WO2016086885A1 - 氘化的有机化合物、包含该化合物的混合物、组合物及有机电子器件 - Google Patents

氘化的有机化合物、包含该化合物的混合物、组合物及有机电子器件 Download PDF

Info

Publication number
WO2016086885A1
WO2016086885A1 PCT/CN2015/096327 CN2015096327W WO2016086885A1 WO 2016086885 A1 WO2016086885 A1 WO 2016086885A1 CN 2015096327 W CN2015096327 W CN 2015096327W WO 2016086885 A1 WO2016086885 A1 WO 2016086885A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
organic compound
group
electron
compound according
Prior art date
Application number
PCT/CN2015/096327
Other languages
English (en)
French (fr)
Inventor
潘君友
闫晓林
黄宏
Original Assignee
广州华睿光电材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州华睿光电材料有限公司 filed Critical 广州华睿光电材料有限公司
Priority to US15/532,876 priority Critical patent/US10323180B2/en
Priority to CN201580065855.5A priority patent/CN107406384B/zh
Publication of WO2016086885A1 publication Critical patent/WO2016086885A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B59/00Introduction of isotopes of elements into organic compounds ; Labelled organic compounds per se
    • C07B59/002Heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/49Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
    • C07C255/58Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton containing cyano groups and singly-bound nitrogen atoms, not being further bound to other hetero atoms, bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/08Indoles; Hydrogenated indoles with only hydrogen atoms or radicals containing only hydrogen and carbon atoms, directly attached to carbon atoms of the hetero ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/04Indoles; Hydrogenated indoles
    • C07D209/10Indoles; Hydrogenated indoles with substituted hydrocarbon radicals attached to carbon atoms of the hetero ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/86Carbazoles; Hydrogenated carbazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/88Carbazoles; Hydrogenated carbazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D221/00Heterocyclic compounds containing six-membered rings having one nitrogen atom as the only ring hetero atom, not provided for by groups C07D211/00 - C07D219/00
    • C07D221/02Heterocyclic compounds containing six-membered rings having one nitrogen atom as the only ring hetero atom, not provided for by groups C07D211/00 - C07D219/00 condensed with carbocyclic rings or ring systems
    • C07D221/20Spiro-condensed ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/10Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/10Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/12Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains three hetero rings
    • C07D487/16Peri-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/05Isotopically modified compounds, e.g. labelled
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/93Spiro compounds
    • C07C2603/94Spiro compounds containing "free" spiro atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1033Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1074Heterocyclic compounds characterised by ligands containing more than three nitrogen atoms as heteroatoms
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • This invention relates to the field of organic materials, and more particularly to deuterated organic compounds, mixtures, compositions and organic electronic devices comprising the same.
  • Organic semiconductor materials are versatile in synthesis, low in manufacturing cost, and have high optical and electrical properties, making it possible to manufacture large-area flexible devices. Therefore, organic light-emitting diodes (OLEDs) made of organic semiconductor materials In novel optoelectronic device applications, for example, in flat panel displays and lighting applications, there is great potential.
  • OLEDs organic light-emitting diodes
  • novel optoelectronic device applications for example, in flat panel displays and lighting applications, there is great potential.
  • various systems based on fluorescent and phosphorescent materials have been developed.
  • the organic light-emitting diode of the fluorescent material has high reliability, but its internal electroluminescence quantum efficiency is limited to 25% under electrical excitation because the branch ratio of the singlet excited state and the triplet excited state of the exciton is 1:3.
  • organic light-emitting diodes using phosphorescent materials have achieved nearly 100% internal luminescence quantum efficiency.
  • phosphorescent materials with practical use value are rhodium and platinum complexes, raw materials are rare and expensive, and the synthesis of complexes is complicated, so the cost is quite high.
  • Adachi proposed the concept of reverse intersystem crossing, which can utilize organic compounds, that is, without using metal complexes, to achieve high efficiency of phosphorescent OLEDs.
  • This concept has been adopted, 1) complex excited (exciplex), see Adachi et al, Nature Photonics, Vol 6, p 253 (2012); 2) thermally excited delayed fluorescent material TADF, see Adachi et al., Nature Vol 492, 234 , (2012), can be achieved. But the lifetime of OLED devices is still very short.
  • the present invention provides an organic compound having the following structural formula (I):
  • Ar is an aromatic or heteroaromatic structural unit
  • n, m are integers between 1 and 6
  • D is an electron-donating group, wherein when m>1, each D is independently selected from the same or different electron-donating groups.
  • A is an electron withdrawing group, wherein when n>1, each A is independently selected from the same or different electron withdrawing groups;
  • ⁇ E (S1-T1) ⁇ 0.35 eV of the organic compound, and at least one H atom of the organic compound is substituted by hydrazine.
  • the organic compound wherein the organic compound has ⁇ E(S1-T1) ⁇ 0.25 eV.
  • the organic compound wherein at least one of the at least one electron-donating group D is replaced by deuterium.
  • the organic compound wherein at least one H atom of at least one electron withdrawing group A is substituted with deuterium.
  • the organic compound wherein at least one H atom in Ar is replaced by deuterium.
  • the deuterated organic compound wherein more than 20%, preferably more than 30%, more preferably more than 40%, and most preferably more than 50% of the H atoms are replaced by deuterium.
  • the deuterated organic compound, wherein the electron-donating group D comprises the following groups:
  • the deuterated organic compound wherein the electron withdrawing group A is selected from the group consisting of F, cyano or contains the following groups:
  • n is an integer from 1 to 3;
  • X 1 -X 8 is selected from CR 1 or N, and at least one is N, wherein R 1 is selected from the group consisting of hydrogen, alkyl, alkoxy, amino, Alkene, alkyne, aralkyl, heteroalkyl, aryl and heteroaryl.
  • the deuterated organic compound, wherein Ar is selected from the group consisting of:
  • the deuterated organic compound wherein more than 20%, preferably more than 30%, more preferably more than 40%, and most preferably more than 50% of the H atoms are replaced by deuterium.
  • the present invention also provides a deuterated mixture comprising at least one organic compound as described above, further comprising an organic functional material selected from the group consisting of holes (also called holes) for injection or transport.
  • holes also called holes
  • Materials HIM/HTM
  • HBM hole blocking materials
  • EIM/ETM electron injecting or transporting materials
  • EBM organic matrix materials
  • St singlet emitters
  • phosphorescent emitter phosphorescent emitter
  • the invention further relates to a composition comprising the organic compound or a mixture as described above, and at least one organic solvent.
  • the invention further provides a film comprising a compound according to the invention prepared from a solution.
  • the invention further relates to an organic electronic device comprising the organic compound as described above.
  • the organic electronic device is selected from the group consisting of an organic light emitting diode (OLED), an organic photovoltaic cell (OPV), an organic light emitting cell (OLEEC), an organic field effect transistor (OFET), an organic light emitting field effect transistor, an organic laser, and an organic spintronic device.
  • OLED organic light emitting diode
  • OCV organic photovoltaic cell
  • OEEC organic light emitting cell
  • OFET organic field effect transistor
  • OLED organic light emitting field effect transistor
  • the present invention achieves an increase in internal electroluminescence quantum efficiency and lifetime of the organic compound by substituting a H atom in the organic compound and ⁇ E(S1 - T1) ⁇ 0.35 eV, and the material of the present invention
  • the low cost and relatively simple synthesis process have great application potential and application range.
  • the present invention provides a deuterated organic compound, a mixture comprising the same, a composition, and an organic electronic device.
  • the present invention will be further described in detail below in order to clarify and clarify the objects, aspects, and effects of the present invention. It is understood that the specific embodiments described herein are merely illustrative of the invention and are not intended to limit the invention.
  • the present invention provides an organic compound having the following structural formula (I):
  • Ar is an aromatic or heteroaromatic structural unit
  • n, m are integers between 1 and 6
  • D is an electron-donating group, wherein when m>1, each D is independently selected from the same or different electron-donating groups.
  • A is an electron withdrawing group, wherein when n>1, each A is independently selected from the same or different electron withdrawing groups;
  • ⁇ E (S1-T1) ⁇ 0.35 eV of the organic compound, and at least one H atom of the organic compound is substituted by hydrazine.
  • ⁇ E(S1-T1) refers to the energy difference between the S1 state and the T1 state of the organic compound, which can be determined by spectrometry or by simulation as described below.
  • the organic compound according to the invention is a small molecular material.
  • small molecule refers to a molecule that is not a polymer, oligomer, dendrimer, or blend. In particular, there are no repeating structures in small molecules.
  • the molecular weight of the small molecule is ⁇ 3000 g/mol, preferably ⁇ 2000 g/mol, most preferably ⁇ 1500 g/mol.
  • the polymer ie, Polymer
  • the polymer also includes a dendrimer.
  • a dendrimer For the synthesis and application of the tree, see [Dendrimers and Dendrons, Wiley-VCH Verlag GmbH & Co. KGaA, 2002, Ed. George R. Newkome, Charles. N. Moorefield, Fritz Vogtle.].
  • a conjugated polymer is a polymer whose backbone backbone is mainly composed of sp2 hybrid orbitals of C atoms. Famous examples are: polyacetylene polyacetylene and poly(phenylene vinylene), which are on the main chain.
  • the C atom can also be substituted by other non-C atoms, and is still considered to be a conjugated polymer when the sp2 hybrid on the backbone is interrupted by some natural defects.
  • the conjugated polymer also includes a main chain package. Containing aryl amines, aryl phosphines and other heteroarmotics, organometallic complexes, and the like.
  • At least one H atom of the organic compound is substituted by deuterium.
  • the present invention shows that the compound after deuteration has good stability, and the OLED containing the compound after deuteration has a long life.
  • the possible mechanism is, but is not limited to, due to the isotope effect of kinetics, the reaction rate involving the CH bond is usually 6-10 times faster than the corresponding CD bond. Therefore, when the OLED is in operation, the compound containing the deuteration is decaying. There is a relatively slow decay in the dynamics process.
  • those H with higher reactivity are replaced by deuterium.
  • the organic compound wherein at least one of the at least one electron-donating group D is replaced by deuterium.
  • the organic compound wherein at least one H atom of at least one electron withdrawing group A is substituted with deuterium.
  • the organic compound wherein at least one H atom in Ar is replaced by deuterium.
  • the organic compound wherein at least one H atom of at least one electron-donating group D is replaced by deuterium, and at least one H atom of at least one electron-withdrawing group A is substituted with deuterium.
  • the abundance in the ocean is 0.0156%, that is, one of the 6420 hydrogen atoms is helium.
  • the content of ruthenium in the compounds according to the invention is much greater than the natural abundance.
  • at least 1% of the H atoms are replaced by ruthenium, preferably at least 10% of the H atoms are replaced by ruthenium.
  • the deuterated organic compound wherein more than 20%, preferably more than 30%, more preferably more than 40%, and most preferably more than 50% of the H atoms are replaced by deuterium.
  • HOMO triplet energy level
  • S1 singlet energy level
  • the HOMO and LUMO levels can be measured by photoelectric effect, such as XPS (X-ray photoelectron spectroscopy) and UPS (UV photoelectron spectroscopy) or by cyclic voltammetry (hereinafter referred to as CV).
  • photoelectric effect such as XPS (X-ray photoelectron spectroscopy) and UPS (UV photoelectron spectroscopy) or by cyclic voltammetry (hereinafter referred to as CV).
  • CV cyclic voltammetry
  • quantum chemistry Methods such as density functional theory (hereinafter referred to as DFT) have also become effective methods for calculating molecular orbital energy levels.
  • the triplet level T1 of organic materials can be measured by low temperature time-resolved luminescence spectroscopy or by quantum simulation calculations (eg by Time-dependent DFT), as by the commercial software Gaussian 03W (Gaussian Inc.), specific simulation methods. See WO2011141110.
  • the singlet energy level S1 of organic materials can be determined by absorption spectrum, or emission spectrum, or by quantum simulation calculations (such as Time-dependent DFT).
  • the absolute values of HOMO, LUMO, T1 and S1 depend on the measurement method or calculation method used. Even for the same method, different evaluation methods, such as starting point and peak point on the CV curve, can give different HOMOs. /LUMO value. Therefore, reasonable and meaningful comparisons should be made using the same measurement method and the same evaluation method.
  • the values of HOMO, LUMO, T1, and S1 are simulations based on Time-dependent DFT, but do not affect the application of other measurement or calculation methods.
  • a second feature of the compound according to the invention is that the organic compound has ⁇ E(S1-T1) ⁇ 0.35 eV.
  • the organic compound according to the invention has ⁇ E(S1-T1) ⁇ 0.25 eV, preferably ⁇ 0.20 eV, more preferably ⁇ 0.15 eV, most preferably ⁇ 0.10 eV.
  • the deuterated organic compound, wherein the electron-donating group D comprises the following groups:
  • the deuterated organic compound wherein the electron withdrawing group A is selected from the group consisting of F, cyano or contains the following groups:
  • n is an integer from 1 to 3;
  • X 1 -X 8 is selected from XR 1 or N, and at least one is N, wherein R 1 is selected from the group consisting of hydrogen, alkyl, alkoxy, amino, Alkene, alkyne, aralkyl, heteroalkyl, aryl and heteroaryl.
  • the deuterated organic compound, wherein Ar is selected from the group consisting of:
  • the present invention also provides a mixture comprising at least one organic compound as described above, further comprising an organic functional material selected from the group consisting of holes (also called holes) for injecting or transporting materials ( HIM/HTM), hole blocking material (HBM), electron injecting or transporting material (EIM/ETM), electron blocking material (EBM), organic matrix material (Host), singlet illuminant (fluorescent illuminant), triple Light emitter (phosphorescent emitter).
  • holes also called holes
  • HIM/HTM hole blocking material
  • EIM/ETM electron injecting or transporting material
  • EBM electron blocking material
  • organic matrix material Host
  • singlet illuminant fluorescent illuminant
  • triple Light emitter phosphorescent emitter
  • the host material, the matrix material, the Host material, and the Matrix material have the same meaning and are interchangeable.
  • Suitable organic HIM/HTM materials may optionally comprise compounds having the following structural units: phthalocyanine, porphyrin, amine, aromatic amine, biphenyl triarylamine, thiophene, and thiophene such as dithienothiophene and thiophene, pyrrole, aniline , carbazole, azide and azepine, and their derivatives.
  • Suitable suitable HIMs also include fluorocarbon-containing polymers; conductively doped polymers; conductive polymers such as PEDOT/PSS; self-assembling monomers such as compounds containing phosphonic acid and sliane derivatives; Materials such as MoOx; metal complexes, and crosslinking compounds.
  • cyclic aromatic amine-derived compounds that can be used as HIM or HTM include, but are not limited to, the following general structures:
  • Each of Ar 1 to Ar 9 may be independently selected from the group consisting of a cyclic aromatic hydrocarbon compound such as benzene, biphenyl, triphenyl, benzo, naphthalene, anthracene, phenalene, phenanthrene, anthracene, anthracene, fluorene, anthracene, anthracene; aromatic heterocyclic ring Compounds such as dibenzothiophene, dibenzofuran, furan, thiophene, benzofuran, benzothiophene, oxazole, pyrazole, imidazole, triazole, isoxazole, thiazole, oxadiazole, oxatriazole, Oxazole, thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, oxazine, oxathiazine, oxadiazine, hydr
  • Ar 1 to Ar 9 may be independently selected from the group consisting of:
  • n is an integer from 1 to 20; X1 to X8 are CH or N; Ar1 is as defined above.
  • metal complexes that can be used as HTM or HIM include, but are not limited to, the following general structures:
  • M is a metal having an atomic weight greater than 40
  • (Y 1 -Y 2 ) is a bidentate ligand, Y 1 and Y 2 are independently selected from C, N, O, P, and S; L is an ancillary ligand; m is an integer ranging from 1 to this metal The maximum coordination number; m+n is the maximum coordination number of this metal.
  • (Y 1 -Y 2 ) is a 2-phenylpyridine derivative.
  • (Y 1 -Y 2 ) is a carbene ligand.
  • M is selected from the group consisting of Ir, Pt, Os, and Zn.
  • the metal complex has a HOMO greater than -5.5 eV (for vacuum levels).
  • EIM/ETM materials are not particularly limited, and any metal complex or organic compound may be used.
  • EIM/ETM as long as they can transmit electrons.
  • the preferred organic EIM/ETM material may be selected from the group consisting of tris(8-hydroxyquinoline)aluminum (AlQ3), phenazine, phenanthroline, anthracene, phenanthrene, anthracene, diterpene, spirobifluorene, p-phenylacetylene, triazine, Triazole, imidazole, hydrazine, hydrazine, ruthenium fluorene, hydrazine, dibenzo-indenoindole, anthracene naphthalene, benzindene and derivatives thereof.
  • a hole blocking layer is typically used to block holes from adjacent functional layers, particularly the luminescent layer.
  • the presence of HBL typically results in an increase in luminous efficiency.
  • the hole blocking material (HBM) of the hole blocking layer (HBL) needs to have a lower HOMO than an adjacent functional layer such as a light emitting layer.
  • the HBM has a larger excited state level than the adjacent luminescent layer, such as a singlet or triplet, depending on the illuminant.
  • the HBM has an electron transport function. . . . EIM/ETM materials that typically have deep HOMO levels can be used as HBM.
  • a compound which can be used as an EIM/ETM/HBM is a molecule containing at least one of the following groups:
  • R 1 is selected from the group consisting of hydrogen, alkyl, alkoxy, amino, alkene, alkyne, aralkyl, heteroalkyl, aryl and heteroaryl, when they are aryl or heteroaryl, They have the same meaning as Ar 1 and Ar 2 in the above HTM;
  • Ar 1 -Ar 5 has the same meaning as Ar 1 described in HTM;
  • n is an integer from 0 to 20;
  • X 1 -X 8 is selected from CR 1 or N.
  • examples of metal complexes that can be used as EIM/ETM include, but are not limited to, the following general structures:
  • (O-N) or (N-N) is a bidentate ligand in which the metal is coordinated to O, N or N, N; L is an ancillary ligand; m is an integer from 1 to the maximum coordination number of the metal.
  • an organoalkali metal compound can be used as the EIM.
  • an organic alkali metal compound is understood to be a compound which is at least one alkali metal, i.e., lithium, sodium, potassium, rubidium, cesium, and further contains at least one organic ligand.
  • Suitable organic alkali metal compounds include the compounds described in US Pat. No. 7,767,317 B2, EP 1 941 562 B1 and EP 1 144 543 B1.
  • Preferred organic alkali metal compounds are compounds of the following chemical formula:
  • R 1 has the meaning as defined above, the arc represents two or three atoms and a bond, so as to form a 5- or 6-membered ring with the metal M if necessary, wherein the atom may also be substituted by one or more R 1 , M is an alkali metal selected from the group consisting of lithium, sodium, potassium, rubidium, and cesium.
  • the organobase metal compound may be in the form of a monomer, as described above, or in the form of an aggregate, for example, a two base.
  • Preferred organic alkali metal compounds are compounds of the following chemical formula:
  • o each time it appears can be the same or different, is 0, 1, 2, 3 or 4;
  • p each occurrence may be the same or different, is 0, 1, 2 or 3;
  • the alkali metal M is selected from the group consisting of lithium, sodium, potassium, more preferably lithium or sodium, and most preferably lithium.
  • the organic alkali metal compound is electron-injected into the layer. More preferably, the electron injecting layer is composed of an organic alkali metal compound.
  • the organoalkali metal compound is doped into other ETM to form an electron transport layer or an electron injecting layer. More preferably, it is an electron transport layer.
  • the example of the triplet matrix material is not particularly limited, and any metal complex or organic compound may be used as the matrix as long as its triplet energy is higher than that of the illuminant, particularly the triplet illuminant or the phosphorescent illuminant.
  • metal complexes that can be used as the triplet host include, but are not limited to, the following general structure:
  • M is a metal
  • (Y 3 -Y 4 ) is a bidentate ligand, Y 3 and Y 4 are independently selected from C, N, O, P, and S
  • L is an ancillary ligand
  • m is an integer, and its value is 1 to the maximum coordination number of this metal
  • m + n is the maximum coordination number of this metal.
  • the metal complex that can be used as the triplet matrix has the following form:
  • (O-N) is a two-dentate ligand in which the metal coordinates with the O and N atoms.
  • M can be selected from the group consisting of Ir and Pt.
