WO2017092481A1 - 金属有机配合物、高聚物、混合物、组合物以及有机电子器件 - Google Patents

金属有机配合物、高聚物、混合物、组合物以及有机电子器件 Download PDF

Info

Publication number
WO2017092481A1
WO2017092481A1 PCT/CN2016/099016 CN2016099016W WO2017092481A1 WO 2017092481 A1 WO2017092481 A1 WO 2017092481A1 CN 2016099016 W CN2016099016 W CN 2016099016W WO 2017092481 A1 WO2017092481 A1 WO 2017092481A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
alkane
carbon atoms
atoms
organic
Prior art date
Application number
PCT/CN2016/099016
Other languages
English (en)
French (fr)
Inventor
施超
潘君友
闫晓林
Original Assignee
广州华睿光电材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州华睿光电材料有限公司 filed Critical 广州华睿光电材料有限公司
Priority to CN201680059799.9A priority Critical patent/CN108137633A/zh
Publication of WO2017092481A1 publication Critical patent/WO2017092481A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/06Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom
    • C07D213/16Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom containing only one pyridine ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/06Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom
    • C07D213/22Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom containing only hydrogen and carbon atoms in addition to the ring nitrogen atom containing two or more pyridine rings directly linked together, e.g. bipyridyl
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/03Printing inks characterised by features other than the chemical nature of the binder
    • C09D11/033Printing inks characterised by features other than the chemical nature of the binder characterised by the solvent
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/36Inkjet printing inks based on non-aqueous solvents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/22Luminous paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials

Definitions

  • the present invention relates to the field of novel organic photovoltaic materials, and more particularly to a metal organic complex comprising a polymer, a mixture, a composition thereof and an organic electronic device.
  • OLEDs Organic light-emitting diodes
  • Organic light-emitting diodes using fluorescent materials have high reliability, but their internal electroluminescence quantum under electric field excitation The efficiency is limited to 25%, because the probability ratio of exciton generating single-excited and triple-excited states is 1:3.
  • Professor Thomson of the University of Southern California and Professor Forrest of Princeton University will be three (2- Phenylpyridine) ruthenium Ir(ppy) 3 was doped into N,N-dicarbazole biphenyl (CBP), and a green electrophosphorescent device was successfully prepared, which caused a strong interest in complex phosphorescent materials.
  • CBP N,N-dicarbazole biphenyl
  • the spin-orbit coupling of the molecules is improved, the phosphorescence lifetime is shortened, the intersystem crossings of the molecules are enhanced, and the phosphorescence is smoothly emitted.
  • a complex reaction is mild, and the structure of the complex and the substituent group can be conveniently changed, the emission wavelength is adjusted, and an electrophosphorescent material having excellent properties can be obtained.
  • the internal quantum efficiency of phosphorescent OLEDs has approached 100%.
  • most phosphorescent materials have a broad spectrum of luminescence and poor color purity, which is not conducive to high-end display.
  • Ar 1 or Ar 2 is selected from aromatic hydrocarbons, heteroaromatic hydrocarbons, aromatic hydrocarbons substituted by R 1 or substituted with R 1 heteroaromatic hydrocarbon ring;
  • Ar 3 is selected from heteroaromatic cyclic hydrocarbons or heteroaromatic cyclic hydrocarbons substituted by R 1 , and Ar 3 contains at least one hetero atom N;
  • R 2 is H, D, an aliphatic alkane having 1 to 10 carbon atoms, an aromatic hydrocarbon, an aromatic ring having 5 to 10 ring atoms, a heteroaromatic group having 5 to 10 ring atoms, and 5 to 5 a substituted aromatic ring of 10 ring atoms or a substituted heteroaromatic group having 5 to 10 ring atoms;
  • M is a transition metal element
  • n 0, 1 or 2;
  • n 1, 2 or 3.
  • a high polymer comprising the above metal organic complex in a repeating unit of the high polymer.
  • the mixture also includes an organic functional material.
  • composition comprising the above metal organic complex, the above polymer or a mixture thereof;
  • the composition also includes an organic solvent.
  • An organic electronic device comprising the above metal organic complex or the above polymer.
  • the metal-organic complex comprises an ortho-substituent ligand, and since the ligand comprises a positional blocking ortho-substituent, the entire metal organic complex has good rigidity, chemical and thermal stability, and can be narrowed. The luminescence spectrum and better color purity, as well as stability and luminous efficiency are also improved.
  • Fig. 1 is a normalized luminescence spectrum of the metal organic complexes Ir-1 to Ir-5 obtained in Examples 2 to 6.
  • composition and the printing ink, or ink have the same meaning and are interchangeable.
  • the host material, the matrix material, the Host or the Matrix material have the same meaning, and they are interchangeable.
  • the metal organic complex, the metal organic complex, and the metal organic complex have the same meaning and are interchangeable.
  • the present invention relates to a metal organic complex having the following general formula (I):
  • Ar 1 or Ar 2 is selected from aromatic hydrocarbons, heteroaromatic hydrocarbons, aromatic hydrocarbons substituted by R 1 or substituted with R 1 heteroaromatic hydrocarbon ring;
  • Ar 3 is selected from heteroaromatic cyclic hydrocarbons or heteroaromatic cyclic hydrocarbons substituted by R 1 , and Ar 3 contains at least one hetero atom N;
  • R 2 is H, D, an aliphatic alkane having 1 to 10 carbon atoms, an aromatic hydrocarbon, an aromatic ring having 5 to 10 ring atoms, a heteroaromatic group having 5 to 10 ring atoms, and 5 to 5 a substituted aromatic ring of 10 ring atoms or a substituted heteroaromatic group having 5 to 10 ring atoms;
  • M is a transition metal element
  • n 0, 1 or 2;
  • n 1, 2 or 3.
  • Ar 1 or Ar 2 is selected from the group consisting of an aromatic ring having 5 to 22 ring atoms, an aromatic ring having 5 to 22 ring atoms substituted by R 1 , and a heteroaromatic group having 5 to 22 ring atoms.
  • a ring or a heteroaromatic ring having 5 to 22 ring atoms substituted by R 1 is selected from the group consisting of an aromatic ring having 5 to 22 ring atoms, an aromatic ring having 5 to 22 ring atoms substituted by R 1 , and a heteroaromatic group having 5 to 22 ring atoms.
  • a ring or a heteroaromatic ring having 5 to 22 ring atoms substituted by R 1 is selected from the group consisting of an aromatic ring having 5 to 22 ring atoms, an aromatic ring having 5 to 22 ring atoms substituted by R 1 , and a heteroaromatic group having 5 to 22 ring atoms.
  • Ar 1 or Ar 2 is selected from the group consisting of an aromatic ring having 5 to 18 ring atoms, an aromatic ring having 5 to 18 ring atoms substituted by R 1 , and a heteroaryl having 5 to 18 ring atoms.
  • Ar 1 or Ar 2 is selected from the group consisting of an aromatic ring having 5 to 12 ring atoms, an aromatic ring having 5 to 12 ring atoms substituted by R 1 , and a heteroaryl having 5 to 12 ring atoms.
  • Ar 3 is selected from heteroaromatic rings having 5 to 22 ring atoms or heteroaromatic rings having 5 to 22 ring atoms substituted by R 1 , and Ar 3 contains at least one ring hetero atom N.
  • Ar 3 is selected from heteroaromatic rings having 5 to 18 ring atoms or heteroaromatic rings having 5 to 18 ring atoms substituted by R 1 , and Ar 3 contains at least one ring hetero atom N.
  • Ar 3 is selected from heteroaromatic rings having 5 to 12 ring atoms or heteroaromatic rings having 5 to 12 ring atoms substituted by R 1 , and Ar 3 contains at least one ring hetero atom N.
  • An aromatic group refers to a hydrocarbon group containing at least one aromatic ring, including a monocyclic group and a polycyclic ring system.
  • a heteroaromatic group refers to a hydrocarbon group (containing a hetero atom) comprising at least one heteroaromatic ring, including a monocyclic group and a polycyclic ring system. These polycyclic rings may have two or more rings in which two carbon atoms are shared by two adjacent rings, a fused ring. At least one of these rings of the polycyclic ring is aromatic or heteroaromatic.
  • aromatic or heteroaromatic ring systems include not only aromatic or heteroaromatic systems, but also multiple aryl or heteroaryl groups may also be interrupted by short non-aromatic units ( ⁇ 10%).
  • Non-H atoms preferably less than 5% of non-H atoms, such as C, N or O atoms).
  • systems such as 9,9'-spirobifluorene, 9,9-diarylfluorene, triarylamine, diaryl ether, etc., are also considered to be aromatic ring systems for the purposes of the present invention.
  • examples of the aromatic group are: benzene, naphthalene, anthracene, phenanthrene, perylene, tetracene, anthracene, benzofluorene, triphenylene, anthracene, anthracene, and derivatives thereof.
  • heteroaromatic groups are: furan, benzofuran, thiophene, benzothiophene, pyrrole, pyrazole, triazole, imidazole, oxazole, oxadiazole, thiazole, tetrazole, anthracene, anthracene Oxazole, pyrroloimidazole, pyrrolopyrrole, thienopyrrole, thienothiophene, furopyrrol, furanfuran, thienofuran, benzisoxazole, benzisothiazole, benzimidazole, pyridine, pyrazine, Pyridazine, pyrimidine, triazine, quinoline, isoquinoline, o-diazine, quinoxaline, phenanthridine, carbaidine, quinazoline, quinazolinone, and derivatives thereof.
  • Ar 1 , Ar 2 or Ar 3 may be selected from one of the groups having the formula:
  • X 1 is CR 1 or N, and for Ar 3 , at least one X 1 is N;
  • R 1 , R 2 or R 3 is selected from H, D, a linear alkyl group having 1 to 20 C atoms, an alkoxy group having 1 to 20 C atoms, and a thioalkane having 1 to 20 C atoms.
  • R 1 , R 2 or R 3 is selected from the group consisting of H, D, a linear alkyl group having 1 to 10 C atoms, an alkoxy group having 1 to 10 C atoms, and having 1 to 10 C atoms.
  • Ar 1 or Ar 2 is selected from one of the following structural groups or a substituent group in which the structural group is further substituted:
  • Ar 3 is selected from one of the following structural groups or a substituent group in which the structural group is further substituted:
  • the metal organic complex disclosed in the present invention is selected from one of the compounds having the following formula:
  • R3 is selected from the group consisting of -H, -F, -Cl, Br, I, -D, -CN, -NO 2 , -CF 3 , B(OR 2 ) 2 , Si(R 2 ) 3 , linear alkane, An alkane ether, an alkane sulfide having 1 to 10 carbon atoms, a branched alkane having 1 to 10 carbon atoms, a cycloalkane having 1 to 10 carbon atoms, an alkane ether having 3 to 10 carbon atoms, containing An alkane sulfide group hydrogen of 3 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms;
  • R4 is selected from the group consisting of -H, -F, -Cl, Br, I, -D, -CN, -NO 2 , -CF 3 , B(OR 2 ) 2 , Si(R 2 ) 3 , linear alkane, alkane ether An alkane sulfide having 1 to 10 carbon atoms, a branched alkane having 1 to 10 carbon atoms, a cycloalkane having 1 to 10 carbon atoms, an alkane ether having 3 to 10 carbon atoms, containing 3 to An alkane sulfide group hydrogen of 10 carbon atoms or an aryl group having 6 to 10 carbon atoms;
  • x 0, 1 or 2;
  • y 0, 1, 2 or 3;
  • z 0, 1, 2, 3 or 4;
  • u 0, 1, 2, 3, 4 or 5;
  • v 0, 1, 2, 3, 4, 5 or 6.
  • Ar 1 is an aromatic ring or a heteroaromatic ring, and Ar 1 is selected from one of the compounds having the following general formulas C1 to C10:
  • R 5 to R 59 are selected from the group consisting of -H, -F, -Cl, Br, I, -D, -CN, -NO 2 , -CF 3 , B(OR 2 ) 2 , Si(R 2 ) 3 , a linear alkane, an alkane ether, an alkane sulfide having 1 to 10 carbon atoms, a branched alkane having 1 to 10 carbon atoms, a cycloalkane having 1 to 10 carbon atoms, and 3 to 10 carbon atoms.
  • An alkane ether, an alkane sulfide group hydrogen having 3 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms;
  • the dotted line indicates the connection in the form of a single bond.
  • Is a monoanionic ligand One selected from the group consisting of the following compounds of the formulae L1 to L15:
  • R 60 to R 129 are selected from the group consisting of -H, -F, -Cl, Br, I, -D, -CN, -NO 2 , -CF 3 , B(OR 2 ) 2 , Si(R 2 ) 3 , a linear alkane, an alkane ether, an alkane sulfide having 1 to 10 carbon atoms, a branched alkane having 1 to 10 carbon atoms, a cycloalkane having 1 to 10 carbon atoms, and 3 to 10 carbon atoms.
  • An alkane ether, an alkane sulfide group hydrogen having 3 to 10 carbon atoms or an aryl group having 6 to 10 carbon atoms;
  • the dashed line indicates the key directly connected to M.
  • M is a transition metal element.
  • M is selected from the group consisting of chromium (Cr), molybdenum (Mo), tungsten (W), ruthenium (Ru), rhodium (Rh), nickel (Ni), silver (Ag), copper (Cu). Zinc (Zn), palladium (Pd), gold (Au), hungry (Os), ruthenium (Re), iridium (Ir) or platinum (Pt).
  • M is Ir or Pt.
  • Ir or Pt is preferably used as the central metal M of the above metal organic complex.
  • is most preferred because ruthenium is chemically stable and has a significant heavy atomic effect that is high Luminous efficiency.
  • the metal organic complex disclosed in the present invention is a luminescent material, and the metal organic complex has an emission wavelength of between 300 and 1000 nm, preferably between 350 and 900 nm, more preferably between 400 and 800 nm.
  • the luminescence referred to herein means photoluminescence or electroluminescence.
  • the photoluminescence efficiency of the metal-organic complex disclosed in the present invention is ⁇ 30%, preferably ⁇ 40%, more preferably ⁇ 50%, and most preferably ⁇ 60%.
  • the metal organic complex disclosed in the present invention may also be a non-luminescent material.
  • the present invention also relates to a high polymer in which at least one repeating unit contains a structure as shown in the general formula (I).
  • the high polymer is a non-conjugated high polymer in which the structural unit represented by the general formula (I) is on the side chain.
  • the high polymer is a conjugated high polymer.
  • the invention further relates to a mixture comprising the metal organic complex disclosed herein or the high polymer disclosed herein, as well as an organic functional material.
  • Organic functional materials include holes (also known as holes) injection or transport materials (HIM/HTM), hole blocking materials (HBM), electron injecting or transporting materials (EIM/ETM), electron blocking materials (EBM), organic matrices Host, singlet illuminant (fluorescent illuminant), thermally activated delayed fluorescent luminescent material (TADF), triplet illuminant (phosphorescent illuminant), especially luminescent metal organic complex and organic dye.
  • holes also known as holes injection or transport materials (HIM/HTM), hole blocking materials (HBM), electron injecting or transporting materials (EIM/ETM), electron blocking materials (EBM), organic matrices Host, singlet illuminant (fluorescent illuminant), thermally activated delayed fluorescent luminescent material (TADF), triplet illuminant (phosphorescent illuminant), especially luminescent metal organic complex and organic dye.
  • Various organic functional materials are described in detail in, for example, WO2010135519
  • the organic functional material may be a small molecule or a high polymer material.
  • small molecule refers to a molecule that is not a polymer, oligomer, dendrimer, or blend. In particular, there are no repeating structures in small molecules.
  • the molecular weight of the small molecule is ⁇ 3000 g/mol, preferably ⁇ 2000 g/mol, preferably ⁇ 1500 g/mol.
  • the high polymer that is, the polymer, contains a homopolymer, a copolymer, and a block copolymer. Also in the present invention, the high polymer also contains a dendrimer, For the synthesis and application of dendrimers, see [Dendrimers and Dendrons, Wiley-VCH Verlag GmbH & Co. KGaA, 2002, Ed. George R. Newkome, Charles N. Moorefield, Fritz Vogtle.].
  • a conjugated polymer is a high polymer whose backbone is mainly composed of sp 2 hybrid orbitals of C atoms. Famous examples are: polyacetylene polyacetylene and poly(phenylene vinylene).
  • the C atom in its main chain can also be substituted by other non-C atoms, and is still considered to be a conjugated polymer when the sp 2 hybrid on the main chain is interrupted by some natural defects.
  • the conjugated high polymer further comprises an aryl amine, an aryl phosphine and other heteroarmotics, and an organometallic complexes in the main chain. )Wait.
  • the metal-organic complex is present in the mixture disclosed in the present invention in an amount of from 0.01 to 30% by weight, preferably from 0.1 to 20% by weight, more preferably from 0.2 to 15% by weight, most preferably from 2 to 15% by weight.
  • the mixtures disclosed herein comprise a metal organic complex disclosed herein or a high polymer disclosed herein, as well as a triplet matrix material.
  • the mixtures disclosed herein comprise a metal organic complex disclosed herein or a high polymer disclosed herein, as well as a triplet matrix material and a triplet emitter.
  • the mixtures disclosed herein comprise a metal organic complex disclosed herein or a polymer disclosed herein, and a thermally activated delayed fluorescent luminescent material (TADF).
  • TADF thermally activated delayed fluorescent luminescent material
  • triplet matrix material the triplet emitter, and the TADF material (but is not limited thereto).
  • the example of the triplet matrix material is not particularly limited, and any metal complex or organic compound may be used as the matrix as long as its triplet energy is higher than that of the illuminant, particularly the triplet illuminant or the phosphorescent illuminant.
  • metal complexes that can be used as the triplet host include, but are not limited to, the following general structure:
  • M is a metal
  • (y 3 -y 4 ) is a two-dentate ligand, Y 3 and Y 4 are independently selected from C, N, O, P and S
  • L is an ancillary ligand
  • m is a An integer whose value ranges from 1 to the maximum coordination number of this metal
  • m+n is the maximum coordination number of this metal.
  • the metal complex that can be used as the triplet matrix has the following form:
  • (O-N) is a two-dentate ligand in which the metal is coordinated to the O and N atoms.
  • M can be selected from Ir and Pt.
  • Examples of the organic compound which can be used as the main body of the triplet state are selected from compounds containing a cyclic aromatic hydrocarbon group.
  • benzene, biphenyl, triphenyl, benzo, anthracene compounds containing an aromatic heterocyclic group, such as dibenzothiophene, dibenzofuran, dibenzoselenophene, furan, thiophene, benzofuran, benzene And thiophene, benzoselenophene, carbazole, carbazole, pyridinium, pyrrole dipyridine, pyrazole, imidazole, triazole, oxazole, thiazole, oxadiazole, triazole, dioxin, Thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, oxazine, oxazine, oxadiazine, hydrazine, benz
  • the triplet matrix material can be selected from compounds comprising at least one of the following groups:
  • R 1 to R 7 may be independently selected from the group consisting of hydrogen, alkyl, alkoxy, amino, alkene, alkyne, aralkyl, heteroalkyl, aryl and heteroaryl when they are When it is an aryl or heteroaryl group, they have the same meaning as Ar 1 and Ar 2 described above; n is an integer from 0 to 20; X 1 to X 8 are selected from CH or N; and X 9 is selected from CR 1 R 2 Or NR 1 .
  • R 1 , R 2 are the same as R 1 in the ETM moiety.
  • Triplet emitters are also known as phosphorescent emitters.
  • the triplet emitter is a metal complex of the formula M(L)n, wherein M is a metal atom, and each occurrence of L may be the same or different and is an organic ligand. It is bonded to the metal atom M by one or more positional bonding or coordination, and n is an integer greater than 1, preferably 1, 2, 3, 4, 5 or 6.
  • these metal complexes are coupled to a polymer by one or more positions, preferably by an organic ligand.
  • the metal atom M is selected from a transition metal element or a lanthanide or a lanthanide element, preferably Ir, Pt, Pd, Au, Rh, Ru, Os, Sm, Eu, Gd, Tb, Dy Re, Cu or Ag, with Os, Ir, Ru, Rh, Re, Pd or Pt being particularly preferred.
  • the triplet emitter comprises a chelating ligand, ie a ligand, coordinated to the metal by at least two bonding sites, with particular preference being given to the triplet emitter comprising two or three identical or different pairs Tooth or multidentate ligand.
  • Chelating ligands are beneficial for increasing the stability of metal complexes.
  • Examples of the organic ligand may be selected from a phenylpyridine derivative, a 7,8-benzoquinoline derivative, a 2(2-thienyl)pyridine derivative, a 2(1-naphthyl)pyridine derivative, or a 2 benzene.
  • a quinolinol derivative All of these organic ligands may be substituted, for example by fluorine or trifluoromethyl.
  • the ancillary ligand may preferably be selected from the group consisting of acetone acetate or picric acid.
  • the metal complex that can be used as the triplet emitter has the following form:
  • M is a metal selected from transition metal elements or lanthanides or actinides
  • Ar1 may be the same or different at each occurrence, and is a cyclic group containing at least one donor atom, that is, an atom having a lone pair of electrons, such as nitrogen or phosphorus, through which a cyclic group is coordinated to a metal.
  • Ar2 may be the same or different at each occurrence, and is a cyclic group containing at least one C atom through which a cyclic group is bonded to a metal; Ar1 and Ar2 are linked by a covalent bond, respectively Carry With one or more substituent groups, which may also be joined together by a substituent group; each occurrence of L may be the same or different and is an ancillary ligand, preferably a bidentate chelate ligand, preferably Monoanionic bidentate chelate ligand; m is 1, 2 or 3, preferably 2 or 3, particularly preferably 3; n is 0, 1, or 2, preferably 0 or 1, particularly preferably 0.
  • triplet emitters Some examples of suitable triplet emitters are listed in the table below;
  • TDF Thermally activated delayed fluorescent luminescent material
  • the thermally activated delayed fluorescent luminescent material is a third generation organic luminescent material developed after organic fluorescent materials and organic phosphorescent materials.
  • Such materials generally have a small singlet-triplet energy level difference ( ⁇ Est), and triplet excitons can be converted into singlet exciton luminescence by anti-intersystem crossing. This can make full use of the singlet excitons and triplet excitons formed under electrical excitation.
  • ⁇ Est singlet-triplet energy level difference
  • Device The internal quantum efficiency can reach 100%.
  • the thermally activated delayed fluorescent luminescent material is a third generation organic luminescent material developed after organic fluorescent materials and organic phosphorescent materials.
  • Such materials generally have a small singlet-triplet energy level difference ( ⁇ Est), and triplet excitons can be converted into singlet exciton luminescence by anti-intersystem crossing. This can make full use of the singlet excitons and triplet excitons formed under electrical excitation.
  • the quantum efficiency in the device can reach 100%.
  • TADF luminescent materials Some examples of suitable TADF luminescent materials are listed below:
  • the invention further relates to a composition or printing ink, wherein the composition or printing ink comprises one of the above metal organic complexes, the above-mentioned high polymer or a mixture thereof, and an organic solvent.
  • the invention further provides a film prepared from a solution comprising a metal organic complex or polymer disclosed herein.
  • the viscosity and surface tension of the ink are important parameters when used in the printing process. Suitable surface tension parameters for the ink are suitable for the particular substrate and the particular printing method.
  • the ink of the present invention has a surface tension at an operating temperature or at 25 ° C in the range of from about 19 dyne/cm to 50 dyne/cm; more preferably in the range of from 22 dyne/cm to 35 dyne/cm; It is in the range of 25dyne/cm to 33dyne/cm.
  • the viscosity of the inks disclosed herein at operating temperature or at 25 ° C It is in the range of 1 cps to 100 cps; preferably in the range of 1 cps to 50 cps; more preferably in the range of 1.5 cps to 20 cps; preferably in the range of 4.0 cps to 20 cps.
  • the composition so formulated will be suitable for ink jet printing.
  • the viscosity can be adjusted by different methods, such as by selection of a suitable solvent and concentration of the functional material in the ink.
  • the ink comprising the metal organic complex or polymer disclosed in the present invention can facilitate the adjustment of the printing ink in an appropriate range according to the printing method used.
  • the compositions disclosed herein comprise a functional material in a weight ratio ranging from 0.3% to 30% by weight, preferably from 0.5% to 20% by weight, more preferably from 0.5% to 15% by weight, even more preferably. It is in the range of 0.5% to 10% by weight, preferably in the range of 1% to 5% by weight.
  • the organic solvent is selected from aromatic or heteroaromatic based solvents, particularly aliphatic chain/ring substituted aromatic solvents, or aromatic ketone solvents, or aromatic ether solvents.
  • the organic solvent is selected from aromatic or heteroaromatic based solvents, including: p-diisopropylbenzene, pentylbenzene, tetrahydronaphthalene, cyclohexylbenzene, chloronaphthalene, 1,4-dimethylnaphthalene, 3-isopropylbiphenyl, p-methyl cumene, dipentylbenzene, trimerene, pentyltoluene, o-xylene, m-xylene, p-xylene, o-diethylbenzene, m-diethylbenzene, p- Diethylbenzene, 1,2,3,4-tetramethylbenzene, 1,2,3,5-tetramethylbenzene, 1,2,4,5-tetramethylbenzene, butylbenzene, dodecylbenzene, dihexylbenzene, Dibutylbenzene,
  • the organic solvent is selected from the group consisting of aliphatic ketones, including: 2-fluorenone, 3-fluorenone, 5-fluorenone, 2-nonanone, 2,5-hexanedione, 2,6,8-trimethyl Ketopropanone, phorone, di-n-pentyl ketone, and the like.
  • the organic solvent is selected from the group consisting of aliphatic ethers, including: pentyl ether, hexyl ether, dioctyl ether, ethylene glycol dibutyl ether, diethylene glycol diethyl ether, diethylene glycol butyl methyl ether, diethylene glycol II Butyl ether, triethylene glycol dimethyl ether, triethylene glycol ethyl methyl ether, triethylene glycol butyl methyl ether, tripropylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, and the like.
  • aliphatic ethers including: pentyl ether, hexyl ether, dioctyl ether, ethylene glycol dibutyl ether, diethylene glycol diethyl ether, diethylene glycol butyl methyl ether, diethylene glycol II Butyl ether, triethylene glycol dimethyl ether, triethylene glycol ethyl methyl ether
  • the printing ink further comprises another organic solvent.
  • Another organic solvent may be selected from the group consisting of methanol, ethanol, 2-methoxyethanol, dichloromethane, chloroform, chlorobenzene, o-dichlorobenzene, tetrahydrofuran, anisole, morpholine, toluene, o-xylene.
  • compositions disclosed herein are a solution.
  • compositions disclosed herein are a suspension.
  • the invention further relates to the use of the above composition as a coating or printing ink in the preparation of an organic electronic device, particular preference being given to a preparation process by printing or coating.
  • suitable printing or coating techniques include, but are not limited to, inkjet printing, Nozzle Printing, typography, screen printing, dip coating, spin coating, blade coating, roller printing, torsion roller Printing, lithography, flexographic printing, rotary printing, spraying, brushing or pad printing, spray printing (Nozzle printing), slit type extrusion coating, and the like.
  • Preferred are ink jet printing, slit type extrusion coating, jet printing and gravure printing.
  • the solution or suspension may additionally contain one or more components such as surface active compounds, lubricants, wetting agents, dispersing agents, hydrophobic agents, binders and the like for adjusting viscosity, film forming properties, adhesion, and the like.
  • Organic electronic devices include: organic light-emitting diodes (OLEDs), organic photovoltaic cells (OPVs), organic light-emitting cells (OLEEC), organic field effect transistors (OFETs), organic light-emitting field effect transistors, organic lasers, organic spintronic devices, organic Sensors and organic plasmon emitting diodes (Organic Plasmon Emitting Diode), especially OLEDs.
  • OLEDs organic light-emitting diodes
  • OLEDs organic photovoltaic cells
  • OLEDs organic light-emitting cells
  • OFETs organic field effect transistors
  • organic light-emitting field effect transistors organic lasers
  • organic spintronic devices organic Sensors and organic plasmon emitting diodes (Organic Plasmon Emitting Diode), especially OLEDs.
  • the metal organic complex is preferably used in the luminescent layer of an OLED device.
  • the invention further relates to an organic electronic device comprising the above metal organic complex or the above high polymer.
  • an organic electronic device comprises a cathode, an anode, and a functional layer between the cathode and the anode, wherein the functional layer comprises the above metal organic complex or the above polymer.
  • the organic electronic device may be selected from the group consisting of an organic light emitting diode (OLED), an organic photovoltaic cell (OPV), an organic light emitting cell (OLEEC), an organic field effect transistor (OFET), an organic light emitting field effect transistor, an organic laser, an organic spintronic device, Organic sensor and organic plasmon emitting diode (Organic Plasmon Emitting Diode).
  • OLED organic light emitting diode
  • OCV organic photovoltaic cell
  • OLED organic light emitting cell
  • OFET organic field effect transistor
  • organic light emitting field effect transistor an organic laser
  • organic spintronic device Organic sensor and organic plasmon emitting diode (Organic Plasmon Emitting Diode).
  • the organic electronic device is an electroluminescent device, more preferably an OLED.
  • the electroluminescent device comprises a substrate, an anode, a luminescent layer and a cathode.
  • the substrate can be opaque or transparent.
  • a transparent substrate can be used to make a transparent light-emitting component. See, for example, Bulovic et al. Nature 1996, 380, p29, and Gu et al, Appl. Phys. Lett. 1996, 68, p2606.
  • the substrate can be rigid or elastic.
  • the substrate can be plastic, metal, semiconductor wafer or glass.
  • the substrate has a smooth surface. Substrates without surface defects are particularly desirable select.
  • the substrate is flexible, optionally in the form of a polymer film or plastic, having a glass transition temperature Tg of 150 ° C or higher, preferably more than 200 ° C, more preferably more than 250 ° C, preferably More than 300 ° C. Examples of suitable flexible substrates are poly(ethylene terephthalate) (PET) and polyethylene glycol (2,6-naphthalene) (PEN).
  • PET poly(ethylene terephthalate)
  • PEN polyethylene glycol (2,6-naphthalen
  • the anode can comprise a conductive metal, a metal oxide or a conductive polymer.
  • the anode can easily inject holes into a hole injection layer (HIL) or a hole transport layer (HTL) or a light-emitting layer.
  • HIL hole injection layer
  • HTL hole transport layer
  • the absolute value of the difference between the work function of the anode and the HOMO level or the valence band level of the illuminant in the luminescent layer or the p-type semiconductor material as the HIL or HTL or electron blocking layer (EBL) is less than 0.5 eV, preferably less than 0.3 eV, and most preferably less than 0.2 eV.
  • anode material examples include, but are not limited to, Al, Cu, Au, Ag, Mg, Fe, Co, Ni, Mn, Pd, Pt, ITO, aluminum-doped zinc oxide (AZO), and the like.
  • suitable anode materials are known and can be readily selected for use by one of ordinary skill in the art.
  • the anode material can be deposited using any suitable technique, such as a suitable physical vapor deposition process, including radio frequency magnetron sputtering, vacuum thermal evaporation, electron beam (e-beam), and the like.
  • the anode is patterned. Patterned ITO conductive substrates are commercially available and can be used to prepare devices in accordance with the present invention.
  • the cathode can comprise a conductive metal or a metal oxide.
  • the cathode can easily inject electrons into the EIL or ETL or directly into the luminescent layer.
  • the work function of the cathode and the LUMO level of the illuminant or the n-type semiconductor material as an electron injection layer (EIL) or electron transport layer (ETL) or hole blocking layer (HBL) in the luminescent layer or
  • EIL electron injection layer
  • ETL electron transport layer
  • HBL hole blocking layer
  • the absolute value of the difference in conduction band energy levels is less than 0.5 eV, preferably less than 0.3 eV, and most preferably less than 0.2 eV.
  • all materials which can be used as cathodes for OLEDs are possible as cathode materials for the devices of the invention.
  • cathode material examples include, but are not limited to, Al, Au, Ag, Ca, Ba, Mg, LiF/Al, MgAg alloy, BaF2/Al, Cu, Fe, Co, Ni, Mn, Pd, Pt, ITO, and the like.
  • the cathode material can be deposited using any suitable technique, such as a suitable physical vapor deposition process, including radio frequency magnetron sputtering, vacuum thermal evaporation, electron beam (e-beam), and the like.
  • the OLED may further include other functional layers such as a hole injection layer (HIL), a hole transport layer (HTL), an electron blocking layer (EBL), an electron injection layer (EIL), an electron transport layer (ETL), and a hole blocking layer. (HBL). Materials suitable for use in these functional layers are described above.
  • HIL hole injection layer
  • HTL hole transport layer
  • EBL electron blocking layer
  • EIL electron injection layer
  • ETL electron transport layer
  • HBL hole blocking layer
  • the light-emitting layer of the electroluminescent device disclosed in the present invention comprises the above metal organic complex or the above-mentioned high polymer, and the light-emitting layer is preferably prepared by a solution processing method.
  • the light-emitting device disclosed in the present invention has an emission wavelength of between 300 and 1000 nm, preferably between 350 and 900 nm, and most preferably between 400 and 800 nm.
  • the invention further relates to the use of the disclosed organic electronic device in various electronic devices, including, but not limited to, display devices, illumination devices, light sources, sensors, and the like.
  • the energy levels of the metal organic complexes Ir-1 to Ir-5 can be obtained by quantum calculation, for example, by TD-DFT (time-dependent density functional theory) by Gaussian 03W (Gaussian Inc.), and specific simulation methods can be found in WO2011141110.
  • TD-DFT time-dependent density functional theory
  • Gaussian 03W Gaussian Inc.
  • specific simulation methods can be found in WO2011141110.
  • the energy structure of the organic molecule is determined by TD-DFT (time-dependent density functional theory) method.
  • HOMO(eV) ((HOMO(Gaussian) ⁇ 27.212)-0.9899)/1.1206
  • HOMO(G) and LUMO(G) are direct calculation results of Gaussian 03W, and the unit is Hartree.
  • the results are shown in Table 1:
  • the metal organic complexes Ir-1 to Ir-5 obtained in Examples 2 to 6 were subjected to luminescence spectrometry in dichloromethane to obtain Fig. 1.
  • a, cleaning of the conductive glass substrate when used for the first time, can be washed with a variety of solvents, such as chloroform, ketone, isopropyl alcohol, and then UV ozone plasma treatment;
  • HTL 60 nm
  • EML 45 nm
  • ETL 35 nm
  • hot evaporation in high vacuum (1 ⁇ 10 -6 mbar, mbar);
  • cathode LiF / Al (1nm / 150nm) in a high vacuum (1 ⁇ 10 -6 mbar) in the thermal evaporation;
  • the device is encapsulated in a nitrogen glove box with an ultraviolet curable resin.
  • the current-voltage luminance (JVL) characteristics of each OLED device are characterized by characterization equipment while recording important parameters such as efficiency and external quantum efficiency.
  • the maximum external quantum efficiencies of OLED1-5 (corresponding to metal-organic complex Ir-1 to Ir-5) were 15.1%, 14.2%, 12.4%, 13.6%, and 9.3%, respectively.

