WO2021120838A1 - 有机化合物、电子器件及电子装置 - Google Patents

有机化合物、电子器件及电子装置 Download PDF

Info

Publication number
WO2021120838A1
WO2021120838A1 PCT/CN2020/122968 CN2020122968W WO2021120838A1 WO 2021120838 A1 WO2021120838 A1 WO 2021120838A1 CN 2020122968 W CN2020122968 W CN 2020122968W WO 2021120838 A1 WO2021120838 A1 WO 2021120838A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
substituted
groups
independently selected
Prior art date
Application number
PCT/CN2020/122968
Other languages
English (en)
French (fr)
Inventor
李健
沙荀姗
喻超
Original Assignee
陕西莱特光电材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201911320582.0A external-priority patent/CN111004207A/zh
Application filed by 陕西莱特光电材料股份有限公司 filed Critical 陕西莱特光电材料股份有限公司
Priority to KR1020217042824A priority Critical patent/KR102397562B1/ko
Priority to US17/623,844 priority patent/US11605784B2/en
Publication of WO2021120838A1 publication Critical patent/WO2021120838A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/04Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D319/00Heterocyclic compounds containing six-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D319/101,4-Dioxanes; Hydrogenated 1,4-dioxanes
    • C07D319/141,4-Dioxanes; Hydrogenated 1,4-dioxanes condensed with carbocyclic rings or ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D327/00Heterocyclic compounds containing rings having oxygen and sulfur atoms as the only ring hetero atoms
    • C07D327/02Heterocyclic compounds containing rings having oxygen and sulfur atoms as the only ring hetero atoms one oxygen atom and one sulfur atom
    • C07D327/06Six-membered rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D339/00Heterocyclic compounds containing rings having two sulfur atoms as the only ring hetero atoms
    • C07D339/08Six-membered rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/10Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/12Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D407/00Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00
    • C07D407/02Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings
    • C07D407/04Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D407/00Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00
    • C07D407/02Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings
    • C07D407/12Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/12Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D411/00Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen and sulfur atoms as the only ring hetero atoms
    • C07D411/02Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen and sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D411/04Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen and sulfur atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D411/00Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen and sulfur atoms as the only ring hetero atoms
    • C07D411/02Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen and sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D411/10Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen and sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D411/00Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen and sulfur atoms as the only ring hetero atoms
    • C07D411/02Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen and sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D411/12Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen and sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D411/00Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen and sulfur atoms as the only ring hetero atoms
    • C07D411/14Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen and sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/081Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te
    • C07F7/0812Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te comprising a heterocyclic ring
    • C07F7/0816Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te comprising a heterocyclic ring said ring comprising Si as a ring atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/10Compounds having one or more C—Si linkages containing nitrogen having a Si-N linkage
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention claims the priority of a Chinese invention patent application filed on December 19, 2019, with the application number CN 201911320582.0 and the invention title of "Organic Compounds, Electronic Devices and Electronic Devices”.
  • the present invention claims on April 3, 2020.
  • the present invention requires the application number CN 202010270448.0 filed on April 8, 2019.
  • the priority of the Chinese invention patent application with the title of "Organic Compounds, Electronic Devices and Electronic Devices" the full content of the above Chinese patent application is cited here as a part of this disclosure.
  • This application relates to the technical field of organic optoelectronic material compounds, in particular to an organic compound, an electronic device and an electronic device.
  • Organic Light Emitting Device is a self-luminous light emitting device.
  • the principle is that when an electric field is applied between the anode and the anode, the holes on the anode side and the electrons on the cathode side will move to the light-emitting layer and combine to form excitons in the light-emitting layer.
  • the excitons are in an excited state and release energy, and the energy is released from the excited state.
  • the process of releasing energy for the ground state emits light to the outside. Therefore, it is very important to improve the recombination of electrons and holes in OLED devices.
  • multilayer structures are generally used in the devices. These multilayer structures include: hole injection layer, hole transport layer, electron-blocking layer, emitting layer, and electron transport layer )and many more. These organic layers can improve the injection efficiency of carriers (holes and electrons) at the interface of each layer, and balance the ability of carriers to transport between the layers, thereby improving the brightness and efficiency of the device.
  • the purpose of this application is to provide an organic compound with excellent carrier transport performance, and to provide an organic electroluminescent electronic device containing the organic compound, which has a lower driving voltage and a higher Luminous efficiency and long service life, while providing an electronic device containing the electronic device.
  • an organic compound is provided, the structure of the organic compound is as shown in chemical formula I:
  • X is selected from C or Si
  • Y 1 and Y 2 are the same or different, and are each independently selected from O or S;
  • R 1 and R 2 are independently selected from hydrogen, deuterium or the following groups: substituted or unsubstituted alkyl groups with 1-10 carbon atoms, substituted or unsubstituted cycloalkyl groups with 3-10 carbon atoms , Substituted or unsubstituted aryl groups with 6-30 carbon atoms, substituted or unsubstituted heteroaryl groups with 1-30 carbon atoms,
  • Each Ar 1 and Ar 2 are the same or different, and are each independently selected from hydrogen, deuterium, substituted or unsubstituted aralkyl groups with 7-25 carbon atoms, and substituted or unsubstituted heterocyclic groups with 2-20 carbon atoms.
  • L 1 and L 2 are the same or different, and are each independently selected from a single bond, a substituted or unsubstituted arylene group having 6 to 30 carbon atoms, and a substituted or unsubstituted heteroarylene group having 1 to 30 carbon atoms One of the groups, and when R 1 is When L 1 is not a single bond, when R 2 is When, L 2 is not a single bond;
  • the substituents on the Ar 1 , Ar 2 , L 1 , and L 2 are the same or different, and are independently selected from deuterium, halogen group, cyano group, alkyl group with 1-12 carbon atoms, number of carbon atoms Is an alkoxy group having 1-12, an alkylthio group having 1-12 carbon atoms, a haloalkyl group having 1-12 carbon atoms, a trialkylsilyl group having 3-12 carbon atoms, and the number of carbon atoms is 3-12 cycloalkyl, 6-18 aryloxy, 6-18 arylthio, 6-18 aryl, and 3-18 of.
  • an electronic device comprising an anode and a cathode arranged oppositely, and a functional layer arranged between the anode and the cathode; the functional layer comprises the above Organic compounds.
  • an electronic device including the above-mentioned electronic device.
  • the main body is a fused heteroaromatic ring group containing fluorene or silicon fluorene, which exhibits a large planar structure in the three-dimensional space, by introducing electron-rich aromatic amine or fluorene or silicon fluorene at position 9 Heteroarylamine substituents make the compound excellent in hole transport performance.
  • the reason is that the hyperconjugated system formed by its main structure enhances the ability of carriers to cross between different molecules.
  • the organic compound of the present application is used in the functional layer of an electronic device, the electronic device has the characteristics of high luminous efficiency, low voltage and long life.
  • the electronic device including the electronic device in this application has the characteristics of high luminous efficiency, low voltage, and long life.
  • FIG. 1 is a schematic structural diagram of an organic electroluminescent device according to an embodiment of the present application.
  • Fig. 2 is a schematic structural diagram of an electronic device according to an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a photoelectric conversion device according to an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of an electronic device according to an embodiment of the present application.
  • Anode; 200 cathode; 300, functional layer; 310, hole injection layer; 320, hole transport layer; 321, first hole transport layer; 322, second hole transport layer; 330, organic light emitting layer 340, electron transport layer; 350, electron injection layer; 360, photoelectric conversion layer; 400, electronic device; 500, electronic device.
  • heterocyclic group optionally substituted by an alkyl group means that an alkyl group may but does not have to be present, and the description includes the scenario where the heterocyclic group is substituted by an alkyl group and the scenario where the heterocyclic group is not substituted by an alkyl group. .
  • R e and R f are the atom may be interconnected to the saturated or unsaturated 5- to 10-membered aliphatic ring
  • R e and R f are the same atom may ring to form a ring, but not necessarily, including R e and R f are connected to each other to form a saturated or unsaturated 5 to 10 yuan scenario aliphatic ring, including scenarios R e and R f are independently of each other present.
  • each q is independently 0, 1, 2 or 3, and each R" is independently selected from hydrogen, deuterium, fluorine, and chlorine", and its meaning is:
  • formula Q-1 represents q substituents R" on the benzene ring , Each R" can be the same or different, and the options of each R" do not affect each other;
  • formula Q-2 means that there are q substituents R" on each benzene ring of biphenyl, and R on two benzene rings The number q of "substituents can be the same or different, and each R" can be the same or different, and the options of each R" do not affect each other.
  • substituted or unsubstituted means that it has no substituents or is substituted by one or more substituents.
  • the substituents include, but are not limited to, deuterium (D), halogen groups (F, Cl, Br), cyano, alkyl, alkenyl, alkynyl, haloalkyl, aryl, heteroaryl, aryloxy , Arylthio, Silyl, Alkylamino, Arylamino, Cycloalkyl, Heterocyclic, Boranyl, Phosphine.
  • aliphatic ring includes saturated cycloalkyl and partially unsaturated cycloalkyl, for example, saturated cycloalkyl, cyclopentyl, cyclohexyl, adamantyl, etc., partially unsaturated cycloalkane Group, cyclobutene and so on.
  • hetero means that one functional group includes 1 to 3 heteroatoms selected from the group consisting of B, N, O, S, Se, Si, and P, and the rest are carbon.
  • alkyl or “alkyl group” means a saturated linear or branched monovalent hydrocarbon group containing 1 to 20 carbon atoms, wherein the alkyl group can be Optionally substituted with one or more substituents described in this application. Unless otherwise specified, alkyl groups contain 1-20 carbon atoms. In some embodiments, the alkyl group can contain 1-10 carbon atoms, in other embodiments, the alkyl group contains 1-6 carbon atoms; in still other embodiments, the alkyl group contains 1-4 carbon atoms.
  • alkyl groups include, but are not limited to, methyl (Me, -CH 3 ), ethyl (Et, -CH 2 CH 3 ), n-propyl (n-Pr, -CH 2 CH 2 CH 3 ), isopropyl (i-Pr, -CH(CH 3 ) 2 ), n-butyl (n-Bu, -CH 2 CH 2 CH 2 CH 3 ), isobutyl (i-Bu, -CH 2 CH (CH 3 ) 2 ), sec-butyl (s-Bu, -CH(CH 3 )CH 2 CH 3 ), tert-butyl (t-Bu, -C(CH 3 ) 3 ), etc.
  • aryl refers to a single ring structure formed by multiple carbon atoms, or a bicyclic or multicyclic ring system formed by multiple carbon atoms, wherein at least one aromatic ring system is included, and each ring system can be Contains a ring composed of 3-7 atoms, that is, the aryl group can be a monocyclic aryl group or a polycyclic aryl group.
  • the aryl group can be a monocyclic aryl group, a condensed ring aryl group, two or more monocyclic aryl groups conjugated through a carbon-carbon bond, a monocyclic aryl group conjugated through a carbon-carbon bond, and a condensed ring aryl group.
  • biphenyl, terphenyl, etc. are aryl groups.
  • the "aryl group” in this application can contain 6-30 carbon atoms.
  • the number of carbon atoms in the aryl group can be 6-25. In other embodiments, the number of carbon atoms in the aryl group can be It is 6-18. In other embodiments, the number of carbon atoms in the aryl group may be 6-13. For example, the number of carbon atoms can be 6, 12, 13, 18, 20, 25, or 30. Of course, the number of carbon atoms can also be other numbers, which will not be listed here.
  • an aryl group with 6-20 ring carbon atoms means that the number of carbon atoms on the aromatic ring in the aryl group is 6-20, and the number of carbon atoms in the substituents on the aryl group is not calculated Inside.
  • the number of ring-forming carbon atoms in the aryl group may be 6-20, 6-18, 6-14, or 6-10, but is not limited thereto.
  • aryl groups may include phenyl, naphthyl, fluorenyl, anthracenyl, phenanthryl, biphenyl, terphenyl, tetraphenyl, pentaphenyl, benzo[9,10]phenanthryl, fluorene Anthryl, pyrenyl, benzofluoranthene, Base, perylene base, etc., but not limited to this.
  • the aryl group as the substituent includes, for example, but not limited to, phenyl, naphthyl, fluorenyl, anthryl, phenanthryl, biphenyl, dimethylfluorenyl and the like.
  • a ring system formed by n atoms is an n-membered ring.
  • phenyl is a 6-membered aryl group.
  • 6-10 membered aromatic ring refers to benzene ring and naphthalene ring.
  • aryl in this application can have one or more points of attachment to the rest of the molecule.
  • the explanation of the aryl group can be applied to the arylene group.
  • a substituted aryl group refers to one or more hydrogen atoms in the aryl group being replaced by its group, for example, at least one hydrogen atom is replaced by a deuterium atom, F, Cl, Br, CN, amino, or alkane.
  • substituted C6-C30 aryl groups refer to substituted aryl groups with 6-30 carbon atoms, which means that the total number of carbon atoms of the aryl group and the substituents on the aryl group is 6-30 .
  • An aryl group with 6-18 ring carbon atoms means that the number of carbon atoms in the aromatic ring in the aryl group is 6-18, and the number of carbon atoms in the substituents on the aryl group is not counted.
  • the number of ring-forming carbon atoms in the aryl group can be 6-30, 6-18, or 6-13, but is not limited thereto.
  • the fluorenyl group belongs to the aryl group with 13 ring carbon atoms
  • the 9,9-dimethylfluorenyl group belongs to the substituted aryl group with 15 carbon atoms.
  • heteroaryl refers to monocyclic, bicyclic and polycyclic ring systems, in which at least one ring system is aromatic, and at least one aromatic ring system contains one or more selected from B, O, N, P, Si, Se And S heteroatoms, where each ring system contains a ring composed of 5-7 atoms, and there are one or more connection points connected to the rest of the molecule.
  • the number of carbon atoms of the heteroaryl group can be 3-30, 3-18, or 3-12.
  • the heteroaryl group can be a monocyclic heteroaryl group or a polycyclic heteroaryl group.
  • heteroaryl group can be a single aromatic ring system or multiple aromatic ring systems conjugated through carbon-carbon bonds, and any aromatic
  • the ring system is an aromatic monocyclic ring or an aromatic fused ring.
  • heteroaryl groups may include thienyl, furyl, pyrrolyl, imidazolyl, thiazolyl, oxazolyl, pyridyl, bipyridyl, pyrimidinyl, triazinyl, acridinyl, pyridazinyl, pyridyl Azinyl, quinolinyl, quinazolinyl, quinoxalinyl, phenoxazinyl, phthalazinyl, pyridopyrimidinyl, pyridopyrazinyl, pyrazinopyrazinyl, isoquinolinyl, indole Dolyl, carbazolyl, benzoxazolyl, benzimidazo
  • thienyl, furanyl, phenanthrolinyl, etc. are heteroaryl groups of a single aromatic ring system
  • Substituted pyridyl and the like are heteroaryl groups of multiple aromatic ring systems conjugated through carbon-carbon bonds.
  • the heteroaryl group as a substituent for example, but not limited to, thienyl, furyl, pyrrolyl, imidazolyl, pyridyl, bipyridyl, pyrimidinyl, triazinyl, phenanthrolinyl, indino Dolyl, carbazolyl, benzoxazolyl, benzimidazolyl, benzothiazolyl, N-phenylcarbazolyl, benzothienyl, dibenzothienyl, dibenzosilyl, two Benzofuranyl and so on.
  • a substituted heteroaryl group refers to one or more hydrogen atoms in the heteroaryl group being replaced by its group, for example, at least one hydrogen atom is replaced by a deuterium atom, F, Cl, Br, CN, amino group , Alkyl, haloalkyl, cycloalkyl, aryloxy, arylthio, silyl, alkylamino, arylamino, boryl, phosphine, aryl or other group substitutions.
  • heteroaryl group can have one bond, two bonds or multiple bonds to connect to other parts of the molecule.
  • substituted C3-C30 heteroaryl groups are substituted heteroaryl groups with 3-30 carbon atoms, which means that the total number of carbon atoms of the substituents on the heteroaryl group and the heteroaryl group is 3-30 pcs.
  • a heteroaryl group with 3-18 ring carbon atoms means that the number of carbon atoms on the heteroaromatic ring in the heteroaryl group is 3-18, and the number of carbon atoms in the substituents on the heteroaryl group is not calculated Inside.
  • the number of carbon atoms on the heteroaryl group can be 3-18, 4-18, 12-18, 3-12, 3-8, but is not limited thereto.
  • a trialkylsilyl group with 3-12 carbon atoms refers to wherein, R G1 , R G2 , and R G3 are each independently an alkyl group. Specific examples of the alkylsilyl group include, but are not limited to, a trimethylsilyl group and a triethylsilyl group.
  • triarylsilyl refers to Wherein, R G4 , R G5 , and R G6 are each independently an aryl group. Specific examples of arylsilyl groups include, but are not limited to, triphenylsilyl groups, but are not limited thereto.
  • the non-positioned link in this application refers to the single bond extending from the ring system It means that one end of the link can be connected to any position in the ring system that the bond penetrates, and the other end is connected to the rest of the compound molecule.
  • the naphthyl group represented by the formula (X) is connected to other positions of the molecule through two non-positioned linkages running through the bicyclic ring. ) ⁇ Any possible connection shown in formula (X-7).
  • the phenanthryl group represented by the formula (X') is connected to other positions of the molecule through a non-positional linkage extending from the middle of the benzene ring on one side. It includes any possible connection modes shown in formula (X'-1) to formula (X'-4).
  • the non-positional substituent in this application refers to a substituent connected by a single bond extending from the center of the ring system, which means that the substituent can be attached to any possible position in the ring system.
  • the substituent R group represented by the formula (Y) is connected to the quinoline ring through a non-localized linkage, and its meaning includes the following formula (Y-1) to Any possible connection mode shown in formula (Y-7).
  • the explanation of the aryl group can be applied to the arylene group, and the explanation of the heteroaryl group can also be applied to the heteroarylene group.
  • X is selected from C or Si
  • Y 1 and Y 2 are the same or different, and are each independently selected from O or S;
  • R 1 and R 2 are independently selected from hydrogen, deuterium or the following groups: substituted or unsubstituted alkyl groups with 1-10 carbon atoms, substituted or unsubstituted cycloalkyl groups with 3-10 carbon atoms , Substituted or unsubstituted aryl groups with 6-30 carbon atoms, substituted or unsubstituted heteroaryl groups with 1-30 carbon atoms,
  • Ar 1 and Ar 2 are the same or different, and are each independently selected from hydrogen, deuterium, substituted or unsubstituted aralkyl groups with 7-25 carbon atoms, and substituted or unsubstituted heterocyclic groups with 2-20 carbon atoms.
  • L 1 and L 2 are the same or different, and are each independently selected from a single bond, a substituted or unsubstituted arylene group having 6 to 30 carbon atoms, and a substituted or unsubstituted heteroarylene group having 1 to 30 carbon atoms One of the groups, and when R 1 is When L 1 is not a single bond, when R 2 is When, L 2 is not a single bond;
  • the substituents on the Ar 1 , Ar 2 , L 1 , and L 2 are the same or different, and are independently selected from deuterium, halogen group, cyano group, alkyl group with 1-12 carbon atoms, number of carbon atoms Is an alkoxy group having 1-12, an alkylthio group having 1-12 carbon atoms, a haloalkyl group having 1-12 carbon atoms, a trialkylsilyl group having 3-12 carbon atoms, and the number of carbon atoms is 3-12 cycloalkyl, 6-18 aryloxy, 6-18 arylthio, 6-18 aryl, and 3-18 ⁇ heteroaryl.
  • organic compound of Formula I described in this application is selected from the following compounds:
  • L 1 and L 2 in the compound of formula I described in this application are the same or different, and are each independently selected from a single bond, a substituted or unsubstituted arylene group with 6-25 carbon atoms, a substituted Or an unsubstituted heteroarylene group with 4-18 carbon atoms.
  • L 1 and L 2 in the compound of formula I described in this application are the same or different, and are each independently selected from a single bond, or substituted or substituted groups as follows:
  • X is selected from the group consisting of O, S, Se, C(R 3 R 4 ), N(R 5 ) and Si(R 3 R 4 );
  • X 1 , X 2 , X 3 , X 4 , and X 5 are each independently selected from CR 6 and N, and at least one of X 1 to X 5 is N;
  • Each of X 6 to X 15 is independently selected from CR 6 and N.
  • any two R 6 are the same or different;
  • Each of Z 1 , Z 2 , R 3 , R 4 and R 6 is independently selected from hydrogen, deuterium, fluorine, chlorine, bromine, cyano, alkyl having 1 to 6 carbon atoms, and 1 to 6 carbon atoms 6 haloalkyl, carbon 1-6 alkoxy, carbon 6-18 aryloxy, carbon 6-18 arylthio, carbon 6-12 aryl Group, heteroaryl group with 3-12 carbon atoms, silyl group with 3-12 carbon atoms and cycloalkyl group with 3-10 carbon atoms; or,
  • R 3 and R 4 connected to the same atom are connected to each other to form a saturated or unsaturated 5- to 10-membered aliphatic ring; meaning, R 3 and R 4 in this application can be shared with them
  • the connected atoms are connected together to form an aliphatic ring, and R 3 and R 4 may also exist independently of each other;
  • R 5 is selected from hydrogen, alkyl with carbon atoms of 1-6, haloalkyl with carbon atoms of 1-6, aryl group with carbon atoms of 6-12, heteroaryl group with carbon atoms of 3-12 And a group consisting of a cycloalkyl group having 3-10 carbon atoms;
  • Each n 1 is independently selected from 0, 1, 2, 3, 4, or 5, and each n 2 is independently selected from 0, 1, 2, 3, 4, 5, 6 or 7.
  • L 1 and L 2 in the compound of formula I described in this application are the same or different, and are each independently selected from a single bond, a substituted or unsubstituted arylene group with 6-12 carbon atoms, a substituted Or an unsubstituted heteroarylene group with 9-12 carbon atoms.
  • the substituents of L 1 and L 2 are independently selected from deuterium, fluorine, chlorine, cyano, methyl, ethyl, isopropyl, tert-butyl, methoxy, ethoxy, and isopropoxy.
  • L 1 and L 2 in the compound of formula I described in this application are the same or different, and are each independently selected from a single bond, a substituted or unsubstituted phenylene group, and a substituted or unsubstituted phenylene group.
  • L 1 and L 2 in the compound of formula I described in this application are the same or different, and are each independently selected from the following groups, which are single bonds, substituted or unsubstituted:
  • the above-mentioned groups are used in the chemical formula I
  • the position of the bond; the above groups are optionally 0, 1, 2, 3, 4 or 5 selected from deuterium, fluorine, chlorine, cyano, methyl, ethyl, isopropyl, tert-butyl, methyl Substituted by substituents of oxy, ethoxy, isopropoxy, propoxy, cyclopentyl, cyclohexane, trifluoromethyl, and alkylsilyl groups having 3-9 carbon atoms.
  • L 1 and L 2 in the compound of formula I described in this application are the same or different, and are each independently selected from the following groups, which are single bonds, substituted or unsubstituted:
  • the above groups are optionally 0, 1, 2, 3, 4 or 5 selected from deuterium, fluorine, chlorine, cyano, methyl, ethyl, isopropyl, tert-butyl, methoxy, ethoxy Substituents are substituted by the substituents of propyl, isopropoxy, propoxy, cyclopentyl, cyclohexane, trifluoromethyl, phenyl, naphthyl, trimethylsilyl, and triphenylsilyl.
  • L 1 and L 2 in the compound of formula I are not limited to the above structure.
  • each Ar 1 , Ar 2 , R 1 and R 2 in the compound of formula I described in this application are the same or different, and are independently selected from substituted or unsubstituted carbon atoms of 6-25 One of aryl groups and substituted or unsubstituted heteroaryl groups having 4-18 carbon atoms.
  • each Ar 1 , Ar 2 , R 1 and R 2 in the compound of formula I described in this application are the same or different, and are independently selected from substituted or unsubstituted carbon atoms of 6-18 One of an aryl group and a substituted or unsubstituted heteroaryl group having 5-12 carbon atoms.
  • the substituents on Ar 1 , Ar 2 , R 1 , and R 2 are the same or different, and are each independently selected from deuterium, fluorine, chlorine, cyano, methyl, ethyl, isopropyl Group, tert-butyl, methoxy, ethoxy, isopropoxy, propoxy, cyclopentyl, cyclohexane, trifluoromethyl, phenyl, naphthyl, dibenzofuran, two Benzothiophene, carbazolyl, trimethylsilyl.
  • the substituents on Ar 1 , Ar 2 , R 1 , and R 2 are the same or different, and are independently selected from deuterium, halogen groups, cyano groups, and those with 1-4 carbon atoms.
  • each Ar 1 , Ar 2 , R 1 and R 2 in the compound of formula I described in this application are the same or different, and are each independently selected from the following groups: hydrogen, deuterium, substituted or unsubstituted :
  • Each of V 1 to V 10 and V 12 to V 16 is independently selected from CR 8 and N, and at least one of V 1 to V 5 is N;
  • each V is independently selected from the group consisting of O, S, Se, N(R 7 ), C (R 9 R 10 ) and Si (R 9 R 10 );
  • Y and V 11 are each independently selected from O, S or N (R 7 );
  • Each of Y 1 to Y 10 is independently selected from CR 8 and N. When a group contains two or more R 8 , any two R 8 are the same or different;
  • Each of R 9 , R 10 , and R 8 is independently hydrogen, deuterium, fluorine, chlorine, bromine, cyano, alkyl having 1 to 6 carbon atoms, haloalkyl having 1 to 6 carbon atoms, carbon atom Aryl groups with 6-12 carbon atoms, heteroaryl groups with 3-12 carbon atoms, aryloxy groups with 6-18 carbon atoms, arylthio groups with 6-18 carbon atoms, 3 carbon atoms -12 silyl group, C 1-10 alkylamino group, C 6-18 arylamino group and C 3-10 cycloalkyl group;
  • R 7 is selected from H, alkyl groups with 1-6 carbon atoms, haloalkyl groups with 1-6 carbon atoms, aryl groups with 6-12 carbon atoms, and heteroaryl groups with 3-12 carbon atoms And a group consisting of a cycloalkyl group having 3-10 carbon atoms; or,
  • two adjacent R 8 can form an aromatic ring with 6 to 10 ring atoms or a heteroaromatic ring with 5 to 12 ring atoms together with the carbon atoms to which they are connected;
  • two adjacent R 8 can be connected with the atoms to which they are connected to form an aromatic ring or a heteroaromatic ring, or each R 8 can exist independently;
  • R 9 and R 10 connected to the same atom can be connected to each other to form a saturated or unsaturated 5- to 10-membered aliphatic ring; meaning, R 9 and R 10 in this application can be shared with them
  • the connected atoms are connected to each other to form an aliphatic ring, or may not form a ring, but R 9 and R 10 exist independently;
  • Each of the above Ar 1 and Ar 2 is optionally substituted with 0, 1, 2, 3, 4, or 5 selected from deuterium, fluorine, chlorine, cyano, an alkyl group having 1 to 6 carbon atoms, and 3 ⁇ 10 cycloalkyl, carbon 6-18 aryl, carbon 3-18 heteroaryl, carbon 1-4 alkoxy, carbon 1-4 Substituted by a halogenated alkyl group or a substituent of an alkylsilyl group having 3-9 carbon atoms.
  • each Ar 1 , Ar 2 , R 1 and R 2 in the compound of formula I described in this application are the same or different
  • Each of the above groups is optionally substituted by 0, 1, 2, 3, 4, or 5 selected from deuterium, fluorine, chlorine, cyano, alkyl groups having 1 to 6 carbon atoms, and those having 1 to 4 carbon atoms.
  • each Ar 1 , Ar 2 , R 1 and R 2 in the compound of formula I described in the present application are the same or different, and are each independently selected from hydrogen, deuterium, substituted or unsubstituted as follows Group:
  • Each of the above groups is optionally substituted by 0, 1, 2, 3, 4, or 5 selected from deuterium, fluorine, chlorine, cyano, alkyl groups having 1 to 6 carbon atoms, and those having 1 to 4 carbon atoms.
  • Ar 1 and Ar 2 in the compounds of formula I described in this application are the same or different, and are independently selected from the following groups of hydrogen, deuterium, and substituted or unsubstituted:
  • the above groups are optionally 0, 1, 2, 3, 4 or 5 selected from deuterium, fluorine, chlorine, cyano, methyl, ethyl, isopropyl, tert-butyl, methoxy, ethoxy It is substituted by the substituents of the alkyl group, isopropoxy group, propoxy group, cyclopentyl group, cyclohexane group, trifluoromethyl group, and alkylsilyl group having 3-9 carbon atoms.
  • Ar 1 and Ar 2 in the compounds of formula I described in this application are the same or different, and are independently selected from the following groups of hydrogen, deuterium, and substituted or unsubstituted:
  • the above groups are optionally 0, 1, 2, 3, 4 or 5 selected from deuterium, fluorine, chlorine, cyano, methyl, ethyl, isopropyl, tert-butyl, methoxy, ethoxy Substituted by the substituents of phenyl, isopropoxy, propoxy, cyclopentyl, cyclohexane, trifluoromethyl, trimethylsilyl, phenyl, and naphthyl.
  • Ar 1 and Ar 2 in the compound of formula I are not limited to the above-mentioned groups.
  • R 1 and R 2 in the compound of formula I described in the present application are the same or different, and are each independently selected from the following groups of hydrogen, deuterium, and substituted or unsubstituted:
  • the above groups are optionally 0, 1, 2, 3, 4 or 5 selected from deuterium, fluorine, chlorine, cyano, methyl, ethyl, isopropyl, tert-butyl, methoxy, ethoxy It is substituted by the substituents of the alkyl group, isopropoxy group, propoxy group, cyclopentyl group, cyclohexane group, trifluoromethyl group, and alkylsilyl group having 3-9 carbon atoms.
  • R 1 and R 2 in the compound of formula I described in the present application are the same or different, and are each independently selected from the following groups of hydrogen, deuterium, and substituted or unsubstituted:
  • the above groups are optionally 0, 1, 2, 3, 4 or 5 selected from deuterium, fluorine, chlorine, cyano, methyl, ethyl, isopropyl, tert-butyl, methoxy, ethoxy Substituents are substituted by the substituents of alkyl, isopropoxy, propoxy, cyclopentyl, cyclohexane, trifluoromethyl, phenyl, naphthyl, and alkylsilyl groups having 3-9 carbon atoms.
  • R 1 and R 2 in the compound of Formula I in this application are not limited to the above-mentioned groups.
  • the application also provides an electronic device, which includes an anode and a cathode arranged oppositely, and a functional layer arranged between the anode and the cathode; the functional layer includes the above-mentioned organic compound.
  • the organic compound provided in this application can be used to form at least one organic film layer in the functional layer to improve the voltage characteristics, efficiency characteristics, and life characteristics of electronic devices.
  • the organic film layer containing the organic compound of the present application is located between the anode and the energy conversion layer of the electronic device, so as to improve the transmission of electrons between the anode and the energy conversion layer.
  • the functional layer includes a hole transport layer, and the hole transport layer includes the above-mentioned organic compound.
  • the electronic device may be an organic electroluminescence device.
  • the organic electroluminescent device includes an anode 100 and a cathode 200 arranged opposite to each other, and a functional layer 300 arranged between the anode 100 and the cathode 200; the functional layer 300 includes the organic compound provided in the present application.
  • the organic compound provided in the present application can be used to form at least one organic thin layer in the functional layer 300 to improve the lifetime characteristics and efficiency characteristics of the organic electroluminescent device and reduce the driving voltage; in some embodiments , Can also improve the electrochemical stability and thermal stability of organic electroluminescent devices, and improve the uniformity of performance of mass-produced organic electroluminescent devices.
  • the functional layer 300 includes a hole transport layer 320, and the hole transport layer 320 includes an organic compound provided in the present application.
  • the hole transport layer 320 may be composed of the organic compound provided in the present application, or may be composed of the organic compound provided in the present application and other materials.
  • the hole transport layer 320 includes a first hole transport layer 321 and a second hole transport layer 322, and the first hole transport layer 321 is disposed on the surface of the second hole transport layer 322 close to the anode 100;
  • a hole transport layer 321 or a second hole transport layer 322 includes the organic compound provided in the present application.
  • either the first hole transport layer 321 or the second hole transport layer 322 may contain the organic compound provided in the present application, or the first hole transport layer 321 and the second hole transport layer 322 may be both Contains the organic compounds provided in this application. It is understandable that the first hole transport layer 321 or the second hole transport layer 322 may also contain other materials, or may not contain other materials. It can be understood that, in another embodiment of the present application, the second hole transport layer 322 may serve as an electron blocking layer of the organic electroluminescent device.
  • an organic electroluminescent device may include an anode 100, a first hole transport layer 321, a second hole transport layer 322, and an organic light emitting layer 330 stacked in sequence. , The electron transport layer 340 and the cathode 200.
  • the organic compound provided in the present application can be applied to the first hole transport layer 321 or the second hole transport layer 322 of an organic electroluminescent device, and can effectively improve the hole characteristics of the organic electroluminescent device.
  • the hole characteristic means that the holes formed in the anode 100 are easily injected into the organic light emitting layer 330 and are transported in the organic light emitting layer 330 according to the conduction characteristic of the HOMO level.
  • the anode 100 includes the following anode materials, which are preferably materials with a large work function (work function) that facilitate hole injection into the functional layer.
  • anode materials include: metals such as nickel, platinum, vanadium, chromium, copper, zinc, and gold or their alloys; metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO); Combined metals and oxides such as ZnO:Al or SnO 2 :Sb; or conductive polymers such as poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene ] (PEDT), polypyrrole and polyaniline, but not limited thereto. It is preferable to include a transparent electrode containing indium tin oxide (ITO) as an anode.
  • ITO indium tin oxide
  • the organic light-emitting layer 330 may be composed of a single light-emitting material, or may include a host material and a guest material.
  • the organic light-emitting layer 330 is composed of a host material and a guest material. The holes injected into the organic light-emitting layer 330 and the electrons injected into the organic light-emitting layer 330 can recombine in the organic light-emitting layer 330 to form excitons, and the excitons transfer energy to The host material, the host material transfers energy to the guest material, so that the guest material can emit light.
  • the host material of the organic light-emitting layer 330 can be a metal chelated octyl compound, a bis-styryl derivative, an aromatic amine derivative, a dibenzofuran derivative or other types of materials, which are not special in this application. limits.
  • the host material of the organic light-emitting layer 330 may be CBP.
  • the host material of the organic light-emitting layer 330 may be ⁇ , ⁇ -ADN.
  • the guest material of the organic light-emitting layer 330 may be a compound with a condensed aryl ring or a derivative thereof, a compound with a heteroaryl ring or a derivative thereof, an aromatic amine derivative or other materials, and this application does not make any special considerations for this. limit.
  • the guest material of the organic light-emitting layer 330 may be Ir(piq) 2 (acac).
  • the guest material of the organic light-emitting layer 330 may be BD-1.
  • the electron transport layer 340 may be a single-layer structure or a multilayer structure, and it may include one or more electron-transporting materials.
  • the electron-transporting materials may be selected from benzimidazole derivatives, oxadiazole derivatives, and quinoxalines. Derivatives or other electronic transmission materials, this application does not impose special restrictions on this.
  • the electron transport layer 340 may be composed of DBimiBphen and LiQ.
  • the cathode 200 includes the following cathode material, which is a material with a small work function that facilitates the injection of electrons into the functional layer.
  • cathode materials include: metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin and lead or their alloys; or multilayer materials such as LiF/Al, Liq/ Al, LiO 2 /Al, LiF/Ca, LiF/Al, and BaF 2 /Ca, but not limited thereto. It is preferable to include a metal electrode containing aluminum as a cathode.
  • a hole injection layer 310 may be further provided between the anode 100 and the first hole transport layer 321 to enhance the ability of injecting holes into the first hole transport layer 321.
  • the hole injection layer 310 can be selected from benzidine derivatives, starburst arylamine compounds, phthalocyanine derivatives or other materials, which are not particularly limited in this application.
  • the hole injection layer 310 may be composed of m-MTDATA.
  • the hole transport layer 320 includes a first hole transport layer 321 and a second hole transport layer 322, and the first hole transport layer 321 is disposed on the surface of the second hole transport layer 322 close to the anode 100;
  • a hole transport layer 321 or a second hole transport layer 322 includes the organic compound provided in the present application.
  • either the first hole transport layer 321 or the second hole transport layer 322 may contain the organic compound provided in the present application, or the first hole transport layer 321 and the second hole transport layer 322 may be both Contains the organic compounds provided in this application. It can be understood that the first hole transport layer 321 or the second hole transport layer 322 may or may not contain other materials.
  • the hole transport layer 320 may further include inorganic doping materials to improve the hole transport performance of the hole transport layer 320.
  • an electron injection layer 350 may be further provided between the cathode 200 and the electron transport layer 340 to enhance the ability to inject electrons into the electron transport layer 340.
  • the electron injection layer 350 may include inorganic materials such as alkali metal sulfides and alkali metal halides, or may include complexes of alkali metals and organic substances.
  • the electron injection layer 350 may include Yb.
  • the electronic device may be a photoelectric conversion device.
  • the photoelectric conversion device may include an anode 100 and a cathode 200 disposed opposite to each other, and a functional layer 300 disposed between the anode 100 and the cathode 200.
  • the functional layer 300 contains the organic compound provided in the present application.
  • the organic compound provided in the present application can be used to form at least one organic thin layer in the functional layer 300 to improve the performance of the photoelectric conversion device, especially to increase the life of the photoelectric conversion device, increase the open circuit voltage of the photoelectric conversion device, or Improve the uniformity and stability of the performance of mass-produced photoelectric conversion devices.
  • the functional layer 300 includes a hole transport layer 320, and the hole transport layer 320 includes the organic compound of the present application.
  • the hole transport layer 320 may be composed of the organic compound provided in the present application, or may be composed of the organic compound provided in the present application and other materials. It is understandable that the hole transport layer 320 may or may not contain other materials.
  • the hole transport layer 320 may further include inorganic doping materials to improve the hole transport performance of the hole transport layer 320.
  • the photoelectric conversion device may include an anode 100, a hole transport layer 320, a photoelectric conversion layer 360 as an energy conversion layer, an electron transport layer 340, and a cathode that are sequentially stacked. 200.
  • the photoelectric conversion device may be a solar cell, especially an organic thin film solar cell.
  • a solar cell includes an anode 100, a hole transport layer 320, a photoelectric conversion layer 360, an electron transport layer 340, and a cathode 200 that are sequentially stacked, wherein the hole transport layer 320 Contains the organic compounds of this application.
  • the embodiments of the present application also provide an electronic device, which includes any one of the electronic devices described in the above-mentioned electronic device embodiments. Since the electronic device has any one of the electronic devices described in the above-mentioned electronic device embodiments, it has the same beneficial effects, which will not be repeated here in this application.
  • the present application provides an electronic device 400 that includes any one of the organic electroluminescent devices described in the foregoing organic electroluminescent device embodiments.
  • the electronic equipment 400 may be a display device, a lighting device, an optical communication device or other types of electronic equipment, for example, may include but not limited to computer screens, mobile phone screens, televisions, electronic paper, emergency lighting, light modules, etc. Since the electronic device 400 has any one of the organic electroluminescent devices described in the above-mentioned organic electroluminescent device embodiments, it has the same beneficial effects, which will not be repeated here in this application.
