元素的含量,从而有助于提高最终铈产品的纯度。
在溶剂萃取方法中对洗涤液的描述同样适用于固液萃取方法,因此这里不再重复。
收集洗涤后的洗涤液,当洗涤液中铈含量低于0.1g/l时,停止加入洗涤液。
在一个实施方式中,根据本发明的固液萃取方法还包括用反萃液反萃取含铈固态分离材料中的铈的步骤。收集反萃后的反萃液,当反萃液中铈含量低于0.01g/l时,可以停止加入反萃液。反萃后的固态分离材料可以循环使用,再次用于从含铈(IV)料液中萃取分离铈(IV)。
在溶剂萃取方法中对反萃液的描述同样适用于固液萃取方法,因此这里不再重复。
作为一个实例,根据本发明的固液萃取方法可以如下操作:取固态分离材料加入树脂柱中,然后从进口加入料液进行固液萃取,从出口收集萃取余液,定期分析萃取余液中铈(IV)的含量,当萃取余液中铈(IV)的含量达到0.01g/l时,停止加入料液;非必须的加入洗涤液进行洗涤操作,收集洗涤液,当洗涤液中铈含量低于0.1g/l,停止加入洗涤液;最后加入反萃液反萃取固态分离材料中萃取的铈,收集反萃液,当反萃液中铈的含量低于0.01g/l时,停止加入反萃液。
在必要时,提铈尾液可以按照本领域中已知的方法进行进一步处理以提取其中的有价值的元素,例如钍或剩余稀土元素等。
本发明中所用的术语C1~C16烷基指的是含有1至16个碳原子的直链或支链烷基,例如具有1、2、3、4、5、6、7、8、9、10、11、12、13、14、15或16个碳原子的直链或支链烷基,非限制性地包括甲基、乙基、正丙基、异丙基、正丁基、叔丁基、异丁基、正戊基、新戊基、异戊基、己基、庚基、辛基、壬基、癸基、十一烷基、十二烷基、十三烷基、十四烷基、十五烷基、十六烷基等。C1~C10烷基、C4-C12烷基、C4~C10烷基、C5-C9烷基和C6-C8烷基的含义以此类推。
本发明中所用的术语C1~C12烷氧基指的是含有1至12个碳原子的直链或支链烷氧基,例如具有1、2、3、4、5、6、7、8、9、10、11或12个碳原子的直链或支链烷氧基,非限制性地包括甲氧基、乙氧基、正丙氧基、异丙氧基、正丁氧基、叔丁氧基、异丁氧基、正戊氧基、新戊氧基、异戊氧基、己氧基、庚氧基、辛氧基、壬氧基、癸氧基、十一烷氧基、十二烷氧基等。C1~C10烷氧基和C4~C10烷氧基等的含义以此类推。
本发明中所用的术语C4~C10烷醇指的是含有4至10个碳原子的直链或支链烷醇,例如具有4、5、6、7、8、9或10个碳原子的直链或支链烷醇,非限制性地包括正丁醇、叔丁醇、异丁醇、正戊醇、新戊醇、异戊醇、己醇、庚醇、辛醇、壬醇、癸醇等。
本发明中所用的术语C5~C16烷烃指的是含有5至16个碳原子的直链或支链烷烃,具有5、6、7、8、9、10、11、12、13、14、15或16个碳原子的直链或支链烷烃,例如戊烷、己烷、庚烷、辛烷、壬烷、癸烷、十一烷、十二烷、十三烷、十四烷、十五烷、十六烷等。
本发明中所用的术语C5~C16脂环族烷烃指的是包括取代基的碳原子数在内含有5至16个碳原子的饱和环状烷烃,所述饱和环状烷烃可以为单环或双环,例如为环戊烷、环己烷、环庚烷、环辛烷、环壬烷、环癸烷、十氢萘等,所述取代基可以选自C1-C4烷基的一个或多个取代基。
本发明中所用的术语C6-C10芳烃指的是包括取代基的碳原子数在内含有6至10个碳原子的芳烃,例如苯和用选自C1-C4烷基的一个或多个取代基取代的苯,例如苯、甲苯、二甲苯等。
除非另有说明,在本发明中所列出的数值范围包括其中的端点值以及端点值之间以端点值的最小单位递增或递减的所有点值以及由这些点值组成的所有子范围。
实施例
为了进一步阐述本发明的方案,提供本发明的具体实施例以有助于本领域技术人员理解和实施本发明,但是本发明不限于这些实施例。
试剂和来源
亚磷酸二乙基己基酯、亚磷酸二正辛基酯、亚磷酸二正庚基酯、亚磷酸二异辛酯、航空煤油和TBP购自上海莱雅仕化工有限公司。
多聚甲醛、二正己胺、二异丁胺、正丁胺、二异辛胺、十二烷基胺、异辛胺、二甲胺、甲苯、二甲苯、对甲基苯磺酸和庚烷购自阿拉丁试剂有限公司。
Cyanex 923和2-甲基庚醇购自上海氰特化工有限公司。
料液、洗涤液和反萃剂为实验室自制。
其他试剂(如酸等)均为市售分析纯试剂。
产品纯度均采用ICP-OES(仪器型号:Optical-8000,制造商:Perkin Elmer)测定。