Abstract

本发明公开了一种金属有机配合物,包含其的高聚物、混合物、组合物以及有机电子器件。这种金属有机配合物中包含邻位取代基配体,由于这类配体包含一定位阻邻位取代基,使得整个金属有机配合物具有良好的刚性、化学及热稳定性,能够得到较窄的发光光谱和较好的色纯度,并且稳定性和发光效率也得到提升。

Description

金属有机配合物、高聚物、混合物、组合物以及有机电子器件 技术领域
本发明涉及新型有机光电材料领域,尤其涉及一种金属有机配合物,包含其的高聚物、混合物、组合物以及有机电子器件。
背景技术
由于有机半导体材料在合成上具有多样性、制造成本相对较低和优良的光学与电学性能,有机发光二极管(OLED)在光电器件(例如平板显示器和照明)的应用方面具有很大的潜力。
为了提高有机发光二极管的发光效率,各种基于荧光和磷光的发光材料体系已被开发出来,使用荧光材料的有机发光二极管具有可靠性高的特点,但其在电场激发下其内部电致发光量子效率被限制为25%,这是因为激子产生单重激发态和三重激发态的概率比为1∶3。1999年,美国南加州大学的Thomson教授和普林斯顿大学的Forrest教授将三(2-苯基吡啶)合铱Ir(ppy)3掺杂到N,N-二咔唑联苯(CBP)中,成功制备了绿色电致磷光器件,这引起人们对配合物磷光材料的浓厚兴趣。由于重金属的引入,提高了分子自旋轨道耦合,缩短了磷光寿命,增强了分子的系间窜越,使磷光得以顺利发射。而且这类配合物反应温和,可以方便的改变配合物结构和取代基团,调节发射波长,得到性能优良的电致磷光材料。至今,磷光OLED的内部量子效率已接近100%。然而,大多数磷光材料发光光谱过宽、色纯度较差,不利于高端显示。
发明内容
基于此,有必要提供一种的发光光谱较窄并且色纯度较好的金属有机配合物,包含其的高聚物、混合物、组合物以及有机电子器件。
一种金属有机配合物,具有如下通式(1):
Figure PCTCN2016099016-appb-000001
其中,Ar1或Ar2选自芳香烃、杂芳香环烃、被R1取代的芳香烃或被R1取代的杂芳香环烃;
Ar3选自杂芳香环烃或被R1取代的杂芳香环烃,并且Ar3中至少包含一个杂原子N;
R1选自H、F、Cl、Br、I、D、CN、NO2、CF3、B(OR2)2、Si(R2)3、直链烷烃、烷烃醚、含1~10个碳原子的烷烃硫醚、含1~10个碳原子的支链烷烃、含1~10个碳原子的环烷烃、含有3~10个碳原子的烷烃醚或含有3~10个碳原子的烷烃硫醚基团,R1中的活性位点可以被R2取代,R1中的非相邻的亚甲基(CH2) 可以被R2C=CR2、C=C、Si(R2)2、Ge(R2)2、Sn(R2)2、C=O、C=S、C=Se、C=N(R2)、O、S、-COO-或CONR2替换,R1中的H可被D、F、Cl、Br、I、CN、N2、包含R2的芳香胺、包含芳香基团的芳香胺、包含杂芳香环的芳香胺、咔唑或被取代的咔唑替换;
R2为H、D、含1~10个碳原子脂肪族烷烃、芳香碳氢化合物、含5~10个环原子的芳香环、含5~10个环原子的杂芳香基团、含5~10个环原子的被取代的芳香环或含5~10个环原子的被取代的杂芳香基团;
Figure PCTCN2016099016-appb-000002
为两齿配体;
M为过渡金属元素;
m为0、1或2;
n为1、2或3。
一种高聚物,所述高聚物的重复单元中包含了上述的金属有机配合物。
一种混合物,包括上述的金属有机配合物或上述的高聚物;
所述混合物还包括有机功能材料。
一种组合物,包括上述的金属有机配合物、上述的高聚物或上述的混合物;
所述组合物还包括有机溶剂。
一种有机电子器件,包括上述的金属有机配合物或上述的高聚物。
这种金属有机配合物中包含邻位取代基配体,由于这类配体包含一定位阻邻位取代基,使得整个金属有机配合物具有良好的刚性、化学及热稳定性,能够得到较窄的发光光谱和较好的色纯度,并且稳定性和发光效率也得到提升。
附图说明
图1为实施例2~6制得的金属有机配合物Ir-1~Ir-5的归一化的发光光谱图。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施例对本发明的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本发明。但是本发明能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似改进,因此本发明不受下面公开的具体实施的限制。
在本发明中,组合物和印刷油墨,或油墨具有相同的含义,它们之间可以互换。
在本发明中,主体材料,基质材料,Host或Matrix材料具有相同的含义,它们之间可以互换。
在本发明中,金属有机络合物,金属有机配合物,金属有机配合物具有相同的含义,可以互换。
本发明涉及一种具有如下通式(I)金属有机配合物:
Figure PCTCN2016099016-appb-000003
其中,Ar1或Ar2选自芳香烃、杂芳香环烃、被R1取代的芳香烃或被R1取代的杂芳香环烃;
Ar3选自杂芳香环烃或被R1取代的杂芳香环烃,并且Ar3中至少包含一个杂原子N;
R1选自H、F、Cl、Br、I、D、CN、NO2、CF3、B(OR2)2、Si(R2)3、直链烷烃、烷烃醚、含1~10个碳原子的烷烃硫醚、含1~10个碳原子的支链烷烃、含1~10个碳原子的环烷烃、含有3~10个碳原子的烷烃醚或含有3~10个碳原子的烷烃硫醚基团,R1中的活性位点可以被R2取代,R1中的非相邻的亚甲基(CH2)可以被R2C=CR2、C=C、Si(R2)2、Ge(R2)2、Sn(R2)2、C=O、C=S、C=Se、C=N(R2)、O、S、-COO-或CONR2替换,R1中的H可被D、F、Cl、Br、I、CN、N2、包含R2的芳香胺、包含芳香基团的芳香胺、包含杂芳香环的芳香胺、咔唑或被取代的咔唑替换;
R2为H、D、含1~10个碳原子脂肪族烷烃、芳香碳氢化合物、含5~10个环原子的芳香环、含5~10个环原子的杂芳香基团、含5~10个环原子的被取代的芳香环或含5~10个环原子的被取代的杂芳香基团;
Figure PCTCN2016099016-appb-000004
为两齿配体;
M为过渡金属元素;
m为0、1或2;
n为1、2或3。
优选的,Ar1或Ar2选自具有5~22个环原子的芳族环、被R1取代的具有5~22个环原子的芳族环、具有5~22个环原子的杂芳族环或被R1取代的具有5~22个环原子的杂芳族环。
更优选的,Ar1或Ar2选自具有5~18个环原子的芳族环、被R1取代的具有5~18个环原子的芳族环、具有5~18个环原子的杂芳族环或被R1取代的具有5~18个环原子的杂芳族环。
最优选的,Ar1或Ar2选自具有5~12个环原子的芳族环、被R1取代的具有5~12个环原子的芳族环、具有5~12个环原子的杂芳族环或被R1取代的具有5~12个环原子的杂芳族环。
优选的,Ar3选自具有5~22个环原子的杂芳族环或被R1取代的具有5~22个环原子的杂芳族环,Ar3中至少包含一个环杂原子N。
更优选的,Ar3选自具有5~18个环原子的杂芳族环或被R1取代的具有5~18 个环原子的杂芳族环,Ar3中至少包含一个环杂原子N。
优选的,Ar3选自具有5~12个环原子的杂芳族环或被R1取代的具有5~12个环原子的杂芳族环,Ar3中至少包含一个环杂原子N。
芳族基团指至少包含一个芳环的烃基,包括单环基团和多环的环系统。杂芳族基团指包含至少一个杂芳环的烃基(含有杂原子),包括单环基团和多环的环系统。这些多环的环可以具有两个或多个环,其中两个碳原子被两个相邻的环共用,即稠环。多环的这些环种,至少一个是芳族的或杂芳族的。对于本发明的目的,芳香族或杂芳香族环系不仅包括芳香基或杂芳香基的体系,而且,其中多个芳基或杂芳基也可以被短的非芳族单元间断(<10%的非H原子,优选小于5%的非H原子,比如C、N或O原子)。因此,比如9,9′-螺二芴,9,9-二芳基芴,三芳胺,二芳基醚等体系,对于该发明目的同样认为是芳香族环系。
具体地,芳族基团的例子有:苯、萘、蒽、菲、二萘嵌苯、并四苯、芘、苯并芘、三亚苯、苊、芴、及其衍生物。
具体地,杂芳族基团的例子有:呋喃、苯并呋喃、噻吩、苯并噻吩、吡咯、吡唑、三唑、咪唑、噁唑、噁二唑、噻唑、四唑、吲哚、咔唑、吡咯并咪唑、吡咯并吡咯、噻吩并吡咯、噻吩并噻吩、呋喃并吡咯、呋喃并呋喃、噻吩并呋喃、苯并异噁唑、苯并异噻唑、苯并咪唑、吡啶、吡嗪、哒嗪、嘧啶、三嗪、喹啉、异喹啉、邻二氮萘、喹喔啉、菲啶、伯啶、喹唑啉、喹唑啉酮、及其衍生物。
在一个优选的实施方案中,Ar1、Ar2或Ar3可以选自具有如下通式的基团中的一个:
Figure PCTCN2016099016-appb-000005
其中,X1为CR1或N,并且对于Ar3,至少有一个X1为N;
Y1为CR2R3、SiR2R3、NR2、C(=O)、S或O;
R1、R2或R3选自H、D、具有1~20个C原子的直链烷基、具有1~20个C原子的烷氧基、具有1~20个C原子的硫代烷氧基基团、具有3~20个C原子的支链烷基、具有3~20个C原子的环状的烷基、具有3~20个C原子的烷氧基、具有3~20个C原子的硫代烷氧基基团、具有3~20个C原子的甲硅烷基基团、具有1~20个C原子的取代的酮基基团、具有2~20个C原子的烷氧基羰基基团、具有7~20个C原子的芳氧基羰基基团、氰基基团(-CN)、氨基甲酰基基团(-C(=O)NH2)、卤甲酰基基团(-C(=O)-X,其中X代表卤素原子)、甲酰基基团(-C(=O)-H)、异氰基基团、异氰酸酯基团、硫氰酸酯基团、异硫氰酸酯基团、羟基基团、硝基基团、CF3基团、Cl、Br、F、可交联的基团、具有5~40个环原子的取代或未取代的芳族、具有5~40个环原子的取代或未取代的杂芳族环系、具有5~40个环原子的芳氧基基团和具有5~40个环原子的杂芳氧基基团中的一种或一种以上的组合,其中,一个或多个基团R1、R2、R3可以彼此和/或与上述 基团键合形成单环或多环的脂族或芳族环系。
优选的,R1、R2或R3选自H、D、具有1~10个C原子的直链烷基、具有1~10个C原子的烷氧基、具有1~10个C原子的硫代烷氧基基团、具有3~10个C原子的支链或环状的烷基、具有3~10个C原子的支链或环状的烷氧基、具有3~10个C原子的支链或环状的硫代烷氧基基团、具有3~10个C原子的支链或环状的甲硅烷基基团、具有1至10个C原子的取代的酮基基团、具有2至10个C原子的烷氧基羰基基团、具有7~10个C原子的芳氧基羰基基团、氰基基团(-CN)、氨基甲酰基基团(-C(=O)NH2)、卤甲酰基基团(-C(=O)-X,其中X代表卤素原子)、甲酰基基团(-C(=O)-H)、异氰基基团、异氰酸酯基团、硫氰酸酯基团、异硫氰酸酯基团、羟基基团、硝基基团、CF3基团、Cl、Br、F、可交联的基团、具有5~20个环原子的取代或未取代的芳族环系、具有5~20个环原子的取代或未取代的杂芳族环系、具有5~20个环原子的芳氧基基团和具有5~20个环原子的杂芳氧基基团中的一种或至少一种的组合,其中,一个或多个基团R1、R2、R3可以彼此和/或与上述基团键合形成单环或多环的脂族或芳族环系。
优选的,Ar1或Ar2选自如下结构基团或如下结构基团进一步被取代形成的取代基团中的一种:
Figure PCTCN2016099016-appb-000006
优选的,Ar3选自如下结构基团或如下结构基团进一步被取代形成的取代基团中的一种:
Figure PCTCN2016099016-appb-000007
Figure PCTCN2016099016-appb-000008
优选的,本发明公开的金属有机配合物选自具有如下通式的化合物中的一种:
Figure PCTCN2016099016-appb-000009
Figure PCTCN2016099016-appb-000010
其中,R3选自-H、-F、-Cl、Br、I、-D、-CN、-NO2、-CF3、B(OR2)2、Si(R2)3、直链烷烃、烷烃醚、含1~10个碳原子的烷烃硫醚、含1~10个碳原子的支链烷烃、含1~10个碳原子的环烷烃、含有3~10个碳原子的烷烃醚、含有3~10个碳原子的烷烃硫醚基团氢或含有6~10个碳原子的芳基;
R4选自-H、-F、-Cl、Br、I、-D、-CN、-NO2、-CF3、B(OR2)2、Si(R2)3、直链烷烃、烷烃醚、含1~10个碳原子的烷烃硫醚、含1~10个碳原子的支链烷烃、含1~10个碳原子的环烷烃、含有3~10个碳原子的烷烃醚、含有3~10个碳原子的烷烃硫醚基团氢或含有6~10个碳原子的芳基;
x为0、1或2;
y为0、1、2或3;
z为0、1、2、3或4;
u为0、1、2、3、4或5;
v为0、1、2、3、4、5或6。
优选的,Ar1为芳香环或杂芳香环,Ar1选自具有如下通式C1~C10的化合物中一种:
Figure PCTCN2016099016-appb-000011
其中,R5~R59选自-H、-F、-Cl、Br、I、-D、-CN、-NO2、-CF3、B(OR2)2、Si(R2)3、直链烷烃、烷烃醚、含1~10个碳原子的烷烃硫醚、含1~10个碳原子的 支链烷烃、含1~10个碳原子的环烷烃、含有3~10个碳原子的烷烃醚、含有3~10个碳原子的烷烃硫醚基团氢或含有6~10个碳原子的芳基;
虚线表示以单键形式进行连接。
优选的,
Figure PCTCN2016099016-appb-000012
为单阴离子配体,
Figure PCTCN2016099016-appb-000013
选自具有如下通式L1~L15的化合物中的一种:
Figure PCTCN2016099016-appb-000014
其中,R60~R129选自-H、-F、-Cl、Br、I、-D、-CN、-NO2、-CF3、B(OR2)2、Si(R2)3、直链烷烃、烷烃醚、含1~10个碳原子的烷烃硫醚、含1~10个碳原子的支链烷烃、含1~10个碳原子的环烷烃、含有3~10个碳原子的烷烃醚、含有3~10个碳原子的烷烃硫醚基团氢或含有6~10个碳原子的芳基;
虚线表示与M直接相连的键。
M为过渡金属元素。
在一个优选的实施例中,M选自铬(Cr)、钼(Mo)、钨(W)、钌(Ru)、铑(Rh)、镍(Ni)、银(Ag)、铜(Cu)、锌(Zn)、钯(Pd)、金(Au)、饿(Os)、铼(Re)、铱(Ir)或铂(Pt)。
在一个特别优选的实施例中,M为Ir或Pt。
从重原子效应来看,优选将Ir或Pt用作上述金属有机配合物的中心金属M。铱是最优选的,这是因为铱是化学稳定的,且具有显著的重原子效应会得到高 的发光效率。
下面给出合适的本发明公开的金属有机配合物的具体例子,包括:
Figure PCTCN2016099016-appb-000015
Figure PCTCN2016099016-appb-000016
Figure PCTCN2016099016-appb-000017
Figure PCTCN2016099016-appb-000018
Figure PCTCN2016099016-appb-000019
Figure PCTCN2016099016-appb-000020
Figure PCTCN2016099016-appb-000021
Figure PCTCN2016099016-appb-000022
Figure PCTCN2016099016-appb-000023
Figure PCTCN2016099016-appb-000024
Figure PCTCN2016099016-appb-000025
Figure PCTCN2016099016-appb-000026