  • the present application provides an electronic device 500, which includes any one of the organic electroluminescent devices described in the foregoing organic electroluminescent device embodiments.
  • the electronic device 500 may be a solar power generation device, a light detector, a fingerprint identification device, an optical module, a CCD camera, or other types of electronic devices. Since the electronic device 500 has any one of the photoelectric conversion devices described in the foregoing photoelectric conversion device embodiments, it has the same beneficial effects, which will not be repeated here in this application.
  • the lower reaction is generally under a positive pressure of nitrogen or argon or a drying tube on an anhydrous solvent (unless otherwise indicated), the reaction flask is plugged with a suitable rubber stopper, and the substrate is injected through a syringe. The glassware is all dried.
  • the chromatographic column is a silica gel column.
  • Silica gel 300-400 mesh was purchased from Qingdao Ocean Chemical Plant.
  • the measurement conditions for low-resolution mass spectrometry (MS) data are: Agilent 6120 quadrupole HPLC-M (column model: Zorbax SB-C18, 2.1 ⁇ 30mm, 3.5 microns, 6min, flow rate 0.6mL/min.
  • Mobile phase 5 %-95% (CH3CN containing 0.1% formic acid) in (H2O containing 0.1% formic acid), using electrospray ionization (ESI), and UV detection at 210nm/254nm.
  • Proton nuclear magnetic resonance spectrum Bruker 400MHz nuclear magnetic instrument, at room temperature, with CDCl 3 as the solvent (in ppm), and TMS (0 ppm) as the reference standard. When multiple peaks appear, the following abbreviations will be used: s (singlet), d (doublet), t (triplet, triplet), m (multiplet, multiplet).
  • Step 1 Combine 3.95g (15mmol) of 1-bromodibenzodioxin, 2.71g (15mmol) of 2-(methoxycarbonyl)phenylboronic acid, 4.14g (30mmol) of potassium carbonate, 0.1733g (0.15 A mixture of tetrakis (triphenylphosphine) palladium (mmol) and 0.0483g (0.15mmol) of tetrabutylammonium bromide was added to a 100mL three-necked flask, and 32mL/8mL of toluene/water mixed solvent was added to the flask, and replaced with nitrogen. After the air in the flask was cleaned, it was heated to 80°C for 10 hours with stirring.
  • Step 2 Add 3.2g (10mmol) of compound 1-1 and 30mL of tetrahydrofuran into a 100mL three-necked flask, slowly add 4.8g of methanesulfonic acid with stirring, heat to 60°C for 5 hours after the addition, and add to the reaction solution 50mL of water, the reaction solution was extracted with dichloromethane, the organic phase was dried with magnesium sulfate and then distilled under reduced pressure. The obtained solid was boiled and washed with n-heptane to obtain compound 1-2 (2.2g, yield 77%) ).
  • Step 3 Add 1.15g (7.3mmol) of bromobenzene and 10mL of dry tetrahydrofuran into a 100mL three-necked flask, stir and lower the temperature to -30°C, slowly drop 3.85mL (7.7mmol) under the protection of nitrogen to a concentration of 2mol/ L n-butyllithium n-hexane solution, drip and keep for 30min, then slowly drop in a mixed solution of 2.2g (7.7momol) compound 1-2 and 10mL tetrahydrofuran, drip and keep for 30min, naturally warm to room temperature and continue stirring for 2 hours The reaction was quenched by dropping water. The reaction solution was extracted with ethyl acetate.
  • Step 4 Add 2.1g (5.8mmol) of compound 1-3, 20mL of toluene and 5mL of hydrobromic acid (47%) into a 100mL three-necked flask, pass nitrogen protection and stir for 24 hours at room temperature, separate the liquids, and extract with toluene The reaction liquid, the organic phase was dried with magnesium sulfate and then distilled under reduced pressure. The obtained solid was recrystallized with dichloromethane and n-heptane (1:3) to obtain compound 1-4 (compound 2-4) (2.07g, yield 84%) ).
  • Step 5 Under a nitrogen atmosphere, add 2.07g (4.8mmol) of compound 1-4, 0.76g (4.8gmmol) of p-chlorophenylboronic acid, 0.028g (0.024mmol) of tetrakis(triphenylphosphine) palladium, 0.008g ( A mixture of 0.024mmol) tetrabutylammonium bromide and 1.34g (9.7mmol) potassium carbonate was added to a 100mL three-necked flask, and 16mL/4mL of toluene/water mixed solvent was added to the flask, and the mixture was heated to 80°C under stirring.
  • Step 6 Under a nitrogen atmosphere, mix 1.76g (3.8mmol) of compound 1-5, 0.65g (3.8mmol) of diphenylamine, 0.018g (0.019mmol) of tris(dibenzylideneacetone) dipalladium, 0.016g ( 0.038mmol) 2-Biscyclohexylphosphine-2',6'-dimethoxybiphenyl, 0.55g (5.7mmol) sodium tert-butoxide mixture was added to a 100mL three-necked flask, 20mL toluene was added to the flask, under stirring Heat to reflux for 5 hours, quench the reaction solution with water, extract with toluene, dry the organic phase with magnesium sulfate, and distill under reduced pressure to remove the solvent. The resulting solid is passed through a silica gel column with a mixed solvent of dichloromethane and n-heptane (1:4) Chromatographic separation yielded compound 1 (1.99 g, yield
  • Step 1 Add 3.19g (10mmol) of compound 1-1 into a 100mL three-necked flask, pour nitrogen to replace the air in the clean flask, add 20mL of dried tetrahydrofuran, and cool the reaction solution to -40°C while stirring.
  • Step 2 Add 3.13g of compound 2-2 (purity 83%) and 30mL of acetic acid into a 100mL three-necked flask, slowly add 3mL of concentrated sulfuric acid dropwise with stirring, then turn on heating and raise the temperature to 80°C for 8 hours, add water to the reaction solution and use ethyl acetate Ester extraction, liquid separation, the organic phase was dried with magnesium sulfate and then distilled under reduced pressure, and the obtained solid was recrystallized with dichloromethane to obtain compound 2-3 (compound 2-3) (1.63 g, yield 65%).
  • Step 3 Add 1.63g (3.3mmol) compound 2-3, 1.12g (6.6mmol) diphenylamine, 0.476g (4.96mmol) sodium tert-butoxide, 0.0151g (0.016mmol) tris(dibenzylidene acetone) two A mixture of palladium and 0.0136 (0.033mmol) 2-bicyclohexylphosphine-2',6'-dimethoxybiphenyl was added to a 100mL three-necked flask, 20mL of toluene was added to it, and nitrogen was introduced to replace the air in the flask, and then stirred The temperature was raised to 110°C for 7 hours, the reaction solution was quenched with water, washed with water, separated, the organic phase was dried with magnesium sulfate and then distilled under reduced pressure. The obtained solid was separated by silica gel column chromatography with dichloromethane and n-heptane (1:3). Compound 2 (2.01 g
  • Step 1 Combine 3g (10mmol) 1-bromo-2-chlorodibenzodioxin, 1.58g (10mmol) 2-chlorophenylboronic acid, 0.12g (0.1mmol) tetrakis(triphenylphosphine) palladium, 0.033g ( A mixture of 0.1mmol) tetrabutylammonium bromide and 2.8g (20mmol) potassium carbonate was added to a 100mL three-necked flask, and 20mL/5mL/5mL toluene/ethanol/water mixed solvent was added to the flask, and the temperature was raised under nitrogen protection and stirring React at 80°C for 12 hours. The reaction solution is extracted with toluene.
  • Step 2 Under a nitrogen atmosphere, dissolve 2.54g (7.7mmol) of compound 3-1 in 20mL of dried tetrahydrofuran. After stirring and lowering the temperature to -5°C, use a syringe to slowly add 5mL (10mmol) of n-butyl Lithium n-hexane solution (2M), after dripping, keep for 4 hours, then slowly add 4-chlorophenyl-phenyldichlorosilane and 10mL tetrahydrofuran solution, keep for 1 hour after adding, and stir to react after it is naturally warmed to room temperature After 16 hours, the reaction solution was poured into the dilute hydrochloric acid solution, solids were precipitated, filtered, and the filter cake was dried to obtain compound 3-2 (2.87g, purity 77%), directly put into the next step reaction.
  • 2M n-butyl Lithium n-hexane solution
  • Step 3 Add 2.87g (purity 77%) compound 3-2, 0.78g (4.6mmol) diphenylamine, 0.042g (0.05mmol) tris(dibenzylideneacetone) dipalladium, 0.038g (0.1mmol) 2- A mixture of bicyclohexylphosphine-2',6'-dimethoxybiphenyl and 0.67g (6.9mmol) of sodium tert-butoxide was added to a 100mL three-necked flask, and nitrogen was introduced to replace the air in the flask, and 30mL of toluene was added to the flask The reaction solution was heated to reflux under stirring for 8 hours, the reaction solution was added with water and stirred for 30 minutes, filtered, and the filtered solid was rinsed with ethanol, and recrystallized with toluene to obtain compound 3 (2.34 g, yield 83%).
  • Step 1 Combine 2.7g (11mmol) of phenoxathi-4-boronic acid, 2.38g (11mmol) of methyl 2-bromobenzoate, 3.06g (22mmol) of potassium carbonate, and 0.1278g (0.1mmol) of tetrakis ( The mixture of triphenylphosphine) palladium and 0.0357g (0.1mmol) of tetrabutylammonium bromide was put into a 100mL three-necked flask, 20mL/10mL of toluene/water mixed solvent was added to the flask, and the air in the flask was replaced with nitrogen. Afterwards, the temperature was raised to 80°C for 6 hours with stirring.
  • Step 2 Synthesize compound 4 according to the same method as step 2 to step 5 of synthetic compound 1, except that compound 1-1 in step 2 of synthetic compound 1 is replaced with compound 4-1, and finally 2.17g of compound 4 is obtained. ), the yield is 63%.
  • Step 1 Under a nitrogen atmosphere, mix 3.22g (10mmol) N-(4-bromophenyl)carbazole, 1.69g (10mmol) 4-aminobiphenyl, 0.09g (0.1mmol) tris(dibenzylidene) Base acetone) two palladium, 0.082g (0.2mmol) 2-bicyclohexylphosphine-2',6'-dimethoxybiphenyl, 1.44 (15mmol) sodium tert-butoxide mixture was added to a 100mL three-necked flask, into the flask Add 30 mL of toluene and heat to reflux with stirring for 2 hours. The reaction solution was quenched with water and extracted with toluene.
  • Step 2 Combine 3.2g (7.8mmol) compound 17-1, 3.58g (7.8mmol) compound 1-5, 0.07g (0.078mmol) tris(dibenzylideneacetone) dipalladium, 0.06g (0.16mmol) 2 -Bicyclohexylphosphine-2',6'-dimethoxybiphenyl, 1.12g (11.7mmol) of sodium tert-butoxide were added to a 100mL three-necked flask with nitrogen protection, 30mL of toluene was added to the flask and heated under stirring After refluxing for 17 hours, the organic phase was washed three times with water, the aqueous phase was extracted with toluene, the combined organic phases were concentrated to dryness, and recrystallized with a mixed solvent of dichloromethane and n-heptane (1:1) to obtain compound 17 (compound 17) (3.63g, yield 56%). The structure of the obtained compound was confirmed by LC-
  • Step 1 Under a nitrogen atmosphere, 3.71g (15mmol) 3-bromodibenzofuran, 3.14g (15mmol) 3-amino 9,9'-dimethylfluorene, 0.14g (0.15mmol) tris( Dibenzylideneacetone) two palladium, 0.12g (0.3mmol) 2-bicyclohexylphosphine-2',6'-dimethoxybiphenyl, 2.16g (22.5mmol) sodium tert-butoxide mixture was added to a 100mL three-necked flask Add 30 mL of toluene to the flask, heat to reflux for 4 hours with stirring, wash with water after the reaction, dry the organic phase with magnesium sulfate, concentrate the organic phase under reduced pressure to remove the solvent, and use dichloromethane and n-heptane (1: 5) Recrystallization of the mixed solvent to obtain compound 41-1 (compound 41-1) (5 g, yield 89%).
  • Step 2 Under a nitrogen atmosphere, mix 4.28g (10mmol) of compound 1-4, 2.33g (10gmmol) of 4'-chloro-4-boronic acid biphenyl, and 0.12g (0.1mmol) of tetrakis(triphenylphosphine) palladium , 0.03g (0.1mmol) of tetrabutylammonium bromide and 2.8g (20mmol) of potassium carbonate were added to a 100mL three-necked flask, and 24mL/8mL/4ml of toluene/ethanol/water mixed solvent was added to the flask and stirred The reaction solution was heated to 80°C and reacted for 24 hours.
  • Step 3 Under a nitrogen atmosphere, mix 2.73g (7.3mmol) of compound 41-1, 3.9g (7.3mmol) of compound 41-2, 0.07g (0.07mmol) of tris(dibenzylideneacetone) dipalladium, 0.03 g (0.07mmol) 2-Biscyclohexylphosphine-2',6'-dimethoxybiphenyl, 1.4g (14.5mmol) sodium tert-butoxide mixture was added to a 100mL three-necked flask, 30mL toluene was added to the flask, The reaction solution was heated to reflux for 16 hours under stirring.
  • Step 1 Add 5g (11.7mmol) of compound 1-4 and 40mL of dried tetrahydrofuran into a 100mL three-necked flask. After stirring, the temperature is lowered to -85°C. Under the protection of nitrogen, 1g (15.2mmol) is added dropwise to a concentration of 2mol.
  • Step 2 Under a nitrogen atmosphere, mix 2.16g (5.5mmol) of compound 49-1, 1.88g (5.5mmol) of 3,7-dibromodibenzothiophene, 0.06g (0.06mmol) of tetrakis(triphenylphosphine) ) Palladium, 0.018g (0.06mmol) of tetrabutylammonium bromide and 1.52g (11mmol) of potassium carbonate were added to a 100mL three-necked flask, 18mL/6mL of toluene/water mixed solvent was added to the flask, and heated under stirring.
  • Step 1 Under a nitrogen atmosphere, mix 2.45g (15mmol) 1-bromocyclohexane, 3.02g (15mmol) p-bromophenylboronic acid, 0.17g (0.15mmol) tetrakis(triphenylphosphine) palladium, 0.05g ( A mixture of 0.15mmol) tetrabutylammonium bromide and 4.15g (30mmol) potassium carbonate was added to a 100mL three-necked flask, 20mL/5mL of toluene/water mixed solvent was added to the flask, and heated to 80°C under stirring for 4 hours , The reaction was stopped, the reaction solution was extracted with ethyl acetate, the organic phase was dried over magnesium sulfate and concentrated under reduced pressure to remove the solvent, and the obtained solid was recrystallized from n-heptane to obtain compound 61-1 (compound 61-1) (3.13g, Yield 87%).
  • Step 1 Add 4g (20mmol) of phenoxathi and 40mL of dried tetrahydrofuran into a 100mL three-necked flask. After stirring, the temperature is lowered to -78°C, and 13mL (26mmol) of n-butyl with a concentration of 2mol/L is added dropwise under the protection of nitrogen. Lithium n-hexane solution, after dripping and holding for 60min, then slowly adding 5.64g (30mmol) of triisopropyl borate, dripping and holding for 60min, after naturally rising to room temperature, continue stirring for 12 hours, dripping with dilute hydrochloric acid to quench the reaction.
  • reaction liquid was extracted with ethyl acetate, the organic phase was dried with magnesium sulfate and then distilled under reduced pressure. The obtained solid was boiled and washed with n-heptane to obtain compound 87-1 (compound 87-1) (3.7 g, yield 76%).
  • Step 2 Combine 3.7g (15.2mmol) of compound 87-1, 3.26g (15.2mmol) of methyl 2-bromobenzoate, 4.2g (30.3mmol) of potassium carbonate, 0.18g (0.15mmol) of tetrakis ( Add a mixture of triphenylphosphine) palladium and 0.05g (0.15mmol) of tetrabutylammonium bromide into a 100mL three-necked flask, add 30mL/10mL/5mL toluene/ethanol/water mixed solvent into the flask, and replace it with nitrogen. After the air in the flask, the temperature was raised to 80°C for 8 hours with stirring.
  • reaction solution was washed with water and dried with anhydrous magnesium sulfate.
  • organic phase was distilled under reduced pressure to remove toluene.
  • the obtained solid was mixed with dichloromethane and ethyl acetate (1 :2) Recrystallization from the mixed solvent to obtain compound 87-2 (4.1 g, yield 81%).
  • Step 3 Synthesize compound 87-3 according to the same method as step 2 to step 5 of synthetic compound 1, the difference is that compound 1-1 in step 2 of synthetic compound 1 is replaced with compound 87-2, and finally compound 87-3 is obtained.
  • compound 87-3) (3.3g, yield 46%).
  • Step 4 Under a nitrogen atmosphere, combine 5g (29.5mmol) 4-aminobiphenyl, 6.1g (29.5mmol) 1-bromonaphthalene, 0.27g (0.3mmol) tris(dibenzylideneacetone) dipalladium, 0.24 g(0.6mmol) 2-Bicyclohexylphosphine-2',6'-dimethoxybiphenyl, 4.3(44.3mmol) sodium tert-butoxide mixture was added to a 100mL three-necked flask, 50mL toluene was added to the flask, and the mixture was stirred After heating to reflux for 2 hours, the reaction solution was washed with water, extracted with toluene, the organic phase was dried with magnesium sulfate, filtered, the organic phase was separated by silica gel column chromatography, and the column liquid was concentrated under reduced pressure. The obtained solid was dichloromethane and n-heptane. (1:1) The mixed solvent was recry
  • Step 5 Under a nitrogen atmosphere, add 3.3g (6.9mmol) of compound 87-3, 2.1g (6.9mmol) of compound 87-4, 0.06g (0.07mmol) of tris(dibenzylideneacetone) dipalladium, 0.06 A mixture of g (0.14mmol) 2-Biscyclohexylphosphine-2',6'-dimethoxybiphenyl and 1g (10.4mmol) sodium tert-butoxide was added to a 100mL three-necked flask, 30mL of toluene was added to the flask, and the mixture was stirred After heating to reflux for 16 hours, the reaction solution was quenched with water, washed with water, and the aqueous phase was extracted with toluene.
  • Step 1 Under the protection of nitrogen, combine 8.3g (25.2mmol) o-diiodobenzene, 1.6g (50mmol) sulfur powder, 10.4g (75mmol) potassium carbonate, 0.36g (2.5mmol) cuprous bromide, 2.5g ( 12.5mmol) 1,10-phenanthroline was added to a 100mL three-necked flask, 40mL of dimethyl sulfoxide was added to it, and the reaction was heated to 90°C under stirring for 24 hours, cooled, and the reaction was quenched with sodium thiosulfate solution. The reaction solution was extracted with ethyl acetate several times, the organic phase was dried over magnesium sulfate and concentrated under reduced pressure. The obtained solid was purified by silica gel column chromatography with dichloromethane and n-heptane (1:10) to obtain compound 100-1 (3.7 g, yield 68%).
  • Step 2 Under the protection of nitrogen, add 3.7g (17.1mmol) of compound 100-1 and dry 30mL of tetrahydrofuran into a 100mL three-necked flask, cool the system to -78°C, keep this temperature and slowly add 11mL (22.2mmol) dropwise
  • the n-butyllithium n-hexane solution with a concentration of 2mol/L after dripping and holding for 60min, then slowly dripping 1.5g (9.4mmol) bromine, after dripping and holding for 2 hours, naturally rise to room temperature and continue to stir for 24 hours, with carbonic acid
  • the reaction was quenched with dilute sodium hydrogen solution, and the reaction solution was extracted with ethyl acetate.
  • the organic phase was dried over magnesium sulfate and distilled under reduced pressure until no solvent remained.
  • the obtained solid was recrystallized from n-heptane to obtain compound 100-2, (2.8g, 55%)
  • the organic electroluminescent device is prepared through the following process:
  • the ITO thickness is The ITO substrate (manufactured by Corning) was cut into a size of 40mm (length) ⁇ 40mm (width) ⁇ 0.7mm (thickness), and then a photolithography process was used to prepare it into an experiment with anode and cathode overlap areas and insulating layers
  • the substrate luminescent pixel dot size is 3mm ⁇ 3mm), using ultraviolet ozone and O 2 :N 2 plasma for surface treatment to increase the work function of the anode (experimental substrate) and remove scum.
  • HAT-CN CAS number: 105598-27-4
  • HIL hole injection layer
  • HTL hole transport layer
  • TCTA (CAS number: 139092-78-7) was vacuum-evaporated on the above hole transport layer to form an electron blocking layer (EBL) with a thickness of 15 nm.
  • EBL electron blocking layer
  • ADN 9,10-bis(2-naphthyl)anthracene
  • FIrN4 CAS number: 1219078-44-0
  • the host and dopants are in accordance with The film thickness ratio of 30:3 forms an organic electroluminescent layer (EML) with a thickness of 22 nm. .
  • an organic film layer with a thickness of 30nm is used as an electron transport layer by vacuum evaporation of TPBI (CAS number: 192198-85-9) and LiQ (CAS number: 850918-68-2) in a ratio of 1:1 (ETL).
  • a layer of Yb (CAS No.: 850918-68-2) with a thickness of 1 nm was deposited on the above electron transport layer as an electron injection layer (EIL);
  • magnesium (Mg) and silver (Ag) were vapor-deposited at a ratio of 1:9 to a thickness of 12nm as the cathode of the device; finally, N4,N4'-bis[4-[ ⁇ () was vapor-deposited on the cathode with a thickness of 70nm.
  • 3-methylphenyl)amino]phenyl)-N4,N4'-dimethyl-[1,1'-dimethyl]-4,4'-diurea (DNTPD) (CAS No. 199121-98 -7) As a capping layer.
  • the vapor-deposited devices are encapsulated with UV-curing resin in a nitrogen glove box (the content of water and oxygen must be strictly controlled).
  • Table 1 The detection performance of the organic electroluminescent device of the embodiment and the comparative example
  • the driving voltage, current efficiency, and color coordinates in the detection performance in Table 1 are tested at a constant current density of 10 mA/cm 2 , and the T95 device life is tested at a constant current density of 15 mA/cm 2 .
  • the organic electroluminescent devices of Examples 1-15 have at least a 0.22V reduction in voltage and at least an increase in luminous efficiency compared with Comparative Examples 1, 2 and 3. 11.1%, the life span is increased by at least 8.3%, and the improvement of the luminous efficiency of the blue light device is a significant improvement. Therefore, compared with Comparative Examples 1 to 3, the organic electroluminescent devices of Examples 1 to 15 generally have the characteristics of high efficiency, low voltage, and long life.
  • applying the compound of the present invention to the hole transport layer of an organic electroluminescent device can significantly reduce the operating voltage of the organic electroluminescent device, improve the luminous efficiency of the organic electroluminescent device, and prolong the life of the organic electroluminescent device.
  • the main body of the compounds listed in the examples of the present invention is a fused heteroaromatic ring group containing fluorene or silicon fluorene, which exhibits a large planar structure in the three-dimensional space.
  • the introduction of electron-rich arylamine or heteroarylamine substituents at the position makes the hole transport performance of the compound excellent.
  • the organic compound of the present application applies a specific structure to make it in the hole transport layer (HTL) of an organic electroluminescent device, which has certain advantages compared with previous materials, and has excellent carrier transport performance. It is helpful to reduce the voltage, increase the efficiency and extend the life of the organic electroluminescent device.
  • HTL hole transport layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