  • Examples of the organic compound which can be used as the triplet substrate are selected from compounds containing a cyclic aromatic hydrocarbon group, such as benzene, biphenyl, triphenyl, benzo, oxime; testing; compounds containing an aromatic heterocyclic group such as diphenyl And thiophene, dibenzofuranophene, dibenzoselenophene, furan, thiophene, benzofuran, benzothiophene, benzoselenophene, carbazole, indolocarbazole, pyridylindole, pyrrolodipyridine, pyrazole, imidazole, triazole, oxazole, thiazole, oxadiazole ,oxaazole,dioxazole,thiadiazole,pyridine,pyridazine,pyrimidine,pyrazine,triazine,oxazines,oxathiazines,oxadiazines,ind
  • the triplet matrix material is selected from the group consisting of at least one of the following groups:
  • R 1 -R 7 may be independently of one another selected from the group consisting of hydrogen, alkyl, alkoxy, amino, alkene, alkyne, aralkyl, heteroalkyl, aryl and heteroaryl, when they are aryl Or a heteroaryl group, which has the same meaning as Ar 1 and Ar 2 described above; n is an integer from 0 to 20; X 1 -X 8 is selected from CH or N; and X 9 is selected from CR 1 R 2 or NR 1 .
  • the example of the singlet matrix material is not particularly limited, and any organic compound may be used as a matrix as long as its singlet energy is higher than that of an illuminant, particularly a singlet illuminant or a fluorescent illuminant.
  • Examples of the organic compound used as the singlet matrix material may be selected from compounds containing a cyclic aromatic hydrocarbon such as benzene, biphenyl, triphenyl, benzo, naphthalene, anthracene, phenalene, phenanthrene, anthracene, anthracene, quinone, fluorene, An aromatic heterocyclic compound such as dibenzothiophene, dibenzofuran, dibenzoselenophene, furan, thiophene, benzofuran, benzothiophene, benzoselenophene, carbazole, indolocarbazole, pyridylindole, Pyrrolodipyridine, pyrazole, imidazole, trinitrogen Oxazole, isoxazole, thiazole, oxadiazole, oxatriazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrim
  • the singlet matrix material is selected from the group consisting of at least one of the following groups:
  • R 1 may be independently of one another selected from the group consisting of hydrogen, alkyl, alkoxy, amino, alkene, alkyne, aralkyl, heteroalkyl, aryl and heteroaryl;
  • Ar 1 is aryl or hetero An aryl group having the same meaning as Ar 1 defined in the above HTM;
  • n is an integer from 0 to 20; X 1 -X 8 is selected from CH or N; and X 9 and X 10 are selected from CR 1 R 2 or NR 1 .
  • Singlet emitters tend to have longer conjugated pi-electron systems.
  • styrylamine and its derivatives disclosed in JP 2913116 B and WO 2001021729 A1
  • indenofluorene and its derivatives as disclosed in WO 2008/006449 and WO 2007/140847.
  • the singlet emitters may be selected from monostyrylamines, distyrylamines, tristyrylamines, tetrastyrylamines. , styryl phosphines, styryl ethers and arylamines.
  • the monostyrylamine refers to a compound which comprises an unsubstituted or substituted styryl group and at least one amine, preferably an aromatic amine.
  • the distyrylamine refers to a compound comprising two unsubstituted or substituted styryl groups and at least one amine, preferably an aromatic amine.
  • Ternary styrylamine refers to a compound comprising three unsubstituted or substituted styryl groups and at least one amine, preferably an aromatic amine.
  • the quaternary styrylamine refers to a compound comprising four unsubstituted or substituted styryl groups and at least one amine, preferably an aromatic amine.
  • the preferred styrene is stilbene, which may be further substituted.
  • the corresponding phosphines and ethers are defined similarly to amines.
  • An arylamine or an aromatic amine refers to a compound comprising three unsubstituted or substituted aromatic ring or heterocyclic systems directly bonded to a nitrogen. At least one of these aromatic or heterocyclic ring systems is preferably selected from the group consisting of fused ring systems and preferably at least 14 aromatic ring atoms.
  • Preferred examples thereof are aromatic decylamine, aromatic quinone diamine, aromatic decylamine, aromatic quinone diamine, aromatic thiamine and aromatic quinone diamine.
  • Aromatic guanamine refers to a compound in which one of the diarylamino groups is directly attached to the oxime, preferably at the position of 9.
  • Aromatic quinone diamine refers to a compound in which two diarylamino groups are directly attached to the oxime, preferably at the 9,10 position.
  • the definitions of aromatic decylamine, aromatic quinone diamine, aromatic thiamine and aromatic quinone diamine are similar, wherein the diaryl aryl group is preferably bonded to the 1 or 1,6 position of hydrazine.
  • Examples of singlet emitters based on vinylamines and arylamines are also preferred examples and can be found in the following patent documents: WO 2006/000388, WO 2006/058737, WO 2006/000389, WO 2007/065549, WO 2007 /115610, US 7250532 B2, DE 102005058557 A1, CN 1583691 A, JP 08053397 A, US 6251531 B1, US 2006/210830 A, EP 1957606 A1 and US 2008/0113101 A1, the entire contents of which are hereby incorporated by reference. This article is incorporated herein by reference.
  • Further preferred singlet emitters are selected from the group consisting of indenofluorene-amines and indenofluorene-diamines, as disclosed in WO 2006/122630, benzoindenofluorene-amine and benzoindole ⁇ -diamine (benzoindenofluorene-diamine), as disclosed in WO 2008/006449, dibenzoindenofluorene-amine and dibenzoindenofluorene-diamine, as disclosed in WO2007/140847 of.
  • polycyclic aromatic hydrocarbon compounds in particular derivatives of the following compounds: for example, 9,10-di(2-naphthoquinone) (9,10-di(2-naphthylanthracene) ), naphthalene, tetraphenyl, xanthene, phenanthrene, perylene such as 2,5,8,11-tetra-t-butylperylene, indenoperylene, phenylenes
  • Triplet emitters are also known as phosphorescent emitters.
  • the triplet emitter is a metal complex of the formula M(L)n, wherein M is a metal atom, and each occurrence of L may be the same or different and is an organic ligand. It is bonded to the metal atom M by one or more positional bonding or coordination, and n is an integer greater than 1, preferably 1, 2, 3, 4, 5 or 6.
  • these metal complexes are attached to the polymer by one or more positions, preferably by an organic ligand.
  • the metal atom M is selected from the group consisting of transition metal elements or lanthanides or actinides, preferably Ir, Pt, Pd, Au, Rh, Ru, Os, Sm, Eu, Gd, Tb, Dy , Re, Xu or Ag, particularly preferred Os, Ir, Ru, Rh, Re, Pd, Pt.
  • the triplet emitter comprises a chelating ligand, ie a ligand, coordinated to the metal by at least two bonding sites, with particular preference being given to the triplet emitter comprising two or three identical or different pairs Tooth or multidentate ligand.
  • Chelation The body is beneficial for improving the stability of the metal complex.
  • Examples of the organic ligand may be selected from a phenylpyridine derivative, a 7,8-benzoquinoline derivative, and a 2(2-thienyl)pyridine (2(2-thienyl)).
  • the ancillary ligand may preferably be selected from the group consisting of acetoacetate or picric acid.
  • the metal complex that can be used as the triplet emitter has the following form:
  • M is a metal selected from the group consisting of transition metal elements or lanthanides or actinides;
  • Ar 1 may be the same or different at each occurrence, and is a cyclic group containing at least one donor atom, that is, an atom having a lone pair of electrons, such as nitrogen or phosphorus, through which a cyclic group is coordinated to a metal.
  • Ar 2 may be the same or different at each occurrence, and is a cyclic group containing at least one C atom through which a cyclic group is bonded to a metal; Ar 1 and Ar 2 are linked by a covalent bond , each may carry one or more substituent groups, which may also be linked together by a substituent group; each occurrence of L may be the same or different, being an ancillary ligand, preferably selected from a bidentate chelate ligand, Preferably, it is a monoanionic bidentate chelate ligand; m is 1, 2 or 3, preferably 2 or 3, particularly preferably 3; n is 0, 1, or 2, preferably 0 or 1, in particular Priority is 0;
  • the organic functional materials described above including HIM, HTM, ETM, EIM, Host, fluorescent emitters, phosphorescent emitters, may be in the form of a polymer.
  • the polymer suitable for the present invention is a conjugated polymer.
  • conjugated polymers have the following general formula:
  • A can independently select the same or different structural units when appearing multiple times
  • B ⁇ -conjugated structural unit having a large energy gap, also called a Backbone Unit, selected from a monocyclic or polycyclic aryl or heteroaryl group, and the preferred unit form is benzene, bis. Biphenylene, naphthalene, anthracene, phenanthrene, dihydrophenanthrene, 9,10-dihydrophenanthrene, anthracene, diterpene, spirobifluorene, p-phenylacetylene, ruthenium, fluorene, dibenzo-indole And ⁇ , ⁇ and naphthalene and their derivatives.
  • a Backbone Unit selected from a monocyclic or polycyclic aryl or heteroaryl group, and the preferred unit form is benzene, bis. Biphenylene, naphthalene, anthracene, phenanthrene, dihydrophenanthrene, 9,10-dihydrophenanthrene, anth
  • a ⁇ -conjugated structural unit having a small energy gap may be selected from hole injection or transport materials (HIM/HTM) containing the above-described functions according to different functional requirements. , hole blocking material (HBM), electron injecting or transporting material (EIM/ETM), electron blocking material (EBM), organic matrix material (Host), singlet illuminant (fluorescent illuminant), heavy state A structural unit of a light body (phosphorescent emitter).
  • HBM hole blocking material
  • EIM/ETM electron injecting or transporting material
  • EBM electron blocking material
  • organic matrix material Host
  • singlet illuminant fluorescent illuminant
  • heavy state A structural unit of a light body (phosphorescent emitter).
  • the polymeric HTM material is a homopolymer, and the preferred homopolymer is selected from the group consisting of polythiophenes, polypyrroles, polyanilines, polybiphenyl triarylamines, polyvinylcarbazoles, and derivatives thereof. .
  • the polymer HTM material is a conjugated copolymer represented by Chemical Formula 1, wherein
  • A a functional group having a hole transporting ability, which may be selected from structural units containing the hole injection or transport material (HIM/HTM) described above; in a preferred embodiment, A is selected from an amine, a combination Benzene triarylamine, thiophene, and thiophene such as dithienothiophene and thiophene, pyrrole, aniline, carbazole, indenocarbazole, indolocarbazide, pentacene, phthalocyanine, porphyrin and their derivatives.
  • HIM/HTM hole injection or transport material
  • R each independently of each other is hydrogen, a linear alkyl group having 1 to 20 C atoms, an alkoxy group or a thioalkoxy group, or a branched or cyclic alkyl group having 3 to 20 C atoms.
  • alkoxy or thioalkoxy group or a silyl group or a substituted keto group having 1 to 20 C atoms, an alkoxycarbonyl group having 2 to 20 C atoms
  • r 0, 1, 2, 3 or 4;
  • s 0, 1, 2, 3, 4o or 5;
  • organic ETM material is a polymer having electron transport capabilities, including conjugated polymers and non-conjugated polymers.
  • the preferred polymeric ETM material is a homopolymer, and the preferred homopolymer is selected from the group consisting of polyphenanthrene, polyphenanthroline, polyfluorene, polyspiroquinone, polyfluorene, and derivatives thereof.
  • the preferred polymer ETM material is a conjugated copolymer represented by Chemical Formula 1, wherein A can independently select the same or different forms when it is present multiple times:
  • A a functional group having electron transporting ability, preferably selected from tris(8-hydroxyquinoline)aluminum (AlQ 3 ), benzene, diphenylene, naphthalene, anthracene, phenanthrene, dihydrophenanthrene, anthracene, diterpene, snail ⁇ , p-phenylacetylene, anthracene, anthracene, 9,10-Dihydrophenanthrene, phenazine, phenanthroline, ruthenium, fluorene, dibenzo-indenoindole, anthracene naphthalene, benzopyrene and their derivative
  • the luminescent polymer is a conjugated polymer having the general formula of the formula:
  • a functional group having a hole or electron transporting ability which may be selected from structural units containing the above-described hole injecting or transporting material (HIM/HTM), or electron injecting or transporting material (EIM/ETM).
  • A2 a group having a light-emitting function, which may be selected from structural units including the above-described singlet light emitter (fluorescent light emitter) and heavy light emitter (phosphorescent light emitter).
  • luminescent polymers are disclosed in the following patent applications: WO2007043495, WO2006118345, WO2006114364, WO2006062226, WO2006052457, WO2005104264, WO2005056633, WO2005033174, WO2004113412, WO2004041901, WO2003099901, WO2003051092, WO2003020790, WO2003020790, US2020040076853, US2020040002576, US2007208567, US2005962631, EP201345477, EP2001344788, DE102004020298, the entire contents of which are incorporated herein by reference. Reference.
  • the high polymer suitable for the present invention is a non-conjugated high polymer.
  • This can be that all functional groups are on the side chain and the backbone is a non-conjugated high polymer.
  • Some of these non-conjugated high polymers useful as phosphorescent or phosphorescent materials are disclosed in U.S. Patent Nos. 7,250,226, issued toJ.S. Pat. It is disclosed in patent applications such as JP2005108556, JP2005285661 and JP2003338375.
  • the non-conjugated high polymer may be a high polymer, and the functional units conjugated to the main chain are linked by non-conjugated linking units. Examples of such high polymers are in DE102009023154.4 and DE102009023156.0. There is publicity in it. The entire contents of the above patent documents are hereby incorporated by reference.
  • the mixture according to the invention comprises a compound according to the invention and a triplet matrix material.
  • the invention further relates to a composition comprising the organic compound or a mixture as described above, and at least one organic solvent.
  • the invention further provides a film comprising a compound according to the invention prepared from a solution.
  • organic solvents include, but are not limited to, methanol, ethanol, 2-methoxyethanol, dichloromethane, chloroform, chlorobenzene, o-dichlorobenzene, tetrahydrofuran, anisole, morpholine, toluene, O-xylene, m-xylene, p-xylene, 1,4 dioxane, acetone, methyl ethyl ketone, 1,2 dichloroethane, 3-phenoxytoluene, 1,1,1 -trichloroethane, 1,1,2,2-tetrachloroethane, ethyl acetate, butyl acetate, dimethylformamide, dimethylacetamide, dimethyl sulfoxide, tetrahydronaphthalene, naphthalene Alkanes, hydrazines and/or combinations thereof.
  • the composition according to the invention is a solution.
  • composition according to the invention is a suspension.
  • composition in the examples of the present invention may comprise 0.01 to 20% by weight of an organic compound or a mixture thereof, preferably 0.1 to 15% by weight, more preferably 0.2 to 10% by weight, most preferably 0.25 to 5% by weight of organic a compound or a mixture thereof.
  • the invention further relates to the use of the composition as a coating or printing ink in the preparation of an organic electronic device, particularly preferably by a printing or coating process.
  • suitable printing or coating techniques include, but are not limited to, inkjet printing, typography, screen printing, dip coating, spin coating, blade coating, roller printing, twist roll printing, lithography, flexography Printing, rotary printing, spraying, brushing or pad printing, slit-type extrusion coating, etc.
  • Preferred are gravure, screen printing and inkjet printing.
  • the solution or suspension may additionally comprise one or more components such as surface active compounds, lubricants, wetting agents, dispersing agents, hydrophobic agents, binders and the like for adjusting viscosity, film forming properties, adhesion, and the like.
  • the present invention also provides the use of an organic compound as described above in an organic electronic device.
  • the organic electronic device is selected from, but not limited to, an organic light emitting diode (OLED), an organic photovoltaic cell (OPV), an organic light emitting cell (OLEEC), an organic field effect transistor (OFET), an organic light emitting field effect transistor, and an organic laser.
  • OLED organic light emitting diode
  • OLED organic photovoltaic cell
  • OFET organic field effect transistor
  • organic laser organic laser.
  • organic spintronic devices organic sensors and organic plasmon emitting diodes (Organic Plasmon Emitting Diode), especially OLED.
  • the organic compound is preferably used in the luminescent layer of an OLED device.
  • the invention further relates to an organic electronic device comprising at least one organic compound as described above.
  • an organic electronic device comprises at least one cathode, an anode and a functional layer between the cathode and the anode, wherein the functional layer comprises at least one organic compound as described above.
  • the organic electronic device is selected from, but not limited to, an organic light emitting diode (OLED), an organic photovoltaic cell (OPV), an organic light emitting cell (OLEEC), an organic field effect transistor (OFET), an organic light emitting field effect transistor, and an organic laser.
  • organic spintronic devices organic sensing And an organic plasmon emitting diode (Organic Plasmon Emitting Diode).
  • the organic electronic device is an OLED comprising a substrate, an anode, at least one luminescent layer, and a cathode.
  • the substrate can be opaque or transparent.
  • a transparent substrate can be used to make a transparent light-emitting component. See, for example, Bulovic et al. Nature 1996, 380, p29, and Gu et al, Appl. Phys. Lett. 1996, 68, p2606.
  • the substrate can be rigid or elastic.
  • the substrate can be plastic, metal, semiconductor wafer or glass.
  • the substrate has a smooth surface. Substrates without surface defects are a particularly desirable choice.
  • the substrate is flexible, selected from polymeric films or plastics, having a glass transition temperature Tg of 150 ° C or higher, preferably more than 200 ° C, more preferably more than 250 ° C, and most preferably more than 300 ° C. Examples of suitable flexible substrates are poly(ethylene terephthalate) (PET) and polyethylene glycol (2,6-naphthalene) (PEN).
  • the anode can comprise a conductive metal or metal oxide, or a conductive polymer.
  • the anode can easily inject holes into a hole injection layer (HIL) or a hole transport layer (HTL) or a light-emitting layer.
  • HIL hole injection layer
  • HTL hole transport layer
  • the absolute value of the difference between the work function of the anode and the HOMO level or the valence band level of the illuminant in the luminescent layer or the p-type semiconductor material as the HIL or HTL or electron blocking layer (EBL) is less than 0.5 eV, preferably less than 0.3 eV, and most preferably less than 0.2 eV.
  • anode material examples include, but are not limited to, Al, Cu, Au, Ag, Mg, Fe, Co, Ni, Mn, Pd, Pt, ITO, aluminum-doped zinc oxide (AZO), and the like.
  • suitable anode materials are known and can be readily selected for use by one of ordinary skill in the art.
  • the anode material can be deposited using any suitable technique, such as a suitable physical vapor deposition process, including radio frequency magnetron sputtering, vacuum thermal evaporation, electron beam (e-beam), and the like.
  • the anode is patterned. Patterned ITO conductive substrates are commercially available and can be used to prepare devices in accordance with the present invention.
  • the cathode can include a conductive metal or metal oxide.
  • the cathode can easily inject electrons into the EIL or ETL or directly into the luminescent layer.
  • the work function of the cathode and the LUMO level of the illuminant or the n-type semiconductor material as an electron injection layer (EIL) or electron transport layer (ETL) or hole blocking layer (HBL) in the luminescent layer or
  • EIL electron injection layer
  • ETL electron transport layer
  • HBL hole blocking layer
  • the absolute value of the difference in conduction band energy levels is less than 0.5 eV, preferably less than 0.3 eV, and most preferably less than 0.2 eV.
  • all materials which can be used as cathodes for OLEDs are possible as cathode materials for the devices of the invention.
  • cathode material examples include, but are not limited to, Al, Au, Ag, Ca, Ba, Mg, LiF/Al, MgAg alloy, BaF2/Al, Cu, Fe, Co, Ni, Mn, Pd, Pt, ITO, and the like.
  • the cathode material can be deposited using any suitable technique, such as a suitable physics gas. Phase deposition methods include RF magnetron sputtering, vacuum thermal evaporation, electron beam (e-beam), and the like.
  • the OLED may further include other functional layers such as a hole injection layer (HIL), a hole transport layer (HTL), an electron blocking layer (EBL), an electron injection layer (EIL), an electron transport layer (ETL), and a hole blocking layer. (HBL).
  • HIL hole injection layer
  • HTL hole transport layer
  • EBL electron blocking layer
  • EIL electron injection layer
  • ETL electron transport layer
  • HBL hole blocking layer
  • the light-emitting layer is prepared by printing a composition comprising the compound of the present invention.
  • the light-emitting device according to the invention has an emission wavelength of between 300 and 1000 nm, preferably between 350 and 900 nm, more preferably between 400 and 800 nm.
  • the invention further relates to the use of an organic electronic device according to the invention in various electronic devices, including, but not limited to, display devices, illumination devices, light sources, sensors and the like.
  • DEU1 deuterated compounds DEU1, DEU2 and DEU3, D4 represents 4 quinones on the benzene ring, and the synthetic route of the compound DEU1 is as follows:
  • the synthesis steps of the compounds DEU2 and DEU3 are similar to the synthesis steps of DEU1, except that the raw materials used in the first step synthesis are 1,2,3,4-tetrafluoro-5,6-dicyanobenzene and 1, respectively. 2,4,5-tetrafluoro-3,6-dicyanobenzene.
  • the compounds DEU1, DEU2 and DEU3 were finally further purified by sublimation.
  • a, cleaning of the conductive glass substrate when used for the first time, can be washed with a variety of solvents, such as chloroform, ketone, isopropyl alcohol, and then UV ozone plasma treatment;
  • cathode LiF / Al (1nm / 150nm) in a high vacuum (1 ⁇ 10 -6 mbar) in the thermal evaporation;
  • the device is encapsulated in a nitrogen glove box with an ultraviolet curable resin.
  • the current-voltage (J-V) characteristics of OLEDs are characterized by characterization equipment and record important parameters such as efficiency, lifetime and external quantum efficiency.
  • the life of each device is shown in Table 1. From the recorded data, it can be seen that OLED1 (corresponding to raw material DEU1), OLED2 (corresponding to raw material DEU1), and OLED3 (corresponding to raw material DEU1) have lifetimes of RefOLED1 (corresponding to raw material Comp1) and RefOLED2 (corresponding to Raw material Comp2), RefOLED3 (corresponding to raw material Comp3) 1.5 times or more.