Figure PCTCN2016099016-appb-000027
优选的,本发明公开的金属有机配合物是发光材料,金属有机配合物的发光波长在300到1000nm之间,较好的是在350到900nm之间,更好的是在400到800nm之间。这里指的发光是指光致发光或电致发光。
优选的,本发明公开的金属有机配合物的光致发光效率≥30%,较优是≥40%,更优是≥50%,最优是≥60%。
优选的,本发明公开的金属有机配合物也可以是不发光材料。
本发明还涉及一种高聚物,高聚物中至少有一个重复单元包含有如通式(I)所示的结构。
优选的,高聚物是非共轭高聚物,其中如通式(I)所示的结构单元在侧链上。
优选的,高聚物是共轭高聚物。
本发明还涉及一种混合物,包括本发明公开的金属有机配合物或本发明公开的高聚物,以及有机功能材料。
有机功能材料包含空穴(也称电洞)注入或传输材料(HIM/HTM),空穴阻挡材料(HBM),电子注入或传输材料(EIM/ETM),电子阻挡材料(EBM),有机基质材料(Host),单重态发光体(荧光发光体),热激活延迟荧光发光材料(TADF),三重态发光体(磷光发光体),特别是发光金属有机配合物和有机染料。例如在WO2010135519A1,US20090134784A1和WO 2011110277A1中对各种有机功能材料有详细的描述,特此将此3专利文件中的全部内容并入本文作为参考。
有机功能材料可以是小分子或高聚物材料。
本文中所定义的术语“小分子”是指不是聚合物,低聚物,树枝状聚合物,或共混物的分子。特别是,小分子中没有重复结构。小分子的分子量≤3000克/摩尔,较好是≤2000克/摩尔,最好是≤1500克/摩尔。
高聚物,即Polymer,包含均聚物(homopolymer),共聚物(copolymer),镶嵌共聚物(block copolymer)。另外在本发明中,高聚物也包含树状物(dendrimer), 有关树状物的合成及应用请参见【Dendrimers and Dendrons,Wiley-VCH Verlag GmbH&Co.KGaA,2002,Ed.George R.Newkome,Charles N.Moorefield,Fritz Vogtle.】。
共轭高聚物(conjugated polymer)是一种高聚物,它的主链(backbone)主要是由C原子的sp2杂化轨道构成,著名的例子有:聚乙炔polyacetylene和poly(phenylene vinylene),其主链上的C原子的也可以被其他非C原子取代,而且当主链上的sp2杂化被一些自然的缺陷打断时,仍然被认为是共轭高聚物。另外在本发明中共轭高聚物也包含主链上包含有芳基胺(aryl amine)、芳基磷化氢(aryl phosphine)及其他杂环芳烃(heteroarmotics)、金属有机络合物(organometallic complexes)等。
优选的,本发明公开的混合物中,金属有机配合物的含量为0.01至30wt%,较好的是0.1至20wt%,更好的是0.2至15wt%,最好的是2至15wt%。
优选的,本发明公开的混合物包含本发明公开的金属有机配合物或本发明公开的高聚物,以及三重态基质材料。
优选的,本发明公开的混合物包含本发明公开的金属有机配合物或本发明公开的高聚物,以及三重态基质材料和三重态发光体。
优选的,本发明公开的混合物包含本发明公开的金属有机配合物或本发明公开的高聚物,以及热激活延迟荧光发光材料(TADF)。
下面对三重态基质材料、三重态发光体和TADF材料作一些较详细的描述(但不限于此)。
1、三重态基质材料(Triplet Host):
三重态基质材料的例子并不受特别的限制,任何金属络合物或有机化合物都可能被用作为基质,只要其三重态能量比发光体,特别是三重态发光体或磷光发光体更高。
可用作三重态基质(Host)的金属络合物的例子包含(但不限于)如下的一般结构:
Figure PCTCN2016099016-appb-000028
其中,M是一金属;(y3-y4)是一两齿配体,Y3和Y4独立地选自C,N,O,P和S;L是一个辅助配体;m是一整数,其值从1到此金属的最大配位数;m+n是此金属的最大配位数。
在一个优选的实施方案中,可用作三重态基质的金属络合物有如下形式:
Figure PCTCN2016099016-appb-000029
其中,(O-N)是一两齿配体,其中金属与O和N原子配位。
在某一个实施方案中,M可选于Ir和Pt。
可作为三重态主体的有机化合物的例子选自包含有环芳香烃基的化合物, 例如苯、联苯、三苯基、苯并、芴;包含有芳香杂环基的化合物,如二苯并噻吩、二苯并呋喃、二苯并硒吩、呋喃、噻吩、苯并呋喃、苯并噻吩、苯并硒吩、咔唑、吲哚咔唑、吡啶吲哚、吡咯二吡啶、吡唑、咪唑、三唑类、恶唑、噻唑、恶二唑、恶三唑、二恶唑、噻二唑、吡啶、哒嗪、嘧啶、吡嗪、三嗪类、恶嗪、恶噻嗪、恶二嗪、吲哚、苯并咪唑、吲唑、恶唑、二苯并恶唑、苯异恶唑、苯并噻唑、喹啉、异喹啉、邻二氮杂萘、喹唑啉、喹喔啉、萘、酞、蝶啶、氧杂蒽、吖啶、吩嗪、吩噻嗪、吩恶嗪、苯并呋喃吡啶、呋喃并吡啶、苯并噻吩吡啶、噻吩吡啶、苯并硒吩吡啶和硒吩苯并二吡啶;包含有2至10环结构的基团,它们可以是相同或不同类型的环芳香烃基团或芳香杂环基团,并彼此直接或通过至少一个以下的基团连结在一起,如氧原子、氮原子、硫原子、硅原子、磷原子、硼原子、链结构单元和脂肪环基团。其中,每个Ar可以进一步被取代,取代基可选为氢、烷基、烷氧基、氨基、烯、炔、芳烷基、杂烷基、芳基和杂芳基。
在一个优选的实施方案中,三重态基质材料可选于包含至少一个以下基团的化合物:
Figure PCTCN2016099016-appb-000030
其中,R1~R7可相互独立地选于如下的基团:氢,烷基,烷氧基,氨基,烯, 炔,芳烷基,杂烷基,芳基和杂芳基,当它们是芳基或杂芳基时,它们与上述的Ar1和Ar2意义相同;n是一个从0到20的整数;X1~X8选于CH或N;X9选于CR1R2或NR1
R1,R2与ETM部分中的R1定义相同。
在下面的表中列出合适的三重态基质材料的例子:
Figure PCTCN2016099016-appb-000031
2、三重态发光体(Triplet Emitter)
三重态发光体也称磷光发光体。在一个优选的实施方案中,三重态发光体是有通式M(L)n的金属络合物,其中M是一金属原子,L每次出现时可以是相同或不同,是一有机配体,它通过一个或多个位置键接或配位连接到金属原子M上,n是一个大于1的整数,较好选是1,2,3,4,5或6。可选地,这些金属络合物通过一个或多个位置联接到一个聚合物上,最好是通过有机配体。
在一个优选的实施方案中,金属原子M选于过渡金属元素或镧系元素或锕系元素,优先选择Ir,Pt,Pd,Au,Rh,Ru,Os,Sm,Eu,Gd,Tb,Dy,Re,Cu或Ag,特别优先选择Os,Ir,Ru,Rh,Re,Pd或Pt。
优选的,三重态发光体包含有螯合配体,即配体,通过至少两个结合点与金属配位,特别优先考虑的是三重态发光体包含有两个或三个相同或不同的双齿或多齿配体。螯合配体有利于提高金属络合物的稳定性。
有机配体的例子可选自苯基吡啶衍生物,7,8-苯并喹啉衍生物,2(2-噻吩基)吡啶衍生物,2(1-萘基)吡啶衍生物,或2苯基喹啉衍生物。所有这些有机配体都可能被取代,例如被含氟或三氟甲基取代。辅助配体可优先选自乙酸丙酮或苦味酸。
在一个优选的实施方案中,可用作三重态发光体的金属络合物有如下形式:
Figure PCTCN2016099016-appb-000032
其中M是一金属,选于过渡金属元素或镧系元素或锕系元素;
Ar1每次出现时可以是相同或不同,是一个环状基团,其中至少包含有一个施主原子,即有一孤对电子的原子,如氮或磷,通过它环状基团与金属配位连接;Ar2每次出现时可以是相同或不同,是一个环状基团,其中至少包含有一个C原子,通过它环状基团与金属连接;Ar1和Ar2由共价键联接在一起,可各自携 带一个或多个取代基团,它们也可再通过取代基团联接在一起;L每次出现时可以是相同或不同,是一个辅助配体,优选于双齿螯合配体,最好是单阴离子双齿螯合配体;m是1,2或3,优选是2或3,特别优选是3;n是0,1,或2,优选是0或1,特别优选是0。
一些三重态发光体的材料极其应用的例子可在下述专利文件和文献中找到:WO 200070655,WO 200141512,WO 200202714,WO 200215645,EP 1191613,EP 1191612,EP 1191614,WO 2005033244,WO 2005019373,US 2005/0258742,WO 2009146770,WO 2010015307,WO 2010031485,WO 2010054731,WO 2010054728,WO 2010086089,WO 2010099852,WO 2010102709,US 20070087219 A1,US 20090061681 A1,US 20010053462 A1,Baldo,Thompson et al.Nature 403,(2000),750-753,US 20090061681 A1,US 20090061681 A1,Adachi et al.Appl.Phys.Lett.78(2001),1622-1624,J.Kido et al.Appl.Phys.Lett.65(1994),2124,Kido et al.Chem.Lett.657,1990,US 2007/0252517 A1,Johnson et a1.,JACS105,1983,1795,Wrighton,JACS 96,1974,998,Ma et al.,Synth.Metals 94,1998,245,US 6824895,US 7029766,US 6835469,US 6830828,US 20010053462 A1,WO 2007095118 A1,US 2012004407A1,WO 2012007088A1,WO2012007087A1,WO 2012007086A1,US 2008027220A1,WO 2011157339A1,CN 102282150A,WO 2009118087A1。特此将上述列出的专利文件和文献中的全部内容并入本文作为参考。
在下面的表中列出一些合适的三重态发光体的例子;
Figure PCTCN2016099016-appb-000033
Figure PCTCN2016099016-appb-000034
Figure PCTCN2016099016-appb-000035
3、热激活延迟荧光发光材料(TADF):
传统有机荧光材料只能利用电激发形成的25%单线态激子发光,器件的内量子效率较低(最高为25%)。尽管磷光材料由于重原子中心强的自旋-轨道耦合增强了系间穿越,可以有效利用电激发形成的单线态激子和三线态激子发光,使器件的内量子效率达到100%。但磷光材料昂贵,材料稳定性差,器件效率滚降严重等问题限制了其在OLED中的应用。热激活延迟荧光发光材料是继有机荧光材料和有机磷光材料之后发展的第三代有机发光材料。该类材料一般具有小的单线态-三线态能级差(ΔEst),三线态激子可以通过反系间穿越转变成单线态激子发光。这可以充分利用电激发下形成的单线态激子和三线态激子。器件 内量子效率可达到100%。
传统有机荧光材料只能利用电激发形成的25%单线态激子发光,器件的内量子效率较低(最高为25%)。尽管磷光材料由于重原子中心强的自旋-轨道耦合增强了系间穿越,可以有效利用电激发形成的单线态激子和三线态激子发光,使器件的内量子效率达到100%。但磷光材料昂贵,材料稳定性差,器件效率滚降严重等问题限制了其在OLED中的应用。热激活延迟荧光发光材料是继有机荧光材料和有机磷光材料之后发展的第三代有机发光材料。该类材料一般具有小的单线态-三线态能级差(ΔEst),三线态激子可以通过反系间穿越转变成单线态激子发光。这可以充分利用电激发下形成的单线态激子和三线态激子。器件内量子效率可达到100%。
在下面列出一些合适的TADF发光材料的例子:
Figure PCTCN2016099016-appb-000036
Figure PCTCN2016099016-appb-000037
本发明进一步涉及一种组合物或印刷油墨,其中,组合物或印刷油墨包含一种上述金属有机配合物、上述高聚物或上述混合物,以及有机溶剂。
本发明进一步提供一种从溶液中制备包含有本发明公开的金属有机配合物或高聚物的薄膜。
用于印刷工艺时,油墨的粘度,表面张力是重要的参数。合适的油墨的表面张力参数适合于特定的基板和特定的印刷方法。
在一个优选的实施例中,本发明公开的油墨在工作温度或在25℃下的表面张力约在19dyne/cm到50dyne/cm范围;更好是在22dyne/cm到35dyne/cm范围;最好是在25dyne/cm到33dyne/cm范围。
在另一个优选的实施例中,本发明公开的油墨在工作温度或25℃下的粘度 约在1cps到100cps范围;较好是在1cps到50cps范围;更好是在1.5cps到20cps范围;最好是在4.0cps到20cps范围。如此配制的组合物将适合于喷墨印刷。
粘度可以通过不同的方法调节,如通过合适的溶剂选取和油墨中功能材料的浓度。本发明公开的包含有所述地金属有机配合物或高聚物的油墨可方便人们将印刷油墨按照所用的印刷方法在适当的范围调节。一般地,本发明公开的组合物包含的功能材料的重量比为0.3%~30wt%范围,较好的为0.5%~20wt%范围,更好的为0.5%~15wt%范围,更更好的为0.5%~10wt%范围,最好的为1%~5wt%范围。
本发明公开的油墨中,有机溶剂选自基于芳族或杂芳族的溶剂,特别是脂肪族链/环取代的芳族溶剂、或芳族酮溶剂,或芳族醚溶剂。
更优选的,有机溶剂选自基于芳族或杂芳族的溶剂,包括:对二异丙基苯、戊苯、四氢萘、环己基苯、氯萘、1,4-二甲基萘、3-异丙基联苯、对甲基异丙苯、二戊苯、三戊苯、戊基甲苯、邻二甲苯、间二甲苯、对二甲苯、邻二乙苯、间二乙苯、对二乙苯、1,2,3,4-四甲苯、1,2,3,5-四甲苯、1,2,4,5-四甲苯、丁苯、十二烷基苯、二己基苯、二丁基苯、对二异丙基苯、1-甲氧基萘、环己基苯、二甲基萘、3-异丙基联苯、对甲基异丙苯、1-甲基萘、1,2,4-三氯苯、1,3-二丙氧基苯、4,4-二氟二苯甲烷、1,2-二甲氧基-4-(1-丙烯基)苯、二苯甲烷、2-苯基吡啶、3-苯基吡啶、N-甲基二苯胺、4-异丙基联苯、α,α-二氯二苯甲烷、4-(3-苯基丙基)吡啶、苯甲酸苄酯、1,1-双(3,4-二甲基苯基)乙烷、2-异丙基萘、二苄醚等;基于酮的溶剂:1-四氢萘酮,2-四氢萘酮,2-(苯基环氧)四氢萘酮,6-(甲氧基)四氢萘酮,苯乙酮、苯丙酮、二苯甲酮、及它们的衍生物,如4-甲基苯乙酮、3-甲基苯乙酮、2-甲基苯乙酮、4-甲基苯丙酮、3-甲基苯丙酮、2-甲基苯丙酮,异佛尔酮、2,6,8-三甲基-4-壬酮、葑酮、2-壬酮、3-壬酮、5-壬酮、2-癸酮、2,5-己二酮、佛尔酮、二正戊基酮;芳族醚溶剂:3-苯氧基甲苯、丁氧基苯、苄基丁基苯、对茴香醛二甲基乙缩醛、四氢-2-苯氧基-2H-吡喃、1,2-二甲氧基-4-(1-丙烯基)苯、1,4-苯并二噁烷、1,3-二丙基苯、2,5-二甲氧基甲苯、4-乙基本乙醚、1,2,4-三甲氧基苯、4-(1-丙烯基)-1,2-二甲氧基苯、1,3-二甲氧基苯、缩水甘油基苯基醚、二苄基醚、4-叔丁基茴香醚、反式-对丙烯基茴香醚、1,2-二甲氧基苯、1-甲氧基萘、二苯醚、2-苯氧基甲醚、2-苯氧基四氢呋喃、乙基-2-萘基醚、戊醚c己醚、二辛醚、乙二醇二丁醚、二乙二醇二乙醚、二乙二醇丁基甲醚、二乙二醇二丁醚、三乙二醇二甲醚、三乙二醇乙基甲醚、三乙二醇丁基甲醚、三丙二醇二甲醚、四乙二醇二甲醚;酯溶剂:辛酸烷酯、癸二酸烷酯、硬脂酸烷酯、苯甲酸烷酯、苯乙酸烷酯、肉桂酸烷酯、草酸烷酯、马来酸烷酯、烷内酯、油酸烷酯等。