公开了一种有机化合物、以及包含该有机化合物的电子器件和包含该电子器件的电子装置。所述有机化合物,主体是包含芴或硅芴的稠合杂芳环基,在立体空间中展现为大平面结构,通过在芴或硅芴基的9号位引入富电子的芳胺或杂芳胺取代基,使得化合物的空穴传输性能表现优异。

Description

有机化合物、电子器件及电子装置
相关申请的交叉引用
本发明要求于2019年12月19日递交的、申请号为CN 201911320582.0、发明名称为“有机化合物、电子器件及电子装置”的中国发明专利申请的优先权,本发明要求于2020年4月3日递交的、申请号为CN 202010261391.8、发明名称为“有机化合物、电子器件及电子装置”的中国发明专利申请的优先权,本发明要求于2019年4月8日递交的、申请号为CN 202010270448.0、发明名称为“有机化合物、电子器件及电子装置”的中国发明专利申请的优先权,在此引用上述中国专利申请公开的内容全文以作为本公开的一部分。
技术领域
本申请涉及有机光电材料化合物技术领域,具体涉及一种有机化合物、电子器件及电子装置。
背景技术
有机电致发光器件(OLED:Organic Light Emitting device)为一种自发光的发光器件。其原理是在阴阳两极施加电场时,阳极侧的空穴和阴极侧的电子会向发光层移动,在发光层结合形成激子,激子处于激发态向外释放能量,从激发态释放能量变为基态释放能量的过程对外发光。因此,提高OLED器件中电子和空穴的再结合性是至关重要的。
为了提高有机电致发光器件的亮度、效率和寿命,通常在器件中使用多层结构。这些多层结构包括:空穴注入层(hole injection layer),空穴传输层(hole transport layer),电子阻挡层(electron-blocking layer)、发光层(emitting layer)和电子传输层(electron transport layer)等等。这些有机层具有提高载流子(空穴和电子)在各层界面间的注入效率,平衡载流子在各层之间传输的能力,从而提高器件的亮度和效率。
但是,当前商业化的OLED器件仍然存在诸多的问题,例如驱动电压高、发光效率低、热稳定性差、寿命短,尤其是在蓝光OLED器件方面,因此,开发具有低的驱动电压、高的发光效率、高热稳定性、长寿命的OLED器件及相关的材料成为当下有机电致发光领域不得不克服的难题。
专利号为CN201510472766.4的中国发明专利“一种有机化合物及其用途和有机电致发光器件”公开了一种能够提高有机电致发光器件的发光效率的化合物,但是,依然有必要继续研发新型的应用于有机电致发光器件中的化合物,以进一步提高电子器件的性能。
发明内容
本申请的目的在于提供一种具有优异的载流子传输性能的有机化合物,并提供一种包含所述有机化合物的有机电致发光电子器件,该电子器件具有较低的驱动电压、较高的发光效率和较长的使用寿命,同时提供一种包含所述电子器件的电子装置。
根据本申请的一个方面,提供了一种有机化合物,所述有机化合物的结构如化学式Ⅰ所示:
Figure PCTCN2020122968-appb-000001
其中,X选自C或Si;
Y 1和Y 2相同或不同,各自独立地选自O或S;
R 1和R 2分别独立地选自氢、氘或以下基团:取代或未取代的碳原子数为1-10的烷基、取代或未取代的碳原子数为3-10的环烷基、取代或未取代的碳原子数为6-30的芳基、取代或未取代的碳原子数为1-30的杂芳基、
Figure PCTCN2020122968-appb-000002
且R 1和R 2中至少有一个为
Figure PCTCN2020122968-appb-000003
各Ar 1和Ar 2相同或不同,各自独立地选自氢、氘、取代或未取代的碳原子数为7-25的芳烷基、取代或未取代的碳原子数为2-20的杂芳烷基、取代或未取代的碳原子数为6-30的芳基、取代或未取代的碳原子数为1-30的杂芳基中的一种;
L 1和L 2相同或不同,各自独立地选自单键、取代或未取代的碳原子数为6-30的亚芳基、取代或未取代的碳原子数为1-30的亚杂芳基中的一种,且当R 1
Figure PCTCN2020122968-appb-000004
时,L 1不为单键,当R 2
Figure PCTCN2020122968-appb-000005
时,L 2不为单键;
所述Ar 1,Ar 2,L 1,L 2上的取代基相同或不同,且分别独立地选自氘、卤素基团、氰基、碳原子数为1-12的烷基、碳原子数为1-12的烷氧基、碳原子数为1-12的烷硫基、碳原子数为1-12的卤代烷基、碳原子数为3-12的三烷基硅烷基、碳原子数为3-12的环烷基、碳原子数为6-18的芳氧基、碳原子数为6-18的芳硫基、碳原子数为6-18的芳基和碳原子数为3-18的。
根据本申请的另一个方面,提供了一种电子器件,所述电子器件包括相对设置的阳极和阴极,以及设于所述阳极和所述阴极之间的功能层;所述功能层包含上述的有机化合物。
根据本申请的第三个方面,提供了一种电子装置,包括上述的电子器件。
本申请提供的有机化合物,主体是包含芴或硅芴的稠合杂芳环基,在立体空间中展现为大平面结构,通过在芴或硅芴基的9号位引入富电子的芳胺或杂芳胺取代基,使得该化合物的空穴传输性能表现优异。究其原因,是由于其主体结构所形成的超共轭体系增强了载流子在不同分子间跨越的能力。将本申请的有机化合物用于电子器件的功能层时,该电子器件具有高的发光效率、低电压和长寿命的特点。
本申请中包含所述电子器件的电子装置具有高的发光效率、低电压、长寿命的特点。
附图说明
通过参照附图详细描述其示例实施方式,使本申请的目的、技术方案和优点更加清楚。
图1是本申请实施方式的一种有机电致发光器件的结构示意图。
图2是本申请实施方式的一种电子装置的结构示意图。
图3是本申请实施方式的一种光电转化器件的结构示意图。
图4是本申请实施方式的一种电子装置的结构示意图。
图中主要器件附图标记说明如下:
100、阳极;200、阴极;300、功能层;310、空穴注入层;320、空穴传输层;321、第一空穴传输层;322、第二空穴传输层;330、有机发光层;340、电子传输层;350、电子注入层;360、光电转化层;400、电子装置;500、电子装置。
具体实施方式
现在将参考附图更全面地描述示例实施例。然而,示例实施例能够以多种形式实施,且不应被理解为限于在此阐述的范例;相反,提供这些实施例使得本申请将更加全面和完整,并将示例实施例的构思全面地传达给本领域的技术人员。所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施例中。在下面的描述中,提供许多具体细节从而给出对本申请的实施例的充分理解。
术语“任选”或者“任选地”意味着随后所描述的事件或者环境可以但不必发生,该说明包括该事情或者环境发生或者不发生的场合。例如,“任选被烷基取代的杂环基团”意味着烷基可以但不必须存在,该说明包括杂环基团被烷基取代的情景和杂环基团不被烷基取代的情景。“任选地,连接于同一个原子上的R e和R f可以相互连接成成饱和或不饱和的5至10元脂肪族环”意味着连接于同一个原子上的R e和R f可以成环但不必须成环,包括R e和R f相互连接成成饱和或不饱和的5至10元脂肪族环的情景,也包括R e和R f相互独立地存在的情景。
在本申请中,
Figure PCTCN2020122968-appb-000006
是指与其他取代基或结合位置结合的位置。
在本申请中所采用的描述方式“各……独立地为”与“……分别独立地为”和“……独立地选自”可以互换,均应做广义理解,其既可以是指在不同基团中,相同符号之间所表达的具体选项之间互相不影响,也可以表示在相同的基团中,相同符号之间所表达的具体选项之间互相不影响。例如,“
Figure PCTCN2020122968-appb-000007
其中,各q独立地为0、1、2或3,各R”独立地选自氢、氘、氟、氯”,其含义是:式Q-1表示苯环上有q个取代基R”,各个R”可以相同也可以不同,每个R”的选项之间互不影响;式Q-2表示联苯的每一个苯环上有q个取代基R”,两个苯环上的R”取代基的个数q可以相同或不同,各个R”可以相同也可以不同,每个R”的选项之间互不影响。
在本申请中,术语“取代或未取代的”是指没有取代基或者被一个或多个取代基取代。所述取代基包括但不限于,氘(D)、卤素基团(F、Cl、Br)、氰基、烷基、烯基、炔基、卤代烷基、芳基、杂芳基、芳氧基、芳硫基、硅烷基、烷胺基、芳胺基、环烷基、杂环基、硼烷基、膦基。
本申请中“脂肪族环”包含饱和的环烷基和部分不饱和的环烷基,例如,饱和环烷基,环戊烷基、环己烷基、金刚烷基等,部分不饱和环烷基,环丁烯等。
其中,本申请中,“杂”是指在一个官能团中包括1至3个选自由B、N、O、S、Se、Si和P组成的组中的杂原子且其余为碳。
其中,在本申请中,“烷基”或“烷基基团”,表示含有1至20个碳原子,饱和的直链或支链一价烃基基团,其中,所述烷基基团可以任选地被一个或多个本申请描述的取代基所取代。除非另外详细说明,烷基基团含有1-20个碳原子。在一些实施方案中,烷基基团可含有1-10个碳原子,在另一些实施方案中,烷基基团含有1-6个碳原子;在又一些实施方案中,烷基基团含有1-4个碳原子。烷基基团的实例包含,但并不限于,甲基(Me、-CH 3),乙基(Et、-CH 2CH 3),正丙基(n-Pr、-CH 2CH 2CH 3),异丙基(i-Pr、-CH(CH 3) 2),正丁基(n-Bu、-CH 2CH 2CH 2CH 3),异丁基(i-Bu、-CH 2CH(CH 3) 2),仲丁基(s-Bu、-CH(CH 3)CH 2CH 3),叔丁基(t-Bu、-C(CH 3) 3)等。
在本申请中,芳基指的是多个碳原子形成的单环结构,或多个碳原子形成的双环或多环体系,其中,至少包含一个芳香族的环体系,其中每一个环体系可包含3-7个原子组成的环,即芳基可以是单环芳基或多环芳基。换言之,芳基可以是单环芳基、稠环芳基、通过碳碳键共轭连接的两个或者多个单环芳基、通过碳碳键共轭连接的单环芳基和稠环芳基、通过碳碳键共轭连接的两个或者多个稠环芳基。即,通过碳碳键共轭连接的两个或者多个芳香基团也 可以视为本申请的芳基。举例而言,在本申请中,联苯基、三联苯基等为芳基。本申请的“芳基”可含有6-30个碳原子,在一些实施例中,芳基中的碳原子数可以是6-25个,在另一些实施例中芳基中的碳原子数可以是6-18个,在另一些实施例中芳基中的碳原子数可以是6-13个。举例而言,其碳原子数量可以是6个、12个、13个、18个、20个、25个或30个,当然,碳原子数还可以是其他数量,在此不再一一列举。
在本申请中,成环碳原子数为6-20的芳基指的是芳基中位于芳香环上的碳原子数是6-20个,芳基上的取代基中的碳原子数不计算在内。芳基中的成环碳原子数可以是6-20个、6-18个、6-14个或6-10个,但不限于此。
芳基的示例可以包括苯基、萘基、芴基、蒽基、菲基、联苯基、三联苯基、四联苯基、五联苯基、苯并[9,10]菲基、荧蒽基、芘基、苯并荧蒽基、
Figure PCTCN2020122968-appb-000008
基、苝基等,而不限于此。
在本申请中,作为取代基的芳基,例如但不限于,苯基、萘基、芴基、蒽基、菲基、联苯基、二甲基芴基等。
在本申请中,n个原子形成的环体系,即为n元环。例如,苯基为6元芳基。6-10元芳环就是指苯环和萘环。
本申请的“芳基”上可以有一个或多个连接点与分子其余部分相连。在本申请中,对芳基的解释可应用于亚芳基。
在本申请中,取代的芳基,指的是芳基中的一个或者多个氢原子被其基团所取代,例如至少一个氢原子被氘原子、F、Cl、Br、CN、氨基、烷基、卤代烷基、环烷基、芳氧基、芳硫基、硅烷基、烷胺基、芳胺基、硼烷基、膦基、杂芳基或者其他基团所取代。
可以理解的是,“取代的C6-C30的芳基”即取代的碳原子数为6-30的芳基,指的是芳基和芳基上的取代基的碳原子总数为6-30个。成环碳原子数为6-18的芳基指的是芳基中位于芳香环上的碳原子数是6-18个,芳基上的取代基中的碳原子数不计算在内。芳基中的成环碳原子数可以是6-30个、6-18个或6-13个,但不限于此。示例地,芴基属于成环碳原子数为13的芳基,9,9-二甲基芴基,属于取代的15个碳原子的芳基。
术语“杂芳基”是单环、双环和多环体系,其中至少一个环体系是芳香族的,且至少一个芳香环体系包含一个或多个选自B、O、N、P、Si、Se和S的杂原子,其中每一个环体系包含5-7个原子组成的环,且有一个或多个连接点与分子其余部分相连。在本申请中,杂芳基的碳原子数可以是3-30个或3-18个,或3-12个。杂芳基可以是单环杂芳基或多环杂芳基,换言之,杂芳基可以是单个芳香环体系,也可以是通过碳碳键共轭连接的多个芳香环体系,且任一芳香环体系为一个芳香单环或者一个芳香稠环。示例地,杂芳基可以包括噻吩基、呋喃基、吡咯基、咪唑基、噻唑基、噁唑基、吡啶基、联吡啶基、嘧啶基、三嗪基、吖啶基、哒嗪基、吡嗪基、喹啉基、喹唑啉基、喹喔啉基、吩噁嗪基、酞嗪基、吡啶并嘧啶基、吡啶并吡嗪基、吡嗪并吡嗪基、异喹啉基、吲哚基、咔唑基、苯并噁唑基、苯并咪唑基、苯并噻唑基、N-苯基咔唑基、苯并噻吩基、二苯并噻吩基、噻吩并噻吩基、苯并呋喃基、菲咯啉基、异噁唑基、噻二唑基、苯并噻唑基、吩噻嗪基、二苯并甲硅烷基、二苯并呋喃基等,而不限于此。其中,噻吩基、呋喃基、菲咯啉基等为单个芳香环体系的杂芳基,N-苯基咔唑基、N-吡啶基咔唑基、苯基取代的二苯并呋喃基、吡啶取代的吡啶基等为通过碳碳键共轭连接的多个芳香环体系的杂芳基。
在本申请中,作为取代基的杂芳基,例如但不限于,噻吩基、呋喃基、吡咯基、咪唑基、吡啶基、联吡啶基、嘧啶基、三嗪基、菲咯啉基、吲哚基、咔唑基、苯并噁唑基、苯并咪唑基、苯并噻唑基、N-苯基咔唑基、苯并噻吩基、二苯并噻吩基、二苯并甲硅烷基、二苯并呋喃基等。
在本申请中,取代的杂芳基,指的是杂芳基中的一个或者多个氢原子被其基团所取代, 例如至少一个氢原子被氘原子、F、Cl、Br、CN、氨基、烷基、卤代烷基、环烷基、芳氧基、芳硫基、硅烷基、烷胺基、芳胺基、硼烷基、膦基、芳基或者其他基团取代。
可以理解的是,“杂芳基”上可以有一个键、两个键或多个键与分子中其他部分相连接。
可以理解的是,“取代的C3-C30的杂芳基”即取代的碳原子数为3-30的杂芳基,指的是杂芳基和杂芳基上的取代基的碳原子总数为3-30个。
成环碳原子数为3-18的杂芳基指的是杂芳基中位于杂芳环上的碳原子数是3-18个,杂芳基上的取代基中的碳原子数不计算在内。杂芳基上的碳原子数可以是3-18个、4-18个、12-18个、3-12个、3-8个,但不限于此。
本申请中,碳原子数为3-12的三烷基硅烷基是指
Figure PCTCN2020122968-appb-000009
其中,R G1、R G2、R G3分别独立地为烷基,烷基硅烷基的具体实例,包括但不限于,三甲基硅烷基、三乙基硅烷基。
本申请中,三芳基基硅烷基是指
Figure PCTCN2020122968-appb-000010
其中,R G4、R G5、R G6分别独立地为芳基,芳基硅烷基的具体实例,包括但不限于,三苯基硅烷基但并不限定于此。本申请中的不定位连接键,是指从环体系中伸出的单键
Figure PCTCN2020122968-appb-000011
其表示该连接键的一端可以连接该键所贯穿的环体系中的任意位置,另一端连接化合物分子其余部分。例如,下式(X)中所示的,式(X)所表示的萘基通过两个贯穿双环的不定位连接键与分子其他位置连接,其所表示的含义,包括如式(X-1)~式(X-7)所示出的任一可能的连接方式。
Figure PCTCN2020122968-appb-000012
例如,下式(X’)中所示的,式(X’)所表示的菲基通过一个从一侧苯环中间伸出的不定位连接键与分子其他位置连接,其所表示的含义,包括如式(X’-1)~式(X’-4)所示出的任一可能的连接方式。
Figure PCTCN2020122968-appb-000013
本申请中的不定位取代基,指的是通过一个从环体系中央伸出的单键连接的取代基,其表示该取代基可以连接在该环体系中的任何可能位置。例如,下式(Y)中所示的,式(Y)所表示的取代基R基通过一个不定位连接键与喹啉环连接,其所表示的含义,包括如式(Y-1)~式(Y-7)所示出的任一可能的连接方式。
Figure PCTCN2020122968-appb-000014
在本申请中,对芳基的解释可应用于亚芳基,对杂芳基的解释也可应用于亚杂芳基。
本申请提供一种有机化合物,所述有机化合物的结构如化学式Ⅰ所示:
Figure PCTCN2020122968-appb-000015
其中,X选自C或Si;
Y 1和Y 2相同或不同,各自独立地选自O或S;
R 1和R 2分别独立地选自氢、氘或以下基团:取代或未取代的碳原子数为1-10的烷基、取代或未取代的碳原子数为3-10的环烷基、取代或未取代的碳原子数为6-30的芳基、取代或未取代的碳原子数为1-30的杂芳基、
Figure PCTCN2020122968-appb-000016
且R 1和R 2中至少有一个为
Figure PCTCN2020122968-appb-000017
各Ar 1和Ar 2相同或不同,各自独立地选自氢、氘、取代或未取代的碳原子数为7-25的芳烷基、取代或未取代的碳原子数为2-20的杂芳烷基、取代或未取代的碳原子数为6-30的芳基、取代或未取代的碳原子数为1-30的杂芳基中的一种;
L 1和L 2相同或不同,各自独立地选自单键、取代或未取代的碳原子数为6-30的亚芳基、取代或未取代的碳原子数为1-30的亚杂芳基中的一种,且当R 1
Figure PCTCN2020122968-appb-000018
时,L 1不为单键,当R 2
Figure PCTCN2020122968-appb-000019
时,L 2不为单键;
所述Ar 1,Ar 2,L 1,L 2上的取代基相同或不同,且分别独立地选自氘、卤素基团、氰基、碳原子数为1-12的烷基、碳原子数为1-12的烷氧基、碳原子数为1-12的烷硫基、碳原子数为1-12的卤代烷基、碳原子数为3-12的三烷基硅烷基、碳原子数为3-12的环烷基、碳原子数为6-18的芳氧基、碳原子数为6-18的芳硫基、碳原子数为6-18的芳基和碳原子数为3-18的杂芳 基。
在一些实施方案中,本申请所述化学式Ⅰ的有机化合物选自以下化合物:
Figure PCTCN2020122968-appb-000020
在一些实施方案中,本申请所述的式I化合物中L 1和L 2相同或不同,各自独立地选自单键、取代或未取代的碳原子数为6-25的亚芳基、取代或未取代的碳原子数为4-18的亚杂芳基。
在一些实施方案中,本申请所述的式I化合物中的L 1和L 2相同或不同,各自独立地选自单键、或者取代或为取代的如下基团:
Figure PCTCN2020122968-appb-000021
上述基团中,X选自O、S、Se、C(R 3R 4)、N(R 5)和Si(R 3R 4)所构成的组;
X 1、X 2、X 3、X 4、X 5各自分别独立地选自CR 6和N,且X 1~X 5中至少有一个为N;
各X 6~X 15分别独立地选自CR 6和N,当一个基团中包含两个或多个R 6时,任意两个R 6相同或者不相同;
各Z 1、Z 2、R 3、R 4和R 6分别独立地选自氢、氘、氟、氯、溴、氰基、碳原子数为1-6的烷基、碳原子数为1-6的卤代烷基、碳原子数为1-6的烷氧基、碳原子数为6-18的芳氧基、碳原子数为6-18的芳硫基、碳原子数为6-12的芳基、碳原子数为3-12的杂芳基、碳原子数为3-12的硅烷基和碳原子数为3-10的环烷基;或者,
任选地,连接于同一个原子上的R 3和R 4相互连接成成饱和或不饱和的5至10元脂肪族环;意思是,在本申请中的R 3和R 4可以与他们共同连接的原子一起相互连接形成脂肪族 环,也可以R 3和R 4各自独立地存在;
R 5选自氢、碳原子数为1-6的烷基、碳原子数为1-6的卤代烷基、碳原子数为6-12的芳基、碳原子数为3-12的杂芳基和碳原子数为3-10的环烷基所构成的组;
各n 1独立地选自0、1、2、3、4或5,各n 2独立地选自0、1、2、3、4、5、6或7。
在一些实施方案中,本申请所述的式I化合物中L 1和L 2相同或不同,各自独立地选自单键、取代或未取代的碳原子数为6-12的亚芳基、取代或未取代的碳原子数为9-12的亚杂芳基。进一步地,L 1和L 2的取代基分别独立地选自氘、氟、氯、氰基、甲基、乙基、异丙基、叔丁基、甲氧基、乙氧基、异丙氧基、丙氧基、环戊烷基、环己烷基、三氟甲基、苯基、萘基、三甲基硅烷基、三苯基硅烷基。
在一些更具体的实施方案中,本申请所述的式I化合物中L 1和L 2相同或不同,各自独立地选自单键、取代或未取代的亚苯基、取代或未取代的亚萘基、取代或未取代的亚蒽基、取代或未取代的亚菲基、取代或未取代的二联苯亚基、取代或未取代的三联苯亚基、取代或未取代的亚芴基、取代或未取代的二苯并呋喃亚基、取代或未取代的二苯并噻吩亚基、取代或未取代的亚吡啶基、取代或未取代的亚喹啉基、取代或未取代的亚咔唑基以及取代或未取代的N-苯基咔唑亚基中的一种,或者为它们中两者或三者通过单键连接形成的亚基基团;所述L 1或L 2分别任选地被0、1、2、3、4或5个选自氘、氟、氯、氰基、甲基、乙基、异丙基、叔丁基、甲氧基、乙氧基、异丙氧基、丙氧基、环戊烷基、环己烷基、三氟甲基、苯基、萘基、三甲基硅烷基、三苯基硅烷基的取代基所取代。
在一些更具体的实施方案中,本申请所述的式I化合物中L 1和L 2相同或不同,各自独立地选自单键、取代或未取代的如下基团:
Figure PCTCN2020122968-appb-000022
其中,
Figure PCTCN2020122968-appb-000023
表示上述基团用于与化学式I中
Figure PCTCN2020122968-appb-000024
连接键的位置;上述基团任选地被0、1、2、3、4或5个选自氘、氟、氯、氰基、甲基、乙基、异丙基、叔丁基、甲氧基、乙氧基、异丙氧基、丙氧基、环戊烷基、环己烷基、三氟甲基、碳原子数为3-9的烷基硅烷基的取代基所取代。
在一些更具体的实施方案中,本申请所述的式I化合物中L 1和L 2相同或不同,各自独立地选 自单键、取代或未取代的如下基团:
Figure PCTCN2020122968-appb-000025
其中,
Figure PCTCN2020122968-appb-000026
表示上述基团用与化学式I中
Figure PCTCN2020122968-appb-000027
连接键的位
置;
上述基团任选地被0、1、2、3、4或5个选自氘、氟、氯、氰基、甲基、乙基、异丙基、叔丁基、甲氧基、乙氧基、异丙氧基、丙氧基、环戊烷基、环己烷基、三氟甲基、苯基、萘基、三甲基硅烷基、三苯基硅烷基的取代基所取代。
但在本申请中,式I化合物中L 1和L 2并不限于上述结构。
在一些实施方案中,本申请所述的化学式I化合物中的各Ar 1、Ar 2、R 1和R 2相同或不同,分别独立地选自取代或未取代的碳原子数为6-25的芳基、取代或未取代的碳原子数为4-18的杂芳基中的一种。
在一些实施方案中,本申请所述的化学式I化合物中的各Ar 1、Ar 2、R 1和R 2相同或不同,分别独立地选自取代或未取代的碳原子数为6-18的芳基、取代或未取代的碳原子数为5-12的杂芳基中的一种。
在一些实施方案中,所述Ar 1、Ar 2、R 1、R 2上的取代基相同或不同,且分别独立地选自氘、氟、氯、氰基、甲基、乙基、异丙基、叔丁基、甲氧基、乙氧基、异丙氧基、丙氧基、环戊烷基、环己烷基、三氟甲基、苯基、萘基、二苯并呋喃、二苯并噻吩、咔唑基、三甲基硅烷基。
在一些实施方案中,所述Ar 1、Ar 2、R 1、R 2上的取代基相同或不同,且分别独立地选自氘、卤素基团、氰基、碳原子数为1-4的烷基、碳原子数为1-4的烷氧基、碳原子数为1-4的烷硫基、碳原子数为1-4的卤代烷基、三甲基硅烷基、三苯基硅烷基、碳原子数为5-10的环烷基、碳原子数为6-18的芳氧基、碳原子数为6-18的芳硫基、碳原子数为6-18的芳基和碳原子数为3-18的杂芳基。