核磁共振仪为Varian Mercury 300。
制备例1:(N,N-二己基氨基)甲基膦酸二(2-乙基己基)酯的制备
Figure PCTCN2015077212-appb-000007
向配备有机械搅拌器、分水器以及冷凝回流装置的三口烧瓶中,加入亚磷酸二乙基己基酯(1mol)、多聚甲醛(M=30,1.05mol)、二正己胺(1.05mol)、甲苯(700ml)和对甲基苯磺酸(2g),130℃加热回流,分出反应所生成的水。至无水产生时,再反应2小时。向反应混合物中加入10g碳酸钾,并且继续加热回流15min。将反应混合物过滤,除去反应中多余的碳酸钾,用蒸馏水洗涤三次,旋蒸除去甲苯得到目标产物。
1H NMR(400MHz,CDCl3,ppm):δ1.74-0.86[m,(CH3)6,(CH2)16,(CH)2],2.63[m,(CH2)],2.95[t,CH2,J=8Hz],3.96[m,(CH2)2]。
制备例2:(N,N-二异丁基氨基)甲基膦酸二辛基酯的制备
Figure PCTCN2015077212-appb-000008
除了用亚磷酸二正辛基酯代替亚磷酸二乙基己基酯以及用二异丁胺代替二正己胺以外,用与制备实施例1相同的工艺制备得到目标产物。
1H NMR(400MHz,CDCl3,ppm):δ1.71-0.89[m,(CH3)6,(CH2)12],2.05[m,(CH)2],2.31[m,(CH2)2],2.95[m,(CH2)],4.02[m,(CH2)2]。
制备例3:(丁基氨基)甲基膦酸二(2-乙基己基)酯的制备
Figure PCTCN2015077212-appb-000009
除了用正丁胺代替二正己胺以外,用与制备实施例1相同的工艺制备得到目标产物。
1H NMR(400MHz,CDCl3,ppm):δ0.87-1.69[m,(CH3)3,(CH2)6,NH],3.14[t,(CH2),J=8Hz],3.43[m,(CH2)],4.02[m,(CH2)2]。
制备例4:(2-乙基己基)氨基甲基膦酸二(2-乙基己基)酯的制备
Figure PCTCN2015077212-appb-000010
除了用异辛胺代替二正己胺以外,用与制备实施例1相同的工艺制备得到目标产物。
1H NMR(400MHz,CDCl3,ppm):δ0.88-1.56[m,(CH3)6,(CH2)12,(CH)3,NH],2.74[d,(CH2),J=4Hz],3.14[d,(CH2),J=12Hz],3.99[m,(CH2)2]。
制备例5:(十二烷基氨基)甲基膦酸二(2-乙基己基)酯的制备
Figure PCTCN2015077212-appb-000011
除了用十二烷基胺代替二正己胺以外,用与制备实施例1相同的工艺制备得到目标产物。
1H NMR(400MHz,CDCl3,ppm):δ1.68-0.87[m,(CH3)5,(CH2)18,(CH)2,NH],2.83[t,(CH2),J=7.6Hz],3.15[d,(CH2),J=12Hz],3.98[m,(CH2)2]。
制备例6:(2-乙基己基)氨基甲基膦酸二己基酯的制备
Figure PCTCN2015077212-appb-000012
除了用亚磷酸二己酯代替亚磷酸二(2-乙基己基酯)以外,用与制备实施例4相同的工艺制备得到目标产物。
1H NMR(400MHz,CDCl3,ppm):δ0.87-1.73[m,(CH3)4,(CH2)12,(CH),NH],2.68[br,(CH2)],3.14[d,(CH2),J=12Hz],3.99[m,(CH2)2]。
制备例7:(N,N-二己基氨基)甲基膦酸二庚基酯的制备
Figure PCTCN2015077212-appb-000013
除了用亚磷酸二正庚基酯代替亚磷酸二乙基己基酯以外,用与制备实施例1相同的工艺制备得到目标产物。
1H NMR(400MHz,CDCl3,ppm):δ0.88-1.73[m,(CH3)4,(CH2)18],2.48[br,(CH2)2],2.95[t,CH2,J=8Hz],4.02[m,CH2]。
制备例8:(N,N-二甲基氨基)乙基膦酸二(2-乙基己基)酯的制备
