WO2016091219A1 - 有机化合物、包含其的混合物、组合物和有机电子器件 - Google Patents

有机化合物、包含其的混合物、组合物和有机电子器件 Download PDF

Info

Publication number
WO2016091219A1
WO2016091219A1 PCT/CN2015/097191 CN2015097191W WO2016091219A1 WO 2016091219 A1 WO2016091219 A1 WO 2016091219A1 CN 2015097191 W CN2015097191 W CN 2015097191W WO 2016091219 A1 WO2016091219 A1 WO 2016091219A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic
organic compound
group
aromatic
groups
Prior art date
Application number
PCT/CN2015/097191
Other languages
English (en)
French (fr)
Inventor
潘君友
黄宏
Original Assignee
广州华睿光电材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州华睿光电材料有限公司 filed Critical 广州华睿光电材料有限公司
Priority to CN201580067459.6A priority Critical patent/CN107004779B/zh
Priority to US15/535,026 priority patent/US10510967B2/en
Publication of WO2016091219A1 publication Critical patent/WO2016091219A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/20Delayed fluorescence emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/30Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the present invention relates to the field of electroluminescent materials, and more particularly to an organic compound having thermally excited delayed fluorescence, a mixture thereof, a composition and an organic electronic device.
  • Organic semiconductor materials have diverse versatility in synthesis, relatively low manufacturing costs, and excellent optical and electrical properties.
  • Organic light-emitting diodes (OLEDs) have great potential for applications in optoelectronic devices such as flat panel displays and illumination.
  • Organic light-emitting diodes using fluorescent materials have high reliability, but their internal electroluminescence quantum under electrical excitation. The efficiency is limited to 25% because the branch ratio of the singlet excited state to the triplet excited state of the exciton is 1:3.
  • organic light-emitting diodes using phosphorescent materials have achieved nearly 100% internal electroluminescence quantum efficiency.
  • the Roll-off effect that is, the luminous efficiency rapidly decreases with increasing current or brightness, which is particularly disadvantageous for high brightness applications.
  • an object of the present invention is to provide an organic compound, a composition comprising the same, an organic electronic device and an application thereof, aiming at solving the high cost and high brightness efficiency of the existing electrophosphorescent luminescent material.
  • an organic compound which may comprise a structural unit represented by the following formula (1).
  • X and Y represent a double bridging group
  • Z represents a triple bridging group
  • Ar 1 to Ar 5 represent different aromatic, heteroaromatic or non-aromatic ring systems.
  • a mixture comprising the organic compound as described above, and at least one organic functional material selected from the group consisting of a hole injecting material, a hole transporting material, and an electron transporting Any one or combination of materials, electron injecting materials, electron blocking materials, hole blocking materials, illuminants, host materials.
  • composition which may comprise an organic compound as described above, and at least one organic solvent.
  • an organic electronic device comprising at least one organic compound as described above.
  • the organic compound of the present invention may contain three aromatic ring or heteroaromatic ring conjugated units having thermal excitation delayed fluorescence luminescence (TADF) characteristics, and ⁇ (S 1 -T 1 ) ⁇ 0.30 eV, while The highest occupied orbit (HOMO) overlaps with the lowest unoccupied orbital (LUMO) electron cloud distribution, resulting in a higher resonance factor (f), which is in the range of 0.001 to 2.5.
  • the organic compound according to the present invention can be used as a TADF luminescent material, and by blending with a suitable host material, it can improve the luminous efficiency and lifetime of the electroluminescent device, and provides a manufacturing cost, high efficiency, long life, and low rolling. A solution for falling light-emitting devices.
  • an organic compound and its use in an organic electroluminescent device are provided.
  • an organic electroluminescent device is provided.
  • Ar 1 , Ar 2 , Ar 3 , Ar 4 or Ar 5 are independently or differently selected from aromatic, heteroaromatic or non-aromatic ring systems having 2 to 20 carbon atoms in each occurrence, which may Without being substituted or optionally substituted by one or more groups R 1 , the groups R 1 may be the same or different in each occurrence.
  • n 1, or 2, or 3, or 4.
  • Z may be independently or differently selected from the group consisting of triple bridging groups which may be bonded to Ar 1 or Ar 2 or Ar 5 as a single bond or a double bond.
  • At least one of X and Z is not equal to Y.
  • R 1 may be independently or differently selected from -H, -F, -Cl, Br, I, -D, -CN, -NO 2 , -CF 3 , B(OR 2 ) 2 in each occurrence.
  • Si(R 2 ) 3 a linear alkane, an alkane ether, an alkane sulfide having 1 to 10 carbon atoms, a branched alkane, a cycloalkane, an alkane ether group having 3 to 10 carbon atoms.
  • One or more H atoms in R 1 may be replaced by D, F, Cl, Br, I, CN, or N 2 , or may contain one or more active R 2 , or an aromatic group and a heteroaromatic ring.
  • the substituted aromatic amine is selected or replaced by an optionally substituted or unsubstituted carbazole.
  • R 2 in each occurrence, independently or differently selected from H, D, may contain aliphatic alkanes of 1 to 10 carbon atoms, aromatic hydrocarbons, 5 to 10 carbon atoms optionally substituted or not Substituted aromatic or heteroaromatic groups.
  • the dotted line in the structural formula represents a bond of an adjacent monomer in the organic compound.
  • Ar 1 -Ar 5 are independently or differently selected in each occurrence from an aromatic ring having 2 to 20 carbon atoms which may be unsubstituted or optionally substituted by R 1 Or a heteroaromatic ring.
  • Z is independently or differently selected from the group consisting of a triple bridging group.
  • Z can be selected from bridging groups comprising the following structural formula:
  • R 3 , R 4 and R 5 may be the same as the definition of R 1 described in claim 1, and the dotted line indicated by the above group represents a bond to the structural units Ar 1 , Ar 2 , Ar 5 .
  • organic compound provided by the present invention, it may comprise a unit of the following structural formulas (2), (3), (4), (5), (6).
  • the dotted line indicates the covalent bond connecting the two groups, and all other symbols are as defined for the symbols in the above formula (1).
  • the aromatic ring system may contain from 5 to 10 carbon atoms in the ring system, and the heteroaromatic ring system may contain from 1 to 10 carbon atoms and at least one hetero atom in the ring system, provided that the carbon atoms and impurities are present.
  • the total number of atoms is at least 4.
  • the hetero atom may be preferably selected from Si, N, P, O, S and/or Ge, particularly preferably from Si, N, P, O and/or S.
  • an aromatic or heteroaromatic ring system may include not only aromatic or heteroaromatic systems, but also multiple aryl or heteroaryl groups may also be interrupted by short non-aromatic units ( ⁇ 10).
  • non-H atoms preferably less than 5% of non-H atoms, such as C, N or O atoms.
  • systems such as 9,9'-spirobifluorene, 9,9-diarylfluorene, triarylamine, diaryl ether, etc., are equally considered to be aromatic ring systems for the purposes of the present invention.
  • non-aromatic ring systems may contain from 1 to 10, preferably from 1 to 3, carbon atoms in the ring system, and include not only saturated but also partially unsaturated cyclic systems which may be unsubstituted or single Or a plurality of groups R 1 optionally substituted, said groups R 1 being the same or different in each occurrence, and possibly also containing one or more heteroatoms, preferably Si, N, P, O, S and/ Or Ge, particularly preferred from Si, N, P, O and/or S.
  • groups R 1 may be, for example, but not limited to, a cyclohexyl- or piperidine-like system, or a cyclooctadiene-like ring system.
  • the term also applies to fused non-aromatic ring systems.
  • the H atom or the bridging group CH 2 group on NH may be optionally substituted by an R 1 group, and R 1 may be selected from (1) C1 to C10 alkyl groups, particularly preferably as follows Group: methyl, ethyl, n-propyl, isopropyl, cyclopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, cyclobutyl, 2-methylbutyl, positive Pentyl, n-hexyl, cyclohexyl, n-heptyl, cycloheptyl, n-octyl, cyclooctyl, 2-ethylhexyl, trifluoromethyl, pentafluoromethyl, 2,2,2-trifluoroethyl Base, vinyl, propenyl, butenyl, pentenyl, cyclopentenyl, hexenyl,
  • substitution may be linked to an aromatic or heteroaromatic ring at any desired position, and particularly preferably refers to the following groups: benzene, naphthalene, anthracene, perylene, dihydroanthracene, quinone, fluorene, fluoranthene, butyl , pentacene, benzopyrene, furan, benzofuran, isobenzofuran, dibenzofuran, thiophene, benzothiophene, isobenzothiophene, thiopurine, pyrrole, pyrene, isoindole, carbazole, Pyridine, quinoline, isoquinoline, acridine, phenanthridine, benzo-5,6-quinoline, benzo-6,7-quinoline, benzo-7,8-quinoline, phenothiazine, phenanthrene Oxazine, pyrazole, oxazole, imidazole, benzimid
  • aromatic and heteroaromatic ring systems are considered to be especially in addition to the above-mentioned aryl and heteroaryl groups, and may also refer to biphenylene, linoleylene, anthracene, stilbene, and bismuth. Hydrogen phenanthrene, tetrahydroanthracene and cis or trans hydrazine.
  • the heteroaromatic unit is linked, and particularly preferably a direct linkage and a double bond.
  • Aromatic, heteroaromatic or non-aromatic ring systems which may be unsubstituted or optionally substituted by one or two R 1 groups.
  • the preferred aryl or heteroaryl group is selected from the group consisting of benzene, naphthalene, anthracene, phenanthrene, pyridine, perylene or thiophene.
  • Ar 1 to Ar 3 may comprise a structural formula, each of which may be optionally substituted by one or two groups R 1 .
  • Ar 1 to Ar 3 are both phenyl groups, Can have the following formula:
  • the compound of Formula 1, wherein Ar 4 , Ar 5 , when present multiple times may comprise the following structural units, or a combination thereof, identically or differently:
  • n 1 or 2 or 3 or 4.
  • the compounds according to the invention facilitate the obtaining of thermally excited delayed fluorescent TADF properties.
  • thermal excitation delayed fluorescent TADF material see Adachi et al., Nature Vol 492, 234, (2012)
  • TADF materials are obtained by electron donating (Donor) to electron-deficient or acceptor groups, i.e., having a distinct DA structure.
  • the compound according to the invention, wherein the compound may have ⁇ (S 1 -T 1 ) ⁇ 0.30 eV, more preferably ⁇ 0.25 eV, more preferably ⁇ 0.20 eV, most preferably ⁇ 0.10 eV.
  • the compounds according to the invention may not have a distinct D-A structure, the HOMO, LUMO orbitals may at least partially overlap, more preferably most overlap, and most preferably completely overlap.
  • At least one may comprise an electron-donating group, and/or at least one may comprise an electron-withdrawing group.
  • the electron donating group may comprise the following groups:
  • the electron withdrawing group may be selected from F, cyano or contain the following groups:
  • n may be an integer from 1 to 3;
  • X 1 -X 8 may be selected from CR 1 or N, and at least one may be N, wherein R 1 may be selected from the group consisting of hydrogen, alkyl, alkane Oxyl, amino, alkene, alkyne, aralkyl, heteroalkyl, aryl and heteroaryl.
  • small molecule refers to a molecule that is not a polymer, oligomer, dendrimer, or blend. In particular, there are no repeating structures in small molecules.
  • the molecular weight of the small molecule may be ⁇ 4000 g/mol, more preferably ⁇ 3000 g/mol, most preferably ⁇ 2000 g/mol.
  • the "polymer” referred to in the present application that is, the polymer, includes a homopolymer, a copolymer, and a block copolymer. Also in the present invention, the polymer also includes a dendrimer.
  • a dendrimer For the synthesis and application of the tree, see [Dendrimers and Dendrons, Wiley-VCH Verlag GmbH & Co. KGaA, 2002, Ed. George R. Newkome, Charles. N. Moorefield, Fritz Vogtle.].
  • conjugated polymer is a polymer whose backbone is mainly composed of sp 2 hybrid orbitals of C atoms. Famous examples are, but not limited to: Polyacetylene and poly(phenylene vinylene), the C atom in the main chain may also be optionally substituted by other non-C atoms, and when the sp 2 hybridization in the main chain is interrupted by some natural defects, It is considered to be a conjugated polymer. Further, in the present invention, the conjugated polymer also includes an aryl amine, an aryl phosphine and other heteroarmotics, and an organometallic complexes in the main chain. Wait.
  • the compound according to the invention is a small molecular material having a molecular weight of ⁇ 4000 g/mol, more preferably ⁇ 3000 g/mol, more preferably ⁇ 2500 g/mol, most preferably ⁇ 2000 g/mol.
  • the structural unit of the formula (2a), (3a), (4a), (5a), (6a) may be suitable for various functions in the organic small molecule compound depending on the substitution pattern. Therefore, they are preferably used as the main skeleton of the small molecule compound or as an illuminant. In particular, it is described by substituents X and Y which compounds are particularly suitable for which functions.
  • the substituent R 1 has an influence on the electronic properties of the units of the formulae (2a), (3a), (4a), (5a) and (6a).
  • Examples of preferred units of the formulae (2a), (3a), (4a), (5a), (6a) are the following structures, but are not limited thereto, in which the linkages in the small molecule compounds are in each case by a dotted line Key representation. These structures can be optionally substituted at all possible points of substitution. However, for reasons of clarity, no possible substituents are shown.
  • the invention further relates to a mixture which may comprise, for example, one of the abovementioned organic compounds, and may further comprise at least one other organic functional material.
  • the organic functional material may be selected from the group consisting of HIM, HTM, ETM, EIM, EBM, HBM, Emitter, and Host. Some of the functional materials are described in more detail below (but are not limited to this).
  • HTM used in the compounds of the present invention is sometimes also referred to as a p-type organic semiconductor material.
  • Suitable HIM/HTM materials may optionally comprise compounds having the following structural units: phthalocyanine, porphyrin, amine, aromatic amine, biphenyl triarylamine, thiophene, and thiophene such as dithienothiophene and thiophene, pyrrole, aniline, Carbazole, azepine and azepine, and their derivatives.
  • HIMs also include fluorocarbon-containing polymers; conductively doped polymers; conductive polymers such as PEDOT/PSS; self-assembling monomers such as compounds containing phosphonic acid and silane derivatives; , such as MoOx; metal complexes, and cross-linking Compounds, etc.
  • cyclic aromatic amine-derived compounds useful as HIM or HTM include, but are not limited to, the following general structures:
  • each of Ar 1 to Ar 9 may be independently selected from a cyclic aromatic hydrocarbon group such as benzene, biphenyl, triphenyl, benzo, naphthalene, anthracene, phenalrene, phenanthrene, anthracene, anthracene, pyrene, anthracene, anthracene Aromatic heterocyclic groups such as dibenzothiophene, dibenzofuran, furan, thiophene, benzofuran, benzothiophene, oxazole, pyrazole, imidazole, triazole, isoxazole, thiazole, dioxin Azole, triazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, oxazine, oxathiazole, dioxazin, hydrazine, benzimidazole,
  • Ar 1 to Ar 9 may be independently selected from the group consisting of:
  • cyclic aromatic amine-derived compounds can be found in U.S. Patent 3,567,450, U.S. Patent 4,724, 422, U.S. Patent 5,061,569, U.S. Pat.
  • metal complexes that can be used as HTM or HIM include, but are not limited to, the following general structures:
  • M may be a metal having an atomic weight greater than 40;
  • (Y 1 -Y 2 ) may be a bidentate ligand, and Y 1 and Y 2 may be independently selected from C, N, O, P, and S; Is an ancillary ligand;
  • m can be an integer with a value from 1 to the maximum coordination number of the metal; m+n is the maximum coordination number of the metal.
  • (Y 1 -Y 2 ) may be a 2-phenylpyridine derivative.
  • (Y 1 -Y 2 ) may be a carbene ligand.
  • M is selected from the group consisting of Ir, Pt, Os, and Zn.
  • the HOMO of the metal complex can be greater than -5.5 eV (relative to the vacuum level).
  • HTM Suitable non-limiting examples of HTM compounds are listed in the table below:
  • the EIM/ETM used in the compounds of the present invention is sometimes also referred to as an n-type organic semiconductor material.
  • suitable ETM materials are not particularly limited, and any metal complex or organic compound may be used as the ETM as long as they can transport electrons.
  • Preferred organic ETM materials may be selected from the group consisting of tris(8-hydroxyquinoline), phenanthrene, phenanthroline, anthracene, phenanthrene, anthracene, diterpene, spirobifluorene, p-phenylacetylene, triazine, triazole, imidazole, anthracene, ⁇ , ⁇ ⁇ ⁇ , ⁇ ⁇ , dibenzo-indole fluorene, anthracene naphthalene, benzopyrene and their derivatives.
  • a hole blocking layer is typically used to block cavities from adjacent functional layers, particularly luminescent layers.
  • the presence of HBL typically results in an increase in luminous efficiency.
  • the hole blocking material (HBM) of the hole blocking layer (HBL) needs to have a lower HOMO than an adjacent functional layer such as a light emitting layer.
  • the HBM has a larger excited state level than the adjacent luminescent layer, such as a singlet or triplet state, depending on the illuminant.
  • the HBM has an electronic transmission function. EIM/ETM materials that typically have deep HOMO levels can be used as HBM.
  • the compound useful as EIM/ETM/HBM is a molecule comprising at least one of the following groups:
  • R 1 may be selected from the group consisting of hydrogen, alkyl, alkoxy, amino, alkene, alkyne, aralkyl, heteroalkyl, aryl and heteroaryl, when they are aryl or heteroaryl group, which may be the same meaning Ar 1 in the above-described HTM, Ar 1 -Ar 5 may be the same meaning as Ar 1 HTM described, n may be an integer from 0 to 20, X 1 -X 8 is selected from At CR 1 or N.
  • examples of the metal complex of EIM/ETM used in the compound of the present invention include, but are not limited to, the following general structure:
  • (ON) or (NN) may be a two-tooth ligand in which the metal may coordinate with O, N or N, N; L is an ancillary ligand; m may be an integer from 1 to the metal The maximum coordination number.
  • ETM compounds are listed in the table below:
  • an organic alkali metal compound can be used as the EIM.
  • an organic alkali metal compound is understood to be a compound having at least one alkali metal, that is, lithium, sodium, potassium, rubidium, cesium, and further comprising at least one organic ligand.
  • Non-limiting examples of suitable organic alkali metal compounds can be found in the compounds described in US Pat. No. 7,776,317 B2, EP 1 194 562 B1 and EP 1 144 543 B1.
  • Preferred organic alkali metal compounds may be compounds of the formula:
  • R1 has the meaning as described above, the arc represents two or three atoms and a bond, so as to form a five- or six-membered ring with the metal M if necessary, wherein the atom may also be selected by one or more R 1 Alternatively, M may be an alkali metal selected from the group consisting of lithium, sodium, potassium, rubidium, and cesium.
  • the organobase metal compound may be in the form of a monomer, as described above, or in the form of an aggregate such as, but not limited to, a two alkali metal ion with two ligands, 4 alkali metal ions and 4 ligands, 6 Alkali metal ions and 6 ligands or in other forms.
  • Preferred organic alkali metal compounds may be compounds of the formula:
  • each occurrence may be the same or different independently selected from 0, 1, 2, 3 or 4;
  • each The second occurrence may be the same or different independently selected from 0, 1, 2 or 3;
  • the alkali metal M may be selected from lithium, sodium, potassium, more preferably lithium or sodium, most preferably lithium.
  • the organic alkali metal compound is electron-injected into the layer. More preferably, the electron injecting layer is composed of an organic alkali metal compound.
  • the organic alkali metal compound may be doped into other ETM to form an electron transport layer or an electron injection layer. More preferably, it is an electron transport layer.
  • Non-limiting examples of suitable organic alkali metal compounds are listed in the table below:
  • the example of the triplet matrix material is not particularly limited, and any metal complex or organic compound may be used as the matrix as long as its triplet energy is higher than that of the illuminant, particularly the triplet illuminant or the phosphorescent illuminant.
  • metal complexes that can be used as the triplet host include, but are not limited to, the following general structure:
  • M is a metal
  • (Y 3 -Y 4 ) is a two-dentate ligand, and Y 3 and Y 4 may be independently selected from C, N, O, P, and S
  • L is an ancillary ligand
  • Is an integer whose value ranges from 1 to the maximum coordination number of the metal
  • m+n is the maximum coordination number of the metal.
  • the metal complex that can be used as the triplet matrix has the following form:
  • (O-N) is a two-tooth ligand in which the metal is coordinated to the O and N atoms.
  • M can be selected from the group consisting of Ir and Pt.
  • Examples of the organic compound which can be used as the triplet substrate are selected from compounds containing a cyclic aromatic hydrocarbon group such as, but not limited to, benzene, biphenyl, triphenyl, benzo, anthracene; and compounds containing an aromatic heterocyclic group, such as Benzothiophene, dibenzofuran, diphenyl selenium, furan, thiophene, benzofuran, benzothiophene, benzoselenium, carbazole, anthracene, quinoline, dipyridinium, pyrazole, imidazole, triazole Class, oxazole, thiazole, oxadiazole, oxatriazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, oxazine, thiazide, dioxadiazine, Anthracene, benzimi
  • the triplet matrix material can have hole and/or electron transport properties.
  • the triplet matrix material may be selected from compounds comprising at least one of the following groups:
  • R 1 may be independently of one another selected from the group consisting of hydrogen, alkyl, alkoxy, amino, alkene, alkyne, aralkyl, heteroalkyl, aryl and heteroaryl, when they are aryl Or heteroaryl, they may have the same meaning as Ar 1 and Ar 2 defined in the above HTM; n may be an integer from 0 to 20, X 1 -X 8 may be selected from CH or N, and X 9 is selected from CR 1 R 2 or NR 1 .
  • the mixture according to the invention comprises a triplet matrix material.
  • triplet matrix materials Some non-limiting specific examples of triplet matrix materials are listed in the table below:
  • Non-limiting examples of the organic compound used as the singlet matrix material may be selected from compounds containing a cyclic aromatic hydrocarbon such as benzene, biphenyl, triphenyl, benzo, anthracene; compounds containing an aromatic heterocyclic group, such as Benzothiophene, dibenzofuran, diphenyl selenium, furan, thiophene, benzofuran, benzothiophene, benzoselenium, carbazole, anthracene, quinoline, dipyridinium, pyrazole, imidazole, triazole Class, oxazole, thiazole, oxadiazole, oxatriazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, oxazine, thiazide, dioxadiazine, Anthracene, benzimidazole, o
  • the singlet matrix material may be selected from compounds comprising at least one of the following groups:
  • R 1 may be independently selected from the group consisting of hydrogen, alkyl, alkoxy, amino, alkene, alkyne, aralkyl, heteroalkyl, aryl and heteroaryl;
  • Ar 1 may be aryl a hetero or heteroaryl group having the same meaning as Ar 1 as defined in the above HTM;
  • n may be an integer from 0 to 20;
  • X 1 -X 8 may be selected from CH or N; and
  • X 9 and X 10 may be selected from CR 1 R 2 or NR 1 .
  • HBM Hole blocking material
  • the hole blocking layer (HBL) referred to in the present invention is generally used to block holes from adjacent functional layers, particularly luminescent layers. In contrast to an OLED without a barrier layer, the presence of HBL typically results in an increase in luminous efficiency.
  • the hole blocking material (HBM) of the hole blocking layer (HBL) needs to have a lower HOMO than the adjacent functional layer, such as the luminescent layer.
  • the HBM has a greater excitation than the adjacent luminescent layer.
  • the energy level such as the singlet or triplet state, depends on the illuminant.
  • the HBM has an electron transport function.
  • the HBM is used to contain the same host material as the luminescent layer. molecule.
  • the HBM may be selected from compounds comprising at least one of the following groups:
  • Fluorescent emitters tend to have longer conjugated ⁇ -electron systems.
  • styrylamine and its derivatives disclosed in JP 2913116 B and WO 2001021729 A1
  • indole oxime disclosed in WO 2008/006449 and WO 2007/140847. (indenofluorene) and its derivatives.
  • the fluorescent emitter can be selected from the group consisting of monostyrylamines, distyrylamines, tristyrylamines, tetrastyrylamines, benzene. Styryl phosphines, styryl ethers, and arylamines.
  • mono-styrylamine refers to a compound comprising an unsubstituted or optionally substituted styryl group and at least one amine, most preferably an aromatic amine.
  • the distyrylamine refers to a compound comprising two unsubstituted or optionally substituted styryl groups and at least one amine, most preferably an aromatic amine.
  • Ternary styrylamine refers to a compound comprising three unsubstituted or optionally substituted styryl groups and at least one amine, most preferably an aromatic amine.
  • a quaternary styrylamine refers to a compound comprising four unsubstituted or optionally substituted styryl groups and at least one amine, most preferably an aromatic amine.
  • a preferred styrene may be stilbene, which may be further optionally substituted.
  • the corresponding phosphines and ethers are defined similarly to amines.
  • An arylamine or an aromatic amine refers to a compound comprising three unsubstituted or optionally substituted aromatic ring or heterocyclic systems bonded directly to the nitrogen. At least one of these aromatic or heterocyclic ring systems is preferably in a fused ring system, and most preferably has at least 14 aromatic ring atoms.
  • Aromatic decylamine refers to a compound in which a diarylamino group is directly attached to the oxime, most preferably at the position of 9.
  • Aromatic quinone diamine refers to a compound in which two diarylamino groups are directly attached to the oxime, most preferably at the 9,10 position.
  • the definitions of aromatic decylamine, aromatic quinone diamine, aromatic thiamine and aromatic quinone diamine are similar, wherein the diaryl aryl group is most preferably bonded to the 1 or 1,6 position of hydrazine.
  • fluorescent amines based on vinylamines and aromatic amines can be found in the following patent documents: WO 2006/000388, WO 2006/058737, WO 2006/000389, WO 2007/065549, WO 2007/115610 US 7,250,532 B2, DE 102005058557 A1, CN 1583691 A, JP 08053397 A, US 6251531 B1, US 2006/210830 A, EP 1957606 A1 and US 2008/0113101 A1.
  • fluorescent emitters may be selected from the group consisting of an indeno-amine and an indeno-diamine, as disclosed in WO 2006/122630, benzoindenofluorene-amine and benzindene - benzoindenofluorene-diamine, as disclosed in WO 2008/006449, dibenzoindenofluorene-amine and dibenzoindenofluorene-diamine, such as WO2007/ Published in 140847.
  • polycyclic aromatic hydrocarbon compounds in particular derivatives of the following compounds: for example, 9,10-di(2-naphthylanthracene), Naphthalene, tetraphenyl, xanthene, phenanthrene, perylene such as 2,5,8,11-tetra-t-butylperylene, indenoperylene, phenylenes such as (4,4) '-(bis(9-ethyl-3-carbazovinylene)-1,1'-biphenyl), periflanthene, decacyclene, coronene, anthraquinone, spirofluorene, aryl Aryl (arylpyrene) (such as US20060222886), Avon Arylene vinylene (such as US5121029, US5130603), cyclopentadiene such as tetraphenylcyclopentadiene, rubrene
  • Non-limiting examples of some fluorescent illuminants are listed in the table below:
  • a triplet emitter is also referred to as a phosphorescent emitter.
  • the triplet emitter may be a metal complex having the formula M(L)n, wherein M is a metal atom, and L may be the same or different organic ligand each time it appears. It passes one or more locations Bonding or coordination is attached to the metal atom M, and n is an integer greater than 1, more preferably 1, 2, 3, 4, 5 or 6.
  • these metal complexes are attached to the polymer by one or more positions, most preferably by an organic ligand.
  • the metal atom M may be selected from transition metal elements or lanthanides or actinides, preferably Ir, Pt, Pd, Au, Rh, Ru, Os, Sm, Eu, Gd, Tb, Dy, Re, Cu or Ag, particularly preferred are Os, Ir, Ru, Rh, Re, Pd, Pt.
  • the triplet emitter may comprise a chelating ligand, ie a ligand, coordinated to the metal by at least two bonding sites, it being particularly preferred to consider that the triplet emitter comprises two or three identical or different Double or multidentate ligand.
  • Chelating ligands are beneficial for increasing the stability of metal complexes.
  • Non-limiting examples of organic ligands may be selected from the group consisting of phenylpyridine derivatives, 7,8-benzoquinoline derivatives, 2(2-thienyl)pyridine (2 (2) a -thienyl) pyridine) derivative, a 2-(1-naphthyl)pyridine derivative, or a 2-phenylquinoline derivative. All of these organic ligands may be optionally substituted, for example by fluorine or trifluoromethyl.
  • the ancillary ligand may preferably be derived from acetoacetate or picric acid.
  • the metal complex that can be used as the triplet emitter can have the following form:
  • M may be a metal selected from a transition metal element or a lanthanide or actinide
  • Each occurrence of Ar 1 may be the same or different cyclic group, which contains at least one donor atom, that is, an atom having a lone pair of electrons, such as nitrogen or phosphorus, through which a cyclic group is coordinated to the metal;
  • Each occurrence of Ar 2 may be the same or different cyclic group, which contains at least one C atom through which a cyclic group is bonded to the metal;
  • Ar 1 and Ar 2 are linked by a covalent bond, respectively Carrying one or more substituent groups, which may also be linked together by a substituent group;
  • each occurrence of L may be the same or different ancillary ligands, preferably a bidentate chelate ligand, most preferably a monoanion a bidentate chelate ligand;
  • m is 1, 2 or 3, preferably 2 or 3, particularly preferably 3;
  • n is 0, 1, or 2, preferably 0 or 1, particularly preferably 0;
  • Non-limiting examples of materials for some triplet emitters and their use can be found in the following patent documents and documents: WO 200070655, WO 200141512, WO 200202714, WO 200215645, EP 1191613, EP 1191612, EP 1191614, WO 2005033244, WO 2005019373, US 2005/0258742, WO 2009146770, WO 2010015307, WO 2010031485, WO 2010054731, WO 2010054728, WO 2010086089, WO 2010099852, WO 2010102709, US 20070087219 A1, US 20090061681 A1, US 20010053462 A1, Baldo, Thompson et al.
  • the invention still further relates to a composition which may comprise an organic compound as described above and at least one organic solvent.
  • organic solvents include, but are not limited to, methanol, ethanol, 2-methoxyethanol, dichloromethane, chloroform, chlorobenzene, o-dichlorobenzene, tetrahydrofuran, anisole, morpholine, toluene, O-xylene, m-xylene, p-xylene, 1,4 dioxane, acetone, methyl ethyl ketone, 1,2 dichloroethane, 3-phenoxytoluene, 1,1,1 -trichloroethane, 1,1,2,2-tetrachloroethane, ethyl acetate, butyl acetate, dimethylformamide, dimethylacetamide, dimethyl sulfoxide, tetrahydronaphthalene, naphthalene Alkanes, hydrazines and/
  • the composition according to the invention may be a solution.
  • composition according to the invention may be a suspension.
  • composition in the examples of the invention may comprise from 0.01 to 20% by weight of the organic compound according to the invention or a mixture thereof, more preferably from 0.1 to 15% by weight, more preferably from 0.2 to 10% by weight, most preferably from 0.25 to 5 wt% of an organic compound or a mixture thereof.
  • the invention further relates to the use of the composition as a coating or printing ink in the preparation of an organic electronic device, particularly preferably by a printing or coating process.
  • suitable printing or coating techniques may include, but are not limited to, inkjet printing, Nozzle Printing, typography, screen printing, dip coating, spin coating, blade coating, roller printing, twisting. Roll printing, lithography, flexographic printing, rotary printing, spraying, brushing or pad printing, slit-type extrusion coating, and the like. Preferred are gravure, inkjet and inkjet printing.
  • the solution or suspension may additionally comprise one or more components such as surface active compounds, lubricants, wetting agents, dispersing agents, hydrophobic agents, binders and the like for adjusting viscosity, film forming properties, adhesion, and the like.
  • the present invention also provides an application of the organic compound as described above, that is, the organic compound is applied to an organic electronic device, and the organic electronic device may be selected from, but not limited to, an organic light emitting diode (OLED). ), organic photovoltaic cells (OPV), organic light-emitting cells (OLEEC), organic field effect transistors (OFETs), organic light-emitting field effect transistors, organic lasers, organic spintronic devices, organic sensors and organic plasmon emitting diodes ( Organic Plasmon Emitting Diode), etc., especially OLED.
  • OLED organic light emitting diode
  • OLED organic photovoltaic cells
  • OLED organic light-emitting cells
  • OFETs organic field effect transistors
  • organic light-emitting field effect transistors organic lasers
  • organic spintronic devices organic spintronic devices
  • organic sensors and organic plasmon emitting diodes Organic Plasmon Emitting Diode
  • the invention further relates to an organic electronic device which may comprise at least one organic compound as described above.
  • an organic electronic device may comprise at least a cathode, an anode and a functional layer between the cathode and the anode, wherein the functional layer comprises at least one organic compound as described above.
  • a substrate, an anode, at least one light-emitting layer, and a cathode may be included.
  • the substrate can be opaque or transparent. Transparent substrates can be used to make transparent light-emitting components. See, for example, Bulovic et al. Nature 1996, 380, p29, and Gu et al, Appl. Phys. Lett. 1996, 68, p2606.
  • the substrate can be rigid or elastic.
  • the substrate can be plastic, metal, semiconductor wafer or glass. Most preferably, the substrate has a smooth surface. Substrates without surface defects are a particularly desirable choice.
  • the substrate is flexible and may be selected from polymeric films or plastics having a glass transition temperature Tg of 150 ° C or higher, more preferably more than 200 ° C, more preferably more than 250 ° C, most preferably More than 300 ° C. Examples of suitable flexible substrates are poly(ethylene terephthalate) (PET) and polyethylene glycol (2,6-naphthalene) (PEN).
  • the anode can comprise a conductive metal or metal oxide, or a conductive polymer.
  • the anode can easily inject holes into a hole injection layer (HIL) or a hole transport layer (HTL) or a light-emitting layer.
  • HIL hole injection layer
  • HTL hole transport layer
  • the absolute value of the difference between the work function of the anode and the HOMO level or the valence band energy level of the illuminant in the luminescent layer or the p-type semiconductor material as the HIL or HTL or electron blocking layer (EBL) may be less than 0.5 eV, more preferably less than 0.3 eV, most preferably less than 0.2 eV.
  • anode material examples include, but are not limited to, Al, Cu, Au, Ag, Mg, Fe, Co, Ni, Mn, Pd, Pt, ITO, aluminum-doped zinc oxide (AZO), and the like.
  • suitable anode materials are known and can be readily selected for use by one of ordinary skill in the art.
  • the anode material can be deposited using any suitable technique, such as a suitable physical vapor deposition process, including radio frequency magnetron sputtering, vacuum thermal evaporation, electron beam (e-beam), and the like.
  • the anode is patterned. Patterned ITO conductive substrates are commercially available and can be used to prepare devices in accordance with the present invention.
  • the cathode can include a conductive metal or metal oxide.
  • the cathode can easily inject electrons into the EIL or ETL or directly into the luminescent layer.
  • the work function of the cathode and the LUMO level or conductance of the illuminant or the n-type semiconductor material as an electron injection layer (EIL) or electron transport layer (ETL) or hole blocking layer (HBL) in the luminescent layer
  • EIL electron injection layer
  • ETL electron transport layer
  • HBL hole blocking layer
  • the absolute value of the difference in band level is less than 0.5 eV, more preferably less than 0.3 eV, and most preferably less than 0.2 eV.
  • all materials which can be used as cathodes for OLEDs are possible as cathode materials for the devices of the invention.
  • cathode material may include, but are not limited to, Al, Au, Ag, Ca, Ba, Mg, LiF/Al, MgAg alloy, BaF 2 /Al, Cu, Fe, Co, Ni, Mn, Pd, Pt, ITO, etc. .
  • the cathode material can be deposited using any suitable technique, such as a suitable physical vapor deposition process, including radio frequency magnetron sputtering, vacuum thermal evaporation, electron beam (e-beam), and the like.
  • the OLED may further include other functional layers such as a hole injection layer (HIL), a hole transport layer (HTL), an electron blocking layer (EBL), an electron injection layer (EIL), an electron transport layer (ETL), and a hole blocking layer. (HBL).
  • HIL hole injection layer
  • HTL hole transport layer
  • EBL electron blocking layer
  • EIL electron injection layer
  • ETL electron transport layer
  • HBL hole blocking layer
  • Non-limiting examples of materials suitable for use in these functional layers are described in detail above and in WO2010135519A1, US20090134784A1 and WO2011110277A1.
  • the light-emitting layer in the light-emitting device according to the invention, can be prepared by the composition according to the invention.
  • the light-emitting device according to the present invention may have an emission wavelength of between 300 and 1000 nm, more preferably between 350 and 900 nm, still more preferably between 400 and 800 nm.
  • the invention further relates to the use of an organic electronic device according to the invention in various electronic devices, including, but not limited to, display devices, illumination devices, light sources, sensors and the like.
  • the invention further relates to an electronic device comprising an organic electronic device according to the invention, including, but not limited to, a display device, a lighting device, a light source, a sensor and the like.
  • a 50 ml three-necked flask was charged with 2.6 g, 10 mmol of hydrazino[3,2-b]carbazole, 1.6 g, 10 mmol of bromobenzene, 6.9 g, 50 mmol of potassium carbonate, 0.26 g, 1 mmol of 18-crown-6, 0.3 g, 1.5 mmol of cuprous iodide and 100 ml of o-dichlorobenzene were reacted in a N 2 atmosphere at 140 ° C, and the progress of the reaction was followed by TLC until the reaction was completed and the temperature was lowered to room temperature.
  • the intermediate 5-phenylindole[2,3-b]carbazole and the intermediate 5,7-bis(4'-bromobiphenyl)indole [2,3-b] The synthesis procedure of carbazole is the same as the intermediate 5-(3,5-diphenylbenzene)hydrazine [3,2-b]carbazole and 5,11-di(4"-bromo-rule three in Example 3, respectively.
  • the synthesis procedure of phenyl)hydrazine [3,2-b]carbazole is similar, and the reaction temperature and reaction time used in the reaction process are the same.
  • the last two intermediates are formed by the Ullmann reaction under the catalysis of Cu(I).
  • the energy level of the organic compound material can be obtained by quantum calculation, for example, by TD-DFT (time-dependent density functional theory) by Gaussian 09W (Gaussian Inc.), and the specific simulation method can be found in WO2011141110.
  • TD-DFT time-dependent density functional theory
  • Gaussian 09W Gaussian Inc.
  • the semi-empirical method “Ground State/Semi-empirical/Default Spin/AM1" (Charge 0/Spin Singlet) is used to optimize the molecular geometry, and then the energy structure of the organic molecule is determined by TD-DFT (time-dependent density functional theory) method.
  • TD-SCF/DFT/Default Spin/B3PW91 and the base group "6-31G(d)” (Charge 0/Spin Singlet).
  • the HOMO and LUMO levels are calculated according to the following calibration formula, and S 1 , T 1 and the resonance factor f(S 1 ) are used directly.
  • HOMO(eV) ((HOMO(G) ⁇ 27.212)-0.9899)/1.1206
  • HOMO (G) and LUMO (G) are direct calculation results of Gaussian 09W, the unit is Hartree.
  • the results are shown in Table 1:
  • the HOMO and LUMO electron cloud distributions of the materials (1) to (4) are highly preferably overlapped, so that the corresponding material resonance factor f(S 1 ) is correspondingly high.
  • the resonance factor f(S 1 ) is between 0.001 and 1.5, and the fluorescence quantum luminescence efficiency of the material can be highly preferably improved. Further, the value of ⁇ (S 1 - T 1 ) is not more than 0.11 eV, and the delayed fluorescent luminescence condition of less than 0.25 eV is satisfied.
  • the delayed fluorescent luminescent material of the D-A architecture is labeled with Ref 1 :
  • a, cleaning of the conductive glass substrate when used for the first time, can be washed with a variety of solvents, such as chloroform, ketone, isopropyl alcohol, and then UV ozone plasma treatment;
  • cathode LiF / Al (1nm / 150nm) in a high vacuum (1 ⁇ 10 -6 mbar) in the thermal evaporation;
  • the device is encapsulated in a nitrogen glove box with an ultraviolet curable resin.
  • the current-voltage (J-V) characteristics of each OLED device are characterized by characterization equipment while recording important parameters such as efficiency, lifetime and external quantum efficiency.
  • the luminous efficiency and lifetime of OLED1 are more than three times that of OLED Ref1 (corresponding to raw material (Ref1)), and the luminous efficiency of OLED3 (corresponding to raw material (3)) is four times that of OLED Ref1.
  • the lifetime is more than 6 times, especially the maximum external quantum efficiency of OLED 3 is more than 10%. It can be seen that the OLED device prepared by using the organic mixture of the invention has greatly improved luminous efficiency and lifetime, and the external quantum efficiency is also significantly improved.

