WO2024016687A1 - 含氮化合物和电子元件及电子装置 - Google Patents

含氮化合物和电子元件及电子装置 Download PDF

Info

Publication number
WO2024016687A1
WO2024016687A1 PCT/CN2023/081173 CN2023081173W WO2024016687A1 WO 2024016687 A1 WO2024016687 A1 WO 2024016687A1 CN 2023081173 W CN2023081173 W CN 2023081173W WO 2024016687 A1 WO2024016687 A1 WO 2024016687A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
group
unsubstituted
carbon atoms
nitrogen
Prior art date
Application number
PCT/CN2023/081173
Other languages
English (en)
French (fr)
Inventor
马林楠
张鹤鸣
金荣国
李应文
Original Assignee
陕西莱特光电材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 陕西莱特光电材料股份有限公司 filed Critical 陕西莱特光电材料股份有限公司
Publication of WO2024016687A1 publication Critical patent/WO2024016687A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/91Dibenzofurans; Hydrogenated dibenzofurans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/86Carbazoles; Hydrogenated carbazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/88Carbazoles; Hydrogenated carbazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/50Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D333/76Dibenzothiophenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/12Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/12Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present application relates to the field of organic light-emitting materials, and specifically provides a nitrogen-containing compound, electronic components and electronic devices.
  • OLED Organic Light Emission Diodes
  • the OLED photoelectric functional material film layer that constitutes the OLED device includes at least two or more layers of structure.
  • the OLED device structure used in industry includes a hole injection layer, a hole transport layer, an electron blocking layer, a light-emitting layer, a hole blocking layer, and an electron blocking layer.
  • There are various film layers such as transport layer and electron injection layer. That is to say, the optoelectronic functional materials used in OLED devices include at least hole injection materials, hole transport materials, luminescent materials, electron transport materials, etc. The types and combinations of materials are rich. characteristics of sex and diversity.
  • OLED display technology has been applied in smartphones, tablets and other fields, and will further expand to large-size applications such as TVs.
  • the luminous efficiency, service life and other properties of OLED devices Still needs further improvement.
  • Research on improving the performance of OLED light-emitting devices includes: reducing the operating voltage of the device, improving the luminous efficiency of the device, and increasing the service life of the device.
  • OLED optoelectronic functional materials to create higher-performance OLED functional materials.
  • organic OLED devices When organic OLED devices are applied to display devices, the organic OLED devices are required to have long life and high efficiency. In order to effectively increase the pixel life and reduce the operating voltage, the hole mobility and glass transition temperature of hole transport materials are increased, thereby increasing the life of the red light device and reducing the device voltage.
  • the purpose of this application is to provide a nitrogen-containing compound, electronic components and electronic devices.
  • the nitrogen-containing compound of the present application can effectively improve the performance of electronic components.
  • this application provides a nitrogen-containing compound, the structure of the nitrogen-containing compound is shown in Formula 1:
  • group Ar 1 is as shown in formula a or formula b:
  • X is selected from O, S or N(Ar),
  • Ar is selected from a substituted or unsubstituted aryl group with 6 to 20 carbon atoms, a substituted or unsubstituted heteroaryl group with 5 to 20 carbon atoms;
  • L, L 1 and L 2 are the same or different, and are each independently selected from a single bond, a substituted or unsubstituted arylene group with 6 to 20 carbon atoms, a substituted or unsubstituted group with 5 to 20 carbon atoms. heteroarylene;
  • Ar 2 is selected from a substituted or unsubstituted aryl group with 6 to 30 carbon atoms, a substituted or unsubstituted heteroaryl group with 5 to 30 carbon atoms;
  • the substituents in Ar, L, L 1 , L 2 and Ar 2 , as well as R 1 and R 2 are the same or different, and are each independently selected from deuterium, halogen group, cyano group, Alkyl group with 1-10 carbon atoms, deuterated alkyl group with 1-10 carbon atoms, haloalkyl group with 1-10 carbon atoms, trialkylsilyl group with 3-12 carbon atoms, carbon Aryl group with 6-12 carbon atoms, heteroaryl group with 5-12 carbon atoms, cycloalkyl group with 3-10 carbon atoms, alkoxy group with 1-10 carbon atoms or 1 carbon atom -10 alkylthio group;
  • n 1 represents the number of R 1 and is selected from 0, 1, 2, 3, 4, 5, 6 or 7; n 2 represents the number of R 2 and is selected from 0, 1, 2, 3, 4, 5, 6, 7 or 8.
  • the present invention provides an electronic component, including an anode, a cathode, and a functional layer disposed between the anode and the cathode, wherein the functional layer contains the nitrogen-containing compound described in the first aspect of the application.
  • the present application provides an electronic device, including the electronic component described in the second aspect of the present application.
  • the compound of this application belongs to the triarylamine derivative of fluorene, in which two trideuterated methyl groups are introduced into the 9th position of fluorene.
  • the deuterated fluorene formed can effectively adjust the HOMO and LUMO energy levels of the compound, and combine with specific
  • the heteroaryl fused ring (group Ar 1 ) and aromatic groups can improve the hole transport ability of the molecule.
  • this compound is applied to the hole transport layer of an OLED device (including C-HT, Prime), it can better match the adjacent functional layer to better transport holes, effectively block electrons, and increase excitons.
  • the heteroaryl fused ring structure (Ar 1 ) is conjugated, which can improve the thermal stability of the overall molecule and is beneficial to improving the device lifetime performance.
  • the compound of the present application has a bonding structure of a deuterated derivative and a heteroaryl fused ring structure. When the material prepared with this structural feature is applied to an organic electroluminescent device, the device has a lower operating voltage. It can simultaneously improve the luminous efficiency and significantly extend the device life.
  • Figure 1 is a schematic structural diagram of an organic electroluminescent device according to an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a first electronic device according to an embodiment of the present application.
  • Figure 3 is a schematic structural diagram of a photoelectric conversion device according to an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a second electronic device according to an embodiment of the present application.
  • this application provides a nitrogen-containing compound, the structure of the nitrogen-containing compound is shown in Formula 1:
  • group Ar 1 is as shown in formula a or formula b:
  • X is selected from O, S or N(Ar),
  • Ar is selected from a substituted or unsubstituted aryl group with 6 to 20 carbon atoms, a substituted or unsubstituted heteroaryl group with 5 to 20 carbon atoms;
  • L, L 1 and L 2 are the same or different, and are each independently selected from a single bond, a substituted or unsubstituted arylene group with 6 to 20 carbon atoms, a substituted or unsubstituted group with 5 to 20 carbon atoms. heteroarylene;
  • Ar 2 is selected from a substituted or unsubstituted aryl group with 6 to 30 carbon atoms, a substituted or unsubstituted heteroaryl group with 5 to 30 carbon atoms;
  • the substituents in Ar, L, L 1 , L 2 and Ar 2 , as well as R 1 and R 2 are the same or different, and are each independently selected from deuterium, halogen group, cyano group, carbon atoms of 1-10 Alkyl group, deuterated alkyl group with 1-10 carbon atoms, haloalkyl group with 1-10 carbon atoms, trialkylsilyl group with 3-12 carbon atoms, aromatic group with 6-12 carbon atoms base, a heteroaryl group with 5-12 carbon atoms, a cycloalkyl group with 3-10 carbon atoms, an alkoxy group with 1-10 carbon atoms or an alkylthio group with 1-10 carbon atoms;
  • n 1 represents the number of R 1 and is selected from 0, 1, 2, 3, 4, 5, 6 or 7; n 2 represents the number of R 2 and is selected from 0, 1, 2, 3, 4, 5, 6, 7 or 8.
  • each... is independently selected from and “... is independently selected from” are interchangeable and should be understood in a broad sense. They can refer to the same symbol in different groups. The specific options expressed between them do not affect each other. It can also be expressed that in the same group, the specific options expressed by the same symbols do not affect each other. For example, “ Among them, each q is independently selected from 0, 1, 2 or 3, and each R" is independently selected from hydrogen, deuterium, fluorine, and chlorine. The meaning is: Formula Q-1 represents that there are q substituents R on the benzene ring.
  • each R can be the same or different, and the options of each R" do not affect each other;
  • Formula Q-2 indicates that there are q substituents R" on each benzene ring of biphenyl, and the R on the two benzene rings "The number of substituents q can be the same or different, each R" can be the same or different, and the options for each R" do not affect each other.
  • substituted or unsubstituted means that the functional group described after the term may or may not have a substituent (hereinafter, for convenience of description, the substituents are collectively referred to as R c ).
  • substituted or unsubstituted aryl refers to an aryl group having a substituent Rc or an unsubstituted aryl group.
  • the above-mentioned substituent namely R c
  • R c can be, for example, deuterium, halogen group, cyano group, heteroaryl group, aryl group, trialkylsilyl group, alkyl group, deuterated alkyl group, haloalkyl group, cycloalkyl group, Alkoxy, alkylthio, etc.
  • the number of carbon atoms of a substituted or unsubstituted functional group refers to the number of all carbon atoms.
  • aryl refers to a group formed by an aromatic carbocyclic ring.
  • the aryl group can be a single-ring aryl group (such as phenyl) or a polycyclic aryl group.
  • the aryl group can be a single-ring aryl group, a fused-ring aryl group, or two or more single-ring aryl groups conjugated through a carbon-carbon bond.
  • Ring aryl groups e.g., biphenyl, terphenyl
  • monocyclic aryl groups conjugated through carbon-carbon bonds and fused-ring aryl groups (e.g., phenyl-naphthyl), conjugated through carbon-carbon bonds
  • fused-ring aryl groups e.g., phenyl-naphthyl
  • the condensed ring aryl group may include, for example, bicyclic condensed aryl group (such as naphthyl), tricyclic condensed aryl group (such as phenanthrenyl, fluorenyl, anthracenyl), etc.
