WO2019128633A1 - 含硼杂环化合物、高聚物、混合物、组合物及其用途 - Google Patents

含硼杂环化合物、高聚物、混合物、组合物及其用途 Download PDF

Info

Publication number
WO2019128633A1
WO2019128633A1 PCT/CN2018/118989 CN2018118989W WO2019128633A1 WO 2019128633 A1 WO2019128633 A1 WO 2019128633A1 CN 2018118989 W CN2018118989 W CN 2018118989W WO 2019128633 A1 WO2019128633 A1 WO 2019128633A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
boron
containing heterocyclic
heterocyclic compound
atoms
Prior art date
Application number
PCT/CN2018/118989
Other languages
English (en)
French (fr)
Inventor
张晨
黄宏
江广涛
游雪强
潘君友
Original Assignee
广州华睿光电材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州华睿光电材料有限公司 filed Critical 广州华睿光电材料有限公司
Priority to CN201880068814.5A priority Critical patent/CN111278838B/zh
Publication of WO2019128633A1 publication Critical patent/WO2019128633A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • This invention relates to the field of electroluminescent materials, and more particularly to boron-containing heterocyclic compounds, polymers, mixtures, compositions and uses thereof.
  • Organic optoelectronic materials have versatility in synthesis, relatively low manufacturing costs, and excellent optical and electrical properties.
  • Organic light-emitting diodes (OLEDs) have great potential for applications in optoelectronic devices such as flat panel displays and lighting.
  • Organic light-emitting diodes using fluorescent materials have high reliability, but their internal electroluminescence quantum under electrical excitation. The efficiency is limited to 25% because the branch ratio of the singlet excited state to the triplet excited state of the excitons is 1:3.
  • organic light-emitting diodes using phosphorescent materials have achieved nearly 100% internal electroluminescence quantum efficiency.
  • the luminous efficiency of phosphorescent materials can be increased by a factor of four compared with fluorescent materials, so the development of phosphorescent materials has been extensively studied.
  • a luminescent material can be used as a luminescent material together with a host material (main body) to improve color purity, luminous efficiency, and stability. Since the host material greatly affects the efficiency and characteristics of the electroluminescent device when the host material/dopant system is used as the light-emitting layer of the light-emitting device, the selection of the host material is important.
  • CBP 4,4'-dicarbazole-biphenyl
  • BAlq bis(2-methyl)-8-hydroxyquinoline-4-phenylphenol aluminum (III).
  • BCP phenanthroline
  • Patent CN104541576A discloses a class of triazine or pyrimidine derivatives, but the device performance and lifetime obtained are still not sufficient for commercialization.
  • the existing materials have a low glass transition temperature and poor thermal stability.
  • the morphology of the film changes, thereby affecting the stability of the device.
  • the current efficiency (cd/A) of an OLED device using a phosphorescent device is remarkably higher than that of a fluorescent electroluminescent device, but a phosphorescent OLED using an existing host material such as (CBP, BAlq) or the like as a host material has a higher driving voltage. High, so there is no obvious advantage in terms of power efficiency (lm/W).
  • boron-containing heterocyclic compound a high polymer, a mixture, a composition, and uses thereof.
  • the boron-containing heterocyclic compound, high polymer, mixture, and composition can be used as a new functional material, especially a host material, to solve the problem of high cost, high efficiency, low rolling speed and short life of the existing phosphorescent material. problem.
  • L 1 , L 2 are each independently a single bond, or are each independently selected from: a linear alkane group having 1 to 15 carbon atoms, a branched alkane group having 1 to 15 carbon atoms, and 1 to 15 a cycloalkane group of a carbon atom, an aromatic group having 5 to 20 ring atoms, a heteroaryl group having 5 to 20 ring atoms or a non-aromatic ring group having 5 to 20 ring atoms;
  • X 1 , X 2 , and X 3 are each independently selected from: N or CR 1 , and at least one of X 1 , X 2 , and X 3 is a nitrogen atom;
  • Ar 1 and Ar 2 are each independently selected from an aromatic ring system having 5 to 20 ring atoms, a heteroaromatic ring system having 5 to 20 ring atoms, or a non-aromatic ring system having 5 to 20 ring atoms. ;
  • Ar 3 and Ar 4 are each independently selected from phenyl or naphthyl;
  • Y is selected from NR 3 , CR 4 R 5 , SiR 4 R 5 , O or S;
  • R 3 , R 4 , and R 5 are each independently selected from H, D, a linear alkyl group having 1 to 20 C atoms, an alkoxy group having 1 to 20 C atoms, and 1 to 20 C atoms.
  • boron-containing heterocyclic compound is optionally further substituted with one or more R 1 substituents;
  • R 1 When a plurality of R 1 is present, R 1 s the same or different, said R 1 is selected F, Cl, Br, I, D, CN, NO 2, CF 3, B (OR 2) 2, Si (R 2 ) 3 , a linear alkane, a branched alkane, a cycloalkane, an alkane ether having 3 to 10 carbon atoms, an alkane sulfide having 1 to 10 carbon atoms, an aryl group having 5 to 40 carbon atoms or a heteroaryl group Group
  • R 2 is defined as R 3 .
  • a boron-containing heterocyclic high polymer wherein the repeating unit of the boron-containing heterocyclic high polymer comprises the above-described structure of a boron-containing heterocyclic compound.
  • a boron-containing heterocyclic mixture comprising the above boron-containing heterocyclic compound or the above boron-containing heterocyclic high polymer, and at least one organic functional material, which may be selected from a hole injecting material, a hole transporting Materials, electron transport materials, electron injecting materials, electron blocking materials, hole blocking materials, illuminants or host materials.
  • a boron-containing heterocyclic composition comprising the above boron-containing heterocyclic compound or the above boron-containing heterocyclic high polymer, and at least one organic solvent.
  • An organic electronic device comprising at least one of the above boron-containing heterocyclic compound or the above boron-containing heterocyclic high polymer.
  • the boron-containing heterocyclic compound according to the present invention can be used as a host material, and by blending with a suitable guest, particularly a phosphorescent guest or a TADF guest, can improve the luminous efficiency and lifetime of the electroluminescent device, and provide a low manufacturing cost.
  • a suitable guest particularly a phosphorescent guest or a TADF guest
  • the boron-containing heterocyclic compound according to the present invention also facilitates the realization of thermally excited delayed fluorescent luminescence (TADF) characteristics.
  • TADF thermally excited delayed fluorescent luminescence
  • the present invention provides an organic compound and its use in an organic electroluminescent device.
  • the present invention will be further described in detail below in order to make the objects, technical solutions and effects of the present invention more clear and clear. It is understood that the specific embodiments described herein are merely illustrative of the invention and are not intended to limit the invention.
  • composition and the printing ink, or ink have the same meaning and are interchangeable.
  • the host material, the matrix material, the Host or the Matrix material have the same meaning, and they are interchangeable.
  • substituted means that the hydrogen atom in the substituent is substituted with a substituent.
  • the "number of ring atoms” means a structural compound (for example, a monocyclic compound, a fused ring compound, a crosslinking compound, a carbocyclic compound, or a heterocyclic compound) obtained by synthesizing a ring bond, which constitutes the ring itself.
  • the number of atoms in an atom When the ring is substituted by a substituent, the atom contained in the substituent is not included in the ring-forming atom.
  • the “number of ring atoms” described below is also the same unless otherwise specified. For example, the number of ring atoms of the benzene ring is 6, the number of ring atoms of the naphthalene ring is 10, and the number of ring atoms of the thienyl group is 5.
  • HOMO represents the highest occupied molecular orbital
  • LUMO represents the lowest unoccupied molecular orbital
  • the triplet energy levels can be expressed as E T1 , T1, T 1 , which have the same meaning.
  • the singlet energy levels can be expressed as E S1 , S1, S 1 , which have the same meaning.
  • the energy level structure of the organic material the triplet energy levels E T1 , HOMO, and LUMO play a key role.
  • the following is an introduction to the determination of these energy levels.
  • the HOMO and LUMO levels can be measured by photoelectric effect, such as XPS (X-ray photoelectron spectroscopy) and UPS (UV photoelectron spectroscopy) or by cyclic voltammetry (hereinafter referred to as CV).
  • photoelectric effect such as XPS (X-ray photoelectron spectroscopy) and UPS (UV photoelectron spectroscopy) or by cyclic voltammetry (hereinafter referred to as CV).
  • quantum chemical methods such as density functional theory (hereinafter referred to as DFT) have also become effective methods for calculating molecular orbital energy levels.
  • the triplet energy level E T1 of organic materials can be measured by low temperature time-resolved luminescence spectroscopy, or by quantum simulation calculations (eg by Time-dependent DFT), as by commercial software Gaussian 03W (Gaussian Inc.), specific simulation methods. See WO2011141110 or as described below in the examples.
  • the absolute values of HOMO, LUMO, E T1 depend on the measurement method or calculation method used, and even for the same method, different evaluation methods, such as starting point and peak point on the CV curve, can give different HOMO/ LUMO value. Therefore, reasonable and meaningful comparisons should be made using the same measurement method and the same evaluation method.
  • the values of HOMO, LUMO, and E T1 are simulations based on Time-dependent DFT, but do not affect the application of other measurement or calculation methods.
  • (HOMO-1) is defined as the second highest occupied orbital level
  • (HOMO-2) is the third highest occupied orbital level
  • (LUMO+1) is defined as the second lowest unoccupied orbital level
  • (LUMO+2) is the third lowest occupied orbital level, and so on.
  • the substituent Indicates the attachment site of the substituent, for example: Representing an optional position on the dibenzofuran ring; It means that the benzene ring and the dibenzofuran ring are connected at any substitutable position.
  • the present invention provides a boron-containing heterocyclic compound represented by the formula (1) or the formula (2):
  • L 1 , L 2 are each independently a single bond, or are each independently selected from: a linear alkane group having 1 to 15 carbon atoms, a branched alkane group having 1 to 15 carbon atoms, and 1 to 15 a cycloalkane group of a carbon atom, an aromatic group having 5 to 20 ring atoms, a heteroaromatic group having 5 to 20 ring atoms or a non-aromatic group having 5 to 20 ring atoms;
  • X 1 , X 2 , and X 3 are each independently selected from: N or CR 1 , and at least one of X 1 , X 2 , and X 3 is a nitrogen atom;
  • Ar 1 and Ar 2 are each independently selected from an aromatic ring system having 5 to 20 ring atoms, a heteroaromatic ring system having 5 to 20 ring atoms, or a non-aromatic ring system having 5 to 20 ring atoms. ;
  • Ar 3 and Ar 4 are each independently selected from phenyl or naphthyl; in one embodiment, both Ar 3 and Ar 4 are phenyl.
  • Y is selected from NR 3 , CR 4 R 5 , SiR 4 R 5 , O or S;
  • boron-containing heterocyclic compound is optionally further substituted with one or more R 1 substituents;
  • R 1 When a plurality of R 1 is present, R 1 s the same or different, said R 1 is selected F, Cl, Br, I, D, CN, NO 2, CF 3, B (OR 2) 2, Si (R 2 ) 3 , a linear alkane, a branched alkane, a cycloalkane, an alkane ether having 3 to 10 carbon atoms, an alkane sulfide having 1 to 10 carbon atoms, an aryl group having 5 to 40 carbon atoms or a heteroaryl group Group
  • R 2 is defined as R 3 .
  • an aromatic ring system contains from 5 to 20 carbon atoms in the ring system
  • a heteroaromatic ring system contains from 1 to 20 carbon atoms and at least one hetero atom in the ring system, provided that the carbon atom and the hetero atom The total number is at least 4.
  • the heteroatoms are preferably selected from the group consisting of Si, N, P, O, S and/or Ge, particularly preferably selected from the group consisting of Si, N, P, O and/or S.
  • aromatic or heteroaromatic ring systems include not only aromatic or heteroaromatic systems, but also multiple aryl or heteroaryl groups may also be interrupted by short non-aromatic units ( ⁇ 10%).
  • Non-H atoms preferably less than 5% of non-H atoms, such as C, N or O atoms).
  • systems such as 9,9'-spirobifluorene, 9,9-diarylfluorene, triarylamine, diaryl ether, etc., are also considered to be aromatic ring systems for the purposes of the present invention.
  • non-aromatic ring systems contain from 1 to 20, preferably from 1 to 3, carbon atoms in the ring system, and include not only saturated but also partially unsaturated cyclic systems which may be unsubstituted or grouped R 1 is mono- or polysubstituted, the groups R 1 may be the same or different in each occurrence, and may also contain one or more heteroatoms, preferably Si, N, P, O, S and/or Ge, in particular It is preferably selected from the group consisting of Si, N, P, O and/or S. These may, for example, be cyclohexyl- or piperidine-like systems or ring-like octadiene ring systems. The term also applies to fused non-aromatic ring systems.
  • the H atom or the bridging group CH 2 group on NH may be substituted by a R 7 group, and R 7 may be selected from (1) a C1 to C10 alkyl group, particularly preferably a group as defined below.
  • a C2 to C10 aryl or heteroaryl group which may be monovalent or divalent depending on the use, and in each case may also be substituted by the above-mentioned group R 1 and may pass through any desired position.
  • Attached to an aromatic or heteroaromatic ring particularly preferred are the following groups: benzene, naphthalene, anthracene, quinone, indoline, fluorene, fluorene, fluoranthene, butyl, pentane, benzopyrene, Furan, benzofuran, isobenzofuran, dibenzofuran, thiophene, benzothiophene, isobenzothiophene, thiopurine, pyrrole, indole, isoindole, indazole, pyridine, quinoline, isoquinoline , acridine, phenanthridine, benzo-5,6-quinoline, benzo-6,7-quinoline, benzo
  • aromatic and heteroaromatic ring systems are considered to be especially in addition to the above-mentioned aryl and heteroaryl groups, but also to biphenylene, benzene terphenyl, anthracene, spirobifluorene, dihydrogen. Phenanthrene, tetrahydroanthracene and cis or trans fluorene.
  • the boron-containing heterocyclic compound according to the present invention wherein at least one of L 1 , L 2 , Ar 1 , Ar 2 is selected from an aromatic ring or a heteroaromatic ring having 5 to 20 ring atoms
  • the L 1 , L 2 , Ar 1 , Ar 2 may be optionally further substituted with one or more groups R 1 .
  • the aromatic ring group means a hydrocarbon group containing at least one aromatic ring.
  • a heterocyclic aromatic ring group refers to an aromatic hydrocarbon group containing at least one hetero atom.
  • a fused ring aromatic group means that the ring of the aromatic group may have two or more rings in which two carbon atoms are shared by two adjacent rings, that is, a fused ring.
  • a fused heterocyclic aromatic group refers to a fused ring aromatic hydrocarbon group containing at least one hetero atom.
  • an aromatic group or a heterocyclic aromatic group includes not only a system of aromatic rings but also a non-aromatic ring system.
  • systems such as pyridine, thiophene, pyrrole, pyrazole, triazole, imidazole, oxazole, oxadiazole, thiazole, tetrazole, pyrazine, pyridazine, pyrimidine, triazine, carbene, etc., are also considered for the purpose of the invention.
  • It is an aromatic group or a heterocyclic aromatic group.
  • the fused ring aromatic or fused heterocyclic aromatic ring system includes not only a system of an aromatic group or a heteroaromatic group, but also a plurality of aromatic groups or heterocyclic aromatic groups may be short.
  • Non-aromatic units are interrupted ( ⁇ 10% non-H atoms, preferably less than 5% non-H atoms, such as C, N or O atoms).
  • systems such as 9,9'-spirobifluorene, 9,9-diarylfluorene, triarylamine, diaryl ether, etc., are also considered to be fused ring aromatic ring systems for the purposes of this invention.
  • fused ring aromatic group examples include: naphthalene, anthracene, fluoranthene, phenanthrene, triphenylene, perylene, tetracene, anthracene, benzopyrene, anthracene, anthracene, and derivatives thereof.
  • fused heterocyclic aromatic group examples include: benzofuran, benzothiophene, anthracene, oxazole, pyrroloimidazole, pyrrolopyrrol, thienopyrrole, thienothiophene, furopyrrol, furanfuran , thienofuran, benzisoxazole, benzisothiazole, benzimidazole, quinoline, isoquinoline, o-diazepine, quinoxaline, phenanthridine, pyridine, quinazoline, quinazolinone And its derivatives.
  • L 1 , L 2 , Ar 1 , Ar 2 is selected from one or a combination of the following structural groups:
  • each X is independently selected from N or CR 1 ;
  • each Y is independently NR 3 , CR 4 R 5 , SiR 4 R 5 , O or S;
  • R 1 , R 3 , R 4 and R 5 have the same meanings as defined above.
  • L 1 , L 2 , Ar 1 , Ar 2 may also be selected from one or more combinations comprising the following structural groups, wherein H on the ring may be optionally substituted:
  • L 1 , L 2 are each independently a single bond, or are selected from the group consisting of:
  • the broken line indicates the connection site of a single bond.
  • At least one of the intermediates L 1 , L 2 , Ar 1 , and Ar 2 in the general formula (1) and the general formula (2) is selected from the following structural units:
  • n 1 or 2 or 3 or 4.
  • the boron-containing heterocyclic compound according to formula (1) or formula (2) may have various photoelectric functions including, but not limited to, hole transport function, electron transport function, luminescence function, exciton Blocking function, etc.