在一些实施方案中,本申请所述的式I化合物中的各Ar 1、Ar 2、R 1和R 2相同或不同,且分别独立地选自氢、氘、取代或未取代的如下基团:
Figure PCTCN2020122968-appb-000028
Figure PCTCN2020122968-appb-000029
各V 1~V 10和V 12~V 16分别独立地选自CR 8和N,且V 1~V 5中至少有一个为N;
上述基团中,各V分别独立地选自O、S、Se、N(R 7)、C(R 9R 10)和Si(R 9R 10)所构成的组;
Y和V 11各自独立地选自O、S或N(R 7);
各Y 1~Y 10分别独立地选自CR 8和N,当一个基团中包含两个或多个R 8时,任意两个R 8相同或者不相同;
各R 9、R 10、R 8分别独立地为氢、氘、氟、氯、溴、氰基、碳原子数为1-6的烷基、碳原子数为1-6的卤代烷基、碳原子数为6-12的芳基、碳原子数为3-12的杂芳基、碳原子数为6-18的芳氧基、碳原子数为6-18的芳硫基、碳原子数为3-12的硅烷基、碳原子数为1-10的烷胺基、碳原子数为6-18的芳胺基和碳原子数为3-10的环烷基;
R 7选自H、碳原子数为1-6的烷基、碳原子数为1-6的卤代烷基、碳原子数为6-12的芳基、碳原子数为3-12的杂芳基和碳原子数为3-10的环烷基所构成的组;或者,
任选的,两个相邻的R 8可以与它们所连接的碳原子一起形成成环原子数为6~10的芳环或成环原子数为5~12的杂芳环;意思是在本申请中两个相邻的R 8可以与它们所连接的原子一起相互连接形成芳环或杂芳环,也可以各R 8独立存在;
任选地,连接于同一个原子上的R 9和R 10可以相互连接成成饱和或不饱和的5至10元脂肪族环;意思是,本申请中的R 9和R 10可以与他们共同连接的原子相互连接成脂肪族环,也可以不形成环,而是R 9和R 10独立存在;
上述各Ar 1和Ar 2任选地被0、1、2、3、4或5个选自氘、氟、氯、氰基、碳原子数为1-6的烷基、碳原子数为3~10的环烷基、碳原子数为6-18的芳基、碳原子数为3-18的杂芳基、碳原子数为1-4的烷氧基、碳原子数为1-4的卤代烷基、碳原子数为3-9的烷基硅烷基的取代基所取代。
在一些实施方案中,本申请所述的化学式I化合物中的各Ar 1、Ar 2、R 1和R 2相同或不
同,且分别独立地选自氢、氘、取代或未取代的如下基团:
Figure PCTCN2020122968-appb-000030
上述各基团任选地被0、1、2、3、4或5个选自氘、氟、氯、氰基、碳原子数为1-6的烷基、碳原子数为1~4的烷氧基、碳原子数为1-4的卤代烷基、碳原子数为3-9的烷基硅烷基、碳原子数为3~10的环烷基、碳原子数为6-18的芳基、碳原子数为3-18的杂芳基的取代基所取代。
10.在一些实施方案中,本申请所述的化学式I化合物中的各Ar 1、Ar 2、R 1和R 2相同或不同,且分别独立地选自氢、氘、取代或未取代的如下基团:
Figure PCTCN2020122968-appb-000031
上述各基团任选地被0、1、2、3、4或5个选自氘、氟、氯、氰基、碳原子数为1-6的烷基、碳原子数为1~4的烷氧基、碳原子数为1-4的卤代烷基、三甲基硅烷基、碳原子数为3~10的环烷基、碳原子数为6-13的芳基、碳原子数为3-12的杂芳基的取代基所取代。
在一些更具体的实施方式中,本申请所述的化学式I化合物中的Ar 1、Ar 2相同或不同,且分别独立地选自氢、氘、取代或未取代的如下基团:
Figure PCTCN2020122968-appb-000032
Figure PCTCN2020122968-appb-000033
上述基团任选地被0、1、2、3、4或5个选自氘、氟、氯、氰基、甲基、乙基、异丙基、叔丁基、甲氧基、乙氧基、异丙氧基、丙氧基、环戊烷基、环己烷基、三氟甲基、碳原子数为3-9的烷基硅烷基的取代基所取代。
在一些更具体的实施方式中,本申请所述的化学式I化合物中的Ar 1、Ar 2相同或不同,且分别独立地选自氢、氘、取代或未取代的如下基团:
Figure PCTCN2020122968-appb-000034
上述基团任选地被0、1、2、3、4或5个选自氘、氟、氯、氰基、甲基、乙基、异丙基、叔丁基、甲氧基、乙氧基、异丙氧基、丙氧基、环戊烷基、环己烷基、三氟甲基、三甲基硅烷基、苯基、萘基的取代基所取代。
在另一些实施方式中,在本申请中,式I化合物中的Ar 1、Ar 2并不限于上述基团。
进一步地,本申请所述的化学式I化合物中的R 1和R 2相同或不同,且分别独立地选自氢、氘、取代或未取代的如下基团:
Figure PCTCN2020122968-appb-000035
上述基团任选地被0、1、2、3、4或5个选自氘、氟、氯、氰基、甲基、乙基、异丙基、叔丁基、甲氧基、乙氧基、异丙氧基、丙氧基、环戊烷基、环己烷基、三氟甲基、碳原子数为3-9的烷基硅烷基的取代基所取代。
进一步地,本申请所述的化学式I化合物中的R 1和R 2相同或不同,且分别独立地选自氢、氘、取代或未取代的如下基团:
Figure PCTCN2020122968-appb-000036
上述基团任选地被0、1、2、3、4或5个选自氘、氟、氯、氰基、甲基、乙基、异丙基、叔丁基、甲氧基、乙氧基、异丙氧基、丙氧基、环戊烷基、环己烷基、三氟甲基、苯基、萘基、碳原子数为3-9的烷基硅烷基的取代基所取代。
在另一些实施方式中,在本申请中化学式I化合物中的R 1、R 2并不限于上述基团。
进一步地,所述的化学式Ⅰ的化合物具体结构选自以下任意一个,但不限于此:
Figure PCTCN2020122968-appb-000037
Figure PCTCN2020122968-appb-000038
Figure PCTCN2020122968-appb-000039
Figure PCTCN2020122968-appb-000040
Figure PCTCN2020122968-appb-000041
Figure PCTCN2020122968-appb-000042
Figure PCTCN2020122968-appb-000043
Figure PCTCN2020122968-appb-000044
Figure PCTCN2020122968-appb-000045
本申请还提供了一种电子器件,所述电子器件包括相对设置的阳极和阴极,以及设于所述阳极和所述阴极之间的功能层;所述功能层包含上述的有机化合物。
本申请所提供的有机化合物可以用于形成功能层中的至少一个有机膜层,以改善电子器件的电压特性、效率特性和寿命特性。可选的,包含有本申请的有机化合物的有机膜层位于阳极和电子器件的能量转化层之间,以便改善电子在阳极与能量转化层之间的传输。进一步地,所述功能层包括空穴传输层,所述空穴传输层包括上述的有机化合物。
举例而言,电子器件可以为一种有机电致发光器件。其中,如图1所示,有机电致发光器件包括相对设置的阳极100和阴极200,以及设于阳极100和阴极200之间的功能层300;功能层300包含本申请所提供的有机化合物。
可选地,本申请所提供的有机化合物可以用于形成功能层300中的至少一个有机薄层,以改善有机电致发光器件的寿命特性、效率特性并且降低驱动电压;在某些实施例中,还可以提高有机电致发光器件的电化学稳定性和热稳定性,提高量产的有机电致发光器件的性能的均一性。
可选地,功能层300包括空穴传输层320,空穴传输层320包含本申请所提供的有机化合物。其中,空穴传输层320既可以为本申请所提供的有机化合物组成,也可以由本申请所提供的有机化合物和其他材料共同组成。
可选的,空穴传输层320包括第一空穴传输层321和第二空穴传输层322,且第一空穴传输层321设于第二空穴传输层322靠近阳极100的表面;第一空穴传输层321或第二空穴传输层322包含本申请所提供的有机化合物。其中,既可以第一空穴传输层321或第二空穴传输层322中的一层包含本申请所提供的有机化合物,也可以第一空穴传输层321和第二空穴传输层322均含有本申请所提供的有机化合物。可以理解的是,第一空穴传输层321或第二空穴传输层322还可以含有其他材料,也可以不含有其他材料。可以理解的是,在本申请的另一种实施方式中,第二空穴传输层322可以作为有机电致发光器件的电子阻挡层。
在本申请的一种实施方式中,如图1所示,有机电致发光器件可以包括依次层叠设置的阳极100、第一空穴传输层321、第二空穴传输层322、有机发光层330、电子传输层340和阴极200。本申请提供的有机化合物可以应用于有机电致发光器件的第一空穴传输层321或第二空穴传输层322,可以有效改善有机电致发光器件的空穴特性。其中,空穴特性是指在阳极100中形成的空穴容易地被注入有机发光层330、并且根据HOMO水平的传导特性而在有机发光层330中传输。
可选的,阳极100包括以下阳极材料,其优选地是有助于空穴注入至功能层中的具有大逸出功(功函数,work function)材料。阳极材料具体实例包括:金属如镍、铂、钒、铬、铜、锌和金或它们的合金;金属氧化物如氧化锌、氧化铟、氧化铟锡(ITO)和氧化铟锌(IZO);组合的金属和氧化物如ZnO:Al或SnO 2:Sb;或导电聚合物如聚(3-甲基噻吩)、聚[3,4-(亚乙基-1,2-二氧基)噻吩](PEDT)、聚吡咯和聚苯胺,但不限于此。优选包括包含氧化铟锡(铟锡氧化物,indium tin oxide)(ITO)作为阳极的透明电极。
可选的,有机发光层330可以由单一发光材料组成,也可以包括主体材料和客体材料。可选的,有机发光层330由主体材料和客体材料组成,注入有机发光层330的空穴和注入有机发光层330的电子可以在有机发光层330复合而形成激子,激子将能量传递给主体材料,主体材料将能量传递给客体材料,进而使得客体材料能够发光。
有机发光层330的主体材料可以为金属螯合化类咢辛化合物、双苯乙烯基衍生物、芳香族胺衍生物、二苯并呋喃衍生物或者其他类型的材料,本申请对此不做特殊的限制。在本申请的一种实施方式中,有机发光层330的主体材料可以为CBP。在本申请的另一种实施方式中,有机发光层330的主体材料可以为α,β-ADN。
有机发光层330的客体材料可以为具有缩合芳基环的化合物或其衍生物、具有杂芳基环的化合物或其衍生物、芳香族胺衍生物或者其他材料,本申请对此不做特殊的限制。在本申请的一种实施方式中,有机发光层330的客体材料可以为Ir(piq) 2(acac)。在本申请的另一种实施方式中,有机发光层330的客体材料可以为BD-1。
电子传输层340可以为单层结构,也可以为多层结构,其可以包括一种或者多种电子传输材料,电子传输材料可以选自苯并咪唑衍生物、恶二唑衍生物、喹喔啉衍生物或者其他电子传输材料,本申请对此不做特殊的限定。举例而言,在本申请的一种实施方式中,电子传输层340可以由DBimiBphen和LiQ组成。
可选的,阴极200包括以下阴极材料,其是有助于电子注入至功能层中的具有小逸出功的材料。阴极材料的具体实例包括:金属如镁、钙、钠、钾、钛、铟、钇、锂、钆、铝、银、锡和铅或它们的合金;或多层材料如LiF/Al、Liq/Al、LiO 2/Al、LiF/Ca、LiF/Al和BaF 2/Ca,但不限于此。优选包括包含铝的金属电极作为阴极。
可选的,如图1所示,在阳极100和第一空穴传输层321之间还可以设置有空穴注入层310,以增强向第一空穴传输层321注入空穴的能力。空穴注入层310可以选用联苯胺衍生物、星爆状芳基胺类化合物、酞菁衍生物或者其他材料,本申请对此不做特殊的限制。在本申请的一种实施方式中,空穴注入层310可以由m-MTDATA组成。
可选地,空穴传输层320包括第一空穴传输层321和第二空穴传输层322,且第一空穴传输层321设于第二空穴传输层322靠近阳极100的表面;第一空穴传输层321或第二空穴传输层322包含本申请所提供的有机化合物。其中,既可以第一空穴传输层321或第二空穴传输层322中的一层包含本申请所提供的有机化合物,也可以第一空穴传输层321和第二空穴传输层322均含有本申请所提供的有机化合物。可以理解的是,第一空穴传输层321或第二空穴传输层322可以含有其他材料,也可以不含有其他材料。
可选地,空穴传输层320还可以包括无机掺杂材料,以提高空穴传输层320的空穴传输性能。
可选的,如图1所示,在阴极200和电子传输层340之间还可以设置有电子注入层350,以增强向电子传输层340注入电子的能力。电子注入层350可以包括有碱金属硫化物、碱金属卤化物等无机材料,或者可以包括碱金属与有机物的络合物。在本申请的一种实施方式中,电子注入层350可以包括Yb。
再举例而言,电子器件可以为一种光电转化器件,如图3所示,该光电转化器件可以包括相对设置的阳极100和阴极200,以及设于阳极100和阴极200之间的功能层300;功能层300包含本申请所提供的有机化合物。
可选地,本申请所提供的有机化合物可以用于形成功能层300中的至少一个有机薄层,以改善光电转化器件性能,尤其是提高光电转化器件的寿命、提高光电转化器件的开路电压或者提高量产的光电转化器件的性能均一稳定。
可选地,所述功能层300包括空穴传输层320,所述空穴传输层320包含本申请的有机化合物。其中,空穴传输层320既可以为本申请所提供的有机化合物组成,也可以由本申请所提供的有机化合物和其他材料共同组成。可以理解的是,空穴传输层320可以含有其他材料,也可以不含有其他材料。
可选地,空穴传输层320还可以包括无机掺杂材料,以提高空穴传输层320的空穴传输性能。
在本申请的一种实施方式中,如图3所示,光电转化器件可包括依次层叠设置的阳极100、空 穴传输层320、作为能量转化层的光电转化层360、电子传输层340和阴极200。
可选地,光电转化器件可以为太阳能电池,尤其是可以为有机薄膜太阳能电池。举例而言,在本申请的一种实施方式中,太阳能电池包括依次层叠设置的阳极100、空穴传输层320、光电转化层360、电子传输层340和阴极200,其中,空穴传输层320包含有本申请的有机化合物。
本申请实施方式还提供一种电子装置,该电子装置包括上述电子器件实施方式所描述的任意一种电子器件。由于该电子装置具有上述电子器件实施方式所描述的任意一种电子器件,因此具有相同的有益效果,本申请在此不再赘述。
举例而言,如图2所示,本申请提供一种电子设备400,该电子设备200包括上述有机电致发光器件实施方式所描述的任意一种有机电致发光器件。该电子设备400可以为显示装置、照明装置、光通讯装置或者其他类型的电子设备,例如可以包括但不限于电脑屏幕、手机屏幕、电视机、电子纸、应急照明灯、光模块等。由于该电子设备400具有上述有机电致发光器件实施方式所描述的任意一种有机电致发光器件,因此具有相同的有益效果,本申请在此不再赘述。
再举例而言,如图4所示,本申请提供一种电子设备500,该电子设备500包括上述有机电致发光器件实施方式所描述的任意一种有机电致发光器件。该电子设备500可以为太阳能发电设备、光检测器、指纹识别设备、光模块、CCD相机或则其他类型的电子设备。由于该电子设备500具有上述光电转化器件实施方式所描述的任意一种光电转化器件,因此具有相同的有益效果,本申请在此不再赘述。
实施例
下文中,将参照实施例详细描述本发明。然而,根据本说明书的实施例可被修改成各种其他形式,并且本说明书的范围不解释为受限于以下描述的实施例。提供本说明书的实施例是为了更完整地向本领域技术人员描述本说明书。
所属领域的专业人员将认识到:本发明所描述的化学反应可以用来合适地制备许多本发明的其他化合物,且用于制备本发明的化合物的其它方法都被认为是在本发明的范围之内。例如,根据本发明那些非例证的化合物的合成可以成功地被所属领域的技术人员通过修饰方法完成,如适当的保护干扰基团,通过利用其他已知的试剂除了本发明所描述的,或将反应条件做一些常规的修改。另外,本发明所申请的反应或已知的反应条件也公认地适用于本发明其他化合物的制备。
下面所描述的实施例,除非其他方面表明所有的温度定为摄氏度。试剂购买于商品供应商如Aldrich Chemical Company,Arco Chemical Company and Alfa ChemicalCompany,使用时都没有经过进一步纯化,除非其他方面表明。一般的试剂从汕头西陇化工厂、广东光华化学试剂厂、广州化学试剂厂、天津好寓宇化学品有限公司、天津市福晨化学试剂厂、武汉鑫华远科技发展有限公司、青岛腾龙化学试剂有限公司和青岛海洋化工厂购买得到。原料来自商业采购,供应商例如河南创安光电科技有限公司等
下反应一般是在氮气或氩气正压下或在无水溶剂上套一干燥管(除非其他方面表明),反应瓶都塞上合适的橡皮塞,底物通过注射器打入。玻璃器皿都是干燥过的。
色谱柱是使用硅胶柱。硅胶(300~400目)购于青岛海洋化工厂。
低分辨率质谱(MS)数据的测定条件是:Agilent 6120四级杆HPLC-M(柱子型号:Zorbax SB-C18,2.1×30mm,3.5微米,6min,流速为0.6mL/min。流动相:5%-95%(含0.1%甲酸的CH3CN)在(含0.1%甲酸的H2O)中的比例),采用电喷雾电离(ESI),在210nm/254nm下,用UV检测。
核磁共振氢谱:布鲁克(Bruker)400MHz核磁仪,室温条件下,以CDCl 3为溶剂(以ppm为单位),用TMS(0ppm)作为参照标准。当出现多重峰的时候,将使用下面的缩写:s(singlet,单峰)、d(doublet,双峰)、t(triplet,三重峰)、m(multiplet,多重峰)。
合成实施例
化合物1的合成
Figure PCTCN2020122968-appb-000046
步骤一:将3.95g(15mmol)的1-溴二苯并二恶英、2.71g(15mmol)的2-(甲氧基羰基)苯硼酸、4.14g(30mmol)的碳酸钾、0.1733g(0.15mmol)的四(三苯基膦)钯和0.0483g(0.15mmol)的四丁基溴化铵混合物加入100mL三口烧瓶中,向烧瓶中加入32mL/8mL的甲苯/水的混合溶剂,用氮气置换干净烧瓶内的空气后,于搅拌下升温到80℃反应10小时,反应液经水洗后用无水硫酸镁干燥,减压蒸馏有机相以除去甲苯,所得油状固体用乙醇煮洗一次,用二氯甲烷和正庚烷(1:5)的混合溶剂重结晶后得化合物1-1(compound 1-1)(3.63g,收率76%)。
Figure PCTCN2020122968-appb-000047
步骤二:将3.2g(10mmol)的化合物1-1、30mL四氢呋喃加入100mL三口烧瓶中,在搅拌下缓慢加入4.8g的甲磺酸,加毕加热到60℃反应5小时,向反应液中加入50mL水,用二氯甲烷萃取反应液,有机相用硫酸镁干燥后减压蒸馏,所得固体用正庚烷煮洗,得化合物1-2(compound 1-2)(2.2g,收率77%)。
Figure PCTCN2020122968-appb-000048
步骤三:将1.15g(7.3mmol)的溴苯和10mL干燥的四氢呋喃加入100mL三口烧瓶中,于搅拌下降温到-30℃,在氮气保护下缓慢滴加3.85mL(7.7mmol)浓度为2mol/L的正丁基锂正己烷溶液,滴毕保温30min,然后缓慢滴入2.2g(7.7momol)化合物1-2和10mL四氢呋喃的混合溶液,滴毕保温30min,自然升到室温后继续搅拌2小时,滴入水淬灭反应,用乙酸乙酯萃取反应液,有机相用硫酸镁干燥后减压蒸馏,所得固体用二氯甲烷和正庚烷(1:5)混合溶剂重结晶,得化合物1-3(compound 1-3)(2.1g,收率78%)。
Figure PCTCN2020122968-appb-000049
步骤四:将2.1g(5.8mmol)化合物1-3、20mL甲苯和5mL氢溴酸(47%)加入100mL三口烧瓶中,通入氮气保护及室温下搅拌反应24小时,分液,用甲苯萃取反应液,有机相用硫酸镁干燥后减压蒸馏,所得固体用二氯甲烷和正庚烷(1:3)重结晶,得化合物1-4(compound 2-4)(2.07g,收率84%)。
Figure PCTCN2020122968-appb-000050
步骤五:在氮气保护氛围下,将2.07g(4.8mmol)化合物1-4、0.76g(4.8gmmol)对氯苯硼酸、0.028g(0.024mmol)四(三苯基膦)钯、0.008g(0.024mmol)四丁基溴化铵和1.34g(9.7mmol)碳酸钾的混合物加入100mL三口烧瓶中,向烧瓶中加入16mL/4mL的甲苯/水混合溶剂,于搅拌下加热升温到80℃反应15小时,反应液经水洗后用甲苯萃取,用硫酸镁干燥有机相,减压蒸馏以除去溶剂,所得固体用乙醇煮洗一次,用二氯甲烷重结晶,得化合物1-5(compound 1-5)(1.76g,收率79%)。
Figure PCTCN2020122968-appb-000051
步骤六:在氮气保护氛围下,将1.76g(3.8mmol)化合物1-5、0.65g(3.8mmol)二苯胺、0.018g(0.019mmol)三(二亚苄基丙酮)二钯、0.016g(0.038mmol)2-双环己基膦-2',6'-二甲氧基联苯、0.55g(5.7mmol)叔丁醇钠的混合物加入100mL三口烧瓶中,向烧瓶中加入20mL甲苯,于搅拌下加热到回流反应5小时,反应液用水淬灭,用甲苯萃取,用硫酸镁干燥有机相,减压蒸馏以除去溶剂,所得固体用二氯甲烷和正庚烷(1:4)混合溶剂通过硅胶柱色谱分离,得化合物1(compound1)(1.99g,收率88%)。
LC-MS:m/z=592.2[M+H] +
1H NMR(400MHz,CDCl 3)δ:8.05(d,1H),7.63-7.42(m,15H),7.36-7.30(m,4H),7.27-7.02(m,7H),6.89-6.85(m,2H)ppm。
化合物2的合成
Figure PCTCN2020122968-appb-000052
步骤一:将3.19g(10mmol)的化合物1-1加入100mL三口烧瓶中,通入氮气置换干净瓶中的空气,加入20mL经干燥处理的四氢呋喃,搅拌下将反应液降温到-40℃,缓慢滴加10mL浓度为2mol/L的对氯苯基溴化镁(正己烷)格式试剂,维持温度在-40℃直至滴加结束,自然升温到室温后反应2h,用氯化铵水溶液淬灭反应,用乙酸乙酯萃取反应液,有机相经硫酸镁干燥后减压蒸馏除去溶剂,所得固体化合物2-2(compound 2-2)不经纯化直接投入下一步反应(4.4g,纯度83%)。
Figure PCTCN2020122968-appb-000053
步骤二:将3.13g化合物2-2(纯度83%)、30mL乙酸加入100mL三口烧瓶中,于搅拌下缓慢滴加3mL浓硫酸后开启加热升温到80℃反应8小时,反应液加水并用乙酸乙酯萃取,分液,有机相用硫酸镁干燥后减压蒸馏,所得固体用二氯甲烷重结晶,得化合物2-3(compound 2-3)(1.63g,收率65%)。
Figure PCTCN2020122968-appb-000054
步骤三:将1.63g(3.3mmol)化合物2-3、1.12g(6.6mmol)二苯胺、0.476g(4.96mmol)叔丁醇钠、0.0151g(0.016mmol)三(二亚苄基丙酮)二钯、0.0136(0.033mmol)2-双环己基膦-2',6'-二甲氧基联苯的混合物加入100mL三口烧瓶中,向其中加入20mL甲苯,通入氮气置换烧瓶中的空气,于搅拌下升温到110℃反应7小时,反应液用水淬灭水洗,分液,有机相用硫酸镁干燥后减压蒸馏,所得固体用二氯甲烷和正庚烷(1:3)通过硅胶柱色谱分离,得到化合物2(compound 2)(2.01g,收率80%)。
LC-MS:m/z=759.3[M+H] +
1H NMR(400MHz,CDCl 3)δ:8.03(d,1H),7.60-7.44(m,14H),7.37-7.32(m,8H),7.24-7.06(m,13H),6.91-6.87(m,2H)ppm。
化合物3的合成
Figure PCTCN2020122968-appb-000055