  • Aryl groups do not contain heteroatoms such as B, N, O, S, P, Se and Si. It should be noted that both biphenyl and terphenyl groups are regarded as aryl groups in this application. Examples of aryl groups include, but are not limited to, phenyl, naphthyl, fluorenyl, anthracenyl, phenanthrenyl, biphenyl, terphenyl, benzo[9,10]phenanthrenyl, pyrenyl, benzofluoranthenyl , Key et al. In this application, the arylene group refers to a bivalent group formed by the aryl group further losing one hydrogen atom.
  • the substituted aryl group may be one or more than two hydrogen atoms in the aryl group substituted by, for example, deuterium, fluorine, cyano, aryl, heteroaryl, alkyl, cycloalkyl, deuterated alkyl , alkoxy, alkylthio, trialkylsilyl and other groups substituted.
  • the number of carbon atoms of a substituted aryl group refers to the total number of carbon atoms of the aryl group and the substituents on the aryl group.
  • a substituted aryl group with a carbon number of 18 refers to the aryl group and the substituted aryl group.
  • the total number of carbon atoms in the base is 18.
  • heteroaryl refers to a monovalent aromatic ring or its derivatives containing 1, 2, 3, 4, 5, 6 or more heteroatoms in the ring.
  • the heteroatoms can be B , at least one of O, N, P, Si, Se and S.
  • a heteroaryl group can be a monocyclic heteroaryl group or a polycyclic heteroaryl group.
  • a heteroaryl group can be a single aromatic ring system or multiple aromatic ring systems conjugated through carbon-carbon bonds, and any aromatic
  • the ring system is an aromatic single ring or an aromatic fused ring.
  • heteroaryl groups include thienyl, furyl, pyrrolyl, imidazolyl, thiazolyl, oxazolyl, oxadiazolyl, triazolyl, pyridyl, bipyridyl, pyrimidinyl, triazinyl, acridine Aldyl, pyridazinyl, Pyrazinyl, quinolinyl, quinazolinyl, quinoxalinyl, phenoxazinyl, phthalazinyl, pyridopyrimidinyl, pyridopyrazinyl, pyrazinopyrazinyl, isoquinolinyl, Indolyl, carbazolyl, benzoxazolyl, benzimidazolyl, benzothiazolyl, benzocarbazolyl, benzothienyl, dibenzothienyl, thienothienyl, benzofuranyl ,
  • the substituted heteroaryl group may be one or more than two hydrogen atoms in the heteroaryl group substituted by, for example, deuterium, fluorine, cyano, aryl, heteroaryl, alkyl, cycloalkyl, deuterated Alkyl, alkoxy, alkylthio, trialkylsilyl and other groups are substituted.
  • the number of carbon atoms of a substituted heteroaryl group refers to the total number of carbon atoms of the heteroaryl group and the substituents on the heteroaryl group.
  • non-located connecting bonds refer to single bonds protruding from the ring system. It means that one end of the bond can be connected to any position in the ring system that the bond penetrates, and the other end is connected to the rest of the compound molecule.
  • the naphthyl group represented by the formula (f) is connected to other positions of the molecule through two non-positioned bonds that penetrate the bicyclic ring, and its meaning includes such as the formula (f) -1) ⁇ Any possible connection method shown in formula (f-10).
  • the dibenzofuryl group represented by the formula (X') is connected to other positions of the molecule through an unpositioned bond extending from the middle of one side of the benzene ring,
  • the meaning it represents includes any possible connection method shown in formula (X'-1) to formula (X'-4):
  • a non-positioned substituent in this application refers to a substituent connected through a single bond extending from the center of the ring system, which means that the substituent can be connected at any possible position in the ring system.
  • the substituent R' represented by the formula (Y) is connected to the quinoline ring through a non-positioned bond, and its meaning includes formula (Y-1) ⁇ Any possible connection method shown in formula (Y-7).
  • the halogen group includes bromine, fluorine, chlorine, iodine, etc., with fluorine being preferred.
  • alkyl groups with 1 to 10 carbon atoms include linear alkyl groups with 1 to 10 carbon atoms and branched chain alkyl groups with 3 to 10 carbon atoms.
  • the number of carbon atoms can be 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.
  • alkyl groups having 1 to 10 carbon atoms include, but are not limited to, Base, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, isopentyl, neopentyl, cyclopentyl, n-hexyl, heptyl, n-octyl , 2-ethylhexyl, nonyl, decyl, 3,7-dimethyloctyl, etc.
  • the number of carbon atoms of the aryl group as a substituent may be 6-12, and the number of carbon atoms is, for example, 6, 10, 12, etc.
  • Specific examples of the aryl group as a substituent include, but are not limited to, phenyl, Naphthyl, biphenyl.
  • the number of carbon atoms of the heteroaryl group as a substituent may be 5-12, and the number of carbon atoms is, for example, 5, 8, 9, 10, 12, etc.
  • Specific examples of the heteroaryl group as a substituent include but It is not limited to pyridyl group, quinolyl group, dibenzofuranyl group, dibenzothienyl group, carbazolyl group, etc.
  • the number of carbon atoms of the cycloalkyl group as a substituent may be 3-10, preferably 5-8.
  • Specific examples of cycloalkyl include, but are not limited to, cyclopentyl, cyclohexyl, and the like.
  • the carbon number of the trialkylsilyl group as a substituent may be 3-12, preferably 5-7.
  • Specific examples of trialkylsilyl include, but are not limited to: trimethylsilyl.
  • the number of carbon atoms of the deuterated alkyl group as a substituent may be 1-10, preferably 1-4.
  • Specific examples of deuterated alkyl groups include, but are not limited to: trideuterated methyl.
  • the number of carbon atoms of the haloalkyl group as a substituent may be 1-10, preferably 1-4.
  • deuterated alkyl groups include, but are not limited to: trideuterated methyl.
  • the structure of the nitrogen-containing compound of the present application is selected from at least one of the structures shown in the following formulas 1-1 to 1-4:
  • the structure of the nitrogen-containing compound is shown in Formula 1-1.
  • Ar can be selected from: substituted or unsubstituted aromatic aromatics with carbon atoms of 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20. group, a substituted or unsubstituted heteroaryl group having 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 carbon atoms.
  • Ar is a substituted or unsubstituted aryl group having 6 to 18 carbon atoms.
  • Ar is selected from substituted or unsubstituted phenyl, substituted or unsubstituted naphthyl, substituted or unsubstituted biphenyl, substituted or unsubstituted phenanthrenyl, substituted or unsubstituted pyridyl , substituted or unsubstituted dibenzofuryl, substituted or unsubstituted dibenzothienyl.
  • the substituent in Ar is selected from deuterium, fluorine, cyano, methyl, ethyl, isopropyl, tert-butyl or phenyl.
  • R 1 and R 2 are the same or different, and are each independently selected from deuterium, fluorine, cyano, methyl, ethyl, isopropyl, tert-butyl, phenyl or naphthyl.
  • the group Ar 1 in Formula 1 is selected from the group consisting of:
  • L, L 1 and L 2 are the same or different, and are each independently selected from a single bond, with the number of carbon atoms being 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 substituted or unsubstituted arylene group with carbon atoms of 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 or 20 substituted or unsubstituted heteroarylene groups.
  • L, L 1 and L 2 are the same or different, and are each independently selected from a single bond, a substituted or unsubstituted arylene group with a carbon number of 6-18.
  • L, L1 , and L2 are each independently selected from a single bond, substituted or unsubstituted phenylene, substituted or unsubstituted naphthylene, substituted or unsubstituted biphenylene, substituted Or unsubstituted phenylene, substituted or unsubstituted fluorenylene, substituted or unsubstituted anthracene, substituted or unsubstituted pyridylene, substituted or unsubstituted dibenzofurylene, substituted or unsubstituted A substituted dibenzothienylene group, a substituted or unsubstituted carbazolylene group, or a group formed by connecting a phenylene group and a naphthylene group through a single bond.
  • the substituents in L, L 1 and L 2 are each independently selected from deuterium, fluorine, cyano, alkyl having 1-4 carbon atoms, and deuterated alkyl having 1-4 carbon atoms. , Aryl group with 6-12 carbon atoms.
  • the substituents in L, L 1 and L 2 are each independently selected from deuterium, fluorine, cyano, methyl, ethyl, isopropyl, tert-butyl, trideuterated methyl, phenyl, Naphthyl, biphenyl.
  • L, L 1 and L 2 are each independently selected from a single bond, a substituted or unsubstituted group W, wherein the unsubstituted group W is selected from the group consisting of:
  • the substituted group W has one or more substituents, and each substituent is independently selected from deuterium, fluorine, cyano, methyl, ethyl, isopropyl, tert-butyl, trideuterated methyl or benzene base.
  • L, L 1 and L 2 are each independently selected from the group consisting of a single bond or the following groups:
  • L is selected from the group consisting of a single bond or the following groups:
  • L 1 and L 2 are each independently selected from the group consisting of a single bond or the following groups:
  • Ar 2 is selected from the group consisting of carbon atoms with 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 or 30 substituted or unsubstituted aryl groups with carbon atoms of 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 or 30 substituted or unsubstituted heteroaryl.
  • Ar 2 is selected from the group consisting of substituted or unsubstituted aryl groups having 6 to 25 carbon atoms, and substituted or unsubstituted heteroaryl groups having 5 to 25 carbon atoms.
  • Ar 2 is selected from a substituted or unsubstituted aryl group having 6 to 25 carbon atoms, and a substituted or unsubstituted heteroaryl group having 12 to 25 carbon atoms.
  • Ar 2 is selected from substituted or unsubstituted phenyl, substituted or unsubstituted biphenyl, substituted or unsubstituted naphthyl, substituted or unsubstituted phenanthrenyl, substituted or unsubstituted fluorenyl , substituted or unsubstituted terphenyl, substituted or unsubstituted anthracenyl, substituted or unsubstituted triphenylene, substituted or unsubstituted pyrenyl, substituted or unsubstituted pyridyl, substituted or unsubstituted diphenyl Furyl, substituted or unsubstituted dibenzothienyl, substituted or unsubstituted carbazolyl.
  • the substituents in Ar 2 are each independently selected from deuterium, fluorine, cyano, alkyl with 1-4 carbon atoms, deuterated alkyl with 1-4 carbon atoms, deuterated alkyl with 1-4 carbon atoms, Haloalkyl group with 1-4 carbon atoms, trialkylsilyl group with 3-7 carbon atoms, aryl group with 6-12 carbon atoms, heteroaryl group with 5-12 carbon atoms or 5- 8 cycloalkyl.
  • the substituents in Ar 2 are each independently selected from deuterium, fluorine, cyano, methyl, ethyl, isopropyl, tert-butyl, trideuterated methyl, cyclopentyl, cyclohexyl, phenyl base, naphthyl, pyridyl, dibenzofuranyl, dibenzothienyl or carbazolyl.
  • Ar 2 is selected from the group consisting of:
  • Ar 2 is selected from the group consisting of:
  • the nitrogen-containing compound is selected from the group consisting of:
  • the synthesis method of the nitrogen-containing compound provided in this application is not particularly limited. Those skilled in the art can determine the appropriate synthesis method based on the preparation method provided in the synthesis examples section of the nitrogen-containing compound in this application. In other words, the synthesis examples of the present invention exemplarily provide methods for preparing nitrogen-containing compounds, and the raw materials used can be obtained through commercial purchases or methods well known in the art. Those skilled in the art can obtain all nitrogen-containing compounds provided in this application based on these exemplary preparation methods. All specific preparation methods for preparing the nitrogen-containing compounds will not be described in detail here. Those skilled in the art should not understand that this application is limit.
  • a second aspect of the application provides an electronic component, including an anode, a cathode, and a functional layer disposed between the anode and the cathode, wherein the functional layer includes the nitrogen-containing compound described in the first aspect of the application.
  • the functional layer includes a hole transport layer containing the nitrogen-containing compound of the present application.
  • the electronic component may be an organic electroluminescent device or a photoelectric conversion device.
  • the electronic component is an organic electroluminescent device.
  • the organic electroluminescent device includes an anode 100 , a hole transport layer 320 , an organic light-emitting layer 330 , an electron transport layer 340 and a cathode 200 which are stacked in sequence.
  • the hole transport layer 320 contains the nitrogen-containing compound of the present application.
  • the hole transport layer 320 includes a stacked first hole transport layer 321 (C-HT) and a second hole transport layer 322 (Prime, also known as “luminescence auxiliary layer", “electron blocking layer”). layer”), and relative to the second hole transport layer 322, the first hole transport layer 321 is closer to the anode.
  • the first hole transport layer 321 and/or the second hole transport layer 322 include the nitrogen-containing compound of the present application.
  • the anode 100 includes an anode material, which is preferably a material with a large work function that facilitates hole injection into the functional layer 300 .
  • anode materials include: metals such as nickel, platinum, vanadium, chromium, copper, zinc and gold or their alloys; metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO) and indium zinc oxide (IZO); Combined metals and oxides such as ZnO:Al or SnO 2 :Sb; or conductive polymers such as poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene ](PEDT), polypyrrole and polyaniline, but not limited thereto.
  • a transparent electrode including indium tin oxide (ITO) as an anode is included.
  • the second hole transport layer 322 includes the nitrogen-containing compound of the present application.
  • the material of the first hole transport layer 321 may be selected from carbazole polymers, carbazole-linked aromatic amine compounds, dibenzofuran-linked aromatic amine compounds, and substituted fluorenyl-linked triarylamines.
  • carbazole polymers carbazole-linked aromatic amine compounds
  • dibenzofuran-linked aromatic amine compounds dibenzofuran-linked aromatic amine compounds
  • substituted fluorenyl-linked triarylamines Compounds or other types of compounds are not specifically limited in this application.
  • the material of the first hole transport layer 321 is selected from at least one of the following compounds:
  • the material of the first hole transport layer 321 is HT-1 (that is, NPB).
  • the organic light-emitting layer 330 may be composed of a single light-emitting material, or may include a host material and a guest material (also called a "dopant").
  • the organic light-emitting layer 330 is composed of a host material and a guest material.
  • the holes injected into the organic light-emitting layer 330 and the electrons injected into the organic light-emitting layer 330 can recombine in the organic light-emitting layer 330 to form excitons, and the excitons transfer energy.
  • the host material transfers energy to the guest material, thereby enabling the guest material to emit light.
  • the main material of the organic light-emitting layer 330 may be metal chelate compounds, bistyryl derivatives, aromatic amine derivatives, dibenzofuran derivatives, anthracene derivatives or other types of materials. This application does not Make special restrictions.
  • the host material is selected from One or more of the following compounds:
  • the host material of the organic light-emitting layer 330 is RH-1.
  • the guest material of the organic light-emitting layer 330 may be a compound with a condensed aryl ring or a derivative thereof, a compound with a heteroaryl ring or a derivative thereof, a bisarylamine derivative with a condensed aromatic subunit, or other materials.
  • the guest material is selected from at least one of the following compounds:
  • the guest material of the organic light emitting layer 330 consists of Ir(piq) 2 (acac).
  • the electron transport layer 340 may be a single-layer structure or a multi-layer structure, and may include one or more electron transport materials.
  • the electron transport materials may generally include metal complexes and/or nitrogen-containing heterocyclic derivatives, where , the metal complex material can be selected from, for example, LiQ, Alq 3 , Bepq 2, etc.; the nitrogen-containing heterocyclic derivative can be an aromatic ring with a nitrogen-containing six-membered ring or a five-membered ring skeleton, with a nitrogen-containing Condensed aromatic ring compounds with a six-membered ring or a five-membered ring skeleton, etc. Specific examples include, but are not limited to, 1,10-phenanthroline compounds such as BCP, Bphen, NBphen, DBimiBphen, BimiBphen, etc., or at least one of the following compounds A sort of:
  • electron transport layer 340 is composed of ET-5 and LiQ.
  • the cathode 200 includes a cathode material, which is a material with a small work function that facilitates the injection of electrons into the functional layer.
  • cathode materials include, but are not limited to, metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin and lead or alloys thereof; or multilayer materials such as LiF/Al , Liq/Al, LiO 2 /Al, LiF/Ca, LiF/Al and BaF 2 /Ca. It is preferred to include a metal electrode containing magnesium and silver as the cathode.
  • a hole injection layer 310 is also provided between the anode 100 and the hole transport layer 320 to enhance the ability to inject holes into the hole transport layer 320 .
  • the hole injection layer 310 can be made of benzidine derivatives, starburst arylamine compounds, phthalocyanine derivatives or other materials, which are not particularly limited in this application.
  • hole injection layer 310 is selected from the group consisting of:
  • the hole injection layer 310 is composed of HAT-CN.
  • an electron injection layer 350 is also provided between the cathode 200 and the electron transport layer 340 to enhance the ability to inject electrons into the electron transport layer 340 .
  • the electron injection layer 350 may include an inorganic material such as an alkali metal sulfide or an alkali metal halide, or may include a complex of an alkali metal and an organic substance.
  • the electron injection layer 350 contains LiQ or Yb.
  • the organic electroluminescent device may be a blue light device, a red light device or a green light device, preferably a red light device.
  • the electronic component is a photoelectric conversion device.
  • the photoelectric conversion device may include an anode 100 , a hole transport layer 320 , a photoelectric conversion layer 360 , an electron transport layer 340 and a cathode 200 that are stacked in sequence.
  • the hole transport layer 320 contains the nitrogen-containing compound of the present application.
  • the photoelectric conversion device is a solar cell, such as an organic thin film solar cell.
  • a third aspect of this application provides an electronic device, including the electronic component described in the second aspect of this application.
  • the electronic device is a first electronic device 400
  • the first electronic device 400 includes the above-mentioned organic electroluminescent device.
  • the first electronic device 400 is, for example, a display device, a lighting device, an optical communication device, or other types of electronic devices.
  • it may include but is not limited to a computer screen, a mobile phone screen, a television, electronic paper, emergency lighting, an optical module, etc.
  • the electronic device is a second electronic device 500
  • the second electronic device 500 includes the above-mentioned photoelectric conversion device.
  • the second electronic device 500 is, for example, a solar power generation device, a light detector, a fingerprint identification device, an optical module, a CCD camera or other types of electronic devices.
  • the compounds of the synthetic methods not mentioned in this application are all commercially available raw material products.
  • Example 1 Red organic electroluminescent device
  • the anode is prepared by the following process: the thickness is
  • the ITO/Ag/ITO substrate manufactured by Corning
  • N2 plasma performs surface treatment to increase the work function of the anode (experimental substrate) and remove scum.
  • HIL hole injection layer
  • Compound 1 is vacuum evaporated on the first hole transport layer to form the second hole transport layer.
  • RH-1 and Ir(piq) 2 were co-evaporated with a film thickness ratio of 95%:5% to form
  • the red light has Organic light emitting layer (R-EML).
  • ET-5 and LiQ were co-evaporated on the organic light-emitting layer at a weight ratio of 1:1 to form Electron transport layer (ETL), Yb is evaporated on the electron transport layer to form a thickness of The electron injection layer (EIL) is then mixed with magnesium (Mg) and silver (Ag) at an evaporation rate of 1:10, and vacuum evaporated on the electron injection layer to form a thickness of the cathode.
  • ETL Electron transport layer
  • Mg magnesium
  • Ag silver
  • CPL organic coating layer
  • An organic electroluminescent device was produced using the same method as in Example 1, except that when forming the second hole transport layer, the remaining compounds shown in Table 4 were used instead of Compound 1.
  • An organic electroluminescent device was produced using the same method as in Example 1, except that Compound A, Compound B, Compound C and Compound D were used instead of Compound 1 when forming the second hole transport layer.
  • the IVL (current efficiency, voltage, color coordinate) of the organic electroluminescent devices prepared in each example and comparative example was tested under the condition of 10mA/ cm2 , and the T95 life of each device was tested under the condition of 20mA/ cm2 .
  • the results are shown in Table 4 below.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本申请属于有机发光材料领域,具体涉及一种含氮化合物、电子元件和电子装置。本发明的含氮化合物的结构如式1所示,所述含氮化合物能改善电子元件的性能。