  • the substituents R 1 to R 7 can be adjusted and even determine the function of the compound.
  • the substituents R 1 to R 7 have an influence on the electronic properties and physical properties of the compound represented by the formula (1) or (2).
  • the boron-containing heterocyclic compound has a structure as shown in the general formula (3):
  • the Ar 1 and Ar 2 are selected from the group consisting of:
  • X 1 , X 2 , and X 3 are each independently selected from: N or CH, and at least one of X 1 , X 2 , and X 3 is a nitrogen atom;
  • Z is N or CH
  • n 0, 1, or 2.
  • Z in the general formula (3) is CH, X 1 is N, X 2 is N; and X 3 is N.
  • the boron-containing heterocyclic compound has a structure represented by any one of formula (4) to formula (9)
  • A is O, S, NR 10 or CR 11 R 12; the R 10, R 11, R 12 are defined as R 3, preferably R 10 is a phenyl, biphenyl or naphthyl group; R 11 And R 12 are each independently a C1-C6 alkyl group;
  • W 1 , W 2 , W 3 are each independently N or CR 13 ; the R 13 is as defined by R 3 ;
  • Rings E and F are each independently a benzene ring or a naphthalene ring.
  • the boron-containing heterocyclic compound has R 13 as in the formula (4) selected from: H or the following groups:
  • the boron-containing heterocyclic compound has a structure as shown in the formula (10):
  • A is O, S, NR 10 or CR 11 R 12 ;
  • the R 10 is a phenyl group; R 11 is a methyl group; and R 12 is a methyl group.
  • the boron-containing heterocyclic compound according to the present invention is at least partially deuterated, preferably 10% of H is deuterated, more preferably 20% of H is deuterated, and is preferably 30% H is replaced, preferably 40% of H is replaced.
  • the boron-containing heterocyclic compound according to the invention can be used as a functional material in electronic devices, particularly OLED devices.
  • Organic functional materials can be classified into hole injection materials (HIM), hole transport materials (HTM), electron transport materials (ETM), electron injecting materials (EIM), electron blocking materials (EBM), and hole blocking materials (HBM). , Emitter, Host and Organic Dyes.
  • the boron-containing heterocyclic compound according to the invention may be used as a host material, or an electron transporting material, or a hole transporting material.
  • the boron-containing heterocyclic compound according to the invention may be used as a phosphorescent host material or a co-host material.
  • the boron-containing heterocyclic compound according to the invention has T 1 ⁇ 2.2 eV, preferably ⁇ 2.4 eV, more preferably ⁇ 2.6 eV, and most preferably ⁇ 2.7 eV.
  • the boron-containing heterocyclic compound according to the present invention has a glass transition temperature Tg ⁇ 100 ° C. In a preferred embodiment, Tg ⁇ 120 ° C, in a more preferred embodiment, Tg ⁇ 140 ° C, in one In a more preferred embodiment, Tg ⁇ 160 ° C, and in a most preferred embodiment, Tg ⁇ 180 ° C.
  • the boron-containing heterocyclic compound according to the present invention ((HOMO-(HOMO-1)) ⁇ 0.2 eV, preferably ⁇ 0.25 eV, more preferably ⁇ 0.3 eV, more preferably It is ⁇ 0.35 eV, very good ⁇ 0.4 eV, preferably ⁇ 0.45 eV.
  • the boron-containing heterocyclic compound according to the present invention (((LUMO+1)-LUMO) ⁇ 0.15 eV, preferably ⁇ 0.20 eV, more preferably ⁇ 0.25 eV, more preferably It is ⁇ 0.30 eV, preferably ⁇ 0.35 eV.
  • the boron-containing heterocyclic compound according to the present invention has a large resonance factor f (S1).
  • the preferred f(S1) ⁇ 0.05, preferably ⁇ 0.15, preferably ⁇ 0.20.
  • the boron-containing heterocyclic compound according to the present invention has a light-emitting function with an emission wavelength of from 300 to 1000 nm, preferably from 350 to 900 nm, more preferably from 400 to 800 nm.
  • the luminescence referred to herein means photoluminescence or electroluminescence.
  • the boron-containing heterocyclic compound according to the present invention can be used as an illuminant.
  • the boron-containing heterocyclic compound according to the present invention has thermally activated delayed fluorescence (TADF) characteristics.
  • the boron-containing heterocyclic compound according to the present invention has (S 1 -T 1 ) ⁇ 0.30 eV, wherein S 1 represents a singlet energy level and T 1 represents a triplet energy level.
  • TADF materials are the third generation of organic luminescent materials developed after organic fluorescent materials and organic phosphorescent materials.
  • a feature of this type of material is that its triplet excitons can be converted to singlet exciton luminescence by inter-system crossing.
  • such materials typically have a small singlet-triplet energy level difference ([Delta]Est), such as ⁇ Est ⁇ 0.3 eV.
  • [Delta]Est singlet-triplet energy level difference
  • the boron-containing heterocyclic compound according to the present invention has ⁇ Est ⁇ 0.3 eV, preferably ⁇ 0.25 eV, more preferably ⁇ 0.20 eV, particularly preferably ⁇ 0.15 eV, more preferably ⁇ 0.10 eV. .
  • boron-containing heterocyclic compound is selected from compounds having the following structure, but is not limited thereto, and these structures may be optionally substituted at all possible substitution points.
  • the present invention also relates to a boron-containing heterocyclic high polymer in which at least one repeating unit contains a structure as shown in the general formula (1) or (2).
  • the boron-containing heterocyclic high polymer is a non-conjugated high polymer wherein the structural unit as shown in formula (I) is on the side chain.
  • the high polymer is a conjugated high polymer.
  • the synthesis method of the boron-containing heterocyclic high polymer is selected from the group consisting of SUZUKI-, YAMAMOTO-, STILLE-, NIGESHI-, KUMADA-, HECK-, SONOGASHIRA-, HIYAMA-, FUKUYAMA-, HARTWIG -BUCHWALD- and ULLMAN.
  • the boron-containing heterocyclic high polymer according to the present invention has a glass transition temperature (Tg) ⁇ 100 ° C, preferably ⁇ 120 ° C, more preferably ⁇ 140 ° C, still more preferably ⁇ 160 ° C.
  • Tg glass transition temperature
  • the optimum is ⁇ 180 °C.
  • the boron-containing heterocyclic high polymer according to the present invention preferably has a molecular weight distribution (PDI) in the range of from 1 to 5; more preferably from 1 to 4; more preferably from 1 to 3, more It is preferably 1 to 2, and most preferably 1 to 1.5.
  • PDI molecular weight distribution
  • the weight average molecular weight (Mw) of the boron-containing heterocyclic high polymer according to the present invention preferably ranges from 10,000 to 1,000,000; more preferably from 50,000 to 500,000; more preferably 10 10,000 to 400,000, more preferably 150,000 to 300,000, and most preferably 200,000 to 250,000.
  • the invention further relates to a boron-containing heterocyclic mixture comprising, for example, one of the above-described boron-containing heterocyclic compounds or boron-containing heterocyclic high polymers, and at least one other organic functional material.
  • the other organic functional material includes hole (also called hole) injection or transport material (HIM/HTM), hole blocking material (HBM), electron injection or transport material (EIM/ETM), electronic blocking Materials (EBM), organic host materials (Host), singlet emitters (fluorescent emitters), heavy emitters (phosphorescent emitters), organic thermal excitation delayed fluorescent materials (TADF materials), especially luminescent organic metal complexes Things.
  • organic functional materials are described in detail in, for example, WO2010135519A1, US20090134784A1, and WO 2011110277A1, the entire contents of which are hereby incorporated by reference.
  • the organic functional material may be a small molecule and a high polymer material.
  • the boron-containing heterocyclic mixture comprises at least one boron-containing heterocyclic compound or boron-containing heterocyclic high polymer according to the present invention and a fluorescent illuminant.
  • the boron-containing heterocyclic compound or the boron-containing heterocyclic high polymer according to the present invention may be used as a fluorescent host material, wherein the fluorescent illuminant has a weight percentage of ⁇ 10% by weight, preferably ⁇ 9% by weight, more preferably ⁇ 8wt. %, particularly preferably ⁇ 7 wt%, preferably ⁇ 5 wt%.
  • the mixture comprises at least one boron-containing heterocyclic compound or boron-containing heterocyclic polymer according to the invention and a phosphorescent emitter.
  • the boron-containing heterocyclic compound or the boron-containing heterocyclic high polymer according to the present invention may be used as a phosphorescent host material, wherein the phosphorescent emitter has a weight percentage of ⁇ 25 wt%, preferably ⁇ 20 wt%, more preferably ⁇ 15 wt%. %.
  • the boron-containing heterocyclic mixture comprises at least one boron-containing heterocyclic compound or boron-containing heterocyclic polymer according to the present invention, a phosphorescent emitter and another host Material (triplet state material).
  • the boron-containing heterocyclic compound or the boron-containing heterocyclic high polymer according to the present invention may be used as an auxiliary luminescent material in a weight ratio to phosphorescent emitter of from 1:2 to 2:1.
  • the boron-containing heterocyclic compound or boron-containing heterocyclic high polymer according to the present invention forms an exciplex with another host material, said excimer complex The energy level is higher than the phosphorescent emitter.
  • the boron-containing heterocyclic mixture comprises one less boron-containing heterocyclic compound or boron-containing heterocyclic high polymer according to the present invention, and a TADF material.
  • the boron-containing heterocyclic compound or the boron-containing heterocyclic high polymer according to the present invention can be used as a host material of the TADF luminescent material, wherein the weight percentage of the TADF material is ⁇ 15% by weight, preferably ⁇ 10% by weight, more preferably It is ⁇ 8wt%.
  • the boron-containing heterocyclic mixture comprises a boron-containing heterocyclic compound according to the invention, and another host material (trimeric host material).
  • the boron-containing heterocyclic mixture may be used as a mixed host of a phosphorescent emitter or a TADF emitter.
  • the boron-containing heterocyclic compound according to the present invention may be used as the second host in a weight percentage of 30% to 70%, preferably 40% to 60%.
  • the boron-containing heterocyclic mixture comprises a boron-containing heterocyclic compound according to the present invention, and another TADF material.
  • the fluorescent luminescent material or singlet illuminant, phosphorescent or triplet illuminant, and TADF materials are described in some detail below (but are not limited thereto).
  • Singlet emitters tend to have longer conjugated pi-electron systems.
  • styrylamine and its derivatives disclosed in JP 2913116 B and WO 2001021729 A1, indenoindoles and derivatives thereof disclosed in WO 2008/006449 and WO 2007/140847, and disclosed in US Pat. No. 7,233,019, KR2006-0006760 A quinone triarylamine derivative.
  • the singlet emitter can be selected from the group consisting of monostyrylamine, dibasic styrylamine, ternary styrylamine, quaternary styrylamine, styrene phosphine, styrene ether and aromatic amine.
  • a monostyrylamine refers to a compound comprising an unsubstituted or substituted styryl group and at least one amine, preferably an aromatic amine.
  • a dibasic styrylamine refers to a compound comprising two unsubstituted or substituted styryl groups and at least one amine, preferably an aromatic amine.
  • a ternary styrylamine refers to a compound comprising three unsubstituted or substituted styryl groups and at least one amine, preferably an aromatic amine.
  • a quaternary styrylamine refers to a compound comprising four unsubstituted or substituted styryl groups and at least one amine, preferably an aromatic amine.
  • a preferred styrene is stilbene, which may be further substituted.
  • the corresponding phosphines and ethers are defined similarly to amines.
  • An arylamine or an aromatic amine refers to a compound comprising three unsubstituted or substituted aromatic ring or heterocyclic systems directly bonded to a nitrogen. At least one of these aromatic or heterocyclic ring systems is preferably selected from the fused ring system and preferably has at least 14 aromatic ring atoms.
  • Preferred examples thereof are aromatic decylamine, aromatic quinone diamine, aromatic decylamine, aromatic quinone diamine, aromatic thiamine and aromatic quinone diamine.
  • An aromatic amide refers to a compound in which a diaryl arylamine group is attached directly to the oxime, preferably at the position of 9.
  • An aromatic quinone diamine refers to a compound in which two diaryl arylamine groups are attached directly to the oxime, preferably at the 9,10 position.
  • the definitions of aromatic decylamine, aromatic quinone diamine, aromatic thiamine and aromatic quinone diamine are similar, wherein the diaryl aryl group is preferably bonded to the 1 or 1,6 position of hydrazine.
  • Examples of singlet emitters based on vinylamines and arylamines are also preferred examples and can be found in the following patent documents: WO 2006/000388, WO 2006/058737, WO 2006/000389, WO 2007/065549, WO 2007 /115610, US 7250532 B2, DE 102005058557 A1, CN 1583691 A, JP 08053397 A, US 6251531 B1, US 2006/210830 A, EP 1957606 A1 and US 2008/0113101 A1, the entire contents of which are hereby incorporated by reference. This article is incorporated herein by reference.
  • Further preferred singlet emitters can be selected from indenoindole-amines and indenofluorene-diamines, as disclosed in WO 2006/122630, benzoindoloindole-amines and benzoindenoindole-diamines , as disclosed in WO 2008/006449, dibenzoindolo-amine and dibenzoindeno-diamine, as disclosed in WO 2007/140847.
  • Further preferred singlet emitters are selected from the group consisting of ruthenium-based fused ring systems as disclosed in US2015333277A1, US2016099411A1, US2016204355A1.
  • More preferred singlet emitters may be selected from the derivatives of hydrazine, such as those disclosed in US2013175509A1; triarylamine derivatives of hydrazine, such as triarylamine derivatives of hydrazine containing dibenzofuran units disclosed in CN102232068B; A triarylamine derivative of hydrazine having a specific structure, as disclosed in CN105085334A, CN105037173A.
  • polycyclic aromatic hydrocarbon compounds in particular derivatives of the following compounds: for example, 9,10-bis(2-naphthoquinone), naphthalene, tetraphenyl, xanthene, phenanthrene , ⁇ (such as 2,5,8,11-tetra-t-butyl fluorene), anthracene, phenylene such as (4,4'-bis(9-ethyl-3-carbazolevinyl)-1 , 1 '-biphenyl), indenyl hydrazine, decacycloolefin, hexacene benzene, anthracene, spirobifluorene, aryl hydrazine (such as US20060222886), arylene vinyl (such as US5121029, US5130603), cyclopentane Alkene such as tetraphenylcyclopentadiene, rub
  • Triplet emitters are also known as phosphorescent emitters.
  • the triplet emitter is a metal complex of the formula M(L)n, wherein M is a metal atom, and each occurrence of L may be the same or different and is an organic ligand. It is bonded to the metal atom M by one or more positional bonding or coordination, and n is an integer greater than 1, preferably 1, 2, 3, 4, 5 or 6.
  • these metal complexes are coupled to a polymer by one or more positions, preferably by an organic ligand.
  • the metal atom M is selected from a transition metal element or a lanthanide or a lanthanide element, preferably Ir, Pt, Pd, Au, Rh, Ru, Os, Sm, Eu, Gd, Tb, Dy Re, Cu or Ag, with Os, Ir, Ru, Rh, Re, Pd, Au or Pt being particularly preferred.
  • the triplet emitter comprises a chelating ligand, ie a ligand, coordinated to the metal by at least two bonding sites, with particular preference being given to the triplet emitter comprising two or three identical or different pairs Tooth or multidentate ligand.
  • Chelating ligands are beneficial for increasing the stability of metal complexes.
  • Examples of the organic ligand may be selected from a phenylpyridine derivative, a 7,8-benzoquinoline derivative, a 2(2-thienyl)pyridine derivative, a 2(1-naphthyl)pyridine derivative, or a 2 benzene.
  • a quinolinol derivative All of these organic ligands may be substituted, for example by fluorine or trifluoromethyl.
  • the ancillary ligand may preferably be selected from the group consisting of acetone acetate or picric acid.
  • the metal complex that can be used as the triplet emitter has the following form:
  • M is a metal selected from a transition metal element or a lanthanide or actinide element, particularly preferably Ir, Pt, Au;
  • Ar 1 may be the same or different at each occurrence, and is a cyclic group containing at least one donor atom, that is, an atom having a lone pair of electrons, such as nitrogen or phosphorus, through which a cyclic group is coordinated to a metal.
  • Ar 2 may be the same or different each time it appears, is a cyclic group containing at least one C atom through which a cyclic group is attached to the metal; Ar 1 and Ar 2 are bonded by a covalent bond Together, each may carry one or more substituent groups, which may also be joined together by a substituent group; L' may be the same or different at each occurrence, and is a bidentate chelate auxiliary ligand, preferably Is a monoanionic bidentate chelate ligand; x can be 0, 1, 2 or 3, preferably 2 or 3; y can be 0, 1, 2 or 3, preferably 1 or 0.
  • triplet emitters Some examples of suitable triplet emitters are listed in the table below:
  • TDF Thermally activated delayed fluorescent luminescent material
  • the thermally activated delayed fluorescent luminescent material is a third generation organic luminescent material developed after organic fluorescent materials and organic phosphorescent materials.
  • Such materials generally have a small singlet-triplet energy level difference ( ⁇ E st ), and triplet excitons can be converted into singlet exciton luminescence by inter-system crossing. This can make full use of the singlet excitons and triplet excitons formed under electrical excitation.