Figure PCTCN2015077212-appb-000014
将1,2-二溴乙烷(0.3mol)加入三口烧瓶中,升温至100℃,缓慢滴加亚磷酸二异辛酯(0.1mol),110℃回流9小时,110℃减压蒸馏得到亚磷酸二异辛基2-溴乙基酯。
在单口烧瓶中,将上步所得亚磷酸二异辛基2-溴乙基酯和碘化钠(5克)在丙酮中溶解,通入过量的二甲胺(约0.3mol),升温至60℃,反应24小时。去离子水洗涤三次,减压蒸馏得到目标产物。
1H NMR(400MHz,CDCl3,ppm):δ0.88-2.30[m,(CH3)4,(CH2)8,(CH)2],2.54[d,(CH2)6,J=4Hz],2.95[t,(CH2),J=8Hz)],3.96[m,(CH2)4]。
实施例1:
有机相的制备:取3L(2-乙基己基)氨基甲基膦酸二(2-乙基己基)酯与7L航空煤油混合制得有机相。
料液为0.30mol/L铈(IV)的硫酸溶液,其酸度为1.5mol/L。
洗涤液为0.5mol/L的硫酸溶液。
反萃剂为5%(V/V)过氧化氢+0.5mol/L硫酸溶液。
采用250ml混合-澄清萃取槽进行萃取分离实验。首先进行5级逆流萃取,有机相与料液的流量比为10mL/min:5.6mL/min,得到含铈萃取液和提铈尾液。然后进行2级逆流洗涤,含铈萃取液与洗涤液的流量比为10mL/min:5mL/min。接着进行3级逆流反萃,含铈 萃取液与反萃剂的流量比为10mL/min:3.5mL/min,得到含铈的反萃液。所得反萃液经沉淀、过滤、洗涤、烘干、灼烧,得到二氧化铈,铈的纯度(以二氧化铈计)为99.99%。
实施例2:
有机相的制备:取2L(N,N-二己基氨基)甲基膦酸二(2-乙基己基)酯、1L Cyanex 923与7L航空煤油混合制得有机相。
料液为0.30mol/L铈(IV)的硝酸溶液,其酸度为1.0mol/L。
反萃剂为5%(V/V)过氧化氢+0.5mol/L硝酸溶液。
采用250ml离心萃取器进行萃取实验,首先进行10级逆流萃取,有机相与料液的流量比为10mL/min:5.6mL/min,得到含铈萃取液和提铈尾液。再用250ml混合-澄清萃取槽进行反萃取实验,进行5级逆流反萃取,含铈萃取液与反萃剂的流量比为10mL/min:3.5mL/min,得到含铈的反萃液。所得反萃液经草酸沉淀、过滤、洗涤、烘干、灼烧,得到二氧化铈,铈的纯度(以二氧化铈计)为99.9%。
实施例3:
有机相的制备:取2L(N,N-二异丁基氨基)甲基膦酸二辛基酯、1L P507、0.5L 2-甲基庚醇与6.5L磺化煤油混合制得有机相。
料液为0.30mol/L铈(IV)的硝酸-硫酸溶液,硝酸:硫酸=1:1,其酸度为2.0mol/L。
洗涤液为1.0mol/L的硝酸溶液。
反萃剂为5%(V/V)过氧化氢水溶液。
采用250ml离心萃取器中进行萃取分离实验。首先进行7级逆流萃取,有机相与料液的流量比为10mL/min:5.6mL/min,得到含铈萃取液和提铈尾液。然后进行3级逆流洗涤,含铈萃取液与洗涤液的流量比为10mL/min:10mL/min。接着进行5级逆流反萃,含铈萃取液与反萃剂的流量比为10mL/min:3.5mL/min,得到含铈的反萃液。所得反萃液经草酸沉淀、洗涤、烘干、灼烧,得到氧化铈,铈的纯度(以二氧化铈计)为99.95%。
实施例4:
有机相的制备:取3L(丁基氨基)甲基膦酸二(2-乙基己基)酯、0.5LCyanex272、0.5L混合醇(等体积量的2-甲基庚醇与正己醇混合制得)与6L航空煤油混合制得有机相。
料液为1.0mol/L铈(IV)的硝酸溶液,其酸度为1.5mol/L。
洗涤液为0.5mol/L的硫酸溶液。
反萃剂为5%(V/V)过氧化氢+0.5mol/L硫酸溶液。
采用250ml混合-澄清萃取槽进行萃取分离实验。首先进行5级逆流萃取,有机相与料液的流量比为18mL/min:3mL/min,得到含铈萃取液和提铈尾液。然后进行2级逆流洗涤,含铈萃取液与洗涤液的流量比为18mL/min:4mL/min。接着进行3级逆流反萃,含铈萃取液与反萃剂的流量比为18mL/min:6mL/min,得到含铈的反萃液。所得反萃液经沉淀、过滤、洗涤、烘干、灼烧,得到二氧化铈,铈的纯度(以二氧化铈计)为99.98%。