更优选的,有机溶剂选自脂肪族酮,包括:2-壬酮、3-壬酮、5-壬酮、2-癸酮、2,5-己二酮、2,6,8-三甲基-4-壬酮、佛尔酮、二正戊基酮等。
更优选的,有机溶剂选自脂肪族醚,包括:戊醚、己醚、二辛醚、乙二醇二丁醚、二乙二醇二乙醚、二乙二醇丁基甲醚、二乙二醇二丁醚、三乙二醇二甲醚、三乙二醇乙基甲醚、三乙二醇丁基甲醚、三丙二醇二甲醚、四乙二醇二甲醚等。
优选的,印刷油墨还包含有另一种有机溶剂。另一种有机溶剂可选自:甲醇、乙醇、2-甲氧基乙醇、二氯甲烷、三氯甲烷、氯苯、邻二氯苯、四氢呋喃、苯甲醚、吗啉、甲苯、邻二甲苯、间二甲苯、对二甲苯、1,4二氧杂环己烷、丙酮、甲基乙基酮、1,2二氯乙烷、3-苯氧基甲苯、1,1,1-三氯乙烷、1,1,2,2-四氯乙烷、醋酸乙酯、醋酸丁酯、二甲基甲酰胺、二甲基乙酰胺、二甲基亚砜、四氢萘、萘烷和茚中的一种或一种以上的混合物。
优选的,本发明公开的组合物是一溶液。
优选的,本发明公开的组合物是一悬浮液。
本发明还涉及上述组合物作为涂料或印刷油墨在制备有机电子器件时的用途,特别优选的是通过打印或涂布的制备方法。
其中,适合的打印或涂布技术包含(但不限于)喷墨打印,喷印(Nozzle Printing),活版印刷,丝网印刷,浸涂,旋转涂布,刮刀涂布,辊筒印花,扭转辊印刷,平版印刷,柔版印刷,轮转印刷,喷涂,刷涂或移印,喷印刷(Nozzle printing),狭缝型挤压式涂布等。首选的是喷墨印刷,狭缝型挤压式涂布,喷印刷及凹版印刷。溶液或悬浮液可以另外包含一个或多个组份例如表面活性化合物,润滑剂,润湿剂,分散剂,疏水剂,粘接剂等,用于调节粘度,成膜性能,提高附着性等。有关打印技术,及其对有关溶液的相关要求,如溶剂及浓度,粘度等,的详细信息请参见Helmut Kipphan主编的《印刷媒体手册:技术和生产方法》(Handbook of Print Media:Technologies and Production Methods),ISBN3-540-67326-1。
基于上述金属有机配合物,本发明还提供一种如上所述的金属有机配合物或高聚物在有机电子器件的应用。有机电子器件包括:有机发光二极管(OLED)、有机光伏电池(OPV)、有机发光电池(OLEEC)、有机场效应管(OFET)、有机发光场效应管、有机激光器、有机自旋电子器件、有机传感器及有机等离激元发射二极管(Organic Plasmon Emitting Diode)等,特别是OLED。本发明实施例中,优选地将所述金属有机配合物用于OLED器件的发光层中。
本发明进一步涉及一种有机电子器件,包含上述金属有机配合物或上述高聚物。
一般的,有机电子器件包含阴极、阳极及位于阴极和阳极之间的功能层,其中功能层包含上述金属有机配合物或上述高聚物。
有机电子器件可选自有机发光二极管(OLED),有机光伏电池(OPV),有机发光电池(OLEEC),有机场效应管(OFET),有机发光场效应管,有机激光器,有机自旋电子器件,有机传感器及有机等离激元发射二极管(Organic Plasmon Emitting Diode)。
优选的,有机电子器件为电致发光器件,更优选的是OLED。电致发光器件包含基片、阳极、发光层和阴极。
基片可以不透明或透明。一个透明的基板可以用来制造一个透明的发光元器件。例如可参见,Bulovic等Nature 1996,380,p29,和Gu等,Appl.Phys.Lett.1996,68,p2606。基片可以是刚性的或弹性的。基片可以是塑料,金属,半导体晶片或玻璃。最好是基片有一个平滑的表面。无表面缺陷的基板是特别理想的 选择。在一个优选的实施例中,基片是柔性的,可选于聚合物薄膜或塑料,其玻璃化温度Tg为150℃以上,较好是超过200℃,更好是超过250℃,最好是超过300℃。合适的柔性基板的例子有聚(对苯二甲酸乙二醇酯)(PET)和聚乙二醇(2,6-萘)(PEN)。
阳极可包含导电金属、金属氧化物或导电聚合物。阳极可以容易地注入空穴到空穴注入层(HIL)或空穴传输层(HTL)或发光层中。在一个的实施例中,阳极的功函数和发光层中的发光体或作为HIL或HTL或电子阻挡层(EBL)的p型半导体材料的HOMO能级或价带能级的差的绝对值小于0.5eV,较好是小于0.3eV,最好是小于0.2eV。阳极材料的例子包含但不限于:Al、Cu、Au、Ag、Mg、Fe、Co、Ni、Mn、Pd、Pt、ITO、铝掺杂氧化锌(AZO)等。其他合适的阳极材料是已知的,本领域普通技术人员可容易地选择使用。阳极材料可以使用任何合适的技术沉积,如一合适的物理气相沉积法,包含射频磁控溅射,真空热蒸发,电子束(e-beam)等。在某些实施例中,阳极是图案结构化的。图案化的ITO导电基板可在市场上买到,并且可以用来制备根据本发明的器件。
阴极可包含导电金属或金属氧化物。阴极可以容易地注入电子到EIL或ETL或直接到发光层中。在一个的实施例中,阴极的功函数和发光层中发光体或作为电子注入层(EIL)或电子传输层(ETL)或空穴阻挡层(HBL)的n型半导体材料的LUMO能级或导带能级的差的绝对值小于0.5eV,较好是小于0.3eV,最好是小于0.2eV。原则上,所有可用作OLED的阴极的材料都可能作为本发明器件的阴极材料。阴极材料的例子包含但不限于:Al、Au、Ag、Ca、Ba、Mg、LiF/Al、MgAg合金、BaF2/Al、Cu、Fe、Co、Ni、Mn、Pd、Pt、ITO等。阴极材料可以使用任何合适的技术沉积,如一合适的物理气相沉积法,包含射频磁控溅射,真空热蒸发,电子束(e-beam)等。
OLED还可以包含其他功能层,如空穴注入层(HIL)、空穴传输层(HTL)、电子阻挡层(EBL)、电子注入层(EIL)、电子传输层(ETL)、空穴阻挡层(HBL)。适合用于这些功能层中的材料在前面有描述。
在一个优选的实施例中,本发明公开的电致发光器件的发光层包含上述金属有机配合物或上述高聚物,发光层优选通过溶液加工的方法制备而成。
本发明公开的发光器件的发光波长在300到1000nm之间,优选在350到900nm之间,最优选在400到800nm之间。
本发明还涉及本发明公开的有机电子器件在各种电子设备中的应用,包含,但不限于,显示设备,照明设备,光源,传感器等等。
下面将结合优选实施例对本发明进行了说明,但本发明并不局限于下述实施例,应当理解,所附权利要求概括了本发明的范围在本发明构思的引导下本领域的技术人员应意识到,对本发明的各实施例所进行的一定的改变,都将被本发明的权利要求书的精神和范围所覆盖。
具体实施例
实施例1、金属有机配合物及其能量结构
Figure PCTCN2016099016-appb-000038
金属有机配合物Ir-1~Ir-5的能级可通过量子计算得到,比如利用TD-DFT(含时密度泛函理论)通过Gaussian03W(Gaussian Inc.),具体的模拟方法可参见WO2011141110。首先用半经验方法“Ground State/Hartree-Fock/Default Spin/LanL2MB”(Charge 0/Spin Singlet)来优化分子几何结构,然后有机分子的能量结构由TD-DFT(含时密度泛函理论)方法算得“TD-SCF/DFT/Default Spin/B3PW91/gen geom=connectiVity pseudo=lanl2”(Charge 0/Spin Singlet)。HOMO和LUMO能级按照下面的校准公式计算,S1和T1直接使用。
HOMO(eV)=((HOMO(Gaussian)×27.212)-0.9899)/1.1206
LUMO(eV)=((LUMO(Gaussian)×27.212)-2.0041)/1.385
其中HOMO(G)和LUMO(G)是Gaussian 03W的直接计算结果,单位为Hartree。结果如表一所示:
表一
材料 HOMO[eV] LUMO[eV] T1[eV] S1[eV]
Ir-1 -5.17 -2.36 2.56 2.80
Ir-2 -5.25 -2.29 2.68 2.87
Ir-3 -5.16 -2.28 2.70 2.91
Ir-4 -5.28 -2.33 2.69 2.92
Ir-5 -5.19 -2.69 2.21 2.41
实施例2、金属有机配合物Ir-1合成
Figure PCTCN2016099016-appb-000039
合成中间体1a
2-溴碘苯(28.2g,100mmol),3,5-二甲基苯硼酸(15g,100mmol),氟化钾(28g,500mmol),四-(三苯基膦)钯(4g,3mmol),二氧六环600mL,在氮气下80℃反应24h,冷却到室温,向反应溶液中加水,用二氯甲烷萃取,有机相水洗最后用无水硫酸镁干燥,浓缩,然后用乙酸乙酯∶石油醚=1∶5过柱纯化,得到1a(18.27g)。
合成中间体1b
在一个250mL圆底单口烧瓶中放置中间体1a(3.7g,14.2mmol),联硼酯(5.4g,21.3mmol),Pd(dppf)Cl2(0.31g,0.42mmol),醋酸钾(14g,140mmol),将其溶于100mL二氧六环,120℃搅拌反应24小时,冷却到室温,浓缩,加水,用二氯甲烷多次萃取,合并有机液,浓缩,然后用乙酸乙酯∶石油醚=1∶3过柱纯化,得到1b(3.5g)。
合成中间体1c
中间体1b(3.7g,14.2mmol),2-溴吡啶(2g,12.6mmol),四-(三苯基膦)钯(0.6g,0.42mmol),碳酸钾(20g,142mmol),碘苯(4.89g,24mmol),二氧六环(140mL)和水(70mL),在氮气下回流反应24h,冷却到室温,向反应溶液中加水,用二氯甲烷萃取,有机相水洗最后用无水硫酸镁干燥,浓缩,用乙酸乙酯∶石油醚=1∶6过柱纯化,得到1c(2.6g)。
合成中间体1d
在一个干燥的双口瓶里放置中间体1c(1.2g,4.6mmol),水合三氯化铱(0.7g,2mmol),抽真空充氮气循环三次,然后加入30mL乙二醇单乙醚和10mL水的 混合溶液,110℃搅拌反应24小时,冷却到室温,抽滤,用正己烷洗,干燥,无需进一步纯化,直接下一步反应。
合成实施实例1:合成化合物Ir-1
在一个干燥的双口瓶里放置中间体1d(0.37g,0.25mmol),乙酰丙酮(0.25mL,2mmol),Na2CO3(0.22g,2mmol),抽真空充氮气循环三次,然后加入15mL乙二醇单乙醚,回流搅拌过夜,冷却到室温,加水,用二氯甲烷萃取,然后干燥,浓缩,用二氯甲烷/乙醇重结晶得到Ir-1(0.12g)。
实施例3、金属有机配合物Ir-2合成
Figure PCTCN2016099016-appb-000040
在一个干燥的双口瓶里放置中间体1d(0.744g,0.5mmol),1c(0.285g,1.1mmol),三氟乙酸银(0.22g,1mmol),抽真空充氮气循环三次,然后加入20mL乙二醇单乙醚,150℃搅拌反应24小时,冷却到室温,加水,用二氯甲烷萃取,然后干燥,浓缩,用二氯甲烷∶石油醚=1∶3过柱纯化得到Ir-2(0.29g)。
实施例4、金属有机配合物Ir-3合成
Figure PCTCN2016099016-appb-000041
在一个干燥的双口瓶里放置中间体1d(0.38g,0.25mmol),3-甲基-苯基咪唑碘盐(0.15g,0.5mmol),氧化银(0.18g,0.77mmol)抽真空充氮气循环三次,然后加入15mL 1,2-二氯乙烷,100℃搅拌过夜,冷却到室温,加水,用二氯甲烷萃取,然后干燥,浓缩,用二氯甲烷和石油醚的混合溶剂重结晶得到Ir-3(0.13g)。
实施例5、金属有机配合物Ir-4合成
Figure PCTCN2016099016-appb-000042
合成中间体4a
在一个干燥的单口瓶里放置2-苯基吡啶-铱二氯桥(2g,1.87mmol),然后 加入200mL二氯甲烷和10mL甲醇的混合溶液将其溶解,再往混合液中加入三氟甲磺酸银(1g,3.92mmol),然后室温搅拌反应8小时,抽滤,将滤液旋干,得到黄色固体4a(2.18g)。
合成化合物Ir-4
在一个干燥的双口瓶里放置4a(2.6g,4mmol),1c(3g,11.6mmol),抽真空充氮气循环三次,然后加入300mL乙醇,搅拌回流反应24小时,冷却到室温,抽滤,干燥,得到黄色固体Ir-4(2.12g)。
实施例6、金属有机配合物Ir-5合成
Figure PCTCN2016099016-appb-000043
合成中间体5a
中间体1b(1.54g,5mmol),2-氯喹啉(0.64g,4mmol),四-(三苯基膦)钯(0.138g,0.12mmol),碳酸钾(2.76g,20mmol),二氧六环(20mL)和水(10mL),在氮气下回流反应24h,冷却到室温,向反应溶液中加水,用二氯甲烷萃取,有机相水洗最后用无水硫酸镁干燥,浓缩,用乙酸乙酯∶石油醚=1∶6过柱纯化,得到5a(0.98g)。
合成中间体5b
在一个干燥的双口瓶里放置中间体5a(1.42g,4.6mmol),水合三氯化铱(0.7g,2mmol),抽真空充氮气循环三次,然后加入30mL乙二醇单乙醚和10 mL水的混合溶液,110℃搅拌反应24小时,冷却到室温,抽滤,用正己烷洗,干燥,无需进一步纯化,直接下一步反应。
合成化合物Ir-5
在一个干燥的双口瓶里放置中间体5b(0.42g,0.25mmol),乙酰丙酮(0.25mL,2mmol),Na2CO3(0.22g,2mmol),抽真空充氮气循环三次,然后 加入15mL乙二醇单乙醚,回流搅拌过夜,冷却到室温,加水,用二氯甲烷萃取,然后干燥,浓缩,用二氯甲烷/乙醇重结晶得到Ir-5(0.18g)。
实施例7、金属有机配合物的光物理性质
对实施例2~6制得的金属有机配合物Ir-1~Ir-5在二氯甲烷中进行发光光谱测定,得到图1。
由图1可以看出,金属有机配合物Ir-1~Ir-5的光谱都呈现了较窄的发射,特别是Ir-1和Ir-2表现为更窄的发射谱。
实施例8、OLED器件的制备和表征
具有ITO/NPD(60nm)/15%Ir-1~Ir-5:mCP(45nm)/TPBi(35nm)/LiF(1nm)/Al(150nm)/阴极的OLED器件的制备步骤如下:
a、导电玻璃基片的清洗:首次使用时,可用多种溶剂进行清洗,例如氯仿、酮、异丙醇进行清洗,然后进行紫外臭氧等离子处理;
b、HTL(60nm),EML(45nm),ETL(35nm):在高真空(1×10-6毫巴,mbar)中热蒸镀而成;
c、阴极:LiF/Al(1nm/150nm)在高真空(1×10-6毫巴)中热蒸镀而成;
d、封装:器件在氮气手套箱中用紫外线硬化树脂封装。
各OLED器件的电流电压亮度(JVL)特性通过表征设备来表征,同时记录重要的参数如效率及外部量子效率。经检测,OLED1-5(对应金属有机配合Ir-1到Ir-5)的最大外部量子效率分别为15.1%,14.2%,12.4%,13.6%,9.3%。
进一步的优化,如器件结构的优化,HTM,ETM及主体材料的组合优化,将进一步提高器件的性能,特别是效率,驱动电压及寿命。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (20)