  • the quantum efficiency in the device can reach 100%.
  • the material structure is controllable, the property is stable, the price is cheap, no precious metal is needed, and the application prospect in the OLED field is broad.
  • the TADF material needs to have a small singlet-triplet energy level difference, preferably ⁇ Est ⁇ 0.3 eV, and secondarily ⁇ Est ⁇ 0.25 eV, more preferably ⁇ Est ⁇ 0.20 eV, and most preferably ⁇ Est ⁇ 0.1 eV.
  • the TADF material has a relatively small ⁇ Est, and in another preferred embodiment, the TADF has a better fluorescence quantum efficiency.
  • TADF luminescent materials can be found in the following patent documents: CN103483332(A), TW201309696(A), TW201309778(A), TW201343874(A), TW201350558(A), US20120217869(A1), WO2013133359(A1), WO2013154064( A1), Adachi, et.al. Adv. Mater., 21, 2009, 4802, Adachi, et. al. Appl. Phys. Lett., 98, 2011, 083302, Adachi, et. al. Appl. Phys. Lett ., 101, 2012, 093306, Adachi, et. al. Chem.
  • the boron-containing heterocyclic compound according to the invention has a molecular weight of ⁇ 1100 g/mol, preferably ⁇ 1000 g/mol, very preferably ⁇ 950 g/mol, more preferably ⁇ 900 g/mol, most preferably ⁇ 800 g/mol .
  • Another object of the invention is to provide a material solution for printing OLEDs.
  • the boron-containing heterocyclic compound according to the invention has a molecular weight of ⁇ 700 g/mol, preferably ⁇ 900 g/mol, very preferably ⁇ 900 g/mol, more preferably ⁇ 1000 g/mol, most preferably ⁇ 1100 g/mol .
  • the boron-containing heterocyclic compound according to the invention has a solubility in toluene of > 10 mg/ml, preferably > 15 mg/ml, most preferably > 20 mg/ml at 25 °C.
  • the invention still further relates to a boron-containing heterocyclic composition or ink comprising a boron-containing heterocyclic compound or a boron-containing heterocyclic high polymer according to the invention and at least one organic solvent.
  • the viscosity and surface tension of the ink are important parameters when used in the printing process. Suitable surface tension parameters for the ink are suitable for the particular substrate and the particular printing method.
  • the ink according to the present invention has a surface tension at an operating temperature or at 25 ° C in the range of from about 19 dyne/cm to 50 dyne/cm; more preferably in the range of from 22 dyne/cm to 35 dyne/cm; It is in the range of 25dyne/cm to 33dyne/cm.
  • the ink according to the present invention has a viscosity at an operating temperature or 25 ° C in the range of about 1 cps to 100 cps; preferably in the range of 1 cps to 50 cps; more preferably in the range of 1.5 cps to 20 cps; Good is in the range of 4.0cps to 20cps.
  • the composition so formulated will facilitate ink jet printing.
  • the viscosity can be adjusted by different methods, such as by selection of a suitable solvent and concentration of the functional material in the ink.
  • the ink containing the metal organic complex or polymer according to the present invention can facilitate the adjustment of the printing ink to an appropriate range in accordance with the printing method used.
  • the composition according to the invention comprises a functional material in a weight ratio ranging from 0.3% to 30% by weight, preferably from 0.5% to 20% by weight, more preferably from 0.5% to 15% by weight, even more preferably. It is in the range of 0.5% to 10% by weight, preferably in the range of 1% to 5% by weight.
  • the at least one organic solvent is selected from the group consisting of aromatic or heteroaromatic based solvents, particularly aliphatic chain/ring substituted aromatic solvents, or aromatic ketones, in accordance with the inks of the present invention.
  • Solvent, or aromatic ether solvent is selected from the group consisting of aromatic or heteroaromatic based solvents, particularly aliphatic chain/ring substituted aromatic solvents, or aromatic ketones, in accordance with the inks of the present invention.
  • Solvent, or aromatic ether solvent is selected from the group consisting of aromatic or heteroaromatic based solvents, particularly aliphatic chain/ring substituted aromatic solvents, or aromatic ketones, in accordance with the inks of the present invention.
  • Solvent, or aromatic ether solvent is selected from the group consisting of aromatic or heteroaromatic based solvents, particularly aliphatic chain/ring substituted aromatic solvents, or aromatic ketones, in accordance with the inks of the present invention.
  • Solvent, or aromatic ether solvent is selected from the
  • solvents suitable for the present invention are, but are not limited to, aromatic or heteroaromatic based solvents: p-diisopropylbenzene, pentylbenzene, tetrahydronaphthalene, cyclohexylbenzene, chloronaphthalene, 1,4-dimethyl Naphthalene, 3-isopropylbiphenyl, p-methyl cumene, dipentylbenzene, triphenylbenzene, pentyltoluene, o-xylene, m-xylene, p-xylene, o-diethylbenzene, m-diethyl Benzene, p-diethylbenzene, 1,2,3,4-tetramethylbenzene, 1,2,3,5-tetramethylbenzene, 1,2,4,5-tetramethylbenzene, butylbenzene, dodecylbenzene, two Hexylbenzene, di
  • the at least one solvent may be selected from the group consisting of: an aliphatic ketone, for example, 2-nonanone, 3-fluorenone, 5-nonanone, 2-nonanone, 2, 5 -hexanedione, 2,6,8-trimethyl-4-indolone, phorone, di-n-pentyl ketone, etc.; or an aliphatic ether, for example, pentyl ether, hexyl ether, dioctyl ether, ethylene Dibutyl ether, diethylene glycol diethyl ether, diethylene glycol butyl methyl ether, diethylene glycol dibutyl ether, triethylene glycol dimethyl ether, triethylene glycol ethyl methyl ether, triethylene glycol butyl methyl ether , tripropylene glycol dimethyl ether, tetraethylene glycol dimethyl ether and the like.
  • an aliphatic ketone for example, 2-nonan
  • the printing ink further comprises another organic solvent.
  • another organic solvent include, but are not limited to, methanol, ethanol, 2-methoxyethanol, dichloromethane, chloroform, chlorobenzene, o-dichlorobenzene, tetrahydrofuran, anisole, morpholine, Toluene, o-xylene, m-xylene, p-xylene, 1,4 dioxane, acetone, methyl ethyl ketone, 1,2 dichloroethane, 3-phenoxytoluene, 1,1 , 1-trichloroethane, 1,1,2,2-tetrachloroethane, ethyl acetate, butyl acetate, dimethylformamide, dimethylacetamide, dimethyl sulfoxide, tetrahydronaphthalene , decalin, hydrazine and/or mixtures thereof.
  • the boron-containing heterocyclic composition according to the present invention is a solution.
  • the boron-containing heterocyclic composition according to the present invention is a suspension.
  • the boron-containing heterocyclic composition in the embodiment of the present invention may comprise 0.01 to 20% by weight of the boron-containing heterocyclic compound or the boron-containing heterocyclic mixture according to the present invention, preferably 0.1 to 15% by weight, more preferably 0.2. Up to 10% by weight, most preferably 0.25 to 5% by weight of the organic compound or a mixture thereof.
  • the invention further relates to the use of the composition as a coating or printing ink in the preparation of an organic electronic device, particularly preferably by a printing or coating process.
  • suitable printing or coating techniques include, but are not limited to, inkjet printing, Nozzle Printing, typography, screen printing, dip coating, spin coating, blade coating, roller printing, torsion rolls. Printing, lithography, flexographic printing, rotary printing, spraying, brushing or pad printing, slit-type extrusion coating, etc. Preferred are inkjet printing, jet printing and gravure printing.
  • the solution or suspension may additionally comprise one or more components such as surface active compounds, lubricants, wetting agents, dispersing agents, hydrophobic agents, binders and the like for adjusting viscosity, film forming properties, adhesion, and the like.
  • the present invention also provides the use of a boron-containing heterocyclic compound or a boron-containing heterocyclic high polymer as described above, that is, the boron-containing heterocyclic compound or boron-containing heterocyclic high polymer
  • the organic electronic device may be selected from, but not limited to, an organic light emitting diode (OLED), an organic photovoltaic cell (OPV), an organic light emitting cell (OLEEC), an organic field effect transistor (OFET), organic Luminescent field effect transistors, organic lasers, organic spintronic devices, organic sensors and organic plasmon emitting diodes (Organic Plasmon Emitting Diode), etc., particularly preferred are organic electroluminescent devices such as OLED, OLEEC, organic light-emitting field Effect tube.
  • the organic compound is preferably used for the light-emitting layer of the electroluminescent device.
  • the invention further relates to an organic electronic device comprising at least one organic compound or polymer as described above.
  • an organic electronic device comprises at least one cathode, an anode and a functional layer between the cathode and the anode, wherein the functional layer comprises at least one organic compound as described above.
  • the organic electronic device may be selected from, but not limited to, an organic light emitting diode (OLED), an organic photovoltaic cell (OPV), an organic light emitting cell (OLEEC), an organic field effect transistor (OFET), an organic light emitting field effect transistor, and an organic Lasers, organic spintronic devices, organic sensors and organic plasmon emitting diodes (Organic Plasmon Emitting Diode), etc., particularly preferred are organic electroluminescent devices such as OLED, OLEEC, organic light-emitting field effect transistors.
  • the electroluminescent device has an emissive layer comprising one of said organic compounds or polymers, or one of said organic compounds or polymers and a phosphorescent An illuminant, or an organic compound or polymer and a host material, or an organic compound or polymer, a phosphorescent emitter and a host material.
  • a substrate, an anode, at least one luminescent layer, and a cathode are included.
  • the substrate can be opaque or transparent.
  • a transparent substrate can be used to make a transparent light-emitting component. See, for example, Bulovic et al. Nature 1996, 380, p29, and Gu et al, Appl. Phys. Lett. 1996, 68, p2606.
  • the substrate can be rigid or elastic.
  • the substrate can be plastic, metal, semiconductor wafer or glass.
  • the substrate has a smooth surface. Substrates without surface defects are a particularly desirable choice.
  • the substrate is flexible, optionally in the form of a polymer film or plastic, having a glass transition temperature Tg of 150 ° C or higher, preferably more than 200 ° C, more preferably more than 250 ° C, preferably More than 300 ° C. Examples of suitable flexible substrates are poly(ethylene terephthalate) (PET) and polyethylene glycol (2,6-naphthalene) (PEN).
  • PET poly(ethylene terephthalate)
  • PEN polyethylene glycol (2,6-na
  • the anode can comprise a conductive metal or metal oxide, or a conductive polymer.
  • the anode can easily inject holes into a hole injection layer (HIL) or a hole transport layer (HTL) or a light-emitting layer.
  • HIL hole injection layer
  • HTL hole transport layer
  • the absolute value of the difference between the work function of the anode and the HOMO level or the valence band level of the illuminant in the luminescent layer or the p-type semiconductor material as the HIL or HTL or electron blocking layer (EBL) is less than 0.5 eV, preferably less than 0.3 eV, and most preferably less than 0.2 eV.
  • anode material examples include, but are not limited to, Al, Cu, Au, Ag, Mg, Fe, Co, Ni, Mn, Pd, Pt, ITO, aluminum-doped zinc oxide (AZO), and the like.
  • suitable anode materials are known and can be readily selected for use by one of ordinary skill in the art.
  • the anode material can be deposited using any suitable technique, such as a suitable physical vapor deposition process, including radio frequency magnetron sputtering, vacuum thermal evaporation, electron beam (e-beam), and the like.
  • the anode is patterned. Patterned ITO conductive substrates are commercially available and can be used to prepare devices in accordance with the present invention.
  • the cathode can include a conductive metal or metal oxide.
  • the cathode can easily inject electrons into the EIL or ETL or directly into the luminescent layer.
  • the work function of the cathode and the LUMO level of the illuminant or the n-type semiconductor material as an electron injection layer (EIL) or electron transport layer (ETL) or hole blocking layer (HBL) in the luminescent layer or
  • EIL electron injection layer
  • ETL electron transport layer
  • HBL hole blocking layer
  • the absolute value of the difference in conduction band energy levels is less than 0.5 eV, preferably less than 0.3 eV, and most preferably less than 0.2 eV.
  • all materials which can be used as cathodes for OLEDs are possible as cathode materials for the devices of the invention.
  • cathode material examples include, but are not limited to, Al, Au, Ag, Ca, Ba, Mg, LiF/Al, MgAg alloy, BaF2/Al, Cu, Fe, Co, Ni, Mn, Pd, Pt, ITO, and the like.
  • the cathode material can be deposited using any suitable technique, such as a suitable physical vapor deposition process, including radio frequency magnetron sputtering, vacuum thermal evaporation, electron beam (e-beam), and the like.
  • the OLED may further include other functional layers such as a hole injection layer (HIL), a hole transport layer (HTL), an electron blocking layer (EBL), an electron injection layer (EIL), an electron transport layer (ETL), and a hole blocking layer.
  • HIL hole injection layer
  • HTL hole transport layer
  • EBL electron blocking layer
  • EIL electron injection layer
  • ETL electron transport layer
  • HBL hole blocking layer
  • the light-emitting layer is prepared by the composition according to the invention.
  • the light-emitting device has an emission wavelength of between 300 and 1000 nm, preferably between 350 and 900 nm, more preferably between 400 and 800 nm.
  • the invention further relates to the use of an organic electronic device according to the invention in various electronic devices, including, but not limited to, display devices, illumination devices, light sources, sensors and the like.
  • the invention further relates to an electronic device comprising an organic electronic device according to the invention, including, but not limited to, a display device, a lighting device, a light source, a sensor and the like.
  • the method for synthesizing the compound 10 is referred to the compound 86, but the 2-chloro-4,6-diphenyl-1,3,5-triazine in the synthesis of the compound 86 is replaced with 2-(4-bromophenyl)benzene. 4,6-diphenyl-1,3,5-triazine.
  • MS (ASAP) 723.6
  • the energy level of the organic compound material can be obtained by quantum calculation, for example, by TD-DFT (time-dependent density functional theory) by Gaussian 09W (Gaussian Inc.), and the specific simulation method can be found in WO2011141110.
  • TD-DFT time-dependent density functional theory
  • Gaussian 09W Gaussian Inc.
  • the semi-empirical method “Ground State/Semi-empirical/Default Spin/AM1" (Charge 0/Spin Singlet) is used to optimize the molecular geometry, and then the energy structure of the organic molecule is determined by TD-DFT (time-dependent density functional theory) method.
  • TD-SCF/DFT/Default Spin/B3PW91 and the base group "6-31G(d)” (Charge 0/Spin Singlet).
  • the HOMO and LUMO levels are calculated according to the following calibration formula, and S 1 , T 1 and the resonance factor f(S 1 ) are used directly.
  • HOMO(eV) ((HOMO(G) ⁇ 27.212)-0.9899)/1.1206
  • HOMO (G) and LUMO (G) are direct calculation results of Gaussian 09W, the unit is Hartree.
  • the results are shown in Table 1:
  • the value of LUMO is between -2.8 and -3.0 eV, and the triplet energy level T1 is above -2.40 eV, indicating that the materials shown in the examples are all suitable red light host materials.
  • the materials shown have large ⁇ HOMO and ⁇ LUMO, and a high resonance factor (f(S1) > 0.4).
  • the device structure was ITO/NPD (60 nm) / compound 86 or 87 or 1: (piq) 2 Ir (acac) (10%) (45 nm) / TPBi (35 nm) / Liq (1 nm) / Al (150 nm).
  • (piq) 2 Ir(acac) is used as a light-emitting material
  • NPD is used as a hole transporting material
  • TPBi is used as an electron transporting material
  • Liq is used as an electron injecting material.
  • the specific preparation process is as follows:
  • a, cleaning of the conductive glass substrate when used for the first time, can be washed with a variety of solvents, such as chloroform, ketone, isopropyl alcohol, and then UV ozone plasma treatment;
  • HTL 60nm
  • EML 45nm
  • ETL 35m
  • cathode LiF / Al (1nm / 150nm) in a high vacuum (1 ⁇ 10 -6 mbar) in the thermal evaporation;
  • the device is encapsulated in a nitrogen glove box with an ultraviolet curable resin.
  • each OLED device is referred to OLED1 or OLED2 or OLED3, except that the host material (compound 86 or 87 or 1) is replaced with the host material shown in Table 2.
  • the current-voltage (J-V) characteristics of each OLED device are characterized by characterization equipment while recording important parameters such as efficiency, lifetime and external quantum efficiency.
  • Table 2 is a comparison of the lifetime of OLED devices, where lifetime LT95 is the time at which the luminance drops to 95% of the initial luminance @1000 nits at a constant current.
  • LT95 is calculated relative to the device OLED4, that is, the lifetime of the OLED 4 is 1.
  • OLED1 corresponding to compound 86
  • OLED2 corresponding compound 87
  • OLED3 corresponding compound material 1
  • OLED 13 corresponding to F-1, refer to patent CN201611047549
  • contrast device OLED14 corresponding to F-2, refer to patent CN107851724. It can be seen that the lifetime of the OLED device prepared by using the organic mixture of the invention is significantly improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明涉及一种含硼杂环化合物、高聚物、混合物、组合物及其用途,所述含硼杂环化合物具有如通式(1)或通式(2)所示的结构:上述含硼杂环化合物可作为主体材料,通过与合适的客体特别是磷光客体或TADF客体配合,能提高其作为电致发光器件的发光效率及寿命,提供了一种制造成本低、效率高、寿命长、低滚降的发光器件的解决方案。上述含硼杂环化合物也便于实现热激发延迟荧光发光(TADF)特性。