Abstract

一种有机化合物,包含有该有机化合物的混合物、组合物及有机电子器件。该有机化合物具有结构式(1),其中Ar 1~Ar 5为芳香族或杂芳族结构单元,X,Y,Z为连接两个或三个芳环的桥联基,n为1到4之间的整数。该有机化合物具有较高的谐振因子和较小的Δ(S1-T1),便于得到具有较高发光效率的热激发延迟荧光特性,实现OLED器件的高效率以及长寿命。此外,该有机化合物的合成过程简单,成本低。

Description

有机化合物、包含其的混合物、组合物和有机电子器件 技术领域
本发明涉及电致发光材料领域,尤其涉及一种具有热激发延迟荧光的有机化合物,包含其的混合物,组合物和有机电子器件。
背景技术
有机半导体材料在合成上具有多样性,制造成本相对较低以及其优良的光学与电学性能,有机发光二极管(OLED)在光电器件(例如平板显示器和照明)的应用方面具有很大的潜力。
为了提高有机发光二极管的发光效率,各种基于荧光和磷光的发光材料体系已被开发出来,使用荧光材料的有机发光二极管具有可靠性高的特点,但其在电气激发下其内部电致发光量子效率被限制为25%,这是因为激子的单重激发态和三重激发态的分支比为1:3。与此相反,使用磷光材料的有机发光二极管已经取得了几乎100%的内部电致发光量子效率。但磷光OLED有一显著的问题,就是Roll-off效应,即发光效率随电流或亮度的增加而迅速降低,这对高亮度的应用尤为不利。
迄今为止,有实际使用价值的磷光材料是铱和铂配合物,这种原材料稀有而昂贵,配合物的合成很复杂,因此成本也相当高。为了克服铱和铂配合物的原材料稀有和昂贵,及其合成复杂的问题,Adachi提出反向内部转换(reverse intersystem crossing)的概念,这样可以利用有机化合物,即不利用金属配合物,实现了可与磷光OLED相比的高效率。但现有具有TADF的有机化合物大多采用供电子(Donor)与缺电子或吸电子(Acceptor)基团相连的方式,从而引起最高占有轨道(HOMO)与最低未占有轨道(LUMO)电子云分布完全分离,缩小有机化合物单重态(S1)与三重态(T1)的差别(△ST),但也导致有机化合物的谐振因子(f)减小,进一步引起有机化合物的荧光量子效率降低。
而且此类OLED器件的寿命尚需提高。因此,现有技术,特别是材料解决方案还有待于改进和发展。
发明内容
鉴于上述现有技术的不足,本发明的目的在于提供一种有机化合物、包含其的组合物、有机电子器件及应用,旨在解决现有的电致磷光发光材料成本高、高亮度下效率滚降快、寿命低的问题,以及解决TADF有机发光材料荧光量子产率低的问题。
根据本发明的一个方面,提供了一种有机化合物,该有机化合物可以包括如下通式(1)所示的结构单元。其中X、 Y表示双桥联基团,Z表示三桥联基团,Ar1~Ar5代表不同的芳香族、杂芳香族或者非芳香族环系。
Figure PCTCN2015097191-appb-000001
根据本发明的另一个方面,还提供了一种混合物,包括如上所述的有机化合物,及至少一种有机功能材料,所述有机功能材料选自空穴注入材料,空穴传输材料,电子传输材料,电子注入材料,电子阻挡材料,空穴阻挡材料,发光体,主体材料中的任一种或其组合。
根据本发明的另一个方面,还提供了一种组合物,该组合物可以包括如上所述的有机化合物,及至少一种有机溶剂。
根据本发明的另一个方面,还提供了一种如上所述的有机化合物在有机电子器件中的应用。
根据本发明的另一个方面,还提供了一种有机电子器件,其至少包括一种如上所述的有机化合物。
本发明有益效果:本发明的有机化合物可以包含有三个芳香环或杂芳香环共轭单元,具有热激发延迟荧光发光(TADF)特性,其Δ(S1-T1)≤0.30电子伏特,同时最高占有轨道(HOMO)与最低未占有轨道(LUMO)电子云分布充分重叠,从而有较高的谐振因子(f),处于0.001~2.5之间的范围内。按照本发明的有机化合物可作为TADF发光材料,通过与合适的主体材料配合,能提高其作为电致发光器件的发光效率及寿命,提供了一种制造成本低、效率高、寿命长、低滚降的发光器件的解决方案。
具体实施方式
本发明的一个方面中,提供一种有机化合物及其在有机电致发光器件中的应用,为使本发明的目的、技术方案及效果更加清楚、明确,以下对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明的其中一个实施例中,涉及一种包括至少一个通式(1)的单元的有机化合物,其中使用的符号和标记具有以下含义:
Figure PCTCN2015097191-appb-000002
Ar1、Ar2、Ar3、Ar4或Ar5在每一次出现中,相同或不同地独立选自具有2-20个碳原子的芳香族、杂芳香族或者非芳香族环系,它们可以不被取代或者被一个或多个基团R1任选取代,所述的基团R1在每一次出现中可以相同或者不同。
n为1,或2,或3,或4。
X,Y在每一次出现中,是相同或不同的二桥联基,它们可以与Ar2或Ar3以单键或者双键相连,选自单键,N(R1),B(R1),C(R1)2,O,C=O,C=S,C=Te,C=NR1,Si(R1)2,C=C(R1)2,S,S=O,SO2,P=O,P=S,P=Se,P=Te,Se,Te,P(R1)以及P(=O)R1或这些基团中两个、三个或四个的组合。
Z在每一次出现中,可以相同或不同地独立选自三桥联基,它们可以与Ar1或Ar2或Ar5以单键或者双键相连。
X、Z两者中至少有一个不等于Y。
R1在每一次出现中,可以相同或不同地独立选自-H,-F,-Cl,Br,I,-D,-CN,-NO2,-CF3,B(OR2)2,Si(R2)3,直链烷烃,烷烃醚,含1~10个碳原子烷烃硫醚,支链烷烃,环烷烃,含有3~10个碳原子的烷烃醚基团。R1可被一个或多个活性基团R2任选取代,且R1中一个或多个非相邻的亚甲基(CH2)可以被以下基团替换,它们包括R2C=CR2,C=C,Si(R2)2,Ge(R2)2,Sn(R2)2,C=O,C=S,C=Se,C=N(R2),O,S,-COO-,或CONR2。R1中一个或多个H原子可被D,F,Cl,Br,I,CN,或N2所替换,或者被包含一个或多个活性R2,或者一个芳香基团以及杂芳香环任选取代的芳香胺,或者被任选取代或未被取代的咔唑替换。
R2在每一次出现中,相同或不同地独立选自H,D,可以含1~10个碳原子脂肪族烷烃,芳香碳氢化合物,含5~10个碳原子被任选取代或者未被取代的芳香环或杂芳香基团。
其中结构通式中的虚线代表在此有机化合物中的相邻单体的一个键。
在一个优选的实施例中,Ar1-Ar5在每一次出现中,相同或不同地独立选自可以未被取代或是被R1任选取代的具有2-20个碳原子的芳香族环或杂芳香族环。
按照本发明的化合物,其中Z在每一次出现时,相同或不同地独立选自三桥联基。在某些优选的实施例中,Z可以选自包含有下列结构式的桥联基:
Figure PCTCN2015097191-appb-000003
其中符号R3、R4与R5定义可以与权利要求1中所述的R1定义相同,而上述基团所示虚线键表示与结构单元 Ar1,Ar2,Ar5键合的键。
本发明所提供的有机化合物的较佳实施例中,其可以包括一种如下结构式(2),(3),(4),(5),(6)的单元。
Figure PCTCN2015097191-appb-000004
其中n可以为1,或2,或3或4,X,Y在每一次出现中,是相同或不同的键桥基,它们可以选自单键,N(R1),B(R1),C(R1)2,O,Si(R1)2,C=C(R1)2,S,S=O,SO2,P(R1)以及P(=O)R1。其中虚线表示连接两个基团之间的共价键,其他所有的符号如上面通式(1)中对符号的定义。
尽管这从说明书中是显而易见的,但应该再一次明确指出此处的通式(2),(3),(4),(5),(6)的结构单元可以是非对称取代,即不同的取代基可以存在于一个单元中,或者存在于桥联基X、Y中,如果存在,可以是不同的或者也可以仅在一侧出现。当然,很多时候也有可能X或Y以单键的形式出现。
对于本发明的目的,芳香环系可以在环系中包含5~10个碳原子,杂芳香环系可以在环系中包含1~10个碳原子和至少一个杂原子,条件是碳原子和杂原子的总数至少为4。杂原子可以优选自Si、N、P、O、S和/或Ge,特别优选自Si、N、P、O和/或S。对于本发明的目的,芳香族或杂芳香族环系可以不仅包括芳香基或杂芳香基的体系,而且,其中多个芳基或杂芳基也可以被短的非芳族单元间断(<10%的非H原子,优选小于5%的非H原子,比如C、N或O原子)。因此,比如9,9′-螺二芴,9,9-二芳基芴,三芳胺,二芳基醚等体系,对于该发明目的可以同样认为是芳香族环系。
对于本发明的目的,非芳香族环系可以在环系中包含1-10优选1-3个碳原子,且不仅包括饱和而且包括部分不饱和的环状体系,它们可以未被取代或被单个或多个基团R1任选取代,所述基团R1在每一次出现中可以相同或者不同,并且还可以包含一个或多个杂原子,优选Si、N、P、O、S和/或Ge,特别优选自Si、N、P、O和/或S。这些例如可以是,但不限于,类环己基或类哌啶体系,也可以是类环辛二烯环状体系。该术语同样适用于稠合的非芳香环系。
对于本发明的目的,其中NH上的H原子或桥联基CH2基团可以被R1基团任选取代,R1可以选自,(1)C1~C10烷基,特别优选是指如下的基团:甲基、乙基、正丙基、异丙基、环丙基、正丁基、异丁基、仲丁基、叔丁基、环丁基、2-甲基丁基、正戊基、正己基、环己基、正庚基、环庚基、正辛基、环辛基、2-乙基己基、三氟甲基、五氟甲基、2,2,2-三氟乙基、乙烯基、丙烯基、丁烯基、戊烯基、环戊烯基、己烯基、环己烯基、庚烯基、环庚烯基、辛烯基、环辛烯基、乙炔基、丙炔基、丁炔基、戊炔基、己炔基和辛炔基;(2)C1~C10烷氧基,特别优选的是指甲氧基,乙氧基,正丙氧基,异丙氧基,正丁氧基,异丁氧基,仲丁氧基,叔丁氧基或者2-甲基丁氧基;(3)C2到C10芳基或杂芳基,取决于用途其可以是一价或二价的,在每一情况下也可以被上述提及的基团R1任选取代并可以通过任何希望的位置与芳香族或杂芳香环连接,特别优选的是指以下的基团:苯、萘、蒽、嵌二萘、二氢芘、屈、茈、萤蒽、丁省、戊省、苯并芘、呋喃、苯并呋喃、异苯并呋喃、二苯并呋喃、噻吩、苯并噻吩、异苯并噻吩、硫芴、吡咯、吲哚、异吲哚、咔唑、吡啶、喹啉、异喹啉、吖啶、菲啶、苯并-5,6-喹啉、苯并-6,7-喹啉、苯并-7,8-喹啉、吩噻嗪、吩恶嗪、吡唑、吲唑、咪唑、苯并咪唑、萘并咪唑、菲并咪唑、吡啶并咪唑、吡嗪并咪唑、喹喔啉并咪唑、恶唑、苯并恶唑、萘并恶唑、蒽并恶唑、菲并恶唑、异恶唑、1,2-噻唑、1,3-噻唑、苯并噻唑、哒嗪、苯并哒嗪、嘧啶、苯并嘧啶、喹喔啉、吡嗪、二氮蒽、1,5-二氮杂萘、氮咔唑、苯并咔啉、菲咯啉、1,2,3-三唑、1,2,4-三唑、苯并三唑、1,2,3-恶二唑、1,2,4-恶二唑、1,2,5-恶二唑、1,3,4-恶二唑、1,2,3-噻二唑、1,2,4-噻二唑、1,2,5-噻二唑、1,3,4-噻二唑、1,3,5-三嗪、1,2,4-三嗪、1,2,3-三嗪、四唑。1,2,4,5-四嗪、1,2,3,4-四嗪、1,2,3,5-四嗪、嘌呤、蝶啶、中氮茚 和苯并噻二唑。用于本发明的目的,芳香和杂芳族环系认为特别是除上述提及的芳基和杂芳基之外,还可以指亚联苯基、亚三联苯、芴、螺二芴、二氢菲、四氢芘和顺式或者反式茚并芴。
优选通式(2),(3),(4),(5),(6)的化合物,其中基团X和Y与临近的结构单元可以形成直接联结,即单键;或基团X和Y可以是未被取代的或者由在每一次出现可以相同或者不同的R1任选取代的芳香或者杂芳族单元,通过单和/或双和/或三键,与如上所述的芳香或者杂芳香族单元连接,尤其特别优选直接连接和双键。
此外优选通式(2),(3),(4),(5),(6)的化合物,其中符号Ar1到Ar3相同或不同的在每一次出现中代表具有2到10个碳原子的芳香、杂芳族或者非芳香族环系,它们可以未被取代或者被一个或二个R1基团任选取代。优选优选的芳基或者杂芳基选自苯、萘、蒽、菲、吡啶、嵌二萘或噻吩。
在另一个优选的实施例中,Ar1到Ar3可以包含有如下结构式,它们各自可能被一个或二个基团R1任选取代。
Figure PCTCN2015097191-appb-000005
对于本发明的目的,按照通式(2),(3),(4),(5),(6)的化合物,在一个特别优选的实施例中,Ar1到Ar3均为苯基,可以具有如下通式:
Figure PCTCN2015097191-appb-000006
Figure PCTCN2015097191-appb-000007
其中的符号定义如通式(2),(3),(4),(5),(6)。
在某些优选的实施例中,按照通式1的化合物,其中Ar4、Ar5在多次出现时,可以相同或不同地包含以下结构单元或它们的组合:
Figure PCTCN2015097191-appb-000008
Figure PCTCN2015097191-appb-000009
其中n是1或2或3或4。
按照本发明的化合物,便于得到热激发延迟荧光TADF特性。按照热激发延迟荧光TADF材料(参见Adachi et al.,Nature Vol 492,234,(2012))的原理,当有机化合物的Δ(S1-T1)足够小时,该有机化合物的三线态激子可以通过反向 内部转换到单线态激子,从而实现高效发光。一般来说,TADF材料通过供电子(Donor)与缺电子或吸电子(Acceptor)基团相连而得,即具有明显的D-A结构。
在一个优选的实施例中,按照本发明的化合物,其中此化合物可以具有Δ(S1-T1)≤0.30eV,较优选是≤0.25eV,更优选是≤0.20eV,最优选是≤0.10eV。
在一个特别优选的实施例中,按照本发明的化合物可以不具有明显的D-A结构,其HOMO,LUMO轨道可以至少部分重叠,较优选是大部分重叠,最优选是完全重叠。
在某些实施例中,按照通式1的化合物其中Ar4、Ar5在多次出现时,可以至少有一个包含一供电子基,和/或至少有一个包含一吸电子基。
在一个优选的实施例中,所述的供电子基可以包含有如下基团:
Figure PCTCN2015097191-appb-000010
在一个优选的实施例中,所述的吸电子基可以选自F,氰基或包含有如下基团:
Figure PCTCN2015097191-appb-000011
其中n可以是一个从1到3的整数;X1-X8可以选于CR1或N,并且可以至少有一个是N,其中R1可以选自如下的基团:氢、烷基、烷氧基、氨基、烯、炔、芳烷基、杂烷基、芳基和杂芳基。
本文中所定义的术语“小分子”是指不是聚合物,低聚物,树枝状聚合物,或共混物的分子。特别是,小分子中没有重复结构。小分子的分子量可以是≤4000克/摩尔,较优选是≤3000克/摩尔,最优选是≤2000克/摩尔。
本申请中所称的“聚合物”,即Polymer,包括均聚物(homopolymer),共聚物(copolymer),镶嵌共聚物(block copolymer)。另外在本发明中,聚合物也包括树状物(dendrimer),有关树状物的合成及应用请参见【Dendrimers and Dendrons,Wiley-VCH Verlag GmbH&Co.KGaA,2002,Ed.George R.Newkome,Charles N.Moorefield,Fritz Vogtle.】。
本申请中所称的“共轭聚合物(conjugated polymer)”是一聚合物,它的主链(backbone)主要是由C原子的sp2杂化轨道构成,著名的例子有,但不限于:聚乙炔(polyacetylene)和poly(phenylene vinylene),其主链上的C原子的也可以被其他非C原子任选取代,而且当主链上的sp2杂化被一些自然的缺陷打断时,仍然被认为是共轭聚合物。另外在本发明中共轭聚合物也包括主链上包含有芳基胺(aryl amine)、芳基磷化氢(aryl phosphine)及其他杂环芳烃(heteroarmotics)、有机金属络合物(organometallic complexes)等。
按照本发明的化合物是小分子材料,其分子量≤4000g/mol,较优选是≤3000g/mol,更优选是≤2500g/mol,最优选是≤2000g/mol。
特别是通过在通式(2a),(3a),(4a),(5a),(6a)单元上和任选在另外存在的单元上的取代基R1,可以保证了有机小分子化合物的溶解度。如果存在其他的取代基,这些取代基也可以促进溶解度。
取决于取代型式,通式(2a),(3a),(4a),(5a),(6a)的结构单元可以适合于有机小分子化合物中的各种各样的功能。 因此,它们优选可用作小分子化合物的主要骨架或者作为发光体。特别是通过取代基X和Y描述了哪些化合物特别适用于哪些功能。取代基R1对通式(2a),(3a),(4a),(5a),(6a)单元的电子特性产生影响。
通式(2a),(3a),(4a),(5a),(6a)优选的单元的例子是以下的结构,但不限于此,其中小分子化合物中的链接在各自的情况下通过虚线键表示。这些结构可以在所有的可能取代的点上被任选取代。然而,也于清楚的原因,没有显示可能的取代基。
Figure PCTCN2015097191-appb-000012
Figure PCTCN2015097191-appb-000013
Figure PCTCN2015097191-appb-000014
Figure PCTCN2015097191-appb-000015
其中符号n,X,Y以及Ar4与Ar5所代表的意义与前面所描述的含义相同。
本发明还涉及一种混合物,其可以包括如一种上述的有机化合物,以及可以至少还包含另一种有机功能材料。所述的有机功能材料可选自HIM,HTM,ETM,EIM,EBM,HBM,Emitter,及Host等。下面对这些功能材料作一些较详细的描述(但不限于此)。
1.HIM/HTM
本发明的化合物中所用的HTM有时也称p型有机半导体材料。合适的HIM/HTM材料可选包含有如下结构单元的化合物:酞菁,卟啉,胺,芳香胺,联苯类三芳胺,噻吩,并噻吩如二噻吩并噻吩和并噻吩,吡咯,苯胺,咔唑,氮茚并氮芴,及它们的衍生物。另外的合适的HIM也包括含有氟烃的聚合物;含有导电掺杂的聚合物;导电聚合物,如PEDOT/PSS;自组装单体,如含有膦酸和硅烷衍生物的化合物;金属氧化物,如MoOx;金属络合物,和交联化 合物等。
在本发明的情况中,可用作HIM或HTM的环芳香胺衍生化合物的例子包括(但不限于)如下的一般结构:
Figure PCTCN2015097191-appb-000016
其中,每个Ar1到Ar9可独立选自环芳香烃基团,如苯、联苯、三苯基、苯并、萘、蒽、非那烯、菲、芴、芘、屈、苝、薁;芳香杂环基团,如二苯并噻吩、二苯并呋喃、呋喃、噻吩、苯并呋喃、苯并噻吩、咔唑、吡唑、咪唑、三氮唑、异恶唑、噻唑、恶二唑、恶三唑、二恶唑、噻二唑、吡啶、哒嗪、嘧啶、吡嗪、三嗪、恶嗪、恶噻唑、恶二嗪、吲哚、苯并咪唑、吲唑、吲哚胺、苯并恶唑、苯异恶唑、苯并噻唑、喹啉、异喹啉、邻二氮(杂)萘、喹唑啉、喹喔啉、萘、酞、蝶啶、氧杂蒽、吖啶、吩嗪、吩噻嗪、吩恶嗪、二苯硒吩、苯硒吩、喹啉、吲哚咔唑、吡啶吲哚、二吡啶吡咯、二吡啶呋喃、苯基噻吩并吡啶、二吡啶噻吩、苯基吡啶硒和二吡啶基硒吩;包含有2至10环结构的基团,它们可以是相同或不同类型的环芳香烃基团或芳香杂环基团,并彼此直接或通过至少一个以下的基团连结在一起,如氧原子、氮原子、硫原子、硅原子、磷原子、硼原子、链结构单元和脂肪环基团。其中,每个Ar可以进一步被任选取代,取代基可选为氢、烷基、烷氧基、氨基、烯、炔、芳烷基、杂烷基、芳基和杂芳基。
在一个方面,Ar1到Ar9可独立选自包含如下组的基团:
Figure PCTCN2015097191-appb-000017
其中,n可以是1到20的整数;X1到X8可以是CH或N;Ar1可以如以上所定义。环芳香胺衍生化合物 的另外的非限制性的例子可参见US3567450、US4720432、US5061569、US3615404和US5061569。
可用作HTM或HIM的金属络合物的例子包括(但不限于)如下的一般结构:
Figure PCTCN2015097191-appb-000018
其中M可以是一金属,有大于40的原子量;(Y1-Y2)可以是一两齿配体,Y1和Y2可以独立地选自C,N,O,P,和S;L是一个辅助配体;m可以是一整数,其值从1到此金属的最大配位数;m+n是此金属的最大配位数。在一个实施例中,(Y1-Y2)可以是一2-苯基吡啶衍生物。在另一个实施例中,(Y1-Y2)可以是一卡宾配体。在另一个实施例中,M选于Ir,Pt,Os,和Zn。在另一个实施例中,金属络合物的HOMO可以大于-5.5eV(相对于真空能级)。
在下面的表中列出合适的可作为HTM化合物的非限制性的例子:
Figure PCTCN2015097191-appb-000019
Figure PCTCN2015097191-appb-000020
2.EIM/ETM/HBM
本发明的化合物中所用的EIM/ETM有时也称n型有机半导体材料。原则上,合适的ETM材料的例子并不受特别的限制,任何金属络合物或有机化合物都可能被用作为ETM,只要它们可以传输电子。优选的有机ETM材料可选自三(8-羟基喹啉)、吩、菲罗啉、蒽、菲、芴、二芴、螺二芴、对苯乙炔、三嗪、三唑、咪唑、芘、苝、反茚并芴、顺茚并、二苯并-茚并芴、茚并萘、苯并蒽及它们的衍生物。
在本发明的情况中,空穴阻挡层(HBL)通常用来阻挡来自相邻功能层,特别是发光层的空穴。对比一个没有阻挡层的发光器件,HBL的存在通常会导致发光效率的提高。空穴阻挡层(HBL)的空穴阻挡材料(HBM)需要有比相邻功能层,如发光层更低的HOMO。在一个优选的实施方案中,HBM有比相邻发光层更大的激发态能级,如单重态或三重态,取决于发光体。在另一个优选的实施方案中,HBM有电子传输功能。通常具有深的HOMO能级的EIM/ETM材料可以做为HBM。
另一方面,可用作EIM/ETM/HBM的化合物是至少包含一个以下基团的分子:
Figure PCTCN2015097191-appb-000021
其中,R1可以选自如下的基团:氢、烷基、烷氧基、氨基、烯、炔、芳烷基、杂烷基、芳基和杂芳基,当它们是芳基或杂芳基时,它们可以与上述HTM中的Ar1意义相同,Ar1-Ar5可以与在HTM中所描述的Ar1意义相同,n可以是一个从0到20的整数,X1-X8选于CR1或N。
另一方面,本发明的化合物中所用的EIM/ETM的金属络合物的例子包括(但不限于)如下的一般结构:
Figure PCTCN2015097191-appb-000022
(O-N)或(N-N)可以是一两齿配体,其中金属可以与O,N或N,N配位;L是一个辅助配体;m可以是一整数,其值为从1到此金属的最大配位数。
在下面的表中列出合适的可作ETM化合物的非限制性例子:
Figure PCTCN2015097191-appb-000023
在另一个优选的实施方案中,有机碱金属化合物可用作EIM。在本发明中,有机碱金属化合物可以理解为如下的化合物,其中至少有一个碱金属,即锂,钠,钾,铷,铯,并进一步包含至少一个有机配体。
合适的有机碱金属化合物的非限制性示例可以参见US7767317B2,EP1941562B1和EP 1144543B1中所描述的化合物。
优选的有机碱金属化合物可以是下列化学式的化合物:
Figure PCTCN2015097191-appb-000024
其中R1的含义可以如上所述,弧线代表两个或三个原子及键接,以便必要时的与金属M形成五元或六元环,其中原子也可以由一个或多个R1任选取代,M可以为碱金属,选自锂,钠,钾,铷,铯。
有机碱金属化合物可以有单体的形式,如以上所述的,或有聚集体的形式,例如,但不限于,两碱金属离子与两个配体,4碱金属离子和4配体,6碱金属离子和6配体或在其他的形式。
优选的有机碱金属化合物可以是下列化学式的化合物:
Figure PCTCN2015097191-appb-000025
其中使用的符号有上述定义相同,另外:o,每次出现时可以是相同或不同地独立选自0,1,2,3或4;p,每 次出现时可以是相同或不同地独立选自0,1,2或3;在一个优选的实施方案中,碱金属M可以选自锂,钠,钾,更优选是锂或钠,最优选是锂。
在一个优选的实施方案中,有机碱金属化合物电子注入层中.更优选地,电子注入层由有机碱金属化合物组成。
在另一个优选的实施方案中,有机碱金属化合物可以掺杂到其他ETM中形成电子传输层或电子注入层中.更优选地,是电子传输层。
在下面的表中列出合适的有机碱金属化合物的非限制性例子:
Figure PCTCN2015097191-appb-000026
3.三重态基质材料(Triplet Host):
三重态基质材料的例子并不受特别的限制,任何金属络合物或有机化合物都可能被用作为基质,只要其三重态能量比发光体,特别是三重态发光体或磷光发光体更高。
可用作三重态基质(Host)的金属络合物的例子包括(但不限于)如下的一般结构:
Figure PCTCN2015097191-appb-000027
其中M是一金属;(Y3-Y4)是一两齿配体,Y3和Y4可以独立地选自C,N,O,P,和S;L是一个辅助配体;m可以是一整数,其值从1到此金属的最大配位数;m+n是此金属的最大配位数。
在一个优选的实施方案中,可用作三重态基质的金属络合物有如下形式:
Figure PCTCN2015097191-appb-000028
(O-N)是一两齿配体,其中金属与O和N原子配位。在某一个实施方案中,M可以选自Ir和Pt。
可作为三重态基质的有机化合物的例子选自包含有环芳香烃基的化合物,例如但不限于,苯、联苯、三苯基、苯并、芴;包含有芳香杂环基的化合物,如二苯并噻吩、二苯并呋喃、二苯硒、呋喃、噻吩、苯并呋喃、苯并噻吩、苯并硒、咔唑、吲哚咔、喹啉、二吡啶吡、吡唑、咪唑、三唑类、恶唑、噻唑、恶二唑、恶三唑、二恶唑、噻二唑、吡啶、哒嗪、嘧啶、吡嗪、三嗪类、恶吖嗪、恶噻嗪、恶二嗪类、吲哚、苯并咪唑、吲唑、吲哚嗪、二苯异恶唑、苯异恶唑、苯并噻唑、喹啉、异喹啉、邻二氮(杂)萘、喹唑啉、喹喔啉、萘、酞、蝶啶、氧杂蒽、吖啶、吩嗪、吩噻嗪、吩嗯嗪、苯并吡啶呋喃、二吡啶呋喃、苯基吡啶噻吩、二吡啶噻吩、苯基吡啶并苯硒和二吡啶硒吩;包含有2至10环结构的基团,它们可以是相同或不同类型的环芳香烃基团或芳香杂环基团,并彼此直接或通过至少一个以下的基团连结在一起,如氧原子、氮原子、硫原子、硅原子、磷原子、硼原子、链结构单元和脂肪环基团。其中,每个Ar可以进一步被任选取代,取代基可选为氢、烷基、烷氧基、氨基、烯、炔、芳烷基、杂烷基、芳基和杂芳基。
三重态基质材料可以有空穴和/或电子传输性能。在一个优选的实施方案中,三重态基质材料可以选自包含至少一个以下基团的化合物:
Figure PCTCN2015097191-appb-000029
其中,R1可相互独立地选于如下的基团:氢、烷基、烷氧基、氨基、烯、炔、芳烷基、杂烷基、芳基和杂芳基,当它们是芳基或杂芳基时,它们可以与上述HTM中定义的Ar1和Ar2意义相同;n可以是一个从0到20的整数,X1-X8可以选于CH或N,X9选于CR1R2或NR1
在一个优选的实施例中,按照本发明的混合物包含有一种三重态基质材料。
在下面的表中列出一些三重态基质材料的非限制性具体例子:
Figure PCTCN2015097191-appb-000030
4.单重态基质材料(Singlet Host):
作为单重态基质材料使用的有机化合物的非限制性例子可选自含有环芳香烃化合物,如苯、联苯、三苯基、苯并、芴;包含有芳香杂环基的化合物,如二苯并噻吩、二苯并呋喃、二苯硒、呋喃、噻吩、苯并呋喃、苯并噻吩、苯并硒、咔唑、吲哚咔、喹啉、二吡啶吡、吡唑、咪唑、三唑类、恶唑、噻唑、恶二唑、恶三唑、二恶唑、噻二唑、吡啶、哒嗪、嘧啶、吡嗪、三嗪类、恶吖嗪、恶噻嗪、恶二嗪类、吲哚、苯并咪唑、吲唑、吲哚嗪、二苯异恶唑、苯异恶唑、苯并噻唑、喹啉、异喹啉、邻二氮(杂)萘、喹唑啉、喹喔啉、萘、酞、蝶啶、氧杂蒽、吖啶、吩嗪、吩噻嗪、吩嗯嗪、苯并吡啶呋喃、二吡啶呋喃、苯基吡啶噻吩、二吡啶噻吩、苯基吡啶并苯硒和二吡啶硒吩;包含有2至10环结构的基团,它们可以是相同或不同类型的环芳香烃基团或芳香杂环基团,并可以彼此直接或通过至少一个以下的基团连结在一起,如氧原子、氮原子、硫原子、硅原子、磷原子、硼原子、链结构单元和脂肪环基团。
在一个优选的实施方案中,单重态基质材料可以选自包含至少一个以下基团的化合物:
Figure PCTCN2015097191-appb-000031
其中,R1可相互独立地选于如下的基团:氢、烷基、烷氧基、氨基、烯、炔、芳烷基、杂烷基、芳基和杂芳基;Ar1可以是芳基或杂芳基,它与上述的HTM中定义的Ar1意义相同;n可以是一个从0到20的整数;X1-X8可以选于CH或N;X9和X10可以选于CR1R2或NR1
在下面的表中列出一些蒽基单重态基质材料的非限制性例子:
Figure PCTCN2015097191-appb-000032
Figure PCTCN2015097191-appb-000033
5.空穴阻挡材料(HBM)
本发明中所称的空穴阻挡层(HBL)通常用来阻挡来自相邻功能层,特别是发光层的空穴。对比一个没有阻挡层的OLED,HBL的存在通常会导致发光效率的提高。空穴阻挡层(HBL)的空穴阻挡材料(HBM)需要有比相邻功能层,如发光层更低的HOMO.在一个优选的实施方案中,HBM有比相邻发光层更大的激发态能级,如单重态或三重态,取决于发光体.在另一个优选的实施方案中,HBM有电子传输功能.在一个实施方案中,用作HBM含有与发光层中基质材料相同的分子。在另一个优选的实施方案中,HBM可以选自包含至少一个以下基团的化合物:
Figure PCTCN2015097191-appb-000034
n是一个从0到20的整数;L是一个辅助配体;m是一个从1到3的整数。
6.单重态发光体(Singlet Emitter)
荧光发光体往往有较长的共轭π电子系统。迄今,已有许多例子,例如但不限于,在JP2913116B和WO2001021729A1中公开的苯乙烯胺(styrylamine)及其衍生物,和在WO2008/006449和WO2007/140847中公开的茚并芴 (indenofluorene)及其衍生物.
在一个优选的实施例中,荧光发光体可选自一元苯乙烯胺(monostyrylamines)、二元苯乙烯胺(distyrylamines)、三元苯乙烯胺(tristyrylamines)、四元苯乙烯胺(tetrastyrylamines)、苯乙烯膦(styrylphosphines)、苯乙烯醚(styryl ethers)和芳胺(arylamines)。
其中,一元苯乙烯胺是指一化合物,它包含一个无取代或任选取代的苯乙烯基组和至少一个胺,最优选是芳香胺。二元苯乙烯胺是指一化合物,它包含二个无取代或任选取代的苯乙烯基组和至少一个胺,最优选是芳香胺。三元苯乙烯胺是指一化合物,它包含三个无取代或任选取代的苯乙烯基组和至少一个胺,最优选是芳香胺。一个四元苯乙烯胺是指一化合物,它包含四个无取代或任选取代的苯乙烯基组和至少一个胺,最优选是芳香胺。一个优选的苯乙烯可以是二苯乙烯,其可能会进一步被任选取代。相应的膦类和醚类的定义与胺类相似。芳基胺或芳香胺是指一种化合物,包含三个直接联接氮的无取代或任选取代的芳香环或杂环系统。这些芳香族或杂环的环系统中至少有一个优选于稠环系统,并最优选有至少14个芳香环原子。其中优选的非限制性例子有芳香蒽胺,芳香蒽二胺,芳香芘胺,芳香芘二胺,芳香屈胺和芳香屈二胺。芳香蒽胺是指一化合物,其中二元芳基胺基团(diarylamino)直接联到蒽上,最优选是在9的位置上。芳香蒽二胺是指一化合物,其中二个二元芳基胺基团(diarylamino)直接联到蒽上,最优选是在9,10的位置上。芳香芘胺,芳香芘二胺,芳香屈胺和芳香屈二胺的定义类似,其中二元芳基胺基团最优选联到芘的1或1,6位置上。
其中,基于乙烯胺及芳胺的荧光发光体的非限制性例子,可在下述专利文件中找到:WO 2006/000388、WO 2006/058737、WO 2006/000389、WO 2007/065549、WO 2007/115610、US 7250532 B2、DE 102005058557 A1、CN 1583691 A、JP 08053397 A、US 6251531 B1、US 2006/210830 A、EP 1957606 A1和US 2008/0113101 A1。
其中,基于均二苯乙烯(distyrylbenzene)极其衍生物的荧光发光体的非限制性例子可以参见US 5121029。
进一步的优选的荧光发光体可以选自茚并芴-胺和茚并芴-二胺,如WO 2006/122630所公开的,苯并茚并芴-胺(benzoindenofluorene-amine)和苯并茚并芴-二胺(benzoindenofluorene-diamine),如WO 2008/006449所公开的,二苯并茚并芴-胺(dibenzoindenofluorene-amine)和二苯并茚并芴-二胺(dibenzoindenofluorene-diamine),如WO2007/140847所公开的。
其他可用作荧光发光体的材料有多环芳烃化合物,特别是如下化合物的衍生物:蒽如9,10-二(2-萘并蒽)(9,10-di(2-naphthylanthracene))、萘、四苯、氧杂蒽、菲(phenanthrene)、芘(perylene)如2,5,8,11-tetra-t-butylperylene、茚并芘(indenoperylene)、苯撑(phenylenes)如(4,4’-(bis(9-ethyl-3-carbazovinylene)-1,1’-biphenyl)、periflanthene、十环烯(decacyclene)、六苯并苯(coronene)、芴、螺二芴(spirofluorene)、芳基芘(arylpyrene)(如US20060222886)、亚芳 香基乙烯(arylenevinylene)(如US5121029,US5130603)、环戊二烯如四苯基环戊二烯(tetraphenylcyclopentadiene)、红荧烯(rubrene)、香豆素(coumarine)、若丹明(rhodamine)、喹吖啶酮(quinacridone)、吡喃(pyrane)如4(dicyanoethylene)-6-(4-dimethylaminostyryl-2-methyl)-4H-pyrane(DCM)、噻喃(thiapyran)、bis(azinyl)imine-boron化合物(US 2007/0092753A1)、bis(azinyl)methene化合物、carbostyryl化合物、噁嗪酮(oxazone)、苯并恶唑(benzoxazole)、苯并噻唑(benzothiazole)、苯并咪唑(benzimidazole)及diketopyrrolopyrrole。一些单重态发光体的材料的非限制性示例可在下述专利文件中找到:US 20070252517 A1、US 4769292、US 6020078、US 2007/0252517 A1、US 2007/0252517 A1。
在下面的表中列出一些荧光发光体的非限制性例子:
Figure PCTCN2015097191-appb-000035
7.三重态发光体(Triplet Emitter)
在本发明的情况中,三重态发光体也称磷光发光体。在一个优选的实施方案中,三重态发光体可以是有通式M(L)n的金属络合物,其中M是一金属原子,L每次出现时可以是相同或不同的有机配体,它通过一个或多个位置 键接或配位连接到金属原子M上,n是大于1的整数,较优选是1,2,3,4,5或6。可选地,这些金属络合物通过一个或多个位置联接到聚合物上,最优选是通过有机配体。
在一个优选的实施方案中,金属原子M可以选自过渡金属元素或镧系元素或锕系元素,优选择Ir,Pt,Pd,Au,Rh,Ru,Os,Sm,Eu,Gd,Tb,Dy,Re,Cu或Ag,特别优选择Os,Ir,Ru,Rh,Re,Pd,Pt。
优选地,三重态发光体可以包含有螯合配体,即配体,通过至少两个结合点与金属配位,特别优选考虑的是三重态发光体包含有两个或三个相同或不同的双齿或多齿配体。螯合配体有利于提高金属络合物的稳定性。
有机配体的非限制性例子可选自苯基吡啶(phenylpyridine)衍生物,7,8-苯并喹啉(7,8-benzoquinoline)衍生物,2(2-噻吩基)吡啶(2(2-thienyl)pyridine)衍生物,2-(1-萘基)吡啶(2-(1-naphthyl)pyridine)衍生物,或2-苯基喹啉(2-phenylquinoline)衍生物。所有这些有机配体都可能被任选取代,例如被含氟或三氟甲基任选取代。辅助配体可优选自乙酸丙酮(acetylacetonate)或苦味酸。
在一个优选的实施方案中,可用作三重态发光体的金属络合物可以有如下形式:
Figure PCTCN2015097191-appb-000036
其中M可以是金属,选于过渡金属元素或镧系元素或锕系元素;
Ar1每次出现时可以是相同或不同的环状基团,其中至少包含有一个施主原子,即有一孤对电子的原子,如氮或磷,通过它环状基团与金属配位连接;Ar2每次出现时可以是相同或不同的环状基团,其中至少包含有一个C原子,通过它环状基团与金属连接;Ar1和Ar2由共价键联接在一起,可各自携带一个或多个取代基团,它们也可再通过取代基团联接在一起;L每次出现时可以是相同或不同的辅助配体,优选于双齿螯合配体,最优选是单阴离子双齿螯合配体;m是1,2或3,优选地是2或3,特别优选地是3;n是0,1,或2,优选地是0或1,特别优选地是0;
一些三重态发光体的材料及其应用的非限制性例子可在下述专利文件和文献中找到:WO 200070655,WO 200141512,WO 200202714,WO 200215645,EP 1191613,EP 1191612,EP 1191614,WO 2005033244,WO 2005019373,US 2005/0258742,WO 2009146770,WO 2010015307,WO 2010031485,WO 2010054731,WO 2010054728,WO 2010086089,WO 2010099852,WO 2010102709,US 20070087219 A1,US 20090061681 A1,US 20010053462 A1,Baldo,Thompson et al.Nature 403,(2000),750-753,US 20090061681 A1,US 20090061681 A1,Adachi et al.Appl.Phys.Lett.78(2001),1622-1624,J.Kido et al.Appl.Phys.Lett.65(1994),2124,Kido et al.Chem.Lett.657,1990,US 2007/0252517 A1,Johnson et al.,JACS 105,1983,1795,Wrighton,JACS 96,1974,998,Ma et al.,Synth.Metals 94,1998,245,US 6824895,US 7029766,US 6835469,US 6830828,US 20010053462 A1,WO 2007095118 A1,US 2012004407A1,WO  2012007088A1,WO2012007087A1,WO 2012007086A1,US 2008027220A1,WO 2011157339A1,CN 102282150A,WO 2009118087A1。
本发明还进一步涉及一种组合物,可以包含有一种如上所述的有机化合物及至少一种有机溶剂。有机溶剂的例子,包括(但不限于):甲醇、乙醇、2-甲氧基乙醇、二氯甲烷、三氯甲烷、氯苯、邻二氯苯、四氢呋喃、苯甲醚、吗啉、甲苯、邻二甲苯、间二甲苯、对二甲苯、1,4二氧杂环己烷、丙酮、甲基乙基酮、1,2二氯乙烷、3-苯氧基甲苯、1,1,1-三氯乙烷、1,1,2,2-四氯乙烷、醋酸乙酯、醋酸丁酯、二甲基甲酰胺、二甲基乙酰胺、二甲基亚砜、四氢萘、萘烷、茚和/或它们的混合物。
在一个优选的实施方案中,按照本发明的组合物可以是一溶液。
在另一个优选的实施方案中,按照本发明的组合物可以是一悬浮液。
本发明实施例中的组合物中可以包括0.01至20wt%的按照本发明的有机化合物或其混合物,较优选的是0.1至15wt%,更优选的是0.2至10wt%,最优选的是0.25至5wt%的有机化合物或其混合物。
本发明还涉及所述组合物作为涂料或印刷油墨在制备有机电子器件时的用途,特别优选的是通过打印或涂布的制备方法。
其中,适合的打印或涂布技术可以包括(但不限于)喷墨打印,喷印(Nozzle Printing),活版印刷,丝网印刷,浸涂,旋转涂布,刮刀涂布,辊筒印花,扭转辊印刷,平版印刷,柔版印刷,轮转印刷,喷涂,刷涂或移印,狭缝型挤压式涂布等。首选的是凹版印刷,喷印及喷墨印刷。溶液或悬浮液可以另外包括一个或多个组份例如表面活性化合物,润滑剂,润湿剂,分散剂,疏水剂,粘接剂等,用于调节粘度,成膜性能,提高附着性等。有关打印技术,及其对有关溶液的相关要求,如溶剂及浓度,粘度等,的详细信息请参见Helmut Kipphan主编的《印刷媒体手册:技术和生产方法》(Handbook of Print Media:Technologies and Production Methods),ISBN 3-540-67326-1。
基于上述有机化合物,本发明还提供一种如上所述的有机化合物的应用,即将所述有机化合物应用于有机电子器件,所述的有机电子器件可以选自,但不限于,有机发光二极管(OLED),有机光伏电池(OPV),有机发光电池(OLEEC),有机场效应管(OFET),有机发光场效应管,有机激光器,有机自旋电子器件,有机传感器及有机等离激元发射二极管(Organic Plasmon Emitting Diode)等,特别是OLED。本发明实施例中,优选将所述有机化合物用于OLED器件的发光层。
本发明进一步涉及一种有机电子器件,可以至少包含一种如上所述的有机化合物。一般的,此种有机电子器件可以至少包含阴极,阳极及位于阴极和阳极之间的功能层,其中所述的功能层中至少包含一种如上所述的有机化合物。
在以上所述的发光器件,特别是OLED中,可以包括一基片,一阳极,至少一发光层,一阴极。