步骤一:将3g(10mmol)1-溴2-氯二苯并二恶英、1.58g(10mmol)2-氯苯硼酸、0.12g(0.1mmol)四(三苯基膦)钯、0.033g(0.1mmol)四丁基溴化铵、2.8g(20mmol)碳酸钾的混合物加入100mL三口烧瓶中,向烧瓶中加入20mL/5mL/5mL甲苯/乙醇/水的混合溶剂,在氮气保护及搅拌下升温到80℃反应12小时,用甲苯萃取反应液,有机相用硫酸镁干燥后减压蒸馏,所得固体用正庚烷煮洗后过滤,用少量乙醇淋洗滤固,得化合物3-1(compound 3-1)(2.6g,收率78%)。
Figure PCTCN2020122968-appb-000056
步骤二:在氮气保护氛围下,将2.54g(7.7mmol)化合物3-1溶于20mL干燥过的四氢呋喃中,于搅拌下降温到-5℃后,用注射器缓慢加入5mL(10mmol)正丁基锂的正己烷溶液(2M),滴加毕保温4小时,然后缓慢滴加4-氯苯基-苯基二氯硅烷和10mL四氢呋喃的溶液,加毕保温1小时,自然升到室温后搅拌反应16小时,结束后将反应液倒入稀盐酸溶液中,有固体析出,过滤,烘干滤饼,得化合物3-2(compound 3-2)(2.87g,纯度77%),直接投入下一步反应。
Figure PCTCN2020122968-appb-000057
步骤三:将2.87g(纯度77%)化合物3-2、0.78g(4.6mmol)二苯胺、0.042g(0.05mmol)三(二亚苄基丙酮)二钯、0.038g(0.1mmol)2-双环己基膦-2',6'-二甲氧基联苯、0.67g(6.9mmol)叔丁醇钠的混合物加入100mL三口烧瓶中,通入氮气置换烧瓶中的空气,向烧瓶中加入30mL甲苯,于搅拌下加热到回流反应8小时,反应液加水搅拌30min,过滤,用乙醇淋洗滤固,用甲苯重结晶,得化合物3(compound 3)(2.34g,收率83%)。
LC-MS:m/z=608.2[M+H] +
1H NMR(400MHz,CDCl 3)δ:7.97(d,1H),7.86-7.80(m,2H),7.74-7.51(m,5H),7.42-7.14(m,11H),7.09-6.90(m,8H),6.89-6.85(m,2H)ppm。
化合物4的合成
Figure PCTCN2020122968-appb-000058
步骤一:将2.7g(11mmol)的吩恶噻-4-硼酸、2.38g(11mmol)的2-溴苯甲酸甲酯、3.06g(22mmol)的碳酸钾、0.1278g(0.1mmol)的四(三苯基膦)钯和0.0357g(0.1mmol)的四丁基溴化铵混合物加入100mL三口烧瓶中,向烧瓶中加入20mL/10mL的甲苯/水的混合溶剂,用氮气置换干净烧瓶内的空气后,于搅拌下升温到80℃反应6小时,反应液经水洗后用无水硫酸镁干燥,减压蒸馏有机相以除去甲苯,所得固体用乙酸乙酯重结晶,得化合物4-1(compound 4-1)(2.91g,收率83%)。
Figure PCTCN2020122968-appb-000059
步骤二:按照与合成化合物1步骤二至步骤五相同的方法合成化合物4,区别在于将合成化合物1步骤二中的化合物1-1替换为化合物4-1,最后得到2.17g化合物4(compound 4),收率63%。
LC-MS:m/z=608.2[M+H] +
1H NMR(400MHz,CDCl 3):8.11(d,1H),7.60-7.39(m,15H),7.32-7.21(m,5H),7.16-6.93(m,8H)。
化合物5的合成
Figure PCTCN2020122968-appb-000060
按照与合成化合物1相同的方法合成化合物5,区别在于将合成化合物1步骤三中的溴苯替换为2-溴二苯并噻吩,最后得到1.96g化合物5(compound 5),收率71%。
LC-MS:m/z=698.2[M+H] +
1H NMR(400MHz,CDCl 3)δ:8.3(d,1H),8.0~7.8(m,2H),7.75~7.32(m,10H),7.29~7.12(m,11H),7.09~6.95(m.6H),6.87(m,1H)ppm。
化合物6的合成
Figure PCTCN2020122968-appb-000061
按照与合成化合物1相同的方法合成化合物6,区别在于将合成化合物1步骤三中的溴苯替换为4-溴联苯、步骤五中的对氯苯硼酸替换为7-氯二苯并呋喃-3-硼酸,最后得到2.33g化合物6(compound 6),收率58%。通过LC-MS确认所得化合物的结构。LC-MS:m/z=758.3[M+H] +
化合物7的合成
Figure PCTCN2020122968-appb-000062
按照与合成化合物3相同的方法合成化合物7,区别在于将合成化合物3步骤二中的4-氯苯基-苯基二氯硅烷替换为二(4-氯苯基)-二氯硅烷,最后得到1.95g化合物7(compound7),收率46%。通过LC-MS确认所得化合物的结构。LCMS:m/z=775.3[M+H] +
化合物17的合成
Figure PCTCN2020122968-appb-000063
步骤一:在氮气保护氛围下,将3.22g(10mmol)N-(4-溴苯基)咔唑、1.69g(10mmol)4-胺基联苯、0.09g(0.1mmol)三(二亚苄基丙酮)二钯、0.082g(0.2mmol)2-双环己基膦-2',6'-二甲氧基联苯、1.44(15mmol)叔丁醇钠的混合物加入100mL三口烧瓶中,向烧瓶中加入30mL甲苯,于搅拌下加热到回流反应2小时,反应液用水淬灭,用甲苯萃取,用硫酸镁干燥有机相,过滤,有机相通过硅胶柱色谱分离,减压浓缩过柱液,所得固体用二氯乙烷重结晶,得化合物17-1(compound 17-1)(3.2g,收率78%)。
Figure PCTCN2020122968-appb-000064
步骤二:将3.2g(7.8mmol)化合物17-1、3.58g(7.8mmol)化合物1-5、0.07g(0.078mmol)三(二亚苄基丙酮)二钯、0.06g(0.16mmol)2-双环己基膦-2',6'-二甲氧基联苯、1.12g(11.7mmol)叔丁醇钠加入100mL三口烧瓶中,通入氮气保护,向烧瓶中加入30mL甲苯,于搅拌下加热到回流反应17小时,用水洗有机相三次,用甲苯萃取水相,合并有机相浓缩至干,用二氯甲烷和正庚烷(1:1)的混合溶剂重结晶,得化合物17(compound 17)(3.63g,收率56%)。通过LC-MS确认所得化合物的结构。LC-MS:m/z=833.3[M+H] +
化合物21的合成
Figure PCTCN2020122968-appb-000065
按照与合成化合物17相同的方法合成化合物21,区别在于将合成化合物17步骤一中的N-(4-溴苯基)咔唑替换为5-溴-1,10-菲咯啉,最后得到2.77g化合物21(compound 21),收率66%。通过LC-MS确认所得化合物的结构。LC-MS:m/z=770.3[M+H] +
化合物41的合成
Figure PCTCN2020122968-appb-000066
步骤一:在氮气保护氛围下,将3.71g(15mmol)3-溴二苯并呋喃、3.14g(15mmol)3-胺基9,9’-二甲基芴、0.14g(0.15mmol)三(二亚苄基丙酮)二钯、0.12g(0.3mmol)2-双环己基膦-2',6'-二甲氧基联苯、2.16g(22.5mmol)叔丁醇钠混合物加入100mL三口烧瓶中,向烧瓶中加入30mL 甲苯,于搅拌下加热到回流反应4小时,反应毕水洗,用硫酸镁干燥有机相,有机相减压浓缩以除去溶剂,所得固体用二氯甲烷和正庚烷(1:5)混合溶剂重结晶,得化合物41-1(compound 41-1)(5g,收率89%)。
Figure PCTCN2020122968-appb-000067
步骤二:在氮气保护氛围下,将4.28g(10mmol)化合物1-4、2.33g(10gmmol)4’-氯-4-硼酸联苯、0.12g(0.1mmol)四(三苯基膦)钯、0.03g(0.1mmol)四丁基溴化铵和2.8g(20mmol)碳酸钾的混合物加入100mL三口烧瓶中,向烧瓶中加入24mL/8mL/4ml的甲苯/乙醇/水的混合溶剂,于搅拌下加热升温到80℃反应24小时,反应液经水洗后用甲苯萃取,用硫酸镁干燥有机相,减压蒸馏以除去溶剂,所得固体用乙酸乙酯重结晶,得化合物41-2(compound 41-2)(3.9g,收率73%)。
Figure PCTCN2020122968-appb-000068
步骤三:在氮气保护氛围下,将2.73g(7.3mmol)化合物41-1、3.9g(7.3mmol)化合物41-2、0.07g(0.07mmol)三(二亚苄基丙酮)二钯、0.03g(0.07mmol)2-双环己基膦-2',6'-二甲氧基联苯、1.4g(14.5mmol)叔丁醇钠的混合物加入100mL三口烧瓶中,向烧瓶中加入30mL甲苯,于搅拌下加热到回流反应16小时,反应液水洗,用甲苯萃取水相,用硫酸镁干燥有机相,过滤,有机相减压浓缩以除去溶剂,所得固体用二氯甲烷和正庚烷(1:4)溶解后通过硅胶柱色谱法提纯,得化合物41(compound 41)(3.4g,收率54%)。通过LC-MS确认所得化合物的结构。LC-MS:m/z=874.3[M+H] +
化合物49的合成
Figure PCTCN2020122968-appb-000069
步骤一:将5g(11.7mmol)化合物1-4和40mL经干燥的四氢呋喃加入100mL三口烧瓶中,于搅拌下降温到-85℃,在氮气保护下分批滴加1g(15.2mmol)浓度为2mol/L的正丁基锂正己烷溶液,滴毕保温30min,然后缓慢滴入1.8g(17.6mmol)硼酸三甲酯,滴毕保温60min,自然升到室温后继续搅拌10小时,滴入稀盐酸淬灭反应,用乙酸乙酯萃取反应液,有机相用硫酸镁干燥后减压蒸馏,所得固体用二氯甲烷重结晶,得化合物49-1(compound 49-1)(2.16g,收率47%)。
Figure PCTCN2020122968-appb-000070
步骤二:在氮气保护氛围下,将2.16g(5.5mmol)化合物49-1、1.88g(5.5mmol)3,7-二溴二苯并噻吩、0.06g(0.06mmol)四(三苯基膦)钯、0.018g(0.06mmol)四丁基溴化铵和1.52g(11mmol)碳酸钾的混合物加入100mL三口烧瓶中,向烧瓶中加入18mL/6mL的甲苯/水混合溶剂,于搅拌下加热升温到80℃反应12小时,停止反应,用水洗反应液三次,用硫酸镁干燥有机相,减压浓缩有机相至无溶剂残留,将所得固体用正庚烷加热溶解后通过硅胶柱色谱法分离提纯,得化合物49-2(compound 49-2)(2.48g,收率74%)。
Figure PCTCN2020122968-appb-000071
步骤三:按照与合成化合物1步骤六相同的方法合成化合物49,得到化合物49(compound 49)(1.99g,收率70%)。通过LC-MS确认所得化合物的结构。LCMS:m/z=698.2[M+H] +
化合物61的合成
Figure PCTCN2020122968-appb-000072
步骤一:在氮气保护氛围下,将2.45g(15mmol)1-溴环己烷、3.02g(15mmol)对溴苯硼酸、0.17g(0.15mmol)四(三苯基膦)钯、0.05g(0.15mmol)四丁基溴化铵和4.15g(30mmol)碳酸钾的混合物加入100mL三口烧瓶中,向烧瓶中加入20mL/5mL的甲苯/水混合溶剂,于搅拌下加热升温到80℃反应4小时,停止反应,用乙酸乙酯萃取反应液,硫酸镁干燥有机相后减压浓缩以除去溶剂,将所得固体用正庚烷重结晶,得化合物61-1(compound 61-1)(3.13g,收率87%)。
Figure PCTCN2020122968-appb-000073
步骤二:按照与合成化合物1步骤三-步骤六相同的方法合成化合物61,区别在于将合成化合物1步骤三中的溴苯替换为化合物61-1、将合成化合物1步骤六中的二苯胺替换为二(4-联苯基)胺,得到化合物61(compound 61)(3.54g,收率33%)。通过LC-MS确认所得化合物的结构。LC-MS:m/z=826.4[M+H] +
化合物87的合成
Figure PCTCN2020122968-appb-000074
步骤一:将4g(20mmol)吩恶噻和40mL经干燥的四氢呋喃加入100mL三口烧瓶中,于搅拌下降温到-78℃,在氮气保护下滴加13mL(26mmol)浓度为2mol/L的正丁基锂正己烷溶液,滴毕保温60min,然后缓慢滴入5.64g(30mmol)硼酸三异丙酯,滴毕保温60min,自然升到室温后继续搅拌12小时,滴入稀盐酸淬灭反应,用乙酸乙酯萃取反应液,有机相用硫酸镁干燥后减压蒸馏,所得固体用正庚烷煮洗,得化合物87-1(compound 87-1)(3.7g,收率76%)。
Figure PCTCN2020122968-appb-000075
步骤二:将3.7g(15.2mmol)的化合物87-1、3.26g(15.2mmol)的2-溴苯甲酸甲酯、4.2g(30.3mmol)的碳酸钾、0.18g(0.15mmol)的四(三苯基膦)钯和0.05g(0.15mmol)的四丁基溴化铵混合物加入100mL三口烧瓶中,向烧瓶中加入30mL/10mL/5mL的甲苯/乙醇/水的混合溶剂,用氮气置换干净烧瓶内的空气后,于搅拌下升温到80℃反应8小时,反应液经水洗后用无水硫酸镁干燥,减压蒸馏有机相以除去甲苯,所得固体用二氯甲烷和乙酸乙酯(1:2)混合溶剂重结晶,得化合物87-2(compound 87-2)(4.1g,收率81%)。
Figure PCTCN2020122968-appb-000076
步骤三:按照与合成化合物1步骤二至步骤五相同的方法合成化合物87-3,区别在于将合成化合物1步骤二中的化合物1-1替换为化合物87-2,最后得到化合物87-3(compound 87-3)(3.3g,收率46%)。
Figure PCTCN2020122968-appb-000077
步骤四:在氮气保护氛围下,将5g(29.5mmol)4-氨基联苯、6.1g(29.5mmol)1-溴萘、0.27g(0.3mmol)三(二亚苄基丙酮)二钯、0.24g(0.6mmol)2-双环己基膦-2',6'-二甲氧基联苯、4.3(44.3mmol)叔丁醇钠的混合物加入100mL三口烧瓶中,向烧瓶中加入50mL甲苯,于搅拌下加热到回流反应2小时,反应液用水洗涤,用甲苯萃取,用硫酸镁干燥有机相,过滤,有机相通过硅胶柱色谱分离,减压浓缩过柱液,所得固体用二氯甲烷和正庚烷(1:1)混合溶剂重结晶,得化合物87-4(compound 87-4)(7g,收率80%)。
Figure PCTCN2020122968-appb-000078
步骤五:在氮气保护氛围下,将3.3g(6.9mmol)化合物87-3、2.1g(6.9mmol)化合物87-4、0.06g(0.07mmol)三(二亚苄基丙酮)二钯、0.06g(0.14mmol)2-双环己基膦-2',6'-二甲氧基联苯、1g(10.4mmol)叔丁醇钠的混合物加入100mL三口烧瓶中,向烧瓶中加入30mL甲苯,于搅拌下加热到回流反应16小时,用水淬灭反应液,加水洗并用甲苯萃取水相,合并有机相后用硫酸镁干燥,减压蒸馏除去溶剂,用甲苯重结晶,得化合物87(compound 87)(3.36g,收率66%)。通过LC-MS确认所得化合物的结构。LC-MS:m/z=734.2[M+H] +
化合物100的合成
Figure PCTCN2020122968-appb-000079
步骤一:在氮气保护下,将8.3g(25.2mmol)邻二碘苯、1.6g(50mmol)硫粉、10.4g(75mmol)碳酸钾、0.36g(2.5mmol)溴化亚铜、2.5g(12.5mmol)1,10-菲啰啉加入100mL三口烧瓶中,向其中加入40mL二甲基亚砜,在搅拌下加热到90℃反应24小时,降温,用硫代硫酸钠溶液淬灭反应,用乙酸乙酯多次萃取反应液,有机相用硫酸镁干燥后减压浓缩,所得固体用二氯甲烷和正庚烷(1:10)通过硅胶柱色谱分离法进行提纯,得到化合物100-1(3.7g,收率68%)。
Figure PCTCN2020122968-appb-000080
步骤二:在氮气保护下,将3.7g(17.1mmol)化合物100-1和干燥的30mL四氢呋喃加入100mL三口烧瓶中,将体系降温至-78℃,保持此温度并缓慢滴加11mL(22.2mmol)浓度为2mol/L的正丁基锂正己烷溶液,滴毕保温60min,然后缓慢滴入1.5g(9.4mmol)溴素,滴毕保温2小时,自然升到室温后继续搅拌24小时,用碳酸氢钠稀溶液淬灭反应,用乙酸乙酯萃取反应液,有机相用硫酸镁干燥后减压蒸馏至无溶剂残留,所得固体用正庚烷重结晶,得到化合物100-2,(2.8g,收55%)
Figure PCTCN2020122968-appb-000081
步骤三:按照与合成化合物1相同的方法合成化合物100,区别在于将合成化合物1步骤一中的1-溴二苯并二恶英替换为化合物100-2,最终得到化合物100(compound 100)(2.13g,收率36%)。通过LC-MS确认所得化合物的结构。LC-MS:m/z=624.2[M+H] +
化合物122的合成
Figure PCTCN2020122968-appb-000082
按照与合成化合物2相同的方法合成化合物122,区别在于将合成化合物2步骤一中的化合物1-1替换为化合物4-1,最后得到化合物122(compound 122)(3.26g,收率33%)。通过LC-MS确认所得化合物的结构。LC-MS:m/z=775.3[M+H] +
化合物155的合成
Figure PCTCN2020122968-appb-000083
按照与合成化合物17步骤一相同的方法合成化合物155-1,区别在于将合成化合物17步骤一中的N-(4-溴苯基)咔唑替换为1-溴-9,9’-二甲基芴,按照与合成化合物1步骤六相同的方法合成化合物155,区别在于将合成化合物1步骤六中的二苯胺替换为化合物155-1,最后得到化合物155(compound 155)(2.23g,收率28%)。通过LC-MS确认所得化合物的结构。LC-MS:m/z=784.3[M+H] +
有机电致发光器件的制备及其性能评估
实施例1:
将化合物1用作空穴传输层(HTL)材料的有机电致发光器件
通过以下过程制备有机电致发光器件:
将ITO厚度为
Figure PCTCN2020122968-appb-000084
的ITO基板(康宁制造)切割成40mm(长)×40mm(宽)×0.7mm(厚)的尺寸,,然后采用光刻工序,将其制备成具有阳极、阴极搭接区域以及绝缘层的实验基板(发光像素点尺寸为3mm×3mm),利用紫外臭氧以及O 2:N 2等离子进行表面处理,以增加阳极(实验基板)的功函数和清除浮渣。
在上述阳极上作为空穴注入层(HIL)蒸镀10nm的HAT-CN(CAS号:105598-27-4)。
接着以100nm的厚度蒸镀一层本发明的化合物1来形成空穴传输层(HTL)。
在上述空穴传输层的上方对TCTA(CAS号:139092-78-7)进行真空蒸镀来形成15nm厚度的电子阻挡层(EBL)。
将9,10-双(2-萘基)蒽(ADN)(CAS号:122648-99-1)作为主体,同时掺杂FIrN4(CAS号:1219078-44-0),主体和掺杂剂按照30:3的膜厚比形成了厚度为22nm的有机电致发光层(EML)。。
在上述发光层上通过将TPBI(CAS号:192198-85-9)和LiQ(CAS号:850918-68-2)按照1:1的比例真空蒸镀厚度为30nm的有机膜层作为电子传输层(ETL)。
在上述电子传输层上作为电子注入层(EIL)蒸镀一层厚度为1nm的Yb(CAS号:850918-68-2);
然后,将镁(Mg)和银(Ag)以1:9的比例蒸镀12nm的厚度作为器件的阴极;最后在上述阴极上蒸镀70nm厚度的N4,N4'-双[4-[双(3-甲基苯基)氨基]苯基]-N4,N4’-二甲基-[1,1’-二甲基]-4,4’-二脲(DNTPD)(CAS号:199121-98-7)作为覆盖(capping)层。
蒸镀完成的器件在氮气手套箱(水、氧的含量需严格控制)中用紫外线硬化树脂封装。
实施例2~15
上述器件结构中,除了将空穴传输层(HTL)的化合物1替代为化合物2、3、4、5、6、7、17、21、41、49、61、87、100、122、155外,实施例2~16采用与实施例1相同的方法制备有机电致发光器件。
比较例1
上述器件结构中,除了空穴传输层(HTL)的化合物1替代更换为化合物NPB(CAS号:123847-85-8)外,其他与实施例1相同,采用相同的制备工艺进行有机电致发光器件的制备。
比较例2
上述器件结构中,除了空穴传输层(HTL)的化合物1替代更换为化合物TCP(CAS号:148044-07-9)外,其他与实施例1相同,采用相同的制备工艺进行有机电致发光器件的制备。
比较例3
上述器件结构中,除了空穴传输层(HTL)的化合物1替代更换为化合物TDATA(CAS号:105389-36-4)外,其他与实施例1相同,采用相同的制备工艺进行有机电致发光器件的制备。
比较例4
上述器件结构中,除了空穴传输层(HTL)的化合物1替代更换为化合物A外,其他与实施例1相同,采用相同的制备工艺进行有机电致发光器件的制备。
比较例5
上述器件结构中,除了空穴传输层(HTL)的化合物1替代更换为化合物B外,其他与实施例1相同,采用相同的制备工艺进行有机电致发光器件的制备。
比较例6
上述器件结构中,除了空穴传输层(HTL)的化合物1替代更换为化合物C外,其他与实施例1相同,采用相同的制备工艺进行有机电致发光器件的制备。
其中,HAT-CN、TCTA、ADN、FIrN 4、TPBI、LiQ、DNTPD、NPB、TCP、TDATA、化合物A、化合物B、化合物C的结构式如下:
Figure PCTCN2020122968-appb-000085
Figure PCTCN2020122968-appb-000086
对实施例1-15以及比较例1-6制得的有机电致发光器件的性能进行检测,其检测结果如表1所示。
表1 实施例和比较例的有机电致发光器件的检测性能
Figure PCTCN2020122968-appb-000087
表1中检测性能中的驱动电压、电流效率、色坐标是在恒定电流密度10mA/cm 2下进行测 试,T95器件寿命是在恒定电流密度15mA/cm 2下进行测试。
从表1的数据可知,在CIE相差不大的情况下,实施例1-15的有机电致发光器件与比较例1、2和3相比,电压至少降低了0.22V,发光效率至少提升了11.1%,寿命至少提升了8.3%,在蓝光器件中器件发光效率的提升属于明显提升。因此与比较例1~3相比,实施例1~15的有机电致发光器件普遍具有高效率、低电压、长寿命的特性。但是将实施例1-15与比较例4~6的有机电致发光器件相比,电压、效率基本一致,寿命至少提高了9.7%;因此实施例1~15的有机电致发光器件与比较例4~6相比普遍具有寿命更长的特性。
因此,将本发明的化合物用于有机电致发光器件的空穴传输层可以显著降低有机电致发光器件的工作电压、提升有机电致发光器件的发光效率、延长有机电致发光器件的寿命。
究其原因,是由于本发明中实施例列举的化合物的主体是包含芴或硅芴的稠合杂芳环基,在立体空间中展现为大平面结构,通过在芴或硅芴基的9号位引入富电子的芳胺或杂芳胺取代基,使得化合物的空穴传输性能表现优异。
综上所述,本申请的有机化合物应用特定的结构使其在有机电致发光器件空穴传输层(HTL)中,相较以往材料具有一定的优势,具有优异的载流子传输性能,其有助于有机电致发光器件的电压降低、效率提升、寿命延长。
以上实施例仅用以说明本申请的技术方案,而非对其限制。尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (19)

