WO2017118238A1 - 氘代三芳胺衍生物及其在电子器件中的应用 - Google Patents

氘代三芳胺衍生物及其在电子器件中的应用 Download PDF

Info

Publication number
WO2017118238A1
WO2017118238A1 PCT/CN2016/107309 CN2016107309W WO2017118238A1 WO 2017118238 A1 WO2017118238 A1 WO 2017118238A1 CN 2016107309 W CN2016107309 W CN 2016107309W WO 2017118238 A1 WO2017118238 A1 WO 2017118238A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
group
deuterated
triarylamine derivative
numbers
Prior art date
Application number
PCT/CN2016/107309
Other languages
English (en)
French (fr)
Inventor
潘君友
施超
闫晓林
Original Assignee
广州华睿光电材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州华睿光电材料有限公司 filed Critical 广州华睿光电材料有限公司
Publication of WO2017118238A1 publication Critical patent/WO2017118238A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/86Carbazoles; Hydrogenated carbazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/12Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/12Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • This invention relates to a deuterated triarylamine derivative and its use in organic electronic devices, particularly in organic light emitting diodes.
  • the invention further relates to an organic electronic device, in particular an electroluminescent device, comprising such a deuterated triarylamine derivative, and its use in displays and illumination devices.
  • organic light-emitting diodes Due to the synthetic diversity of organic semiconductor materials, the possibility of implementing large-area flexible devices, low manufacturing costs and high-performance optical and electrical properties, organic light-emitting diodes (OLEDs) are realized in novel optoelectronic devices, for example, There is great potential in flat panel display and lighting applications.
  • OLEDs organic light-emitting diodes
  • various systems based on fluorescent and phosphorescent materials have been developed.
  • An organic light-emitting diode using a fluorescent material has the advantage of high reliability, but its internal electroluminescence quantum efficiency is limited to 25% under electric field excitation, because the branching ratio of the singlet excited state and the triplet excited state of the excitons It is 1:3.
  • organic light-emitting diodes using phosphorescent materials have achieved nearly 100% internal luminescence quantum efficiency.
  • OLED organic light-emitting diodes using phosphorescent materials
  • their stability needs to be further improved, especially the life expectancy is more urgent.
  • the stability of the OLED, in addition to the luminescent layer itself, the hole transport layer material is the most critical.
  • a hole transporting material used in a hole transporting layer or in a hole injecting layer in particular a triarylamine derivative, which usually contains at least two triarylamino groups or at least one triaryl a base amino group and at least one carbazole group.
  • a triarylamine derivative which usually contains at least two triarylamino groups or at least one triaryl a base amino group and at least one carbazole group.
  • active CH bonds such as a triarylamine derivative containing a benzene ring group, the CH bond at the 4-position is very active, and a triarylamine derivative containing a 9-phenylcarbazole group.
  • the 3-digit CH bond is also very lively, as follows:
  • both fluorescent OLEDs and phosphorescent OLEDs require improvements in efficiency, lifetime, and operating voltage, forcing a more stable hole transporting material.
  • R 2 In each occurrence of R 2 , the same or different is H, D, an aliphatic alkane having 1 to 10 carbon atoms, an aromatic hydrocarbon, a substituted or unsubstituted aromatic ring having 5 to 10 ring atoms. Or a heteroaromatic group;
  • x is any one of the numbers 0-3, y is any one of the numbers 0-4, and z is any one of the numbers 0-5;
  • X 1 and X 2 each independently represent CD or CR 1 , and at least one of them is a CD.
  • L is a linking group selected from a single bond or any one of B1 to B2:
  • the deuterated triarylamine derivative is preferably selected from the group consisting of:
  • x is any one of the numbers 0-3, y is any one of the numbers 0-4, and z is any one of the numbers 0-5.
  • the deuterated triarylamine derivative wherein Ar 1 in the formula (I), (I-1)-(I-18) is an unsubstituted or substituted aromatic ring or
  • the heteroaromatic ring unit which may be independent of each other when it is present multiple times, is preferably selected from any one of the general formulae (C1) to (C36):
  • R 3 is selected from the group consisting of -H, -F, -Cl, Br, I, -D, -CN, -NO 2 , -CF 3 , B(OR 2 ) 2 , Si(R 2 ) 3 , linear alkane, An alkane ether, an alkane thioether having 1 to 10 carbon atoms or a branched or alkane or a aryl group having 6 to 10 carbon atoms;
  • u is any one of the numbers 0-2, v is any one of the numbers 0-3, w is any one of the numbers 0-4, and t is any one of the numbers 0-5.
  • Ar 1 in the general formula (I), (I-1)-(I-18) are independently selected from:
  • the present invention also provides a high polymer comprising a repeating unit comprising a structural unit represented by the general formula (I).
  • the invention also provides a mixture comprising a deuterated triarylamine derivative or polymer as described above and at least one organic functional material.
  • the organic functional material may be selected from the group consisting of hole injection materials (HIM), hole transport materials (HTM), electron transport materials (ETM), electron injecting materials (EIM), electron blocking materials (EBM), and hole blocking materials.
  • HBM hole injection materials
  • HTM hole transport materials
  • ETM electron transport materials
  • EIM electron injecting materials
  • EBM electron blocking materials
  • the invention also provides a composition comprising a deuterated triarylamine derivative or polymer according to the invention, and at least one organic solvent.
  • the invention also provides the use of a deuterated triarylamine derivative or polymer according to the invention in an organic electronic device.
  • the invention also provides an organic electronic device comprising at least one deuterated triarylamine derivative or polymer according to the invention and mixtures thereof.
  • the organic electronic device can be selected from an organic light emitting diode (OLED), an organic photovoltaic cell (OPV), an organic light emitting cell (OLEEC), an organic field effect transistor (OFET), and an organic light emitting field effect transistor.
  • OLED organic light emitting diode
  • OLED organic photovoltaic cell
  • OFET organic field effect transistor
  • OLED organic light emitting field effect transistor
  • OLEDs organic lasers, organic spintronic devices, organic sensors and organic plasmon emitting diodes (OLEDs), especially preferred are organic light-emitting diodes (OLEDs).
  • the organic electronic device is an electroluminescent device comprising a hole injection layer or a hole transport layer, and the hole injection layer or the hole transport layer comprises a A deuterated triarylamine derivative or polymer of the invention.
  • the compound according to the present invention is used in an OLED, particularly as a hole transporting material, to make the device performance more stable and to provide a longer life.
  • the possible mechanism is as follows, but is not limited to, the mass of the ytterbium (D) atom is twice the mass of the H atom, and the CD bond has a relatively low reaction free energy, a reaction rate, and a osmotic barrier with respect to the CH bond, so that the CD bond It has a lower reactivity with respect to the CH bond (Chem. Rev. 1955, 55, 713-743), which provides a possibility to improve the chemical/environmental stability of the triarylamine compound and the photovoltaic device.
  • Optimized by device structure to achieve optimal device performance, high efficiency, high brightness and long life OLED devices provide better material options for full color display and lighting applications.
  • the present invention provides a novel deuterated triarylamine derivative, corresponding mixtures and compositions, and applications in organic electronic devices. To further clarify and clarify the objects, technical solutions and effects of the present invention, the present invention further Detailed description. It is understood that the specific embodiments described herein are merely illustrative of the invention and are not intended to limit the invention.
  • composition and the printing ink, or ink have the same meaning and are interchangeable.
  • the host material, the matrix material, the Host or the Matrix material have the same meaning, and they are interchangeable.
  • metal organic complexes metal organic complexes, metal organic complexes, and organometallic complexes have the same meaning and are interchangeable.
  • the present invention relates to a pyrrole derivative represented by the following formula (I):
  • R 2 In each occurrence of R 2 , the same or different is H, D, an aliphatic alkane having 1 to 10 carbon atoms, an aromatic hydrocarbon, a substituted or unsubstituted aromatic ring having 5 to 10 ring atoms. Or a heteroaromatic group;
  • x is any one of the numbers 0-3, y is any one of the numbers 0-4, and z is any one of the numbers 0-5;
  • X 1 and X 2 each independently represent CD or CR 1 , and at least one of them is a CD.
  • L is a linking group selected from a single bond or any one of B1 to B2:
  • the aromatic ring system contains 5 to 15 carbon atoms, more preferably 5 to 10 carbon atoms in the ring system, and the heteroaromatic ring system contains 2 to 15 carbon atoms in the ring system. It is preferably 2 to 10 carbon atoms, and at least one hetero atom, provided that the total number of carbon atoms and hetero atoms is at least 4.
  • the heteroatoms are preferably selected from Si, N, P, O, S and/or Ge, particularly preferably from Si, N, P, O and/or S.
  • An aromatic ring system or aromatic group refers to a hydrocarbon group containing at least one aromatic ring, including a monocyclic group and a polycyclic ring system.
  • a heteroaromatic or heteroaromatic group refers to a hydrocarbyl group (containing heteroatoms) comprising at least one heteroaromatic ring, including monocyclic groups and polycyclic ring systems. These polycyclic rings may have two or more rings in which two carbon atoms are shared by two adjacent rings, a fused ring. At least one of these rings of the polycyclic ring is aromatic or heteroaromatic.
  • aromatic or heteroaromatic ring systems include not only aromatic or heteroaromatic systems, but also multiple aryl or heteroaryl groups may also be interrupted by short non-aromatic units ( ⁇ 10%).
  • Non-H atoms preferably less than 5% of non-H atoms, such as C, N or O atoms).
  • systems such as 9,9'-spirobifluorene, 9,9-diarylfluorene, triarylamine, diaryl ether, etc., are also considered to be aromatic ring systems for the purposes of the present invention.
  • examples of the aromatic group are: benzene, naphthalene, anthracene, phenanthrene, perylene, tetracene, anthracene, benzofluorene, triphenylene, anthracene, anthracene, and derivatives thereof.
  • heteroaromatic groups are: furan, benzofuran, thiophene, benzothiophene, pyrrole, pyrazole, triazole, imidazole, oxazole, oxadiazole, thiazole, tetrazole, anthracene, anthracene Oxazole, pyrroloimidazole, pyrrolopyrrole, thienopyrrole, thienothiophene, furopyrrol, furanfuran, thienofuran, benzisoxazole, benzisothiazole, benzimidazole, pyridyl Acridine, pyrazine, pyridazine, pyrimidine, triazine, quinoline, isoquinoline, o-diazepine, quinoxaline, phenanthridine, carbaidine, quinazoline, quinazolinone, and derivatives thereof.
  • Ar 1 in formula (I) may be selected from one of the following formulae:
  • X is independently selected from CR 1 or N, and at least one is N;
  • R 1 , R 2 , R 3 are H, or D, or a linear alkyl, alkoxy or thioalkoxy group having from 1 to 10 C atoms, or A branched or cyclic alkyl, alkoxy or thioalkoxy group of 3 to 10 C atoms is either a silyl group or a substituted keto group having 1 to 10 C atoms.
  • Ar 1 in formula (I) may be selected from structural units that may be further substituted:
  • the deuterated triarylamine derivative according to the invention is selected from the group consisting of:
  • x is any one of the numbers 0-3, y is any one of the numbers 0-4, and z is any one of the numbers 0-5.
  • the secondary occurrences may be selected independently of each other selected from any one of the general formulae (C1) to (C36):
  • R 3 is selected from the group consisting of -H, -F, -Cl, Br, I, -D, -CN, -NO 2 , -CF 3 , B(OR 2 ) 2 , Si(R 2 ) 3 , linear alkane, An alkane ether, an alkane thioether having 1 to 10 carbon atoms or a branched or alkane or a aryl group having 6 to 10 carbon atoms;
  • u is any one of the numbers 0-2, v is any one of the numbers 0-3, w is any one of the numbers 0-4, and t is any one of the numbers 0-5.
  • At least one other position of H in accordance with the organic compound of the present invention is substituted by D.
  • the organic compound according to the invention wherein H has a deuteration rate of ⁇ 10%, preferably ⁇ 20%, more preferably ⁇ 30%, most preferably ⁇ 40%.
  • At least one H on the benzene ring labeled with a circle as shown in the following figure in the general formula (I) is not deuterated, and more preferably no H is not deuterated.
  • the organic compound according to the invention has a glass transition temperature of ⁇ 100 ° C, preferably ⁇ 120 ° C, more preferably ⁇ 140 ° C, most preferably ⁇ 160 ° C.
  • the organic compound according to the present invention has a higher triplet energy level T1, generally T1 ⁇ 2.0 eV, preferably T1 ⁇ 2.2 eV, more preferably T1 ⁇ 2.4 eV, and most preferably T1 ⁇ 2.6 eV.
  • the deuterated triarylamine derivative of the present invention there are generally two synthetic methods for introducing a D atom into the active site of the triarylamine derivative, one of which is first prepared as a triarylamine derivative without an anthracene, and then in the molecule.
  • the active site is halogenated, and finally the halogen atom is replaced by D atom; the other is to carry out deuteration on one or more precursor units, and then combine these units by chemical reaction to form the final ruthenium.
  • a substituted triphenylamine derivative is generally two synthetic methods for introducing a D atom into the active site of the triarylamine derivative, one of which is first prepared as a triarylamine derivative without an anthracene, and then in the molecule.
  • the active site is halogenated, and finally the halogen atom is replaced by D atom; the other is to carry out deuteration on one or more precursor units, and then combine these units by chemical reaction to form the final ruthenium.
  • the present invention also relates to a high polymer wherein at least one repeating unit comprises a structure as shown in the general formula (I).
  • the high polymer is a non-conjugated high polymer wherein the structural unit of formula (I) is on the side chain.
  • the high polymer is a conjugated high polymer.
  • the invention further relates to a mixture comprising at least one deuterated triarylamine derivative or polymer according to the invention, and at least one other organic functional material.
  • Another organic functional material described herein comprising holes (also called holes) injection or transport materials (HIM/HTM), hole blocking materials (HBM), electron injecting or transporting materials (EIM/ETM), electrons Blocking material (EBM), organic matrix material (Host), singlet illuminant (fluorescent illuminant), thermally activated delayed fluorescent luminescent material (TADF), triplet illuminant (phosphorescent illuminant), especially luminescent metal organic coordination Things, and organic dyes.
  • holes also called holes injection or transport materials
  • HBM hole blocking materials
  • EIM/ETM electron injecting or transporting materials
  • EBM electrons Blocking material
  • organic matrix material Host
  • singlet illuminant fluorescent illuminant
  • TADF thermally activated delayed fluorescent luminescent material
  • phosphorescent illuminant especially luminescent metal organic coordination Things
  • organic dyes especially luminescent metal organic coordination Things, and organic dyes.
  • the organic functional material may be a small molecule or a high polymer material.
  • small molecule refers to a molecule that is not a polymer, oligomer, dendrimer, or blend. In particular, there are no repeating structures in small molecules.
  • the molecular weight of the small molecule is ⁇ 3000 g/mol, preferably ⁇ 2000 g/mol, preferably ⁇ 1500 g/mol.
  • the high polymer that is, the polymer, contains a homopolymer, a copolymer, and a block copolymer. Further, in the present invention, the high polymer also contains a dendrimer.
  • a dendrimer For the synthesis and application of the tree, see [Dendrimers and Dendrons, Wiley-VCH Verlag GmbH & Co. KGaA, 2002, Ed. George R. Newkome, Charles N. Moorefield, Fritz Vogtle.].
  • a conjugated polymer is a high polymer whose backbone is mainly composed of sp 2 hybrid orbitals of C atoms. Famous examples are polyacetylene polyacetylene and poly(phenylene vinylene).
  • the C atom in its main chain can also be substituted by other non-C atoms, and is still considered to be a conjugated polymer when the sp 2 hybrid on the main chain is interrupted by some natural defects.
  • the conjugated high polymer further comprises an aryl amine, an aryl phosphine and other heteroarmotics, and an organometallic complexes in the main chain. )Wait.
  • the deuterated triarylamine derivative is present in the mixture according to the invention in an amount of from 0.01 to 95% by weight, preferably from 0.1 to 90% by weight, more preferably from 0.2 to 85% by weight, most preferably It is 2 to 80% by weight.
  • the mixture according to the invention comprises a deuterated triarylamine derivative or polymer according to the invention and a triplet matrix material.
  • the mixture according to the invention comprises a deuterated triarylamine derivative or polymer according to the invention, a triplet matrix material and another triplet emitter.
  • the mixture according to the invention comprises a deuterated triarylamine derivative or polymer according to the invention and a TADF material.
  • the mixture according to the invention comprises a deuterated triarylamine derivative or polymer according to the invention and a TADF material.
  • the mixture according to the invention comprises a deuterated triarylamine derivative or polymer according to the invention and an HTM material.
  • the hole transporting materials, the triplet matrix materials, the triplet emitters and the TADF materials are described in some detail below (but are not limited thereto).
  • HIM/HTM/EBM Hole transport materials
  • Suitable organic HIM/HTM materials may optionally comprise compounds having the following structural units: phthalocyanine, porphyrin, amine, aromatic amine, biphenyl triarylamine, thiophene, thiophene such as dithienothiophene and thiophene, pyrrole, aniline , carbazole, azide and azepine and their derivatives.
  • suitable HIMs also include fluorocarbon-containing polymers, conductive doped polymers, conductive polymers such as PEDOT/PSS; self-assembling monomers such as compounds containing phosphonic acid and sliane derivatives; metal oxides Such as MoOx; metal complexes and cross-linking compounds.
  • An electron blocking layer is used to block electrons from adjacent functional layers, particularly the luminescent layer.
  • the electron blocking material (EBM) of the electron blocking layer (EBL) requires a higher LUMO than an adjacent functional layer such as a light emitting layer.
  • the EBM has a larger excited state level than the adjacent luminescent layer, such as a singlet or triplet, depending on the illuminant, while the EBM has a hole transport function.
  • HIM/HTM materials that typically have high LUMO levels can be used as EBMs.
  • cyclic aromatic amine-derived compounds useful as HIM, HTM or EBM include, but are not limited to, the following general structures:
  • each of Ar 1 to Ar 9 may be independently selected from a cyclic aromatic hydrocarbon compound such as benzene, biphenyl, triphenyl, benzo, naphthalene, anthracene, phenalylene, phenanthrene, anthracene, anthracene, and quinone.
  • a cyclic aromatic hydrocarbon compound such as benzene, biphenyl, triphenyl, benzo, naphthalene, anthracene, phenalylene, phenanthrene, anthracene, anthracene, and quinone.
  • anthracene, anthracene aromatic heterocyclic compounds such as dibenzothiophene, dibenzofuran, furan, thiophene, benzofuran, benzothiophene, oxazole, pyrazole, imidazole, triazole, isoxazole, thiazole , oxadiazole, triazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, oxazine, thiazide, dioxazin, hydrazine, benzimidazole, carbazole , pyridazine, benzoxazole, benzoisoxazole, benzothiazole, quinoline, isoquinoline, o-diaza(hetero)naphthalene, quinazoline, quinoxaline, naphthalene, anthracene, p
  • Ar 1 to Ar 9 may be independently selected from the group consisting of:
  • n is an integer from 1 to 20; X 1 to X 8 are CH or N; Ar 1 is as defined in the above general structure.
  • metal complexes that can be used as HTM or HIM include, but are not limited to, the following general structures:
  • M is a metal having an atomic weight greater than 40
  • (Y 1 -Y 2 ) is a two-dentate ligand, Y 1 and Y 2 are independently selected from C, N, O, P and S; L is an ancillary ligand; m is an integer from 1 to The maximum coordination number of this metal; m+n is the maximum coordination number of this metal.
  • (Y 1 -Y 2 ) is a 2-phenylpyridine derivative.
  • (Y 1 -Y 2 ) is a carbene ligand.
  • M is selected from the group consisting of Ir, Pt, Os, and Zn.
  • the HOMO of the metal complex is greater than -5.5 eV (relative to the vacuum level).
  • TDF Thermally activated delayed fluorescent luminescent material
  • the thermally activated delayed fluorescent luminescent material is a third generation organic luminescent material developed after organic fluorescent materials and organic phosphorescent materials.
  • Such materials generally have a small singlet-triplet energy level difference ( ⁇ Est), and triplet excitons can be converted into singlet exciton luminescence by anti-intersystem crossing. This can make full use of the singlet excitons and triplet excitons formed under electrical excitation.
  • the quantum efficiency in the device can reach 100%.
  • the TADF material needs to have a small singlet-triplet energy level difference, typically ⁇ Est ⁇ 0.3 eV, preferably ⁇ Est ⁇ 0.2 eV, more preferably ⁇ Est ⁇ 0.1 eV, and most preferably ⁇ Est ⁇ 0.05 eV.
  • TADF has better fluorescence quantum efficiency.
  • Some TADF luminescent materials can be found in the following patent documents: CN103483332(A), TW201309696(A), TW201309778(A), TW201343874(A), TW201350558(A), US20120217869(A1), WO2013133359(A1), WO2013154064( A1), Adachi, et.al.