Abstract

本发明公开了氘化的有机化合物、包含该有机化合物的组合物及有机电子器件,其中,氘化的有机化合物,其具有如下结构式:为芳香族或杂芳族结构单元,D为供电子基,A为吸电子基,n、m为1到6之间的整数;其中,该有机化合物的ΔE(S1-T1)≤0.35eV,并且该有机化合物至少有一个H原子被氘取代。本发明通过氘取代有机化合物中的H原子,并使其ΔE(S1-T1)≤0.35eV,从而实现提高该有机化合物的电致发光量子效率以及寿命,并且本发明中的材料其成本低,合成过程相对简单,因而具有巨大的应用潜力和应用范围。

Description

氘化的有机化合物、包含该化合物的混合物、组合物及有机电子器件 技术领域
本发明涉及有机材料领域,尤其涉及氘化的有机化合物、包含该化合物的混合物、组合物及有机电子器件。
背景技术
由于有机半导体材料在合成上具有多样性,制造成本低,且具有很高的光学和电学性能,可使制造大面积柔性器件成为可能,因此,由有机半导体材料制成的有机发光二极管(OLED)在新颖的光电器件应用中,例如,在平板显示器和照明应用中,有很大的潜力。为了提高有机发光二极管的发光效率,各种基于荧光和磷光发光材料体系已被开发出来。荧光材料的有机发光二极管可靠性高,但在电气激发下其内部电致发光量子效率被限制为25%,因为激子的单重激发态和三重激发态的分支比为1∶3。与此相反,使用磷光材料的有机发光二极管已经取得了几乎100%的内部发光量子效率。迄今为止,有实际使用价值的磷光材料是铱和铂配合物,原材料稀有而昂贵,配合物的合成很复杂,因此成本相当高。
为了解决这个问题,Adachi提出反向内部转换(reverse intersystem crossing)的概念,这样可以利用有机化合物,即不利用金属配合物,实现磷光OLED的高效率。此概念已经通过,1)复合受激态(exciplex),参见Adachi等,Nature Photonics,Vol 6,p253(2012);2)热激发延迟荧光材料TADF,参见Adachi et al.,Nature Vol 492,234,(2012),得以实现。但OLED器件的寿命仍然很短。
显然目前的发光材料其效率和寿命都还有待提高。
因此,现有技术还有待于改进和发展。
发明内容
鉴于上述现有技术的不足,本发明的目的在于提供氘化的有机化合物、包含该化合 物的混合物、组合物及有机电子器件,旨在解决现有的发光材料其效率及寿命还有待提高的问题。
本发明提供一种具有如下结构式(I)的有机化合物:
Figure PCTCN2015096327-appb-000001
Ar为芳香族或杂芳族结构单元,n、m为1到6之间的整数,D为供电子基,其中当m>1时,各个D相互独立地选自相同或不同的供电子基,A为吸电子基,其中当n>1时,各个A相互独立地选自相同或不同的吸电子基;
其中该有机化合物的ΔE(S1-T1)≤0.35eV,并且该有机化合物至少一个H原子被氘取代。
优先的,所述的有机化合物,其中,该有机化合物的ΔE(S1-T1)≤0.25eV。
在一个优先的实施例中,所述的有机化合物,其中至少一个供电子基D中的至少一个H原子被氘取代。
在另一个优先的实施例中,所述的有机化合物,其中至少一个吸电子基A中的至少一个H原子被氘取代。
在某些实施例中,所述的有机化合物,其中Ar中至少一个H原子被氘取代。
在一个优先的实施例中,所述的氘化的有机化合物,其中,其中20%以上,优选是30%以上,更优选是40%以上,最优选是50%以上的H原子被氘取代。
在一个优先的实施例中,所述的氘化的有机化合物,其中,供电子基D包含有如下基团:
Figure PCTCN2015096327-appb-000002
Figure PCTCN2015096327-appb-000003
在一个优先的实施例中,所述的氘化的有机化合物,其中,吸电子基A选自F,氰基或包含有如下基团:
Figure PCTCN2015096327-appb-000004
其中n是从1到3的整数;X1-X8选自CR1或N,并且至少有一个是N,其中R1选自如下的基团:氢、烷基、烷氧基、氨基、烯、炔、芳烷基、杂烷基、芳基和杂芳基。
在一个优先的实施例中,所述的氘化的有机化合物,其中,Ar选自如下基团:
Figure PCTCN2015096327-appb-000005
其中,Z为O或S。
在一个优先的实施例中,所述的氘化的有机化合物,其中,其中20%以上,优选是30%以上,更优选是40%以上,最优选是50%以上的H原子被氘取代。
本发明还提供一种氘化的混合物,其中,包含至少一种如上所述的有机化合物,还包含一种有机功能材料,所述有机功能材料选自空穴(也称电洞)注入或传输材料(HIM/HTM),空穴阻挡材料(HBM),电子注入或传输材料(EIM/ETM),电子阻挡材料(EBM),有机基质材料(Host),单重态发光体(荧光发光体),三重态发光体(磷光发光体)。
本发明还涉及一种组合物,其中,包含所述的有机化合物或者如上所述的混合物,以及至少一种有机溶剂。本发明进一步提供一种从溶液中制备包含有按照本发明的化合物的薄膜。
本发明进一步涉及一种有机电子器件,其中,包含如上所述的有机化合物。
所述的有机电子器件选自有机发光二极管(OLED)、有机光伏电池(OPV)、有机发光电池(OLEEC)、有机场效应管(OFET)、有机发光场效应管、有机激光器、有机自旋电子器件、有机传感器及有机等离激元发射二极管(Organic Plasmon Emitting Diode)。
有益效果:本发明通过氘取代有机化合物中的H原子,并使其ΔE(S1-T1)≤0.35eV,从而实现提高该有机化合物的内部电致发光量子效率以及寿命,并且本发明中的材料其成本低,合成过程相对简单,因而具有巨大的应用潜力和应用范围。
具体实施方式
本发明提供氘化的有机化合物、包含该化合物的混合物、组合物及有机电子器件,为使本发明的目的、技术方案及效果更加清楚、明确,以下对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明提供一种具有如下结构式(I)的有机化合物:
Figure PCTCN2015096327-appb-000006
Ar为芳香族或杂芳族结构单元,n、m为1到6之间的整数,D为供电子基,其中当m>1时,各个D相互独立地选自相同或不同的供电子基,A为吸电子基,其中当n>1时,各个A相互独立地选自相同或不同的吸电子基;
其中该有机化合物的ΔE(S1-T1)≤0.35eV,并且该有机化合物至少一个H原子被氘取代。
ΔE(S1-T1)”是指该有机化合物的S1态与T1态之间的能量差,可以通过光谱测量确定,或按如下所述的模拟计算得到。
按照本发明的有机化合物是一种小分子材料。
本文中所定义的术语“小分子”是指不是聚合物,低聚物,树枝状聚合物,或共混物的分子。特别是,小分子中没有重复结构。小分子的分子量≤3000克/摩尔,优选是≤2000克/摩尔,最优选是≤1500克/摩尔。
聚合物,即Polymer,包括均聚物(homopolymer),共聚物(copolymer),镶嵌共聚物(block copolymer)。另外在本发明中,聚合物也包括树状物(dendrimer),有关树状物的合成及应用请参见【Dendrimers and Dendrons,Wiley-VCH Verlag GmbH&Co.KGaA,2002,Ed.George R.Newkome,Charles N.Moorefield,Fritz Vogtle.】。
共轭聚合物(conjugated polymer)是一聚合物,它的主链backbone主要是由C原子的sp2杂化轨道构成,著名的例子有:聚乙炔polyacetylene和poly(phenylene vinylene),其主链上的C原子的也可以被其他非C原子取代,而且当主链上的sp2杂化被一些自然的缺陷打断时,仍然被认为是共轭聚合物。另外在本发明中共轭聚合物也包括主链上包 含有芳基胺(aryl amine)、芳基磷化氢(aryl phosphine)及其他杂环芳烃(heteroarmotics)、有机金属络合物(organometallic complexes)等。
按照本发明的第一个特征是,该有机化合物至少一个H原子被氘取代。
本发明显示,氘代后的化合物具有较好的稳定性,含有氘代后的化合物的OLED具有较长的寿命。其可能的机理是,但不限于,由于动力学的同位素效应,涉及C-H键的反应率通常比相应的C-D键快6-10倍,因此,在OLED工作时,含有氘代后的化合物在衰变的动力学过程中有比较慢的衰变。
在某些实施例中,那些反应活性较高的H被氘取代。
在一个优先的实施例中,所述的有机化合物,其中至少一个供电子基D中的至少一个H原子被氘取代。
在另一个优先的实施例中,所述的有机化合物,其中至少一个吸电子基A中的至少一个H原子被氘取代。
在某些实施例中,所述的有机化合物,其中Ar中至少一个H原子被氘取代。
在一个优先的实施例中,所述的有机化合物,其中至少一个供电子基D中的至少一个H原子被氘取代,和至少一个吸电子基A中的至少一个H原子被氘取代。
在自然界中氘在海洋中的丰度为0.0156%,即6420个氢原子中有一个是氘。按照本发明的化合物中氘的含量远远大于自然丰度,一般来说至少有1%的H原子被氘取代,较好是至少有10%的H原子被氘取代。
在一个优先的实施例中,所述的氘化的有机化合物,其中,20%以上,较好是30%以上,更好是40%以上,最好是50%以上的H原子被氘取代。
在本发明实施例中,对于有机材料的能级结构,HOMO、LUMO、三线态能级(T1)及单线态能级(S1)起着关键的作用。以下首先对这些能级的决定作一介绍。
HOMO和LUMO能级可以通过光电效应进行测量,例如XPS(X射线光电子光谱法)和UPS(紫外光电子能谱)或通过循环伏安法(以下简称CV)。最近,量子化学 方法,例如密度泛函理论(以下简称DFT),也成为行之有效的计算分子轨道能级的方法。
有机材料的三线态能级T1可通过低温时间分辨发光光谱来测量,或通过量子模拟计算(如通过Time-dependent DFT)得到,如通过商业软件Gaussian 03W(Gaussian Inc.),具体的模拟方法可参见WO2011141110。
有机材料的单线态能级S1,可通过吸收光谱,或发射光谱来确定,也可通过量子模拟计算(如Time-dependent DFT)得到。
应该注意,HOMO、LUMO、T1及S1的绝对值取决于所用的测量方法或计算方法,甚至对于相同的方法,不同评价的方法,例如在CV曲线上起始点和峰点可给出不同的HOMO/LUMO值。因此,合理有意义的比较应该用相同的测量方法和相同的评价方法进行。本发明实施例的描述中,HOMO、LUMO、T1及S1的值是基于Time-dependent DFT的模拟,但不影响其他测量或计算方法的应用。
按照热激发延迟荧光材料TADF(参见Adachi et al.,Nature Vol 492,234,(2012))的原理,当有机化合物的ΔE(S1-T1)足够小时,该有机化合物的三线态激子可以通过反向内部转换到单线态激子,从而实现高效发光。本发明将此原理作为一种可能的机制。
按照本发明的化合物的第二个特征是,该有机化合物的ΔE(S1-T1)≤0.35eV。
在一个优先的实施方案中,按照本发明的有机化合物的ΔE(S1-T1)≤0.25eV,优选是≤0.20eV,更优选是≤0.15eV,最优选是≤0.10eV。
在一个优先的实施例中,所述的氘化的有机化合物,其中,供电子基D包含有如下基团:
Figure PCTCN2015096327-appb-000007
Figure PCTCN2015096327-appb-000008
在一个优先的实施例中,所述的氘化的有机化合物,其中,吸电子基A选自F,氰基或包含有如下基团:
Figure PCTCN2015096327-appb-000009
其中n是从1到3的整数;X1-X8选自XR1或N,并且至少有一个是N,其中R1选自如下的基团:氢、烷基、烷氧基、氨基、烯、炔、芳烷基、杂烷基、芳基和杂芳基。
在一个优先的实施例中,所述的氘化的有机化合物,其中,Ar选自如下基团:
Figure PCTCN2015096327-appb-000010
其中,Z为O或S。
以下列出按照本发明的材料的一些例子,其一个或多个H被氘取代:
Figure PCTCN2015096327-appb-000011
Figure PCTCN2015096327-appb-000012
本发明还提供一种混合物,其中,包含有至少一种如上所述的有机化合物,还包含一种有机功能材料,所述有机功能材料选自空穴(也称电洞)注入或传输材料(HIM/HTM),空穴阻挡材料(HBM),电子注入或传输材料(EIM/ETM),电子阻挡材料(EBM),有机基质材料(Host),单重态发光体(荧光发光体),三重态发光体(磷光发光体)。例如在WO2010135519A1、US20090134784A1和WO 2011110277A1中对这些有机功能材料有详细的描述,特此将此3篇专利文件中的全部内容并入本文作为参考。
在本发明实施例中,主体材料、基质材料、Host材料和Matrix材料具有相同的含义,可以互换。
下面对这些功能材料作一些较详细的描述(但不限于此)。
1.HIM/HTM
合适的有机HIM/HTM材料可选包含有如下结构单元的化合物:酞菁,卟啉,胺,芳香胺,联苯类三芳胺,噻吩,并噻吩如二噻吩并噻吩和并噻吩,吡咯,苯胺,咔唑,氮茚并氮芴,及它们的衍生物。另位的合适的HIM也包括含有氟烃的聚合物;含有导电掺杂的聚合物;导电聚合物,如PEDOT/PSS;自组装单体,如含有膦酸和sliane衍生物的化合物;金属氧化物,如MoOx;金属络合物,和交联化合物等。
可用作HIM或HTM的环芳香胺衍生化合物的例子包括(但不限于)如下的一般结构:
Figure PCTCN2015096327-appb-000013
每个Ar1到Ar9可独立选自环芳香烃化合物,如苯,联苯,三苯基,苯并,萘,蒽,phenalene,菲,芴,芘,屈,苝,薁;芳香杂环化合物,如二苯并噻吩,二苯并呋喃,呋喃,噻吩,苯并呋喃,苯并噻吩,咔唑,吡唑,咪唑,三氮唑,异恶唑,噻唑,恶二唑,oxatriazole,二恶唑,噻二唑,吡啶,哒嗪,嘧啶,吡嗪,三嗪,恶嗪,oxathiazine,oxadiazine,吲哚,苯并咪唑,吲唑,indoxazine,苯并恶唑,benzisoxazole,苯并噻唑,喹啉,异喹啉,邻二氮(杂)萘,喹唑啉,喹喔啉,萘,酞,蝶啶,氧杂蒽,吖啶,吩嗪,吩噻嗪,吩恶嗪,dibenzoselenophene,benzoselenophene,benzofuropyridine,indolocarbazole,pyridylindole,pyrrolodipyridine,furodipyridine,benzothienopyridine,thienodipyridine,benzoselenophenopyridine和selenophenodipyridine;包含有2至10环结构的基团,它们可以是相同或不同类型的环芳香烃基团或芳香杂环基团,并彼此直接或通过至少一个以下的基团连结在一起,如氧原子,氮原子,硫原子,硅原子,磷原子,硼原子,链结构单元和脂肪环基团。其中,每个Ar可以进一步被取代,取代基可选为氢,烷基,烷氧基,氨基,烯,炔,芳烷基,杂烷基,芳基和杂芳基。
在一个方面,Ar1到Ar9可独立选自包含如下组的基团:
Figure PCTCN2015096327-appb-000014
n是1到20的整数;X1到X8是CH或N;Ar1如以上所定义.
环芳香胺衍生化合物的另外的例子可参见US3567450,US4720432,US5061569, US3615404,和US5061569。
可用作HTM或HIM的金属络合物的例子包括(但不限于)如下的一般结构:
Figure PCTCN2015096327-appb-000015
M是金属,有大于40的原子量;
(Y1-Y2)是两齿配体,Y1和Y2独立地选自C,N,O,P,和S;L是辅助配体;m是整数,其值从1到此金属的最大配位数;m+n是此金属的最大配位数。
在一个实施例中,(Y1-Y2)是2-苯基吡啶衍生物.
在另一个实施例中,(Y1-Y2)是卡宾配体.
在另一个实施例中,M选自Ir,Pt,Os,和Zn.
在另一个方面,金属络合物的HOMO大于-5.5eV(目对于真空能级)。
在下面的表中列出合适的可作为HIM/HTM化合物的例子:
Figure PCTCN2015096327-appb-000016
2.EIM/ETM/HBM
EIM/ETM材料的例子并不受特别的限制,任何金属络合物或有机化合物都可能被用作 为EIM/ETM,只要它们可以传输电子。优先的有机EIM/ETM材料可选自三(8-羟基喹啉)铝(AlQ3),吩嗪,菲罗啉,蒽,菲,芴,二芴,螺二芴,对苯乙炔,三嗪,三唑,咪唑,芘,苝,反茚并芴,顺茚并,二苯并-茚并芴,茚并萘,苯并蒽及它们的衍生物。