Description

含氮化合物和电子元件及电子装置
相关申请的交叉引用
本申请要求于2022年7月20日递交的申请号为202210852909.4的中国专利申请的优先权,在此引用上述中国专利申请的内容全文以作为本申请的一部分。
技术领域
本申请涉及有机发光材料领域,具体提供一种含氮化合物和电子元件及电子装置。
背景技术
有机电致发光(OLED:OrganicLightEmissionDiodes)器件技术既可以用来制造新型显示产品,也可以用于制作新型照明产品,有望替代现有的液晶显示和荧光灯照明,应用前景十分广泛。构成OLED器件的OLED光电功能材料膜层至少包括两层以上结构,产业上应用的OLED器件结构,则包括空穴注入层、空穴传输层、电子阻挡层、发光层、空穴阻挡层、电子传输层、电子注入层等多种膜层,也就是说应用于OLED器件的光电功能材料至少包含空穴注入材料,空穴传输材料,发光材料,电子传输材料等,材料类型和搭配形式具有丰富性和多样性的特点。
当前,OLED显示技术已经在智能手机,平板电脑等领域获得应用,进一步还将向电视等大尺寸应用领域扩展,但是,和实际的产品应用要求相比,OLED器件的发光效率,使用寿命等性能还需要进一步提升。对于OLED发光器件提高性能的研究包括:降低器件的工作电压,提高器件的发光效率,提高器件的使用寿命等。为了实现OLED器件的性能的不断提升,不但需要从OLED器件结构和制作工艺的创新,更需要OLED光电功能材料不断研究和创新,创制出更高性能OLED的功能材料。
当有机OLED器件应用于显示装置时,要求有机OLED器件具有长寿命和高效率。为了有效提升像素寿命、降低工作电压,提高空穴传输类材料的空穴迁移率和玻璃化转变温度,从而提升红光器件寿命,降低器件电压。
发明内容
针对现有技术存在的上述问题,本申请的目的在于提供一种含氮化合物、电子元件和电子装置。本申请的含氮化合物能有效改善电子元件的性能。
第一方面,本申请提供一种含氮化合物,所述含氮化合物的结构如式1所示:
其中,基团Ar1的结构如式a或式b所示:
X选自O、S或N(Ar),
Ar选自碳原子数为6-20的取代或未取代的芳基、碳原子数为5-20的取代或未取代的杂芳基;
L、L1和L2相同或不同,且各自独立地选自单键、碳原子数为6-20的取代或未取代的亚芳基、碳原子数为5-20的取代或未取代的亚杂芳基;
Ar2选自碳原子数为6-30的取代或未取代的芳基、碳原子数为5-30的取代或未取代的杂芳基;
Ar、L、L1、L2和Ar2中的取代基,以及R1、R2相同或不同,且各自独立地选自氘、卤素基团、氰基、 碳原子数为1-10的烷基、碳原子数为1-10的氘代烷基、碳原子数为1-10的卤代烷基、碳原子数为3-12的三烷基硅基、碳原子数为6-12的芳基、碳原子数为5-12的杂芳基、碳原子数为3-10的环烷基、碳原子数为1-10的烷氧基或碳原子为1-10的烷硫基;
n1表示R1的个数,且选自0、1、2、3、4、5、6或7;n2表示R2的个数,且选自0、1、2、3、4、5、6、7或8。
第二方面,本发明提供一种电子元件,包括阳极、阴极,以及设置在所述阳极和阴极之间的功能层,其中,所述功能层包含本申请第一方面所述的含氮化合物。
第三方面,本申请提供一种电子装置,包括本申请第二方面所述的电子元件。
本申请的化合物属于芴的三芳胺衍生物,其中,将芴的9号位引入两个三氘代甲基,所形成的氘代化芴可以有效的调整化合物的HOMO与LUMO能级,结合特定的杂芳基稠环(基团Ar1)和芳香性基团,能够提高分子的空穴传输能力。将该化合物应用于OLED器件的空穴传输层(包括C-HT、Prime)时,与相邻的功能层能够进行更好的匹配,以更好的传输空穴,有效阻挡电子,提高激子在发光层有效复合;此外,杂芳基稠环结构(Ar1)具有共轭性,能够提高分子整体的热稳定性,有利于器件寿命性能的提升。本申请的化合物具有氘代化衍生物和杂芳基稠环结构的键合结构,将这种结构特征制备的材料应用于有机电致发光器件时,使得器件具有较低工作电压的情况下,能同时提高发光效率,并使器件寿命得到明显提升。
本申请的其他特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本申请的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本申请,但并不构成对本申请的限制。
图1是本申请一种实施方式的有机电致发光器件的结构示意图。
图2是本申请一种实施方式的第一电子装置的结构示意图。
图3是本申请一种实施方式的光电转化器件的结构示意图。
图4是本申请一种实施方式的第二电子装置的结构示意图。
附图标记说明
100、阳极;200、阴极;300、功能层;310、空穴注入层;320、空穴传输层;321、第一空穴传输
层;322、第二空穴传输层;330、有机发光层;340、电子传输层;350、电子注入层;360、光电转化层;400、第一电子装置;500、第二电子装置。
具体实施方式
以下结合附图对本发明的具体实施方式进行详细说明。应当理解地是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
第一方面,本申请提供一种含氮化合物,所述含氮化合物的结构如式1所示:
其中,基团Ar1的结构如式a或式b所示:
X选自O、S或N(Ar),
Ar选自碳原子数为6-20的取代或未取代的芳基、碳原子数为5-20的取代或未取代的杂芳基;
L、L1和L2相同或不同,且各自独立地选自单键、碳原子数为6-20的取代或未取代的亚芳基、碳原子数为5-20的取代或未取代的亚杂芳基;
Ar2选自碳原子数为6-30的取代或未取代的芳基、碳原子数为5-30的取代或未取代的杂芳基;
Ar、L、L1、L2和Ar2中的取代基,以及R1、R2相同或不同,且各自独立地选自氘、卤素基团、氰基、碳原子数为1-10的烷基、碳原子数为1-10的氘代烷基、碳原子数为1-10的卤代烷基、碳原子数为3-12的三烷基硅基、碳原子数为6-12的芳基、碳原子数为5-12的杂芳基、碳原子数为3-10的环烷基、碳原子数为1-10的烷氧基或碳原子为1-10的烷硫基;
n1表示R1的个数,且选自0、1、2、3、4、5、6或7;n2表示R2的个数,且选自0、1、2、3、4、5、6、7或8。
本申请中,所采用的描述方式“各……独立地选自”和“……独立地选自”可以互换,均应做广义理解,其既可以是指在不同基团中,相同符号之间所表达的具体选项之间互相不影响,也可以表示在相同的基团中,相同符号之间所表达的具体选项之间互相不影响。举例来讲,“其中,各q独立地选自0、1、2或3,各R”独立地选自氢、氘、氟、氯”,其含义是:式Q-1表示苯环上有q个取代基R”,各个R”可以相同或不同,每个R”的选项之间互不影响;式Q-2表示联苯的每一个苯环上有q个取代基R”,两个苯环上的R”取代基的个数q可以相同或不同,各个R”可以相同也可以不同,每个R”的选项之间互不影响。
在本申请中,“取代或未取代的”这样的术语是指,在该术语后面记载的官能团可以具有或不具有取代基(下文为了便于描述,将取代基统称为Rc)。例如,“取代或未取代的芳基”是指具有取代基Rc的芳基或者非取代的芳基。其中上述的取代基,即Rc,例如可以为氘、卤素基团、氰基、杂芳基、芳基、三烷基硅基、烷基、氘代烷基、卤代烷基、环烷基、烷氧基、烷硫基等。另外,取代或未取代的官能团的碳原子数,指的是所有碳原子数。
在本申请中,芳基指的是指由芳香性的碳环形成的基团。芳基可以是单环芳基(例如苯基)或多环芳基,换言之,芳基可以是单环芳基、稠环芳基、通过碳碳键共轭连接的两个或者更多个单环芳基(例如,联苯基、三联苯基)、通过碳碳键共轭连接的单环芳基和稠环芳基(例如,苯基-萘基)、通过碳碳键共轭连接的两个或者更多个稠环芳基。即,除非另有说明,通过碳碳键共轭连接的两个或者更多个芳香基团也可以视为本申请的芳基。其中,稠环芳基例如可以包括双环稠合芳基(例如萘基)、三环稠合芳基(例如菲基、芴基、蒽基)等。芳基中不含有B、N、O、S、P、Se和Si等杂原子。需要说明地是,联苯基、三联苯基在本申请中均视为芳基。芳基的实例包括但不限于,苯基、萘基、芴基、蒽基、菲基、联苯基、三联苯基、苯并[9,10]菲基、芘基、苯并荧蒽基、基等。本申请中,涉及的亚芳基是指芳基进一步失去一个氢原子所形成的二价基团。