  1. 一种有机化合物,其特征在于,结构如化学式Ⅰ所示:
    Figure PCTCN2020122968-appb-100001
    其中,X选自C或Si;
    Y 1和Y 2相同或不同,各自独立地选自O或S;
    R 1和R 2分别独立地选自氢、氘或以下基团:取代或未取代的碳原子数为1-10的烷基、取代或未取代的碳原子数为3-10的环烷基、取代或未取代的碳原子数为6-30的芳基、取代或未取代的碳原子数为1-30的杂芳基、
    Figure PCTCN2020122968-appb-100002
    且R 1和R 2中至少有一个为
    Figure PCTCN2020122968-appb-100003
    各Ar 1和Ar 2相同或不同,各自独立地选自氢、氘、取代或未取代的碳原子数为7-25的芳烷基、取代或未取代的碳原子数为2-20的杂芳烷基、取代或未取代的碳原子数为6-30的芳基、取代或未取代的碳原子数为1-30的杂芳基中的一种;
    L 1和L 2相同或不同,各自独立地选自单键、取代或未取代的碳原子数为6-30的亚芳基、取代或未取代的碳原子数为1-30的亚杂芳基中的一种,且当R 1
    Figure PCTCN2020122968-appb-100004
    时,L 1不为单键,当R 2
    Figure PCTCN2020122968-appb-100005
    时,L 2不为单键;
    所述Ar 1、Ar 2、L 1、L 2上的取代基相同或不同,且分别独立地选自氘、卤素基团、氰基、碳原子数为1-12的烷基、碳原子数为1-12的烷氧基、碳原子数为1-12的烷硫基、碳原子数为1-12的卤代烷基、碳原子数为3-12的三烷基硅烷基、碳原子数为3-12的环烷基、碳原子数为6-18的芳氧基、碳原子数为6-18的芳硫基、碳原子数为6-18的芳基和碳原子数为3-18的杂芳基。
  2. 根据权利要求1所述的有机化合物,其特征在于,所述化学式Ⅰ选自以下化合物:
    Figure PCTCN2020122968-appb-100006
  3. 根据权利要求1或2所述的有机化合物,其特征在于,所述的L 1和L 2相同或不同,各自独立地选自单键、取代或未取代的碳原子数为6-25的亚芳基、取代或未取代的碳原子数为4-18的 亚杂芳基。
  4. 根据权利要求1~3任一项所述的有机化合物,其特征在于,所述的L 1和L 2相同或不同,各自独立地选自单键、或者如下基团中的任意一个:
    Figure PCTCN2020122968-appb-100007
    上述基团中,X选自O、S、Se、C(R 3R 4)、N(R 5)和Si(R 3R 4)所构成的组;
    X 1、X 2、X 3、X 4、X 5各自分别独立地选自CR 6和N,且X 1~X 5中至少有一个为N;
    各X 6~X 15分别独立地选自CR 6和N,当一个基团中包含两个或多个R 6时,任意两个R 6相同或者不相同;
    各Z 1、Z 2、R 3、R 4、R 6分别独立地选自氢、氘、氟、氯、溴、氰基、碳原子数为1-6的烷基、碳原子数为1-6的卤代烷基、碳原子数为1-6的烷氧基、碳原子数为6-18的芳氧基、碳原子数为6-18的芳硫基、碳原子数为6-12的芳基、碳原子数为3-12的杂芳基、碳原子数为3-12的硅烷基和碳原子数为3-10的环烷基;或者,
    任选地,连接于同一个原子上的R 3和R 4相互连接成饱和或不饱和的5至10元脂肪族环;
    R 5选自H、碳原子数为1-6的烷基、碳原子数为1-6的卤代烷基、碳原子数为6-12的芳基、碳原子数为3-12的杂芳基和碳原子数为3-10的环烷基所构成的组;
    各n 1独立地选自0、1、2、3、4或5,各n 2独立地选自0、1、2、3、4、5、6或7。
  5. 根据权利要求1~4任一项所述的有机化合物,其特征在于,所述的L 1和L 2相同或不同,各自独立地选自单键、取代或未取代的如下基团:
    Figure PCTCN2020122968-appb-100008
    其中,
    Figure PCTCN2020122968-appb-100009
    表示上述基团用于与化学式I中
    Figure PCTCN2020122968-appb-100010
    连接键的位置;
    上述基团任选地被0、1、2、3、4或5个选自氘、氟、氯、氰基、甲基、乙基、异丙基、叔丁基、甲氧基、乙氧基、异丙氧基、丙氧基、环戊烷基、环己烷基、三氟甲基、碳原子数为3-9的烷基硅烷基的取代基所取代。
  6. 根据权利要求1~5任一项所述的有机化合物,其特征在于,所述的L 1和L 2相同或不同,各自独立地选自单键、取代或未取代的如下基团:
    Figure PCTCN2020122968-appb-100011
    其中,
    Figure PCTCN2020122968-appb-100012
    表示上述基团用与化学式I中
    Figure PCTCN2020122968-appb-100013
    连接键的位置;
    上述基团任选地被0、1、2、3、4或5个选自氘、氟、氯、氰基、甲基、乙基、异丙基、叔丁基、甲氧基、乙氧基、异丙氧基、丙氧基、环戊烷基、环己烷基、三氟甲基、苯基、萘基、三甲基硅烷基、三苯基硅烷基的取代基所取代。
  7. 根据权利要求1~6任一项所述的有机化合物,其特征在于,所述各Ar 1、Ar 2、R 1和R 2相同或不同,分别独立地选自取代或未取代的碳原子数为6-25的芳基、取代或未取代的碳原子数为4-18的杂芳基中的一种。
  8. 根据权利要求1~7任一项所述的有机化合物,其特征在于,各Ar 1、Ar 2、R 1和R 2相同或不同,且分别独立地选自氢、氘、取代或未取代的如下基团:
    Figure PCTCN2020122968-appb-100014
    各V 1~V 10和V 12~V 16分别独立地选自CR 8和N,且V 1~V 5中至少有一个为N;
    上述基团中,各V分别独立地选自O、S、Se、N(R 7)、C(R 9R 10)和Si(R 9R 10)所构成的组;
    Y和V 11各自独立地选自O、S或N(R 7);
    各Y 1~Y 10分别独立地选自CR 8和N,当一个基团中包含两个或多个R 8时,任意两个R 8相同或者不相同;
    各R 9、R 10、R 8相同或不同,分别独立地为氢、氘、氟、氯、溴、氰基、碳原子数为1-6的烷基、碳原子数为1-6的卤代烷基、碳原子数为6-12的芳基、碳原子数为3-12的杂芳基、碳原子数为6-18的芳氧基、碳原子数为6-18的芳硫基、碳原子数为3-12的硅烷基、碳原子数为1-10的烷胺基、碳原子数为6-18的芳胺基和碳原子数为3-10的环烷基;
    R 7选自氢、碳原子数为1-6的烷基、碳原子数为1-6的卤代烷基、碳原子数为6-12的芳基、碳原子数为3-12的杂芳基和碳原子数为3-10的环烷基所构成的组;或者,
    任选地,两个相邻的R 8与它们所连接的碳原子一起形成成环原子数为6~10的芳环或成环原子数为5~12的杂芳环;
    任选地,连接于同一个原子上的R 9和R 10相互连接成成饱和或不饱和的5至10元脂肪族环;
    上述各Ar 1和Ar 2任选地被0、1、2、3、4或5个选自氘、氟、氯、氰基、碳原子数为1-6的烷基、碳原子数为3~10的环烷基、碳原子数为6-18的芳基、碳原子数为3-18的杂芳基、碳原子数为1-4的烷氧基、碳原子数为1-4的卤代烷基、碳原子数为3-9的烷基硅烷基的取代基所取代。
  9. 根据权利要求1~8任一项所述的有机化合物,其特征在于,各Ar 1、Ar 2、R 1和R 2相同或不同,且分别独立地选自氢、氘、取代或未取代的如下基团:
    Figure PCTCN2020122968-appb-100015
    Figure PCTCN2020122968-appb-100016
    上述各基团任选地被0、1、2、3、4或5个选自氘、氟、氯、氰基、碳原子数为1-6的烷基、碳原子数为1~4的烷氧基、碳原子数为1-4的卤代烷基、碳原子数为3-9的烷基硅烷基、碳原子数为3~10的环烷基、碳原子数为6-13的芳基、碳原子数为3-12的杂芳基的取代基所取代。
  10. 根据权利要求1~9任一项所述的有机化合物,其特征在于,各Ar 1、Ar 2、R 1和R 2相同或不同,且分别独立地选自氢、氘、取代或未取代的如下基团:
    Figure PCTCN2020122968-appb-100017
    上述各基团任选地被0、1、2、3、4或5个选自氘、氟、氯、氰基、碳原子数为1-6的烷基、碳原子数为1~4的烷氧基、碳原子数为1-4的卤代烷基、三甲基硅烷基、碳原子数为3~10的环烷基、碳原子数为6-13的芳基、碳原子数为3-12的杂芳基的取代基所取代。
  11. 根据权利要求1~10任一项所述的有机化合物,其特征在于,Ar 1、Ar 2相同或不同,且分别独立地选自氢、氘、取代或未取代的如下基团:
    Figure PCTCN2020122968-appb-100018
    Figure PCTCN2020122968-appb-100019
    上述基团任选地被0、1、2、3、4或5个选自氘、氟、氯、氰基、甲基、乙基、异丙基、叔丁基、甲氧基、乙氧基、异丙氧基、丙氧基、环戊烷基、环己烷基、三氟甲基、碳原子数为3-9的烷基硅烷基的取代基所取代。
  12. 根据权利要求1~11任一项所述的有机化合物,其特征在于,Ar 1、Ar 2相同或不同,且分别独立地选自氢、氘、取代或未取代的如下基团:
    Figure PCTCN2020122968-appb-100020
    上述基团任选地被0、1、2、3、4或5个选自氘、氟、氯、氰基、甲基、乙基、异丙基、叔丁基、甲氧基、乙氧基、异丙氧基、丙氧基、环戊烷基、环己烷基、三氟甲基、三甲基硅烷基、苯基、萘基的取代基所取代。
  13. 根据权利要求1~12任一项所述的有机化合物,其特征在于,所述R 1和R 2相同或不同,且分别独立地选自氢、氘、取代或未取代的如下基团:
    Figure PCTCN2020122968-appb-100021
    上述基团任选地被0、1、2、3、4或5个选自氘、氟、氯、氰基、甲基、乙基、异丙基、叔丁基、甲氧基、乙氧基、异丙氧基、丙氧基、环戊烷基、环己烷基、三氟甲基、碳原子数为3-9的烷基硅烷基的取代基所取代。
  14. 根据权利要求1~13任一项所述的有机化合物,其特征在于,所述R 1和R 2相同或不同,且分别独立地选自氢、氘、取代或未取代的如下基团:
    Figure PCTCN2020122968-appb-100022
    Figure PCTCN2020122968-appb-100023
    上述基团任选地被0、1、2、3、4或5个选自氘、氟、氯、氰基、甲基、乙基、异丙基、叔丁基、甲氧基、乙氧基、异丙氧基、丙氧基、环戊烷基、环己烷基、三氟甲基、苯基、萘基、碳原子数为3-9的烷基硅烷基的取代基所取代。
  15. 根据权利要求1~14任一项所述的有机化合物,其特征在于,所述的化学式Ⅰ的具体结构选自以下任意一个:
    Figure PCTCN2020122968-appb-100024
    Figure PCTCN2020122968-appb-100025
    Figure PCTCN2020122968-appb-100026
    Figure PCTCN2020122968-appb-100027
    Figure PCTCN2020122968-appb-100028
    Figure PCTCN2020122968-appb-100029
    Figure PCTCN2020122968-appb-100030
    Figure PCTCN2020122968-appb-100031
    Figure PCTCN2020122968-appb-100032
  16. 一种电子器件,其特征在于,包括相对设置的阳极和阴极,以及设于所述阳极和所述阴极之间的功能层;
    所述功能层包含权利要求1-15任一项所述的有机化合物。
  17. 根据权利要求16所述的电子器件,其特征在于,所述功能层包括空穴传输层,所述空穴传输层包含所述的有机化合物。
  18. 根据权利要求16或17所述的电子器件,其特征在于,所述电子器件为有机电致发光器件或太阳能电池。
  19. 一种电子装置,其特征在于,包括权利要求16-18任一项所述的电子器件。
PCT/CN2020/122968 2019-12-19 2020-10-22 有机化合物、电子器件及电子装置 WO2021120838A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020217042824A KR102397562B1 (ko) 2019-12-19 2020-10-22 유기 화합물,전자 소자 및 전자 장치
US17/623,844 US11605784B2 (en) 2019-12-19 2020-10-22 Organic compound, electronic element, and electronic device