实施例5:
有机相的制备:取3L(十二烷基氨基)甲基膦酸二(2-乙基己基)酯、1L 2-甲基庚醇与6L航空煤油混合制得有机相。
料液含0.2mol/L铈(IV),5g/L氟,1.62mol/L硫酸。
洗涤液为0.5mol/L的硫酸溶液。
反萃剂为5%(V/V)过氧化氢+0.5mol/L硫酸溶液。
采用250ml离心萃取器与混合-澄清萃取槽组合方式进行萃取分离实验。首先采用离心萃取器进行5级逆流萃取,有机相与料液的流量比为7.5mL/min:12.5mL/min,得到含铈-氟的萃取液和提铈尾液。然后进行10级逆流洗涤,含铈萃取液与洗涤液的流量比为7.5mL/min:5mL/min。接着采用混合-澄清萃取槽进行3级逆流反萃,含铈萃取液与反萃剂的流量比为7.5mL/min:2.5mL/min,得到含氟化铈的反萃液,氟化铈沉淀沉降于萃取槽的底部,纯度(以金属离子计)为99.95%。
实施例6:
有机相的制备:取3L(N,N-二己基氨基)甲基膦酸二庚基酯、1L TBP与6L航空煤油混合制得有机相。
料液为0.2mol/L铈(IV)的硫酸-磷酸混合溶液(其中含1mol/L硫酸,10g/L磷酸)。
洗涤液为0.5mol/L的硫酸溶液。
反萃剂为5%(V/V)过氧化氢+1.0mol/L硫酸溶液。
采用250ml离心萃取器进行萃取分离实验。首先进行10级逆流萃取,有机相与料液的流量比为10mL/min:5.6mL/min,得到含铈萃取液和提铈尾液。然后进行2级逆流洗涤,含铈萃取液与洗涤液的流量比为10mL/min:5mL/min。接着进行3级逆流反萃,含铈萃取 液与反萃剂的流量比为10mL/min:3.3mL/min,得到含铈的反萃液。所得反萃液经沉淀、过滤、洗涤、烘干、灼烧,得到二氧化铈,铈的纯度(以二氧化铈计)为99.95%。
实施例7:
有机相的制备:取3L(2-乙基己基)氨基甲基膦酸二己基酯、1L TBP与6L航空煤油混合制得有机相。
料液为0.2mol/L铈(IV)的硫酸-盐酸混合溶液(其中含1.2mol/L硫酸,0.1mol/L盐酸)。
洗涤液为硫酸-盐酸混合溶液。其中硫酸为1.0mol/L,盐酸为0.1mol/L。
反萃剂为5%(V/V)过氧化氢+1.0mol/L硫酸溶液。
采用250ml离心萃取器进行萃取分离实验。首先进行10级逆流萃取,有机相与料液的流量比为10mL/min:5.6mL/min,得到含铈萃取液和提铈尾液。然后进行2级逆流洗涤,含铈萃取液与洗涤液的流量比为10mL/min:5mL/min。接着进行3级逆流反萃,含铈萃取液与反萃剂的流量比为10mL/min:3.3mL/min,得到含铈的反萃液。所得反萃液经沉淀、过滤、洗涤、烘干、灼烧,得到二氧化铈,铈的纯度(以二氧化铈计)为99.94%。
实施例8:
除了采用(N,N-二甲基氨基)乙基膦酸二(2-乙基己基)酯代替(2-乙基己基)氨基甲基膦酸二(2-乙基己基)酯作为萃取剂以外,其余操作及装置同实施例1。铈的纯度(以二氧化铈计)为99.9%。
实施例9:
(1)萃淋树脂的制备
取50ml(2-乙基己基)氨基甲基膦酸二(2-乙基己基)酯与50ml苯乙烯-二乙烯苯混合液混合制得油相,其中,苯乙烯与二乙烯苯的体积比为2:1。取500ml去离子水,加入15g明胶,2.5g硫氰酸胺,加热至50℃,待明胶完全溶解后,缓慢加入油相,搅拌半小时后,升温至80℃,反应5小时,然后再升温至90℃,固化半小时。取出过滤树脂,水洗,风干,得到75g萃淋树脂。
(2)萃取实验
称取50克萃淋树脂于分离柱中,加入含铈料液(0.10mol/L铈的硝酸溶液,酸度为1.5mol/L),料液的流速为2ml/min,每5分钟取样监测。当提铈尾液中铈的含量大于0.01g/l 时,停止进料液。以2ml/min的流速加入洗涤液(1.0mol/L的硝酸溶液)洗涤含铈萃淋树脂。当洗出液中铈的浓度低于0.1g/L时,停止加入洗涤液。再以2ml/min的流速加入反萃液(3%H2O2水溶液)。当反萃液中铈的浓度低于0.01g/L时,反萃取完成,得到含铈反萃液。所得含铈反萃液调酸后加入草酸沉淀铈,经过滤、洗涤、烘干、锻烧得到氧化铈固体。其中,铈的收率为95%,铈的纯度(以CeO2计)为99.999%。