空穴阻挡层(HBL)通常用来阻挡来自相邻功能层,特别是发光层的空穴。对比一个没有阻挡层的发光器件,HBL的存在通常会导致发光效率的提高。空穴阻挡层(HBL)的空穴阻挡材料(HBM)需要有比相邻功能层,如发光层更低的HOMO。在一个优先的实施方案中,HBM有比相邻发光层更大的激发态能级,如单重态或三重态,取决于发光体.在另一个优先的实施方案中,HBM有电子传输功能.。通常具有深的HOMO能级的EIM/ETM材料可以做为HBM。
另一方面,可作EIM/ETM/HBM的化合物是至少包含一个以下基团的分子:
Figure PCTCN2015096327-appb-000017
R1选自如下的基团:氢,烷基,烷氧基,氨基,烯,炔,芳烷基,杂烷基,芳基和杂芳基,当它们是芳基或杂芳基时,它们与上述HTM中的Ar1和Ar2意义相同;
Ar1-Ar5与在HTM中所描述的Ar1意义相同;
n是从0到20的整数;
X1-X8选自CR1或N.
另一方面,可用作EIM/ETM的金属络合物的例子包括(但不限于)如下的一般结构:
Figure PCTCN2015096327-appb-000018
(O-N)或(N-N)是两齿配体,其中金属与O,N或N,N配位;L是辅助配体;m是整数,其值从1到此金属的最大配位数。
在下面的表中列出合适的可作ETM化合物的例子:
Figure PCTCN2015096327-appb-000019
在另一个优先的实施方案中,有机碱金属化合物可用作EIM。在本发明中,有机碱金属化合物可以理解挖为如下的化合物,其中至少有一个碱金属,即锂,钠,钾,铷,铯,并进一步包含至少一个有机配体。
合适的有机碱金属化合物,包括US 7767317B2,EP 1941562B1和EP 1144543B1中所描述的化合物。
优先选择的有机碱金属化合物是下列化学式的化合物:
Figure PCTCN2015096327-appb-000020
其中R1的含义如上所述,弧线代表两个或三个原子及键接,以便必要时的与金属M形成5元或六元环,其中原子也可以由一个或多个R1取代,M为碱金属,选自锂,钠,钾,铷,铯。
有机碱金属化合物可以有单体的形式,如以上所述的,或有聚集体的形式,例如,两碱 金属离子与两个配体,4碱金属离子和4配体,6碱金属离子和6配体或在其他的形式。优先选择的有机碱金属化合物是下列化学式的化合物:
Figure PCTCN2015096327-appb-000021
其中使用的符号有上述定义相同,另外:
o,每次出现时可以是相同或不同,是0,1,2,3或4;
p,每次出现时可以是相同或不同,是0,1,2或3;
在一个优先的实施方案中,碱金属M选自锂,钠,钾,更好是锂或钠,最好是锂。
在一个优先的实施方案中,有机碱金属化合物电子注入层中.更好地,电子注入层由有机碱金属化合物组成。
在另一个优先的实施方案中,有机碱金属化合物掺杂到其他ETM中形成电子传输层或电子注入层中.更好地,是电子传输层。
在下面的表中列出合适的有机碱金属化合物的例子:
Figure PCTCN2015096327-appb-000022
3.三重态基质材料(Triplet Host):
三重态基质材料的例子并不受特别的限制,任何金属络合物或有机化合物都可能被用作为基质,只要其三重态能量比发光体,特别是三重态发光体或磷光发光体更高。
可用作三重态基质(Host)的金属络合物的例子包括(但不限于)如下的一般结构:
Figure PCTCN2015096327-appb-000023
M是金属;(Y3-Y4)是两齿配体,Y3和Y4独立地选自C,N,O,P,和S;L是辅助配体;m是整数,其值从1到此金属的最大配位数;m+n是此金属的最大配位数。
在一个优先的实施方案中,可用作三重态基质的金属络合物有如下形式:
Figure PCTCN2015096327-appb-000024
(O-N)是两齿配体,其中金属与O和N原子配位.
在某一个实施方案中,M可选自Ir和Pt.
可作为三重态基质的有机化合物的例子选自包含有环芳香烃基的化合物,碍如苯,联苯,三苯基,苯并,芴;测试;包含有芳香杂环基的化合物,如二苯并噻吩,二苯并呋喃,dibenzoselenophene,呋喃,噻吩,苯并呋喃,苯并噻吩,benzoselenophene,咔唑,indolocarbazole,pyridylindole,pyrrolodipyridine,吡唑,咪唑,三唑类,恶唑,噻唑,恶二唑,oxatriazole,二恶唑,噻二唑,吡啶,哒嗪,嘧啶,吡嗪,三嗪类,oxazines,oxathiazines,oxadiazines,吲哚,苯并咪唑,吲唑,indoxazine,bisbenzoxazoles,benzisoxazole,苯并噻唑,喹啉,异喹啉,cinnoline,喹唑啉,喹喔啉,萘,酞,蝶啶,氧杂蒽,吖啶,吩嗪,吩噻嗪,phenoxazines,benzofuropyridine,furodipyridine,benzothienopyridine,thienodipyridine,benzoselenophenopyridine和selenophenodipyridine;包含有2至10环结构的基团, 它们可以是相同或不同类型的环芳香烃基团或芳香杂环基团,并彼此直接或通过至少一个以下的基团连结在一起,如氧原子,氮原子,硫原子,硅原子,磷原子,硼原子,链结构单元和脂肪环基团。其中,每个Ar可以进一步被取代,取代基可选为氢,烷基,烷氧基,氨基,烯,炔,芳烷基,杂烷基,芳基和杂芳基。
在一个优先的实施方案中,三重态基质材料选自包含至少一个以下基团的化合物:
Figure PCTCN2015096327-appb-000025
R1-R7可相互独立地选自如下的基团:氢,烷基,烷氧基,氨基,烯,炔,芳烷基,杂 烷基,芳基和杂芳基,当它们是芳基或杂芳基时,它们与上述的Ar1和Ar2意义相同;n是从0到20的整数;X1-X8选自CH或N;X9选自CR1R2或NR1.
在下面的表中列出合适的三重态基质材料的例子:
Figure PCTCN2015096327-appb-000026
4.单重态基质材料(Singlet Host):
单重态基质材料的例子并不受特别的限制,任何有机化合物都可能被用作为基质,只要其单重态能量比发光体,特别是单重态发光体或荧光发光体更高。
作为单重态基质材料使用的有机化合物的例子可选自含有环芳香烃化合物,如苯,联苯,三苯基,苯并,萘,蒽,phenalene,菲,芴,芘,屈,苝,薁;芳香杂环化合物,如二苯并噻吩,二苯并呋喃,dibenzoselenophene,呋喃,噻吩,苯并呋喃,苯并噻吩,benzoselenophene,咔唑,indolocarbazole,pyridylindole,Pyrrolodipyridine,吡唑,咪唑,三氮唑,异恶唑,噻唑,恶二唑,oxatriazole,二恶唑,噻二唑,吡啶,哒嗪,嘧啶,吡嗪,三嗪,恶嗪,oxathiazine,oxadiazine,吲哚,苯并咪唑,吲唑, indoxazine,苯并恶唑,benzisoxazole,苯并噻唑,喹啉,异喹啉,cinnoline,喹唑啉,喹喔啉,萘,酞,蝶啶,氧杂蒽,吖啶,吩嗪,吩噻嗪,吩恶嗪,benzofuropyridine,furodipyridine,benzothienopyridine,thienodipyridine,benzoselenophenopyridine和selenophenodipyridine;包含有2至10环结构的基团,它们可以是相同或不同类型的环芳香烃基团或芳香杂环基团,并彼此直接或通过至少一个以下的基团连结在一起,如氧原子,氮原子,硫原子,硅原子,磷原子,硼原子,链结构单元和脂肪环基团。。
在一个优先的实施方案中,单重态基质材料选自包含至少一个以下基团的化合物:
Figure PCTCN2015096327-appb-000027
R1可相互独立地选自如下的基团:氢,烷基,烷氧基,氨基,烯,炔,芳烷基,杂烷基, 芳基和杂芳基;Ar1是芳基或杂芳基,它与上述的HTM中定义的Ar1意义相同;
n是从0到20的整数;X1-X8选自CH或N;X9和X10选自CR1R2或NR1
在下面的表中列出合适的单重态基质材料的例子:
Figure PCTCN2015096327-appb-000028
4.单重态发光体(Singlet Emitter)
单重态发光体往往有较长的共轭π电子系统。迄今,已有许多例子,例如在JP2913116B和WO2001021729A1中公开的苯乙烯胺(styrylamine)及其衍生物,和在WO2008/006449和WO2007/140847中公开的茚并芴(indenofluorene)及其衍生物.
在一个优先的实施方案中,单重态发光体可选自一元苯乙烯胺(monostyrylamines),二元苯乙烯胺(distyrylamines),三元苯乙烯胺(tristyrylamines),四元苯乙烯胺(tetrastyrylamines),苯乙烯膦(styrylphosphines),苯乙烯醚(styryl ethers)和芳胺(arylamines)。
一元苯乙烯胺是指这样的化合物:它包含一个无取代或取代的苯乙烯基组和至少一个胺,最好是芳香胺。二元苯乙烯胺是指这样的化合物:它包含二个无取代或取代的苯乙烯基组和至少一个胺,最好是芳香胺。三元苯乙烯胺是指这样的化合物:它包含三个无取代或取代的苯乙烯基组和至少一个胺,最好是芳香胺。四元苯乙烯胺是指这样的化合物:它包含四个无取代或取代的苯乙烯基组和至少一个胺,最好是芳香胺。优选的苯乙烯是二苯乙烯,其可能会进一步被取代。相应的膦类和醚类的定义与胺类相似。芳基胺或芳香胺是指一种化合物,包含三个直接联接氮的无取代或取代的芳香环或杂环系统。这些芳香族或杂环的环系统中至少有一个优先选自稠环系统,并最好有至少14个芳香环原子。其中优选的例子有芳香蒽胺,芳香蒽二胺,芳香芘胺,芳香芘二胺,芳香屈胺和芳香屈二胺。芳香蒽胺是指这样的化合物:其中一个二元芳基胺基团(diarylamino)直接联到蒽上,最好是在9的位置上。芳香蒽二胺是指这样的化合物:其中二个二元芳基胺基团(diarylamino)直接联到蒽上,最好是在9,10的位置上。芳香芘胺,芳香芘二胺,芳香屈胺和芳香屈二胺的定义类似,其中二元芳基胺基团最好联到芘的1或1,6位置上.
基于乙烯胺及芳胺的单重态发光体的例子,也是优选的例子,可在下述专利文件中找到:WO 2006/000388,WO 2006/058737,WO 2006/000389,WO 2007/065549,WO 2007/115610,US 7250532 B2,DE 102005058557 A1,CN 1583691 A,JP 08053397 A,US 6251531 B1,US 2006/210830 A,EP 1957606 A1和US 2008/0113101 A1特此上述列出的专利文件中的全部内容并入本文作为参考。
基于均二苯乙烯(distyrylbenzene)极其衍生物的单重态发光体的例子有US 5121029.
进一步的优选的单重态发光体选自茚并芴-胺和茚并芴-二胺,如WO 2006/122630所公开的,苯并茚并芴-胺(benzoindenofluorene-amine)和苯并茚并芴-二胺 (benzoindenofluorene-diamine),如WO 2008/006449所公开的,二苯并茚并芴-胺(dibenzoindenofluorene-amine)和二苯并茚并芴-二胺(dibenzoindenofluorene-diamine),如WO2007/140847所公开的。
其他可用作单重态发光体的材料有多环芳烃化合物,特别是如下化合物的衍生物:蒽如9,10-二(2-萘并蒽)(9,10-di(2-naphthylanthracene)),萘,四苯,氧杂蒽,菲(phenanthrene),芘(perylene)如2,5,8,11-tetra-t-butylperylene,茚并芘(indenoperylene),苯撑(phenylenes)如
(4,4’-(bis(9-ethyl-3-carbazovinylene)-1,1’-biphenyl),periflanthene,十环烯(decacyclene),六苯并苯(coronene),芴,螺二芴(spirofluorene),芳基芘(arylpyrene)(如US20060222886),亚芳香基乙烯(arylenevinylene)(如US5121029,US5130603),环戊二烯如四苯基环戊二烯(tetraphenylcyclopentadiene),红荧烯(rubrene),香豆素(coumarine),若丹明(rhodamine),喹吖啶酮(quinacridone),吡喃(pyrane)如4(dicyanoethylene)-6-(4-dimethylaminostyryl-2-methyl)-4H-pyrane(DCM),噻喃(thiapyran),bis(azinyl)imine-boron化合物(US 2007/0092753 A1),bis(azinyl)methene化合物,carbostyryl化合物,噁嗪酮(oxazone),苯并恶唑(benzoxazole),苯并噻唑(benzothiazole),苯并咪唑(benzimidazole)及diketopyrrolopyrrole。一些单重态发光体的材料可在下述专利文件中找到:US 20070252517 A1,US 4769292,US 6020078,US 2007/0252517 A1,US 2007/0252517 A1。特此将上述列出的专利文件中的全部内容并入本文作为参考。
在下面的表中列出一些合适的单重态发光体的例子:
Figure PCTCN2015096327-appb-000029
5.三重态发光体(Triplet Emitter)
三重态发光体也称磷光发光体。在一个优先的实施方案中,三重态发光体是有通式M(L)n的金属络合物,其中M是金属原子,L每次出现时可以是相同或不同,是有机配体,它通过一个或多个位置键接或配位连接到金属原子M上,n是大于1的整数,优选是1,2,3,4,5或6。可选地,这些金属络合物通过一个或多个位置联接到聚合物上,最好是通过有机配体。
在一个优先的实施方案中,金属原子M选自过渡金属元素或镧系元素或锕系元素,优先选择Ir,Pt,Pd,Au,Rh,Ru,Os,Sm,Eu,Gd,Tb,Dy,Re,Xu或Ag,特别优先选择Os,Ir,Ru,Rh,Re,Pd,Pt。
优先地,三重态发光体包含有螯合配体,即配体,通过至少两个结合点与金属配位,特别优先考虑的是三重态发光体包含有两个或三个相同或不同的双齿或多齿配体。螯合配 体有利于提高金属络合物的稳定性。
有机配体的例子可选自苯基吡啶(phenylpyridine)衍生物,7,8-苯并喹啉(7,8-benzoquinoline)衍生物,2(2-噻吩基)吡啶(2(2-thienyl)pyridine)衍生物,2(1-萘基)吡啶(2(1-naphthyl)pyridine)衍生物,或2苯基喹啉(2phenylquinoline)衍生物。所有这些有机配体都可能被取代,例如被含氟或三氟甲基取代。辅助配体可优先选自乙酸丙酮(acetylacetonate)或苦味酸。
在一个优先的实施方案中,可用作三重态发光体的金属络合物有如下形式:
Figure PCTCN2015096327-appb-000030
其中M是金属,选自过渡金属元素或镧系元素或锕系元素;
Ar1每次出现时可以是相同或不同,是环状基团,其中至少包含有一个施主原子,即有一孤对电子的原子,如氮或磷,通过它环状基团与金属配位连接;Ar2每次出现时可以是相同或不同,是一个环状基团,其中至少包含有一个C原子,通过它环状基团与金属连接;Ar1和Ar2由共价键联接在一起,可各自携带一个或多个取代基团,它们也可再通过取代基团联接在一起;L每次出现时可以是相同或不同,是辅助配体,优选选自双齿螯合配体,最好是单阴离子双齿螯合配体;m是1,2或3,优先地是2或3,特别优先地是3;n是0,1,或2,优先地是0或1,特别优先地是0;
一些三重态发光体的材料极其应用的例子可在下述专利文件和文献中找到:WO 200070655,WO 200141512,WO 200202714,WO 200215645,EP 1191613,EP 1191612,EP 1191614,WO 2005033244,WO 2005019373,US 2005/0258742,WO 2009146770,WO 2010015307,WO 2010031485,WO 2010054731,WO 2010054728,WO 2010086089,WO 2010099852,WO 2010102709,US 20070087219 A1,US 20090061681 A1,US 20010053462  A1,Baldo,Thompson et al.Nature 403,(2000),750-753,US 20090061681 A1,US 20090061681 A1,Adachi et al.Appl.Phys.Lett.78(2001),1622-1624,J.Kido et al.Appl.Phys.Lett.65(1994),2124,Kido et al.Chem.Lett.657,1990,US 2007/0252517 A1,Johnson et al.,JACS 105,1983,1795,Wrighton,JACS 96,1974,998,Ma et al.,Synth.Metals 94,1998,245,US 6824895,US 7029766,US 6835469,US 6830828,US 20010053462 A1,WO 2007095118 A1,US 2012004407A1,WO 2012007088A1,WO 2012007087A1,WO 2012007086A1,US 2008027220A1,WO 2011157339A1,CN 102282150A,WO 2009118087A1。特此将上述列出的专利文件和文献中的全部内容并入本文作为参考。