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201911320582.0 2019-12-19
CN201911320582.0A CN111004207A (zh) 2019-12-19 2019-12-19 有机化合物、电子器件及电子装置
CN202010261391 2020-04-03
CN202010261391.8 2020-04-03
CN202010270448.0 2020-04-08
CN202010270448.0A CN111303113B (zh) 2019-12-19 2020-04-08 有机化合物、电子器件及电子装置

Publications (1)

Publication Number Publication Date
WO2021120838A1 true WO2021120838A1 (zh) 2021-06-24

Family

ID=76476533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/122968 WO2021120838A1 (zh) 2019-12-19 2020-10-22 有机化合物、电子器件及电子装置

Country Status (3)

Country Link
US (1) US11605784B2 (zh)
KR (1) KR102397562B1 (zh)
WO (1) WO2021120838A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113336785A (zh) * 2021-06-25 2021-09-03 长春海谱润斯科技股份有限公司 一种含硅芴的芳香胺类化合物及其有机电致发光器件

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102580331B1 (ko) * 2023-07-27 2023-09-20 주식회사 노바머터리얼즈 Oled 재료로 사용되는 트리페닐실란 유도체의 제조방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105121594A (zh) * 2012-09-28 2015-12-02 第一毛织株式会社 用于有机光电装置的化合物、包含其的有机发光装置以及包括所述有机发光装置的显示装置
WO2019078461A1 (ko) * 2017-10-18 2019-04-25 주식회사 엘지화학 신규한 헤테로 고리 화합물 및 이를 이용한 유기발광 소자
CN110494430A (zh) * 2017-10-19 2019-11-22 株式会社Lg化学 新型化合物及利用其的有机发光元件
CN111004207A (zh) * 2019-12-19 2020-04-14 陕西莱特光电材料股份有限公司 有机化合物、电子器件及电子装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101939552B1 (ko) * 2013-12-06 2019-01-17 롬엔드하스전자재료코리아유한회사 유기 전계 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
CN106433614B (zh) 2015-08-04 2020-05-08 北京鼎材科技有限公司 一种有机电致发光化合物及其用途和有机电致发光器件

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105121594A (zh) * 2012-09-28 2015-12-02 第一毛织株式会社 用于有机光电装置的化合物、包含其的有机发光装置以及包括所述有机发光装置的显示装置
WO2019078461A1 (ko) * 2017-10-18 2019-04-25 주식회사 엘지화학 신규한 헤테로 고리 화합물 및 이를 이용한 유기발광 소자
CN110494430A (zh) * 2017-10-19 2019-11-22 株式会社Lg化学 新型化合物及利用其的有机发光元件
CN111004207A (zh) * 2019-12-19 2020-04-14 陕西莱特光电材料股份有限公司 有机化合物、电子器件及电子装置
CN111303113A (zh) * 2019-12-19 2020-06-19 陕西莱特光电材料股份有限公司 有机化合物、电子器件及电子装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113336785A (zh) * 2021-06-25 2021-09-03 长春海谱润斯科技股份有限公司 一种含硅芴的芳香胺类化合物及其有机电致发光器件
CN113336785B (zh) * 2021-06-25 2022-11-11 长春海谱润斯科技股份有限公司 一种含硅芴的芳香胺类化合物及其有机电致发光器件

Also Published As

Publication number Publication date
US11605784B2 (en) 2023-03-14
KR20220008927A (ko) 2022-01-21
US20220336751A1 (en) 2022-10-20
KR102397562B1 (ko) 2022-05-13

Similar Documents

Publication Publication Date Title
WO2022089428A1 (zh) 含氮化合物、包含其的电子元件和电子装置
WO2021213109A1 (zh) 一种芳胺化合物、使用其的电子元件及电子装置
WO2021135182A1 (zh) 含氮化合物、有机电致发光器件和电子装置
WO2021218588A1 (zh) 一种含氮化合物以及使用其的电子元件和电子装置
WO2022083598A1 (zh) 一种含氮化合物以及使用其的电子元件和电子装置
WO2021135181A1 (zh) 含氮化合物、有机电致发光器件和电子装置
WO2022088865A1 (zh) 含氮化合物、电子元件和电子装置
WO2021135183A1 (zh) 有机化合物、有机电致发光器件和电子装置
WO2022188514A1 (zh) 一种有机化合物及包含其的电子元件和电子装置
WO2021135750A1 (zh) 一种有机化合物、其应用以及有机电致发光器件
CN113061136B (zh) 一种有机化合物以及使用其的电子元件和电子装置
WO2021082714A1 (zh) 含氮化合物、电子元件和电子装置
WO2021189780A1 (zh) 有机化合物、使用其的器件及电子装置
WO2021120838A1 (zh) 有机化合物、电子器件及电子装置
CN114230562B (zh) 杂环化合物及包含其的电子元件和电子装置
WO2022100194A1 (zh) 含氮化合物、有机电致发光器件和电子装置
CN111303113B (zh) 有机化合物、电子器件及电子装置
WO2024007511A1 (zh) 芳胺化合物及有机电致发光器件和电子装置
CN115160272B (zh) 一种含氮化合物及使用其的电子元件和电子装置
CN113896720B (zh) 有机化合物、电子元件及电子装置
WO2021174967A1 (zh) 含氮化合物、有机电致发光器件和电子装置
CN113816935A (zh) 含氮化合物、电子元件和电子装置
WO2023241137A1 (zh) 含氮化合物及有机电致发光器件和电子装置
WO2024041060A1 (zh) 芳胺化合物及有机电致发光器件和电子装置
CN115322162B (zh) 有机化合物、有机电致发光器件和电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20901524

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217042824

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20901524

Country of ref document: EP

Kind code of ref document: A1