Claims (10)

  1. 通式I的含氨基中性膦萃取剂用于萃取分离铈(IV)的用途:
    Figure PCTCN2015077212-appb-100001
    其中,
    R1和R2各自独立地选自C1-C12烷基,优选C4-C10烷基,更优选C5-C9烷基,最优选为C6-C8烷基;
    R3和R4各自独立地选自C1-16烷基和氢,以及
    n为1~8的整数,优选为1~4的整数,更优选为1或2。
  2. 根据权利要求1所述的用途,其中,
    R1和R2相同或不同,优选地,R1和R2的总碳原子数为8至20之间的整数,优选为10至18之间的整数;R1和R2优选为相同的烷基,更优选为相同的C5-C9烷基;
    R3和R4相同或不同;优选地,R3选自C1-C10烷基和氢,优选C1-C8烷基和氢,R4选自C1-C14烷基,优选C1-C12烷基;优选地,R3和R4的总碳原子数为1至16之间的整数,优选为2至13之间的整数;
    优选地,R1、R2、R3、R4和-(CH2)n-的总碳原子数为14~36,优选为16~34,更优选为18-33;
    优选地,所述通式I的含氨基中性膦萃取剂为选自(2-乙基己基)氨基甲基膦酸二(2-乙基己基)酯、己基氨基甲基膦酸二(2-乙基己基)酯、(N,N-二异丁基氨基)甲基膦酸二(2-乙基己基)酯、丁基氨基甲基膦酸二(2-乙基己基)酯、十二烷基氨基甲基膦酸二己基酯中的一种或多种。
  3. 一种萃取分离铈(IV)的方法,所述方法包括使用在权利要求1或2中所述的通式I的含氨基中性膦萃取剂萃取分离铈(IV)的步骤。
  4. 根据权利要求3所述的方法,其中,所述萃取分离铈(IV)的方法采用溶剂萃取的方法进行,包括:将包含通式I的含氨基中性膦萃取剂的中性膦萃取体系与含铈(IV)的料液混合来进行萃取得到含铈(IV)萃取液和提铈尾液;
    或者,所述萃取分离铈(IV)的方法采用固液萃取方法进行,包括:将使用通式I的中性膦萃取剂制得的固态分离材料与含铈(IV)的料液接触,进行萃取得到含铈(IV)的固态分离材料和提铈尾液。
  5. 根据权利要求4所述的方法,其中,
    所述中性膦萃取体系包含通式I的含氨基中性膦萃取剂、非必需的辅助萃取剂、非必需的相改良剂和稀释剂;优选地,所述含氨基中性膦萃取剂、非必需的辅助萃取剂、非必需的相改良剂及稀释剂的体积比为:中性膦萃取剂:辅助萃取剂:相改良剂:稀释剂=1~60:0~40:0~20:40~110,更优选为含氨基中性膦萃取剂:辅助萃取剂:相改良剂:稀释剂=10~40:0~20:0~20:50~100;还优选为含氨基中性膦萃取剂:辅助萃取剂:相改良剂:稀释剂=15~35:0~15:0~15:55~90,例如含氨基中性膦萃取剂:辅助萃取剂:相改良剂:稀释剂=15~35:3~15:0:55~90,或者含氨基中性膦萃取剂:辅助萃取剂:相改良剂:稀释剂=15~35:0:3~15:55~90,或者含氨基中性膦萃取剂:辅助萃取剂:相改良剂:稀释剂=15~35:0:0:55~90;
    所述使用通式I的中性膦萃取剂制得的固态分离材料为负载有通式I的中性膦萃取剂的树脂、多孔硅球、硅藻土,优选为萃淋树脂。
  6. 根据权利要求5所述的方法,其中,
    所述辅助萃取剂选自如下通式VII的磷(膦)萃取剂:
    Figure PCTCN2015077212-appb-100002
    其中,
    Z为O或S;
    R5选自氢、C1-C12烷基、C1-C12烷氧基、-SH和用选自C1~C12烷基中的至少一个取代基取代的-NH2等,优选选自氢、C1-C10烷基、C1-C10烷氧基、-SH和用选自C4~C10烷基中的至少一个取代基取代的-NH2等;更优选选自C1-C10烷基和C1-C10烷氧基;