  • Adachi et. al. Appl. Phys. Lett., 98, 2011, 083302, Adachi, et. al. Appl. Phys. Lett ., 101, 2012, 093306, Adachi, et. al. Chem. Commun., 48, 2012, 11392, Adachi, et. al. Nature Photonics, 6, 2012, 253, Adachi, et. al.
  • TADF luminescent materials are listed in the table below:
  • the example of the triplet host material is not particularly limited, and any metal complex or organic compound may be used as the host as long as its triplet energy is higher than that of the illuminant, particularly the triplet illuminant or the phosphorescent illuminant.
  • metal complexes that can be used as the triplet host include, but are not limited to, the following general structure:
  • M is a metal
  • (Y 3 -Y 4 ) is a bidentate ligand, Y 3 and Y 4 are independently selected from C, N, O, P and S
  • L is an ancillary ligand
  • m is an integer, Its value is from 1 to the maximum coordination number of this metal
  • m+n is the maximum coordination number of this metal.
  • the metal complex that can be used as the triplet host has the following form:
  • (O-N) is a two-tooth ligand in which the metal is coordinated to the O and N atoms.
  • M can be selected from Ir and Pt.
  • Examples of the organic compound which can be used as the triplet host are selected from compounds containing a cyclic aromatic hydrocarbon group such as benzene, biphenyl, triphenyl, benzo, anthracene; compounds containing an aromatic heterocyclic group such as dibenzothiophene, Dibenzofuran, dibenzoselenophene, furan, thiophene, benzofuran, benzothiophene, benzoselenophene, carbazole, carbazole, pyridinium, pyrrole dipyridine, pyrazole, imidazole, three Azole, oxazole, thiazole, oxadiazole, oxatriazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, oxazine, thiazide, dioxazin, hydrazine Anthracene,
  • the triplet host material can be selected from compounds comprising at least one of the following groups:
  • R 1 - R 7 may be independently selected from the group consisting of hydrogen, alkyl, alkoxy, amino, alkene, alkyne, aralkyl, heteroalkyl, aryl and heteroaryl. Bases, when they are aryl or heteroaryl, they have the same meaning as Ar 1 and Ar 2 in the above general structure; n is an integer from 0 to 20; X 1 -X 8 is selected from CH or N; 9 is selected from CR 1 R 2 or NR 1 .
  • the triplet emitter is a metal complex of the formula M(L)n, wherein M is a metal atom, and each occurrence of L may be the same or different and is an organic ligand. It is bonded to the metal atom M by one or more positional bonding or coordination, and n is an integer greater than 1, preferably 1, 2, 3, 4, 5 or 6. Alternatively, these metal complexes are coupled to a polymer by one or more positions, preferably by an organic ligand.
  • the metal atom M is selected from a transition metal element or a lanthanide or a lanthanide element, preferably Ir, Pt, Pd, Au, Rh, Ru, Os, Sm, Eu, Gd, Tb, Dy Re, Cu or Ag, with Os, Ir, Ru, Rh, Re, Pd or Pt being particularly preferred.
  • the triplet emitter comprises a chelating ligand, ie a ligand, coordinated to the metal by at least two bonding sites, with particular preference being given to the triplet emitter comprising two or three identical or different pairs Tooth or multidentate ligand.
  • Chelating ligands are beneficial for increasing the stability of metal complexes.
  • Examples of the organic ligand may be selected from a phenylpyridine derivative, a 7,8-benzoquinoline derivative, a 2(2-thienyl)pyridine derivative, a 2(1-naphthyl)pyridine derivative, or a 2 benzene.
  • a quinolinol derivative All of these organic ligands may be substituted, for example by fluorine or trifluoromethyl.
  • the ancillary ligand may preferably be selected from the group consisting of acetone acetate or picric acid.
  • the metal complex that can be used as the triplet emitter has the following form:
  • M is a metal selected from transition metal elements or lanthanides or actinides
  • Ar 1 may be the same or different each time it is present, and is a cyclic group containing at least one donor atom, that is, an atom having a lone pair of electrons, such as nitrogen or phosphorus, through which a cyclic group is present.
  • each occurrence of Ar 2 may be the same or different, and is a cyclic group containing at least one C atom through which the cyclic group is bonded to the metal;
  • Ar 1 and Ar 2 are The covalent bonds are linked together and may each carry one or more substituent groups, which may also be joined together by a substituent group;
  • each occurrence of L may be the same or different, and is an ancillary ligand, preferably a double a chelating ligand, preferably a monoanionic bidentate chelating ligand;
  • m is 1, 2 or 3, preferably 2 or 3, particularly preferably 3;
  • n is 0, 1 or 2, preferably 0 or 1, particularly preferably 0;
  • Triplet emitters are also known as phosphorescent emitters.
  • the triplet emitter is a metal complex of the formula M(L)n, wherein M is a metal atom, and each occurrence of L may be the same or different and is an organic ligand. It is bonded to the metal atom M by one or more positional bonding or coordination, and n is an integer greater than 1, preferably 1, 2, 3, 4, 5 or 6.
  • these metal complexes are coupled to a polymer by one or more positions, preferably by an organic ligand.
  • the metal atom M is selected from a transition metal element or a lanthanide or a lanthanide element, preferably Ir, Pt, Pd, Au, Rh, Ru, Os, Sm, Eu, Gd, Tb, Dy Re, Cu or Ag, with O, Ir, Ru, Rh, Re, Pd or Pt being particularly preferred.
  • the triplet emitter comprises a chelating ligand, ie a ligand, coordinated to the metal by at least two bonding sites, with particular preference being given to the triplet emitter comprising two or three identical or different pairs Tooth or multidentate ligand.
  • Chelating ligands are beneficial for increasing the stability of metal complexes.
  • organic ligand examples may be selected from a phenylpyridine derivative, a 7,8-benzoquinoline derivative, a 2-(2-thienyl)pyridine derivative, a 2-(1-naphthyl)pyridine derivative, or 2-phenylquinoline derivative. All of these organic ligands may be substituted, for example by fluorine or trifluoromethyl.
  • the ancillary ligand may preferably be selected from the group consisting of acetone acetate or picric acid.
  • the metal complex that can be used as the triplet emitter has the following form:
  • M is a metal selected from transition metal elements or lanthanides or actinides
  • Ar 1 may be the same or different each time it is present, and is a cyclic group containing at least one donor atom, that is, an atom having a lone pair of electrons, such as nitrogen or phosphorus, through which a cyclic group is present.
  • each occurrence of Ar 2 may be the same or different, and is a cyclic group containing at least one C atom through which the cyclic group is bonded to the metal;
  • Ar 1 and Ar 2 are The covalent bonds are linked together and may each carry one or more substituent groups, which may also be joined together by a substituent group;
  • each occurrence of L may be the same or different, and is an ancillary ligand, preferably a double a chelating ligand, preferably a monoanionic bidentate chelating ligand;
  • m is 1, 2 or 3, preferably 2 or 3, particularly preferably 3;
  • n is 0, 1, or 2, preferentially Is 0 or 1, with a priority of 0;
  • Examples of extremely useful materials for some triplet emitters can be found in the following patent documents and documents: WO200070655, WO200141512, WO200202714, WO200215645, EP1191613, EP1191612, EP1191614, WO2005033244, WO2005019373, US2005/0258742, WO2009146770, WO2010015307, WO2010031485, WO 2010054731, WO 2010054728, WO 2010086089, WO 2010099852, WO 2010102709, US20070087219A1, US20090061681A1, US20010053462A1, Baldo, Thompson et al.
  • the invention further relates to a composition or ink comprising the deuterated triarylamine derivative or polymer or a mixture as described above, and at least one organic solvent.
  • the invention further provides a film comprising a deuterated triarylamine derivative or polymer according to the invention prepared from a solution.
  • the viscosity and surface tension of the ink are important parameters when used in the printing process. Suitable surface tension parameters for the ink are suitable for the particular substrate and the particular printing method.
  • the ink according to the present invention has a surface tension at an operating temperature or at 25 ° C in the range of from about 19 dyne/cm to 50 dyne/cm; more preferably in the range of from 22 dyne/cm to 35 dyne/cm; It is in the range of 25dyne/cm to 33dyne/cm.
  • the ink according to the present invention has a viscosity at an operating temperature or 25 ° C in the range of about 1 cps to 100 cps; preferably in the range of 1 cps to 50 cps; more preferably in the range of 1.5 cps to 20 cps; Good is in the range of 4.0cps to 20cps.
  • the composition so formulated will be suitable for ink jet printing.
  • the viscosity can be adjusted by different methods, such as by selection of a suitable solvent and concentration of the functional material in the ink.
  • the ink containing the above-described deuterated triarylamine derivative or polymer according to the present invention can facilitate the adjustment of the printing ink to an appropriate range in accordance with the printing method used.
  • the composition according to the invention comprises a functional material in a weight ratio ranging from 0.3% to 30% by weight, preferably from 0.5% to 20% by weight, more preferably from 0.5% to 15% by weight, even more preferably. It is in the range of 0.5% to 10% by weight, preferably in the range of 1% to 5% by weight.
  • the at least one organic solvent is selected from the group consisting of aromatic or heteroaromatic based solvents, particularly aliphatic chain/ring substituted aromatic solvents, or aromatic ketones, in accordance with the inks of the present invention.
  • Solvent, or aromatic ether solvent is selected from the group consisting of aromatic or heteroaromatic based solvents, particularly aliphatic chain/ring substituted aromatic solvents, or aromatic ketones, in accordance with the inks of the present invention.
  • Solvent, or aromatic ether solvent is selected from the group consisting of aromatic or heteroaromatic based solvents, particularly aliphatic chain/ring substituted aromatic solvents, or aromatic ketones, in accordance with the inks of the present invention.
  • Solvent, or aromatic ether solvent is selected from the group consisting of aromatic or heteroaromatic based solvents, particularly aliphatic chain/ring substituted aromatic solvents, or aromatic ketones, in accordance with the inks of the present invention.
  • Solvent, or aromatic ether solvent is selected from the
  • organic solvents suitable for the present invention are, but not limited to, aromatic or heteroaromatic based solvents: p-diisopropylbenzene, pentylbenzene, tetrahydronaphthalene, cyclohexylbenzene, chloronaphthalene, 1,4-dimethyl Naphthalene, 3-isopropylbiphenyl, p-methyl cumene, dipentylbenzene, triphenylbenzene, pentyltoluene, o-xylene, m-xylene, p-xylene, o-diethylbenzene, m-diethyl Benzene, p-diethylbenzene, 1,2,3,4-tetramethylbenzene, 1,2,3,5-tetramethylbenzene, 1,2,4,5-tetramethylbenzene, butylbenzene, dodecylbenzene, two Hexylbenzene, di
  • the at least one organic solvent may be selected from the group consisting of: an aliphatic ketone, for example, 2-nonanone, 3-fluorenone, 5-nonanone, 2-nonanone, 2, 5 -hexanedione, 2,6,8-trimethyl-4-indolone, phorone, di-n-pentyl ketone, etc.; or an aliphatic ether, for example, pentyl ether, hexyl ether, dioctyl ether, ethylene Dibutyl ether, diethylene glycol diethyl ether, diethylene glycol butyl methyl ether, diethylene glycol dibutyl ether, triethylene glycol dimethyl ether, triethylene glycol ethyl methyl ether, triethylene glycol butyl methyl ether , tripropylene glycol dimethyl ether, tetraethylene glycol dimethyl ether and the like.
  • an aliphatic ketone for example, 2-non
  • the printing ink further comprises another organic solvent.
  • another organic solvent include, but are not limited to, methanol, ethanol, 2-methoxyethanol, dichloromethane, chloroform, chlorobenzene, o-dichlorobenzene, tetrahydrofuran, anisole, morpholine , toluene, o-xylene, m-xylene, p-xylene, 1,4 dioxane, acetone, Methyl ethyl ketone, 1,2 dichloroethane, 3-phenoxytoluene, 1,1,1-trichloroethane, 1,1,2,2-tetrachloroethane, ethyl acetate, acetic acid Butyl ester, dimethylformamide, dimethylacetamide, dimethyl sulfoxide, tetrahydronaphthalene, decalin, hydrazine and/or mixtures thereof.
  • the composition according to the invention is a solution.
  • composition according to the invention is a suspension.
  • the invention further relates to the use of the composition as a coating or printing ink in the preparation of an organic electronic device, particularly preferably by a printing or coating process.
  • suitable printing or coating techniques include, but are not limited to, inkjet printing, Nozzle Printing, typography, screen printing, dip coating, spin coating, blade coating, roller printing, torsion roller Printing, lithography, flexographic printing, rotary printing, spraying, brushing or pad printing, slit-type extrusion coating, etc.
  • Preferred are ink jet printing, slit type extrusion coating, jet printing and gravure printing.
  • the solution or suspension may additionally contain one or more components such as surface active compounds, lubricants, wetting agents, dispersing agents, hydrophobic agents, binders and the like for adjusting viscosity, film forming properties, adhesion, and the like.
  • the present invention also provides the use of a deuterated triarylamine derivative or polymer as described above in an organic electronic device.
  • the organic electronic device may be selected from, but not limited to, an organic light emitting diode (OLED), an organic photovoltaic cell (OPV), an organic light emitting cell (OLEEC), an organic field effect transistor (OFET), an organic light emitting field effect transistor, and an organic Lasers, organic spintronic devices, organic sensors and organic plasmon emitting diodes (Organic Plasmon Emitting Diode), especially OLEDs.
  • the deuterated triarylamine derivative is preferably used in a hole transport layer of an OLED device.
  • the invention further relates to an organic electronic device comprising at least one deuterated triarylamine derivative or polymer as described above.
  • an organic electronic device comprises at least one cathode, an anode and a functional layer between the cathode and the anode, wherein the functional layer contains at least one deuterated triarylamine derivative as described above or high. Polymer.
  • the organic electronic device may be selected from, but not limited to, an organic light emitting diode (OLED), an organic photovoltaic cell (OPV), an organic light emitting cell (OLEEC), an organic field effect transistor (OFET), an organic light emitting field effect transistor, and an organic Lasers, organic spintronic devices, organic sensors and organic plasmon emitting diodes (Organic Plasmon Emitting Diode).
  • OLED organic light emitting diode
  • OCV organic photovoltaic cell
  • OFET organic field effect transistor
  • OLED organic light emitting field effect transistor
  • organic Lasers organic spintronic devices, organic sensors and organic plasmon emitting diodes (Organic Plasmon Emitting Diode).
  • the organic electronic device is an electroluminescent device, in particular an OLED, comprising a substrate, an anode, at least one luminescent layer, and a cathode.
  • the substrate can be opaque or transparent.
  • a transparent substrate can be used to make a transparent light-emitting component. See, for example, Bulovic et al. Nature 1996, 380, p29, and Gu et al, Appl. Phys. Lett. 1996, 68, p2606.
  • the substrate can be rigid or elastic.
  • the substrate can be plastic, metal, semiconductor wafer or glass.
  • the substrate has a smooth surface. Substrates without surface defects are a particularly desirable choice.
  • the substrate is flexible, and may be selected from a polymer film or a plastic having a glass transition temperature Tg of 150 ° C or more, preferably more than 200 ° C, more preferably more than 250 ° C, preferably. It is over 300 °C. Examples of suitable flexible substrates are poly(ethylene terephthalate) (PET) and polyethylene glycol (2,6-naphthalene) (PEN).
  • PET poly(ethylene terephthalate)
  • PEN polyethylene glycol (2,6-
  • the anode can comprise a conductive metal or metal oxide, or a conductive polymer.
  • the anode can easily inject holes into a hole injection layer (HIL) or a hole transport layer (HTL) or a light-emitting layer.
  • HIL hole injection layer
  • HTL hole transport layer
  • the absolute value of the difference between the work function of the anode and the HOMO level or the valence band level of the illuminant in the luminescent layer or the p-type semiconductor material as the HIL or HTL or electron blocking layer (EBL) is less than 0.5 eV, preferably less than 0.3 eV, and most preferably less than 0.2 eV.
  • anode material examples include, but are not limited to, Al, Cu, Au, Ag, Mg, Fe, Co, Ni, Mn, Pd, Pt, ITO, aluminum-doped zinc oxide (AZO), and the like.
  • suitable anode materials are known and can be readily selected for use by one of ordinary skill in the art.
  • the anode material can be deposited using any suitable technique, such as a suitable physical vapor deposition process, including radio frequency magnetron sputtering, vacuum thermal evaporation, electron beam (e-beam), and the like.
  • the anode is patterned. Patterned ITO conductive substrates are commercially available and can be used to prepare devices in accordance with the present invention.
  • the cathode can comprise a conductive metal or metal oxide.
  • the cathode can easily inject electrons into the EIL or ETL or directly into the luminescent layer.
  • the work function of the cathode and the LUMO level of the illuminant or the n-type semiconductor material as an electron injection layer (EIL) or electron transport layer (ETL) or hole blocking layer (HBL) in the luminescent layer or
  • EIL electron injection layer
  • ETL electron transport layer
  • HBL hole blocking layer
  • the absolute value of the difference in conduction band energy levels is less than 0.5 eV, preferably less than 0.3 eV, and most preferably less than 0.2 eV.
  • all materials which can be used as cathodes for OLEDs are possible as cathode materials for the devices of the invention.
  • cathode material examples include, but are not limited to, Al, Au, Ag, Ca, Ba, Mg, LiF/Al, MgAg alloy, BaF 2 /Al, Cu, Fe, Co, Ni, Mn, Pd, Pt, ITO, and the like.
  • the cathode material can be deposited using any suitable technique, such as a suitable physical vapor deposition process, including radio frequency magnetron sputtering, vacuum thermal evaporation, electron beam (e-beam), and the like.
  • the OLED may also include other functional layers such as a light emitting layer, an electron injection layer (EIL), an electron transport layer (ETL), and a hole blocking layer (HBL).
  • EIL electron injection layer
  • ETL electron transport layer
  • HBL hole blocking layer
  • the hole transporting layer comprises the deuterated triarylamine derivative of the invention and is prepared by vacuum evaporation or solution processing, preferably vacuum Evaporation.
  • the hole transporting layer thereof comprises the high polymer of the present invention and is prepared by a solution processing method.
  • the electroluminescent device according to the invention has an emission wavelength of between 300 and 800 nm, preferably between 350 and 650 nm, more preferably between 400 and 625 nm.
  • the invention further relates to the use of an organic electronic device according to the invention in various electronic devices, including, but not limited to, display devices, illumination devices, light sources, sensors and the like.
  • the energy level of the deuterated triarylamine derivative H-1-H-3 can be obtained by quantum calculation, for example, by TD-DFT (time-dependent density functional theory) by Gaussian03W (Gaussian Inc.), and the specific simulation method can be found in WO2011141110. .
  • TD-DFT time-dependent density functional theory
  • Gaussian03W Gaussian Inc.
  • the specific simulation method can be found in WO2011141110.
  • the semi-empirical method “Ground State/Semi-empirical/Default Spin/AM1" (Charge 0/Spin Singlet) is used to optimize the molecular geometry, and then the energy structure of the organic molecule is determined by TD-DFT (time-dependent density functional theory) method.
  • TD-SCF/DFT/Default Spin/B3PW91/6-31G/d Charge 0/Spin Singlet.
  • the HOMO and LUMO levels are calculated according to the following calibration formula, and S1 and T1 are
  • HOMO(eV) ((HOMO(Gaussian) ⁇ 27.212)-0.9899)/1.1206
  • HOMO (G) and LUMO (G) are direct calculation results of Gaussian 09W, the unit is Hartree.
  • the results are shown in Table 1:
  • Place 1-b 14.15g, 25mmol
  • 9-phenyl-2-borate oxazole 8.61g, 30mmol
  • tetrakis-(triphenylphosphine)-palladium 0.65g, in a dry two-necked vial, 0.75 mmol
  • Place 2-b 50g, 96.5mmol
  • pinacol borate 36.63g, 144.75mmol
  • Pd(dppf) 2 Cl 2 2.13g, 2.89mmol
  • compounds H-1, H-2, H-3, Ref-1, Ref-2, and Ref-3 are used as hole transport materials
  • HATCN is used as a hole injecting material
  • Ir(ppy) 3 is used as A luminescent material
  • PDC as a host material
  • B3PYMPM as an electron transport material
  • the preparation process using the above OLED device will be described in detail below by way of specific embodiments.
  • the structure of the OLED device (such as Table 2) is: ITO/HATCN/hole transport material/PDC: Ir(ppy) 3 (15%)/B3PYMPM /LiF/Al, the preparation steps are as follows:
  • ITO indium tin oxide
  • a conductive glass substrate cleaning using a variety of solvents (such as one or several of chloroform, acetone or isopropanol) cleaning, and then UV ozone treatment;
  • HATCN 5nm
  • hole transport material 40nm
  • PDC 15% Ir(ppy) 3 (15nm)
  • B3PYMPM 40nm
  • LiF 1nm
  • Al 100nm
  • high vacuum 1 ⁇ 10 - 6 mbar
  • the device is encapsulated in a nitrogen glove box with an ultraviolet curable resin.
  • OLED device Hole transport material OLED1 H-1 OLED2 H-2
  • the current-voltage (J-V) characteristics of each OLED device are characterized by characterization equipment while recording important parameters such as efficiency, lifetime and external quantum efficiency.
  • the luminous efficiency of OLED1 is similar to that of Ref-OELD2, but the lifetime is more than twice that of Ref-OELD2.
  • the luminous efficiency of OLED2 is similar to that of Ref-OLED1 and Ref-OLED2, and the lifetime is 3 times, the luminous efficiency of OLED3 and Ref -OELD3 is similar, but its lifetime is 1.5 times or more that of Ref-OELD3. It can be seen that the lifetime of the OLED device prepared by using the organic compound of the invention is greatly improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明公开了一种氘代三芳胺衍生物及其在有机电子器件,特别是在有机发光二极管中的应用。所述氘代三芳胺衍生物具有如通式(I)所示结构特征。在C-H活性位点通过C-D键取代C-H键,可以降低反应活性,赋予该基团更好的化学和环境稳定性。在通过器件结构优化,可达到最佳的器件性能,实现高效高亮度高寿命的OLED器件,对全彩显示和照明应用提供了较好的材料选项。