Description

含硼杂环化合物、高聚物、混合物、组合物及其用途
本申请要求于2017年12月27日提交中国专利局、申请号为201711449989.4发明名称为“一种含硼氮类有机光电材料及其用途”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及电致发光材料领域,尤其涉及含硼杂环化合物、高聚物、混合物、组合物及其用途。
背景技术
有机光电材料在合成上具有多样性,制造成本相对较低以及其优良的光学与电学性能,有机发光二极管(OLED)在光电器件(例如平板显示器和照明)的应用方面具有很大的潜力。
为了提高有机发光二极管的发光效率,各种基于荧光和磷光的发光材料体系已被开发出来,使用荧光材料的有机发光二极管具有可靠性高的特点,但其在电气激发下其内部电致发光量子效率被限制为25%,这是因为激子的单重激发态和三重激发态的分支比为1∶3。与此相反,使用磷光材料的有机发光二极管已经取得了几乎100%的内部电致发光量子效率。从理论上讲,与荧光材料相比,磷光材料的发光效率可以提升至4倍,因此磷光发光材料的开发已被广泛研究。
发光材料(掺杂剂)可与基质材料(主体)一起用作发光材料以改善颜色纯度、发光效率和稳定性。由于当使用主体材料/掺杂剂体系作为发光器件的发光层时,主体材料对电致发光器件的效率和特性影响很大,因此基质材料的选择很重要。
目前,4,4’-二咔唑-联苯(CBP)是已知的泛用做磷光物质的基质材料。近年来,日本先锋公司(Pioneer)等开发了一种高性能有机电致发光器件,其使用BAlq(二(2-甲基)-8-羟基喹啉合-4-苯基苯酚铝(III))、菲罗啉(BCP)等化合物作为基质。专利CN104541576A公开了一类三嗪或嘧啶的衍生物,但所获得的器件性能和寿命仍不能满足商业化的需求。
另外,现有材料的玻璃化转变温度较低,热稳定性较差,当在真空中进行高温加工时,薄膜的形貌会产生变化,从而影响器件的稳定性。相比于荧光电致发光器件,使用磷光器件的OLED器件的电流效率(cd/A)显著较高,但是使用现有主体材料如(CBP,BAlq)等作为主体材料的磷光OLED其驱动电压较高,因此从功率效率(lm/W)上来看并无明显优势。
因此,还有待于改进和发展新的材料,以用于解决现有的磷光发光材料成本高、高亮度下效率滚降快、寿命短的问题。
发明内容
基于此,有必要提供一种含硼杂环化合物、高聚物、混合物、组合物及其用途。该含硼杂环化合物、高聚物、混合物、组合物能够作为一种新的功能材料,特别是主体材料,解决现有的磷光发光材料成本高、高亮度下效率滚降快、寿命短的问题。
本发明的技术方案如下:
一种含硼杂环化合物,具有如通式(1)或通式(2)所示的结构:
Figure PCTCN2018118989-appb-000001
其中,
L 1,L 2各自独立地为单键,或各自独立地选自:含1-15个碳原子的直链烷烃基、含1-15个碳原子的支链烷烃基、含1-15个碳原子的环烷烃基、具有5-20个环原子的芳香族基、具有5-20个环原子的杂芳香基或者具有5-20个环原子的非芳香族环基;
X 1、X 2、X 3各自独立地选自:N或者CR 1,且所述X 1、X 2、X 3中至少有一个为氮原子;
Ar 1、Ar 2各自独立地选自具有5-20个环原子的芳香族环系、具有5-20个环原子的杂芳香族环系或者具有5-20个环原子的非芳香族环系;
Ar 3、Ar 4各自独立地选自苯基或萘基;
Y选自NR 3、CR 4R 5、SiR 4R 5、O或者S;
R 3、R 4、R 5各自独立地选自H、D,具有1至20个C原子的直链烷基、具有1至20个C原子的烷氧基、具有1至20个C原子的硫代烷氧基基团、具有3至20个C原子的支链或环状的烷基、具有3至20个C原子的烷氧基、具有3至20个C原子的硫代烷氧基基团、甲硅烷基基团、具有1至20个C原子的取代的酮基基团、具有2至20个C原子的烷氧基羰基基团、具有7至20个C原子的芳氧基羰基基团、氰基基团、氨基甲酰基基团、卤甲酰基基团、甲酰基基团、异氰基基团、异氰酸酯基团、硫氰酸酯基团、异硫氰酸酯基团、羟基基团、硝基基团、CF 3基团、Cl、Br、F、可交联的基团、具有5至40个环原子的取代或未取代的芳族或杂芳族环系、具有5至40个环原子的芳氧基或杂芳氧基基团;且R 3、R 4、R 5中的基团可彼此和/或与所述基团相连的环键合形成单环或多环的脂族或芳族环系;
且所述含硼杂环化合物任选进一步被一个或多个R 1取代基取代;
R 1存在多个时,多个R 1彼此相同或不同,所述R 1选自F、Cl、Br、I、D、CN、NO 2、CF 3、B(OR 2) 2、Si(R 2) 3、直链烷烃、支链烷烃、环烷烃、含有3~10个碳原子的烷烃醚、含1~10个碳原子烷烃硫醚、含有5~40个碳原子的芳基或者杂芳基团;
R 2的定义同R 3
一种含硼杂环高聚物,所述含硼杂环高聚物的重复单元包含上述的含硼杂环化合物的结构。
一种含硼杂环混合物,包括上述含硼杂环化合物或上述含硼杂环高聚物,及至少一种有机功能材料,所述的有机功能材料可选自空穴注入材料、空穴传输材料、电子传输材料、电子注入材料、电子阻挡材料、空穴阻挡材料、发光体或主体材料。
一种含硼杂环组合物,包括上述含硼杂环化合物或上述含硼杂环高聚物,及至少一种有机溶剂。
上述含硼杂环化合物或上述含硼杂环高聚物在有机电子器件中的应用。
一种有机电子器件,至少包含一种上述含硼杂环化合物或上述含硼杂环高聚物。
按照本发明的含硼杂环化合物可作为主体材料,通过与合适的客体特别是磷光客体或 TADF客体配合,能提高其作为电致发光器件的发光效率及寿命,提供了一种制造成本低、效率高、寿命长、低滚降的发光器件的解决方案。按照本发明的含硼杂环化合物也便于实现热激发延迟荧光发光(TADF)特性。
具体实施方式
本发明提供一种有机化合物及其在有机电致发光器件中的应用,为使本发明的目的、技术方案及效果更加清楚、明确,以下对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
在本发明中,取代基中的“D”和“氘原子”具有相同的含义,它们之间可以互换。
在本发明中,组合物和印刷油墨,或油墨具有相同的含义,它们之间可以互换。
在本发明中,主体材料,基质材料,Host或Matrix材料具有相同的含义,它们之间可以互换。
在本发明中,“取代”表示被取代基中的氢原子被取代基所取代。
在本发明中,“环原子数”表示原子键合成环状而得到的结构化合物(例如,单环化合物、稠环化合物、交联化合物、碳环化合物、杂环化合物)的构成该环自身的原子之中的原子数。该环被取代基所取代时,取代基所包含的原子不包括在成环原子内。关于以下所述的“环原子数”,在没有特别说明的条件下也是同样的。例如,苯环的环原子数为6,萘环的环原子数为10,噻吩基的环原子数为5。
在本发明中,HOMO表示最高占据分子轨道,LUMO表示最低未占分子轨道。
在本发明中,三线态能级可以表示为E T1,T1,T 1,它们具有相同的含义。
在本发明中,单线态能级可以表示为E S1,S1,S 1,它们具有相同的含义。
在本发明实施例中,有机材料的能级结构,三线态能级E T1、HOMO、LUMO起着关键的作用。以下对这些能级的确定做一介绍。
HOMO和LUMO能级可以通过光电效应进行测量,例如XPS(X射线光电子光谱法)和UPS(紫外光电子能谱)或通过循环伏安法(以下简称CV)。最近,量子化学方法,例如密度泛函理论(以下简称DFT),也成为行之有效的计算分子轨道能级的方法。
有机材料的三线态能级E T1可通过低温时间分辨发光光谱来测量,或通过量子模拟计算(如通过Time-dependent DFT)得到,如通过商业软件Gaussian 03W(Gaussian Inc.),具体的模拟方法可参见WO2011141110或如下在实施例中所述。
应该注意,HOMO、LUMO、E T1的绝对值取决于所用的测量方法或计算方法,甚至对于相同的方法,不同评价的方法,例如在CV曲线上起始点和峰点可给出不同的HOMO/LUMO值。因此,合理有意义的比较应该用相同的测量方法和相同的评价方法进行。本发明实施例的描述中,HOMO、LUMO、E T1的值是基于Time-dependent DFT的模拟,但不影响其他测量或计算方法的应用。
在发明中,(HOMO-1)定义为第二高的占有轨道能级,(HOMO-2)为第三高的占有轨道能级,以此类推。(LUMO+1)定义为第二低的未占有轨道能级,(LUMO+2)为第三低的占有轨道能级,以此类推。
在发明中,取代基中的
Figure PCTCN2018118989-appb-000002
表示该取代基的连接位点,例如:
Figure PCTCN2018118989-appb-000003
表示二苯并呋喃环上任选位置连接;
Figure PCTCN2018118989-appb-000004
表示苯环和二苯并呋喃环任意可取代位置相连。
本发明提供一种如通式(1)或者通式(2)所示的含硼杂环化合物:
Figure PCTCN2018118989-appb-000005
其中使用的符号与标记具有以下含义:
L 1,L 2各自独立地为单键,或各自独立地选自:含1-15个碳原子的直链烷烃基、含1-15个碳原子的支链烷烃基、含1-15个碳原子的环烷烃基、具有5-20个环原子的芳香族基、具有5-20个环原子的杂芳香族基或者具有5-20个环原子的非芳香族基;
X 1、X 2、X 3各自独立地选自:N或者CR 1,且所述X 1、X 2、X 3中至少有一个为氮原子;
Ar 1、Ar 2各自独立地选自具有5-20个环原子的芳香族环系、具有5-20个环原子的杂芳香族环系或者具有5-20个环原子的非芳香族环系;
Ar 3、Ar 4各自独立地选自苯基或萘基;在一实施例中,Ar 3和Ar 4均为苯基。
Y选自NR 3、CR 4R 5、SiR 4R 5、O或者S;
R 3、R 4、R 5各自独立地选自H、D,具有1至20个C原子的直链烷基、具有1至20个C原子的烷氧基、具有1至20个C原子的硫代烷氧基基团、具有3至20个C原子的支链或环状的烷基、具有3至20个C原子的烷氧基、具有3至20个C原子的硫代烷氧基基团、甲硅烷基基团、具有1至20个C原子的取代的酮基基团、具有2至20个C原子的烷氧基羰基基团、具有7至20个C原子的芳氧基羰基基团、氰基基团(-CN),氨基甲酰基基团(-C(=O)NH 2),卤甲酰基基团(-C(=O)-X其中X代表卤素原子),甲酰基基团(-C(=O)-H)、异氰基基团、异氰酸酯基团、硫氰酸酯基团、异硫氰酸酯基团、羟基基团、硝基基团、CF 3基团、Cl、Br、F、可交联的基团、具有5至40个环原子的取代或未取代的芳族或杂芳族环系、具有5至40个环原子的芳氧基或杂芳氧基基团;且R 3、R 4、R 5中的基团可彼此和/或与所述基团相连的环键合形成单环或多环的脂族或芳族环系;
且所述含硼杂环化合物任选进一步被一个或多个R 1取代基取代;
R 1存在多个时,多个R 1彼此相同或不同,所述R 1选自F、Cl、Br、I、D、CN、NO 2、CF 3、B(OR 2) 2、Si(R 2) 3、直链烷烃、支链烷烃、环烷烃、含有3~10个碳原子的烷烃醚、含1~10个碳原子烷烃硫醚、含有5~40个碳原子的芳基或者杂芳基团;
R 2的定义同R 3
对于本发明的目的,芳香环系在环系中包含5至20个碳原子,杂芳香环系在环系中包含1至20个碳原子和至少一个杂原子,条件是碳原子和杂原子的总数至少为4。杂原子优选选自Si、N、P、O、S和/或Ge,特别优选选自Si、N、P、O和/或S。对于本发明的目的,芳香族或杂芳香族环系不仅包括芳香基或杂芳香基的体系,而且,其中多个芳基或杂芳基也可以被短的非芳族单元间断(<10%的非H原子,优选小于5%的非H原子,比如C、N或O原子)。因此,比如9,9′-螺二芴,9,9-二芳基芴,三芳胺,二芳基醚等体系,对于该发明目的同样认为是芳香族环系。
对于本发明的目的,非芳香族环系在环系中包含1-20优选1-3个碳原子,且不仅包括饱和而且包括部分不饱和的环状体系,它们可以未被取代或被基团R 1单或多取代,所述基团R 1 在每一次出现中可以相同或者不同,并且还可以包含一个或多个杂原子,优选Si、N、P、O、S和/或Ge,特别优选选自Si、N、P、O和/或S。这些例如可以是类环己基或类哌啶体系,也可以是类环辛二烯环状体系。该术语同样适用于稠合的非芳香环系。
对于本发明的目的,其中NH上的H原子或桥联基CH 2基团可以被R 7基团取代,R 7可选于,(1)C1~C10烷基,特别优选是指如下的基团:甲基、乙基、正丙基、异丙基、环丙基、正丁基、异丁基、仲丁基、叔丁基、环丁基、2-甲基丁基、正戊基、正己基、环己基、正庚基、环庚基、正辛基、环辛基、2-乙基己基、三氟甲基、五氟甲基、2,2,2-三氟乙基、乙烯基、丙烯基、丁烯基、戊烯基、环戊烯基、己烯基、环己烯基、庚烯基、环庚烯基、辛烯基、环辛烯基、乙炔基、丙炔基、丁炔基、戊炔基、己炔基和辛炔基;
(2)C1~C10烷氧基,特别优选的是指甲氧基,乙氧基,正丙氧基,异丙氧基,正丁氧基,异丁氧基,仲丁氧基,叔丁氧基或者2-甲基丁氧基;
(3)C2到C10芳基或杂芳基,取决于用途其可以是一价或二价的,在每一情况下也可以被上述提及的基团R 1取代并可以通过任何希望的位置与芳香族或杂芳香环连接,特别优选的是指以下的基团:苯、萘、蒽、嵌二萘、二氢芘、屈、茈、萤蒽、丁省、戊省、苯并芘、呋喃、苯并呋喃、异苯并呋喃、二苯并呋喃、噻吩、苯并噻吩、异苯并噻吩、硫芴、吡咯、吲哚、异吲哚、咔唑、吡啶、喹啉、异喹啉、吖啶、菲啶、苯并-5,6-喹啉、苯并-6,7-喹啉、苯并-7,8-喹啉、吩噻嗪、吩恶嗪、吡唑、吲唑、咪唑、苯并咪唑、萘并咪唑、菲并咪唑、吡啶并咪唑、吡嗪并咪唑、喹喔啉并咪唑、恶唑、苯并恶唑、萘并恶唑、蒽并恶唑、菲并恶唑、异恶唑、1,2-噻唑、1,3-噻唑、苯并噻唑、哒嗪、苯并哒嗪、嘧啶、苯并嘧啶、喹喔啉、吡嗪、二氮蒽、1,5-二氮杂萘、氮咔唑、苯并咔啉、菲咯啉、1,2,3-三唑、1,2,4-三唑、苯并三唑、1,2,3-恶二唑、1,2,4-恶二唑、1,2,5-恶二唑、1,3,4-恶二唑、1,2,3-噻二唑、1,2,4-噻二唑、1,2,5-噻二唑、1,3,4-噻二唑、1,3,5-三嗪、1,2,4-三嗪、1,2,3-三嗪、四唑。1,2,4,5-四嗪、1,2,3,4-四嗪、1,2,3,5-四嗪、嘌呤、蝶啶、中氮茚和苯并噻二唑。用于本发明的目的,芳香和杂芳族环系认为特别是除上述提及的芳基和杂芳基之外,还指亚联苯基、亚三联苯、芴、螺二芴、二氢菲、四氢芘和顺式或者反式茚并芴。
在一实施例中,按照本发明的含硼杂环化合物,其中L 1,L 2,Ar 1,Ar 2中至少有一个选自具有5-20个环原子的芳香族环或杂芳香族环,所述L 1,L 2,Ar 1,Ar 2可任选进一步被一个或多个基团R 1取代。
芳香族环基团指至少包含一个芳环的烃基。杂环芳香环基团指包含至少一个杂原子的芳香烃基。稠环芳香基团指芳香基团的环可以具有两个或多个环,其中两个碳原子被两个相邻的环共用,即稠环。稠杂环芳香基团指包含至少一个杂原子的稠环芳香烃基。对于本发明的目的,芳香基团或杂环芳香基团不仅包括芳香环的体系,而且包含非芳香族的环系。因此,比如吡啶、噻吩、吡咯、吡唑、三唑、咪唑、噁唑、噁二唑、噻唑、四唑、吡嗪、哒嗪、嘧啶、三嗪、卡宾等体系,对于该发明目的同样认为是芳香基团或杂环芳香基团。对于本发明的目的,稠环芳香族或稠杂环芳香族环系不仅包括芳香基团或杂芳香基团的体系,而且,其中多个芳香基团或杂环芳香基团也可以被短的非芳族单元间断(<10%的非H原子,优选小于5%的非H原子,比如C、N或O原子)。因此,比如9,9′-螺二芴,9,9-二芳基芴,三芳胺,二芳基醚等体系,对于该发明目的同样认为是稠环芳香族环系。
具体地,稠环芳香基团的例子有:萘、蒽、荧蒽、菲、苯并菲、二萘嵌苯、并四苯、芘、苯并芘、苊、芴、及其衍生物。
具体地,稠杂环芳香基团的例子有:苯并呋喃、苯并噻吩、吲哚、咔唑、吡咯并咪唑、吡咯并吡咯、噻吩并吡咯、噻吩并噻吩、呋喃并吡咯、呋喃并呋喃、噻吩并呋喃、苯并异噁唑、苯并异噻唑、苯并咪唑、喹啉、异喹啉、邻二氮萘、喹喔啉、菲啶、伯啶、喹唑啉、喹唑啉酮、及其衍生物。
在一实施例中,其中L 1,L 2,Ar 1,Ar 2中至少有一个选自如下结构基团中的一种或它们中的组合:
Figure PCTCN2018118989-appb-000006
其中:
X在同一基团中有多个时,每个X各自独立地选自N或CR 1
Y在同一基团中有多个时,每个Y各自独立地NR 3、CR 4R 5、SiR 4R 5、O或者S;
R 1、R 3、R 4、R 5的定义同上。
在一实施例中,L 1,L 2,Ar 1,Ar 2还可选于包含如下结构基团中的一种或多种组合,其中环上的H可以被任意取代:
Figure PCTCN2018118989-appb-000007
在一实施例中,L 1,L 2各自独立地为单键,或选自如下结构基团:
Figure PCTCN2018118989-appb-000008
其中,虚线表示单键的连接位点。
在一实施例中,按照通式(1)和通式(2)中的中L 1,L 2,Ar 1,Ar 2中至少有一个选自以下结构单元:
Figure PCTCN2018118989-appb-000009
Figure PCTCN2018118989-appb-000010
其中n是1或2或3或4。
取决于取代型式,按照通式(1)或通式(2)的含硼杂环化合物可以具有各种不同的光电功能,包括但不限于空穴传输功能,电子传输功能,发光功能,激子阻挡功能等。特别是通过取代基R 1~R 7可以调整,甚至决定化合物的功能。取代基R 1~R 7对通式(1)或(2)所示的化合物的电子特性及物性产生影响。
在一实施例中,所述的含硼杂环化合物具有如通式(3)所示的结构:
Figure PCTCN2018118989-appb-000011
所述Ar 1、Ar 2选自以下基团:
Figure PCTCN2018118989-appb-000012
X 1、X 2、X 3各自独立地选自:N或者CH,且所述X 1、X 2、X 3中至少有一个为氮原子;
Z为N或者CH;
n为0、1或2。
在一实施例中,通式(3)中Z为CH,X 1为N,X 2为N;X 3为N。
在一实施例中,所述含硼杂环化合物具有如通式(4)-通式(9)任一通式所示的结构
Figure PCTCN2018118989-appb-000013
Figure PCTCN2018118989-appb-000014
其中,A为O、S、NR 10或CR 11R 12;所述R 10、R 11、R 12如R 3所定义,优选所述R 10为苯基、联苯基或萘基;R 11、R 12各自独立地为C1-C6烷基;
W 1、W 2、W 3各自独立地为N或CR 13;所述R 13如R 3所定义;
环E、F各自独立地为苯环或萘环。
在一实施例中,所述含硼杂环化合物具有如通式(4)中的R 13选自:H或以下基团:
Figure PCTCN2018118989-appb-000015
在一实施例中,所述含硼杂环化合物具有如通式(10)所示的结构:
Figure PCTCN2018118989-appb-000016
A为O、S、NR 10或CR 11R 12
所述R 10为苯基;R 11为甲基;R 12为甲基。
在一实施例中,按照本发明的含硼杂环化合物是至少部分被氘代,较好是10%的H被氘代,更好是20%的H被氘代,很好是30%的H被氘代,最好是40%的H被氘代。
按照发明的含硼杂环化合物可以作为功能材料应用于电子器件,特别是OLED器件中。有机功能材料可分为空穴注入材料(HIM),空穴传输材料(HTM),电子传输材料(ETM),电子注入材料(EIM),电子阻挡材料(EBM),空穴阻挡材料(HBM),发光体(Emitter),主体材料(Host)和有机染料。在一实施例中,按照发明的含硼杂环化合物可作为主体材料,或电子传输材料,或空穴传输材料。在一实施例中,按照发明的含硼杂环化合物可作为磷光主体材料或共主体材料。