    R6和R7各自独立地选自C4-C12烷基、C4-C12烷氧基和用选自C4~C12烷基中的至少一个取代基取代的-NH2等,优选选自C4-C10烷基、C4-C10烷氧基和用选自C4~C10烷基中的至少 一个取代基取代的-NH2等,更优选选自C4-C10烷基和C4-C10烷氧基;
    优选地,所述辅助萃取剂选自:直链三烷基氧化膦(Cyanex 923)、支链三烷基氧化膦(Cyanex 925)、三辛基氧化膦(TOPO)、甲基膦酸二甲庚酯(P350)、2-乙基己基膦酸二(-2-乙基己基)酯、磷酸三丁酯(TBP)、二(2,4,4-三甲基戊基)二硫代膦酸(Cyanex 301)、二(2,4,4-三甲基戊基)硫代膦酸(Cyanex 302)、二(2-乙基己基)磷酸(P204)、2-乙基己基膦酸单-2-乙基己基酯(P507)、二(2,4,4-三甲基戊基)膦酸(Cyanex 272)、二(2-乙基己基)膦酸(P227或P229)、三异辛基磷酰胺、二异辛基-异辛氧基磷酰胺、异辛基-二异辛氧基磷酰胺、三(二异丁基)磷酰胺、二(二异丁基)-异辛氧基磷酰胺、三癸基磷酰胺和二已基-癸氧基磷酰胺等;和以上萃取剂以任意比例混合的混合萃取剂;
    所述相改良剂为选自C4~C10烷醇中的一种或多种,优选为选自正辛醇、异辛醇、2-甲基庚醇、及上述三种醇任意比例混合的混合醇和磷酸三丁酯中的一种和多种;更优选地为混合醇或2-甲基庚醇;
    所述稀释剂选自:C5~C16烷烃,航空煤油,磺化煤油,液体石蜡,C5~C16脂环族烷烃和C6-C10芳烃;优选地,稀释剂为选自航空煤油、磺化煤油、庚烷和二甲苯中的一种或多种。
  7. 根据权利要求4-6中任一项所述的方法,其中,
    在溶剂萃取方法的萃取步骤中,萃取级数为1~20级,优选为3~12级;中性膦萃取体系与料液的流量比为0.2~20:1,优选为0.5~10:1。
  8. 根据权利要求4所述的方法,其中,
    所述溶剂萃取方法还包括:非必需地用洗涤液洗涤含铈(IV)萃取液的步骤,和用反萃剂反萃取含铈萃取液中的铈(IV)得到含铈反萃取产物的步骤;
    所述固液萃取方法还包括:非必需地用洗涤液洗涤含钍的固态分离材料的步骤,和用反萃液反萃取含铈固态分离材料中的铈的步骤。
  9. 根据权利要求8所述的方法,其中,
    所述洗涤液为硝酸、硫酸、盐酸或以上酸任意比例混合的混合溶液,优选洗涤液的酸度,以氢离子的摩尔浓度表示,为0.2~8mol/L;
    所述反萃液为过氧化氢水溶液或盐酸羟胺的水溶液或二者以任意比例混合的混合溶液 或上述三者与硫酸、硝酸以任意比例混合的混合溶液;反萃液中过氧化氢的浓度为1~15%(按体积比计),或者盐酸羟胺水溶液的浓度为1~30%(按重量比计);优选反萃液为体积比3~10%的过氧化氢水溶液;反萃液中酸的浓度,按氢离子浓度计,为0~4mol/L,优选0.2~1.5mol/L;
    优选地,在溶剂萃取方法中,洗涤级数为0~15级,优选为0~5级;流量比为含铈萃取液:洗涤液=1:0.1~5,优选1:0.2~2;
    优选地,在溶剂萃取方法中,反萃取级数为1~10级,优选2~6级;流量比为含铈萃取液:反萃液=1:0.1~10,优选为1:0.2~1。
  10. 根据权利要求8或9所述的方法,其中,
    在溶剂萃取方法中,萃取、洗涤和反萃取在一系列分液漏斗、混合澄清萃取槽或离心萃取器中进行,优选在混合澄清萃取槽或离心萃取器中进行;
    在溶剂萃取方法中,萃取、洗涤和反萃取连续进行。
PCT/CN2015/077212 2014-12-11 2015-04-22 含氨基中性膦萃取剂用于萃取分离四价铈的用途和方法 WO2016090809A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410765018.0 2014-12-11
CN201410765018.0A CN105734288B (zh) 2014-12-11 2014-12-11 含氨基中性膦萃取剂用于萃取分离四价铈的用途和方法