Description

氘代三芳胺衍生物及其在电子器件中的应用 技术领域
本发明涉及一种氘代三芳胺衍生物,及其在有机电子器件,特别是在有机发光二极管中的应用。本发明还涉及一种包含有此类氘代三芳胺衍生物的有机电子器件,特别是电致发光器件,及其在显示器及照明装置中的应用。
背景技术
因为有机半导体材料的在合成上的多样性,实现大面积柔性器件的可能,低的制造成本和高性能的光学和电学性能,有机发光二极管(OLED)在新颖的光电器件的实现中,例如,在平板显示器和照明应用,有很大的潜力。为了提高有机发光二极管的发光效率,各种基于荧光和磷光发光材料体系已被开发出来。使用荧光材料的有机发光二极管,具有可靠性高的优点,但在电场激发下其内部电致发光量子效率被限制为25%,这是因为激子的单重激发态和三重激发态的分支比为1:3。与此相反,使用磷光材料的有机发光二极管已经取得了几乎100%的内部发光量子效率。然而,无论是磷光OLED还是荧光OLED,它们的稳定性还需要进一步提高,特别是对寿命的要求更为迫切。OLED的稳定性,除了发光层本身,空穴传输层材料最为关键。
根据现有技术,在空穴传输层中或在空穴注入层中使用的空穴传输材料,特别是如下的三芳胺类衍生物,其通常含有至少两个三芳基氨基基团或至少一个三芳基氨基基团和至少一个咔唑基团。然而,在这些化合物中都含有活泼的C-H键,如含一个苯环基团三芳胺衍生物,其4位的C-H键非常活泼,又如含9-苯基咔唑基团的三芳胺衍生物,其3位的C-H键也非常活泼,具体如下:
Figure PCTCN2016107309-appb-000001
正是因为这类材料结构中氮原子的孤对电子共轭到苯环中,形成电子云密度较大、反应活性较高的C-H键,致使这类型化合物的化学/环境稳定性较差、器件寿命较短。
为了提高三芳胺类衍生物的稳定性及器件寿命,人们寻求降低C-H键的反应活性的方法。一种方案是引入缺电子单元,使得电子云向缺电子单元的方向转移,降低C-H的电子云密度及反应活性。但缺电子的引入同时可能会带来电化学能级的变化等问题。
因此,在使用这些空穴传输材料的情况下,无论是荧光OLED还是磷光OLED,在效率、寿命和工作电压方面都还需要改进,这样迫使人们寻求更稳定的空穴传输材料。
发明内容
鉴于上述现有技术的不足,本发明的目的在于提供一类氘代的三芳胺类衍生物,包含相关的混合物和组合物、及其在有机电子器件中的应用,旨在解决现有的三芳胺类衍生物材料及相关的有机电子器件稳定性及器件寿命低的问题。
本发明的技术解决方案是:一种含通式(I)结构的氘代三芳胺衍生物:
Figure PCTCN2016107309-appb-000002
R1选自H,F,Cl,Br,I,D,CN,NO2,CF3,B(OR2)2,Si(R2)3,直链烷烃,烷烃醚,含1~10个碳原子烷烃硫醚或支链烷烃或环烷烃,每一个基团均可被一个或多个活性基团R2取代,且一个或多个非相邻的亚甲基(CH2)可以被以下基团替换:R2C=CR2,C=C,Si(R2)2,Ge(R2)2,Sn(R2)2,C=O,C=S,C=Se,C=N(R2),O,S,-COO-或CONR2,其中一个或多个H原子可被D,F,Cl,Br,I,CN或N2所替换,或者被包含一个或多个活性基团R2、一个芳香基团或者一个杂芳香环取代的芳香胺替换,或者被取代或未被取代的咔唑替换;
R2在每一次出现中,相同或不同的是H,D,含1~10个碳原子脂肪族烷烃,芳香碳氢化合物,含5~10个环原子的被取代或者未被取代的芳香环或杂芳香基团;
x为数字0-3中的任一个,y为数字0-4中的任一个,z为数字0-5中的任一个;
X1和X2分别独立的表示C-D或者C-R1,并且它们中至少有一个为C-D。
L为连接基团,选自单键或B1至B2中的任一个:
Figure PCTCN2016107309-appb-000003
其中,y为数字0-4中的任一个。
在其中一些实施例中,所述的氘代三芳胺衍生物,优先选自如下通式:
Figure PCTCN2016107309-appb-000004
Figure PCTCN2016107309-appb-000005
Figure PCTCN2016107309-appb-000006
其中,x为数字0-3中的任一个,y为数字0-4中的任一个,z为数字0-5中的任一个。
在其中一些实施例中,选自如下通式:
Figure PCTCN2016107309-appb-000007
在其中一些实施例中,所述的氘代三芳胺衍生物,其中通式(I),(I-1)-(I-18)中的Ar1为未被取代或是取代的芳香环或杂芳香环单元,在多次出现时可相互独立的优先选自通式(C1)至(C36)中的任一个:
Figure PCTCN2016107309-appb-000008
Figure PCTCN2016107309-appb-000009
Figure PCTCN2016107309-appb-000010
其中R3选自-H,-F,-Cl,Br,I,-D,-CN,-NO2,-CF3,B(OR2)2,Si(R2)3,直链烷烃,烷烃醚,含1~10个碳原子烷烃硫醚或支链烷烃或环烷烃,含有6~10个碳原子的芳基中的任一个;
u为数字0-2中的任一个,v为数字0-3中的任一个,w为数字0-4中的任一个,t为数字0-5中的任一个。
在其中一些实施例中,通式(I),(I-1)-(I-18)中的Ar1相互独立的选自:
Figure PCTCN2016107309-appb-000011
本发明还提供一种高聚物,包含一个重复单元,所述重复单元中包含一种如通式(I)表示的结构单元。
本发明还提供一种混合物,包含一种如上所述的氘代三芳胺衍生物或高聚物及至少一种有机功能材料。所述的有机功能材料可选自空穴注入材料(HIM),空穴传输材料(HTM),电子传输材料(ETM),电子注入材料(EIM),电子阻挡材料(EBM),空穴阻挡材料(HBM),发光材料(Emitter),主体材料(Host)和有机染料等。
本发明还提供一种组合物,包含按照本发明的氘代三芳胺衍生物或高聚物,及至少一种有机溶剂。
本发明还提供一种按照本发明的氘代三芳胺衍生物或高聚物在有机电子器件中的应用。
本发明还提供一种有机电子器件,至少包含一种按照本发明的氘代三芳胺衍生物或高聚物及其混合物。
在其中一些实施例中,所述的有机电子器件可选于有机发光二极管(OLED)、有机光伏电池(OPV)、有机发光电池(OLEEC)、有机场效应管(OFET)、有机发光场效应管、有机激光器,有机自旋电子器件,有机传感器及有机等离激元发射二极管(Organic Plasmon Emitting Diode),特别优先的是有机发光二极管(OLED)。
在其中一些实施例中,优先的,所述的有机电子器件是电致发光器件,包含有一空穴注入层或一空穴传输层,所述的空穴注入层或穴传输层包含有一种按照本发明的氘代三芳胺衍生物或高聚物。
有益效果:按照本发明的化合物用于OLED中,特别是作为空穴传输材料,能使器件性能更稳定,能提供较长的寿命。其可能的机理如下,但不限于,氘(D)原子的质量是H原子质量的两倍,C-D键相对于C-H键具有相对较低的反应自由能、反应速率和渗透势垒,使得C-D键的相对于C-H键具有较低的反应活性(Chem.Rev.1955,55,713-743),这为提高三芳胺类化合物及光电器件的化学/环境稳定性提供了可能。在通过器件结构优化,可达到最佳的器件性能,实现高效高亮度高寿命的OLED器件,对全彩显示和照明应用提供了较好的材料选项。
具体实施方式
本发明提供一种新型的氘代三芳胺衍生物,相应的混合物和组合物,以及在有机电子器件中的应用,为使本发明的目的、技术方案及效果更加清楚、明确,以下对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
在本发明中,组合物和印刷油墨,或油墨具有相同的含义,它们之间可以互换。
在本发明中,主体材料,基质材料,Host或Matrix材料具有相同的含义,它们之间可以互换。
在本发明中,金属有机络合物,金属有机配合物,有机金属配合物具有相同的含义,可以互换。
本发明涉及一种如如下通式(I)表示的并吡咯衍生物:
Figure PCTCN2016107309-appb-000012
其中,Ar1在每一次出现中,相同或不同的选自未被取代或是R1取代的芳香烃或是杂芳香环烃体系;
R1选自H,F,Cl,Br,I,D,CN,NO2,CF3,B(OR2)2,Si(R2)3,直链烷烃,烷烃醚,含1~10个碳原子烷烃硫醚或支链烷烃或环烷烃,每一个基团均可被一个或多个活性基团R2取代,且一个或多个非相邻的亚甲基(CH2)可以被以下基团替换:R2C=CR2,C=C,Si(R2)2,Ge(R2)2,Sn(R2)2,C=O,C=S,C=Se,C=N(R2),O,S,-COO-或CONR2,其中一个或多个H原子可被D,F,Cl,Br,I,CN或N2所替换,或者被包含一个或多个活性基团R2、一个芳香基团或者一个杂芳香环取代的芳香胺替换,或者被取代或未被取代的咔唑替换;
R2在每一次出现中,相同或不同的是H,D,含1~10个碳原子脂肪族烷烃,芳香碳氢化合物,含5~10个环原子的被取代或者未被取代的芳香环或杂芳香基团;
x为数字0-3中的任一个,y为数字0-4中的任一个,z为数字0-5中的任一个;
X1和X2分别独立的表示C-D或者C-R1,并且它们中至少有一个为C-D。
L为连接基团,选自单键或B1至B2中的任一个:
Figure PCTCN2016107309-appb-000013
其中,y为数字0-4中的任一个。
在某些优先的实施例中,按照通式(I)的氘代三芳胺衍生物,其中Ar1选自未被取代或是取代的具有2~20个碳原子的芳族环或杂芳族环。
在一个优先的实施例中,芳香环系在环系中包含5~15个碳原子,更优是5~10个碳原子,杂芳香环系在环系中包含2~15个碳原子,更优是2~10个碳原子,和至少一个杂原子,条件是碳原子和杂原子的总数至少为4。杂原子优选自Si、N、P、O、S和/或Ge,特别优选自Si、N、P、O和/或S。
芳香环系或芳族基团指至少包含一个芳环的烃基,包括单环基团和多环的环系统。杂芳香环系或杂芳族基团指包含至少一个杂芳环的烃基(含有杂原子),包括单环基团和多环的环系统。这些多环的环可以具有两个或多个环,其中两个碳原子被两个相邻的环共用,即稠环。多环的这些环种,至少一个是芳族的或杂芳族的。对于本发明的目的,芳香族或杂芳香族环系不仅包括芳香基或杂芳香基的体系,而且,其中多个芳基或杂芳基也可以被短的非芳族单元间断(<10%的非H原子,优选小于5%的非H原子,比如C、N或O原子)。因此,比如9,9'-螺二芴,9,9-二芳基芴,三芳胺,二芳基醚等体系,对于该发明目的同样认为是芳香族环系。
具体地,芳族基团的例子有:苯、萘、蒽、菲、二萘嵌苯、并四苯、芘、苯并芘、三亚苯、苊、芴、及其衍生物。
具体地,杂芳族基团的例子有:呋喃、苯并呋喃、噻吩、苯并噻吩、吡咯、吡唑、三唑、咪唑、噁唑、噁二唑、噻唑、四唑、吲哚、咔唑、吡咯并咪唑、吡咯并吡咯、噻吩并吡咯、噻吩并噻吩、呋喃并吡咯、呋喃并呋喃、噻吩并呋喃、苯并异噁唑、苯并异噻唑、苯并咪唑、吡 啶、吡嗪、哒嗪、嘧啶、三嗪、喹啉、异喹啉、邻二氮萘、喹喔啉、菲啶、伯啶、喹唑啉、喹唑啉酮、及其衍生物。
在一个优先的实施方案中,通式(I)中的Ar1可以选自如下通式中的一个:
Figure PCTCN2016107309-appb-000014
其中,X分别独立的选自CR1或N,且至少有一个是N;
Y选自CR2R3,SiR2R3,NR2,C(=O),S,或O;
R1,R2,R3是H,或D,或具有1至20个C原子的直链烷基、烷氧基或硫代烷氧基基团,或者具有3至20个C原子的支链或环状的烷基、烷氧基或硫代烷氧基基团或者是甲硅烷基基团,或具有1至20个C原子的取代的酮基基团,具有2至20个C原子的烷氧基羰基基团,具有7至20个C原子的芳氧基羰基基团,氰基基团(-CN),氨基甲酰基基团(-C(=O)NH2),卤甲酰基基团(-C(=O)-X其中X代表卤素原子),甲酰基基团(-C(=O)-H),异氰基基团,异氰酸酯基团,硫氰酸酯基团或异硫氰酸酯基团,羟基基团,硝基基团,CF3基团,Cl,Br,F,可交联的基团或者具有5至40个环原子的取代或未取代的芳族或杂芳族环系,或具有5至40个环原子的芳氧基或杂芳氧基基团,或这些体系的组合,其中一个或多个基团R1,R2,R3可以彼此和/或与所述基团键合的环形成单环或多环的脂族或芳族环系。
在一些优选的实施例中,R1,R2,R3是H,或D,或具有1至10个C原子的直链烷基、烷氧基或硫代烷氧基基团,或者具有3至10个C原子的支链或环状的烷基、烷氧基或硫代烷氧基基团或者是甲硅烷基基团,或具有1至10个C原子的取代的酮基基团,具有2至10个C原子的烷氧基羰基基团,具有7至10个C原子的芳氧基羰基基团,氰基基团(-CN),氨基甲酰基基团(-C(=O)NH2),卤甲酰基基团(-C(=O)-X其中X代表卤素原子),甲酰基基团(-C(=O)-H),异氰基基团,异氰酸酯基团,硫氰酸酯基团或异硫氰酸酯基团,羟基基团,硝基基团,CF3基团,Cl,Br,F,可交联的基团或者具有5至20个环原子的取代或未取代的芳族或杂芳族环系,或具有5至20个环原子的芳氧基或杂芳氧基基团,或这些体系的组合,其中一个或多个基团R1,R2,R3可以彼此和/或与所述基团键合的环形成单环或多环的脂族或芳族环系。
在某些实施例中,通式(I)中的Ar1可选自如下结构单元,它们可进一步被取代:
Figure PCTCN2016107309-appb-000015
Figure PCTCN2016107309-appb-000016
在一个较为优先的实施例中,按照本发明的氘代三芳胺衍生物,选自如下通式:
Figure PCTCN2016107309-appb-000017
Figure PCTCN2016107309-appb-000018
Figure PCTCN2016107309-appb-000019
其中,x为数字0-3中的任一个,y为数字0-4中的任一个,z为数字0-5中的任一个。
