WO2016088374A1 - ガラス組成物、ガラス板及び該ガラス板を用いた車両用ガラス窓 - Google Patents

ガラス組成物、ガラス板及び該ガラス板を用いた車両用ガラス窓 Download PDF

Info

Publication number
WO2016088374A1
WO2016088374A1 PCT/JP2015/005998 JP2015005998W WO2016088374A1 WO 2016088374 A1 WO2016088374 A1 WO 2016088374A1 JP 2015005998 W JP2015005998 W JP 2015005998W WO 2016088374 A1 WO2016088374 A1 WO 2016088374A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass plate
glass
ppm
coo
mass
Prior art date
Application number
PCT/JP2015/005998
Other languages
English (en)
French (fr)
Inventor
瀬戸 啓充
Original Assignee
日本板硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本板硝子株式会社 filed Critical 日本板硝子株式会社
Priority to US15/531,939 priority Critical patent/US11084753B2/en
Priority to EP19194942.9A priority patent/EP3594034B1/en
Priority to CN201580065363.6A priority patent/CN107001118B/zh
Priority to EP15864614.1A priority patent/EP3228603B1/en
Priority to JP2016562310A priority patent/JP6677650B2/ja
Publication of WO2016088374A1 publication Critical patent/WO2016088374A1/ja
Priority to US17/365,661 priority patent/US20210323858A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/08Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths
    • C03C4/085Compositions for glass with special properties for glass selectively absorbing radiation of specified wave lengths for ultraviolet absorbing glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J1/00Windows; Windscreens; Accessories therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/095Glass compositions containing silica with 40% to 90% silica, by weight containing rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2309/00Parameters for the laminating or treatment process; Apparatus details
    • B32B2309/08Dimensions, e.g. volume
    • B32B2309/10Dimensions, e.g. volume linear, e.g. length, distance, width
    • B32B2309/105Thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/006Transparent parts other than made from inorganic glass, e.g. polycarbonate glazings