Publications (1)

Publication Number Publication Date
WO2016090809A1 true WO2016090809A1 (zh) 2016-06-16

Family

ID=56106551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/077212 WO2016090809A1 (zh) 2014-12-11 2015-04-22 含氨基中性膦萃取剂用于萃取分离四价铈的用途和方法

Country Status (2)

Country Link
CN (1) CN105734288B (zh)
WO (1) WO2016090809A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114380683A (zh) * 2021-12-21 2022-04-22 安徽丰原发酵技术工程研究有限公司 一种从含乳酸钙的发酵液中提取乳酸的方法
CN114835300A (zh) * 2022-05-18 2022-08-02 浙江丝绸科技有限公司 一种捕捉剂萃淋树脂洗脱再生循环处理印染污水的方法
CN114890450A (zh) * 2022-05-11 2022-08-12 湖南东方钪业股份有限公司 一种制备氧化钪的方法
CN115433842A (zh) * 2021-06-02 2022-12-06 中国科学院江西稀土研究院 含磷氨基酸化合物及其用于萃取分离钇的用途

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106521190B (zh) * 2016-11-17 2018-06-26 中国科学院长春应用化学研究所 含氨基中性膦萃取剂用于萃取分离锆和/或铪的用途和方法
CN107674974B (zh) * 2017-09-29 2019-08-02 中国科学院长春应用化学研究所 含氨基中性膦萃取剂萃取回收铜的用途和方法
GB2607551A (en) * 2018-06-15 2022-12-14 Seren Tech Limited Countercurrent rare earth separation process
CN109680169B (zh) * 2019-02-22 2021-03-26 东北大学 一种p204掺杂聚苯胺的固相萃取剂及其萃取轻稀土方法
CN112575188B (zh) * 2020-11-24 2022-08-19 福建省长汀金龙稀土有限公司 一种二烷基氨基苯氧乙酸萃取剂及其制备方法和应用
CN115433830B (zh) * 2022-09-16 2024-04-19 中国科学院青海盐湖研究所 用于从碱性含锂溶液中萃取锂的萃取体系及萃取方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102409172A (zh) * 2011-07-26 2012-04-11 中国科学院长春应用化学研究所 一种分离四价铈或四价铈与氟的方法
WO2012069573A1 (fr) * 2010-11-25 2012-05-31 Commissariat à l'énergie atomique et aux énergies alternatives Procede de separation de l'americium des autres elements metalliques presents dans une phase aqueuse acide ou organique et ses applications
CN102994781A (zh) * 2012-12-18 2013-03-27 中国科学院长春应用化学研究所 一种钍的分离纯化方法
CN103773954A (zh) * 2014-01-27 2014-05-07 中国科学院长春应用化学研究所 中性磷酰胺萃取剂用于萃取分离Ce4+的用途
CN103789547A (zh) * 2014-01-15 2014-05-14 中国科学院长春应用化学研究所 一种离子液体萃淋树脂及其制备和应用方法
CN103924084A (zh) * 2014-03-21 2014-07-16 南通大学 一种利用季膦类离子液体回收废弃荧光粉中有价金属元素的方法
CN104087750A (zh) * 2014-07-14 2014-10-08 厦门稀土材料研究所 一种稀土的萃取分离方法
CN104131164A (zh) * 2014-08-19 2014-11-05 中国科学院长春应用化学研究所 中性磷酰胺萃取剂用于萃取分离钍的用途和方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2635112A (en) * 1949-07-28 1953-04-14 Research Corp Process for producing aminomethylphosphonic acid compounds
FR2515630B1 (fr) * 1981-10-30 1985-10-04 Rhone Poulenc Spec Chim Procede d'extraction et de separation de l'uranium, du thorium et des terres rares par traitement de solutions aqueuses de chlorures de ces elements
CN1153538A (zh) * 1994-06-23 1997-07-02 巴斯福股份公司 烃溶性氨亚甲基膦酸衍生物自水溶液中提取铁离子的用途
CN1049695C (zh) * 1994-07-28 2000-02-23 北京大学 一种分离提纯贵金属的方法
EP0834581A1 (en) * 1996-09-30 1998-04-08 Basf Aktiengesellschaft Use of hydrocarbon-soluble aminomethylenephosphonic acid derivatives for the solvent extraction of metal ions from aqueous solutions
US8343450B2 (en) * 2007-10-09 2013-01-01 Chemnano Materials, Ltd. Functionalized carbon nanotubes, recovery of radionuclides and separation of actinides and lanthanides
JP5761663B2 (ja) * 2010-11-12 2015-08-12 国立大学法人 宮崎大学 アルキルアミノリン化合物及び金属抽出剤