  1. 一种金属有机配合物,其特征在于,具有如下通式(I):
    Figure PCTCN2016099016-appb-100001
    其中,Ar1或Ar2选自芳香烃、杂芳香环烃、被R1取代的芳香烃或被R1取代的杂芳香环烃;
    Ar3选自杂芳香环烃或被R1取代的杂芳香环烃,并且Ar3中至少包含一个杂原子N;
    R1选自H、F、Cl、Br、I、D、CN、NO2、CF3、B(OR2)2、Si(R2)3、直链烷烃、烷烃醚、含1~10个碳原子的烷烃硫醚、含1~10个碳原子的支链烷烃、含1~10个碳原子的环烷烃、含有3~10个碳原子的烷烃醚或含有3~10个碳原子的烷烃硫醚基团,R1中的活性位点可以被R2取代,R1中的非相邻的亚甲基(CH2)可以被R2C=CR2、C=C、Si(R2)2、Ge(R2)2、Sn(R2)2、C=O、C=S、C=Se、C=N(R2)、O、S、-COO-或CONR2替换,R1中的H可被D、F、Cl、Br、I、CN、N2、包含R2的芳香胺、包含芳香基团的芳香胺、包含杂芳香环的芳香胺、咔唑或被取代的咔唑替换;
    R2为H、D、含1~10个碳原子脂肪族烷烃、芳香碳氢化合物、含5~10个环原子的芳香环、含5~10个环原子的杂芳香基团、含5~10个环原子的被取代的芳香环或含5~10个环原子的被取代的杂芳香基团;
    Figure PCTCN2016099016-appb-100002
    为两齿配体;
    M为过渡金属元素;
    m为0、1或2;
    n为1、2或3。
  2. 根据权利要求1所述的金属有机配合物,其特征在于,Ar1、Ar2或Ar3选自具有如下通式的基团中的一个:
    Figure PCTCN2016099016-appb-100003
    其中,X1为CR1或N,并且对于Ar3,至少有一个X1为N;
    Y1为CR2R3、SiR2R3、NR2、C(=O)、S或O;
    R1、R2或R3选自H、D、具有1~20个C原子的直链烷基、具有1~20个C 原子的烷氧基、具有1~20个C原子的硫代烷氧基基团、具有3~20个C原子的支链烷基、具有3~20个C原子的环状的烷基、具有3~20个C原子的烷氧基、具有3~20个C原子的硫代烷氧基基团、具有3~20个C原子的甲硅烷基基团、具有1~20个C原子的取代的酮基基团、具有2~20个C原子的烷氧基羰基基团、具有7~20个C原子的芳氧基羰基基团、氰基基团、氨基甲酰基基团、卤甲酰基基团、甲酰基基团、异氰基基团、异氰酸酯基团、硫氰酸酯基团、异硫氰酸酯基团、羟基基团、硝基基团、CF3基团、Cl、Br、F、可交联的基团、具有5~40个环原子的取代或未取代的芳族、具有5~40个环原子的取代或未取代的杂芳族环系、具有5~40个环原子的芳氧基基团和具有5~40个环原子的杂芳氧基基团中的一种或一种以上的组合。
  3. 根据权利要求1所述的金属有机配合物,其特征在于,Ar1或Ar2选自如下结构基团或如下结构基团进一步被取代形成的取代基团中的一种:
    Figure PCTCN2016099016-appb-100004
  4. 根据权利要求1所述的金属有机配合物,其特征在于,Ar3选自如下结构基团或如下结构基团进一步被取代形成的取代基团中的一种:
    Figure PCTCN2016099016-appb-100005
  5. 根据权利要求1所述的金属有机配合物,其特征在于,Ar1为芳香环或杂芳香环,Ar1选自具有如下通式C1~C10的化合物中一种:
    Figure PCTCN2016099016-appb-100006
    其中,R5~R59选自-H、-F、-Cl、Br、I、-D、-CN、-NO2、-CF3、B(OR2)2、Si(R2)3、直链烷烃、烷烃醚、含1~10个碳原子的烷烃硫醚、含1~10个碳原子的支链烷烃、含1~10个碳原子的环烷烃、含有3~10个碳原子的烷烃醚、含有3~10个碳原子的烷烃硫醚基团氢或含有6~10个碳原子的芳基;
    虚线表示以单键形式进行连接。
  6. 根据权利要求1所述的金属有机配合物,其特征在于,
    Figure PCTCN2016099016-appb-100007
    为单阴离子配体,
    Figure PCTCN2016099016-appb-100008
    选自具有如下通式L1~L15的化合物中的一种:
    Figure PCTCN2016099016-appb-100009
    Figure PCTCN2016099016-appb-100010
    其中,R60~R129选自-H、-F、-Cl、Br、I、-D、-CN、-NO2、-CF3、B(OR2)2、Si(R2)3、直链烷烃、烷烃醚、含1~10个碳原子的烷烃硫醚、含1~10个碳原子的支链烷烃、含1~10个碳原子的环烷烃、含有3~10个碳原子的烷烃醚、含有3~10个碳原子的烷烃硫醚基团氢或含有6~10个碳原子的芳基;
    虚线表示与M直接相连的键。
  7. 根据权利要求1所述的金属有机配合物,其特征在于,M选自铬、钼、钨、钌、铑、镍、银、铜、锌、钯、金、饿、铼、铱或铂。
  8. 根据权利要求1所述的金属有机配合物,其特征在于,所述金属有机配合物选自具有如下通式的化合物中的一个:
    Figure PCTCN2016099016-appb-100011
    Figure PCTCN2016099016-appb-100012
    其中,R3为-H、-F、-Cl、Br、I、-D、-CN、-NO2、-CF3、B(OR2)2、Si(R2)3、直链烷烃、烷烃醚、含1~10个碳原子的烷烃硫醚、含1~10个碳原子的支链烷烃、含1~10个碳原子的环烷烃、含有3~10个碳原子的烷烃醚、含有3~10个碳原子的烷烃硫醚基团氢或含有6~10个碳原子的芳基;
    R4为-H、-F、-Cl、Br、I、-D、-CN、-NO2、-CF3、B(OR2)2、Si(R2)3、直链烷烃、烷烃醚、含1~10个碳原子的烷烃硫醚、含1~10个碳原子的支链烷烃、含1~10个碳原子的环烷烃、含有3~10个碳原子的烷烃醚、含有3~10个碳原子的烷烃硫醚基团氢或含有6~10个碳原子的芳基;
    x为0、1或2,y为0、1、2或3,z为0、1、2、3或4,u为0、1、2、3、4或5,v为0、1、2、3、4、5或6。
  9. 根据权利要求1所述的金属有机配合物,其特征在于,所述金属有机配合物选自具有如下通式的化合物中的一个:
    Figure PCTCN2016099016-appb-100013
    Figure PCTCN2016099016-appb-100014
    Figure PCTCN2016099016-appb-100015
    Figure PCTCN2016099016-appb-100016
    Figure PCTCN2016099016-appb-100017
    Figure PCTCN2016099016-appb-100018
    Figure PCTCN2016099016-appb-100019
    Figure PCTCN2016099016-appb-100020
    Figure PCTCN2016099016-appb-100021
    Figure PCTCN2016099016-appb-100022
    Figure PCTCN2016099016-appb-100023
    Figure PCTCN2016099016-appb-100024
    Figure PCTCN2016099016-appb-100025
  10. 一种高聚物,其特征在于,所述高聚物的重复单元中包含了如权利要求1~9中任一项所述的金属有机配合物。
  11. 根据权利要求10所述的高聚物,其特征在于,所述高聚物为非共轭高聚物,所述金属有机配合物位于所述高聚物的侧链上。
  12. 根据权利要求10所述的高聚物,其特征在于,所述高聚物为共轭高聚物。
  13. 一种混合物,其特征在于,包括如权利要求1~9中任一项所述的金属有机配合物或如权利要求10~12中任一项所述的高聚物;
    所述混合物还包括有机功能材料。
  14. 根据权利要求13所述的混合物,其特征在于,所述有机功能材料选自空穴注入材料、空穴传输材料、电子传输材料、电子注入材料、电子阻挡材料、空穴阻挡材料、有机基质材料、单重态发光体、热激活延迟荧光发光材料、三重态发光体、发光金属有机配合物和有机染料中的至少一种。
  15. 一种组合物,其特征在于,包括如权利要求1~9中任一项所述的金属有机配合物、如权利要求10~12中任一项所述的高聚物或如权利要求13~14中任一项所述的混合物;
    所述组合物还包括有机溶剂。
  16. 一种有机电子器件,其特征在于,包括如权利要求1~9中任一项所述的金属有机配合物或如权利要求10~12中任一项所述的高聚物。
  17. 根据权利要求16所述的有机电子器件,其特征在于,所述有机电子器件为有机发光二极管、有机光伏电池、有机发光电池、有机场效应管、有机发光场效应管、有机激光器、有机自旋电子器件、有机传感器或有机等离激元发射二极管。
  18. 根据权利要求16所述的有机电子器件,其特征在于,所述有机电子器 件为电致发光器件,所述电致发光器件包括基片、阳极、发光层和阴极。
  19. 根据权利要求18所述的有机电子器件,其特征在于,所述发光层中包含如权利要求1~9中任一项所述的金属有机配合物或如权利要求10~12中任一项所述的高聚物。
  20. 根据权利要求18所述的有机电子器件,其特征在于,所述电致发光器件还包括空穴注入层、空穴传输层、电子阻挡层、电子注入层、电子传输层和空穴阻挡层中的至少一种。
PCT/CN2016/099016 2015-12-04 2016-09-14 金属有机配合物、高聚物、混合物、组合物以及有机电子器件 WO2017092481A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201680059799.9A CN108137633A (zh) 2015-12-04 2016-09-14 金属有机配合物、高聚物、混合物、组合物以及有机电子器件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510888704 2015-12-04
CN201510888704.1 2015-12-04