Definitions

  • the present invention relates to a glass composition having a very low ultraviolet light transmittance and substantially preventing ultraviolet light transmission and having a medium visible light transmittance, and a relatively thin glass plate made of the glass composition.
  • the invention further relates to vehicles and buildings, in particular vehicle window panes.
  • Soda lime glass is used for window glass for vehicles and buildings.
  • Such a window glass is required to have a function of shielding ultraviolet rays from the viewpoint of preventing sunburn and discoloration of people and articles in the vehicle and indoors.
  • the soda lime glass absorbs ultraviolet rays by a technique based on absorption by trivalent iron oxide and absorption by ultraviolet absorbing components such as titanium oxide (TiO 2 ) and cerium oxide (CeO 2 ) added as necessary. (Patent Document 1).
  • the ultraviolet transmittance as an ultraviolet shielding function cannot be reduced to about 1.6% or less when the glass thickness is 4 mm.
  • the window glass for vehicles has a strong demand for weight reduction, and it is required to reduce the thickness of the glass plate.
  • a glass plate made of the glass composition of Patent Document 1 and having a thickness of less than 4 mm is insufficient in ultraviolet shielding ability. .
  • Patent Documents 2 and 3 a technique for obtaining ultraviolet shielding ability not on the glass plate itself but on a film having ultraviolet shielding ability (ultraviolet shielding film) formed on the glass plate.
  • a high ultraviolet shielding ability with an ultraviolet transmittance of less than 1% is obtained as a transmittance at a wavelength of 380 nm.
  • a process of forming a coating on the glass plate is essential, and the production cost is clearly higher than when the glass plate itself can satisfy the ultraviolet shielding ability.
  • the present invention is a composition comprising soda lime silicate glass, which is excellent in ultraviolet ray blocking properties and has a medium visible light transmittance, and a relatively thin glass composition.
  • An object of the present invention is to provide a glass plate, which can be used for a glass window for a vehicle and can substantially prevent the transmission of ultraviolet rays from sunlight.
  • the present invention is a glass plate comprising a glass composition containing soda-lime glass as a basic glass composition and containing iron oxide and TiO 2 as coloring components, and has a thickness of 1 to 5 mm, and ISO 9050: 1990 in that thickness.
  • An ultraviolet shielding glass plate having a prescribed ultraviolet transmittance (Tuv 380) of 1.5% or less is provided.
  • the present invention provides a tempered glass plate having a thickness of 1.0 to 3.5 mm that can prevent transmission of ultraviolet rays contained in sunlight.
  • the tempered glass plate of the present invention is 1.0 to 3.5 mm thick and has an ultraviolet transmittance (Tuv 380) of 1.5% or less and a visible light transmittance (YA) of 20 to 40%. .
  • % display which shows the content rate of each component is mass% except the case where it mentions specially, and the ratio of content rate is also described on a mass basis.
  • YA means the visible light transmittance measured using a CIE standard A light source
  • Tuv380 means the ultraviolet transmittance defined in ISO 9050: 1990
  • Tuv400 means the ultraviolet transmittance defined in ISO13837: 2008 convention A, respectively.
  • the transmittance is a value in a glass plate having a thickness described.
  • TG2500 means total solar energy transmittance measured at a wavelength of 300 to 2500 nm
  • % T1500 means light transmittance measured at a wavelength of 1500 nm.
  • DW means the dominant wavelength measured using a CIE standard C light source
  • Pe means the stimulation purity measured using a CIE standard C light source
  • a * and b * are JIS Z 8781-4: 2013
  • CIE 1976 (L * , a * , b * ) means chromaticness index (color coordinates) in the color space (CIELAB).
  • RO is used as a general term for MgO, CaO, SrO and BaO
  • R 2 O is used as a general term for Li 2 O, Na 2 O and K 2 O.
  • substantially free means that the content is less than 0.1% by mass, preferably less than 0.05% by mass, particularly preferably less than 0.01% by mass. Use as a term.
  • each component of the mother composition First, each component of the glass composition of this invention and the mother composition of a glass plate is demonstrated.
  • SiO 2 is a main component that forms a glass skeleton. Considering only the durability of the glass composition, SiO 2 may be contained in an amount of about 65% or more. If the content of SiO 2 is too high, it is difficult to melt the glass raw material. For this reason, the content of SiO 2 needs to be 85% or less, and in order to achieve both lower UV transmittance and 20-30% YA, the content of SiO 2 is 71% or less. Preferably there is.
  • B 2 O 3 is not an essential component, but is a component that may be contained up to 5% as a melting aid or the like. If the content of B 2 O is too high, production problems may occur due to its volatility. A preferred content of B 2 O 3 is less than 3.0%, in particular less than 2.0%. B 2 O 3 may not be substantially contained.
  • Al 2 O 3 The content of Al 2 O 3 is adjusted to a range of 0 to 5%.
  • the content of Al 2 O 3 is preferably 1.0% or more, and particularly preferably 1.2% or more.
  • the Al 2 O 3 content is too high, melting of the glass raw material tends to be difficult.
  • Al 2 O 3 also reduces the thermal expansion coefficient. Therefore, when the glass composition is heat strengthened (air cooling tempering), the content of Al 2 O 3 it is preferably 3.0% or less.
  • MgO The MgO content is adjusted to a range of 0 to 20%.
  • MgO is a component that contributes to improving the durability of the glass composition and can be used to adjust the devitrification temperature and viscosity. If the content of MgO is too high, the devitrification temperature may increase and mass production by the float method may not be possible.
  • the MgO content is preferably 3 to 10%.
  • CaO The CaO content is adjusted to a range of 0 to 20%.
  • CaO is a component that contributes to improving the durability of the glass composition and can be used to adjust the devitrification temperature and viscosity, although the degree of influence is different from that of MgO. If the CaO content is too low, the viscosity of the glass melt may become too high, which may cause inconvenience in the clarification of the melt.
  • the content of CaO is preferably 5 to 15%.
  • SrO, BaO are not essential components, but as components that contribute to improving the durability of the glass composition, etc., each component may be contained up to 1.0%, preferably up to 0.5%. It is.
  • SrO and BaO it is necessary to use a relatively expensive raw material as compared with CaO or the like. Care should be taken in handling BaO. For this reason, SrO and BaO do not need to be substantially contained, respectively.
  • the RO content (the total content of MgO, CaO, SrO and BaO) is 20% or less, preferably 15% or less.
  • the lower limit of the RO content is not particularly limited, but is usually 5% or more, and more preferably 10% or more from the viewpoint of obtaining the above-described preferable effects of MgO and CaO.
  • Li 2 O, Na 2 O, K 2 O are alkali metal oxides and are components useful for melting glass raw materials as melting accelerators.
  • Na 2 O is an alkali metal oxide that is desirably used from the viewpoint of manufacturing cost.
  • the content of Na 2 O is adjusted to a range of 10 to 20%.
  • the content of Na 2 O is preferably 10 to 15%.
  • K 2 O is an optional component and may be contained up to 5%, preferably up to 2%.
  • the content of K 2 O may be, for example, 0.5 to 2.0%.
  • Li 2 O is also an optional component and may be contained up to 1.0%. Li 2 O may not be substantially contained.
  • R 2 O The content of R 2 O (the total content of Li 2 O, Na 2 O and K 2 O) is adjusted to a range of 10 to 20%.
  • the content of R 2 O is preferably in the range of 10 to 15%. If the content of R 2 O is too high, the durability of the glass composition may be reduced.
  • (SO 3 ) SO 3 is a component that may be contained up to 0.5% as an optional component that promotes glass refining.
  • the content of SO 3 is preferably in the range of 0.05 to 0.5%. If the content of SO 3 is too high, SO 2 produced by the decomposition may remain in the glass composition as bubbles, or bubbles may be generated due to reboil.
  • the content of SO 3 is more preferably 0.05 to 0.25%.
  • SO 3 is usually introduced into the glass composition by adding a sulfate as a fining agent to a part of the glass raw material.
  • each coloring component in the glass composition and glass plate of the present invention will be described.
  • Fe 2 O total iron oxide content in terms of 3 and a T-Fe 2 O 3 content of from implementing what is 3.0% or less 2.0% or more forms I and called the content of T-Fe 2 O 3 is total iron oxide content in terms of Fe 2 O 3 is referred to as embodiment II what is less than 2.0% to 1.0%.
  • T-Fe 2 O 3 in terms of their total amount in the Fe 2 O 3 in the glass composition is adjusted to the range of 1.0 to 3.0%. If the content of T—Fe 2 O 3 is too high, the radiant heat of the flame is significantly absorbed by the upper surface portion of the molten glass when the glass raw material is melted, and it is impossible to sufficiently heat the vicinity of the bottom of the kiln.
  • the content of T—Fe 2 O 3 is 2.0% to 3.0%, preferably 2.1% to 3.0%, and preferably 2.3% to 2.9. % Or less is more preferable, and more than 2.4% and 2.9% or less are more preferable.
  • the content of T—Fe 2 O 3 is 1.0% or more and less than 2.0%, preferably 1.2% or more and 1.8% or less. Further, the content of T—Fe 2 O 3 in the glass plate is adjusted to a range of 2.5 to 25 mg per 1 cm 2 of the glass plate.
  • the content of T—Fe 2 O 3 in the glass plate is preferably 14.0 mg or more and 25.0 mg or less, and 14.0 mg or more and 21.0 mg or less per 1 cm 2 of the glass plate. More preferably, it is 16.0 mg or more and 20.8 mg or less, and particularly preferably 18.0 mg or more and 20.8 mg or less.
  • the content of T—Fe 2 O 3 in the glass plate is preferably 2.5 mg or more and less than 14.0 mg / cm 2 of the glass plate, and preferably 7.0 mg or more and 13.4 mg or less. More preferably, it is 8.0 mg or more and 12.0 mg or less.
  • FeO ratio The ratio of FeO content converted to Fe 2 O 3 to T-Fe 2 O 3 content (FeO ratio) is adjusted to 5 to 30%. If the FeO ratio is too high, silica-rich streaks and silica scum are likely to occur in the molten glass material. On the other hand, a high FeO ratio is advantageous for improving the near infrared absorption function.
  • the FeO ratio is preferably 20 to 30%. In the embodiment II, the FeO ratio is preferably 6 to 29%.
  • TiO 2 is one of the components having an ultraviolet absorption function and is an essential component. TiO 2 has a color tone adjustment function for adjusting the color tone of a glass having a high FeO ratio from a bluish color to a greenish color. However, when the content of TiO 2 increases, the glass composition tends to be yellowish. For this reason, the content of TiO 2 in the glass composition needs to be 0.2 to 2.2%. Further, the content of TiO 2 in Embodiment I needs to be 0.9 to 2.2%, preferably 1.3 to 2.1%, and preferably 1.5 to 2.1%. More preferably, it is 1.8 to 2.0%.
  • the content of TiO 2 in Embodiment II is preferably 0.3 to 1.8%, more preferably 0.4 to 1.8%. Further, the content of TiO 2 in the glass plate needs to be 0.5 to 25 mg per 1 cm 2 of the glass plate, and in Embodiment I, 3 to 25 mg per 1 cm 2 of the glass plate is required. It is preferably ⁇ 25 mg, more preferably 8 to 23 mg, and even more preferably 10 to 20 mg.
  • the dose is preferably 0.5 to 15 mg, more preferably 3.0 to 15 mg, and even more preferably 4.0 to 13 mg.
  • the amount is preferably 5.0 to 15 mg, more preferably 5.0 to 14 mg, and further preferably 5.0 to 13 mg per 1 cm 2 of the glass plate.
  • CeO 2 is also one of the components that can have an ultraviolet absorbing function, and is an essential component in the embodiment II.
  • the addition of CeO 2 causes an increase in raw material costs. Therefore, the CeO 2 content in the glass composition needs to be 0.2 to 2.0%, and preferably 0.2 to 1.5%.
  • the CeO 2 content in the glass plate is preferably 0.5 to 15 mg, more preferably 2.0 to 13 mg, and further preferably 3.0 to 12 mg per cm 2 of the glass plate. .
  • In embodiments I preferably contains no CeO 2.
  • Total content of T-Fe 2 O 3 , TiO 2 and CeO 2 The total content of T—Fe 2 O 3 , TiO 2 and CeO 2 in the glass composition (T—Fe 2 O 3 + TiO 2 + CeO 2 ) needs to be more than 3.0% and not more than 6.0% In order to achieve a lower UV transmittance, it is preferably 3.2 to 5.5%, more preferably 3.5 to 5.8%, and even more preferably 4.0 to 5.0%. In Embodiment I, the total content of T—Fe 2 O 3 , TiO 2 and CeO 2 is preferably 3.2 to 5.5% in order to achieve a lower ultraviolet transmittance, and 3.5 to 5.0% is more preferable.
  • the total content of T-Fe 2 O 3 and TiO 2 in the glass composition needs to be 3.2 to 5.5% in order to achieve low UV transmittance Further, it is preferably 3.2 to 5.0%.
  • Total content of TiO 2 and CeO 2 In the embodiment II, in order to achieve a low ultraviolet transmittance, the total content of TiO 2 and CeO 2 in the glass composition needs to be 1.7% or more, and further 2% or more. It is preferable that Further, the total content of TiO 2 and CeO 2 in the glass plate is preferably 5 mg or more per 1 cm 2 of the glass plate, more preferably 10 to 30 mg, and further preferably 13 to 20 mg.
  • CoO Cobalt oxide
  • CoO Cobalt oxide converted to CoO is one of the essential components for adjusting the transmission color tone of the glass plate to a neutral color.
  • CoO is a component for obtaining a color tone close to a neutral color by coexisting with Se and / or NiO and Fe 2 O 3, and is also a component for controlling visible light transmittance, and is contained in a glass composition
  • the ratio must be 50 to 300 ppm in terms of mass ppm. If the CoO content is below the above range, a desired color tone cannot be obtained, and if it exceeds the above range, the color tone becomes too bluish and visible light is visible. The transmittance is also reduced.
  • the CoO content is 50 to 160 ppm, preferably 50 to 155 ppm, and more preferably 80 to 140 ppm.
  • the CoO content is 150 to 300 ppm, preferably 180 to 280 ppm, and more preferably 205 to 261 ppm.
  • the content of CoO in the glass plate is preferably 37.5 to 255 ⁇ g per 1 cm 2 of the glass plate.