6.聚合物
在某些实施例中,以上所述的有机功能材料,包括HIM,HTM,ETM,EIM,Host,荧光发光体,磷光发光体都可以聚合物的形式。
在一个优先的实施例中,适合于本发明的聚合物是共轭聚合物。一般地,共轭聚合物有如下通式:
Figure PCTCN2015096327-appb-000031
化学式1
其中B,A在多次出现时可独立选择相同或不同的结构单元
B:具有较大的能隙的π-共轭结构单元,也称骨干单元(Backbone Unit),选自单环或多环芳基或杂芳基,优先选择的单元形式为苯,联二亚苯(Biphenylene),萘,蒽,菲,二氢菲,9,10-二氢菲,芴,二芴,螺二芴,对苯乙炔,反茚并芴,顺茚并,二苯并-茚并芴,茚并萘及它们的衍生物.
A:具有较小能隙的π-共轭结构单元,也称功能单元(Functional Unit),按照不同的功能要求,可选自包含有以上所述的空穴注入或传输材料(HIM/HTM),空穴阻挡材料(HBM),电子注入或传输材料(EIM/ETM),电子阻挡材料(EBM),有机基质材料(Host),单重态发光体(荧光发光体),重态发 光体(磷光发光体)的结构单元。
x,y:>0,且x+y=1;
在一个优先的实施例中,聚合物HTM材料为均聚物,优先的均聚物选自聚噻吩,聚吡咯,聚苯胺,聚联苯类三芳胺,聚乙烯基咔唑及它们的衍生物.
在另一个优先的实施例中,聚合物HTM材料为化学式1表示的共轭共聚物,其中
A:具有空穴输运能力的功能基,可选自包含有以上所述的空穴注入或传输材料(HIM/HTM)的结构单元;在一个优先的实施例中,A选自胺,联苯类三芳胺,噻吩,并噻吩如二噻吩并噻吩和并噻吩,吡咯,苯胺,咔唑,indenocarbazole,氮茚并氮芴,并五苯,酞菁,卟啉及它们的衍生物.
x,y:>0,且x+y=1;通常y≥0.10,比较好为≥0.15,更好为≥0.20,最好为x=y=0.5.
在下面列出合适的可作为HTM的共轭聚合物的例子:
Figure PCTCN2015096327-appb-000032
Figure PCTCN2015096327-appb-000033
其中
R各自彼此独立地是氢,具有1至20个C原子的直链烷基、烷氧基或硫代烷氧基基团,或者具有3至20个C原子的支链或环状的烷基、烷氧基或硫代烷氧基基团或者是甲硅烷基基团,或具有1至20个C原子的取代的酮基基团,具有2至20个C原子的烷氧基羰基基团,具有7至20个C原子的芳氧基羰基基团,氰基基团(-CN),氨基甲酰基基团(-C(=O)NH2),卤甲酰基基团(-C(=O)-X其中X代表卤素原子),甲酰基基团(-C(=O)-H),异氰基基团,异氰酸酯基团,硫氰酸酯基团或异硫氰酸酯基团,羟基基团,硝基基团,CF3基团,Cl,Br,F,可交联的基团或者具有5至40个环原子的取代或未取代的芳族或杂芳族环系,或具有5至40个环原子的芳氧基或杂芳氧基基团,或这些体系的组合,其中一个或多个基团R可以彼此和/或与所述基团R键合的环形成单环或多环的脂族或芳族环系;
r是0,1,2,3或4;
s是0,1,2,3,4o或5;
x,y:>0,且x+y=1;通常y≥0.10,比较好为≥0.15,更好为≥0.20,最好为x=y=0.5。
另一类优先选择的有机ETM材料是具有电子传输能力的聚合物,包括共轭聚合物和非共轭聚合物。
优先选择的聚合物ETM材料为均聚物,优先的均聚物选自聚菲,聚菲罗啉,聚茚并芴,聚螺二芴,聚芴及它们的衍生物。
优先选择的聚合物ETM材料为化学式1表示的共轭共聚物,其中A在多次出现时可独立选择相同或不同的形式:
A:具有电子输运能力的功能基,优先选自三(8-羟基喹啉)铝(AlQ3),苯,联二亚苯,萘,蒽,菲,Dihydrophenanthrene,芴,二芴,螺二芴,对苯乙炔,芘,苝,9,10-Dihydrophenanthrene,吩嗪,菲罗啉,反茚并芴,顺茚并,二苯并-茚并芴,茚并萘,苯并蒽及它们的衍生物
x,y:>0,且x+y=1.通常y≥0.10,比较好为≥0.15,更好为≥0.20,最好为x=y=0.5.
在一个优先的实施例中,发光聚合物是有如下通式的共轭聚合物有如下通式:
Figure PCTCN2015096327-appb-000034
化学式2
B:与化学式1的定义相同。
A1:具有空穴或电子输运能力的功能基,可选自包含有以上所述的空穴注入或传输材料(HIM/HTM),或电子注入或传输材料(EIM/ETM)的结构单元。
A2:具有发光功能的基团,可选自包含有以上所述的单重态发光体(荧光发光体),重态发光体(磷光发光体)的结构单元。
x,y,z:>0,且x+y+z=1;
发光聚合物的例子在如下的专利申请中公开:WO2007043495,WO2006118345, WO2006114364,WO2006062226,WO2006052457,WO2005104264,WO2005056633,WO2005033174,WO2004113412,WO2004041901,WO2003099901,WO2003051092,WO2003020790,WO2003020790,US2020040076853,US2020040002576,US2007208567,US2005962631,EP201345477,EP2001344788,DE102004020298,特将以上专利文件中的全部内容并入本文作为参考。
在另一个的实施例中,适合于本发明的高聚物是非共轭高聚物。这可以是所有功能基团都在侧链上,而主链是非共轭的高聚物。一些用作磷光主体或磷光发光材料的这类非共轭高聚物在US 7250226 B2,JP2007059939A,JP2007211243A2和JP2007197574A2等专利申请中有公开,一些用作荧光发光材料的这类非共轭高聚物在JP2005108556,JP2005285661和JP2003338375等专利申请中有公开。另外,非共轭高聚物也可以是一种高聚物,主链上共轭的功能单元通过非共轭的链接单元链接起来,这种高聚物的例子在DE102009023154.4和DE102009023156.0中有公开。特将以上专利文件中的全部内容并入本文作为参考。
在一个优先的实施方案中按照本发明的混合物包含一种按照本发明的化合物和一种三重态基质材料。
本发明还涉及一种组合物,其中,包含所述的有机化合物或者如上所述的混合物,以及至少一种有机溶剂。本发明进一步提供一种从溶液中制备包含有按照本发明的化合物的薄膜。
有机溶剂的例子,包括(但不限于):甲醇、乙醇、2-甲氧基乙醇、二氯甲烷、三氯甲烷、氯苯、邻二氯苯、四氢呋喃、苯甲醚、吗啉、甲苯、邻二甲苯、间二甲苯、对二甲苯、1,4二氧杂环己烷、丙酮、甲基乙基酮、1,2二氯乙烷、3-苯氧基甲苯、1,1,1-三氯乙烷、1,1,2,2-四氯乙烷、醋酸乙酯、醋酸丁酯、二甲基甲酰胺、二甲基乙酰胺、二甲基亚砜、四氢萘、萘烷、茚和/或它们的组合。
在一个优选的实施方案中,按照本发明的组合物是一溶液。
在另一个优选的实施方案中,按照本发明的组合物是一悬浮液。
本发明实施例中的组合物中可以包括0.01至20wt%的有机化合物或其混合物,较好的是0.1至15wt%,更好的是0.2至10wt%,最好的是0.25至5wt%的有机化合物或其混合物。
本发明还涉及所述组合物作为涂料或印刷油墨在制备有机电子器件时的用途,特别优选的是通过打印或涂布的制备方法。
其中,适合的打印或涂布技术包括(但不限于)喷墨打印,活版印刷,丝网印刷,浸涂,旋转涂布,刮刀涂布,辊筒印花,扭转辊印刷,平版印刷,柔版印刷,轮转印刷,喷涂,刷涂或移印,狭缝型挤压式涂布等。首选的是凹版印刷,丝网印刷及喷墨印刷。溶液或悬浮液可以另外包括一个或多个组份例如表面活性化合物,润滑剂,润湿剂,分散剂,疏水剂,粘接剂等,用于调节粘度,成膜性能,提高附着性等。有关打印技术,及其对有关溶液的相关要求,如溶剂及浓度,粘度等,的详细信息请参见Helmut Kipphan主编的《印刷媒体手册:技术和生产方法》(Handbook of Print Media:Technologies and Production Methods),ISBN 3-540-67326-1。
基于上述有机化合物,本发明还提供一种如上所述的有机化合物在有机电子器件的应用。所述的有机电子器件选自,但不限于,有机发光二极管(OLED),有机光伏电池(OPV),有机发光电池(OLEEC),有机场效应管(OFET),有机发光场效应管,有机激光器,有机自旋电子器件,有机传感器及有机等离激元发射二极管(Organic Plasmon Emitting Diode)等,特别是OLED。本发明实施例中,优选地将所述有机化合物用于OLED器件的发光层中。
本发明进一步涉及一种有机电子器件,至少包含一种如上所述的有机化合物。一般的,此种有机电子器件至少包含一个阴极,一个阳极及位于阴极和阳极之间的一个功能层,其中所述的功能层中至少包含一种如上所述的有机化合物。所述的有机电子器件选自,但不限于,有机发光二极管(OLED),有机光伏电池(OPV),有机发光电池(OLEEC),有机场效应管(OFET),有机发光场效应管,有机激光器,有机自旋电子器件,有机传感 器及有机等离激元发射二极管(Organic Plasmon Emitting Diode)。
在一个特别优选的实施例中,所述的有机电子器件是OLED,其中包括一基片,一阳极,至少一发光层,一阴极。
基片可以是不透明的或透明的。一个透明的基板可以用来制造一个透明的发光元器件。例如可参见,Bulovic等Nature 1996,380,p29,和Gu等,Appl.Phys.Lett.1996,68,p2606。基片可以是刚性的或弹性的。基片可以是塑料,金属,半导体晶片或玻璃。最好是基片有一个平滑的表面。无表面缺陷的基板是特别理想的选择。在一个优选的实施例中,基片是柔性的,选自聚合物薄膜或塑料,其玻璃化温度Tg为150℃以上,较好是超过200℃,更好是超过250℃,最好是超过300℃。合适的柔性基板的例子有聚(对苯二甲酸乙二醇酯)(PET)和聚乙二醇(2,6-萘)(PEN)。
阳极可包括一导电金属或金属氧化物,或导电聚合物。阳极可以容易地注入空穴到空穴注入层(HIL)或空穴传输层(HTL)或发光层中。在一个的实施例中,阳极的功函数和发光层中的发光体或作为HIL或HTL或电子阻挡层(EBL)的p型半导体材料的HOMO能级或价带能级的差的绝对值小于0.5eV,较好是小于0.3eV,最好是小于0.2eV。阳极材料的例子包括但不限于:Al、Cu、Au、Ag、Mg、Fe、Co、Ni、Mn、Pd、Pt、ITO、铝掺杂氧化锌(AZO)等。其他合适的阳极材料是已知的,本领域普通技术人员可容易地选择使用。阳极材料可以使用任何合适的技术沉积,如一合适的物理气相沉积法,包括射频磁控溅射,真空热蒸发,电子束(e-beam)等。在某些实施例中,阳极是图案结构化的。图案化的ITO导电基板可在市场上买到,并且可以用来制备根据本发明的器件。
阴极可包括一导电金属或金属氧化物。阴极可以容易地注入电子到EIL或ETL或直接到发光层中。在一个的实施例中,阴极的功函数和发光层中发光体或作为电子注入层(EIL)或电子传输层(ETL)或空穴阻挡层(HBL)的n型半导体材料的LUMO能级或导带能级的差的绝对值小于0.5eV,较好是小于0.3eV,最好是小于0.2eV。原则上,所有可用作OLED的阴极的材料都可能作为本发明器件的阴极材料。阴极材料的例子包括但不限于:Al、Au、Ag、Ca、Ba、Mg、LiF/Al、MgAg合金、BaF2/Al、Cu、Fe、Co、Ni、Mn、Pd、Pt、ITO等。阴极材料可以使用任何合适的技术沉积,如一合适的物理气 相沉积法,包括射频磁控溅射,真空热蒸发,电子束(e-beam)等。
OLED还可以包含其他功能层,如空穴注入层(HIL)、空穴传输层(HTL)、电子阻挡层(EBL)、电子注入层(EIL)、电子传输层(ETL)、空穴阻挡层(HBL)。适合用于这些功能层中的材料在前面有详细的描述。
在一个优选的实施例中,按照本发明的发光器件中,其发光层是通过打印包含本发明的化合物的组合物制备而成。
按照本发明的发光器件,其发光波长在300到1000nm之间,优选在350到900nm之间,更优选在400到800nm之间。
本发明还涉及按照本发明的有机电子器件在各种电子设备中的应用,包括,但不限于,显示设备,照明设备,光源,传感器等等。
下面将结合优选实施例对本发明进行了说明,但本发明并不局限于下述实施例,应当理解,所附权利要求概括了本发明的范围,在本发明构思的引导下本领域的技术人员应意识到,对本发明的各实施例所进行的一定的改变,都将被本发明的权利要求书的精神和范围所覆盖。
本发明所提供的氘化的有机化合物的具体实施例如下所示:
Figure PCTCN2015096327-appb-000035
在上述氘化的化合物DEU1,DEU2和DEU3中,D4代表苯环上有4个氘,其中化合物DEU1的合成路线如下:
Figure PCTCN2015096327-appb-000036
具体反应步骤为:
a.氮气保护的前提下,在500ml的圆底烧瓶中,依次加入40mmol咔唑以及10mmol的1,3,4,5-四氟-2,6-二氰基苯溶解在300ml的DMF溶剂中,室温下分批加入50mmol的NaH粉末,加入完毕后,在室温下继续反应4小时,待反应完全后,加水萃灭反应。 依次经过抽滤,水洗,二氯甲烷萃取等步骤,最后合并有机相,加入无水硫酸镁干燥,过滤,减压蒸除掉有机溶剂,得黄色粗产物,用二氯甲烷与甲醇重结晶得产物HEU1 8mmol。放入真空环境下烘干待用。MS(APCI)=789.1
b.将上述步骤中得到的5mmol HEU1溶解于500ml乙酸溶剂中,加热至90℃,缓慢滴加180mmol液溴,滴加完毕后,加热至120℃下反应12小时,反应液冷却至室温,加入Na2S2O3水溶液去除剩余的液溴。过滤得浅红色固体粉末BrEU1 4.8mmol,所得固体产物用乙醇洗涤,所得产物放入真空环境中干燥待用。
c.氮气保护环境下,将4mmol BrEU1溶解于400ml的无水THF中,冷却至-78℃,逐滴加入140mmol正丁基锂,待正丁基锂滴加完毕后,继续在-78℃温度下反应30分钟,滴加140mmol重水,逐渐在升温至室温,加入二氯甲烷萃取,用水洗涤,合并有机相,用无水硫酸镁干燥,减压蒸馏掉所有有机溶剂,得浅黄色粗产物,用二氯甲烷与甲醇重结晶,得产物DEU1 3.9mmol,所得产物放入真空环境中干燥。MS(APCI)=821.4。
化合物DEU2和DEU3的合成步骤与DEU1的合成步骤相似,所不同的是第一步合成中所用的原料分别为1,2,3,4-四氟-5,6-二氰基苯与1,2,4,5-四氟-3,6-二氰基苯。化合物DEU1,DEU2和DEU3最后均通过升华法进一步纯化。
与上述氘化的化合物进行比较的是相应的无全氘化的化合物,以Comp1,Comp2,Comp3标记:
Figure PCTCN2015096327-appb-000037
OLED器件的制备:
具有ITO/NPD(35nm)/5%DEUx:CBP(15nm)/TPBi(65nm)/LiF(1nm)/Al(150nm)/阴极的OLED器件的制备步骤如下:
a、导电玻璃基片的清洗:首次使用时,可用多种溶剂进行清洗,例如氯仿、酮、异丙醇进行清洗,然后进行紫外臭氧等离子处理;
b、TL(35nm),EML(15nm),ETL(65nm):在高真空(1×10-6毫巴,mbar)中热蒸镀而成;
c、阴极:LiF/Al(1nm/150nm)在高真空(1×10-6毫巴)中热蒸镀而成;
d、封装:器件在氮气手套箱中用紫外线硬化树脂封装。
OLEDs的电流电压(J-V)特性通过表征设备来表征,并记录重要的参数如效率,寿命及外部量子效率。各器件的寿命如表一,从记录的数据可以看出:OLED1(对应原材料DEU1),OLED2(对应原材料DEU1),OLED3(对应原材料DEU1)的寿命都是RefOLED1(对应原材料Comp1),RefOLED2(对应原材料Comp2),RefOLED3(对应原材料Comp3)的1.5倍以上。
器件 发光材料 寿命hrs@200nits
OLED1 DEU1 1003
OLED2 DEU2 1423
OLED3 DEU3 1632
RefOLED1 Comp1 650
RefOLED2 Comp2 780
RefOLED3 Comp3 814
应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (13)