所述的氘代三芳胺衍生物,其中通式(I),(I-1)-(I-18)中的Ar1为未被取代或是取代的芳香环或杂芳香环单元,在多次出现时可相互独立的优先选自通式(C1)至(C36)中的任一个:
Figure PCTCN2016107309-appb-000020
Figure PCTCN2016107309-appb-000021
其中R3选自-H,-F,-Cl,Br,I,-D,-CN,-NO2,-CF3,B(OR2)2,Si(R2)3,直链烷烃,烷烃醚,含1~10个碳原子烷烃硫醚或支链烷烃或环烷烃,含有6~10个碳原子的芳基中的任一个;
u为数字0-2中的任一个,v为数字0-3中的任一个,w为数字0-4中的任一个,t为数字0-5中的任一个。
在某些优先的实施方案中,按照本发明的有机化合物,至少有一个其他位置上的H被D取代。
在一个优先的实施例中,按照本发明的有机化合物,其中H的氘代率为≥10%,较优为≥20%,更优为≥30%,最优为≥40%。
在一个优先的实施例中,通式(I)中如下图所示的以圆圈标志的苯环上至少有一个H没有被氘代,更加优选的是没有一个H没有被氘代。
Figure PCTCN2016107309-appb-000022
通过氘代,也可对有机化合物的热稳定性有有益的影响。在一个优先的实施例中,按照本发明的有机化合物的玻璃化温度≥100℃,较好是≥120℃,更好是≥140℃,最好是≥160℃。
在某些实施例中,按照本发明的有机化合物具有较高的三线态能级T1,一般是T1≥2.0eV,较优是T1≥2.2eV,更优是T1≥2.4eV,最优是T1≥2.6eV。
下面给出合适的按照本发明的氘代三芳胺衍生物的具体例子,但是不限于:
Figure PCTCN2016107309-appb-000023
Figure PCTCN2016107309-appb-000024
Figure PCTCN2016107309-appb-000025
Figure PCTCN2016107309-appb-000026
Figure PCTCN2016107309-appb-000027
Figure PCTCN2016107309-appb-000028
按照本发明的氘代三芳胺衍生物,D原子引入到三芳胺衍生物活性位点的合成方法一般有两种,一种是先做成不带氘的三芳胺衍生物,然后在该分子的活性位点进行卤化,最后再用D原子置换其上的卤素原子;另一种是先在一种或多种前驱体单元上进行氘代,然后将这些单元通过化学反应合并,生成最终的氘代三苯胺衍生物。
本发明还涉及一种高聚物,其中至少有一个重复单元包含有如通式(I)所示的结构。在某些实施例中,所述的高聚物是非共轭高聚物,其中如通式(I)所示的结构单元在侧链上。在另一个优先的实施例中,所述的高聚物是共轭高聚物。
本发明还涉及一种混合物,包含至少一种按照本发明的氘代三芳胺衍生物或高聚物,及至少另一种的有机功能材料。
这里所述另一种的有机功能材料,包含空穴(也称电洞)注入或传输材料(HIM/HTM),空穴阻挡材料(HBM),电子注入或传输材料(EIM/ETM),电子阻挡材料(EBM),有机基质材料(Host),单重态发光体(荧光发光体),热激活延迟荧光发光材料(TADF),三重态发光体(磷光发光体),特别是发光金属有机配合物,和有机染料。例如在WO2010135519A1、US20090134784A1和WO2011110277A1中对各种有机功能材料有详细的描述,特此将此3专利文件中的全部内容并入本文作为参考。
有机功能材料可以是小分子或高聚物材料。
本文中所定义的术语“小分子”是指不是聚合物,低聚物,树枝状聚合物,或共混物的分子。特别是,小分子中没有重复结构。小分子的分子量≤3000克/摩尔,较好是≤2000克/摩尔,最好是≤1500克/摩尔。
高聚物,即Polymer,包含均聚物(homopolymer),共聚物(copolymer),镶嵌共聚物(block copolymer)。另外在本发明中,高聚物也包含树状物(dendrimer),有关树状物的合成及应用请参见【Dendrimers and Dendrons,Wiley-VCH Verlag GmbH&Co.KGaA,2002,Ed.George R.Newkome,Charles N.Moorefield,Fritz Vogtle.】。
共轭高聚物(conjugated polymer)是一高聚物,它的主链(backbone)主要是由C原子的sp2杂化轨道构成,著名的例子有:聚乙炔polyacetylene和poly(phenylene vinylene),其主链上的C原子的也可以被其他非C原子取代,而且当主链上的sp2杂化被一些自然的缺陷打断时,仍然被认为是共轭高聚物。另外在本发明中共轭高聚物也包含主链上包含有芳基胺(aryl amine)、芳基磷化氢(aryl phosphine)及其他杂环芳烃(heteroarmotics)、金属有机络合物(organometallic complexes)等。
在一某些实施例中,按照本发明的混合物中,氘代三芳胺衍生物的含量为0.01至95wt%,较好的是0.1至90wt%,更好的是0.2至85wt%,最好的是2至80wt%。
在一个优先的实施方案中,按照本发明的混合物包含一种按照本发明的氘代三芳胺衍生物或高聚物和一种三线态基质材料。
在另一个优先的实施方案中,按照本发明的混合物包含一种按照本发明的氘代三芳胺衍生物或高聚物,一种三线态基质材料和另一种的三线态发光体。
在另一个优先的实施方案中,按照本发明的混合物包含一种按照本发明的氘代三芳胺衍生物或高聚物和一种TADF材料。
在另一个优先的实施方案中,按照本发明的混合物包含一种按照本发明的氘代三芳胺衍生物或高聚物和一种TADF材料。
在另一个优先的实施方案中,按照本发明的混合物包含一种按照本发明的氘代三芳胺衍生物或高聚物和一种HTM材料。
下面对空穴传输类材料,三线态基质材料,三线态发光体和TADF材料作一些较详细的描述(但不限于此)。
1、空穴传输类材料(HIM/HTM/EBM):
合适的有机HIM/HTM材料可选包含有如下结构单元的化合物:酞菁、卟啉、胺、芳香胺、联苯类三芳胺、噻吩、并噻吩如二噻吩并噻吩和并噻吩、吡咯、苯胺、咔唑、氮茚并氮芴及它们的衍生物。另外,合适的HIM也包括含有氟烃的聚合物、含有导电掺杂的聚合物、导电聚合物,如PEDOT/PSS;自组装单体,如含有膦酸和sliane衍生物的化合物;金属氧化物,如MoOx;金属络合物和交联化合物等。
电子阻挡层(EBL)用来阻挡来自相邻功能层,特别是发光层的电子。对比一个没有阻挡层的发光器件,EBL的存在通常会导致发光效率的提高。电子阻挡层(EBL)的电子阻挡材料(EBM)需要有比相邻功能层,如发光层更高的LUMO。在一个优先的实施方案中,EBM有比相邻发光层更大的激发态能级,如单重态或三重态,取决于发光体,同时,EBM有空穴传输功能。通常具有高的LUMO能级的HIM/HTM材料可以作为EBM。
可用作HIM,HTM或EBM的环芳香胺衍生化合物的例子包括(但不限于)如下的一般结构:
Figure PCTCN2016107309-appb-000029
在上述一般结构中,每个Ar1到Ar9可独立选自环芳香烃化合物,如苯、联苯、三苯基、苯并、萘、蒽、非那烯、菲、芴、芘、屈、苝、薁;芳香杂环化合物,如二苯并噻吩、二苯并呋喃、呋喃、噻吩、苯并呋喃、苯并噻吩、咔唑、吡唑、咪唑、三氮唑、异恶唑、噻唑、恶二唑、恶三唑、二恶唑、噻二唑、吡啶、哒嗪、嘧啶、吡嗪、三嗪、恶嗪、恶噻嗪、恶二嗪、吲哚、苯并咪唑、吲唑、吲哚嗪、苯并恶唑、苯异恶唑、苯并噻唑、喹啉、异喹啉、邻二氮(杂)萘、喹唑啉、喹喔啉、萘、酞、蝶啶、氧杂蒽、吖啶、吩嗪、吩噻嗪、吩恶嗪、二苯并硒吩、苯并硒吩、苯并呋喃吡啶、吲哚咔唑、吡啶吲哚、吡咯二吡啶、呋喃二吡啶、苯并噻吩吡啶、噻吩吡啶、苯并硒吩吡啶和硒吩二吡啶;包含有2至10环结构的基团,它们可以是相同或不同类型的环芳香烃基团或芳香杂环基团,并彼此直接或通过至少一个以下的基团连结在一起,如氧原子、氮原子、硫原子、硅原子、磷原子、硼原子、链结构单元和脂肪环基团。其中,每个Ar可以进一步被取代,取代基可选为氢、烷基、烷氧基、氨基、烯、炔、芳烷基、杂烷基、芳基和杂芳基。
在一个方面,在上述一般结构中,Ar1到Ar9可独立选自包含如下基团:
Figure PCTCN2016107309-appb-000030
n是1到20的整数;X1到X8是CH或N;Ar1如在上述一般结构中所定义。
环芳香胺衍生化合物的另外的例子可参见US3567450、US4720432、US5061569、US3615404和US5061569。
可用作HTM或HIM的金属络合物的例子包括(但不限于)如下的一般结构:
Figure PCTCN2016107309-appb-000031
M是一金属,有大于40的原子量;
(Y1-Y2)是一两齿配体,Y1和Y2独立地选自C、N、O、P和S;L是一个辅助配体;m是一整数,其值从1到此金属的最大配位数;m+n是此金属的最大配位数。
在一个实施例中,(Y1-Y2)是2-苯基吡啶衍生物。
在另一个实施例中,(Y1-Y2)是一卡宾配体。
在另一个实施例中,M选于Ir、Pt、Os和Zn。
在另一个方面,金属络合物的HOMO大于-5.5eV(相对于真空能级)。
在下面的表中列出合适的可作为HIM/HTM/EBM化合物的例子:
Figure PCTCN2016107309-appb-000032
Figure PCTCN2016107309-appb-000033
2、热激活延迟荧光发光材料(TADF):
传统有机荧光材料只能利用电激发形成的25%单线态激子发光,器件的内量子效率较低(最高为25%)。尽管磷光材料由于重原子中心强的自旋-轨道耦合增强了系间穿越,可以有效利用电激发形成的单线态激子和三线态激子发光,使器件的内量子效率达到100%。但磷光材料昂贵,材料稳定性差,器件效率滚降严重等问题限制了其在OLED中的应用。热激活延迟荧光发光材料是继有机荧光材料和有机磷光材料之后发展的第三代有机发光材料。该类材料一般具有小的单线态-三线态能级差(ΔEst),三线态激子可以通过反系间穿越转变成单线态激子发光。这可以充分利用电激发下形成的单线态激子和三线态激子。器件内量子效率可达到100%。
TADF材料需要具有较小的单线态-三线态能级差,一般是ΔEst<0.3eV,较好是ΔEst<0.2eV,更好是ΔEst<0.1eV,最好是ΔEst<0.05eV。在一个优先的实施方案中,TADF有较好的荧光量子效率。一些TADF发光的材料可在下述专利文件中找到:CN103483332(A),TW201309696(A),TW201309778(A),TW201343874(A),TW201350558(A),US20120217869(A1),WO2013133359(A1),WO2013154064(A1),Adachi,et.al.Adv.Mater.,21,2009,4802,Adachi,et.al.Appl.Phys.Lett.,98,2011,083302,Adachi,et.al.Appl.Phys.Lett.,101,2012,093306,Adachi,et.al.Chem.Commun.,48,2012,11392,Adachi,et.al.Nature Photonics,6,2012,253,Adachi,et.al.Nature,492,2012,234,Adachi,et.al.J.Am.Chem.Soc,134,2012,14706,Adachi,et.al.Angew.Chem.Int.Ed,51,2012,11311,Adachi,et.al.Chem.Commun.,48,2012,9580,Adachi,et.al.Chem.Commun.,48,2013,10385,Adachi,et.al.Adv.Mater.,25,2013,3319,Adachi,et.al.Adv.Mater.,25,2013,3707,Adachi,et.al.Chem.Mater.,25,2013,3038,Adachi,et.al.Chem.Mater.,25,2013,3766,Adachi,et.al.J.Mater.Chem.C.,1,2013,4599,Adachi,et.al.J.Phys.Chem.A.,117,2013,5607,特此将上述列出的专利或文章文件中的全部内容并入本文作为参考。
在下面的表中列出一些合适的TADF发光材料的例子:
Figure PCTCN2016107309-appb-000034
Figure PCTCN2016107309-appb-000035
3、三线态基质材料(Triplet Host):
三线态主体材料的例子并不受特别的限制,任何金属络合物或有机化合物都可能被用作为主体,只要其三重态能量比发光体,特别是三重态发光体或磷光发光体更高。可用作三重态主体(Host)的金属络合物的例子包括(但不限于)如下的一般结构:
Figure PCTCN2016107309-appb-000036
M是一金属;(Y3-Y4)是一两齿配体,Y3和Y4独立地选自C、N、O、P和S;L是一个辅助配体;m是一整数,其值从1到此金属的最大配位数;m+n是此金属的最大配位数。
在一个优先的实施方案中,可用作三重态主体的金属络合物有如下形式:
Figure PCTCN2016107309-appb-000037
(O-N)是一两齿配体,其中金属与O和N原子配位。
在某一个实施方案中,M可选于Ir和Pt。
可作为三线态主体的有机化合物的例子选自包含有环芳香烃基的化合物,例如苯、联苯、三苯基、苯并、芴;包含有芳香杂环基的化合物,如二苯并噻吩、二苯并呋喃、二苯并硒吩、呋喃、噻吩、苯并呋喃、苯并噻吩、苯并硒吩、咔唑、吲哚咔唑、吡啶吲哚、吡咯二吡啶、吡唑、咪唑、三唑类、恶唑、噻唑、恶二唑、恶三唑、二恶唑、噻二唑、吡啶、哒嗪、嘧啶、吡嗪、三嗪类、恶嗪、恶噻嗪、恶二嗪、吲哚、苯并咪唑、吲唑、恶唑、二苯并恶唑、苯异恶唑、苯并噻唑、喹啉、异喹啉、邻二氮杂萘、喹唑啉、喹喔啉、萘、酞、蝶啶、氧杂蒽、吖啶、吩嗪、吩噻嗪、吩恶嗪、苯并呋喃吡啶、呋喃并吡啶、苯并噻吩吡啶、噻吩吡啶、苯并硒吩吡啶和硒吩苯并二吡啶;包含有2至10环结构的基团,它们可以是相同或不同类型的环芳香烃基团或芳香杂环基团,并彼此直接或通过至少一个以下的基团连结在一起,如氧原子、氮原子、硫原子、硅原子、磷原子、硼原子、链结构单元和脂肪环基团。其中,每个Ar可以进一步被取代,取代基可选为氢、烷基、烷氧基、氨基、烯、炔、芳烷基、杂烷基、芳基和杂芳基。