  • the content of CoO is more preferably 40 to 160 ⁇ g, and further preferably 45 to 140 ⁇ g per cm 2 of glass plate.
  • the content of CoO is more preferably from 100 to 200 ⁇ g, and even more preferably from 150 to 190 ⁇ g per cm 2 of glass plate.
  • the T—Fe 2 O 3 / CoO ratio is preferably 149 or more, more preferably 149 to 450, and even more preferably 150 to 350.
  • the T—Fe 2 O 3 / CoO ratio is preferably 40 to 90, more preferably 45 to 80.
  • NiO NiO is an optional component that is a component for adjusting the visible light transmittance together with CoO and reducing the stimulation purity. Therefore, in both Embodiment I and Embodiment II, it may be included or not included. However, when the content of NiO is high, the visible light transmittance is lowered, and the color tone is not preferable because the green color becomes too strong. Nickel sulfide stones can also be produced in the product. For this reason, in the glass composition of Embodiment I, in order to suppress the fall of visible light transmittance
  • NiO having a concentration of 50 ppm or less, preferably 30 ppm or less may be contained because the decrease in visible light transmittance is negligible.
  • the content of NiO in the glass plate of Embodiment I is preferably 50 ⁇ g or less and preferably 30 ⁇ g or less per 1 cm 2 of the glass plate.
  • the content of NiO in the glass composition of Embodiment II needs to be 200 ppm or less in terms of mass ppm, preferably 50 to 200 ppm, more preferably 70 to 180 ppm, and still more preferably 80 to 160 ppm.
  • the content of NiO in the glass plate of Embodiment II is preferably 150 ⁇ g or less per 1 cm 2 of the glass plate, more preferably 50 to 150 ⁇ g, and further preferably 60 to 140 ⁇ g.
  • (Se) Se is also a component for adjusting the transmission color tone of the glass plate to a neutral color, and is one of the essential components in the embodiment II. Se is a component for reducing the stimulation purity in combination with the complementary color of CoO by pink coloration. However, as the Se content increases, the YA of the glass plate decreases.
  • the content of Se is preferably 0 to 2 ppm in mass ppm, and more preferably not contained.
  • the Se content in the glass composition of Embodiment II is required to be 8 to 35 ppm in terms of mass ppm, and preferably 9 to 34 ppm. Further, in Embodiment II, the Se content in the glass plate is preferably 2.5 to 30 ⁇ g, more preferably 5 to 25 ⁇ g, more preferably 10 to 20 ⁇ g per 1 cm 2 of the glass plate. preferable.
  • NiO / Se ratio The NiO / Se content ratio NiO / Se ratio described above needs to be 0 to 15 in terms of mass ratio. This is because if this ratio is greater than 15, the color tone becomes too strong. In the embodiment including NiO, this ratio is preferably 5 to 12, more preferably 5.5 to 11.0, and further preferably 5.9 to 9.9.
  • the glass composition according to the present invention may contain other trace components together with the above components.
  • the trace component include Mo 2 O 3 , ZnO, and SnO 2 .
  • the total of the minor components is particularly preferably 5.0% or less, more preferably 2.0% or less, and 1.0% or less.
  • a more preferable upper limit of the content of each trace component is 0.01% for Mo 2 O 3, 0.1% for ZnO, and 1.0% for SnO 2.
  • the glass composition according to the present invention preferably contains substantially no components other than the above components and the respective trace components, and contains components other than the above components (components from SiO 2 to Se described in order above). You may not contain substantially.
  • the content of the metal oxide that can take a plurality of valences in the glass composition is converted into the oxide having the valence described in this specification, excluding the oxide of iron. To calculate.
  • the UV transmittance defined in ISO 9050: 1990 is adopted as Tuv380 (ultraviolet transmittance)
  • the UV transmittance defined in ISO13837: 2008 convention A is adopted as Tuv400 (ultraviolet transmittance).
  • the visible light transmittance measured based on JIS R3106: 1998 using a CIE standard A light source as (visible light transmittance) is adopted, and the solar transmittance based on JIS R3106: 1998 is adopted as TG (sunlight transmittance). Is adopted.
  • Tuv400 In obtaining the ultraviolet transmittance of each of Tuv380 and Tuv400, the wavelength range of the ultraviolet rays of sunlight as a measurement range is different. Therefore, in Tuv380 and Tuv400, Tuv400 can evaluate the ultraviolet shielding property to a longer wavelength region.
  • YA is about 20 to 30%
  • Tuv 380 is 1.5% or less
  • UV transmission can be substantially prevented.
  • a glass plate having a thickness in the range of -3.5 mm, preferably 1.5-3.0 mm, more preferably in the range of 2.0-3.0 mm is provided.
  • the glass composition according to the present invention is usually formed into a glass plate having a predetermined thickness by a mass production facility represented by a float process, and is manufactured by slow cooling. The chemical strengthening process is applied.
  • the glass plate according to an embodiment of the present invention has a Tuv 380 of 1.5% or less, preferably 1.0% or less, more preferably 0.8% or less. Does not require a special coating.
  • a window of a vehicle or a building using a glass plate whose Tuv 380 is 1.0% or less has a performance capable of substantially blocking the transmission of ultraviolet rays contained in sunlight irradiated from the outside. Specifically, this window was irradiated with reference sunlight defined in JIS C8904: 2011 (this reference sunlight is air mass 1.5, and integrated illuminance in all wavelength regions is 1 kW ⁇ m ⁇ 2 ).
  • the illuminance of ultraviolet rays in the wavelength range of 400 nm or less reaching the vehicle or indoors can be set to 0.45 W ⁇ m ⁇ 2 or less.
  • the occurrence of sunburn can be effectively prevented.
  • a vehicle using this glass plate for windows of all openings can substantially prevent ultraviolet rays from reaching the inside of the vehicle regardless of changes in the direction of the vehicle or the sun direction, and is effective in preventing sunburn. .
  • Tuv 380 tends to decrease due to air cooling strengthening. Therefore, the glass plate tempered by air cooling according to the present invention can more effectively prevent the transmission of ultraviolet rays.
  • the Tuv400 of the glass plate of one embodiment of the present invention is preferably 5.0% or less, more preferably 2.0% or less. Therefore, the glass plate of the present invention is also excellent in light blocking ability in the ultraviolet long wavelength region.
  • YA of the glass plate of one embodiment of the present invention is 20 to 40%, preferably 20 to 35%.
  • the windows of vehicles and buildings using a glass plate having a medium YA can easily see the outside from the inside of the vehicle or indoors, but it is difficult to visually recognize the inside or inside of the vehicle from the outside. It can be prevented from being peeped from, and privacy is high.
  • This high privacy is suitable for a rear window of a vehicle or an automobile, particularly a window glass of a rear door, a rear triangular window glass, or a rear glass of a passenger car.
  • the lower limit value of YA is regulated for each part according to laws and regulations. Specifically, YA is required to be 70% or more with respect to the windshield, the front door window glass, and the front triangular window glass.
  • the tempered glass plate of the present invention is used for the rear door window glass, the rear triangular window glass, and the rear glass, and the front door window glass and the front triangular window glass are patented, for example. It is possible to provide a vehicle using a glass sheet with a coating of Document 2 or 3 and a laminated glass using a known intermediate film as a windshield.
  • TG is an index indicating the transmittance of solar radiation energy. Therefore, the one where TG is low can reduce the energy of the solar radiation which passes a glass plate, and can suppress the raise of the temperature inside the vehicle of a vehicle using the glass plate, or the room
  • the TG of the glass plate of one embodiment of the present invention is preferably 10 to 45%, preferably 15 to 45%, and more preferably 20 to 30% or less. It is effective.
  • Air cooling strengthening is a well-known treatment that improves the strength of a glass plate by heating the glass plate and then rapidly cooling it by blowing a gas onto the surface of the glass plate to form a compressive stress layer on the surface. It is.
  • the heating temperature of the glass plate is typically not less than the strain point and not more than the softening point of the glass composition constituting the glass plate.
  • a tempered glass plate having a thickness of 1.0 to 3.5 mm obtained by air-cooling tempering a glass plate comprising the glass composition according to the present invention.
  • Tuv 380 of a glass plate made of the glass composition according to the present invention basically shows a tendency to be lowered by the air cooling strengthening treatment.
  • the value of a * is preferably -15.0 to -3.0, more preferably -14.0 to -4.0.
  • the value of b * is preferably -10.0 to 30.0, more preferably -8.0 to 25.0.
  • the magnitude of the compressive stress existing on the surface of the tempered glass plate is, for example, 80 to 140 MPa, particularly 90 to 110) MPa.
  • the present invention is a laminated glass plate including a first glass plate, an interlayer film for laminated glass, and a second glass plate, wherein at least one of the first glass plate and the second glass plate is the ultraviolet ray described above.
  • a laminated glass plate which is a shielding glass plate.
  • the other glass plate may be a conventionally known glass (for example, ordinary colorless soda lime glass).
  • This invention provides the window glass for vehicles containing the above-mentioned tempered glass board or the above-mentioned laminated glass board.
  • a window glass for vehicles it is particularly suitable for a window glass of a rear door, a rear triangle window glass, and a rear glass in a passenger car.
  • the glass raw material batch was obtained by blending. This batch was melted at 1450 ° C. using an electric furnace, held for 4 hours, and then poured out onto a stainless steel plate. The glass plate thus obtained was held in a slow cooling furnace maintained at 650 ° C. for 30 minutes, and then turned off and slowly cooled to room temperature in the furnace. The cooling rate between 650 and 550 ° C. in this slow cooling was about 0.1 ° C./second. The obtained slowly cooled glass plate was polished to a predetermined thickness.
  • each slowly cooled glass plate was subjected to air cooling strengthening treatment.
  • the air cooling strengthening treatment was carried out by holding the glass plate in an electric furnace set at 700 ° C. for 180 seconds and then rapidly cooling the glass plate taken out of the electric furnace by blowing air at room temperature.
  • the cooling rate in this rapid cooling was 80 to 100 ° C./second in the temperature range of 650 to 550 ° C.
  • a surface compressive stress in the range of 90 to 110 MPa was applied to the obtained tempered glass plate.
  • Visible light transmittance YA
  • total solar energy transmittance TG
  • ultraviolet transmittance defined by ISO
  • CIE standard A light source for each glass plate (annealed glass plate, tempered glass plate) (Tuv380 and Tuv400), dominant wavelength (DW), stimulation purity (Pe) and chromaticity (a * , b * ) of L * a * b * color system measured using CIE standard C light source .
  • Table 2 and Table 4 show the measured physical property values. The total content in the table may not be 100% due to the difference in effective digits and the effect of rounding off.
  • composition analysis The composition of the obtained sample glass was quantitatively analyzed using fluorescent X-ray analysis and chemical analysis. The results are shown in Tables 1 and 3.
  • Comparative Example 1 does not contain CeO 2 , so that even if the thickness is 4 mm, Tuv 380 is 1.6%, which is 1.0 to 3.5 mm. Even in the thickness of Tv380 ⁇ 1.5% could not be achieved.
  • Examples 1 to 13, 20, 21, and 23 to 25 at a certain thickness of 2.5 to 3.5 mm, 1.0% or less of Tuv380 and 20 to 30% of YA can be made compatible. did it. Further, in Examples 1 to 13, 20, 21, and 23 to 25, Tuv400 of 5.0% or less could be realized at the same time. In particular, in Examples 6, 7, 23, and 25, although the thickness was 2.5 mm, Tuv 380 was able to be 0.6% or less. In Examples 6, 7, 23, and 25, Tuv400 could be further reduced to 3.0% or less.
  • Examples 6, 10, and 13 had thicknesses of 2.5 mm, 3.5 mm, and 2.8 mm, respectively, and showed extremely high ultraviolet shielding ability when Tuv 380 and Tuv 400 were 1.0% or less.
  • Tuv 380 can be further lowered from the slow-cooled glass plate without greatly changing YA, and at a thickness of 2.5 to 3.5 mm, 1.
  • a Tuv380 of 5% or less could be obtained.
  • a Tuv 400 of 5.0% or less can also be realized at the same time.
  • the Tuv 400 is further set to 2.0% or less.
  • Tuv400 could be further reduced to 1.0% or less.
  • each glass plate with a thickness of 3.5 mm obtained using the glass compositions shown in Examples 23 and 25 all are tempered glass plates having a Tuv400 of 0.8%, strengthened by air cooling strengthening. Tuv400 on the glass plate is 0.7%. That is, the tempered glass plate of the present invention can realize extremely high UV shielding performance of UV transmittance of 1.0% or less with respect to both indicators of Tuv380 and Tuv400 as UV transmittance.
  • Tuv380 and Tuv400 are reduced without greatly changing YA. It is thought that you can. Particularly, in Examples 1, 3 to 6, 8, and 9, it is considered that both Tuv380 and Tuv400 can realize 1.0% or less.
  • a glass plate made of the glass composition according to the present invention has a thickness of 1.0 to 3.5 mm, a medium visible light transmittance of YA of 20 to 35%, and a Tuv380 of 1 in ISO 9050: 1990. Combined with extremely low UV transmittance of 5% or less.
  • This glass plate is preferably a tempered glass plate, and is a member that is desired to substantially prevent the transmission of ultraviolet rays as a window glass, such as a window glass for vehicles and buildings, particularly a window glass for a rear door in a passenger car, Suitable for rear triangular window glass and rear glass.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Glass Compositions (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)
  • Joining Of Glass To Other Materials (AREA)