  1. 一种具有如下结构式(I)的有机化合物:
    Figure PCTCN2015096327-appb-100001
    其中Ar为芳香族或杂芳族结构单元,
    n、m为1到6之间的整数,
    D为供电子基,其中当m>1时,各个D相互独立地选自相同或不同的供电子基,
    A为吸电子基,其中当n>1时,各个A相互独立地选自相同或不同的吸电子基;
    其特征在于,该有机化合物的ΔE(S1-T1)≤0.35eV,并且该有机化合物至少一个H原子被氘取代。
  2. 根据权利要求1所述的有机化合物,其特征在于,该有机化合物的ΔE(S1-T1)≤0.25eV。
  3. 根据权利要求1或2所述的有机化合物,其特征在于,至少一个供电子基D中的至少一个H原子被氘取代。
  4. 根据权利要求1-3中任一项所述的有机化合物,其特征在于,至少一个吸电子基A中的至少一个H原子被氘取代。
  5. 根据权利要求1-4中任一项所述的有机化合物,其特征在于,Ar中的至少一个H原子被氘取代。
  6. 根据权利要求1-5中任一项所述的有机化合物,其特征在于,供电子基D包含如下任一基团:
    Figure PCTCN2015096327-appb-100002
    Figure PCTCN2015096327-appb-100003
  7. 根据权利要求1-6中任一项所述的有机化合物,其特征在于,吸电子基A选自F、氰基,或包含如下任一基团:
    Figure PCTCN2015096327-appb-100004
    其中n是从1到3的整数;X1-X8选自CR1或N,并且X1-X8中至少有一个是N,其中R1选自如下任一基团:氢、烷基、烷氧基、氨基、烯、炔、芳烷基、杂烷基、芳基和杂芳基。
  8. 根据权利要求1-7中任一项所述的有机化合物,其特征在于,Ar选自如下任一基团:
    Figure PCTCN2015096327-appb-100005
    其中,Z为O或S。
  9. 根据权利要求1-8中任一项所述的有机化合物,其特征在于,其中20%以上的H原 子被氘取代。
  10. 一种混合物,其特征在于,包含至少一种如权利要求1至9任一项所述的有机化合物,还包含一种有机功能材料,所述有机功能材料选自空穴注入或传输材料,空穴阻挡材料,电子注入或传输材料,电子阻挡材料,有机基质材料,单重态发光体,以及三重态发光体。
  11. 一种组合物,其特征在于,包含权利要求1至9任一项所述的有机化合物或者如权利要求10所述的混合物,以及至少一种有机溶剂。
  12. 一种有机电子器件,其特征在于,包含如权利要求1至9任一项所述的有机化合物。
  13. 根据权利要求12所述的有机电子器件,其特征在于,所述有机电子器件选自有机发光二极管、有机光伏电池、有机发光电池、有机场效应管、有机发光场效应管、有机激光器、有机自旋电子器件、有机传感器及有机等离激元发射二极管。
PCT/CN2015/096327 2014-12-04 2015-12-03 氘化的有机化合物、包含该化合物的混合物、组合物及有机电子器件 WO2016086885A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/532,876 US10323180B2 (en) 2014-12-04 2015-12-03 Deuterated organic compound, mixture and composition containing said compound, and organic electronic device
CN201580065855.5A CN107406384B (zh) 2014-12-04 2015-12-03 氘化的有机化合物、包含该化合物的混合物、组合物及有机电子器件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410730178 2014-12-04
CN201410730178.1 2014-12-04