Publications (1)

Publication Number Publication Date
WO2017092481A1 true WO2017092481A1 (zh) 2017-06-08

Family

ID=58796241

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/099016 WO2017092481A1 (zh) 2015-12-04 2016-09-14 金属有机配合物、高聚物、混合物、组合物以及有机电子器件

Country Status (2)

Country Link
CN (1) CN108137633A (zh)
WO (1) WO2017092481A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111344295A (zh) * 2017-11-29 2020-06-26 三菱化学株式会社 铱配位化合物、含有该化合物和溶剂的组合物、含有该化合物的有机电致发光元件、显示装置和照明装置
JP2021506759A (ja) * 2017-12-13 2021-02-22 メルク、パテント、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツングMerck Patent GmbH 金属錯体
KR20210058138A (ko) * 2019-11-13 2021-05-24 고려대학교 산학협력단 이리듐 인광소재, 그 제조 방법, 및 이의 광물리적 특성

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010019782A1 (en) * 1999-12-27 2001-09-06 Tatsuya Igarashi Light-emitting material comprising orthometalated iridium complex, light-emitting device, high efficiency red light-emitting device, and novel iridium complex
JP2003109758A (ja) * 2001-09-27 2003-04-11 Konica Corp 有機エレクトロルミネッセンス素子
JP2006193546A (ja) * 2005-01-11 2006-07-27 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
CN101146814A (zh) * 2005-03-01 2008-03-19 新加坡科技研究局 经溶液加工的有机金属配合物及其在电致发光器件中的用途
JP2009059997A (ja) * 2007-09-03 2009-03-19 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、表示装置及び照明装置
CN102482222A (zh) * 2009-05-12 2012-05-30 通用显示公司 用于有机发光二极管的2-氮杂三亚苯材料
WO2013077654A1 (ko) * 2011-11-24 2013-05-30 주식회사 두산 이리듐(ⅲ) 착물 및 이를 이용한 유기 전계 발광 소자

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100966886B1 (ko) * 2008-01-29 2010-06-30 다우어드밴스드디스플레이머티리얼 유한회사 신규한 유기 발광 화합물 및 이를 발광재료로서 채용하고있는 유기발광소자
KR101431645B1 (ko) * 2012-06-26 2014-08-20 롬엔드하스전자재료코리아유한회사 발광층 및 이를 포함하는 유기 전계 발광 소자

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010019782A1 (en) * 1999-12-27 2001-09-06 Tatsuya Igarashi Light-emitting material comprising orthometalated iridium complex, light-emitting device, high efficiency red light-emitting device, and novel iridium complex
JP2003109758A (ja) * 2001-09-27 2003-04-11 Konica Corp 有機エレクトロルミネッセンス素子
JP2006193546A (ja) * 2005-01-11 2006-07-27 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、表示装置及び照明装置
CN101146814A (zh) * 2005-03-01 2008-03-19 新加坡科技研究局 经溶液加工的有机金属配合物及其在电致发光器件中的用途
JP2009059997A (ja) * 2007-09-03 2009-03-19 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、表示装置及び照明装置
CN102482222A (zh) * 2009-05-12 2012-05-30 通用显示公司 用于有机发光二极管的2-氮杂三亚苯材料
WO2013077654A1 (ko) * 2011-11-24 2013-05-30 주식회사 두산 이리듐(ⅲ) 착물 및 이를 이용한 유기 전계 발광 소자

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MARAPPAN VELUSAMY: "Synthesis, structure and electroluminescent properties of cyclometalated iridium complexes possessing sterically hindered ligands", DALTON TRANSACTIONS, vol. 28, 30 March 2007 (2007-03-30), pages 3026, XP055532972 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111344295A (zh) * 2017-11-29 2020-06-26 三菱化学株式会社 铱配位化合物、含有该化合物和溶剂的组合物、含有该化合物的有机电致发光元件、显示装置和照明装置
JP2021506759A (ja) * 2017-12-13 2021-02-22 メルク、パテント、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツングMerck Patent GmbH 金属錯体
US11659763B2 (en) 2017-12-13 2023-05-23 Merck Patent Gmbh Metal complexes
JP7293228B2 (ja) 2017-12-13 2023-06-19 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング 金属錯体
KR20210058138A (ko) * 2019-11-13 2021-05-24 고려대학교 산학협력단 이리듐 인광소재, 그 제조 방법, 및 이의 광물리적 특성
KR102402410B1 (ko) * 2019-11-13 2022-05-26 고려대학교 산학협력단 이리듐 인광소재, 그 제조 방법, 및 이의 광물리적 특성

Also Published As

Publication number Publication date
CN108137633A (zh) 2018-06-08

Similar Documents

Publication Publication Date Title
CN110746429B (zh) 含金刚烷的化合物、高聚物、混合物、组合物及电子器件
CN109608504B (zh) 有机金属配合物、聚合物、混合物、组合物和有机电子器件
WO2017092495A1 (zh) 热激发延迟荧光材料、高聚物、混合物、组合物以及有机电子器件
WO2017092508A1 (zh) D-a型化合物及其应用
CN108137634B (zh) 一种金属有机配合物及其在电子器件中的应用
EP3246326A1 (en) Compound, mixture comprising the same, composition and organic electronic device
CN111278842B (zh) 一种有机金属配合物,包含其的聚合物、混合物和组合物,及其在电子器件中的应用
WO2016086885A1 (zh) 氘化的有机化合物、包含该化合物的混合物、组合物及有机电子器件
WO2017118238A1 (zh) 氘代三芳胺衍生物及其在电子器件中的应用
WO2018095390A1 (zh) 有机化合物及其应用、有机混合物、有机电子器件
WO2016091217A1 (zh) 一种有机金属配合物、包含其的聚合物、混合物、组合物、有机电子器件及应用
CN109970660B (zh) 含稠杂环的螺芴类有机化合物及其应用
WO2017118137A1 (zh) 咔唑衍生物、高聚物、混合物、组合物、有机电子器件及其应用
CN110746442A (zh) 含咪唑螺环的化合物及其应用
CN109792001B (zh) 有机化合物、有机混合物、有机电子器件
CN110872313B (zh) 含硅螺环结构的化合物及其应用
CN110845499B (zh) 含氮多环化合物、高聚物、混合物、组合物及有机电子器件
CN108137615B (zh) 含砜基稠杂环化合物及其应用
WO2017092481A1 (zh) 金属有机配合物、高聚物、混合物、组合物以及有机电子器件
WO2017118262A1 (zh) 有机化合物及其应用
CN111278839B (zh) 一种有机金属配合物、高聚物、混合物、组合物及有机电子器件
WO2019128599A1 (zh) 含氮杂环化合物、高聚物、混合物、组合物及其用途
CN113024607B (zh) 过渡金属配合物、聚合物、混合物、组合物及有机电子器件
CN110734396B (zh) 有机化合物、高聚物、混合物、组合物及有机电子器件
WO2017118155A1 (zh) 一种有机光电材料及其用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16869792

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16869792

Country of ref document: EP

Kind code of ref document: A1