Abstract

 本発明は、ソーダ石灰ガラスを基礎ガラス組成とし、着色成分として酸化鉄及びTiOを含むガラス組成物からなるガラス板であって、厚さ1~5mmであり、その厚さにおけるISO9050:1990に規定される紫外線透過率(Tuv380)が1.5%以下である、紫外線遮蔽ガラス板に関する。

Description

ガラス組成物、ガラス板及び該ガラス板を用いた車両用ガラス窓
 本発明は、紫外線透過率が極めて低く実質的に紫外線の透過を阻止でき、可視光透過率が中程度であるガラス組成物、及びそのガラス組成物からなる比較的厚さが薄いガラス板に関する。本発明は、さらに、車両及び建築物、特に車両の窓ガラスに関する。
 車両用及び建築物用の窓ガラスにはソーダライムガラスが用いられている。こうした窓ガラスには、車内・室内の人や物品が日焼け・退色するのを防止する観点から、紫外線を遮蔽する機能が求められている。
 ソーダライムガラスにおける紫外線の吸収機能は、三価の酸化鉄による吸収と共に、必要に応じて添加される酸化チタン(TiO)や酸化セリウム(CeO)等の紫外線吸収成分による吸収に基づく技術が開示されている(特許文献1)。
 しかしながら、特許文献1に開示されているガラス組成物では、紫外線遮蔽機能としての紫外線透過率が、ガラスの厚さが4mmにおいて1.6%程度以下にすることができていない。特に車両用窓ガラスは軽量化の要求が強く、ガラス板の厚さをより薄くすることが求められ、特許文献1のガラス組成物からなる4mmより薄いガラス板では、紫外線遮蔽能がより不足する。
 この課題を解決するために、紫外線遮蔽能をガラス板そのものではなく、ガラス板の上に形成する紫外線遮蔽能を有する膜(紫外線遮蔽膜)に求める術が開示されている(特許文献2,3)
 特許文献2,3に開示されている被膜付きガラスでは、波長380nmにおける透過率として紫外線透過率が1%を下回る高い紫外線遮蔽能が得られてはいる。しかし、ガラス板に被膜を形成する工程が必須であり、ガラス板そのもので紫外線遮蔽能を満たせる場合より製造コストは明らかに高い。
特開平10-114540号公報 特開2011-136846号公報 国際公開第2010/131744号
 そこで、本発明は、ソーダライムシリケートガラスからなる組成物であって、紫外線の透過の阻止特性に優れ、中程度の可視光透過率を備えるガラス組成物、及びそのガラス組成物からなる比較的薄いガラス板であって、車両用ガラス窓に用いて、太陽光からの紫外線の透過を実質的に阻止できるガラス板を提供することを目的とする。
 本発明は、ソーダ石灰ガラスを基礎ガラス組成とし、着色成分として酸化鉄及びTiOを含むガラス組成物からなるガラス板であって、厚さ1~5mmであり、その厚さにおけるISO9050:1990に規定される紫外線透過率(Tuv380)が1.5%以下である、紫外線遮蔽ガラス板を提供する。紫外線遮蔽ガラス板としては、
 質量%で表わして、
  SiO:65~85%、
  B:0~5%、
  Al:0~5%、
  MgO:0~20%、
  CaO:0~20%、
  NaO:10~20%、
  KO:0~5%、
  SO:0~0.5%、
を母組成として含み、かつ
着色成分として
 質量%で表わして、
  TiO:0.2~2.0%、
  Feに換算した全酸化鉄含有量であるT-Fe:1.0~3.0%、
 質量ppmで表わして、
  CoOに換算したコバルトの酸化物(CoO):50~300ppm、
を含むガラス組成物からなる、紫外線遮蔽ガラス板が好ましい。また、ガラス組成物としては、質量%で表わして、
  SiO:65~71%、
  B:0~5%、
  Al:1~3%、
  MgO:3~10%、
  CaO:5~15%、
  NaO:10~15%、
  KO:0.5~2%、
  SO:0~0.5%、
を母組成として含むものがより好ましい。さらに、本発明は、太陽光に含まれる紫外線の透過を阻止することができる厚さ1.0~3.5mmの強化ガラス板を提供する。
 本発明によれば、厚さが1.0~3.5mmと薄い場合であっても、付加的なコーティングに拠ることなく、太陽光からの紫外線の透過を実質的に阻止できるガラス組成物及びそのガラス組成物からなるガラス板が提供される。さらに本発明の強化ガラス板は、1.0~3.5mm厚さであって、1.5%以下の紫外線透過率(Tuv380)と、20~40%の可視光透過率(YA)を有する。
 以下は、本発明の実施形態に関する説明であって本発明を説明した対象に限定する趣旨ではない。以下では、各成分の含有率を示す%表示は、特記する場合を除きすべて質量%であり、含有率の比も質量基準で記述する。YAはCIE標準のA光源を用いて測定した可視光透過率を、Tuv380はISO9050:1990に定める紫外線透過率を、Tuv400はISO13837:2008 convention Aに定める紫外線透過率を、それぞれ意味し、これらの透過率は各々記載する厚さのガラス板における値である。TG2500は波長300~2500nmで測定した全太陽光エネルギー透過率を意味し、%T1500は波長1500nmで測定した光線透過率を意味する。DWはCIE標準のC光源を用いて測定した主波長を意味し、PeはCIE標準のC光源を用いて測定した刺激純度を意味し、a*及びb*はJIS Z 8781-4:2013に規定されるCIE 1976(L*,a*,b*)色空間(CIELAB)におけるクロマティクネス指数(色座標)を意味する。
 また、ROはMgO、CaO、SrO及びBaOの総称として、ROはLiO、NaO及びKOの総称として使用する。さらに、本明細書において「実質的に含まれていない」は、含有率が0.1質量%未満、好ましくは0.05質量%未満、特に好ましくは0.01質量%未満であることを示す用語として使用する。
[母組成の各成分]
 まず、本発明のガラス組成物及びガラス板の母組成の各成分について説明する。
(SiO
 SiOはガラス骨格を形成する主成分である。ガラス組成物の耐久性のみを考慮すると、SiOは65%程度以上含まれていればよい。SiOの含有率が高すぎるとガラス原料の溶融が困難となる。このため、SiOの含有率は85%以下である必要があり、さらに、より低い紫外線透過率と20~30%のYAとを両立させるためには、SiOの含有率は71%以下であることが好ましい。
(B
 Bは、必須成分ではないが、溶融助剤等として5%を限度として含まれていてよい成分である。BOの含有率が高すぎると、その揮発性により製造上の問題が生じることがある。Bの好ましい含有率は、3.0%未満、特に2.0%未満である。Bは実質的に含まれていなくてもよい。
(Al
 Alの含有率は0~5%の範囲に調整される。ROの含有率が低い組成では、ガラス組成物の耐久性の低下を補う観点から、Alの含有率は、1.0%以上が好ましく、1.2%以上が特に好ましい。ただし、Alの含有率が高すぎるとガラス原料の溶融が困難になりやすい。また、Alは熱膨張係数を低下させる。このため、ガラス組成物を熱強化(風冷強化)する場合、Alの含有率は3.0%以下が好ましい。
(MgO)
 MgOの含有率は0~20%の範囲に調整される。MgOは、ガラス組成物の耐久性の向上に寄与し、失透温度及び粘度の調整に使用できる成分である。MgOの含有率が高すぎると、失透温度が上昇してフロート法による量産ができなくなることがある。具体的にはMgOの含有率は、3~10%が好ましい。
(CaO)
 CaOの含有率は0~20%の範囲に調整される。CaOも、MgOとはその影響の程度が相違するものの、ガラス組成物の耐久性の向上に寄与し、失透温度及び粘度の調整に使用できる成分である。CaOの含有率が低すぎるとガラス融液の粘性が高くなりすぎて融液の清澄に不都合をきたす場合がある。CaOの含有率は、5~15%が好ましい。
(SrO、BaO)
 SrO及びBaOは、必須成分ではないが、ガラス組成物の耐久性の向上等に寄与する成分として、それぞれ1.0%を限度として、好ましくは0.5%を限度として含まれていてよい成分である。SrOとBaOの添加には、CaO等と比較して相対的に高価な原料を使用する必要がある。BaOについてはその取扱いに注意を要する。このため、SrO及びBaOは、それぞれ、実質的に含まれていなくてもよい。
(RO)
 ROの含有率(MgO、CaO、SrO及びBaOの含有率の合計)は20%以下、好ましくは15%以下である。ROの含有率の下限は、特に限定されないが、前述のMgO、CaOの好ましい効果を得る点からは、通常は5%以上、さらには10%以上である。
 さらに、SrO及びBaOを実質的に含まない、ガラス組成物としてもよい。
(LiO、NaO、KO)
 LiO、NaO及びKOは、アルカリ金属酸化物であり、溶融促進剤としてガラス原料の溶融に役立つ成分である。NaOは、製造コストの観点から使用が望ましいアルカリ金属酸化物である。NaOの含有率は10~20%の範囲に調整される。NaOの含有率は10~15%が好ましい。
 KOは、任意成分であり、5%を限度として、好ましくは2%を限度として、含まれていてもよい。KOの含有率は、例えば0.5~2.0%であってもよい。
 また、LiOも、任意成分であり、1.0%を限度として含まれていてもよい。LiOは実質的に含まれていなくてもよい。
(RO)
 ROの含有率(LiO、NaO及びKOの含有率の合計)は、10~20%の範囲に調整される。ROの含有率は10~15%の範囲が好ましい。ROの含有率が高すぎるとガラス組成物の耐久性が低下する場合がある。
(SO
 SOは、ガラスの清澄を促進する任意成分として、0.5%を限度として含まれていてもよい成分である。SOの含有率は0.05~0.5%の範囲が好ましい。SOの含有率が高すぎると、その分解により生成したSOが泡としてガラス組成物に残留したり、リボイルにより泡が発生したりすることがある。SOの含有率は0.05~0.25%がさらに好ましい。SOは、通常、ガラス原料の一部に清澄剤として硫酸塩を添加することによりガラス組成物に導入される。
[着色成分]
 つぎに、本発明のガラス組成物及びガラス板における各着色成分について説明する。以下、特に好適な実施形態として、Feに換算した全酸化鉄含有量であるT-Feの含有率が2.0%以上3.0%以下であるものを実施形態Iと称し、Feに換算した全酸化鉄含有量であるT-Feの含有率が1.0%以上2.0%未満であるものを実施形態IIと称する。
(酸化鉄)