在本申请中,取代的芳基可以是芳基中的一个或者两个以上的氢原子被诸如氘、氟、氰基、芳基、杂芳基、烷基、环烷基、氘代烷基、烷氧基、烷硫基、三烷基硅基等基团取代。应当理解地是,取代的芳基的碳原子数,指的是芳基和芳基上的取代基的碳原子总数,例如碳原子数为18的取代的芳基,指的是芳基和取代基的总碳原子数为18。
在本申请中,杂芳基是指环中包含1个、2个、3个、4个、5个、6个或更多个杂原子的一价芳香环或其衍生物,杂原子可以是B、O、N、P、Si、Se和S中的至少一种。杂芳基可以是单环杂芳基或多环杂芳基,换言之,杂芳基可以是单个芳香环体系,也可以是通过碳碳键共轭连接的多个芳香环体系,且任一芳香环体系为一个芳香单环或者一个芳香稠环。示例地,杂芳基包括噻吩基、呋喃基、吡咯基、咪唑基、噻唑基、噁唑基、噁二唑基、三唑基、吡啶基、联吡啶基、嘧啶基、三嗪基、吖啶基、哒嗪基、 吡嗪基、喹啉基、喹唑啉基、喹喔啉基、吩噁嗪基、酞嗪基、吡啶并嘧啶基、吡啶并吡嗪基、吡嗪并吡嗪基、异喹啉基、吲哚基、咔唑基、苯并噁唑基、苯并咪唑基、苯并噻唑基、苯并咔唑基、苯并噻吩基、二苯并噻吩基、噻吩并噻吩基、苯并呋喃基、菲咯啉基、异噁唑基、噻二唑基、吩噻嗪基、硅芴基、二苯并呋喃基以及N-苯基咔唑基、N-吡啶基咔唑基、N-甲基咔唑基等,而不限于此。本申请中,涉及的亚杂芳基是指杂芳基进一步失去一个氢原子所形成的二价基团。
在本申请中,取代的杂芳基可以是杂芳基中的一个或者两个以上的氢原子被诸如氘、氟、氰基、芳基、杂芳基、烷基、环烷基、氘代烷基、烷氧基、烷硫基、三烷基硅基等基团取代。应当理解地是,取代的杂芳基的碳原子数,指的是杂芳基和杂芳基上的取代基的碳原子总数。
本申请中,不定位连接键是指从环体系中伸出的单键其表示该连接键的一端可以连接该键所贯穿的环体系中的任意位置,另一端连接化合物分子其余部分。举例而言,如下式(f)中所示地,式(f)所表示的萘基通过两个贯穿双环的不定位连接键与分子其他位置连接,其所表示的含义,包括如式(f-1)~式(f-10)所示出的任一可能的连接方式。
再举例而言,如下式(X')中所示地,式(X')所表示的二苯并呋喃基通过一个从一侧苯环中间伸出的不定位连接键与分子其他位置连接,其所表示的含义,包括如式(X'-1)~式(X'-4)所示出的任一可能的连接方式:
本申请中的不定位取代基,指的是通过一个从环体系中央伸出的单键连接的取代基,其表示该取代基可以连接在该环体系中的任何可能位置。例如,如下式(Y)中所示地,式(Y)所表示的取代基R'通过一个不定位连接键与喹啉环连接,其所表示的含义,包括如式(Y-1)~式(Y-7)所示出的任一可能的连接方式。
在本申请中,卤素基团包括溴、氟、氯、碘等,优选为氟。
在本申请中,碳原子数为1-10的烷基包括碳原子数1-10的直链烷基和碳原子数为3-10的支链烷基,碳原子数可以为1、2、3、4、5、6、7、8、9、10。碳原子数为1-10的烷基的具体实例包括但不限于,甲 基、乙基、正丙基、异丙基、正丁基、异丁基、叔丁基、正戊基、异戊基、新戊基、环戊基、正己基、庚基、正辛基、2-乙基己基、壬基、癸基、3,7-二甲基辛基等。
在本申请中,作为取代基的芳基的碳原子数可以为6-12,碳原子数例如为6、10、12等,作为取代基的芳基的具体实例包括但不限于,苯基、萘基、联苯基。
在本申请中,作为取代基的杂芳基的碳原子数可以为5-12,碳原子数例如为5、8、9、10、12等,作为取代基的杂芳基的具体实例包括但不限于,吡啶基、喹啉基、二苯并呋喃基、二苯并噻吩基、咔唑基等。
在本申请中,作为取代基的环烷基的碳原子数可以为3-10,优选为5-8。环烷基的具体实例包括但不限于,环戊基、环己基等。
在本申请中,作为取代基的三烷基硅基的碳原子数可以为3-12,优选为5-7。三烷基硅基的具体实例包括但不限于:三甲基硅基。
本申请中,作为取代基的氘代烷基的碳原子数可以为1-10,优选为1-4。氘代烷基的具体实例包括但不限于:三氘代甲基。
本申请中,作为取代基的卤代烷基的碳原子数可以为1-10,优选为1-4。氘代烷基的具体实例包括但不限于:三氘代甲基。
本申请中,Ar、L、L1、L2和Ar2中,各个取代基之间不形成环。
具体地,本申请的所述含氮化合物的结构选自以下式1-1至式1-4所示结构中的至少一种:
在一种优选的实施方式中,所述含氮化合物的结构如式1-1所示。
在本申请中,Ar可以选自:碳原子数为6、7、8、9、10、11、12、13、14、15、16、17、18、19或20的取代或未取代的芳基,碳原子数为5、6、7、8、9、10、11、12、13、14、15、16、17、18、19或20的取代或未取代的杂芳基。
可选地,Ar为碳原子数为6-18的取代或未取代的芳基。
在一种实施方式中,Ar选自取代或未取代的苯基、取代或未取代的萘基、取代或未取代的联苯基、取代或未取代的菲基、取代或未取代的吡啶基、取代或未取代的二苯并呋喃基、取代或未取代的二苯并噻吩基。
可选地,Ar中的取代基选自氘、氟、氰基、甲基、乙基、异丙基、叔丁基或苯基。
可选地,R1、R2相同或不同,且各自独立地选自氘、氟、氰基、甲基、乙基、异丙基、叔丁基、苯基或萘基。
在一种实施方式中,式1中的基团Ar1选自以下基团所组成的组:
在申请中,L、L1和L2相同或不同,且各自独立地选自单键,碳原子数为6、7、8、9、10、11、12、13、14、15、16、17、18、19或20的取代或未取代的亚芳基,碳原子数为5、6、7、8、9、10、11、12、13、14、15、16、17、18、19或20的取代或未取代的亚杂芳基。
可选地,L、L1和L2相同或不同,且各自独立地选自单键、碳原子数为6-18的取代或未取代的亚芳基。
在一些实施方式中,L、L1和L2各自独立地选自单键、取代或未取代的亚苯基、取代或未取代的亚萘基、取代或未取代的亚联苯基、取代或未取代的亚菲基、取代或未取代的亚芴基、取代或未取代的亚蒽基、取代或未取代的亚吡啶基、取代或未取代的亚二苯并呋喃基、取代或未取代的亚二苯并噻吩基、取代或未取代的亚咔唑基、或者为亚苯基与亚萘基通过单键连接所形成的基团。
可选地,L、L1和L2中的取代基各自独立地选自氘、氟、氰基、碳原子数为1-4的烷基、碳原子数为1-4的氘代烷基、碳原子数为6-12的芳基。
可选地,L、L1和L2中的取代基各自独立地选自氘、氟、氰基、甲基、乙基、异丙基、叔丁基、三氘代甲基、苯基、萘基、联苯基。
在一种实施方式中,L、L1和L2各自独立地选自单键、取代或未取代的基团W,其中,未取代的基团W选自以下基团所组成的组:
取代的基团W中具有一个或两个以上取代基,各取代基独立地选自氘、氟、氰基、甲基、乙基、异丙基、叔丁基、三氘代甲基或苯基。
可选地,L、L1和L2各自独立地选自单键或以下基团所组成的组:
在一种具体的实施方式中,L选自单键或以下基团所组成的组:
在一种具体的实施方式中,L1和L2各自独立地选自单键或以下基团所组成的组:
本申请中,Ar2选自碳原子数为6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29或30的取代或未取代的芳基,碳原子数为5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29或30的取代或未取代的杂芳基。
可选地,Ar2选自碳原子数为6-25的取代或未取代的芳基、碳原子数为5-25的取代或未取代的杂芳基。
进一步可选地,Ar2选自碳原子数为6-25的取代或未取代的芳基、碳原子数为12-25的取代或未取代的杂芳基。
在一些实施方式中,Ar2选自取代或未取代的苯基、取代或未取代的联苯基、取代或未取代的萘基、取代或未取代的菲基、取代或未取代的芴基、取代或未取代的三联苯基、取代或未取代的蒽基、取代或未取代的三亚苯基、取代或未取代的芘基、取代或未取代的吡啶基、取代或未取代的二苯并呋喃基、取代或未取代的二苯并噻吩基、取代或未取代的咔唑基。
可选地,Ar2中的取代基各自独立地选自氘、氟、氰基、碳原子数为1-4的烷基、碳原子数为1-4的氘代烷基、碳原子数为1-4的卤代烷基、碳原子数为3-7的三烷基硅基、碳原子数为6-12的芳基、碳原子数为5-12的杂芳基或碳原子数为5-8的环烷基。
可选地,Ar2中的取代基各自独立地选自氘、氟、氰基、甲基、乙基、异丙基、叔丁基、三氘代甲基、环戊基、环己基、苯基、萘基、吡啶基、二苯并呋喃基、二苯并噻吩基或咔唑基。
在一种具体的实施方式中,Ar2选自以下基团所组成的组:

可选地,Ar2选自以下基团所组成的组:

可选地,所述含氮化合物选自以下化合物所组成的组:


















本申请对提供的含氮化合物的合成方法没有特别限定,本领域技术人员可以根据本申请的含氮化合物结合合成例部分提供的制备方法确定合适的合成方法。换言之,本发明的合成例部分示例性地提供了含氮化合物的制备方法,所采用的原料可通过商购获得或本领域熟知的方法获得。本领域技术人员可以根据这些示例性的制备方法得到本申请提供的所有含氮化合物,在此不再详述制备该含氮化合物的所有具体制备方法,本领域技术人员不应理解为对本申请的限制。
本申请第二方面提供一种电子元件,包括阳极、阴极,以及设置在所述阳极与所述阴极之间的功能层,其中,所述功能层包含本申请第一方面所述的含氮化合物。
可选地,所述功能层包括空穴传输层,所述空穴传输层包含本申请的含氮化合物。
本申请中,所述电子元件可以为有机电致发光器件或光电转化器件。
按照一种具体的实施方式,所述电子元件为有机电致发光器件。如图1所示,所述有机电致发光器件包括依次层叠设置的阳极100、空穴传输层320、有机发光层330、电子传输层340和阴极200。
可选地,所述空穴传输层320包含本申请的含氮化合物。
可选地,所述空穴传输层320包括层叠设置的第一空穴传输层321(C-HT)和第二空穴传输层322(Prime,也称为“发光辅助层”、“电子阻挡层”),且相对所述第二空穴传输层322,所述第一空穴传输层321更靠近所述阳极。所述第一空穴传输层321和/或第二空穴传输层322包含本申请的含氮化合物。
本申请中,阳极100包括以下阳极材料,其优选地是有助于空穴注入至功能层300中的具有大逸出功(功函数,work function)材料。阳极材料具体实例包括:金属如镍、铂、钒、铬、铜、锌和金或它们的合金;金属氧化物如氧化锌、氧化铟、氧化铟锡(ITO)和氧化铟锌(IZO);组合的金属和氧化物如ZnO:Al或SnO2:Sb;或导电聚合物如聚(3-甲基噻吩)、聚[3,4-(亚乙基-1,2-二氧基)噻吩](PEDT)、聚吡咯和聚苯胺,但不限于此。优选包括包含氧化铟锡(铟锡氧化物,indium tin oxide)(ITO)作为阳极的透明电极。
可选地,所述第二空穴传输层322包含本申请的含氮化合物。
可选地,所述第一空穴传输层321的材料可以选自咔唑多聚体、咔唑连接芳胺类化合物、二苯并呋喃连接芳胺类化合物、取代的芴基连接三芳胺类化合物或者其他类型的化合物,本申请对此不做特殊的限定。例如,所述第一空穴传输层321的材料选自以下化合物中的至少一种:
在一种具体的实施方式中,所述第一空穴传输层321的材料为HT-1(即NPB)。
有机发光层330可以由单一发光材料组成,也可以包括主体材料和客体材料(也称“掺杂剂”)。可选地,有机发光层330由主体材料和客体材料组成,注入有机发光层330的空穴和注入有机发光层330的电子可以在有机发光层330内复合而形成激子,激子将能量传递给主体材料,主体材料将能量传递给客体材料,进而使得客体材料能够发光。
有机发光层330的主体材料可以为金属螯合类化合物、双苯乙烯基衍生物、芳香族胺衍生物、二苯并呋喃衍生物、蒽类衍生物或者其他类型的材料,本申请对此不做特殊的限制。例如,所述主体材料选自以 下化合物中的一种或两种以上:
在一种具体的实施方式中,有机发光层330的主体材料为RH-1。
有机发光层330的客体材料可以为具有缩合芳基环的化合物或其衍生物、具有杂芳基环的化合物或其衍生物、具有稠合芳香亚基的双芳胺衍生物或者其他材料,本申请对此不做特殊的限制。例如,所述客体材料选自以下化合物中的至少一种:
在一种具体的实施方式中,有机发光层330的客体材料由Ir(piq)2(acac)组成。
电子传输层340可以为单层结构,也可以为多层结构,其可以包括一种或者多种电子传输材料,电子传输材料通常可以包含金属络合物和/或含氮杂环衍生物,其中,所述金属络合物材料例如可以选自LiQ、Alq3、Bepq2等;所述含氮杂环衍生物可以为具有含氮六元环或五元环骨架的芳香族环、具有含氮六元环或五元环骨架的稠合芳香族环化合物等,具体实例包括但不限于,BCP、Bphen、NBphen、DBimiBphen、BimiBphen等1,10-菲咯啉类化合物,或者以下化合物中的至少一种:
在一种具体的实施方式中,电子传输层340由ET-5和LiQ组成。
本申请中,阴极200包括阴极材料,其是有助于电子注入至功能层中的具有小逸出功的材料。阴极材料的具体实例包括但不限于,金属如镁、钙、钠、钾、钛、铟、钇、锂、钆、铝、银、锡和铅或它们的合金;或多层材料如LiF/Al、Liq/Al、LiO2/Al、LiF/Ca、LiF/Al和BaF2/Ca。优选包括包含镁和银的金属电极作为阴极。
可选地,如图1所示,在阳极100和空穴传输层320之间还设置有空穴注入层310,以增强向空穴传输层320注入空穴的能力。空穴注入层310可以选用联苯胺衍生物、星爆状芳基胺类化合物、酞菁衍生物或者其他材料,本申请对此不做特殊的限制。例如,空穴注入层310选自以下化合物所组成的组:
在一种具体的实施方式中,空穴注入层310由HAT-CN组成。
可选地,如图1所示,在阴极200和电子传输层340之间还设置有电子注入层350,以增强向电子传输层340注入电子的能力。电子注入层350可以包括有碱金属硫化物、碱金属卤化物等无机材料,或者可以包括碱金属与有机物的络合物。在一种具体的实施方式中,电子注入层350包含LiQ或Yb。
本申请中,所述有机电致发光器件可以为蓝光器件、红光器件或绿光器件,优选为红光器件。
按照另一种实施方式,电子元件为光电转化器件。如图3所示,光电转化器件可包括依次层叠设置的阳极100、空穴传输层320、光电转化层360、电子传输层340和阴极200。其中,所述空穴传输层320包含本申请的含氮化合物。
可选地,光电转化器件为太阳能电池,例如为有机薄膜太阳能电池。
本申请第三方面提供一种电子装置,包括本申请第二方面所述的电子元件。
按照一种实施方式,如图2所示,所述电子装置为第一电子装置400,第一电子装置400包括上述有机电致发光器件。第一电子装置400例如为显示装置、照明装置、光通讯装置或者其他类型的电子装置,例如可以包括但不限于电脑屏幕、手机屏幕、电视机、电子纸、应急照明灯、光模块等。
按照另一种实施方式,如图4所示,所述电子装置为第二电子装置500,第二电子装置500包括上述光电转化器件。第二电子装置500例如为太阳能发电设备、光检测器、指纹识别设备、光模块、CCD相机或则其他类型的电子装置。
以下,通过实施例对本申请进一步详细说明。但是,下述实施例仅是本申请的例示,而并非限定本申请。
本申请中未提到的合成方法的化合物的都可通过商业途径获得的原料产品。
合成例1:化合物1的合成
(1)在氮气保护下,将2-溴芴(122.6g,0.5mol)、叔丁醇钾(140g,1.25mol)和THF(800mL)置于2000mL三口圆底烧瓶中,在0℃下保持搅拌10min后,滴加碘甲烷-d3(72.5g,0.5mol),滴加后反应温度上升至室温,并反应24h。反应结束后,用二氯甲烷与去离子水进行萃取,并水洗有机相至中性,用无水硫酸镁干燥有机相后浓缩。所得粗产物以二氯甲烷:正庚烷=1:4(v/v)为洗脱剂进行柱层析分离后,用乙酸乙酯:石油醚=1:3(v/v)混合溶剂进行重结晶,得到白色产物,即中间体IM-A(128g,收率92.0%)。
(2)在氮气保护下,将IM-A(6.6g,23.7mmol)、原料sub 2(4g,23.7mmol)和甲苯(80mL)置于反应瓶中,加热回流30min,然后降温至80℃,加入叔丁醇钠(3.43g,35.7mmol)、X-Phos(0.23g,0.4mmol)和Pd2(dba)3(0.18g,0.24mmol),继续回流反应2h。停止反应,待反应液冷却至室温,用水和甲苯进行萃取,水洗有机相至中性,加入无水硫酸镁干燥,过滤浓缩,以甲苯为淋洗剂过硅胶漏斗柱,浓缩柱后液,用二氯甲烷:正庚烷=1:4(v/v)混合溶剂进行重结晶,得白色固体P1-1(7.5g,收率86.5%)。
(3)在氮气保护下,将P1-1(7.5g,20.5mmol)、原料sub 3(5.1g,20.5mmol)和甲苯(80mL)置于反应瓶中,加热回流30min,降温至80℃,加入叔丁醇钠(2.9g,30.7mmol)、S-Phos(0.17g,0.4mmol)和Pd2(dba)3(0.18g,0.2mmol),继续回流反应5h。停止反应,待反应液冷却至室温,用水和甲苯进行萃取,水洗有机相至中性,加入无水硫酸镁干燥,过滤浓缩,以甲苯为淋洗剂过硅胶漏斗柱,浓缩柱后液,用二氯甲烷:正庚烷(v/v)=1:4混合溶剂进行重结晶,得白色固体,即化合物1(8.6g,收率78.6%);质谱(m/z)=534.26[M+H]+
合成例2-50
参照化合物1的合成方法合成表1所列的化合物,不同之处在于,使用表1中的原料1代替2-溴芴,使用原料2代替sub 2,使用原料3代替sub 3,其中,使用的主要原料、合成的化合物及其收率(最后一步收率)和质谱如表1所示。
表1