在一个优先的实施方案中,三线态主体材料可选于包含至少一个以下基团的化合物:
Figure PCTCN2016107309-appb-000038
在上述基团中,R1-R7可相互独立地选于如下的基团:氢,烷基,烷氧基,氨基,烯,炔,芳烷基,杂烷基,芳基和杂芳基,当它们是芳基或杂芳基时,它们与上述一般结构中的Ar1和Ar2意义相同;n是一个从0到20的整数;X1-X8选于CH或N;X9选于CR1R2或NR1
在下面的表中列出合适的三线态主体材料的例子:
Figure PCTCN2016107309-appb-000039
4、三线态发光体(磷光发光材料)
磷光发光材料也称三重态发光体。在一个优先的实施方案中,三重态发光体是有通式M(L)n的金属络合物,其中M是一金属原子,L每次出现时可以是相同或不同,是一有机配体,它通过一个或多个位置键接或配位连接到金属原子M上,n是一个大于1的整数,较好选是1,2,3,4,5或6。可选地,这些金属络合物通过一个或多个位置联接到一个聚合物上,最好是通过有机配体。
在一个优先的实施方案中,金属原子M选于过渡金属元素或镧系元素或锕系元素,优先选择Ir,Pt,Pd,Au,Rh,Ru,Os,Sm,Eu,Gd,Tb,Dy,Re,Cu或Ag,特别优先选择Os,Ir,Ru,Rh,Re,Pd或Pt。
优先地,三重态发光体包含有螯合配体,即配体,通过至少两个结合点与金属配位,特别优先考虑的是三重态发光体包含有两个或三个相同或不同的双齿或多齿配体。螯合配体有利于提高金属络合物的稳定性。
有机配体的例子可选自苯基吡啶衍生物,7,8-苯并喹啉衍生物,2(2-噻吩基)吡啶衍生物,2(1-萘基)吡啶衍生物,或2苯基喹啉衍生物。所有这些有机配体都可能被取代,例如被含氟或三氟甲基取代。辅助配体可优先选自乙酸丙酮或苦味酸。
在一个优先的实施方案中,可用作三重态发光体的金属络合物有如下形式:
Figure PCTCN2016107309-appb-000040
其中,M是一金属,选于过渡金属元素或镧系元素或锕系元素;
在上述形式中,Ar1每次出现时可以是相同或不同,是一个环状基团,其中至少包含有一个施主原子,即有一孤对电子的原子,如氮或磷,通过它环状基团与金属配位连接;Ar2每次出现时可以是相同或不同,是一个环状基团,其中至少包含有一个C原子,通过它环状基团与金属连接;Ar1和Ar2由共价键联接在一起,可各自携带一个或多个取代基团,它们也可再通过取代基团联接在一起;L每次出现时可以是相同或不同,是一个辅助配体,优选于双齿螯合配体,最好是单阴离子双齿螯合配体;m是1,2或3,优先地是2或3,特别优先地是3;n是0,1或2,优先地是0或1,特别优先地是0;
三重态发光体也称磷光发光体。在一个优先的实施方案中,三重态发光体是有通式M(L)n的金属络合物,其中M是一金属原子,L每次出现时可以是相同或不同,是一有机配体,它通过一个或多个位置键接或配位连接到金属原子M上,n是一个大于1的整数,较好选是1,2,3,4,5或6。可选地,这些金属络合物通过一个或多个位置联接到一个聚合物上,最好是通过有机配体。
在一个优先的实施方案中,金属原子M选于过渡金属元素或镧系元素或锕系元素,优先选择Ir,Pt,Pd,Au,Rh,Ru,Os,Sm,Eu,Gd,Tb,Dy,Re,Cu或Ag,特别优先选择O,Ir,Ru,Rh,Re,Pd或Pt。
优先地,三重态发光体包含有螯合配体,即配体,通过至少两个结合点与金属配位,特别优先考虑的是三重态发光体包含有两个或三个相同或不同的双齿或多齿配体。螯合配体有利于提高金属络合物的稳定性。
有机配体的例子可选自苯基吡啶衍生物,7,8-苯并喹啉衍生物,2-(2-噻吩基)吡啶衍生物,2-(1-萘基)吡啶衍生物,或2-苯基喹啉衍生物。所有这些有机配体都可能被取代,例如被含氟或三氟甲基取代。辅助配体可优先选自乙酸丙酮或苦味酸。
在一个优先的实施方案中,可用作三重态发光体的金属络合物有如下形式:
Figure PCTCN2016107309-appb-000041
其中M是一金属,选于过渡金属元素或镧系元素或锕系元素;
在上述形式中,Ar1每次出现时可以是相同或不同,是一个环状基团,其中至少包含有一个施主原子,即有一孤对电子的原子,如氮或磷,通过它环状基团与金属配位连接;Ar2每次出现时可以是相同或不同,是一个环状基团,其中至少包含有一个C原子,通过它环状基团与金属连接;Ar1和Ar2由共价键联接在一起,可各自携带一个或多个取代基团,它们也可再通过取代基团联接在一起;L每次出现时可以是相同或不同,是一个辅助配体,优选于双齿螯合配体,最好是单阴离子双齿螯合配体;m是1,2或3,优先地是2或3,特别优先地是3;n是0,1,或2,优先地是0或1,特别优先地是0;
一些三重态发光体的材料极其应用的例子可在下述专利文件和文献中找到:WO200070655,WO200141512,WO200202714,WO200215645,EP1191613,EP1191612,EP1191614,WO2005033244,WO2005019373,US2005/0258742,WO2009146770,WO2010015307,WO 2010031485,WO 2010054731,WO 2010054728,WO 2010086089,WO 2010099852,WO 2010102709,US20070087219A1,US20090061681A1,US20010053462A1,Baldo,Thompson et al.Nature 403,(2000),750-753,US20090061681A1,US20090061681A1,Adachi et al.Appl.Phys.Lett.78(2001),1622-1624,J.Kido et al.Appl.Phys.Lett.65(1994),2124,Kido et al.Chem.Lett.657,1990,US2007/0252517A1,Johnson et al.,JACS 105,1983,1795,Wrighton,JACS 96,1974,998,Ma et al.,Synth.Metals 94,1998,245,US6824895,US7029766,US6835469,US6830828,US20010053462A1,WO2007095118A1,US2012004407A1,WO2012007088A1,WO2012007087A1,WO2012007086A1,US2008027220A1,WO2011157339A1,CN102282150A,WO2009118087A1。特此将上述列出的专利文件和文献中的全部内容并入本文作为参考。
本发明进一步涉及一种组合物或油墨,其中,包含所述的氘代三芳胺衍生物或高聚物或者如上所述的混合物,以及至少一种有机溶剂。
本发明进一步提供一种从溶液中制备包含有按照本发明的氘代三芳胺衍生物或高聚物的薄膜。
用于印刷工艺时,油墨的粘度,表面张力是重要的参数。合适的油墨的表面张力参数适合于特定的基板和特定的印刷方法。
在一个优选的实施例中,按照本发明的油墨在工作温度或在25℃下的表面张力约在19dyne/cm到50dyne/cm范围;更好是在22dyne/cm到35dyne/cm范围;最好是在25dyne/cm到33dyne/cm范围。
在另一个优选的实施例中,按照本发明的油墨在工作温度或25℃下的粘度约在1cps到100cps范围;较好是在1cps到50cps范围;更好是在1.5cps到20cps范围;最好是在4.0cps到20cps范围。如此配制的组合物将适合于喷墨印刷。
粘度可以通过不同的方法调节,如通过合适的溶剂选取和油墨中功能材料的浓度。按照本发明的包含有所述地氘代三芳胺衍生物或高聚物的油墨可方便人们将印刷油墨按照所用的印刷方法在适当的范围调节。一般地,按照本发明的组合物包含的功能材料的重量比为0.3%~30wt%范围,较好的为0.5%~20wt%范围,更好的为0.5%~15wt%范围,更更好的为0.5%~10wt%范围,最好的为1%~5wt%范围。
在一些实施例中,按照本发明的油墨,所述的至少一种的有机溶剂选自基于芳族或杂芳族的溶剂,特别是脂肪族链/环取代的芳族溶剂、或芳族酮溶剂,或芳族醚溶剂。
适合本发明的有机溶剂的例子有但不限于:基于芳族或杂芳族的溶剂:对二异丙基苯、戊苯、四氢萘、环己基苯、氯萘、1,4-二甲基萘、3-异丙基联苯、对甲基异丙苯、二戊苯、三戊苯、戊基甲苯、邻二甲苯、间二甲苯、对二甲苯、邻二乙苯、间二乙苯、对二乙苯、1,2,3,4-四甲苯、1,2,3,5-四甲苯、1,2,4,5-四甲苯、丁苯、十二烷基苯、二己基苯、二丁基苯、对二异丙基苯、1-甲氧基萘、环己基苯、二甲基萘、3-异丙基联苯、对甲基异丙苯、1-甲基萘、1,2,4-三氯苯、1,3-二丙氧基苯、4,4-二氟二苯甲烷、1,2-二甲氧基-4-(1-丙烯基)苯、二苯甲烷、2-苯基吡啶、3-苯基吡啶、N-甲基二苯胺、4-异丙基联苯、a,a-二氯二苯甲烷、4-(3-苯基丙基)吡啶、苯甲酸苄酯、1,1-双(3,4-二甲基苯基)乙烷、2-异丙基萘、二苄醚等;基于酮的溶剂:1-四氢萘酮,2-四氢萘酮,2-(苯基环氧)四氢萘酮,6-(甲氧基)四氢萘酮,苯乙酮、苯丙酮、二苯甲酮、及它们的衍生物,如4-甲基苯乙酮、3-甲基苯乙酮、2-甲基苯乙酮、4-甲基苯丙酮、3-甲基苯丙酮、2-甲基苯丙酮,异佛尔酮、2,6,8-三甲基-4-壬酮、葑酮、2-壬酮、3-壬酮、5-壬酮、2-癸酮、2,5-己二酮、佛尔酮、二正戊基酮;芳族醚溶剂:3-苯氧基甲苯、丁氧基苯、苄基丁基苯、对茴香醛二甲基乙缩醛、四氢-2-苯氧基-2H-吡喃、1,2-二甲氧基-4-(1-丙烯基)苯、1,4-苯并二噁烷、1,3-二丙基苯、2,5-二甲氧基甲苯、4-乙基本乙醚、1,2,4-三甲氧基苯、4-(1-丙烯基)-1,2-二甲氧基苯、1,3-二甲氧基苯、缩水甘油基苯基醚、二苄基醚、4-叔丁基茴香醚、反式-对丙烯基茴香醚、1,2-二甲氧基苯、1-甲氧基萘、二苯醚、2-苯氧基甲醚、2-苯氧基四氢呋喃、乙基-2-萘基醚、戊醚c己醚、二辛醚、乙二醇二丁醚、二乙二醇二乙醚、二乙二醇丁基甲醚、二乙二醇二丁醚、三乙二醇二甲醚、三乙二醇乙基甲醚、三乙二醇丁基甲醚、三丙二醇二甲醚、四乙二醇二甲醚;酯溶剂:辛酸烷酯、癸二酸烷酯、硬脂酸烷酯、苯甲酸烷酯、苯乙酸烷酯、肉桂酸烷酯、草酸烷酯、马来酸烷酯、烷内酯、油酸烷酯等。
进一步,按照本发明的油墨,所述的至少一种的有机溶剂可选自:脂肪族酮,例如,2-壬酮、3-壬酮、5-壬酮、2-癸酮、2,5-己二酮、2,6,8-三甲基-4-壬酮、佛尔酮、二正戊基酮等;或脂肪族醚,例如,戊醚、己醚、二辛醚、乙二醇二丁醚、二乙二醇二乙醚、二乙二醇丁基甲醚、二乙二醇二丁醚、三乙二醇二甲醚、三乙二醇乙基甲醚、三乙二醇丁基甲醚、三丙二醇二甲醚、四乙二醇二甲醚等。
在另一些实施例中,所述的印刷油墨进一步包含有另一种有机溶剂。另一种有机溶剂的例子,包含(但不限于):甲醇、乙醇、2-甲氧基乙醇、二氯甲烷、三氯甲烷、氯苯、邻二氯苯、四氢呋喃、苯甲醚、吗啉、甲苯、邻二甲苯、间二甲苯、对二甲苯、1,4二氧杂环己烷、丙酮、 甲基乙基酮、1,2二氯乙烷、3-苯氧基甲苯、1,1,1-三氯乙烷、1,1,2,2-四氯乙烷、醋酸乙酯、醋酸丁酯、二甲基甲酰胺、二甲基乙酰胺、二甲基亚砜、四氢萘、萘烷、茚和/或它们的混合物。
在一个优选的实施方案中,按照本发明的组合物是一溶液。
在另一个优选的实施方案中,按照本发明的组合物是一悬浮液。
本发明还涉及所述组合物作为涂料或印刷油墨在制备有机电子器件时的用途,特别优选的是通过打印或涂布的制备方法。
其中,适合的打印或涂布技术包含(但不限于)喷墨打印,喷印(Nozzle Printing),活版印刷,丝网印刷,浸涂,旋转涂布,刮刀涂布,辊筒印花,扭转辊印刷,平版印刷,柔版印刷,轮转印刷,喷涂,刷涂或移印,狭缝型挤压式涂布等。首选的是喷墨印刷,狭缝型挤压式涂布,喷印刷及凹版印刷。溶液或悬浮液可以另外包含一个或多个组份例如表面活性化合物,润滑剂,润湿剂,分散剂,疏水剂,粘接剂等,用于调节粘度,成膜性能,提高附着性等。有关打印技术,及其对有关溶液的相关要求,如溶剂及浓度,粘度等,的详细信息请参见Helmut Kipphan主编的《印刷媒体手册:技术和生产方法》(Handbook of Print Media:Technologies and Production Methods),ISBN 3-540-67326-1。
基于上述氘代三芳胺衍生物,本发明还提供一种如上所述的氘代三芳胺衍生物或高聚物在有机电子器件的应用。所述的有机电子器件可选于,但不限于,有机发光二极管(OLED),有机光伏电池(OPV),有机发光电池(OLEEC),有机场效应管(OFET),有机发光场效应管,有机激光器,有机自旋电子器件,有机传感器及有机等离激元发射二极管(Organic Plasmon Emitting Diode)等,特别是OLED。本发明实施例中,优选地将所述氘代三芳胺衍生物用于OLED器件的空穴传输层中。
本发明进一步涉及一种有机电子器件,至少包含一种如上所述的氘代三芳胺衍生物或高聚物。一般的,此种有机电子器件至少包含一个阴极,一个阳极及位于阴极和阳极之间的一个功能层,其中所述的功能层中至少包含一种如上所述的氘代三芳胺衍生物或高聚物。所述的有机电子器件可选于,但不限于,有机发光二极管(OLED),有机光伏电池(OPV),有机发光电池(OLEEC),有机场效应管(OFET),有机发光场效应管,有机激光器,有机自旋电子器件,有机传感器及有机等离激元发射二极管(Organic Plasmon Emitting Diode)。
在一个特别优选的实施例中,所述的有机电子器件是电致发光器件,特别是OLED,其中包含一基片,一阳极,至少一发光层,一阴极。