 酸化鉄は、ガラス組成物中ではFe又はFeOとして存在し、Feは紫外線を吸収する機能を有し、FeOは近赤外線を吸収する機能を有する。ガラス組成物においてこれらの総量をFeに換算したT-Feは1.0~3.0%の範囲に調整される。T-Feの含有率が高すぎると、ガラス原料を溶融する際に炎の輻射熱が溶融ガラスの上面部で著しく吸収されて窯底部付近まで十分に加熱できなくなる。実施形態Iにおいて、T-Feの含有率は、2.0%以上3.0%以下であり、2.1%以上3.0%以下が好ましく、2.3%以上2.9%以下がより好ましく、2.4%超2.9%以下がさらに好ましい。実施形態IIにおいて、T-Feの含有率は、1.0%以上2.0%未満であり、1.2%以上1.8%以下が好ましい。さらに、ガラス板におけるT-Feの含有量は、ガラス板1cm2当たり2.5~25mgの範囲に調整される。実施形態Iにおいて、ガラス板におけるT-Feの含有量は、ガラス板1cm2当たり14.0mg以上25.0mg以下であることが好ましく、14.0mg以上21.0mg以下であることがより好ましく、16.0mg以上20.8mg以下であることがさらに好ましく、18.0mg以上20.8mg以下であることが特に好ましい。実施形態IIにおいて、ガラス板におけるT-Feの含有量は、ガラス板1cm2当たり2.5mg以上14.0mg未満であることが好ましく、7.0mg以上13.4mg以下であることがより好ましく、8.0mg以上12.0mg以下であることがさらに好ましい。
 Feに換算したFeO含有率の、T-Fe含有率に対する比(FeO比)は、5~30%に調整される。FeO比が高すぎると、溶融したガラス原料にシリカリッチの筋やシリカスカムを生じやすくなる。一方、高いFeO比は近赤外線の吸収機能の向上に有利である。実施形態Iにおいて、FeO比は、20~30%が好ましい。実施形態IIにおいて、FeO比は、6~29%が好ましい。
(TiO
 TiOは、紫外線の吸収機能を担う成分の1つであり、必須成分である。TiOは、FeO比が高いガラスの色調を青味がかった色から緑がかった色へと調整する色調の調整機能を有する。ただし、TiOの含有率が高くなるとガラス組成物が黄色味を帯びやすくなる。このため、ガラス組成物におけるTiOの含有率は、0.2~2.2%であることが必要である。また、実施形態IにおけるTiOの含有率は、0.9~2.2%であることが必要で、1.3~2.1%であることが好ましく、1.5~2.1%あることがより好ましく、1.8~2.0%であることがさらに好ましい。実施形態IIにおけるTiOの含有率は、0.3~1.8%であることが好ましく、0.4~1.8%であることがより好ましい。さらにガラス板におけるTiOの含有量は、ガラス板1cm2当たり0.5~25mgであることが必要で、実施形態Iにおいては、ガラス板1cm2当たり3~25mgであることが必要で、5~25mgであることが好ましく、8~23mgであることがより好ましく、10~20mgであることがさらに好ましい。また、実施形態IIにおいては、0.5~15mgであることが好ましく、3.0~15mgであることがより好ましく、4.0~13mgであることがさらに好ましい。また、実施形態IIにおいては、ガラス板1cm2当たり5.0~15mgであることが好ましく、5.0~14mgであることがより好ましく、5.0~13mgであることがさらに好ましい。
(CeO
 CeOも、紫外線の吸収機能を担いうる成分の1つであり、実施形態IIにおいては必須成分である。ただし、CeOの添加は原料コストの増加を招く。このため、ガラス組成物におけるCeOの含有率は、0.2~2.0%であることが必要で、0.2~1.5%であることが好ましい。さらにガラス板におけるCeOの含有量は、ガラス板1cm2あたり0.5~15mgであることが好ましく、2.0~13mgであることがより好ましく、3.0~12mgであることがさらに好ましい。実施形態Iにおいては、CeOを含まないことが好ましい。
(T-Fe、TiO及びCeOの含有率の合計)
 ガラス組成物におけるT-Fe、TiO及びCeOの含有率の合計(T-Fe+TiO+CeO)は、3.0%超6.0%以下であることが必要であり、より低い紫外線透過率を達成するために、3.2~5.5%が好ましく、3.5~5.8%がより好ましく、4.0~5.0%がさらに好ましい。実施形態Iにおいて、T-Fe、TiO及びCeOの含有率の合計は、より低い紫外線透過率を達成するために、3.2~5.5%が好ましく、3.5~5.0%がより好ましい。
(T-FeとTiOの含有率の合計)
 実施形態Iにおいて、低い紫外線透過率を達成するために、ガラス組成物におけるT-Fe及びTiOの含有率の合計は、3.2~5.5%であることが必要であり、さらには、3.2~5.0%であることが好ましい。
(TiOとCeOの含有率の合計)
 実施形態IIにおいて、低い紫外線透過率を達成するために、ガラス組成物におけるTiO及びCeOの含有率の合計は、1.7%以上であることが必要であり、さらには、2%以上であることが好ましい。さらにガラス板におけるTiO及びCeOの含有量の和は、ガラス板1cm2あたり5mg以上であることが好ましく、より好ましくは10~30mgでありさらに好ましくは13~20mgである。
(CoO)
 CoOに換算したコバルトの酸化物(CoO)は、ガラス板の透過色調を中性色に調節するための必須成分の1つである。CoOは、Se及び/又はNiO、及びFeと共存させることにより中性色に近い色調を得るための成分であり、また可視光透過率をコントロールする成分でもあり、ガラス組成物における含有率が質量ppmで示して50~300ppmである必要があり、CoOの含有率が前記範囲を下回ると所望の色調が得られず、前記範囲を越えると色調は青味が強くなり過ぎ、可視光透過率も低下する。また、実施形態Iにおいて、CoOの含有率は、50~160ppmであり、50~155ppmが好ましく、80~140ppmがより好ましい。実施形態IIにおいて、CoOの含有率は、150~300ppmであり、180~280ppmが好ましく、205~261ppmがより好ましい。さらにガラス板におけるCoOの含有量は、ガラス板1cm2あたり37.5~255μgであることが好ましい。実施形態Iにおいて、CoOの含有量は、ガラス板1cm2あたり40~160μgであることがより好ましく、45~140μgであることがさらに好ましい。実施形態IIにおいて、CoOの含有量は、ガラス板1cm2あたり100~200μgであることがより好ましく、150~190μgであることがさらに好ましい。
 実施形態Iにおいて、T-Fe/CoO比は、149以上であることが好ましく、149~450であることがより好ましく、150~350であることがさらに好ましい。実施形態IIにおいて、T-Fe/CoO比は、40~90であることが好ましく、45~80であることがより好ましい。
(NiO)
 NiOは、CoOとともに可視光透過率を調整し、刺激純度を低減するための成分である、任意の成分である。そのため、実施形態I及び実施形態IIのいずれにおいても、含めてもよく、含まなくてもよい。ただし、NiOの含有率が高くなると可視光透過率が低下し、色調も緑味が強くなりすぎ好ましくない。また製品中に硫化ニッケル石を生じることもあり得る。このため、実施形態Iのガラス組成物においては、可視光透過率の低下を抑制するために、NiOを実質的に含有しないことが好ましい。ただし、50ppm以下、好ましくは30ppm以下のNiOは、可視光透過率の低下を無視できる程度であるため、含有してもよい。実施形態Iのガラス板におけるNiOの含有量は、ガラス板1cm2当たり50μg以下であることが好ましく、30μg以下であることが好ましい。実施形態IIのガラス組成物におけるNiOの含有率は、質量ppmで示して200ppm以下であることが必要であり、50~200ppmが好ましく、70~180ppmがより好ましく、80~160ppmがさらに好ましい。さらに、実施形態IIのガラス板におけるNiOの含有量は、ガラス板1cm2あたり150μg以下であることが好ましく、50~150μgであることがより好ましく、60~140μgであることがさらに好ましい。
(Se)
 Seも、ガラス板の透過色調を中性色に調節するための成分であり、実施形態IIにおいては必須成分の1つである。Seは、ピンクの発色によりCoOの補色と相まって刺激純度を低減するための成分である。ただし、Seの含有率が高くなるとガラス板のYAが低下する。実施形態Iにおいては、Seの含有率は、質量ppmで示して0~2ppmであることが好ましく、含まないことがより好ましい。実施形態IIのガラス組成物におけるSeの含有率は、質量ppmで示して8~35ppmであることが必要であり、9~34ppmであることが好ましい。さらに、実施形態IIにおいて、ガラス板におけるSeの含有量は、ガラス板1cm2当たり2.5~30μgであることが好ましく、5~25μgであることがより好ましく、10~20μgであることがさらに好ましい。
(NiO/Se比)
 前述のNiOとSeの含有率の比NiO/Se比は、質量比で表わして0~15であることが必要である。この比が15より大きいと緑味が強くなりすぎる色調となるからである。この比は、前記NiOを含む実施形態では好ましくは5~12であり、より好ましくは5.5~11.0であり、さらに好ましくは、5.9~9.9である。
(その他の微量成分)
 本発明によるガラス組成物は、上記各成分と共にその他の微量成分を含んでいてもよい。微量成分としては、Mo、ZnO、SnOを例示できる。微量成分の合計は、5.0%以下、さらには2.0%以下、1.0%以下が特に好ましい。なお、各微量成分の含有率のより好ましい上限は、Moについては0.01%、ZnOについては0.1%、SnOについては1.0%である。本発明によるガラス組成物は、上記各成分及び上記各微量成分以外の成分を実質的に含まないことが好ましく、上記各成分(上記で順次説明したSiOからSeまでの成分)以外の成分を実質的に含まないものであってもよい。
 なお、本明細書において、ガラス組成物内において複数の価数を取りうる金属の酸化物の含有率は、鉄の酸化物を除き、本明細書に記載されている価数の酸化物に換算して算出することとする。
[光学特性]
 本明細書では、Tuv380(紫外線透過率)としてISO9050:1990に規定される紫外線透過率を採用し、Tuv400(紫外線透過率)としてISO13837:2008 convention Aに規定される紫外線透過率を採用し、YA(可視光透過率)としてCIE標準のA光源を用いてJIS R3106:1998に基づいて測定される可視光透過率を採用し、TG(日射透過率)としてJIS R3106:1998に準拠した日射透過率を採用する。