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012069573A1 (fr) * 2010-11-25 2012-05-31 Commissariat à l'énergie atomique et aux énergies alternatives Procede de separation de l'americium des autres elements metalliques presents dans une phase aqueuse acide ou organique et ses applications
CN102409172A (zh) * 2011-07-26 2012-04-11 中国科学院长春应用化学研究所 一种分离四价铈或四价铈与氟的方法
CN102994781A (zh) * 2012-12-18 2013-03-27 中国科学院长春应用化学研究所 一种钍的分离纯化方法
CN103789547A (zh) * 2014-01-15 2014-05-14 中国科学院长春应用化学研究所 一种离子液体萃淋树脂及其制备和应用方法
CN103773954A (zh) * 2014-01-27 2014-05-07 中国科学院长春应用化学研究所 中性磷酰胺萃取剂用于萃取分离Ce4+的用途
CN103924084A (zh) * 2014-03-21 2014-07-16 南通大学 一种利用季膦类离子液体回收废弃荧光粉中有价金属元素的方法
CN104087750A (zh) * 2014-07-14 2014-10-08 厦门稀土材料研究所 一种稀土的萃取分离方法
CN104131164A (zh) * 2014-08-19 2014-11-05 中国科学院长春应用化学研究所 中性磷酰胺萃取剂用于萃取分离钍的用途和方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115433842A (zh) * 2021-06-02 2022-12-06 中国科学院江西稀土研究院 含磷氨基酸化合物及其用于萃取分离钇的用途
CN115433842B (zh) * 2021-06-02 2024-04-30 中国科学院江西稀土研究院 含磷氨基酸化合物及其用于萃取分离钇的用途
CN114380683A (zh) * 2021-12-21 2022-04-22 安徽丰原发酵技术工程研究有限公司 一种从含乳酸钙的发酵液中提取乳酸的方法
CN114890450A (zh) * 2022-05-11 2022-08-12 湖南东方钪业股份有限公司 一种制备氧化钪的方法
CN114890450B (zh) * 2022-05-11 2024-03-26 湖南东方钪业股份有限公司 一种制备氧化钪的方法
CN114835300A (zh) * 2022-05-18 2022-08-02 浙江丝绸科技有限公司 一种捕捉剂萃淋树脂洗脱再生循环处理印染污水的方法

Also Published As

Publication number Publication date
CN105734288B (zh) 2019-07-19
CN105734288A (zh) 2016-07-06

Similar Documents

Publication Publication Date Title
WO2016090809A1 (zh) 含氨基中性膦萃取剂用于萃取分离四价铈的用途和方法
WO2016090808A1 (zh) 含氨基中性膦萃取剂用于萃取分离钍的用途和方法
JP5679159B2 (ja) 希土類金属抽出剤の合成方法、及び希土類金属の溶媒抽出用有機相
JP5487506B2 (ja) 希土類金属抽出剤の合成方法
Kuang et al. Extraction and separation of heavy rare earths from chloride medium by α-aminophosphonic acid HEHAPP
CN103773954B (zh) 中性磷酰胺萃取剂用于萃取分离Ce4+的用途
JPH09176757A (ja) 希土類元素の抽出
JP6573115B2 (ja) アミド化リン酸エステル化合物、抽出剤、及び抽出方法
WO2012005182A1 (ja) 希土類金属抽出剤の合成方法
CN104131164A (zh) 中性磷酰胺萃取剂用于萃取分离钍的用途和方法
CN112458282A (zh) 磷酰基羧酸或其盐用于分离钇的用途和方法
US20210261510A1 (en) Ionic Liquid Preparation
WO2017159372A1 (ja) スカンジウム精製方法
JP5569841B2 (ja) 希土類金属抽出剤の合成方法
CN105734287B (zh) 一种分离四价铈、钍和稀土的方法
CN112639142B (zh) 逆流稀土分离工艺
CN1514029A (zh) 一种从磷灰石中提取稀土的方法
CN107287419B (zh) 中性膦萃取剂用于萃取分离铈(iv)或钍(iv)的用途和方法
CN105734286B (zh) 分离铈‑氟和钍的方法
CN114540619B (zh) 一种功能离子液体及其制备方法和应用
CN115369267B (zh) 膦酰基羟基乙酸及其用于分离钇的用途和方法
CN116334390A (zh) 含胺基中性膦萃取剂萃取分离铟的用途和方法
CN117187562A (zh) 含氨基中性膦萃取剂用于萃取分离镓和铟的用途和方法
JPS58742B2 (ja) 希土類元素イオンの分離法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15867673

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15867673

Country of ref document: EP

Kind code of ref document: A1