基片可以是不透明或透明。一个透明的基板可以用来制造一个透明的发光元器件。例如可参见,Bulovic等Nature 1996,380,p29,和Gu等,Appl.Phys.Lett.1996,68,p2606。基片可以是刚性的或弹性的。基片可以是塑料,金属,半导体晶片或玻璃。最好是基片有一个平滑的表面。无表面缺陷的基板是特别理想的选择。在一个优选的实施例中,基片是柔性的,可选于聚合物薄膜或塑料,其玻璃化温度Tg为150℃以上,较好是超过200℃,更好是超过250°C,最好是超过300℃。合适的柔性基板的例子有聚(对苯二甲酸乙二醇酯)(PET)和聚乙二醇(2,6-萘)(PEN)。
阳极可包含一导电金属或金属氧化物,或导电聚合物。阳极可以容易地注入空穴到空穴注入层(HIL)或空穴传输层(HTL)或发光层中。在一个的实施例中,阳极的功函数和发光层中的发光体或作为HIL或HTL或电子阻挡层(EBL)的p型半导体材料的HOMO能级或价带能级的差的绝对值小于0.5eV,较好是小于0.3eV,最好是小于0.2eV。阳极材料的例子包含但不限于:Al、Cu、Au、Ag、Mg、Fe、Co、Ni、Mn、Pd、Pt、ITO、铝掺杂氧化锌(AZO)等。其他合适的阳极材料是已知的,本领域普通技术人员可容易地选择使用。阳极材料可以使用任何合适的技术沉积,如一合适的物理气相沉积法,包含射频磁控溅射,真空热蒸发,电子束(e-beam)等。在某些实施例中,阳极是图案结构化的。图案化的ITO导电基板可在市场上买到,并且可以用来制备根据本发明的器件。
阴极可包含一导电金属或金属氧化物。阴极可以容易地注入电子到EIL或ETL或直接到发光层中。在一个的实施例中,阴极的功函数和发光层中发光体或作为电子注入层(EIL)或电子传输层(ETL)或空穴阻挡层(HBL)的n型半导体材料的LUMO能级或导带能级的差的绝对值小于0.5eV,较好是小于0.3eV,最好是小于0.2eV。原则上,所有可用作OLED的阴极的材料都可能作为本发明器件的阴极材料。阴极材料的例子包含但不限于:Al、Au、Ag、Ca、Ba、Mg、LiF/Al、MgAg合金、BaF2/Al、Cu、Fe、Co、Ni、Mn、Pd、Pt、ITO等。阴极材料可以使用任何合适的技术沉积,如一合适的物理气相沉积法,包含射频磁控溅射,真空热蒸发,电子束(e-beam)等。
OLED还可以包含其他功能层,如发光层、电子注入层(EIL)、电子传输层(ETL)、空穴阻挡层(HBL)。
在一个优选的实施例中,按照本发明的电致发光器件中,其空穴传输层包含本发明的氘代三芳胺衍生物,并且通过真空蒸镀或溶液加工的方法制备而成,优选真空蒸镀。
在另一个优选的实施例中,按照本发明的电致发光器件中,其空穴传输层包含本发明的高聚物,并且通过溶液加工的方法制备而成。
按照本发明的电致发光器件,其发光波长在300到800nm之间,较好的是在350到650nm之间,更好的是在400到625nm之间。
本发明还涉及按照本发明的有机电子器件在各种电子设备中的应用,包含,但不限于,显示设备,照明设备,光源,传感器等等。
下面将结合优选实施例对本发明进行了说明,但本发明并不局限于下述实施例,应当理解,所附权利要求概括了本发明的范围在本发明构思的引导下本领域的技术人员应意识到,对本发明的各实施例所进行的一定的改变,都将被本发明的权利要求书的精神和范围所覆盖。
Figure PCTCN2016107309-appb-000042
1、氘代三芳胺衍生物及其能量结构
氘代三芳胺衍生物H-1-H-3的能级可通过量子计算得到,比如利用TD-DFT(含时密度泛函理论)通过Gaussian03W(Gaussian Inc.),具体的模拟方法可参见WO2011141110。首先用半经验方法“Ground State/Semi-empirical/Default Spin/AM1”(Charge 0/Spin Singlet)来优化分子几何结构,然后有机分子的能量结构由TD-DFT(含时密度泛函理论)方法算得“TD-SCF/DFT/Default Spin/B3PW91/6-31G/d”(Charge 0/Spin Singlet)。HOMO和LUMO能级按照下面的校准公式计算,S1和T1直接使用。
HOMO(eV)=((HOMO(Gaussian)×27.212)-0.9899)/1.1206
LUMO(eV)=((LUMO(Gaussian)×27.212)-2.0041)/1.385
其中,HOMO(G)和LUMO(G)是Gaussian 09W的直接计算结果,单位为Hartree。结果如表一所示:
表一
Figure PCTCN2016107309-appb-000043
Figure PCTCN2016107309-appb-000044
2、氘代三芳胺衍生物的合成
2.1合成实施实例1
Figure PCTCN2016107309-appb-000045
1-a的合成:
在一个干燥的双口瓶里放置4-溴三苯胺(25.84g,80mmol),9-苯基-3-硼酸咔唑(25.26g,88mmol),Pd[(pph)3]4(2.77g,2.4mmol),抽真空充氮气循环三次,然后加入320mL1,4-二氧气六环和160mL K2CO3(2M)水溶液,105℃搅拌反应12小时,冷却到室温,用二氯甲烷萃取,浓缩除去二氧六环,加入大量二氯甲烷过硅胶,滤液浓缩,然后用二氯甲烷和石油醚的混合溶剂重结晶,最后得到白色固体1-a,产率80%。
1-b的合成:
在一个干燥的单口瓶里放置1-a(29.16g,60mmol),然后加入1400mL干燥的DMF溶液将其溶解,在冰浴下,往混合液中逐滴加入NBS的DMF溶液(10.89g,61.2mmol),滴 加完毕,继续冰浴反应2小时,然后升至室温反应1小时,反应结束加入大量的水,析出白色固体,然后抽滤,将滤饼用二氯甲烷和石油醚的混合溶剂重结晶得到白色固体1-b,产率90%。
1-c的合成:
在一个干燥的双口瓶里放置1-b(14.15g,25mmol),9-苯基-2-硼酸咔唑(8.61g,30mmol),四-(三苯基膦)-钯(0.865g,0.75mmol)抽真空充氮气循环三次,然后加入100mL1,4-二氧气六环和50mLK2CO3(2M)水溶液,90℃搅拌反应12小时,冷却到室温,用二氯甲烷萃取,浓缩除去二氧六环,加入大量二氯甲烷过硅胶,滤液浓缩,然后用二氯甲烷:石油醚=1:5过柱纯化,得到浅黄色固体1-c,产率75%。
1-d的合成:
在一个干燥的单口瓶里放置1-c(14.54g,20mmol),然后加入1500mL干燥的DMF溶液将其溶解,在冰浴下,往混合液中逐滴加入NBS的DMF溶液(3.74g,21mmol),滴加完毕,然后升至室温反应4小时,反应结束加入大量的水,析出白色固体,然后抽滤,将滤饼用二氯甲烷和乙醇的混合溶剂重结晶得到白色固体1-d,产率90%。
化合物H-1的合成:
在一个干燥的双口瓶里放置1-d(8g,10mmol),抽真空充氮气循环三次,加入150mL干燥的THF溶液将其溶解,然后在-78℃缓慢滴加n-BuLi(5mL,12.5mmol,2.5M),保温反应2小时,然后往混合液中逐滴加入氘水(3.2mL,160mmol),升至室温反应1小时,反应结束后加入大量的水,用二氯甲烷萃取,有机相浓缩,然后用二氯甲烷:石油醚=1:3过柱纯化得到白色固体H-1,产率90%。
2.2合成实施实例2
Figure PCTCN2016107309-appb-000046
2-a的合成:
在一个干燥的双口瓶里放置N-苯基联苯胺(2.45g,10mmol),2-溴芴(2.69g,11mmol),Pd2(dba)3(280mg,0.3mmol),叔丁醇钠(2g,20mmol),三叔丁基磷(1.8mL,0.9mmol),然后加入200mL甲苯,100℃搅拌反应12小时,浓缩除去甲苯,然后加水,用二氯甲烷萃取,滤液浓缩,然后用二氯甲烷:石油醚=1:2过柱纯化,得到白色固体2-a,产率90%。
2-b的合成:
在一个干燥的单口瓶里放置2-a(4.37g,10mmol),然后加入150mL二氯甲烷溶液将其溶解,在冰浴下,往混合液中逐滴加入NBS的二氯甲烷溶液(1.8g,10mmol),滴加完毕,然后升至室温反应12小时,反应结束,加水萃取,浓缩,用二氯甲烷和石油醚的混合溶剂重结晶得到白色固体2-b,产率90%。
2-c的合成:
在一个干燥的双口瓶里放置2-b(50g,96.5mmol),联硼酸频那醇酯(36.63g,144.75mmol),Pd(dppf)2Cl2(2.13g,2.89mmol),醋酸钾(94.57g,965mmol),抽真空充氮气循环三次,然后加入1500mL1,4-二氧气六环,110℃搅拌反应12小时,浓缩除去二氧六环,然后加水,用二氯甲烷萃取,滤液浓缩,然后用二氯甲烷:石油醚=1:5过柱纯化,得到浅黄色固体2-c,产率75%。
2-d的合成:
在一个干燥的双口瓶里放置3,6-二溴-9-苯基咔唑(8g,50mmol),抽真空充氮气循环三次,加入450mL四氢呋喃,然后在-78℃缓慢滴加n-BuLi(24mL,60mmol,2.5M),保温反应2小时,然后往混合液中逐滴加入氘水(15mL,750mmol),升至室温反应1小时,反应结束后加入大量的水,用二氯甲烷萃取,有机相浓缩,然后用二氯甲烷:石油醚=1:3过柱纯化得到白色固体2-d,产率60%。
化合物H-2的合成:
在一个干燥的双口瓶里放置2-c(6.2g,11mmol),2-d(3.2g,10mmol),Pd[(pph)3]4(0.4g,0.3mmol),碳酸钾(14g,100mmol),抽真空充氮气循环三次,然后加入10mL1,4-二氧气六环和5mL水的混合溶液,90℃搅拌反应12小时,浓缩除去二氧六环,然后加水,用二氯甲烷萃取,滤液浓缩,然后用二氯甲烷:石油醚=1:5过柱纯化,得到浅黄色固体H-2,产率80%。
2.3合成实施实例3
Figure PCTCN2016107309-appb-000047
3-a的合成:
在一个干燥的双口瓶里放置N-苯基联苯胺(2.45g,10mmol),2-溴螺芴(4.2g,11mmol),Pd2(dba)3(280mg,0.3mmol),叔丁醇钠(2g,20mmol),三叔丁基磷(1.8mL,0.9mmol),然后加入200mL甲苯,100℃搅拌反应12小时,浓缩除去甲苯,然后加水,用二氯甲烷萃取,滤液浓缩,然后用二氯甲烷:石油醚=1:2过柱纯化,得到白色固体3-a,产率90%。
3-b的合成:
在一个干燥的单口瓶里放置3-a(5.59g,10mmol),然后加入150mL二氯甲烷溶液将其溶解,在冰浴下,往混合液中逐滴加入NBS的二氯甲烷溶液(1.8g,10mmol),滴加完毕,然后升至室温反应12小时,反应结束,加水萃取,浓缩,用二氯甲烷和石油醚的混合溶剂重结晶得到白色固体3-b,产率90%。
3-c的合成:
在一个干燥的双口瓶里放置2-d(3.23g,10mmol),联硼酸频那醇酯(3.8g,15mmol),Pd(dppf)2Cl2(0.22g,0.3mmol),醋酸钾(10g,100mmol),抽真空充氮气循环三次,然后加入100mL 1,4-二氧气六环,105℃搅拌反应12小时,浓缩除去二氧六环,然后加水,用二氯甲烷萃取,滤液浓缩,然后用二氯甲烷:石油醚=1:5过柱纯化,得到浅黄色固体3-c,产率75%。
化合物H-3的合成:
在一个干燥的双口瓶里放置3-c(4.0g,11mmol),3-d(6.37g,10mmol),Pd[(pph)3]4(0.4g,0.3mmol),碳酸钾(14g,100mmol),抽真空充氮气循环三次,然后加入10mL1,4-二氧气六环和5mL水的混合溶液,90℃搅拌反应12小时,浓缩除去二氧六环,然后加水,用二氯甲烷萃取,滤液浓缩,然后用二氯甲烷:石油醚=1:5过柱纯化,得到浅黄色固体H-3,产率80%。
3、OLED器件的制备和表征:
在本实施例中,用化合物H-1,H-2,H-3,Ref-1,Ref-2,Ref-3作为空穴传输材料,HATCN作为空穴注入材料,Ir(ppy)3作为发光材料,PDC作为主体材料,B3PYMPM作为电子传输材料,构造成器件结构为ITO/HATCN/空穴传输材料/PDC:Ir(ppy)3(15%)/B3PYMPM/LiF/Al的电致发光器件。
Figure PCTCN2016107309-appb-000048
上述材料HATCN、PDC、B3PYMPM、Ir(ppy)3的合成方法均为现有技术,详见现有技术中的参考文献,在此不再赘述。
下面通过具体实施例来详细说明采用上述的OLED器件的制备过程,OLED器件(如表2)的结构为:ITO/HATCN/空穴传输材料/PDC:Ir(ppy)3(15%)/B3PYMPM/LiF/Al,制备步骤如下:
a、ITO(铟锡氧化物)导电玻璃基片的清洗:使用各种溶剂(例如氯仿、丙酮或异丙醇中的一种或几种)清洗,然后进行紫外臭氧处理;
b、HATCN(5nm),空穴传输材料(40nm),PDC:15%Ir(ppy)3(15nm),B3PYMPM(40nm),LiF(1nm),Al(100nm)在高真空(1×10-6毫巴)中热蒸镀而成;
c、封装:器件在氮气手套箱中用紫外线硬化树脂封装。
表2
OLED器件 空穴传输材料
OLED1 H-1
OLED2 H-2
OLED3 H-3
Ref-OLED1 Ref-1
Ref-OLED2 Ref-2
Ref-OLED3 Ref-3
各OLED器件的电流电压(J-V)特性通过表征设备来表征,同时记录重要的参数如效率,寿命及外部量子效率。经检测,OLED1的发光效率和Ref-OELD2相似,但寿命是Ref-OELD2的2倍以上,OLED2的发光效率与Ref-OLED1、Ref-OLED2相似,而寿命是3倍,OLED3的发光效率和Ref-OELD3相似,但寿命是Ref-OELD3的1.5倍以上。可见,采用本发明的有机化合物制备的OLED器件,其寿命得到大大提高。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (12)