合成例51:化合物203的合成
(1)在氮气保护下,将IM-A(55g,0.2mol)、对氯苯硼酸(31g,0.2mol)、碳酸钾(55.2g,0.4mol)、TBAB(1.288g,0.004mol)和四三苯基膦钯(1.155g,0.001mol)置于1000mL三口烧瓶中,并加入甲苯(300mL)、无水乙醇(150mL)和水(50mL),加热至80℃回流反应24h。结束反应后,待反应液冷却至室温,用甲苯和水针对反应液进行萃取,收集有机相。水洗有机相至中性后,加入无水硫酸镁进行干燥,过滤后浓缩,将浓缩液过硅胶漏斗柱(甲苯为淋洗剂)后,用甲苯:正庚烷=1:3(v/v)混合溶剂进行重结晶,得白色固体产物,即中间体IM-A-a(55.9g,收率90%)。
(2)在氮气保护下,将IM-A-a(9.3g,30mmol)、4-氨基联苯(5g,30mmol)和甲苯(80mL)置于反应瓶中,加热回流30min,降温至80℃,然后加入叔丁醇钠(4.32g,45mmol)、x-Phos(0.29g,0.6mmol)和Pd2(dba)3(0.27g,0.3mmol),继续回流反应2h。停止反应,待反应液冷却至室温,用水和甲苯进行萃取,收集有机相。水洗有机相至中性,加入无水硫酸镁干燥,过滤浓缩,以甲苯为淋洗剂过硅胶漏斗柱,浓缩柱后液。用甲苯∶正庚烷=1:3(v/v)混合溶剂进行重结晶,得白色固体P203-1(11.9g,收率89.6%)。
(3)在氮气保护下,将P203-1(9.08g,20.5mmol)、2-溴二苯并呋喃(5.1g,20.5mmol)和甲苯(80mL)置于反应瓶中,加热回流30min,降温至80℃,然后加入叔丁醇钠(2.9g,30.7mmol)、S-Phos(0.17g,0.4mmol)和Pd2(dba)3(0.18g,0.2mmol),继续回流反应5h。停止反应,待反应液冷却至室温,用水和甲苯进行萃取。水洗有机相至中性,加入无水硫酸镁干燥,过滤浓缩,以甲苯为淋洗剂过硅胶漏斗柱,浓缩柱后液,用二氯甲烷∶正庚烷=1:4(v/v)混合溶剂进行重结晶,得白色固体化合物203(8.65g,收率69.3%);质谱(m/z)=610.29[M+H]+
合成例52-55
参照化合物203的合成方法合成表2所列的化合物,不同之处在于,使用表2中的原料4代替对氯苯硼酸,原料5代替4氨基联苯,原料6代替2-溴二苯并呋喃,其中,使用的主要原料、合成的化合物及其收率(最后一步收率)和质谱如表2所示。
表2

部分化合物的核磁数据如表3所示。
表3
有机电致发光器件的制作及评估实施例
实施例1:红色有机电致发光器件
通过以下过程制备阳极:将厚度依次为的ITO/Ag/ITO基板(康宁制造)切割成40mm×40mm×0.5mm的尺寸,采用光刻工序,将其制备成具有阴极、阳极以及绝缘层图案的实验基板,利用紫外臭氧以及O2:N2等离子进行表面处理,以增加阳极(实验基板)的功函数并清除浮渣。
在实验基板阳极上真空蒸镀的HAT-CN作为空穴注入层(HIL),再在空穴注入层上蒸镀的NPB,形成第一空穴传输层。
在第一空穴传输层上真空蒸镀化合物1,形成的第二空穴传输层。
在第二空穴传输层上,将RH-1与Ir(piq)2(acac)以95%:5%的膜厚比共同蒸镀,以形成的红光有 机发光层(R-EML)。
接着,在有机发光层上将ET-5和LiQ以1:1的重量比例共同蒸镀,以形成的电子传输层(ETL),将Yb蒸镀在电子传输层上以形成厚度为的电子注入层(EIL),然后将镁(Mg)和银(Ag)以1:10的蒸镀速率混合,真空蒸镀在电子注入层上,形成厚度为的阴极。
最后,在阴极上蒸镀CP-1,形成厚度为的有机覆盖层(CPL),从而完成有机发光器件的制造。
实施例2-55
除了在形成第二空穴传输层时,分别以下表4中所示的其余化合物替代化合物1以外,利用与实施例1相同的方法制作有机电致发光器件。
比较例1-4
除了在形成第二空穴传输层时,分别以化合物A、化合物B、化合物C和化合物D替代化合物1以外,利用与实施例1相同的方法制作有机电致发光器件。
以上实施例和对比例使用的主要材料结构如下所示:

在10mA/cm2条件下测试各实施例及比较例所制备的有机电致发光器件的IVL(电流效率、电压、色坐标),并在20mA/cm2条件下测试各器件的T95寿命,所得结果见下表4。
表4


根据上述表4的结果可知,相较于比较例1-4的有机电致发光器件,实施例1-55的有机电致发光器件性能得到改善;具体来说,实施例1-55的有机电致发光器件的工作电压与比较例相接近,但效率至少提高了16.6%,寿命至少提高了15.3%。因此,将本化合物用作有机电致发光器件的第二空穴传输层,具有在保持低工作电压的同时,兼顾提高效率及提高寿命的特点。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。另外需要说明地是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。

Claims (13)