 Tuv380とTuv400とでは、各々の紫外線透過率を求めるにあたり、測定の範囲とする太陽光の紫外線の波長範囲が異なり、Tuv380は380nm以下、Tuv400では400nm以下の波長範囲で測定する。したがって、Tuv380とTuv400とでは、Tuv400の方が、より長波長域までの紫外線遮蔽性を評価できる。
 本発明の一実施形態のガラス板によれば、YAが20~30%と中程度であって、Tuv380が1.5%以下と極めて低く、実質的に紫外線の透過を阻止できる、1.0~3.5mmの範囲の厚さ、好ましくは1.5~3.0mm、より好ましくは2.0~3.0mmの範囲の厚さのガラス板が提供される。なお、本発明によるガラス組成物は、通常、フロート法に代表される量産設備により所定の厚さのガラス板に成形され、徐冷されて製造され、このガラス板は好ましくは風冷強化処理あるいは化学強化処理の強化処理が施されている。
 本発明の一実施形態のガラス板のTuv380は、1.5%以下であり、好ましくは1.0%以下であり、より好ましくは0.8%以下であって、紫外線カット特性に関し、付加的なコーティングを必要としない。Tuv380が1.0%以下であるガラス板を用いた車両や建築物の窓は、外側から照射される太陽光に含まれる紫外線の透過を実質的に阻止できる性能をもつ。具体的には、この窓は、JIS C8904:2011に規定する基準太陽光(この基準太陽光はエアマス1.5であり、波長域すべての積分照度は1kW・m-2である)を照射したとき、車内や屋内に到達する波長400nm以下の範囲の紫外線の照度を0.45W・m-2以下にすることができる。この照度であれば、6時間に渡ってヒトの皮膚に照射され続けた場合でも、日焼けの発生を効果的に阻止することができる。特にすべての開口部の窓にこのガラス板を用いた車両は、車両の向きや太陽方位の変化に拘わらず、紫外線の車内への到達を実質的に阻止でき、日焼けの阻止に効果的である。
 後述するように、本発明のガラス板においては、風冷強化によってTuv380は低下する傾向を示す。したがって、本発明の風冷強化したガラス板は、より効果的に紫外線の透過を阻止することができる。
 本発明の一実施形態のガラス板のTuv400は、好ましくは5.0%以下であり、より好ましくは2.0%以下である。したがって、本発明のガラス板は、紫外長波長域の光線遮断能にも優れている。
 本発明の一実施形態のガラス板のYAは、20~40%の中程度であり、好ましくは20~35%である。中程度のYAを有するガラス板を用いた車両や建築物の窓は、車内や屋内からは外部を容易に視認することができるが、外側から車内や屋内を視認することが困難であり、外側から覗かれることを防ぐことができプライバシー性が高い。このプライバシー性の高さは、車両や自動車の後方の窓、特に乗用車における後ドアの窓ガラス、後部の三角窓ガラス、リアガラスに用いて好適である。
 なお、乗用車の窓ガラスにおいては、法令の規定により部位毎にYAの下限値が規制されている。具体的には、フロントガラスや前ドアの窓ガラス・前部の三角窓の窓ガラスに対し、YAが70%以上であることが要求されている。この要求に対しては、前述の通り後ドアの窓ガラス、後部の三角窓ガラス、リアガラスに本発明の強化ガラス板を用い、前ドアの窓ガラス・前部の三角窓の窓ガラスに例えば特許文献2または3のコーティング付きガラス板を用い、フロントガラスには周知の中間膜を用いた合せガラスを用いた車両を提供することができる。
 TGは、太陽光の日射のエネルギーの透過率を示す指標である。したがってTGが低い方が、ガラス板を通過する日射のエネルギーを減らすことができ、そのガラス板を用いた車両の車内や建築物の室内の気温の上昇を抑制することができる。本発明の一形態のガラス板のTGは、好ましくは10~45%であり、好ましくは15~45%であり、より好ましくは20~30%以下であるので、前述の気温の上昇の抑制に効果的である。
[風冷強化]
 風冷強化(熱強化)は、ガラス板を加熱した後、ガラス板の表面に気体を吹き付けて急冷し、その表面に圧縮応力層を形成することにより、ガラス板の強度を向上させる周知の処理である。ガラス板の加熱温度は、典型的にはそのガラス板を構成するガラス組成物の歪点以上軟化点以下である。本発明は、その別の側面から、本発明によるガラス組成物からなるガラス板を風冷強化して得た、厚さ1.0~3.5mmの強化ガラス板を提供する。概して、本発明によるガラス組成物からなるガラス板のTuv380は、基本的に風冷強化処理によって低下する傾向を示す。強化ガラス板において、a*の値は-15.0~-3.0が好ましく、-14.0~-4.0がより好ましい。b*の値は-10.0~30.0が好ましく、-8.0~25.0がより好ましい。
 風冷強化の前後において、ガラス組成物のFeO比に実質的な変化がないことが確認されている。したがって、風冷強化に伴う光学特性の変化には、FeO比の変化ではなく、高温のガラス組成物における内部構造が風冷強化により固定されたことに伴って生じるFeOの吸収ピークの位置のシフトが影響していると推定される。
 特に制限されるわけでないが、強化ガラス板の表面に存在する圧縮応力の大きさは、例えば80~140MPa、特に90~110)MPaである。
 本発明は、第1のガラス板と、合せガラス用中間膜と、第2のガラス板を含む合せガラス板であって、第1のガラス板と第2のガラス板の少なくとも一方が上述の紫外線遮蔽ガラス板である合せガラス板を提供する。他方のガラス板は、従来公知のガラス(例えば、通常の無色のソーダ石灰ガラス)であってもよい。
 本発明は、上述の強化ガラス板又は上述の合せガラス板を含む車両用窓ガラスを提供する。車両用窓ガラスとしては、特に乗用車における後ドアの窓ガラス、後部の三角窓ガラス、リアガラスに用いて好適である。
 以下、実施例により本発明をさらに詳細に説明するが、以下の実施例も上記と同様、本発明の好ましい形態の例示に過ぎない。
 珪砂、苦灰石、石灰石、ソーダ灰、芒硝、炭酸カリウム、カーボン、酸化鉄、酸化チタン、酸化セリウム、酸化コバルト、酸化ニッケル、セレンを、ガラスの組成が表1~表4に示したとおりになるように調合してガラス原料バッチを得た。このバッチを、電気炉を用いて1450℃で溶融し、4時間保持した後、ステンレス板上に流し出した。こうして得たガラス板を、650℃に保持した徐冷炉内に30分間保持した後、電源を切って炉内で室温まで徐冷した。この徐冷における650~550℃の間の冷却速度は約0.1℃/秒であった。得られた徐冷ガラス板を、所定の厚さに研磨した。
 次いで、各徐冷ガラス板に風冷強化処理を施した。風冷強化処理は、ガラス板を700℃に設定した電気炉内に180秒間保持した後、電気炉から取り出したガラス板に常温の空気を吹きつけて急冷することによって実施した。この急冷における冷却速度は、650~550℃の温度範囲で80~100℃/秒であった。得られた強化ガラス板には、90~110MPaの範囲内の表面圧縮応力が印加されていた。
 各ガラス板(徐冷ガラス板、強化ガラス板)についてCIE標準のA光源を用いて測定した可視光透過率(YA)、全太陽光エネルギー透過率(TG)、ISOに規定される紫外線透過率(Tuv380及びTuv400)、CIE標準のC光源を用いて測定した主波長(DW)、刺激純度(Pe)およびL***表色系の色度(a*,b*)を測定した。測定した物性値を表2及び表4に示す。なお、表中の含有率の合計が100%にならない場合があるのは、有効桁の相違と四捨五入の影響による。
(組成分析)
 蛍光X線分析及び化学分析法を用いて、得られた試料ガラスの組成を定量分析した。結果を表1及び表3に示す。
 まず、徐冷ガラス板についての特性を参照すると、比較例1では、CeOを含有しないため、厚さ4mmであってもTuv380が1.6%であり、1.0~3.5mmの何れの厚さにおいてもTuv380≦1.5%を達成することができなかった。
 一方、実施例1~13、20、21、及び23~25は、2.5~3.5mmのある厚さにおいて1.0%以下のTuv380と、20~30%のYAを両立させることができた。また、実施例1~13、20、21、及び23~25では、さらに5.0%以下のTuv400もまた同時に実現できた。特に実施例6、7、23、及び25では、厚さが2.5mmであるにも拘わらず、Tuv380を0.6%以下にすることができた。また、これら実施例6、7、23、及び25では、さらにTuv400を3.0%以下にすることができた。
 実施例6、10、13は、各々厚さ2.5mm、3.5mm、2.8mmでTuv380、Tuv400ともに1.0%以下で極めて高い紫外線遮蔽能を示した。
 風冷強化処理により、実施例10~25のすべてにおいて、YAを大きく変化させることなく徐冷ガラス板よりさらにTuv380を低下させることができ、2.5~3.5mmのある厚さにおいて1.5%以下のTuv380を得ることができた。また、実施例1~13、16、18、20~25では、さらに5.0%以下のTuv400もまた同時に実現でき、特に実施例10~13では、さらにTuv400を2.0%以下にすることができ、実施例10、12、13では、さらにTuv400を1.0%以下にすることができた。
 なお、実施例23及び25に示すガラス組成物を用いて得られる厚さ3.5mmの各ガラス板においては、何れも徐冷ガラス板でのTuv400が0.8%、風冷強化処理した強化ガラス板でのTuv400が0.7%となる。つまり、本発明の強化ガラス板は、紫外線透過率としてTuv380及びTuv400のどちらの指標に対しても、紫外線透過率1.0%以下という極めて高い紫外線遮蔽性能を実現できる。
 実施例10~25の風冷強化処理した強化ガラス板での挙動から、実施例1~9のガラス板を風冷強化処理した場合、YAを大きく変化させることなく、Tuv380、Tuv400を低下させることができると考えられる。特に、実施例1、3~6、8、9は、Tuv380、Tuv400ともに1.0%以下を実現できると考えられる。
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 本発明によるガラス組成物からなるガラス板は、厚さが1.0~3.5mmであって、YAが20~35%の中程度の可視光透過率と、ISO9050:1990に定めるTuv380が1.5%以下の極めて低い紫外線透過率とを兼ね備えている。このガラス板は、好適には強化ガラス板であって、窓ガラスとして紫外線の透過を実質的に阻止することが望ましい部材、例えば車両及び建築物の窓ガラス、特に乗用車における後ドアの窓ガラス、後部の三角窓ガラス、リアガラスに用いて好適である。