基片可以是不透明或透明。透明的基板可以用来制造透明的发光元器件。例如可参见,Bulovic等Nature 1996,380,p29,和Gu等,Appl.Phys.Lett.1996,68,p2606。基片可以是刚性的或弹性的。基片可以是塑料,金属,半导体晶片或玻璃。最优选是基片有平滑的表面。无表面缺陷的基板是特别理想的选择。在一个优选的实施例中,基片是柔性的,可以选自聚合物薄膜或塑料,其玻璃化温度Tg为150℃以上,较优选是超过200℃,更优选是超过250℃,最优选是超过300℃。合适的柔性基板的例子有聚(对苯二甲酸乙二醇酯)(PET)和聚乙二醇(2,6-萘)(PEN)。
阳极可包括一导电金属或金属氧化物,或导电聚合物。阳极可以容易地注入空穴到空穴注入层(HIL)或空穴传输层(HTL)或发光层中。在一个实施例中,阳极的功函数和发光层中的发光体或作为HIL或HTL或电子阻挡层(EBL)的p型半导体材料的HOMO能级或价带能级的差的绝对值可以小于0.5eV,较优选是小于0.3eV,最优选是小于0.2eV。阳极材料的例子包括但不限于:Al、Cu、Au、Ag、Mg、Fe、Co、Ni、Mn、Pd、Pt、ITO、铝掺杂氧化锌(AZO)等。其他合适的阳极材料是已知的,本领域普通技术人员可容易地选择使用。阳极材料可以使用任何合适的技术沉积,如一合适的物理气相沉积法,包括射频磁控溅射,真空热蒸发,电子束(e-beam)等。在某些实施例中,阳极是图案结构化的。图案化的ITO导电基板可在市场上买到,并且可以用来制备根据本发明的器件。
阴极可包括导电金属或金属氧化物。阴极可以容易地注入电子到EIL或ETL或直接到发光层中。在一个实施例中,阴极的功函数和发光层中发光体或作为电子注入层(EIL)或电子传输层(ETL)或空穴阻挡层(HBL)的n型半导体材料的LUMO能级或导带能级的差的绝对值小于0.5eV,较优选是小于0.3eV,最优选是小于0.2eV。原则上,所有可用作OLED的阴极的材料都可能作为本发明器件的阴极材料。阴极材料的例子可以包括但不限于:Al、Au、Ag、Ca、Ba、Mg、LiF/Al、MgAg合金、BaF2/Al、Cu、Fe、Co、Ni、Mn、Pd、Pt、ITO等。阴极材料可以使用任何合适的技术沉积,如合适的物理气相沉积法,包括射频磁控溅射,真空热蒸发,电子束(e-beam)等。
OLED还可以包含其他功能层,如空穴注入层(HIL)、空穴传输层(HTL)、电子阻挡层(EBL)、电子注入层(EIL)、电子传输层(ETL)、空穴阻挡层(HBL)。适合用于这些功能层中的材料的非限制性示例可参考上面及在WO2010135519A1、US20090134784A1和WO2011110277A1中有详细的描述。
在一个优选的实施例中,按照本发明的发光器件中,其发光层可以是通过按照本发明的组合物制备而成。
按照本发明的发光器件,其发光波长可以在300到1000nm之间,较优选的是在350到900nm之间,更优选的是在400到800nm之间。
本发明还涉及按照本发明的有机电子器件在各种电子设备中的应用,包括,但不限于,显示设备,照明设备,光源,传感器等等。
本发明还涉及包含有按照本发明的有机电子器件的电子设备,包括,但不限于,显示设备,照明设备,光源,传感器等等。
下面将结合优选实施例对本发明进行了说明,但本发明并不局限于下述实施例,应当理解,所附权利要求概括了本发明的范围在本发明构思的引导下本领域的技术人员应意识到,对本发明的各实施例所进行的一定的改变,都将被本发明的权利要求书的精神和范围所覆盖。
实施例1
Figure PCTCN2015097191-appb-000037
4,4'-二(5-苯基-11-吲哚[3,2-b]咔唑基)苯
50ml的三口烧瓶中加入2.6g,10mmol吲哚并[3,2-b]咔唑、1.6g,10mmol溴苯、6.9g,50mmol碳酸钾,0.26g,1mmol18-冠醚-6,0.3g,1.5mmol碘化亚铜和100ml邻二氯苯,在N2气氛中,140℃反应,TLC跟踪反应进程,待反应结束,降至室温。把反应液倒入水中,洗涤除去K2CO3,然后抽滤,得到固体产品,用二氯甲烷洗涤。用乙醇重结晶,得产品5-苯基吲哚[3,2-b]咔唑3g。
上述步骤中所得到的中间体1.6g,5.4mmol 5-苯基吲哚[3,2-b]咔唑加入50ml的三口烧瓶中,同时加入0.65g,2.5mmol 1,4-二溴苯、3.5g,25mmol碳酸钾、0.13g,0.5mmol的18-冠醚-6、0.15g,0.75mmol碘化亚铜和100ml邻二氯苯,在N2气氛中,170℃温度下反应48小时,TLC跟踪反应进程,待反应完全后,降至室温。减压蒸馏完反应液中的邻二氯苯,得粗产物,加入150ml二氯甲烷溶解,加水洗涤三次,合并有机相,无水硫酸镁干燥,旋蒸干其中的二氯甲烷溶剂,粗产物用二氯甲烷与甲醇重结晶得浅黄色固体粉末2.5克。MS(APCI)=739.1。
实施例2
Figure PCTCN2015097191-appb-000038
Figure PCTCN2015097191-appb-000039
4,4’-二(5-(3,5-二苯基苯)-11-H-吲哚[3,2-b]咔唑基)联三苯
50ml的三口烧瓶中加入2.6g,10mmol吲哚并[3,2-B]咔唑、3.1g,10mmol3,5-二苯基溴苯、6.9g,50mmol碳酸钾,0.26g,1mmol18-冠醚-6,0.3g,1.5mmol碘化亚铜和100ml邻二氯苯,在N2气氛中,140℃反应,TLC跟踪反应进程,待反应结束,降至室温。把反应液倒入水中,洗涤除去K2CO3,然后抽滤,得到固体产品,用二氯甲烷洗涤。用乙醇重结晶,得产品5-(3,5-二苯基苯)吲哚[3,2-b]咔唑4g。
上述步骤中所得到的中间体2.0g,5.4mmol 5-(3,5-二苯基苯)吲哚[3,2-b]咔唑加入50ml的三口烧瓶中,同时加入0.89g,2.5mmol4-溴4'-碘联苯、3.5g,25mmol碳酸钾、0.13g,0.5mmol的18-冠醚-6、0.15g,0.75mmol碘化亚铜和100ml邻二氯苯,在N2气氛中,170℃温度下反应48小时,TLC跟踪反应进程,待反应完全后,降至室温。减压蒸馏完反应液中的邻二氯苯,得粗产物,加入150ml二氯甲烷溶解,加水洗涤三次,合并有机相,无水硫酸镁干燥,旋蒸干其中的二氯甲烷溶剂,粗产物用二氯甲烷与甲醇重结晶得浅黄色固体粉末2.5克。MS(APCI)=1195.5。
实施例3
Figure PCTCN2015097191-appb-000040
5,11-二(4"-((5-(3,5-二苯基苯基)吲哚[3,2-b]咔基)-11-联三苯)基吲哚[3,2-b]咔唑
在本实施例中,中间体5-(3,5-二苯基苯)吲哚[3,2-b]咔唑的合成步骤与实施例2中的完全一致。
本实施例中用到的另一中间体5,11-二(4"-溴联三苯基)吲哚[3,2-b]咔唑的合成步骤如下:
50ml的三口烧瓶中加入2.6g,10mmol吲哚并[3,2-b]咔唑、8.7g,20mmol4-溴-4"-碘联三苯、6.9g,50mmol碳酸钾,0.26g,1mmol18-冠醚-6,0.3g,1.5mmol碘化亚铜和100ml邻二氯苯,在N2气氛中,140℃反应36小时,TLC跟踪反应进程,待反应结束,降至室温。把反应液倒入水中,洗涤除去K2CO3,然后抽滤,得到固体产品,用二氯甲烷洗涤。用丙酮重结晶,得中间体5,11-二(4”-溴联三苯基)吲哚[3,2-b]咔唑6g。
上述步骤中所得到的中间体4.0g,10.8mmol 5-(3,5-二苯基苯)吲哚[3,2-b]咔唑加入150ml的三口烧瓶中,同时加入4.4g,5.0mmol5,11-二(4"-溴联三苯基)吲哚[3,2-b]咔唑、3.5g,25mmol碳酸钾、0.13g,0.5mmol的18-冠醚-6、0.15g, 0.75mmol碘化亚铜和400ml邻二氯苯,在N2气氛中,170℃温度下反应72小时,TLC跟踪反应进程,待反应完全后,降至室温。减压蒸馏完反应液中的邻二氯苯,得粗产物,加入500ml二氯甲烷溶解,加水洗涤三次,合并有机相,无水硫酸镁干燥,旋蒸干其中的二氯甲烷溶剂,粗产物用二氯甲烷与乙醇重结晶得浅黄色固体粉末5克,所得产物在真空干燥箱中干燥。MS(APCI)=1678.1。
实施例4
Figure PCTCN2015097191-appb-000041
5,7-二(4"-((5-苯基)吲哚[2,3-b]咔唑基)-7-联二苯)基吲哚[2,3-b]咔唑
在本实施例中,中间体5-苯基吲哚[2,3-b]咔唑与中间体5,7-二(4'-溴联二苯基)吲哚[2,3-b]咔唑的合成步骤分别与实施例3中的中间体5-(3,5-二苯基苯)吲哚[3,2-b]咔唑以及5,11-二(4"-溴联三苯基)吲哚[3,2-b]咔唑的合成步骤类似,反应过程所用到的反应温度以及反应时间相同。最后两个中间体通过乌尔曼反应在Cu(I)催化作用下形成最终产物5,7-二(4"-((5-苯基)吲哚[2,3-b]咔唑基)-7-联二苯)基吲哚[2,3-b]咔唑(4)。MS(APCI)=1221.5
实施例5
Figure PCTCN2015097191-appb-000042
5-(2-(4',6'-二苯基-1',3',5'-三嗪基)苯基-7-苯基吲哚[2,3-b]咔唑
在250ml的单口瓶中,加入5g,20mmol的吲哚[3,2-b]咔唑,3.1g,20mmol的溴苯,1.04g,4mmol的18-冠醚 -6,1.12g,6mmol的CuI,13.8g,100mmol的碳酸钾和300ml的邻二氯苯。在氮气的保护下,回流反应36小时,TLC跟踪反应,待反应完全,冷却至室温。减压蒸馏完其中的邻二氯苯,得粗产物,加入200ml二氯甲烷溶解,加水洗涤三次,合并有机相,无水硫酸镁干燥,旋蒸干其中的二氯甲烷溶剂,粗产物用二氯甲烷与甲醇重结晶得浅黄色固体粉末5-苯基吲哚[2,3-b]咔唑5克。MS(APCI)=333.4。
将上述得到的3.3g,10mmol5-苯基吲哚[2,3-b]咔唑,4.0g,10.5mmol 2-(4',6'-二苯基-1',3',5'-三嗪基)溴苯,1.04g,4mmol的18-冠醚-6,1.12g,6mmol的CuI,13.8g,100mmol的碳酸钾和300ml的邻二氯苯。在氮气的保护下,回流反应48小时,TLC跟踪反应,待反应完全,冷却至室温。减压蒸馏完其中的邻二氯苯,得粗产物,加入300ml二氯甲烷溶解,加水洗涤三次,合并有机相,无水硫酸镁干燥,旋蒸干其中的二氯甲烷溶剂,粗产物用二氯甲烷与石油醚重结晶得浅黄色固体粉4.5克,所得最终产物在真空下烘干。MS(APCI)=640.8。
有机化合物材料的能级可通过量子计算得到,比如利用TD-DFT(含时密度泛函理论)通过Gaussian09W(Gaussian Inc.),具体的模拟方法可参见WO2011141110。首先用半经验方法“Ground State/Semi-empirical/Default Spin/AM1”(Charge 0/Spin Singlet)来优化分子几何结构,然后有机分子的能量结构由TD-DFT(含时密度泛函理论)方法算得“TD-SCF/DFT/Default Spin/B3PW91”与基组“6-31G(d)”(Charge 0/Spin Singlet)。HOMO和LUMO能级按照下面的校准公式计算,S1,T1和谐振因子f(S1)直接使用。
HOMO(eV)=((HOMO(G)×27.212)-0.9899)/1.1206
LUMO(eV)=((LUMO(G)×27.212)-2.0041)/1.385
其中HOMO(G)和LUMO(G)是Gaussian 09W的直接计算结果,单位为Hartree。结果如表一所示:
表一
材料 HOMO[eV] LUMO[eV] f(S1) T1[eV] S1[eV] ΔST
(1) -5,33 -2,35 0.027 2,73 2.77 0.04
(2) -5,37 -2,43 0.909 2,71 2.76 0.05
(3) -5,35 -2.38 1.148 2.72 2,76 0.04
(4) -5,49 -2,43 0.241 2,75 2,86 0.11
(5) -5.45 -2.78 0.002 2.84 2.85 0.01
同时材料(1)~(5)的HOMO与LUMO电子云分布图如表二所所示:
表二
Figure PCTCN2015097191-appb-000043
材料(1)~(4)的HOMO与LUMO电子云分布均有很优选地重叠,因此所对应的材料谐振因子f(S1)相应较高。
其中,谐振因子f(S1)均处于0.001到1.5之间,可很优选地提高材料的荧光量子发光效率。而且Δ(S1–T1)的值不 大于0.11eV,满足小于0.25eV的延迟荧光发光条件。
与上述延荧光发光材料进行比较的是D-A体系结构的延迟荧光发光材料以Ref 1标记:
Figure PCTCN2015097191-appb-000044
OLED器件的制备:
具有ITO/NPD(35nm)/5%(1)~(5):mCP(15nm)/TPBi(65nm)/LiF(1nm)/Al(150nm)/阴极的OLED器件的制备步骤如下:
a、导电玻璃基片的清洗:首次使用时,可用多种溶剂进行清洗,例如氯仿、酮、异丙醇进行清洗,然后进行紫外臭氧等离子处理;
b、HTL(35nm),EML(15nm),ETL(65nm):在高真空(1×10-6毫巴,mbar)中热蒸镀而成;
c、阴极:LiF/Al(1nm/150nm)在高真空(1×10-6毫巴)中热蒸镀而成;
d、封装:器件在氮气手套箱中用紫外线硬化树脂封装。
各OLED器件的电流电压(J-V)特性通过表征设备来表征,同时记录重要的参数如效率,寿命及外部量子效率。经检测,OLED1(对应原材料(1))的发光效率和寿命都是OLED Ref1(对应原材料(Ref1))的3倍以上,OLED3(对应原材料(3))的发光效率是OLED Ref1的4倍,而寿命是6倍以上,特别是OLED3的最大外部量子效率达到10%以上。可见,采用本发明的有机混合物制备的OLED器件,其发光效率和寿命均得到大大提高,且外部量子效率也得到明显提高。
应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (17)