作为磷光主体材料必须有适当的三线态能级,即T 1。在某些实施例中,按照发明的含硼杂环化合物的T 1≥2.2eV,较好是≥2.4eV,更好是≥2.6eV,最好是≥2.7eV。
作为磷光主体材料希望有好的热稳定性。一般的,按照本发明的含硼杂环化合物的玻璃化温度Tg≥100℃,在一个优选的实施例中,Tg≥120℃,在一个较为优选的实施例中,Tg≥140℃,在一个更为优选的实施例中,Tg≥160℃,在一个最为优选的实施例中,Tg≥180℃。
在某些优先的实施例中,按照本发明的含硼杂环化合物的((HOMO-(HOMO-1))≥0.2eV,较好是≥0.25eV,更好是≥0.3eV,更更好是≥0.35eV,非常好是≥0.4eV,最好是≥0.45eV。
在另一些优先的实施例中,按照本发明的含硼杂环化合物的(((LUMO+1)-LUMO)≥0.15eV,较好是≥0.20eV,更好是≥0.25eV,更更好是≥0.30eV,最好是≥0.35eV。
在某些优先的实施例中,按照本发明的含硼杂环化合物具有较大谐振因子f(S1)。优先的f(S1)≥0.05,较好是≥0.15,最好是≥0.20。
在某些实施例中,按照本发明的含硼杂环化合物具有发光功能,其发光波长在300到 1000nm之间,较好是在350到900nm之间,更好是在400到800nm之间。这里指的发光是指光致发光或电致发光。
在另一个优选的实施例中,按照本发明的含硼杂环化合物可作为发光体。
在一实施例中,按照本发明的含硼杂环化合物具有热激活延迟荧光(TADF)特性。在另一实施例中,按照本发明的含硼杂环化合物的(S 1-T 1)≤0.30eV,其中S 1表示单线态能级,T 1表示三线态能级为。
TADF材料是继有机荧光材料和有机磷光材料之后发展的第三代有机发光材料。该类材料的特征是,其三线态激子可以通过反系间穿越转变成单线态激子发光。一般的,该类材料具有小的单线态-三线态能级差(ΔEst),如ΔEst≤0.3eV。但也有具有TADF特性但ΔEst较大的,如Adv.Mater.2016,DOI:10.1002/adma.201505491中所报道的。TADF材料在下面还有详细的描述。
在一个优先的实施例中,按照本发明的含硼杂环化合物的ΔEst≤0.3eV,较好是≤0.25eV,更好是≤0.20eV,特别好是≤0.15eV,最好是≤0.10eV。
上述含硼杂环化合物选自具有以下结构的化合物,但不限于,这些结构可以在所有的可能取代的点上被任意取代。
Figure PCTCN2018118989-appb-000017
Figure PCTCN2018118989-appb-000018
Figure PCTCN2018118989-appb-000019
Figure PCTCN2018118989-appb-000020
本发明还涉及一种含硼杂环高聚物,其中至少一个重复单元包含有如通式(1)或(2)所示的结构。
在某些实施例中,所述的含硼杂环高聚物是非共轭高聚物,其中如化学式(I)所示的结构单元在侧链上。在另一个优选的实施例中,所述的高聚物是共轭高聚物。
在一个优选的实施例中,其中的含硼杂环高聚物的合成方法选自SUZUKI-,YAMAMOTO-, STILLE-,NIGESHI-,KUMADA-,HECK-,SONOGASHIRA-,HIYAMA-,FUKUYAMA-,HARTWIG-BUCHWALD-和ULLMAN。
在一个优先的实施例中,按照本发明的含硼杂环高聚物的玻璃化温度(Tg)≥100℃,优选为≥120℃,更优为≥140℃,更更优为≥160℃,最优为≥180℃。
在一个优先的实施例中,按照本发明的含硼杂环高聚物的分子量分布(PDI)取值范围优选为1~5;较优选为1~4;更优选为1~3,更更优选为1~2,最优选为1~1.5。
在一个优先的实施例中,按照本发明的含硼杂环高聚物的重均分子量(Mw)取值范围优选为1万~100万;较优选为5万~50万;更优选为10万~40万,更更优选为15万~30万,最优选为20万~25万。
本发明还涉及一种含硼杂环混合物,包括如一种上述的含硼杂环化合物或含硼杂环高聚物,以及至少一种另一种有机功能材料。所述另一种的有机功能材料,包括空穴(也称电洞)注入或传输材料(HIM/HTM)、空穴阻挡材料(HBM)、电子注入或传输材料(EIM/ETM)、电子阻挡材料(EBM)、有机主体材料(Host)、单重态发光体(荧光发光体)、重态发光体(磷光发光体),有机热激发延迟荧光材料(TADF材料)特别是发光有机金属络合物。例如在WO2010135519A1、US20090134784A1和WO 2011110277A1中对各种有机功能材料有详细的描述,特此将此3专利文件中的全部内容并入本文作为参考。有机功能材料可以是小分子和高聚物材料。
在某些实施例中,所述的含硼杂环混合物,包含至少一种按照本发明的含硼杂环化合物或含硼杂环高聚物和一种荧光发光体。这里按照本发明的含硼杂环化合物或含硼杂环高聚物可以作为荧光主体材料,其中所述的荧光发光体重量百分比为≤10wt%,较好是≤9wt%,更好是≤8wt%,特别好是≤7wt%,最好是≤5wt%。
在一个特别优选的实施例中,所述的混合物,包含至少一种按照本发明的含硼杂环化合物或含硼杂环高聚物和一种磷光发光体。这里按照本发明的含硼杂环化合物或含硼杂环高聚物可以作为磷光主体材料,其中所述的磷光发光体重量百分比为≤25wt%,较好是≤20wt%,更好是≤15wt%。
在另一个优选的实施例中,所述的含硼杂环混合物,包含至少一种按照本发明的含硼杂环化合物或含硼杂环高聚物、一种磷光发光体和另一种主体材料(三重态主体材料)。在这种实施例中,按照本发明的含硼杂环化合物或含硼杂环高聚物可以作为辅助发光材料,其与磷光发光体重量比从1∶2到2∶1。在另一种优选的实施例中,按照本发明的含硼杂环化合物或含硼杂环高聚物与另一种的主体材料形成激基络合物,所述的激基络合物的能级高于所述的磷光发光体。
在另一个优选的实施例中,所述的含硼杂环混合物,包含少一种按照本发明的含硼杂环化合物或含硼杂环高聚物,和一种TADF材料。这里按照本发明的含硼杂环化合物或含硼杂环高聚物可以作为TADF发光材料的主体材料,其中所述的TADF材料的重量百分比为≤15wt%,较好是≤10wt%,更好是≤8wt%。
在一个非常优选的实施例中,所述的含硼杂环混合物包含一种按照本发明的含硼杂环化合物,和另一种主体材料(三重态主体材料)。所述的含硼杂环混合物可以作为磷光发光体或TADF发光体的混合主体。这里按照本发明的含硼杂环化合物作为第二主体,其重量百分比可在30%~70%,最好是40%~60%。
在某些实施例中,所述的含硼杂环混合物包含一种按照本发明的含硼杂环化合物,和另一种TADF材料。
下面对荧光发光材料或单重态发光体,磷光发光材料或三重态发光体,和TADF材料作一些较详细的描述(但不限于此)。
1.单重态发光体(Singlet Emitter)
单重态发光体往往有较长的共轭π电子系统。迄今,已有许多例子,例如在JP2913116B和 WO2001021729A1中公开的苯乙烯胺及其衍生物,在WO2008/006449和WO2007/140847中公开的茚并芴及其衍生物及在US7233019、KR2006-0006760中公开的芘的三芳胺衍生物。
在一个优先的实施方案中,单重态发光体可选自一元苯乙烯胺,二元苯乙烯胺,三元苯乙烯胺,四元苯乙烯胺,苯乙烯膦,苯乙烯醚和芳胺。
一个一元苯乙烯胺是指一化合物,它包含一个无取代或取代的苯乙烯基组和至少一个胺,最好是芳香胺。一个二元苯乙烯胺是指一化合物,它包含二个无取代或取代的苯乙烯基组和至少一个胺,最好是芳香胺。一个三元苯乙烯胺是指一化合物,它包含三个无取代或取代的苯乙烯基组和至少一个胺,最好是芳香胺。一个四元苯乙烯胺是指一化合物,它包含四个无取代或取代的苯乙烯基组和至少一个胺,最好是芳香胺。一个优选的苯乙烯是二苯乙烯,其可能会进一步被取代。相应的膦类和醚类的定义与胺类相似。芳基胺或芳香胺是指一种化合物,包含三个直接联接氮的无取代或取代的芳香环或杂环系统。这些芳香族或杂环的环系统中至少有一个优先选于稠环系统,并最好有至少14个芳香环原子。其中优选的例子有芳香蒽胺,芳香蒽二胺,芳香芘胺,芳香芘二胺,芳香屈胺和芳香屈二胺。一个芳香蒽胺是指一化合物,其中一个二元芳基胺基团直接联到蒽上,最好是在9的位置上。一个芳香蒽二胺是指一化合物,其中二个二元芳基胺基团直接联到蒽上,最好是在9,10的位置上。芳香芘胺,芳香芘二胺,芳香屈胺和芳香屈二胺的定义类似,其中二元芳基胺基团最好联到芘的1或1,6位置上.
基于乙烯胺及芳胺的单重态发光体的例子,也是优选的例子,可在下述专利文件中找到:WO 2006/000388,WO 2006/058737,WO 2006/000389,WO 2007/065549,WO 2007/115610,US 7250532 B2,DE 102005058557 A1,CN 1583691 A,JP 08053397 A,US 6251531 B1,US 2006/210830 A,EP 1957606 A1和US 2008/0113101 A1特此上述列出的专利文件中的全部内容并入本文作为参考。
基于均二苯乙烯极其衍生物的单重态发光体的例子有US 5121029。
进一步的优选的单重态发光体可选于茚并芴-胺和茚并芴-二胺,如WO 2006/122630所公开的,苯并茚并芴-胺和苯并茚并芴-二胺,如WO 2008/006449所公开的,二苯并茚并芴-胺和二苯并茚并芴-二胺,如WO2007/140847所公开的。
进一步优选的单重态发光体可选于基于芴的稠环体系,如US2015333277A1、US2016099411A1、US2016204355A1所公开的。
更加优选的单重态发光体可选于芘的衍生物,如US2013175509A1所公开的结构;芘的三芳胺衍生物,如CN102232068B所公开的含有二苯并呋喃单元的芘的三芳胺衍生物;其它具有特定结构的芘的三芳胺衍生物,如CN105085334A、CN105037173A所公开的。其他可用作单重态发光体的材料有多环芳烃化合物,特别是如下化合物的衍生物:蒽如9,10-二(2-萘并蒽),萘,四苯,氧杂蒽,菲,芘(如2,5,8,11-四-t-丁基苝),茚并芘,苯撑如(4,4’-双(9-乙基-3-咔唑乙烯基)-1,1’-联苯),二茚并芘,十环烯,六苯并苯,芴,螺二芴,芳基芘(如US20060222886),亚芳香基乙烯(如US5121029,US5130603),环戊二烯如四苯基环戊二烯,红荧烯,香豆素,若丹明,喹吖啶酮,吡喃如4(二氰基亚甲基)-6-(4-对二甲氨基苯乙烯基-2-甲基)-4H-吡喃(DCM),噻喃,双(吖嗪基)亚胺硼化合物(US 2007/0092753 A1),双(吖嗪基)亚甲基化合物,carbostyryl化合物,噁嗪酮,苯并恶唑,苯并噻唑,苯并咪唑及吡咯并吡咯二酮。一些单重态发光体的材料可在下述专利文件中找到:US 20070252517 A1,US 4769292,US 6020078,US 2007/0252517 A1,US 2007/0252517 A1。特此将上述列出的专利文件中的全部内容并入本文作为参考。
在下面的表中列出一些合适的单重态发光体的例子:
Figure PCTCN2018118989-appb-000021
Figure PCTCN2018118989-appb-000022
2.三重态发光体(Triplet Emitter)
三重态发光体也称磷光发光体。在一个优先的实施方案中,三重态发光体是有通式M(L)n的金属络合物,其中M是一金属原子,L每次出现时可以是相同或不同,是一有机配体,它通过一个或多个位置键接或配位连接到金属原子M上,n是一个大于1的整数,较好选是1,2,3,4,5或6。可选地,这些金属络合物通过一个或多个位置联接到一个聚合物上,最好是通过有机配体。
在一个优先的实施方案中,金属原子M选于过渡金属元素或镧系元素或锕系元素,优先选择Ir,Pt,Pd,Au,Rh,Ru,Os,Sm,Eu,Gd,Tb,Dy,Re,Cu或Ag,特别优先选择Os,Ir,Ru,Rh,Re,Pd,Au或Pt。
优先地,三重态发光体包含有螯合配体,即配体,通过至少两个结合点与金属配位,特别优先考虑的是三重态发光体包含有两个或三个相同或不同的双齿或多齿配体。螯合配体有利于提高金属络合物的稳定性。
有机配体的例子可选自苯基吡啶衍生物,7,8-苯并喹啉衍生物,2(2-噻吩基)吡啶衍生物,2(1-萘基)吡啶衍生物,或2苯基喹啉衍生物。所有这些有机配体都可能被取代,例如被含氟或三氟甲基取代。辅助配体可优先选自乙酸丙酮或苦味酸。
在一个优先的实施方案中,可用作三重态发光体的金属络合物有如下形式:
Figure PCTCN2018118989-appb-000023
其中M是一金属,选于过渡金属元素或镧系或锕系元素,特别优先的是Ir,Pt,Au;
Ar 1每次出现时可以是相同或不同,是一个环状基团,其中至少包含有一个施主原子,即有一孤对电子的原子,如氮或磷,通过它环状基团与金属配位连接;Ar 2每次出现时可以是相同或不同,是一个环状基团,其中至少包含有一个C原子,通过它环状基团与金属连接;Ar 1和Ar 2 由共价键联接在一起,可各自携带一个或多个取代基团,它们也可再通过取代基团联接在一起;L’每次出现时可以是相同或不同,是一个双齿螯合的辅助配体,最好是单阴离子双齿螯合配体;x可以是0,1,2或3,优先地是2或3;y可以是0,1,2或3,优先地是1或0。
一些三重态发光体的材料极其应用的例子可在下述专利文件和文献中找到:WO 200070655,WO 200141512,WO 200202714,WO 200215645,EP 1191613,EP 1191612,EP 1191614,WO 2005033244,WO 2005019373,US 2005/0258742,WO 2009146770,WO 2010015307,WO 2010031485,WO 2010054731,WO 2010054728,WO 2010086089,WO 2010099852,WO 2010102709,US 20070087219 A1,US 20090061681 A1,US 20010053462 A1,Baldo,Thompson et al.Nature 403,(2000),750-753,US 20090061681 A1,US 20090061681 A1,Adachi et al.Appl.Phys.Lett.78(2001),1622-1624,J.Kido et al.Appl.Phys.Lett.65(1994),2124,Kido et al.Chem.Lett.657,1990,US 2007/0252517 A1,Johnson et al.,JACS 105,1983,1795,Wrighton,JACS 96,1974,998,Ma et al.,Synth.Metals 94,1998,245,US 6824895,US 7029766,US 6835469,US 6830828,US 20010053462 A1,WO 2007095118 A1,US 2012004407A1,WO 2012007088A1,WO2012007087A1,WO 2012007086A1,US 2008027220A1,WO 2011157339A1,CN 102282150A,WO 2009118087A1,WO 2013107487A1,WO 2013094620A1,WO 2013174471A1,WO 2014031977A1,WO 2014112450A1,WO 2014007565A1,WO 2014038456A1,WO 2014024131A1,WO 2014008982A1,WO2014023377A1。特此将上述列出的专利文件和文献中的全部内容并入本文作为参考。
在下面的表中列出一些合适的三重态发光体的例子:
Figure PCTCN2018118989-appb-000024
Figure PCTCN2018118989-appb-000025
3.热激活延迟荧光发光材料(TADF):
传统有机荧光材料只能利用电激发形成的25%单线态激子发光,器件的内量子效率较低(最高为25%)。尽管磷光材料由于重原子中心强的自旋-轨道耦合增强了系间穿越,可以有效利用电激发形成的单线态激子和三线态激子发光,使器件的内量子效率达到100%。但磷光材料昂贵,材料稳定性差,器件效率滚降严重等问题限制了其在OLED中的应用。热激活延迟荧光发光材料是继有机荧光材料和有机磷光材料之后发展的第三代有机发光材料。该类材料一般具有小的单线态-三线态能级差(ΔE st),三线态激子可以通过反系间穿越转变成单线态激子发光。这可以充分利用电激发下形成的单线态激子和三线态激子。器件内量子效率可达到100%。同时材料结构可控,性质稳定,价格便宜无需要贵金属,在OLED领域的应用前景广阔。
TADF材料需要具有较小的单线态-三线态能级差,较好是ΔEst<0.3eV,次好是ΔEst<0.25eV,更好是ΔEst<0.20eV,最好是ΔEst<0.1eV。在一个优先的实施方案中,TADF材料有比较小的ΔEst,在另一个优先的实施方案中,TADF有较好的荧光量子效率。一些TADF发光的材料可在下述专利文件中找到:CN103483332(A),TW201309696(A),TW201309778(A),TW201343874(A),TW201350558(A),US20120217869(A1),WO2013133359(A1), WO2013154064(A1),Adachi,et.al.Adv.Mater.,21,2009,4802,Adachi,et.al.Appl.Phys.Lett.,98,2011,083302,Adachi,et.al.Appl.Phys.Lett.,101,2012,093306,Adachi,et.al.Chem.Commun.,48,2012,11392,Adachi,et.al.Nature Photonics,6,2012,253,Adachi,et.al.Nature,492,2012,234,Adachi,et.al.J.Am.Chem.Soc,134,2012,14706,Adachi,et.al.Angew.Chem.Int.Ed,51,2012,11311,Adachi,et.al.Chem.Commun.,48,2012,9580,Adachi,et.al.Chem.Commun.,48,2013,10385,Adachi,et.al.Adv.Mater.,25,2013,3319,Adachi,et.al.Adv.Mater.,25,2013,3707,Adachi,et.al.Chem.Mater.,25,2013,3038,Adachi,et.al.Chem.Mater.,25,2013,3766,Adachi,et.al.J.Mater.Chem.C.,1,2013,4599,Adachi,et.al.J.Phys.Chem.A.,117,2013,5607,特此将上述列出的专利或文章文件中的全部内容并入本文作为参考。
Figure PCTCN2018118989-appb-000026
Figure PCTCN2018118989-appb-000027
本发明的一个目的是为蒸镀型OLED提供材料解决方案。
在某些实施例中,按照本发明的含硼杂环化合物,其分子量≤1100g/mol,优选≤1000g/mol,很优选≤950g/mol,更优选≤900g/mol,最优选≤800g/mol。
本发明的另一个目的是为印刷OLED提供材料解决方案。
在某些实施例中,按照本发明的含硼杂环化合物,其分子量≥700g/mol,优选≥900g/mol,很优选≥900g/mol,更优选≥1000g/mol,最优选≥1100g/mol。