Claims (16)

  1.  ソーダ石灰ガラスを基礎ガラス組成とし、着色成分として酸化鉄及びTiOを含むガラス組成物からなるガラス板であって、
    厚さ1~5mmであり、その厚さにおけるISO9050:1990に規定される紫外線透過率(Tuv380)が1.5%以下である、
    紫外線遮蔽ガラス板。
  2.  ISO13837:2008 convention Aに規定される紫外線透過率(Tuv400)が5.0%以下である、
    請求項1に記載の紫外線遮蔽ガラス板。
  3.  ISO13837:2008 convention Aに規定される紫外線透過率(Tuv400)が2.0%以下である、
    請求項2に記載の紫外線遮蔽ガラス板。
  4.  CIE標準のA光源を用いてJIS R3106:1998に基づいて測定される可視光透過率(YA)が20~40%であり、JIS R3106:1998に準拠した日射透過率(TG)が10~45%である、
    請求項1~3のいずれか1項に記載の紫外線遮蔽ガラス板。
  5.  質量%で表わして、
      SiO:65~85%、
      B:0~5%、
      Al:0~5%、
      MgO:0~20%、
      CaO:0~20%、
      NaO:10~20%、
      KO:0~5%、
      SO:0~0.5%、
    を母組成として含み、かつ
    着色成分として、
     質量%で表わして、
      TiO:0.2~2.2%、
      Feに換算した全酸化鉄含有量であるT-Fe:1.0~3.0%、
     質量ppmで表わして、
      CoOに換算したコバルトの酸化物(CoO):50~300ppm、
    を含むガラス組成物からなり、
     T-Fe、TiO及びCeOの含有率の合計が3.0%超6.0%以下である、
    請求項1~4のいずれか1項に記載の紫外線遮蔽ガラス板。
  6.  質量%で表わして、
      SiO:65~71%、
      B:0~5%、
      Al:1~3%、
      MgO:3~10%、
      CaO:5~15%、
      NaO:10~15%、
      KO:0.5~2%、
      SO:0~0.5%、
    を母組成として含むガラス組成物からなる、
    請求項5に記載の紫外線遮蔽ガラス板。
  7.  着色成分が、
     質量%で表わして、
      TiO:0.9~2.2%、
      Feに換算した全酸化鉄含有量であるT-Fe:2.0~3.0%、
     質量ppmで表わして、
      CoOに換算したコバルトの酸化物(CoO):50~160ppm、
    を含むガラス組成物からなる、
    請求項5又は6に記載の紫外線遮蔽ガラス板。
  8.  着色成分が、実質的に
     質量%で表わして、
      TiO:1.3~2.1%、
      Feに換算した全酸化鉄含有量であるT-Fe:2.0~3.0%、
     質量ppmで表わして、
      CoOに換算したコバルトの酸化物(CoO):50~150ppm、
      NiO:0~50ppm、
      Se:0~2ppm
    のみからなるガラス組成物からなる、
    請求項7に記載の紫外線遮蔽ガラス板。
  9.  着色成分が、
     質量%で表わして、
      TiO:1.5~2.1%、
      Feに換算した全酸化鉄含有量であるT-Fe:2.4%超2.9%以下、
     質量ppmで表わして、
      CoOに換算したコバルトの酸化物(CoO):70~120ppm、
      NiO:0~50ppm、
      Se:0~2ppm
    のみからなるガラス組成物からなる、
    請求項8に記載の紫外線遮蔽ガラス板。
  10.  ガラス板1cm2当たりの着色成分として
      TiO:3~25mg、
      Feに換算した全酸化鉄含有量であるT-Fe:10~25mg、
      CoOに換算したコバルトの酸化物(CoO):40~140μg
    を含むガラス組成物からなる、
    請求項7~9のいずれかに記載の紫外線遮蔽ガラス板。
  11.  質量%で表わして、
      SiO:65~85%、
      B:0~5%、
      Al:0~5%、
      MgO:0~20%、
      CaO:0~20%、
      NaO:10~20%、
      KO:0~5%、
      SO:0~0.5%、
    を母組成として含み、
    着色成分として、
    質量%で表わして、
      TiO:0.2~2.0%
      CeO:0.2~2.0%、
      Feに換算した全酸化鉄含有量であるT-Fe:1.0~2.0%、
    質量ppmで表わして、
      CoOに換算したコバルトの酸化物(CoO):50~150ppm、
      NiO:0~200ppm、
      Se:8~35ppm、
    を含み、
     Feに換算したFeOの前記T-Feに対する質量比で示されるFeO比が5~30%であり、
     TiO及びCeOの含有率の合計が1.7%以上であり、
     NiOとSeの含有率のNiO/Se比が0~15である、
    ガラス組成物からなる、
    請求項3又は4に記載の紫外線遮蔽ガラス板。
  12.  ガラス板1cm2当たりの着色成分として
      TiO:0.5~15mg、
      CeO:0.5~15mg、
      Feに換算した全酸化鉄含有量であるT-Fe:2.5~15mg、
      CoOに換算したコバルトの酸化物(CoO):37.5~225μg、
      NiO:0~150μg、
      Se:2.5~30μg、
    を含み、
      TiOとCeOの重量の和が、5mg以上である、
    ガラス組成物からなる、
    請求項11に記載の紫外線遮蔽ガラス板。
  13.  風冷強化された厚さ1.0~3.5mmの請求項10又は12に記載のガラス板を強化してなる、強化ガラス板。
  14.  第1のガラス板と、合せガラス用中間膜と、第2のガラス板を含む合せガラス板であって、
    第1のガラス板と第2のガラス板の少なくとも一方が請求項10又は12に記載の紫外線遮蔽ガラス板である、合せガラス板。
  15.  請求項13の強化ガラス板又は請求項14の合せガラス板を含む、車両用窓ガラス。
  16.  請求項15の車両用窓ガラスを含み、JIS C8904:2011に規定するエアマス1.5の太陽光を照射したとき、車室内における波長域400nm以下での紫外線照度が0.45J・s-1・m-2以下である、車両用ガラス窓。
PCT/JP2015/005998 2014-12-03 2015-12-02 ガラス組成物、ガラス板及び該ガラス板を用いた車両用ガラス窓 WO2016088374A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US15/531,939 US11084753B2 (en) 2014-12-03 2015-12-02 Glass composition, glass sheet, and vehicle window including glass sheet
EP19194942.9A EP3594034B1 (en) 2014-12-03 2015-12-02 Glass composition, glass plate, and vehicle glass window using glass plate
CN201580065363.6A CN107001118B (zh) 2014-12-03 2015-12-02 玻璃组合物、玻璃板及使用该玻璃板的车辆用玻璃窗
EP15864614.1A EP3228603B1 (en) 2014-12-03 2015-12-02 Glass composition, glass plate, and vehicle glass window using glass plate
JP2016562310A JP6677650B2 (ja) 2014-12-03 2015-12-02 ガラス組成物、ガラス板及び該ガラス板を用いた車両用ガラス窓
US17/365,661 US20210323858A1 (en) 2014-12-03 2021-07-01 Glass composition, glass sheet, and vehicle window including glass sheet

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014244546 2014-12-03
JP2014-244546 2014-12-03
JP2015031352 2015-02-20
JP2015-031352 2015-02-20

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/531,939 A-371-Of-International US11084753B2 (en) 2014-12-03 2015-12-02 Glass composition, glass sheet, and vehicle window including glass sheet
US17/365,661 Continuation US20210323858A1 (en) 2014-12-03 2021-07-01 Glass composition, glass sheet, and vehicle window including glass sheet

Publications (1)

Publication Number Publication Date
WO2016088374A1 true WO2016088374A1 (ja) 2016-06-09

Family

ID=56091336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/005998 WO2016088374A1 (ja) 2014-12-03 2015-12-02 ガラス組成物、ガラス板及び該ガラス板を用いた車両用ガラス窓

Country Status (5)

Country Link
US (2) US11084753B2 (ja)
EP (2) EP3594034B1 (ja)
JP (2) JP6677650B2 (ja)
CN (1) CN107001118B (ja)
WO (1) WO2016088374A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3293158A1 (en) 2016-09-09 2018-03-14 Asahi Glass Company, Limited Ultraviolet absorbing glass
JP2018043926A (ja) * 2016-09-09 2018-03-22 旭硝子株式会社 紫外線吸収性ガラス
JPWO2017043631A1 (ja) * 2015-09-11 2018-06-28 旭硝子株式会社 紫外線吸収性ガラス物品
WO2018117193A1 (ja) * 2016-12-21 2018-06-28 旭硝子株式会社 紫外線吸収性ガラス
JP2019038710A (ja) * 2017-08-23 2019-03-14 セントラル硝子株式会社 紫外線吸収ガラス板
WO2019054032A1 (ja) * 2017-09-15 2019-03-21 セントラル硝子株式会社 赤外線吸収ガラス板