Publications (1)

Publication Number Publication Date
WO2016086885A1 true WO2016086885A1 (zh) 2016-06-09

Family

ID=56091041

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/096327 WO2016086885A1 (zh) 2014-12-04 2015-12-03 氘化的有机化合物、包含该化合物的混合物、组合物及有机电子器件

Country Status (3)

Country Link
US (1) US10323180B2 (zh)
CN (1) CN107406384B (zh)
WO (1) WO2016086885A1 (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017119664A (ja) * 2015-12-28 2017-07-06 株式会社Kyulux 化合物、発光材料および有機発光素子
WO2017115835A1 (ja) * 2015-12-28 2017-07-06 株式会社Kyulux 化合物、発光材料および有機発光素子
CN107445990A (zh) * 2017-07-14 2017-12-08 瑞声光电科技(常州)有限公司 一种化合物,其制备方法及其发光器件
TWI609864B (zh) * 2016-11-30 2018-01-01 Yuan Ze University 咔唑衍生物材料以及有機發光二極體元件
TWI651319B (zh) * 2016-11-30 2019-02-21 元智大學 咔唑衍生物材料以及有機發光二極體元件
CN109585692A (zh) * 2017-09-29 2019-04-05 北京夏禾科技有限公司 用于溶液法制造电子器件的液体配方及方法
CN110156766A (zh) * 2019-06-04 2019-08-23 南京工业大学 一种银催化的氘代五元芳香杂环化合物的制备方法
CN111423450A (zh) * 2020-04-29 2020-07-17 上海天马有机发光显示技术有限公司 化合物、显示面板以及显示装置
CN111620351A (zh) * 2020-06-19 2020-09-04 北京理工大学 一种全氘代二硝酰胺铵及其制备方法
CN112079766A (zh) * 2020-08-28 2020-12-15 清华大学 一种有机化合物及其应用及采用该化合物的有机电致发光器
CN112533900A (zh) * 2018-10-26 2021-03-19 株式会社Lg化学 含氘化合物和包含其的有机发光器件
WO2021166552A1 (ja) 2020-02-17 2021-08-26 出光興産株式会社 有機エレクトロルミネッセンス素子及び電子機器

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11482681B2 (en) 2018-07-27 2022-10-25 Idemitsu Kosan Co., Ltd. Compound, material for organic electroluminescence element, organic electroluminescence element, and electronic device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101521264A (zh) * 2008-02-28 2009-09-02 富士胶片株式会社 有机电致发光元件
CN103467450A (zh) * 2013-09-04 2013-12-25 吉林奥来德光电材料股份有限公司 一类新型有机电致发光材料及其在器件中的应用
WO2014146752A1 (de) * 2013-03-22 2014-09-25 Merck Patent Gmbh Materialien für elektronische vorrichtungen