在另一些实施例中,按照本发明的含硼杂环化合物,在25℃时,在甲苯中的溶解度≥10mg/ml,优选≥15mg/ml,最优选≥20mg/ml。
本发明还进一步涉及一种含硼杂环组合物或油墨,包含有一种按照本发明的含硼杂环化合物或含硼杂环高聚物及至少一种有机溶剂。
用于印刷工艺时,油墨的粘度,表面张力是重要的参数。合适的油墨的表面张力参数适合于特定的基板和特定的印刷方法。
在一个优选的实施例中,按照本发明的油墨在工作温度或在25℃下的表面张力约在19dyne/cm到50dyne/cm范围;更好是在22dyne/cm到35dyne/cm范围;最好是在25dyne/cm到 33dyne/cm范围。
在另一个优选的实施例中,按照本发明的油墨在工作温度或25℃下的粘度约在1cps到100cps范围;较好是在1cps到50cps范围;更好是在1.5cps到20cps范围;最好是在4.0cps到20cps范围。如此配制的组合物将便于喷墨印刷。
粘度可以通过不同的方法调节,如通过合适的溶剂选取和油墨中功能材料的浓度。按照本发明的包含有所述地金属有机配合物或高聚物的油墨可方便人们将印刷油墨按照所用的印刷方法在适当的范围调节。一般地,按照本发明的组合物包含的功能材料的重量比为0.3%~30wt%范围,较好的为0.5%~20wt%范围,更好的为0.5%~15wt%范围,更更好的为0.5%~10wt%范围,最好的为1%~5wt%范围。
在一些实施例中,按照本发明的油墨,所述的至少一种的有机溶剂选自基于芳族或杂芳族的溶剂,特别是脂肪族链/环取代的芳族溶剂、或芳族酮溶剂,或芳族醚溶剂。
适合本发明的溶剂的例子有,但不限于:基于芳族或杂芳族的溶剂:对二异丙基苯、戊苯、四氢萘、环己基苯、氯萘、1,4-二甲基萘、3-异丙基联苯、对甲基异丙苯、二戊苯、三戊苯、戊基甲苯、邻二甲苯、间二甲苯、对二甲苯、邻二乙苯、间二乙苯、对二乙苯、1,2,3,4-四甲苯、1,2,3,5-四甲苯、1,2,4,5-四甲苯、丁苯、十二烷基苯、二己基苯、二丁基苯、对二异丙基苯、1-甲氧基萘、环己基苯、二甲基萘、3-异丙基联苯、对甲基异丙苯、1-甲基萘、1,2,4-三氯苯、1,3-二丙氧基苯、4,4-二氟二苯甲烷、1,2-二甲氧基-4-(1-丙烯基)苯、二苯甲烷、2-苯基吡啶、3-苯基吡啶、N-甲基二苯胺、4-异丙基联苯、α,α-二氯二苯甲烷、4-(3-苯基丙基)吡啶、苯甲酸苄酯、1,1-双(3,4-二甲基苯基)乙烷、2-异丙基萘、二苄醚等;基于酮的溶剂:1-四氢萘酮,2-四氢萘酮,2-(苯基环氧)四氢萘酮,6-(甲氧基)四氢萘酮,苯乙酮、苯丙酮、二苯甲酮、及它们的衍生物,如4-甲基苯乙酮、3-甲基苯乙酮、2-甲基苯乙酮、4-甲基苯丙酮、3-甲基苯丙酮、2-甲基苯丙酮,异佛尔酮、2,6,8-三甲基-4-壬酮、葑酮、2-壬酮、3-壬酮、5-壬酮、2-癸酮、2,5-己二酮、佛尔酮、二正戊基酮;芳族醚溶剂:3-苯氧基甲苯、丁氧基苯、苄基丁基苯、对茴香醛二甲基乙缩醛、四氢-2-苯氧基-2H-吡喃、1,2-二甲氧基-4-(1-丙烯基)苯、1,4-苯并二噁烷、1,3-二丙基苯、2,5-二甲氧基甲苯、4-乙基本乙醚、1,2,4-三甲氧基苯、4-(1-丙烯基)-1,2-二甲氧基苯、1,3-二甲氧基苯、缩水甘油基苯基醚、二苄基醚、4-叔丁基茴香醚、反式-对丙烯基茴香醚、1,2-二甲氧基苯、1-甲氧基萘、二苯醚、2-苯氧基甲醚、2-苯氧基四氢呋喃、乙基-2-萘基醚、戊醚c己醚、二辛醚、乙二醇二丁醚、二乙二醇二乙醚、二乙二醇丁基甲醚、二乙二醇二丁醚、三乙二醇二甲醚、三乙二醇乙基甲醚、三乙二醇丁基甲醚、三丙二醇二甲醚、四乙二醇二甲醚;酯溶剂:辛酸烷酯、癸二酸烷酯、硬脂酸烷酯、苯甲酸烷酯、苯乙酸烷酯、肉桂酸烷酯、草酸烷酯、马来酸烷酯、烷内酯、油酸烷酯等。
进一步,按照本发明的油墨,所述的至少一种的有溶剂可选自:脂肪族酮,例如,2-壬酮、3-壬酮、5-壬酮、2-癸酮、2,5-己二酮、2,6,8-三甲基-4-壬酮、佛尔酮、二正戊基酮等;或脂肪族醚,例如,戊醚、己醚、二辛醚、乙二醇二丁醚、二乙二醇二乙醚、二乙二醇丁基甲醚、二乙二醇二丁醚、三乙二醇二甲醚、三乙二醇乙基甲醚、三乙二醇丁基甲醚、三丙二醇二甲醚、四乙二醇二甲醚等。
在另一些实施例中,所述的印刷油墨进一步包含有另一种有机溶剂。另一种有机溶剂的例子包括(但不限于):甲醇、乙醇、2-甲氧基乙醇、二氯甲烷、三氯甲烷、氯苯、邻二氯苯、四氢呋喃、苯甲醚、吗啉、甲苯、邻二甲苯、间二甲苯、对二甲苯、1,4二氧杂环己烷、丙酮、甲基乙基酮、1,2二氯乙烷、3-苯氧基甲苯、1,1,1-三氯乙烷、1,1,2,2-四氯乙烷、醋酸乙酯、醋酸丁酯、二甲基甲酰胺、二甲基乙酰胺、二甲基亚砜、四氢萘、萘烷、茚和/或它们的混合物。
在一个优选的实施方案中,按照本发明的含硼杂环组合物是一溶液。
在另一个优选的实施方案中,按照本发明的含硼杂环组合物是一悬浮液。
本发明实施例中的含硼杂环组合物中可以包括0.01至20wt%的按照本发明的含硼杂环化合物或含硼杂环混合物,较好的是0.1至15wt%,更好的是0.2至10wt%,最好的是0.25至5wt%的有机化合物或其混合物。
本发明还涉及所述组合物作为涂料或印刷油墨在制备有机电子器件时的用途,特别优选的是通过打印或涂布的制备方法。
其中,适合的打印或涂布技术包括(但不限于)喷墨打印,喷印(Nozzle Printing),活版印刷,丝网印刷,浸涂,旋转涂布,刮刀涂布,辊筒印花,扭转辊印刷,平版印刷,柔版印刷,轮转印刷,喷涂,刷涂或移印,狭缝型挤压式涂布等。首选的是喷墨印刷,喷印及凹版印刷。溶液或悬浮液可以另外包括一个或多个组份例如表面活性化合物,润滑剂,润湿剂,分散剂,疏水剂,粘接剂等,用于调节粘度,成膜性能,提高附着性等。有关打印技术,及其对有关溶液的相关要求,如溶剂及浓度,粘度等,的详细信息请参见Helmut Kipphan主编的《印刷媒体手册:技术和生产方法》(Handbook of Print Media:Technologies and Production Methods),ISBN 3-540-67326-1。
基于上述含硼杂环化合物,本发明还提供一种如上所述的含硼杂环化合物或含硼杂环高聚物的应用,即将所述含硼杂环化合物或含硼杂环高聚物应用于有机电子器件,所述的有机电子器件可选于,但不限于,有机发光二极管(OLED),有机光伏电池(OPV),有机发光电池(OLEEC),有机场效应管(OFET),有机发光场效应管,有机激光器,有机自旋电子器件,有机传感器及有机等离激元发射二极管(Organic Plasmon Emitting Diode)等,特别优选的是有机电致发光器件,如OLED,OLEEC,有机发光场效应管。本发明实施例中,优选将所述有机化合物用于电致发光器件的发光层。
本发明进一步涉及一种有机电子器件,至少包含一种如上所述的有机化合物或高聚物。一般的,此种有机电子器件至少包含一个阴极,一个阳极及位于阴极和阳极之间的一个功能层,其中所述的功能层中至少包含一种如上所述的有机化合物。所述的有机电子器件可选于,但不限于,有机发光二极管(OLED),有机光伏电池(OPV),有机发光电池(OLEEC),有机场效应管(OFET),有机发光场效应管,有机激光器,有机自旋电子器件,有机传感器及有机等离激元发射二极管(Organic Plasmon Emitting Diode)等,特别优选的是有机电致发光器件,如OLED,OLEEC,有机发光场效应管。
在某些特别优先的实施例中,所述的电致发光器件,其发光层包含一种所述的有机化合物或高聚物,或一种所述的有机化合物或高聚物和一种磷光发光体,或一种所述的有机化合物或高聚物和一种主体材料,或一种所述的有机化合物或高聚物,一种磷光发光体和一种主体材料。
在以上所述的电致发光器件,特别是OLED中,包括一基片,一阳极,至少一发光层,一阴极。
基片可以是不透明或透明。一个透明的基板可以用来制造一个透明的发光元器件。例如可参见,Bulovic等Nature 1996,380,p29,和Gu等,Appl.Phys.Lett.1996,68,p2606。基片可以是刚性的或弹性的。基片可以是塑料,金属,半导体晶片或玻璃。最好是基片有一个平滑的表面。无表面缺陷的基板是特别理想的选择。在一个优选的实施例中,基片是柔性的,可选于聚合物薄膜或塑料,其玻璃化温度Tg为150℃以上,较好是超过200℃,更好是超过250℃,最好是超过300℃。合适的柔性基板的例子有聚(对苯二甲酸乙二醇酯)(PET)和聚乙二醇(2,6-萘)(PEN)。
阳极可包括一导电金属或金属氧化物,或导电聚合物。阳极可以容易地注入空穴到空穴注入层(HIL)或空穴传输层(HTL)或发光层中。在一个的实施例中,阳极的功函数和发光层中的发光体或作为HIL或HTL或电子阻挡层(EBL)的p型半导体材料的HOMO能级或价带能级的差的绝对值小于0.5eV,较好是小于0.3eV,最好是小于0.2eV。阳极材料的例子包括但不限于:Al、Cu、Au、Ag、Mg、Fe、Co、Ni、Mn、Pd、Pt、ITO、铝掺杂氧化锌(AZO)等。其他合适 的阳极材料是已知的,本领域普通技术人员可容易地选择使用。阳极材料可以使用任何合适的技术沉积,如一合适的物理气相沉积法,包括射频磁控溅射,真空热蒸发,电子束(e-beam)等。在某些实施例中,阳极是图案结构化的。图案化的ITO导电基板可在市场上买到,并且可以用来制备根据本发明的器件。
阴极可包括一导电金属或金属氧化物。阴极可以容易地注入电子到EIL或ETL或直接到发光层中。在一个的实施例中,阴极的功函数和发光层中发光体或作为电子注入层(EIL)或电子传输层(ETL)或空穴阻挡层(HBL)的n型半导体材料的LUMO能级或导带能级的差的绝对值小于0.5eV,较好是小于0.3eV,最好是小于0.2eV。原则上,所有可用作OLED的阴极的材料都可能作为本发明器件的阴极材料。阴极材料的例子包括但不限于:Al、Au、Ag、Ca、Ba、Mg、LiF/Al、MgAg合金、BaF2/Al、Cu、Fe、Co、Ni、Mn、Pd、Pt、ITO等。阴极材料可以使用任何合适的技术沉积,如一合适的物理气相沉积法,包括射频磁控溅射,真空热蒸发,电子束(e-beam)等。
OLED还可以包含其他功能层,如空穴注入层(HIL)、空穴传输层(HTL)、电子阻挡层(EBL)、电子注入层(EIL)、电子传输层(ETL)、空穴阻挡层(HBL)。适合用于这些功能层中的材料在上面及在WO2010135519A1、US20090134784A1和WO2011110277A1中有详细的描述,特此将此3篇专利文件中的全部内容并入本文作为参考。
在一个优选的实施例中,按照本发明的发光器件中,其发光层是通过按照本发明的组合物制备而成。
按照本发明的发光器件,其发光波长在300到1000nm之间,较好的是在350到900nm之间,更好的是在400到800nm之间。
本发明还涉及按照本发明的有机电子器件在各种电子设备中的应用,包括,但不限于,显示设备,照明设备,光源,传感器等等。
本发明还涉及包含有按照本发明的有机电子器件的电子设备,包括,但不限于,显示设备,照明设备,光源,传感器等等。
下面将结合优选实施例对本发明进行了说明,但本发明并不局限于下述实施例,应当理解,所附权利要求概括了本发明的范围在本发明构思的引导下本领域的技术人员应意识到,对本发明的各实施例所进行的一定的改变,都将被本发明的权利要求书的精神和范围所覆盖。
具体实施例:
实施例1:化合物86的合成
Figure PCTCN2018118989-appb-000028
原料a的合成参照文献CN201611047549.
1)中间体b的合成
在1000ml的两口瓶中加入a(15.86g,38.1mmol,1eq),ADIB(13.5g,82mmol,2.2eq)和三氯甲烷(650ml),避光情况下,分批次平均加入NBS共(7.48g,42mmol,1.1eq)。室温搅拌24h。水洗分液,旋干。然后重结晶,得到中间体b固体。MS(ASAP)=497
2)化合物86的合成。
在1000ml的两口瓶中加入中间体b(9.92g,20mmol,1eq),N-苯基-2-咔唑硼酸(6.9g,24mmol,1.2eq)以及四三苯基膦钯(1.04g,0.9mmol,0.04eq)和K 2CO 3(5.5g,40mmol,2eq),再添加9∶1∶3的甲苯/水/乙醇混合溶剂,在氮气环境下反应24hours。水洗分液,硅胶柱层析。然 后重结晶得到黄色固体(化合物86)。MS(ASAP)=657.6
实施例2:化合物87的合成
Figure PCTCN2018118989-appb-000029
化合物87的合成方法参考化合物86,但是将化合物86合成过程中的N-苯基-2-咔唑硼酸替换为N-苯基-3-咔唑硼酸。MS(ASAP)=657.6
实施例3:化合物1的合成
Figure PCTCN2018118989-appb-000030
1)中间体b的合成。
在500mL圆底烧瓶中投入5.0g中间体a,2.7g联硼酸频哪醇酯,2.0g醋酸钾,0.5g Pd(dppf)Cl 2并加入350mL 1,4-二氧六环,在氮气气氛下100℃搅拌12h.旋干1,4-二氧六环。依次进行柱层析和重结晶,得到中间体(b).MS(ASAP)=542.3
2)化合物(1)的合成。
在500mL圆底烧瓶中,加入3.8g中间体b,1.9g 2-氯-4,6-二苯基-1,3,5-三嗪,200mg四(三苯基膦)钯和300mL 1,4-二氧六环。在氮气气氛下,100℃搅拌48h.旋干溶剂,硅胶柱层析,然后重结晶,得到化合物1。MS(ASAP)=647.6
实施例4:化合物10的合成
Figure PCTCN2018118989-appb-000031
化合物10的合成方法参考化合物86,但是将化合物86合成过程中的2-氯-4,6-二苯基-1,3,5-三嗪替换为2-(4-溴苯基)苯-4,6-二苯基-1,3,5-三嗪。MS(ASAP)=723.6
实施例5:化合物23的合成
Figure PCTCN2018118989-appb-000032
化合物23的合成方法参考化合物86,但是将化合物86合成过程中的N-苯基-2-咔唑硼酸替换为4-噻吩硼酸。MS(ASAP)=598.17
实施例6:化合物29的合成
Figure PCTCN2018118989-appb-000033
化合物29的合成方法参考化合物86,但是将化合物86合成过程中的N-苯基-2-咔唑硼酸替换为中间体c。MS(ASAP)=889.88
实施例7:化合物76的合成
Figure PCTCN2018118989-appb-000034
化合物76的合成方法参考化合物86,但是将化合物86合成过程中的N-苯基-2-咔唑硼酸替换为中间体d。MS(ASAP)=747.66
实施例8:化合物111的合成
Figure PCTCN2018118989-appb-000035
化合物111的合成方法参考化合物86,但是将化合物86合成过程中的N-苯基-2-咔唑硼酸替换为中间体e。MS(ASAP)=789.75
实施例9:化合物52的合成
Figure PCTCN2018118989-appb-000036
化合物52的合成方法参考化合物86,但是将化合物86合成过程中的N-苯基-2-咔唑硼酸替换为中间体f。MS(ASAP)=688.61
实施例10:化合物94的合成
Figure PCTCN2018118989-appb-000037
化合物94的合成方法参考化合物86,但是将化合物86合成过程中的N-苯基-2-咔唑硼酸替换为中间体g。MS(ASAP)=757.71
实施例11:化合物95的合成
Figure PCTCN2018118989-appb-000038
化合物95的合成方法参考化合物86,但是将化合物86合成过程中的N-苯基-2-咔唑硼酸替换为中间体h。MS(ASAP)=781.83
化合物的能量结构
有机化合物材料的能级可通过量子计算得到,比如利用TD-DFT(含时密度泛函理论)通过Gaussian09W(Gaussian Inc.),具体的模拟方法可参见WO2011141110。首先用半经验方法“Ground State/Semi-empirical/Default Spin/AM1”(Charge 0/Spin Singlet)来优化分子几何结构,然后有机分子的能量结构由TD-DFT(含时密度泛函理论)方法算得“TD-SCF/DFT/Default Spin/B3PW91”与基组“6-31G(d)”(Charge 0/Spin Singlet)。HOMO和LUMO能级按照下面的校准公式计算,S 1,T 1和谐振因子f(S 1)直接使用。
HOMO(eV)=((HOMO(G)×27.212)-0.9899)/1.1206
LUMO(eV)=((LUMO(G)×27.212)-2.0041)/1.385
其中HOMO(G)和LUMO(G)是Gaussian 09W的直接计算结果,单位为Hartree。结果如表一所示:
表1:有机化合物的能级
Figure PCTCN2018118989-appb-000039
其中,LUMO的值均在-2.8~-3.0eV之间,三线态能级T1均在-2.40eV以上,说明实施例所示材料均为合适的红光主体材料。此外,所示材料皆具有较大的ΔHOMO和ΔLUMO,及较高的谐振因子(f(S1)>0.4)。
OLED器件的制备:
器件结构为ITO/NPD(60nm)/化合物86或87或者1:(piq) 2Ir(acac)(10%)(45nm)/TPBi(35nm)/Liq(1nm)/Al(150nm)。其中(piq) 2Ir(acac)作为发光材料,NPD作为空穴传输材料,TPBi作为电子传输材料,Liq作为电子注入材料。具体的制备过程如下:
a、导电玻璃基片的清洗:首次使用时,可用多种溶剂进行清洗,例如氯仿、酮、异丙醇进行清洗,然后进行紫外臭氧等离子处理;
b、HTL(60nm),EML(45nm),ETL(35m):在高真空(1×10 -6毫巴,mbar)中热蒸镀而成;
c、阴极:LiF/Al(1nm/150nm)在高真空(1×10 -6毫巴)中热蒸镀而成;
d、封装:器件在氮气手套箱中用紫外线硬化树脂封装。
Figure PCTCN2018118989-appb-000040
表2:OLED器件性能比较
OLED器件 主体材料 LT95@1000nits
OLED1 化合物86 5.3
OLED2 化合物87 7.8
OLED3 化合物1 4.8
OLED4 化合物10 6.9
OLED5 化合物23 4.6
OLED6 化合物29 4.4
OLED7 化合物76 5.5
OLED8 化合物111 4.1
OLED9 化合物52 7.9
OLED10 化合物94 4.3
OLED11 化合物95 3.1
对比器件OLED12 CBP 1
对比器件OLED13 F-1 2.1
对比器件OLED14 F-2 2.2
各OLED器件的结构参照OLED1或OLED2或OLED3,不同之处在于将主体材料(化合物86或87或1)替换为表2所示主体材料。各OLED器件的电流电压(J-V)特性通过表征设备来表征,同时记录重要的参数如效率,寿命及外部量子效率。表2是OLED器件寿命比较,其中的寿命LT95是在恒定电流下,亮度下降到初始亮度@1000nits的95%时的时间。这里LT95是相对比器件OLED4而计算的,即以OLED4的寿命为1。可见,OLED1(对应化合物86)、OLED2(对应化合物87)、OLED3(对应化合物料1)的寿命都是对比器件OLED12(对应CBP)的4倍以上,且这些器件的寿命都明显高于对比器件OLED13(对应F-1,参照专利CN201611047549)、对比器件OLED14(对应F-2,参照专利CN107851724)。可见,采用本发明的有机混合物制备的OLED器件,其寿命均得到明显提高。
应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (15)