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10988404B2 (en) * 2016-05-30 2021-04-27 Nippon Sheet Glass Company, Limited Ultraviolet-shielding glass sheet and vehicle window pane using the glass sheet
CA3042886C (en) * 2016-11-23 2021-05-18 Ppg Industries Ohio, Inc. Ultraviolet protective transparency
CN107572781A (zh) * 2017-08-29 2018-01-12 安徽光为智能科技有限公司 一种防紫外线的变色车用玻璃
JP7488260B2 (ja) 2018-11-26 2024-05-21 オウェンス コーニング インテレクチュアル キャピタル リミテッド ライアビリティ カンパニー 改善された弾性率を有する高性能ガラス繊維組成物
EP3887328A2 (en) 2018-11-26 2021-10-06 Owens Corning Intellectual Capital, LLC High performance fiberglass composition with improved specific modulus
CN111777326B (zh) * 2020-07-20 2021-02-09 成都光明光电股份有限公司 环保玻璃材料、环保玻璃制品及其制造方法
CN118251028B (zh) * 2024-05-29 2024-08-23 北京大学长三角光电科学研究院 一种用于钙钛矿光电组件的紫外光屏蔽层及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10114540A (ja) * 1996-08-21 1998-05-06 Nippon Sheet Glass Co Ltd 紫外線赤外線吸収低透過ガラス
JP2000203877A (ja) * 1999-01-12 2000-07-25 Nippon Sheet Glass Co Ltd 紫外線赤外線吸収低透過ガラス
JP2000247679A (ja) * 1999-03-04 2000-09-12 Nippon Sheet Glass Co Ltd 紫外線赤外線吸収低透過ガラス
JP2001064035A (ja) * 1999-08-26 2001-03-13 Nippon Sheet Glass Co Ltd 紫外線赤外線吸収低透過ガラス
JP2002255586A (ja) * 2001-02-26 2002-09-11 Nippon Sheet Glass Co Ltd 紫外線赤外線吸収低透過ガラス
JP2014177365A (ja) * 2013-03-14 2014-09-25 Central Glass Co Ltd 車両用ウィンドシールド
JP2014201450A (ja) * 2013-04-01 2014-10-27 コニカミノルタ株式会社 熱線遮断性合わせガラス及び熱線遮断性合わせガラスの製造方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63248749A (ja) * 1987-03-31 1988-10-17 Dainippon Plastics Co Ltd 合わせガラス
FR2660921B1 (fr) * 1990-04-13 1993-11-26 Saint Gobain Vitrage Internal Vitrage en verre teinte notamment pour toit de vehicules automobiles.
DE4311180C1 (de) * 1993-04-06 1995-01-12 Flachglas Ag Bronzefarbenes oder graufarbenes Kalknatron-Silikatglas
US5411922A (en) * 1993-12-27 1995-05-02 Ford Motor Company Neutral gray-green low transmittance heat absorbing glass
JPH08245238A (ja) * 1995-03-10 1996-09-24 Nippon Sheet Glass Co Ltd 低透過性ガラス
US5650365A (en) * 1995-09-21 1997-07-22 Libbey-Owens-Ford Co. Neutral low transmittance glass
US6071840A (en) * 1995-11-10 2000-06-06 Asahi Glass Company Ltd. Dark green colored glass
US5780372A (en) * 1996-02-21 1998-07-14 Libbey-Owens-Ford Co. Colored glass compositions
US6413893B1 (en) * 1996-07-02 2002-07-02 Ppg Industries Ohio, Inc. Green privacy glass
US20020155939A1 (en) * 1996-08-21 2002-10-24 Nippon Sheet Glass Co., Ltd. Ultraviolet/infrared absorbent low transmittance glass
US6395660B1 (en) 1996-08-21 2002-05-28 Nippon Sheet Glass Co., Ltd. Ultraviolet/infrared absorbent low transmittance glass
US6780803B2 (en) 1999-08-26 2004-08-24 Nippon Sheet Glass Co., Ltd. Ultraviolet/infrared absorbent low transmittance glass
JP2003342038A (ja) * 2002-05-24 2003-12-03 Central Glass Co Ltd 濃色ブロンズガラス
BRPI0618277A2 (pt) * 2005-10-31 2011-08-23 Nippon Sheet Glass Co Ltd artigo de vidro e método de sua produção
CN102421862B (zh) 2009-05-15 2014-11-12 旭硝子株式会社 紫外线吸收膜形成用涂布液及紫外线吸收用玻璃物品
JP5396265B2 (ja) 2009-12-25 2014-01-22 日本板硝子株式会社 紫外線遮蔽能を有するガラス物品
JP5842318B2 (ja) * 2010-06-03 2016-01-13 セントラル硝子株式会社 低日射透過率ガラス
EP3081542A4 (en) * 2013-12-13 2017-05-03 Asahi Glass Company, Limited Uv-absorbing glass article

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10114540A (ja) * 1996-08-21 1998-05-06 Nippon Sheet Glass Co Ltd 紫外線赤外線吸収低透過ガラス
JP2000203877A (ja) * 1999-01-12 2000-07-25 Nippon Sheet Glass Co Ltd 紫外線赤外線吸収低透過ガラス
JP2000247679A (ja) * 1999-03-04 2000-09-12 Nippon Sheet Glass Co Ltd 紫外線赤外線吸収低透過ガラス
JP2001064035A (ja) * 1999-08-26 2001-03-13 Nippon Sheet Glass Co Ltd 紫外線赤外線吸収低透過ガラス
JP2002255586A (ja) * 2001-02-26 2002-09-11 Nippon Sheet Glass Co Ltd 紫外線赤外線吸収低透過ガラス
JP2014177365A (ja) * 2013-03-14 2014-09-25 Central Glass Co Ltd 車両用ウィンドシールド
JP2014201450A (ja) * 2013-04-01 2014-10-27 コニカミノルタ株式会社 熱線遮断性合わせガラス及び熱線遮断性合わせガラスの製造方法

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021063008A (ja) * 2015-09-11 2021-04-22 Agc株式会社 紫外線吸収性ガラス物品
JPWO2017043631A1 (ja) * 2015-09-11 2018-06-28 旭硝子株式会社 紫外線吸収性ガラス物品
JP7120339B2 (ja) 2015-09-11 2022-08-17 Agc株式会社 紫外線吸収性ガラス物品
JP2018043926A (ja) * 2016-09-09 2018-03-22 旭硝子株式会社 紫外線吸収性ガラス
EP3293158A1 (en) 2016-09-09 2018-03-14 Asahi Glass Company, Limited Ultraviolet absorbing glass
WO2018117193A1 (ja) * 2016-12-21 2018-06-28 旭硝子株式会社 紫外線吸収性ガラス
CN110099874A (zh) * 2016-12-21 2019-08-06 Agc株式会社 紫外线吸收性玻璃
KR20190094374A (ko) 2016-12-21 2019-08-13 에이지씨 가부시키가이샤 자외선 흡수성 유리
JPWO2018117193A1 (ja) * 2016-12-21 2019-10-31 Agc株式会社 紫外線吸収性ガラス
JP7020428B2 (ja) 2016-12-21 2022-02-16 Agc株式会社 紫外線吸収性ガラス
CN110099874B (zh) * 2016-12-21 2022-03-29 Agc株式会社 紫外线吸收性玻璃
US11465931B2 (en) 2016-12-21 2022-10-11 AGC Inc. Ultraviolet light absorbing glass
KR102535677B1 (ko) * 2016-12-21 2023-05-24 에이지씨 가부시키가이샤 자외선 흡수성 유리
JP2019038710A (ja) * 2017-08-23 2019-03-14 セントラル硝子株式会社 紫外線吸収ガラス板
WO2019054032A1 (ja) * 2017-09-15 2019-03-21 セントラル硝子株式会社 赤外線吸収ガラス板

Also Published As

Publication number Publication date
JP6677650B2 (ja) 2020-04-08
CN107001118B (zh) 2020-10-16
EP3228603A4 (en) 2018-08-22
JP6989644B2 (ja) 2022-01-05
CN107001118A (zh) 2017-08-01
US20170327409A1 (en) 2017-11-16
JP2020100557A (ja) 2020-07-02
EP3228603A1 (en) 2017-10-11
EP3228603B1 (en) 2019-10-16
EP3594034B1 (en) 2020-12-02
EP3594034A1 (en) 2020-01-15
JPWO2016088374A1 (ja) 2017-09-14
US20210323858A1 (en) 2021-10-21
US11084753B2 (en) 2021-08-10

Similar Documents

Publication Publication Date Title
JP6989644B2 (ja) ガラス組成物、ガラス板及び該ガラス板を用いた車両用ガラス窓
JP6711426B2 (ja) 紫外線吸収性ガラス物品
JP6373852B2 (ja) ガラス組成物及び強化ガラス板
JP3419259B2 (ja) 紫外線赤外線吸収低透過ガラス
US8017537B2 (en) Glass article and method of producing the same
WO2011152257A1 (ja) 低日射透過率ガラス
JPH10139475A (ja) 紫外線赤外線吸収低透過ガラス
JP2013209224A (ja) 紫外線赤外線吸収ガラス
JP6826112B2 (ja) 紫外線遮蔽ガラス板及び該ガラス板を用いた車両用ガラス窓
JPH10101368A (ja) 紫外線赤外線吸収ガラス
WO2017043631A1 (ja) 紫外線吸収性ガラス物品
JP2001206731A (ja) 紫外線赤外線吸収低透過ガラス
JP2009167018A (ja) 赤外線吸収ガラス組成物
WO2017065160A1 (ja) 紫外線吸収性ガラス物品
JP2000247679A (ja) 紫外線赤外線吸収低透過ガラス
WO2016039252A1 (ja) 紫外線吸収性ガラス物品
WO2016039251A1 (ja) 紫外線吸収性ガラス物品
JPH11292565A (ja) 紫外線赤外線吸収低透過ガラス
JP7127654B2 (ja) ガラス板
KR20090128674A (ko) 회색 소다라임 유리 조성물
WO2018117193A1 (ja) 紫外線吸収性ガラス
JP2001172045A (ja) 紫外線赤外線吸収低透過ガラス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15864614

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016562310

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15531939

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015864614

Country of ref document: EP