  1. 一种如下通式(I)表示的氘代三芳胺类衍生物:
    Figure PCTCN2016107309-appb-100001
    其中,Ar1在每一次出现中,相同或不同的选自未被取代或是R1取代的芳香烃或是杂芳香环烃体系;
    R1选自H,F,Cl,Br,I,D,CN,NO2,CF3,B(OR2)2,Si(R2)3,直链烷烃,烷烃醚,含1~10个碳原子烷烃硫醚或支链烷烃或环烷烃,每一个基团均可被一个或多个活性基团R2取代,且一个或多个非相邻的亚甲基可以被以下基团替换:R2C=CR2,C=C,Si(R2)2,Ge(R2)2,Sn(R2)2,C=O,C=S,C=Se,C=N(R2),O,S,-COO-或CONR2,其中一个或多个H原子可被D,F,Cl,Br,I,CN或N2所替换,或者被包含一个或多个活性基团R2、一个芳香基团或者一个杂芳香环取代的芳香胺替换,或者被取代或未被取代的咔唑替换;
    R2在每一次出现中,相同或不同的是H,D,含1~10个碳原子脂肪族烷烃,芳香碳氢化合物,含5~10个环原子的被取代或者未被取代的芳香环或杂芳香基团;
    x为数字0-3中的任一个,y为数字0-4中的任一个,z为数字0-5中的任一个;
    X1和X2分别独立的表示C-D或者C-R1,并且它们中至少有一个为C-D。
    L为连接基团,选自单键或B1至B2中的任一个:
    Figure PCTCN2016107309-appb-100002
    其中,y为数字0-4中的任一个。
  2. 根据权利要求1的氘代三芳胺衍生物,其特征在于,选自如下通式:
    Figure PCTCN2016107309-appb-100003
    Figure PCTCN2016107309-appb-100004
    Figure PCTCN2016107309-appb-100005
    其中,x为数字0-3中的任一个,y为数字0-4中的任一个,z为数字0-5中的任一个。
  3. 根据权利要求2的氘代三芳胺衍生物,其特征在于,选自如下通式:
    Figure PCTCN2016107309-appb-100006
  4. 根据权利要求1至3中任一个所述的氘代三芳胺衍生物,其特征在于,通式(I),(I-1)-(I-18)中的Ar1为未被取代或是取代的芳香环或杂芳香环单元,在多次出现时相互独立的选自通式(C1)至(C36)中的任一个:
    Figure PCTCN2016107309-appb-100007
    Figure PCTCN2016107309-appb-100008
    Figure PCTCN2016107309-appb-100009
    其中R3选自-H,-F,-Cl,Br,I,-D,-CN,-NO2,-CF3,B(OR2)2,Si(R2)3,直链烷烃,烷烃醚,含1~10个碳原子烷烃硫醚或支链烷烃或环烷烃,含有6~10个碳原子的芳基中的任一个;
    u为数字0-2中的任一个,v为数字0-3中的任一个,w为数字0-4中的任一个,t为数字0-5中的任一个。
  5. 根据权利要求4所述的氘代三芳胺衍生物,其特征在于,通式(I),(I-1)-(I-18)中的Ar1相互独立的选自:
    Figure PCTCN2016107309-appb-100010
  6. 一种高聚物,其特征在于,包含一个重复单元,所述重复单元中包含有一个如通式(I)表示的结构单元。
  7. 一种混合物,其特征在于,包含一种如权利要求1至5任一项所述的氘代三芳胺衍生物或如权利要求6所述的高聚物,及至少一种有机功能材料;所述有机功能材料可选自空穴注入材料,空穴传输材料,电子传输材料,电子注入材料,电子阻挡材料,空穴阻挡材料,发光材料,主体材料和有机染料。
  8. 一种组合物,其特征在于,包含如权利要求1至5任一项所述的氘代三芳胺衍生物或如权利要求6所述的高聚物,及至少一种有机溶剂。
  9. 一种根据权利要求1至5任一项所述的氘代三芳胺衍生物或如权利要求6所述的高聚物在有机电子器件中的应用。
  10. 一种有机电子器件,其特征在于,至少包含一种如权利要求1至5任一项所述的氘代三芳胺衍生物或如权利要求6所述的高聚物或其混合物。
  11. 根据权利要求8所述的有机电子器件,其特征在于,所述的有机电子器件为有机发光二极管、有机光伏电池、有机发光电池、有机场效应管、有机发光场效应管、有机激光器,有机自旋电子器件,有机传感器及有机等离激元发射二极管。
  12. 根据权利要求11或12所述的有机电子器件,其特征在于,包含有一空穴注入层或一空穴传输层,所述的空穴注入层或穴传输层包含有一种如权利要求1至5任一项所述的氘代三芳胺衍生物或如权利要求6所述的高聚物。
PCT/CN2016/107309 2016-01-07 2016-11-25 氘代三芳胺衍生物及其在电子器件中的应用 WO2017118238A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610013188 2016-01-07
CN201610013188.2 2016-01-07