  1. 一种含硼杂环化合物,其特征在于,具有如通式(1)或通式(2)所示的结构:
    Figure PCTCN2018118989-appb-100001
    其中,
    L 1,L 2各自独立地为单键,或各自独立地选自:含1-15个碳原子的直链烷烃、含1-15个碳原子的支链烷烃基、含1-15个碳原子的环烷烃基、具有5-20个环原子的芳香族基、具有5-20个环原子的杂芳香族基或者具有5-20个环原子的非芳香族基;
    X 1、X 2、X 3各自独立地选自:N或者CR 1,且所述X 1、X 2、X 3中至少有一个为氮原子;
    Ar 1、Ar 2各自独立地选自具有5-20个环原子的芳香族环系、具有5-20个环原子的杂芳香族环系或者具有5-20个环原子的非芳香族环系;
    Ar 3、Ar 4各自独立地选自苯基或萘基;
    Y选自NR 3、CR 4R 5、SiR 4R 5、O或者S;
    R 3、R 4、R 5各自独立地选自H、D,具有1至20个C原子的直链烷基、具有1至20个C原子的烷氧基、具有1至20个C原子的硫代烷氧基基团、具有3至20个C原子的支链或环状的烷基、具有3至20个C原子的烷氧基、具有3至20个C原子的硫代烷氧基基团、甲硅烷基基团、具有1至20个C原子的取代的酮基基团、具有2至20个C原子的烷氧基羰基基团、具有7至20个C原子的芳氧基羰基基团、氰基基团、氨基甲酰基基团、卤甲酰基基团、甲酰基基团、异氰基基团、异氰酸酯基团、硫氰酸酯基团、异硫氰酸酯基团、羟基基团、硝基基团、CF 3基团、Cl、Br、F、可交联的基团、具有5至40个环原子的取代或未取代的芳族或杂芳族环系、具有5至40个环原子的芳氧基或杂芳氧基基团;且R 3、R 4、R 5中的基团可彼此和/或与所述基团相连的环键合形成单环或多环的脂族或芳族环系;
    且所述含硼杂环化合物任选进一步被一个或多个R 1取代基取代;
    R 1存在多个时,多个R 1彼此相同或不同,所述R 1选自F、Cl、Br、I、D、CN、NO 2、CF 3、B(OR 2) 2、Si(R 2) 3、直链烷烃、支链烷烃、环烷烃、含有3~10个碳原子的烷烃醚、含1~10个碳原子烷烃硫醚、含有5~40个碳原子的芳基或者杂芳基团;
    R 2的定义同R 3
  2. 根据权利要求1所述的含硼杂环化合物,其特征在于,所述L 1、L 2、Ar 1、Ar 2各自独立地为包含至少一种如下结构的基团:
    Figure PCTCN2018118989-appb-100002
    其中:
    X在同一基团中有多个时,每个X各自独立地选自N或CR 1
    Y在同一基团中有多个时,每个Y各自独立地NR 3、CR 4R 5、SiR 4R 5、O或者S。
  3. 根据权利要求1所述的含硼杂环化合物,其特征在于,所述L 1,L 2各自独立地为单键,或具有如下结构的基团:
    Figure PCTCN2018118989-appb-100003
    其中,虚线键表示与相邻的结构单元键合的键。
  4. 根据权利要求1-3任一项所述的含硼杂环化合物,其特征在于,具有如通式(3)所示的结构
    Figure PCTCN2018118989-appb-100004
    所述Ar 1、Ar 2选自以下基团:
    Figure PCTCN2018118989-appb-100005
    X 1、X 2、X 3各自独立地选自:N或者CH,且所述X 1、X 2、X 3中至少有一个为氮原子;
    Z为N或者CH;
    n为0、1或2。
  5. 根据权利要求4所述的含硼杂环化合物,其特征在于,Z为CH,X 1为N,X 2为N,X 3为N。
  6. 根据权利要求1-3任一项所述的含硼杂环化合物,其特征在于,具有如通式(4)-通式(9)任一通式所示的结构:
    Figure PCTCN2018118989-appb-100006
    Figure PCTCN2018118989-appb-100007
    其中,A为O、S、NR 10或CR 11R 12;所述R 10、R 11、R 12如R 3所定义;
    W 1、W 2、W 3各自独立地为N或CR 13;所述R 13如R 3所定义;
    环E、F各自独立地为苯环或萘环。
  7. 根据权利要求6所述的含硼杂环化合物,其特征在于,所述R 13选自:H或以下基团:
    Figure PCTCN2018118989-appb-100008
  8. 根据权利要求6所述的含硼杂环化合物,其特征在于,具有如通式(10)所示的结构:
    Figure PCTCN2018118989-appb-100009
    A为O、S、NR 10或CR 11R 12
    所述R 10为苯基;R 11为甲基;R 12为甲基。
  9. 根据权利要求1-8任一项所述的含硼杂环化合物,其特征在于,所述含硼杂环化合物的((HOMO-(HOMO-1))≥0.2eV。
  10. 根据权利要求1-8任一项所述的含硼杂环化合物,其特征在于,所述含硼杂环化合物的三线态能级T 1≥2.2eV。
  11. 一种含硼杂环高聚物,其特征在于,所述含硼杂环高聚物的重复单元包含权利要求1-10任一项所述的含硼杂环化合物的结构。
  12. 一种含硼杂环混合物,其特征在于,包括权利要求1-10任一项所述的含硼杂环化合物或如权利要求11所述的含硼杂环高聚物,及至少一种有机功能材料,所述的有机功能材料可选自空穴注入材料、空穴传输材料、电子传输材料、电子注入材料、电子阻挡材料、空穴阻挡材料、发光体或主体材料。
  13. 一种含硼杂环组合物,其特征在于,包括如权利要求1-10任一项所述的含硼杂环化合物或如权利要求11所述的含硼杂环高聚物,及至少一种有机溶剂。
  14. 一种有机电子器件,其特征在于,至少包含一种如权利要求1-10任一项所述的含硼杂环化合物或如权利要求11所述的含硼杂环高聚物。
  15. 根据权利要求14所述的有机电子器件,其特征在于,所述有机电子器件是电致发光器件,包含一发光层,所述发光层材料选自权利要求1-10任一项所述的含硼杂环化合物或如权利要求11所述的含硼杂环高聚物。
PCT/CN2018/118989 2017-12-27 2018-12-03 含硼杂环化合物、高聚物、混合物、组合物及其用途 WO2019128633A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880068814.5A CN111278838B (zh) 2017-12-27 2018-12-03 含硼杂环化合物、高聚物、混合物、组合物及其用途