  1. 一种有机化合物,具有如下结构通式(1):
    Figure PCTCN2015097191-appb-100001
    其中使用的符号与标记具有以下含义:
    Ar1、Ar2、Ar3、Ar4或Ar5在多次出现时,相同或不同地独立选自具有2-20个碳原子的芳香族、杂芳香族或者非芳香族环系,并被一个或多个基团R1任选取代或者未取代,所述基团R1在多次出现时彼此相同或不同,
    n为1,或2,或3,或4;
    X,Y在每一次出现中,是相同或不同的双桥联基,各X、Y与Ar2或Ar3以单键或者双键相连,并选自单键,N(R1),B(R1),C(R1)2,O,C=O,C=S,C=Te,C=NR1,Si(R1)2,C=C(R1)2,S,S=O,SO2,P=O,P=S,P=Se,P=Te,Se,Te,P(R1)以及P(=O)R1或这些基团中两个、三个或四个的组合;
    Z在每一次出现中,是相同或不同的三桥联基,各个Z与Ar1或Ar2或Ar5以单键或者双键相连;
    R1在每一次出现中,相同或不同地独立选自-H,-F,-Cl,Br,I,-D,-CN,-NO2,-CF3,B(OR2)2,Si(R2)3,直链烷烃,烷烃醚,含1~10个碳原子烷烃硫醚,支链烷烃,环烷烃,含有3~10个碳原子的烷烃醚基团,R1被一个或多个活性基团R2任选取代,且R1中一个或多个非相邻的亚甲基能够被选自下组的基团替换:R2C=CR2,C=C,Si(R2)2,Ge(R2)2,Sn(R2)2,C=O,C=S,C=Se,C=N(R2),O,S,-COO-,或CONR2,R1中一个或多个H原子能被D,F,Cl,Br,I,CN,或N2所替换,或者被包含一个或多个活性基团R2或者芳香基团以及杂芳香环任选取代的芳香胺所替换,或者被任选取代或未被取代咔唑替换;
    R2在每一次出现中,相同或不同地独立选自H,D,含1~10个碳原子脂肪族烷烃,芳香碳氢化合物,含5~10个环原子的未取代或任选取代的芳香环或芳杂基团;
    X、Z两者中至少有一个不等于Y;
    其中结构通式(1)中的虚线代表在此有机化合物中的相邻单体的键。
  2. 根据权利要求1所述的有机化合物,其特征在于,其中Ar1、Ar2、Ar3、Ar4、或Ar5在多次出现时,相同或不同地独立选自具有2-20个碳原子的芳香族环或杂芳香族环。
  3. 根据权利要求1或2所述的有机化合物,其特征在于,其中三桥联基Z选自如下结构基团:
    其中上述基团所示虚线键表示与结构单元Ar1,Ar2,Ar5键合的键。
  4. 根据权利要求1或2所述的有机化合物,其特征在于,所述有机化合物具有选自如下结构式(2),(3),(4),(5)及(6)的结构式:
    Figure PCTCN2015097191-appb-100003
    其中,X,Y在每一次出现中,是相同或不同的键桥基,各X、Y选自单键,N(R1),B(R1),C(R1)2,O,Si(R1)2,C=C(R1)2,S,S=O,SO2,P(R1)以及P(=O)R1,虚线表示连接两个基团之间的共价键。
  5. 根据权利要求1-4中任一个所述的有机化合物,其特征在于,其中Ar1、Ar2或Ar3,在多次出现时,相同或不同地选自:
    Figure PCTCN2015097191-appb-100004
  6. 根据权利要求1-5中任一个所述的有机化合物,其特征在于,所述有机化合物含有至少一个选自结构(2a),(3a),(4a),(5a)和(6a)的结构单元:
    Figure PCTCN2015097191-appb-100005
    Figure PCTCN2015097191-appb-100006
  7. 根据权利要求1-6中任一个所述的有机化合物,其特征在于,其中Ar4、Ar5在多次出现时,相同或不同地包含选自以下各项的结构单元或其组合:
    Figure PCTCN2015097191-appb-100007
    Figure PCTCN2015097191-appb-100008
  8. 根据权利要求1-7中任一个所述的有机化合物,其特征在于,该有机化合物的Δ(S1-T1)≤0.30eV,较优选是≤0.25eV,更优选是≤0.20eV,最优选是≤0.10eV。
  9. 根据权利要求1-8中任一个所述的有机化合物,其特征在于,其中Ar4、Ar5在多次出现时,各Ar4、Ar5中至少有一个包含一供电子基,和/或至少有一个包含一吸电子基。
  10. 根据权利要求9所述的有机化合物,其特征在于,供电子基选自如下基团:
    Figure PCTCN2015097191-appb-100009
    Figure PCTCN2015097191-appb-100010
  11. 根据权利要求9或10所述的有机化合物,其特征在于,吸电子基选自F,氰基或选自包含有如下基团的结构单元:
    Figure PCTCN2015097191-appb-100011
    其中,n是选自1至3的整数;X1-X8选自CR1或N,并且至少有一个是N。
  12. 根据权利要求1-11中任一个所述的有机化合物,其特征在于,该有机化合物的分子量≤4000g/mol,较优选是≤3000g/mol,更优选是≤2500g/mol,最优选是≤2000g/mol。
  13. 一种混合物,包括如权利要求1至12任一项所述的有机化合物,及至少一种有机功能材料,所述有机功能材料选自空穴注入材料,空穴传输材料,电子传输材料,电子注入材料,电子阻挡材料,空穴阻挡材料,发光体,主体材料中的任一种或其组合。
  14. 一种组合物,包括如权利要求1至12任一项所述的有机化合物,及至少一种有机溶剂。
  15. [根据细则26改正22.12.2015] 
    一种有机电子器件,其特征在于,包括如权利要求1至12任一项所述的有机化合物中的任一种或其混合物。
  16. 根据权利要求14所述的有机电子器件,其特征在于,所述有机电子器件是电致发光器件,其发光层包含如权利要求1至12任一项所述的有机化合物。
  17. 根据权利要求15所述的有机电子器件,其特征在于,所述有机电子器件选自有机发光二极管、有机光伏电池、 有机发光电池、有机场效应管、有机发光场效应管、有机激光器,有机自旋电子器件,有机传感器及有机等离激元发射二极管中的任一种或其组合。
PCT/CN2015/097191 2014-12-11 2015-12-11 有机化合物、包含其的混合物、组合物和有机电子器件 WO2016091219A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580067459.6A CN107004779B (zh) 2014-12-11 2015-12-11 有机化合物、包含其的混合物、组合物和有机电子器件
US15/535,026 US10510967B2 (en) 2014-12-11 2015-12-11 Organic compound, and mixture, formulation and organic device comprising the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410765360 2014-12-11
CN201410765360.0 2014-12-11