Family Cites Families (94)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3567450A (en) 1968-02-20 1971-03-02 Eastman Kodak Co Photoconductive elements containing substituted triarylamine photoconductors
US3615404A (en) 1968-04-25 1971-10-26 Scott Paper Co 1 3-phenylenediamine containing photoconductive materials
US4720432A (en) 1987-02-11 1988-01-19 Eastman Kodak Company Electroluminescent device with organic luminescent medium
US4769292A (en) 1987-03-02 1988-09-06 Eastman Kodak Company Electroluminescent device with modified thin film luminescent zone
US5121029A (en) 1987-12-11 1992-06-09 Idemitsu Kosan Co., Ltd. Electroluminescence device having an organic electroluminescent element
US5130603A (en) 1989-03-20 1992-07-14 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
US5061569A (en) 1990-07-26 1991-10-29 Eastman Kodak Company Electroluminescent device with organic electroluminescent medium
JP2913116B2 (ja) 1990-11-20 1999-06-28 株式会社リコー 電界発光素子
EP0765106B1 (en) 1995-09-25 2002-11-27 Toyo Ink Manufacturing Co., Ltd. Light-emitting material for organic electroluminescence device, and organic electroluminescence device for which the light-emitting material is adapted
GB9826406D0 (en) 1998-12-02 1999-01-27 South Bank Univ Entpr Ltd Quinolates
US6830828B2 (en) 1998-09-14 2004-12-14 The Trustees Of Princeton University Organometallic complexes as phosphorescent emitters in organic LEDs
US6020078A (en) 1998-12-18 2000-02-01 Eastman Kodak Company Green organic electroluminescent devices
ATE344532T1 (de) 1999-05-13 2006-11-15 Univ Princeton Lichtemittierende, organische, auf elektrophosphoreszenz basierende anordnung mit sehr hoher quantenausbeute
KR100809132B1 (ko) 1999-09-21 2008-02-29 이데미쓰 고산 가부시키가이샤 유기 전자발광 소자 및 유기 발광 매체
EP2278637B2 (en) 1999-12-01 2021-06-09 The Trustees of Princeton University Complexes of form L2MX
JP4048521B2 (ja) 2000-05-02 2008-02-20 富士フイルム株式会社 発光素子
US20020121638A1 (en) 2000-06-30 2002-09-05 Vladimir Grushin Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds
EP1325671B1 (en) 2000-08-11 2012-10-24 The Trustees Of Princeton University Organometallic compounds and emission-shifting organic electrophosphorescence
JP4154139B2 (ja) 2000-09-26 2008-09-24 キヤノン株式会社 発光素子
JP4154138B2 (ja) 2000-09-26 2008-09-24 キヤノン株式会社 発光素子、表示装置及び金属配位化合物
JP4154140B2 (ja) 2000-09-26 2008-09-24 キヤノン株式会社 金属配位化合物
KR20030093240A (ko) 2001-03-16 2003-12-06 이데미쓰 고산 가부시키가이샤 방향족 아미노 화합물의 제조방법
JP4629643B2 (ja) 2001-08-31 2011-02-09 日本放送協会 有機発光素子及び表示装置
US7250226B2 (en) 2001-08-31 2007-07-31 Nippon Hoso Kyokai Phosphorescent compound, a phosphorescent composition and an organic light-emitting device
DE10143353A1 (de) 2001-09-04 2003-03-20 Covion Organic Semiconductors Konjugierte Polymere enthaltend Spirobifluoren-Einheiten und deren Verwendung
US6835469B2 (en) 2001-10-17 2004-12-28 The University Of Southern California Phosphorescent compounds and devices comprising the same
US6686065B2 (en) 2001-12-12 2004-02-03 Canon Kabushiki Kaisha [5]-helicene and dibenzofluorene materials for use in organic light emitting devices
JP4256182B2 (ja) 2002-03-14 2009-04-22 Tdk株式会社 有機el素子
SG128438A1 (en) 2002-03-15 2007-01-30 Sumitomo Chemical Co Polymer compound and polymer light emitting deviceusing the same
TWI314947B (en) 2002-04-24 2009-09-21 Eastman Kodak Compan Organic light emitting diode devices with improved operational stability
TWI287570B (en) 2002-05-28 2007-10-01 Sumitomo Chemical Co Polymer compound and polymer luminescent element using the same
GB0226010D0 (en) 2002-11-08 2002-12-18 Cambridge Display Tech Ltd Polymers for use in organic electroluminescent devices
EP1491568A1 (en) 2003-06-23 2004-12-29 Covion Organic Semiconductors GmbH Semiconductive Polymers
DE10338550A1 (de) 2003-08-19 2005-03-31 Basf Ag Übergangsmetallkomplexe mit Carbenliganden als Emitter für organische Licht-emittierende Dioden (OLEDs)
DE10345572A1 (de) 2003-09-29 2005-05-19 Covion Organic Semiconductors Gmbh Metallkomplexe
JP2005108556A (ja) 2003-09-29 2005-04-21 Tdk Corp 有機el素子及び有機elディスプレイ
CN1863838B (zh) 2003-10-01 2010-12-22 住友化学株式会社 聚合物发光材料和聚合物发光器件
US6824895B1 (en) 2003-12-05 2004-11-30 Eastman Kodak Company Electroluminescent device containing organometallic compound with tridentate ligand
US7029766B2 (en) 2003-12-05 2006-04-18 Eastman Kodak Company Organic element for electroluminescent devices
TW201235442A (en) 2003-12-12 2012-09-01 Sumitomo Chemical Co Polymer and light-emitting element using said polymer
JP4466160B2 (ja) 2004-03-30 2010-05-26 Tdk株式会社 有機el素子及び有機elディスプレイ
DE102004020298A1 (de) 2004-04-26 2005-11-10 Covion Organic Semiconductors Gmbh Elektrolumineszierende Polymere und deren Verwendung
US7598388B2 (en) 2004-05-18 2009-10-06 The University Of Southern California Carbene containing metal complexes as OLEDs
CN100368363C (zh) 2004-06-04 2008-02-13 友达光电股份有限公司 蒽化合物以及包括此蒽化合物的有机电致发光装置
TW200613515A (en) 2004-06-26 2006-05-01 Merck Patent Gmbh Compounds for organic electronic devices
DE102004031000A1 (de) 2004-06-26 2006-01-12 Covion Organic Semiconductors Gmbh Organische Elektrolumineszenzvorrichtungen
DE102004034517A1 (de) 2004-07-16 2006-02-16 Covion Organic Semiconductors Gmbh Metallkomplexe
US20060094859A1 (en) 2004-11-03 2006-05-04 Marrocco Matthew L Iii Class of bridged biphenylene polymers
TW200639140A (en) 2004-12-01 2006-11-16 Merck Patent Gmbh Compounds for organic electronic devices
TWI385193B (zh) 2004-12-07 2013-02-11 Sumitomo Chemical Co 高分子材料及使用該高分子材料之元件
JP4263700B2 (ja) 2005-03-15 2009-05-13 出光興産株式会社 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
US20060222886A1 (en) 2005-04-04 2006-10-05 Raymond Kwong Arylpyrene compounds
DE102005019880A1 (de) 2005-04-28 2006-11-09 Basf Ag Synthese von phenylsubstituierten Polyfluoranthenen und ihre Verwendung
CN101184789B (zh) 2005-04-28 2012-05-30 住友化学株式会社 高分子化合物及使用了它的高分子发光元件
DE102005023437A1 (de) 2005-05-20 2006-11-30 Merck Patent Gmbh Verbindungen für organische elektronische Vorrichtungen
GB2445519B (en) 2005-10-07 2010-11-24 Sumitomo Chemical Co Copolymer and polymer light emitting device using the same
US7588839B2 (en) 2005-10-19 2009-09-15 Eastman Kodak Company Electroluminescent device
US20070092759A1 (en) 2005-10-26 2007-04-26 Begley William J Organic element for low voltage electroluminescent devices
US7767317B2 (en) 2005-10-26 2010-08-03 Global Oled Technology Llc Organic element for low voltage electroluminescent devices
DE102005058557A1 (de) 2005-12-08 2007-06-14 Merck Patent Gmbh Organische Elektrolumineszenzvorrichtung
DE102005058543A1 (de) 2005-12-08 2007-06-14 Merck Patent Gmbh Organische Elektrolumineszenzvorrichtungen
JP4879591B2 (ja) 2006-01-26 2012-02-22 昭和電工株式会社 高分子発光材料、有機エレクトロルミネッセンス素子および表示装置
CN101415718B (zh) 2006-02-10 2013-05-29 通用显示公司 环金属化的咪唑并[1,2-f]菲啶和二咪唑并[1,2-a:1',2'-c]喹唑啉配位体和其等电子和苯并环化类似物的金属络合物
US20070208567A1 (en) 2006-03-01 2007-09-06 At&T Corp. Error Correction In Automatic Speech Recognition Transcripts
DE102006015183A1 (de) 2006-04-01 2007-10-04 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
US20070252517A1 (en) 2006-04-27 2007-11-01 Eastman Kodak Company Electroluminescent device including an anthracene derivative
DE102006025846A1 (de) 2006-06-02 2007-12-06 Merck Patent Gmbh Neue Materialien für organische Elektrolumineszenzvorrichtungen
DE102006031990A1 (de) 2006-07-11 2008-01-17 Merck Patent Gmbh Neue Materialien für organische Elektrolumineszenzvorrichtungen
JP2008053397A (ja) 2006-08-24 2008-03-06 Ricoh Co Ltd 半導体装置及びその製造方法
JP2008124156A (ja) 2006-11-09 2008-05-29 Idemitsu Kosan Co Ltd 有機el材料含有溶液、有機el材料の薄膜形成方法、有機el材料の薄膜、有機el素子
JP4902381B2 (ja) 2007-02-07 2012-03-21 昭和電工株式会社 重合性化合物の重合体
US7645142B2 (en) 2007-09-05 2010-01-12 Vivant Medical, Inc. Electrical receptacle assembly
US8221905B2 (en) 2007-12-28 2012-07-17 Universal Display Corporation Carbazole-containing materials in phosphorescent light emitting diodes
DE102008015526B4 (de) 2008-03-25 2021-11-11 Merck Patent Gmbh Metallkomplexe
DE102008027005A1 (de) 2008-06-05 2009-12-10 Merck Patent Gmbh Organische elektronische Vorrichtung enthaltend Metallkomplexe
DE102008036247A1 (de) 2008-08-04 2010-02-11 Merck Patent Gmbh Elektronische Vorrichtungen enthaltend Metallkomplexe
DE102008048336A1 (de) 2008-09-22 2010-03-25 Merck Patent Gmbh Einkernige neutrale Kupfer(I)-Komplexe und deren Verwendung zur Herstellung von optoelektronischen Bauelementen
DE102008057050B4 (de) 2008-11-13 2021-06-02 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
DE102008057051B4 (de) 2008-11-13 2021-06-17 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
DE102009007038A1 (de) 2009-02-02 2010-08-05 Merck Patent Gmbh Metallkomplexe
DE102009011223A1 (de) 2009-03-02 2010-09-23 Merck Patent Gmbh Metallkomplexe
DE102009013041A1 (de) 2009-03-13 2010-09-16 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
US8586203B2 (en) 2009-05-20 2013-11-19 Universal Display Corporation Metal complexes with boron-nitrogen heterocycle containing ligands
DE102009023156A1 (de) 2009-05-29 2010-12-02 Merck Patent Gmbh Polymere, die substituierte Indenofluorenderivate als Struktureinheit enthalten, Verfahren zu deren Herstellung sowie deren Verwendung
DE102009023154A1 (de) 2009-05-29 2011-06-16 Merck Patent Gmbh Zusammensetzung, enthaltend mindestens eine Emitterverbindung und mindestens ein Polymer mit konjugationsunterbrechenden Einheiten
KR20130020883A (ko) 2010-03-11 2013-03-04 메르크 파텐트 게엠베하 요법 및 미용에서의 섬유
EP2569055A2 (de) 2010-05-12 2013-03-20 Merck Patent GmbH Photostabilisatoren
DE112011102008B4 (de) 2010-06-15 2022-04-21 Merck Patent Gmbh Metallkomplexe
EP2404627A1 (en) 2010-07-09 2012-01-11 Universite De Nantes I Bone regeneration membrane and method for forming a bone regeneration membrane
DE102010027317A1 (de) 2010-07-16 2012-01-19 Merck Patent Gmbh Metallkomplexe
DE102010027316A1 (de) 2010-07-16 2012-01-19 Merck Patent Gmbh Metallkomplexe
DE102010027319A1 (de) 2010-07-16 2012-01-19 Merck Patent Gmbh Metallkomplexe
EP2984151B1 (de) * 2013-04-08 2018-04-25 Merck Patent GmbH Organische elektrolumineszenzvorrichtung
CN103985822B (zh) * 2014-05-30 2017-05-10 广州华睿光电材料有限公司 有机混合物、包含其的组合物、有机电子器件及应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101521264A (zh) * 2008-02-28 2009-09-02 富士胶片株式会社 有机电致发光元件
WO2014146752A1 (de) * 2013-03-22 2014-09-25 Merck Patent Gmbh Materialien für elektronische vorrichtungen
CN103467450A (zh) * 2013-09-04 2013-12-25 吉林奥来德光电材料股份有限公司 一类新型有机电致发光材料及其在器件中的应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FERENC, F. ET AL.: "The Special Directing Effect of Fluorine: Ligand Independent Ortho Lithiation of 1-(Fluorophenyl) pyrroles", TETRAHEDRON, vol. 54, 31 December 1998 (1998-12-31), pages 4369 - 4370 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017119664A (ja) * 2015-12-28 2017-07-06 株式会社Kyulux 化合物、発光材料および有機発光素子
WO2017115835A1 (ja) * 2015-12-28 2017-07-06 株式会社Kyulux 化合物、発光材料および有機発光素子
US10510977B2 (en) 2015-12-28 2019-12-17 Kyulux, Inc. Compound, light-emitting material, and organic light-emitting device
TWI651319B (zh) * 2016-11-30 2019-02-21 元智大學 咔唑衍生物材料以及有機發光二極體元件
US10319920B2 (en) 2016-11-30 2019-06-11 Yuan Ze University Carbazole derivatives and organic light-emitting diodes by using the same
TWI609864B (zh) * 2016-11-30 2018-01-01 Yuan Ze University 咔唑衍生物材料以及有機發光二極體元件
CN107445990A (zh) * 2017-07-14 2017-12-08 瑞声光电科技(常州)有限公司 一种化合物,其制备方法及其发光器件
CN109585692A (zh) * 2017-09-29 2019-04-05 北京夏禾科技有限公司 用于溶液法制造电子器件的液体配方及方法
CN109585692B (zh) * 2017-09-29 2023-11-28 北京夏禾科技有限公司 用于溶液法制造电子器件的液体配方及方法
US11818942B2 (en) 2017-09-29 2023-11-14 Beijing Summer Sprout Technology Co., Ltd. Liquid formulation and a method for making electronic devices by solution process
CN112533900A (zh) * 2018-10-26 2021-03-19 株式会社Lg化学 含氘化合物和包含其的有机发光器件
CN110156766A (zh) * 2019-06-04 2019-08-23 南京工业大学 一种银催化的氘代五元芳香杂环化合物的制备方法
WO2021166552A1 (ja) 2020-02-17 2021-08-26 出光興産株式会社 有機エレクトロルミネッセンス素子及び電子機器
CN111423450A (zh) * 2020-04-29 2020-07-17 上海天马有机发光显示技术有限公司 化合物、显示面板以及显示装置
CN111620351B (zh) * 2020-06-19 2021-09-14 北京理工大学 一种全氘代二硝酰胺铵及其制备方法
CN111620351A (zh) * 2020-06-19 2020-09-04 北京理工大学 一种全氘代二硝酰胺铵及其制备方法
CN112079766A (zh) * 2020-08-28 2020-12-15 清华大学 一种有机化合物及其应用及采用该化合物的有机电致发光器

Also Published As

Publication number Publication date
CN107406384B (zh) 2021-07-23
US20180010040A1 (en) 2018-01-11
CN107406384A (zh) 2017-11-28
US10323180B2 (en) 2019-06-18

Similar Documents

Publication Publication Date Title
CN107406384B (zh) 氘化的有机化合物、包含该化合物的混合物、组合物及有机电子器件
CN111278795B (zh) 有机混合物及其在有机电子器件中的应用
CN107001380B (zh) 化合物、包含其的混合物、组合物和有机电子器件
WO2019105327A1 (zh) 有机复合薄膜及其在有机电子器件中的应用
WO2015180524A1 (zh) 有机混合物、包含其的组合物、有机电子器件及应用
WO2017092508A1 (zh) D-a型化合物及其应用
CN107004778B (zh) 有机混合物、包含其的组合物、有机电子器件及应用
WO2016086886A1 (zh) 聚合物,包含其的混合物、组合物、有机电子器件,及其单体
CN108137634B (zh) 一种金属有机配合物及其在电子器件中的应用
CN109791993B (zh) 有机混合物、组合物以及有机电子器件
WO2016091219A1 (zh) 有机化合物、包含其的混合物、组合物和有机电子器件
WO2018095390A1 (zh) 有机化合物及其应用、有机混合物、有机电子器件
WO2017118238A1 (zh) 氘代三芳胺衍生物及其在电子器件中的应用
WO2016091217A1 (zh) 一种有机金属配合物、包含其的聚合物、混合物、组合物、有机电子器件及应用
CN109791992B (zh) 高聚物、包含其的混合物、组合物和有机电子器件以及用于聚合的单体
EP3553152B1 (en) Mixture, composition and organic electronic device
CN109792001B (zh) 有机化合物、有机混合物、有机电子器件
CN108137615B (zh) 含砜基稠杂环化合物及其应用
CN109790087B (zh) 氘代稠环化合物、高聚物、混合物、组合物以及有机电子器件
CN111344289A (zh) 含氮杂环化合物、高聚物、混合物、组合物及其用途
WO2018099432A1 (zh) 稠环化合物及制备方法和应用
CN110734396B (zh) 有机化合物、高聚物、混合物、组合物及有机电子器件
WO2018103746A1 (zh) 咔唑苯类稠环衍生物、聚合物、混合物、组合物、有机电子器件及其制备方法
WO2018099431A1 (zh) 芘类有机化合物及其制备方法和应用
WO2018108107A1 (zh) 共轭聚合物及其在有机电子器件的应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15864345

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15532876

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 15864345

Country of ref document: EP

Kind code of ref document: A1