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711449989.4 2017-12-27
CN201711449989 2017-12-27

Publications (1)

Publication Number Publication Date
WO2019128633A1 true WO2019128633A1 (zh) 2019-07-04

Family

ID=67066435

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/118989 WO2019128633A1 (zh) 2017-12-27 2018-12-03 含硼杂环化合物、高聚物、混合物、组合物及其用途

Country Status (2)

Country Link
CN (1) CN111278838B (zh)
WO (1) WO2019128633A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110627822A (zh) * 2019-10-08 2019-12-31 吉林大学 一种绿光窄光谱三配位硼发光化合物、发光组合物及其应用
CN110759918A (zh) * 2019-10-31 2020-02-07 上海天马有机发光显示技术有限公司 一种化合物、显示面板及电子设备
CN112209952A (zh) * 2019-07-11 2021-01-12 西诺拉股份有限公司 用于光电器件的有机分子
CN112778309A (zh) * 2019-11-06 2021-05-11 广州华睿光电材料有限公司 一种含n稠环化合物及其在有机电子器件中应用
CN112898325A (zh) * 2019-12-03 2021-06-04 北京鼎材科技有限公司 一种化合物及其应用、包含其的有机电致发光器件
WO2021185712A1 (de) * 2020-03-17 2021-09-23 Merck Patent Gmbh Heteroaromatische verbindungen für organische elektrolumineszenzvorrichtungen
WO2021185829A1 (de) * 2020-03-17 2021-09-23 Merck Patent Gmbh Heterocyclische verbindungen für organische elektrolumineszenzvorrichtungen
EP3896754A1 (en) * 2020-04-15 2021-10-20 cynora GmbH Organic electroluminescent device emitting green light
CN114075230A (zh) * 2020-12-28 2022-02-22 广东聚华印刷显示技术有限公司 含氧硼烷类有机化合物、混合物、组合物及有机电子器件

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114262339A (zh) * 2020-09-16 2022-04-01 广州华睿光电材料有限公司 含硼杂环的有机化合物、混合物、组合物及有机电子器件
CN114315876A (zh) * 2020-09-28 2022-04-12 江苏三月科技股份有限公司 一种作为oled掺杂材料的含硼有机化合物及有机发光器件
CN114315875A (zh) * 2020-09-28 2022-04-12 江苏三月科技股份有限公司 一种作为oled掺杂材料的含硼有机化合物及其应用
CN114075396A (zh) * 2020-11-02 2022-02-22 广东聚华印刷显示技术有限公司 组合物、印刷墨水及发光器件
CN114621274B (zh) * 2020-12-10 2024-03-22 季华实验室 一种硼氮化合物、有机电致发光组合物及包含其的有机电致发光器件
CN114621271B (zh) * 2020-12-10 2024-03-29 季华实验室 一种硼氮化合物、有机电致发光组合物及包含其的有机电致发光器件
CN116120349A (zh) * 2022-01-28 2023-05-16 季华恒烨(佛山)电子材料有限公司 一种硼氮化合物及其制备方法和应用
CN116120350A (zh) * 2022-01-28 2023-05-16 季华恒烨(佛山)电子材料有限公司 一种硼氮化合物及其制备方法和应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107501311A (zh) * 2017-07-14 2017-12-22 瑞声科技(南京)有限公司 有机电致发光材料及其发光器件

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107501311A (zh) * 2017-07-14 2017-12-22 瑞声科技(南京)有限公司 有机电致发光材料及其发光器件

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11683978B2 (en) 2019-07-11 2023-06-20 Samsung Display Co., Ltd. Organic molecules for use in optoelectronic devices
CN112209952A (zh) * 2019-07-11 2021-01-12 西诺拉股份有限公司 用于光电器件的有机分子
EP3763719A1 (en) * 2019-07-11 2021-01-13 Cynora Gmbh Organic molecules for optoelectronic devices
CN110627822A (zh) * 2019-10-08 2019-12-31 吉林大学 一种绿光窄光谱三配位硼发光化合物、发光组合物及其应用
CN110759918B (zh) * 2019-10-31 2021-07-06 上海天马有机发光显示技术有限公司 一种化合物、显示面板及电子设备
CN110759918A (zh) * 2019-10-31 2020-02-07 上海天马有机发光显示技术有限公司 一种化合物、显示面板及电子设备
CN112778309A (zh) * 2019-11-06 2021-05-11 广州华睿光电材料有限公司 一种含n稠环化合物及其在有机电子器件中应用
CN112778309B (zh) * 2019-11-06 2022-08-12 广州华睿光电材料有限公司 一种含n稠环化合物及其在有机电子器件中应用
CN112898325A (zh) * 2019-12-03 2021-06-04 北京鼎材科技有限公司 一种化合物及其应用、包含其的有机电致发光器件
WO2021185712A1 (de) * 2020-03-17 2021-09-23 Merck Patent Gmbh Heteroaromatische verbindungen für organische elektrolumineszenzvorrichtungen
WO2021185829A1 (de) * 2020-03-17 2021-09-23 Merck Patent Gmbh Heterocyclische verbindungen für organische elektrolumineszenzvorrichtungen
EP3896754A1 (en) * 2020-04-15 2021-10-20 cynora GmbH Organic electroluminescent device emitting green light
WO2021209467A1 (en) * 2020-04-15 2021-10-21 Cynora Gmbh Organic electroluminescent device emitting green light
US11296292B2 (en) 2020-04-15 2022-04-05 Cynora Gmbh Organic electroluminescent device emitting green light
CN114075230A (zh) * 2020-12-28 2022-02-22 广东聚华印刷显示技术有限公司 含氧硼烷类有机化合物、混合物、组合物及有机电子器件

Also Published As

Publication number Publication date
CN111278838A (zh) 2020-06-12
CN111278838B (zh) 2023-01-10

Similar Documents

Publication Publication Date Title
CN111278838B (zh) 含硼杂环化合物、高聚物、混合物、组合物及其用途
CN109790460B (zh) 含硼有机化合物及应用、有机混合物、有机电子器件
WO2017092495A1 (zh) 热激发延迟荧光材料、高聚物、混合物、组合物以及有机电子器件
CN109638171B (zh) 有机混合物、高聚物、组合物及其用途
WO2019105327A1 (zh) 有机复合薄膜及其在有机电子器件中的应用
WO2017092508A1 (zh) D-a型化合物及其应用
WO2018095394A1 (zh) 有机混合物、组合物及有机电子器件和应用
WO2019114668A1 (zh) 一种过渡金属配合物材料及其在电子器件的应用
CN108137558B (zh) 咔唑衍生物、高聚物、混合物、组合物、有机电子器件及其应用
CN109705100B (zh) 含萘咔唑类有机光化合物、混合物、组合物及其用途
CN110759930B (zh) 螺环化合物及其用途
WO2016091219A1 (zh) 有机化合物、包含其的混合物、组合物和有机电子器件
WO2018095392A1 (zh) 有机混合物、组合物以及有机电子器件
WO2017118209A1 (zh) 含硅的有机化合物及其应用
WO2018108109A1 (zh) 过渡金属配合物及其应用、混合物、有机电子器件
WO2019114608A1 (zh) 过渡金属配合物、聚合物、混合物、组合物及其应用
WO2018108110A1 (zh) 金属有机配合物及其应用、混合物、有机电子器件
WO2017118262A1 (zh) 有机化合物及其应用
CN109790087B (zh) 氘代稠环化合物、高聚物、混合物、组合物以及有机电子器件
CN109659448B (zh) 有机混合物、组合物及有机电子器件
WO2019120177A1 (zh) 用于制备有机电子器件的组合物、有机电子器件及应用
WO2018099432A1 (zh) 稠环化合物及制备方法和应用
CN113004336B (zh) 过渡金属配合物、聚合物、混合物、组合物及有机电子器件
CN113024607B (zh) 过渡金属配合物、聚合物、混合物、组合物及有机电子器件
WO2018095396A1 (zh) 含氮杂咔唑衍生物的有机混合物及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18893472

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18893472

Country of ref document: EP

Kind code of ref document: A1