  1. 含氮化合物,其结构如式1所示:
    其中,基团Ar1的结构如式a或式b所示:
    X选自O、S或N(Ar),
    Ar选自碳原子数为6-20的取代或未取代的芳基、碳原子数为5-20的取代或未取代的杂芳基;
    L、L1和L2相同或不同,且各自独立地选自单键、碳原子数为6-20的取代或未取代的亚芳基、碳原子数为5-20的取代或未取代的亚杂芳基;
    Ar2选自碳原子数为6-30的取代或未取代的芳基、碳原子数为5-30的取代或未取代的杂芳基;
    Ar、L、L1、L2和Ar2中的取代基,以及R1、R2相同或不同,且各自独立地选自氘、卤素基团、氰基、碳原子数为1-10的烷基、碳原子数为1-10的氘代烷基、碳原子数为1-10的卤代烷基、碳原子数为3-12的三烷基硅基、碳原子数为6-12的芳基、碳原子数为5-12的杂芳基、碳原子数为3-10的环烷基、碳原子数为1-10的烷氧基或碳原子为1-10的烷硫基;
    n1表示R1的个数,且选自0、1、2、3、4、5、6或7;n2表示R2的个数,且选自0、1、2、3、4、5、6、7或8。
  2. 根据权利要求1所述的含氮化合物,其中,Ar选自取代或未取代的苯基、取代或未取代的萘基、取代或未取代的联苯基、取代或未取代的菲基、取代或未取代的吡啶基、取代或未取代的二苯并呋喃基、取代或未取代的二苯并噻吩基;
    可选地,Ar中的取代基选自氘、氟、氰基、甲基、乙基、异丙基、叔丁基或苯基。
  3. 根据权利要求1所述的含氮化合物,其中,R1和R2相同或不同,且各自独立地选自氘、氟、氰基、甲基、乙基、异丙基、叔丁基、苯基或萘基。
  4. 根据权利要求1所述的含氮化合物,其中,基团Ar1选自以下基团所组成的组:
  5. 根据权利要求1所述的含氮化合物,其中,L、L1和L2相同或不同,且各自独立地选自单键、碳原子数为6-18的取代或未取代的亚芳基;
    可选地,L、L1和L2中的取代基各自独立地选自氘、氟、氰基、碳原子数为1-4的烷基、碳原子数为1-4的氘代烷基、碳原子数为6-12的芳基。
  6. 根据权利要求1所述的含氮化合物,其中,L、L1和L2各自独立地选自单键、取代或未取代的基团W,未取代的基团W选自以下基团所组成的组:
    取代的基团W中具有一个或两个以上取代基,各取代基独立地选自氘、氟、氰基、甲基、乙基、异丙基、叔丁基、三氘代甲基或苯基。
  7. 根据权利要求1所述的含氮化合物,其中,Ar2选自碳原子数为6-25的取代或未取代的芳基、碳原子数为5-25的取代或未取代的杂芳基;
    可选地,Ar2中的取代基各自独立地选自氘、氟、氰基、碳原子数为1-4的烷基、碳原子数为1-4的氘代烷基、碳原子数为1-4的卤代烷基、碳原子数为3-7的三烷基硅基、碳原子数为6-12的芳基、碳原子数为5-12的杂芳基或碳原子数为5-8的环烷基。
  8. 根据权利要求1所述的含氮化合物,其中,Ar2选自取代或未取代的苯基、取代或未取代的联苯基、取代或未取代的萘基、取代或未取代的菲基、取代或未取代的芴基、取代或未取代的三联苯基、取代或未取代的蒽基、取代或未取代的三亚苯基、取代或未取代的芘基、取代或未取代的吡啶基、取代或未取代的二苯并呋喃基、取代或未取代的二苯并噻吩基、取代或未取代的咔唑基;
    可选地,Ar2中的取代基各自独立地选自氘、氟、氰基、甲基、乙基、异丙基、叔丁基、三氘代甲基、环戊基、环己基、苯基、萘基、吡啶基、二苯并呋喃基、二苯并噻吩基或咔唑基。
  9. 根据权利要求1所述的含氮化合物,其中,Ar2选自以下基团所组成的组:

  10. 根据权利要求1所述的含氮化合物,其中,所述含氮化合物选自以下化合物所组成的组:


















  11. 电子元件,包括阳极、阴极,以及设置在所述阳极和阴极之间的功能层,所述功能层包含权利要求1-10中任一项所述的含氮化合物。
  12. 根据权利要求11所述的电子元件,其中,所述功能层包括空穴传输层,所述空穴传输层包含所述含氮化合物;
    可选地,所述电子元件为有机电致发光器件或光电转化器件。
  13. 电子装置,包括权利要求11或12所述的电子元件。
PCT/CN2023/081173 2022-07-20 2023-03-13 含氮化合物和电子元件及电子装置 WO2024016687A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210852909.4 2022-07-20
CN202210852909.4A CN116396253A (zh) 2022-07-20 2022-07-20 含氮化合物和电子元件及电子装置

Publications (1)

Publication Number Publication Date
WO2024016687A1 true WO2024016687A1 (zh) 2024-01-25

Family

ID=87006278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/081173 WO2024016687A1 (zh) 2022-07-20 2023-03-13 含氮化合物和电子元件及电子装置

Country Status (2)

Country Link
CN (1) CN116396253A (zh)
WO (1) WO2024016687A1 (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017118238A1 (zh) * 2016-01-07 2017-07-13 广州华睿光电材料有限公司 氘代三芳胺衍生物及其在电子器件中的应用
CN113195465A (zh) * 2018-12-20 2021-07-30 默克专利有限公司 用于电子器件的材料
CN113372313A (zh) * 2021-07-02 2021-09-10 长春海谱润斯科技股份有限公司 一种三芳胺化合物及其有机电致发光器件
WO2021206478A1 (ko) * 2020-04-10 2021-10-14 덕산네오룩스 주식회사 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
CN113651785A (zh) * 2021-09-17 2021-11-16 长春海谱润斯科技股份有限公司 一种杂环化合物及其有机发光器件
CN113698340A (zh) * 2021-09-26 2021-11-26 长春海谱润斯科技股份有限公司 一种咔唑衍生物及其有机电致发光器件
CN114149461A (zh) * 2020-09-08 2022-03-08 材料科学有限公司 有机化合物及包含该有机化合物的有机电致发光元件
CN114394929A (zh) * 2022-01-25 2022-04-26 长春海谱润斯科技股份有限公司 一种基于咔唑的三芳胺类衍生物及其有机电致发光器件
CN114671835A (zh) * 2020-12-24 2022-06-28 Lt素材株式会社 杂环化合物、包含其的有机发光器件及组合物及用于制造所述有机发光器件的方法
CN114920656A (zh) * 2022-05-17 2022-08-19 吉林奥来德光电材料股份有限公司 一种有机电致发光化合物及其应用
CN114957017A (zh) * 2022-05-18 2022-08-30 吉林奥来德光电材料股份有限公司 一种有机电致发光化合物及其合成方法与应用

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017118238A1 (zh) * 2016-01-07 2017-07-13 广州华睿光电材料有限公司 氘代三芳胺衍生物及其在电子器件中的应用
CN113195465A (zh) * 2018-12-20 2021-07-30 默克专利有限公司 用于电子器件的材料
WO2021206478A1 (ko) * 2020-04-10 2021-10-14 덕산네오룩스 주식회사 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
CN114149461A (zh) * 2020-09-08 2022-03-08 材料科学有限公司 有机化合物及包含该有机化合物的有机电致发光元件
CN114671835A (zh) * 2020-12-24 2022-06-28 Lt素材株式会社 杂环化合物、包含其的有机发光器件及组合物及用于制造所述有机发光器件的方法
CN113372313A (zh) * 2021-07-02 2021-09-10 长春海谱润斯科技股份有限公司 一种三芳胺化合物及其有机电致发光器件
CN113651785A (zh) * 2021-09-17 2021-11-16 长春海谱润斯科技股份有限公司 一种杂环化合物及其有机发光器件
CN113698340A (zh) * 2021-09-26 2021-11-26 长春海谱润斯科技股份有限公司 一种咔唑衍生物及其有机电致发光器件
CN114394929A (zh) * 2022-01-25 2022-04-26 长春海谱润斯科技股份有限公司 一种基于咔唑的三芳胺类衍生物及其有机电致发光器件
CN114920656A (zh) * 2022-05-17 2022-08-19 吉林奥来德光电材料股份有限公司 一种有机电致发光化合物及其应用
CN114957017A (zh) * 2022-05-18 2022-08-30 吉林奥来德光电材料股份有限公司 一种有机电致发光化合物及其合成方法与应用

Also Published As

Publication number Publication date
CN116396253A (zh) 2023-07-07

Similar Documents

Publication Publication Date Title
WO2022262365A1 (zh) 有机化合物及包含其的电子元件和电子装置
WO2022206055A1 (zh) 有机电致发光材料、电子元件及电子装置
WO2023011028A1 (zh) 有机化合物、电子元件及电子装置
WO2022088865A1 (zh) 含氮化合物、电子元件和电子装置
WO2022156445A1 (zh) 一种有机化合物及其电子元件和电子装置
WO2021233311A1 (zh) 有机化合物以及使用其的电子元件和电子装置
WO2023207375A1 (zh) 含氮化合物和电子元件及电子装置
WO2022089093A1 (zh) 含氮化合物、电子元件和电子装置
WO2024055658A1 (zh) 含氮化合物和电子元件及电子装置
CN113173858B (zh) 含氮化合物、电子元件和电子装置
WO2023045729A1 (zh) 含氮化合物及电子元件和电子装置
WO2023273416A1 (zh) 有机化合物、有机电致发光器件和电子装置
WO2022100194A1 (zh) 含氮化合物、有机电致发光器件和电子装置
CN114075117B (zh) 一种有机化合物以及使用其的电子元件和电子装置
WO2024078287A1 (zh) 有机化合物、有机电致发光器件和电子装置
WO2021120838A1 (zh) 有机化合物、电子器件及电子装置
KR20150012906A (ko) 화합물, 이를 포함하는 유기발광소자, 이를 포함하는 유기발광소자용 조성물 및 상기 유기발광소자를 포함하는 표시장치
WO2023202198A1 (zh) 有机材料、电子元件和电子装置
WO2023231531A1 (zh) 含氮化合物、有机电致发光器件和电子装置
WO2023216669A1 (zh) 有机化合物、有机电致发光器件和电子装置
WO2024007511A1 (zh) 芳胺化合物及有机电致发光器件和电子装置
WO2023179094A1 (zh) 有机化合物及包含其的电子元件和电子装置
WO2023185078A1 (zh) 有机化合物和电子元件及电子装置
CN111004207A (zh) 有机化合物、电子器件及电子装置
CN113421980B (zh) 有机电致发光器件及包含其的电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23841764

Country of ref document: EP

Kind code of ref document: A1