Publications (1)

Publication Number Publication Date
WO2016091219A1 true WO2016091219A1 (zh) 2016-06-16

Family

ID=56106748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/097191 WO2016091219A1 (zh) 2014-12-11 2015-12-11 有机化合物、包含其的混合物、组合物和有机电子器件

Country Status (3)

Country Link
US (1) US10510967B2 (zh)
CN (1) CN107004779B (zh)
WO (1) WO2016091219A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108003365A (zh) * 2017-11-28 2018-05-08 广州华睿光电材料有限公司 有机复合薄膜及其在有机电子器件中的应用
CN109244258A (zh) * 2018-08-31 2019-01-18 昆山国显光电有限公司 一种有机电致发光器件和显示装置
CN109411634A (zh) * 2018-08-31 2019-03-01 昆山国显光电有限公司 一种有机电致发光器件和显示装置
US20190093009A1 (en) * 2017-09-26 2019-03-28 Luminescence Technology Corporation Delayed fluorescence compound and organic electroluminescent device using the same
US10944060B2 (en) 2017-05-11 2021-03-09 Universal Display Corporation Organic electroluminescent materials and devices
CN113956273A (zh) * 2021-11-09 2022-01-21 南京艾姆材料科技有限公司 一种并咔唑二聚体及其合成方法和应用

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3974433B1 (en) 2019-05-20 2024-02-21 Idemitsu Kosan Co.,Ltd. Organic electroluminescent element, compound, and electronic appliance
CN110577513A (zh) * 2019-08-28 2019-12-17 武汉华星光电半导体显示技术有限公司 电致发光材料、电致发光材料的制备方法及发光器件
CN116496495A (zh) * 2022-01-18 2023-07-28 闽都创新实验室 一种冠醚基共价有机聚合物及其光辅助锂有机电池器件

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102648268A (zh) * 2009-12-07 2012-08-22 新日铁化学株式会社 有机发光材料及有机发光元件
US20140158992A1 (en) * 2012-12-07 2014-06-12 Universal Display Corporation Carbazole Compounds For Delayed Fluorescence

Family Cites Families (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3567450A (en) 1968-02-20 1971-03-02 Eastman Kodak Co Photoconductive elements containing substituted triarylamine photoconductors
US3615404A (en) 1968-04-25 1971-10-26 Scott Paper Co 1 3-phenylenediamine containing photoconductive materials
US4720432A (en) 1987-02-11 1988-01-19 Eastman Kodak Company Electroluminescent device with organic luminescent medium
US4769292A (en) 1987-03-02 1988-09-06 Eastman Kodak Company Electroluminescent device with modified thin film luminescent zone
US5121029A (en) 1987-12-11 1992-06-09 Idemitsu Kosan Co., Ltd. Electroluminescence device having an organic electroluminescent element
US5130603A (en) 1989-03-20 1992-07-14 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
US5061569A (en) 1990-07-26 1991-10-29 Eastman Kodak Company Electroluminescent device with organic electroluminescent medium
JP2913116B2 (ja) 1990-11-20 1999-06-28 株式会社リコー 電界発光素子
EP0765106B1 (en) 1995-09-25 2002-11-27 Toyo Ink Manufacturing Co., Ltd. Light-emitting material for organic electroluminescence device, and organic electroluminescence device for which the light-emitting material is adapted
GB9826406D0 (en) 1998-12-02 1999-01-27 South Bank Univ Entpr Ltd Quinolates
US6830828B2 (en) 1998-09-14 2004-12-14 The Trustees Of Princeton University Organometallic complexes as phosphorescent emitters in organic LEDs
US6020078A (en) 1998-12-18 2000-02-01 Eastman Kodak Company Green organic electroluminescent devices
ATE344532T1 (de) 1999-05-13 2006-11-15 Univ Princeton Lichtemittierende, organische, auf elektrophosphoreszenz basierende anordnung mit sehr hoher quantenausbeute
KR100809132B1 (ko) 1999-09-21 2008-02-29 이데미쓰 고산 가부시키가이샤 유기 전자발광 소자 및 유기 발광 매체
EP2278637B2 (en) 1999-12-01 2021-06-09 The Trustees of Princeton University Complexes of form L2MX
JP4048521B2 (ja) 2000-05-02 2008-02-20 富士フイルム株式会社 発光素子
US20020121638A1 (en) 2000-06-30 2002-09-05 Vladimir Grushin Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds
EP1325671B1 (en) 2000-08-11 2012-10-24 The Trustees Of Princeton University Organometallic compounds and emission-shifting organic electrophosphorescence
JP4154140B2 (ja) 2000-09-26 2008-09-24 キヤノン株式会社 金属配位化合物
JP4154138B2 (ja) 2000-09-26 2008-09-24 キヤノン株式会社 発光素子、表示装置及び金属配位化合物
JP4154139B2 (ja) 2000-09-26 2008-09-24 キヤノン株式会社 発光素子
KR20030093240A (ko) 2001-03-16 2003-12-06 이데미쓰 고산 가부시키가이샤 방향족 아미노 화합물의 제조방법
US6835469B2 (en) 2001-10-17 2004-12-28 The University Of Southern California Phosphorescent compounds and devices comprising the same
DE10338550A1 (de) 2003-08-19 2005-03-31 Basf Ag Übergangsmetallkomplexe mit Carbenliganden als Emitter für organische Licht-emittierende Dioden (OLEDs)
DE10345572A1 (de) 2003-09-29 2005-05-19 Covion Organic Semiconductors Gmbh Metallkomplexe
US7029766B2 (en) 2003-12-05 2006-04-18 Eastman Kodak Company Organic element for electroluminescent devices
US6824895B1 (en) 2003-12-05 2004-11-30 Eastman Kodak Company Electroluminescent device containing organometallic compound with tridentate ligand
US7598388B2 (en) 2004-05-18 2009-10-06 The University Of Southern California Carbene containing metal complexes as OLEDs
CN100368363C (zh) 2004-06-04 2008-02-13 友达光电股份有限公司 蒽化合物以及包括此蒽化合物的有机电致发光装置
TW200613515A (en) 2004-06-26 2006-05-01 Merck Patent Gmbh Compounds for organic electronic devices
DE102004031000A1 (de) 2004-06-26 2006-01-12 Covion Organic Semiconductors Gmbh Organische Elektrolumineszenzvorrichtungen
DE102004034517A1 (de) 2004-07-16 2006-02-16 Covion Organic Semiconductors Gmbh Metallkomplexe
TW200639140A (en) 2004-12-01 2006-11-16 Merck Patent Gmbh Compounds for organic electronic devices
JP4263700B2 (ja) 2005-03-15 2009-05-13 出光興産株式会社 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
US20060222886A1 (en) 2005-04-04 2006-10-05 Raymond Kwong Arylpyrene compounds
DE102005023437A1 (de) 2005-05-20 2006-11-30 Merck Patent Gmbh Verbindungen für organische elektronische Vorrichtungen
US7588839B2 (en) 2005-10-19 2009-09-15 Eastman Kodak Company Electroluminescent device
US20070092759A1 (en) 2005-10-26 2007-04-26 Begley William J Organic element for low voltage electroluminescent devices
US7767317B2 (en) 2005-10-26 2010-08-03 Global Oled Technology Llc Organic element for low voltage electroluminescent devices
DE102005058557A1 (de) 2005-12-08 2007-06-14 Merck Patent Gmbh Organische Elektrolumineszenzvorrichtung
DE102005058543A1 (de) 2005-12-08 2007-06-14 Merck Patent Gmbh Organische Elektrolumineszenzvorrichtungen
CN101415718B (zh) 2006-02-10 2013-05-29 通用显示公司 环金属化的咪唑并[1,2-f]菲啶和二咪唑并[1,2-a:1',2'-c]喹唑啉配位体和其等电子和苯并环化类似物的金属络合物
DE102006015183A1 (de) 2006-04-01 2007-10-04 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
US20070252517A1 (en) 2006-04-27 2007-11-01 Eastman Kodak Company Electroluminescent device including an anthracene derivative
DE102006025846A1 (de) 2006-06-02 2007-12-06 Merck Patent Gmbh Neue Materialien für organische Elektrolumineszenzvorrichtungen
DE102006031990A1 (de) 2006-07-11 2008-01-17 Merck Patent Gmbh Neue Materialien für organische Elektrolumineszenzvorrichtungen
JP2008053397A (ja) 2006-08-24 2008-03-06 Ricoh Co Ltd 半導体装置及びその製造方法
JP2008124156A (ja) 2006-11-09 2008-05-29 Idemitsu Kosan Co Ltd 有機el材料含有溶液、有機el材料の薄膜形成方法、有機el材料の薄膜、有機el素子
US7645142B2 (en) 2007-09-05 2010-01-12 Vivant Medical, Inc. Electrical receptacle assembly
US8221905B2 (en) 2007-12-28 2012-07-17 Universal Display Corporation Carbazole-containing materials in phosphorescent light emitting diodes
DE102008015526B4 (de) 2008-03-25 2021-11-11 Merck Patent Gmbh Metallkomplexe
DE102008027005A1 (de) 2008-06-05 2009-12-10 Merck Patent Gmbh Organische elektronische Vorrichtung enthaltend Metallkomplexe
DE102008036247A1 (de) 2008-08-04 2010-02-11 Merck Patent Gmbh Elektronische Vorrichtungen enthaltend Metallkomplexe
DE102008048336A1 (de) 2008-09-22 2010-03-25 Merck Patent Gmbh Einkernige neutrale Kupfer(I)-Komplexe und deren Verwendung zur Herstellung von optoelektronischen Bauelementen
DE102008057050B4 (de) 2008-11-13 2021-06-02 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
DE102008057051B4 (de) 2008-11-13 2021-06-17 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
DE102009007038A1 (de) 2009-02-02 2010-08-05 Merck Patent Gmbh Metallkomplexe
DE102009011223A1 (de) 2009-03-02 2010-09-23 Merck Patent Gmbh Metallkomplexe
DE102009013041A1 (de) 2009-03-13 2010-09-16 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
US8586203B2 (en) 2009-05-20 2013-11-19 Universal Display Corporation Metal complexes with boron-nitrogen heterocycle containing ligands
KR20130020883A (ko) 2010-03-11 2013-03-04 메르크 파텐트 게엠베하 요법 및 미용에서의 섬유
EP2569055A2 (de) 2010-05-12 2013-03-20 Merck Patent GmbH Photostabilisatoren
DE112011102008B4 (de) 2010-06-15 2022-04-21 Merck Patent Gmbh Metallkomplexe
EP2404627A1 (en) 2010-07-09 2012-01-11 Universite De Nantes I Bone regeneration membrane and method for forming a bone regeneration membrane
DE102010027319A1 (de) 2010-07-16 2012-01-19 Merck Patent Gmbh Metallkomplexe
DE102010027317A1 (de) 2010-07-16 2012-01-19 Merck Patent Gmbh Metallkomplexe
DE102010027316A1 (de) 2010-07-16 2012-01-19 Merck Patent Gmbh Metallkomplexe
DE102010056151A1 (de) * 2010-12-28 2012-06-28 Merck Patent Gmbh Materiallen für organische Elektrolumineszenzvorrichtungen

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102648268A (zh) * 2009-12-07 2012-08-22 新日铁化学株式会社 有机发光材料及有机发光元件
US20140158992A1 (en) * 2012-12-07 2014-06-12 Universal Display Corporation Carbazole Compounds For Delayed Fluorescence

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10944060B2 (en) 2017-05-11 2021-03-09 Universal Display Corporation Organic electroluminescent materials and devices
US20190093009A1 (en) * 2017-09-26 2019-03-28 Luminescence Technology Corporation Delayed fluorescence compound and organic electroluminescent device using the same
US10472564B2 (en) * 2017-09-26 2019-11-12 Feng-wen Yen Delayed fluorescence compound and organic electroluminescent device using the same
CN108003365A (zh) * 2017-11-28 2018-05-08 广州华睿光电材料有限公司 有机复合薄膜及其在有机电子器件中的应用
CN109244258A (zh) * 2018-08-31 2019-01-18 昆山国显光电有限公司 一种有机电致发光器件和显示装置
CN109411634A (zh) * 2018-08-31 2019-03-01 昆山国显光电有限公司 一种有机电致发光器件和显示装置
CN109411634B (zh) * 2018-08-31 2019-12-24 昆山国显光电有限公司 一种有机电致发光器件和显示装置
CN109244258B (zh) * 2018-08-31 2020-03-24 昆山国显光电有限公司 一种有机电致发光器件和显示装置
US11508927B2 (en) 2018-08-31 2022-11-22 Kunshan Go-Visionox Opto-Electronics Co., Ltd Organic electroluminescence device, preparation method thereof and display apparatus
CN113956273A (zh) * 2021-11-09 2022-01-21 南京艾姆材料科技有限公司 一种并咔唑二聚体及其合成方法和应用

Also Published As

Publication number Publication date
US20180130955A1 (en) 2018-05-10
US10510967B2 (en) 2019-12-17
CN107004779B (zh) 2019-03-08
CN107004779A (zh) 2017-08-01

Similar Documents

Publication Publication Date Title
CN109790460B (zh) 含硼有机化合物及应用、有机混合物、有机电子器件
WO2017092495A1 (zh) 热激发延迟荧光材料、高聚物、混合物、组合物以及有机电子器件
US10323180B2 (en) Deuterated organic compound, mixture and composition containing said compound, and organic electronic device
WO2019105327A1 (zh) 有机复合薄膜及其在有机电子器件中的应用
CN107001380B (zh) 化合物、包含其的混合物、组合物和有机电子器件
US10510967B2 (en) Organic compound, and mixture, formulation and organic device comprising the same
US10840450B2 (en) Polymer, and mixture or formulation, and organic electronic device containing same, and monomer thereof
WO2019128633A1 (zh) 含硼杂环化合物、高聚物、混合物、组合物及其用途
CN107004778B (zh) 有机混合物、包含其的组合物、有机电子器件及应用
US10573827B2 (en) Organic metal complex, and polymer, mixture, composition and organic electronic device containing same and use thereof
CN108137558B (zh) 咔唑衍生物、高聚物、混合物、组合物、有机电子器件及其应用
WO2018095390A1 (zh) 有机化合物及其应用、有机混合物、有机电子器件
WO2017118238A1 (zh) 氘代三芳胺衍生物及其在电子器件中的应用
CN109705100B (zh) 含萘咔唑类有机光化合物、混合物、组合物及其用途
CN109791992B (zh) 高聚物、包含其的混合物、组合物和有机电子器件以及用于聚合的单体
WO2017118262A1 (zh) 有机化合物及其应用
CN109790087B (zh) 氘代稠环化合物、高聚物、混合物、组合物以及有机电子器件
CN111344289A (zh) 含氮杂环化合物、高聚物、混合物、组合物及其用途
WO2018099432A1 (zh) 稠环化合物及制备方法和应用
WO2018095396A1 (zh) 含氮杂咔唑衍生物的有机混合物及其应用
WO2018103746A1 (zh) 咔唑苯类稠环衍生物、聚合物、混合物、组合物、有机电子器件及其制备方法
WO2017118155A1 (zh) 一种有机光电材料及其用途
WO2018099431A1 (zh) 芘类有机化合物及其制备方法和应用
WO2018108107A1 (zh) 共轭聚合物及其在有机电子器件的应用
WO2018095388A1 (zh) 有机化合物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15867234

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15535026

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 15867234

Country of ref document: EP

Kind code of ref document: A1