Publications (1)

Publication Number Publication Date
WO2017118238A1 true WO2017118238A1 (zh) 2017-07-13

Family

ID=59273235

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/107309 WO2017118238A1 (zh) 2016-01-07 2016-11-25 氘代三芳胺衍生物及其在电子器件中的应用

Country Status (1)

Country Link
WO (1) WO2017118238A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108912102A (zh) * 2018-07-27 2018-11-30 吉林奥来德光电材料股份有限公司 一种芳胺衍生物、其制备方法与应用
US20200335768A1 (en) * 2018-03-28 2020-10-22 Ngk Insulators, Ltd. Lithium secondary battery and card with built-in battery
CN111808013A (zh) * 2020-08-19 2020-10-23 吉林奥来德光电材料股份有限公司 一种发光辅助材料、其制备方法及有机电致发光装置
CN112300055A (zh) * 2020-10-28 2021-02-02 陕西莱特光电材料股份有限公司 含氮化合物、电子元件和电子装置
CN113072563A (zh) * 2021-03-31 2021-07-06 广州追光科技有限公司 苯并三氮唑氘代衍生物及其在有机电子器件的应用
CN115057849A (zh) * 2022-06-24 2022-09-16 长春海谱润斯科技股份有限公司 一种三芳胺类有机化合物及其有机发光器件
KR20230078941A (ko) 2020-09-30 2023-06-05 이데미쓰 고산 가부시키가이샤 화합물, 유기 전기발광 소자용 재료, 유기 전기발광 소자 및 전자 기기
CN116262745A (zh) * 2023-03-17 2023-06-16 烟台先进材料与绿色制造山东省实验室 一种1,2,4-三氮唑类化合物及其制备方法、电致发光器件
WO2024016687A1 (zh) * 2022-07-20 2024-01-25 陕西莱特光电材料股份有限公司 含氮化合物和电子元件及电子装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101896574A (zh) * 2007-11-08 2010-11-24 Lg化学株式会社 新型化合物和使用该化合物的有机发光器件
KR20110041727A (ko) * 2009-10-16 2011-04-22 에스에프씨 주식회사 카바졸 유도체 및 이를 이용한 유기전계발광소자
WO2012043996A2 (ko) * 2010-09-30 2012-04-05 덕산하이메탈(주) 플루오렌에 아민유도체가 치환된 화합물 및 이를 이용한 유기전기소자, 그 단말
WO2012177006A2 (ko) * 2011-06-22 2012-12-27 덕산하이메탈(주) 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
CN103119125A (zh) * 2010-07-21 2013-05-22 罗门哈斯电子材料韩国有限公司 新有机电致发光化合物和包含该化合物的有机电致发光器件
KR20130093195A (ko) * 2012-02-14 2013-08-22 덕산하이메탈(주) 오원자 헤테로 고리를 포함하는 유기전기소자용 화합물, 이를 포함하는 유기전기소자 및 그 전자 장치
KR20130096334A (ko) * 2011-06-24 2013-08-30 덕산하이메탈(주) 유기전기소자, 및 유기전기소자용 화합물
KR20130102428A (ko) * 2012-03-07 2013-09-17 덕산하이메탈(주) 아민 유도체를 포함하는 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2015130069A1 (ko) * 2014-02-27 2015-09-03 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101896574A (zh) * 2007-11-08 2010-11-24 Lg化学株式会社 新型化合物和使用该化合物的有机发光器件
KR20110041727A (ko) * 2009-10-16 2011-04-22 에스에프씨 주식회사 카바졸 유도체 및 이를 이용한 유기전계발광소자
CN103119125A (zh) * 2010-07-21 2013-05-22 罗门哈斯电子材料韩国有限公司 新有机电致发光化合物和包含该化合物的有机电致发光器件
WO2012043996A2 (ko) * 2010-09-30 2012-04-05 덕산하이메탈(주) 플루오렌에 아민유도체가 치환된 화합물 및 이를 이용한 유기전기소자, 그 단말
WO2012177006A2 (ko) * 2011-06-22 2012-12-27 덕산하이메탈(주) 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR20130096334A (ko) * 2011-06-24 2013-08-30 덕산하이메탈(주) 유기전기소자, 및 유기전기소자용 화합물
KR20130093195A (ko) * 2012-02-14 2013-08-22 덕산하이메탈(주) 오원자 헤테로 고리를 포함하는 유기전기소자용 화합물, 이를 포함하는 유기전기소자 및 그 전자 장치
KR20130102428A (ko) * 2012-03-07 2013-09-17 덕산하이메탈(주) 아민 유도체를 포함하는 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2015130069A1 (ko) * 2014-02-27 2015-09-03 덕산네오룩스 주식회사 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11658280B2 (en) * 2018-03-28 2023-05-23 Ngk Insulators, Ltd. Lithium secondary battery and card with built-in battery
US20200335768A1 (en) * 2018-03-28 2020-10-22 Ngk Insulators, Ltd. Lithium secondary battery and card with built-in battery
CN108912102A (zh) * 2018-07-27 2018-11-30 吉林奥来德光电材料股份有限公司 一种芳胺衍生物、其制备方法与应用
CN111808013A (zh) * 2020-08-19 2020-10-23 吉林奥来德光电材料股份有限公司 一种发光辅助材料、其制备方法及有机电致发光装置
KR20230078941A (ko) 2020-09-30 2023-06-05 이데미쓰 고산 가부시키가이샤 화합물, 유기 전기발광 소자용 재료, 유기 전기발광 소자 및 전자 기기
CN112300055A (zh) * 2020-10-28 2021-02-02 陕西莱特光电材料股份有限公司 含氮化合物、电子元件和电子装置
CN112300055B (zh) * 2020-10-28 2023-02-10 陕西莱特光电材料股份有限公司 含氮化合物、电子元件和电子装置
CN113072563B (zh) * 2021-03-31 2022-05-31 广州追光科技有限公司 苯并三氮唑氘代衍生物及其在有机电子器件的应用
CN113072563A (zh) * 2021-03-31 2021-07-06 广州追光科技有限公司 苯并三氮唑氘代衍生物及其在有机电子器件的应用
CN115057849A (zh) * 2022-06-24 2022-09-16 长春海谱润斯科技股份有限公司 一种三芳胺类有机化合物及其有机发光器件
CN115057849B (zh) * 2022-06-24 2024-05-17 长春海谱润斯科技股份有限公司 一种三芳胺类有机化合物及其有机发光器件
WO2024016687A1 (zh) * 2022-07-20 2024-01-25 陕西莱特光电材料股份有限公司 含氮化合物和电子元件及电子装置
CN116262745A (zh) * 2023-03-17 2023-06-16 烟台先进材料与绿色制造山东省实验室 一种1,2,4-三氮唑类化合物及其制备方法、电致发光器件

Similar Documents

Publication Publication Date Title
CN108137618B (zh) D-a型化合物及其应用
CN110746429B (zh) 含金刚烷的化合物、高聚物、混合物、组合物及电子器件
CN111278795B (zh) 有机混合物及其在有机电子器件中的应用
WO2017092495A1 (zh) 热激发延迟荧光材料、高聚物、混合物、组合物以及有机电子器件
CN107001380B (zh) 化合物、包含其的混合物、组合物和有机电子器件
WO2017118238A1 (zh) 氘代三芳胺衍生物及其在电子器件中的应用
CN110746409A (zh) 有机化合物、混合物、组合物及电子器件和应用
CN108137634B (zh) 一种金属有机配合物及其在电子器件中的应用
WO2016086885A1 (zh) 氘化的有机化合物、包含该化合物的混合物、组合物及有机电子器件
WO2018095390A1 (zh) 有机化合物及其应用、有机混合物、有机电子器件
WO2016091219A1 (zh) 有机化合物、包含其的混合物、组合物和有机电子器件
WO2018095392A1 (zh) 有机混合物、组合物以及有机电子器件
CN109970660B (zh) 含稠杂环的螺芴类有机化合物及其应用
WO2017118137A1 (zh) 咔唑衍生物、高聚物、混合物、组合物、有机电子器件及其应用
CN109792001B (zh) 有机化合物、有机混合物、有机电子器件
CN108137615B (zh) 含砜基稠杂环化合物及其应用
CN108137583B (zh) 有机化合物及其应用
WO2019128599A1 (zh) 含氮杂环化合物、高聚物、混合物、组合物及其用途
WO2017092481A1 (zh) 金属有机配合物、高聚物、混合物、组合物以及有机电子器件
WO2019114764A1 (zh) 一种有机金属配合物,包含其的聚合物、混合物和组合物,及其在电子器件中的应用
WO2018099432A1 (zh) 稠环化合物及制备方法和应用
CN110734396B (zh) 有机化合物、高聚物、混合物、组合物及有机电子器件
WO2017118155A1 (zh) 一种有机光电材料及其用途
CN111247133A (zh) 咔唑三苯有机化合物、高聚物、混合物、组合物及其应用
WO2019114609A1 (zh) 一种金属有机配合物及其在有机电子器件中的应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16883364

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16883364

Country of ref document: EP

Kind code of ref document: A1