WO2023241137A1 - 含氮化合物及有机电致发光器件和电子装置 - Google Patents

含氮化合物及有机电致发光器件和电子装置 Download PDF

Info

Publication number
WO2023241137A1
WO2023241137A1 PCT/CN2023/081183 CN2023081183W WO2023241137A1 WO 2023241137 A1 WO2023241137 A1 WO 2023241137A1 CN 2023081183 W CN2023081183 W CN 2023081183W WO 2023241137 A1 WO2023241137 A1 WO 2023241137A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
substituted
nitrogen
unsubstituted
Prior art date
Application number
PCT/CN2023/081183
Other languages
English (en)
French (fr)
Inventor
徐先彬
杨雷
Original Assignee
陕西莱特光电材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 陕西莱特光电材料股份有限公司 filed Critical 陕西莱特光电材料股份有限公司
Publication of WO2023241137A1 publication Critical patent/WO2023241137A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D498/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D498/02Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and oxygen atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D498/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D513/00Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00
    • C07D513/02Heterocyclic compounds containing in the condensed system at least one hetero ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for in groups C07D463/00, C07D477/00 or C07D499/00 - C07D507/00 in which the condensed system contains two hetero rings
    • C07D513/04Ortho-condensed systems
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present application relates to the technical field of organic electroluminescent materials, and in particular to nitrogen-containing compounds and organic electroluminescent devices and electronic devices containing them.
  • An organic electroluminescent device usually includes a cathode and an anode arranged oppositely, and a functional layer arranged between the cathode and anode.
  • the functional layer is composed of multiple organic or inorganic film layers, and generally includes an organic light-emitting layer, a hole transport layer, an electron transport layer, etc.
  • the electrons on the cathode side move toward the electroluminescent layer, and the holes on the anode side also move toward the luminescent layer.
  • the electrons and holes combine in the electroluminescent layer.
  • Excitons are formed, and the excitons release energy outwards in the excited state, thereby causing the electroluminescent layer to emit light.
  • the purpose of this application is to provide a nitrogen-containing compound and electronic components and electronic devices containing the same.
  • the nitrogen-containing compound is used in an organic electroluminescent device and can improve the performance of the device.
  • a nitrogen-containing compound having a structure represented by Formula 1:
  • Y is selected from S or O;
  • Z 1 , Z 2 and Z 3 are selected from C(R 1 ) or N, and at least two of Z 1 , Z 2 and Z 3 are N;
  • Ring A is selected from naphthalene ring or phenanthrene ring;
  • L, L 1 and L 2 are the same or different, and are each independently selected from a single bond, a substituted or unsubstituted arylene group with 6 to 30 carbon atoms, a substituted or unsubstituted group with 3 to 30 carbon atoms. heteroarylene;
  • Ar 1 , Ar 2 and Ar 3 are the same or different, and are each independently selected from a substituted or unsubstituted aryl group with 6 to 40 carbon atoms, and a substituted or unsubstituted heteroaryl group with 3 to 40 carbon atoms. , an alkyl group with 1 to 10 carbon atoms or a cycloalkyl group with 3 to 10 carbon atoms;
  • the substituents in L, L 1 , L 2 , Ar 1 , Ar 2 and Ar 3 are the same or different, and are each independently selected from deuterium, cyano group, halogen group, alkyl group with 1 to 10 carbon atoms, Haloalkyl group with 1 to 10 carbon atoms, deuterated alkyl group with 1 to 10 carbon atoms, trialkylsilyl group with 3 to 12 carbon atoms, triphenylsilyl group, 6 to 10 carbon atoms 20 aryl group, deuterated aryl group with 6 to 20 carbon atoms, heteroaryl group with 3 to 20 carbon atoms, cycloalkyl group with 3 to 10 carbon atoms, 1 to 10 carbon atoms Alkoxy group, alkylthio group with 1 to 10 carbon atoms, aryloxy group with 6 to 20 carbon atoms or arylthio group with 6 to 20 carbon atoms; optionally, any two adjacent
  • the substituents form a saturated or unsaturated 3
  • Each R 1 and R are the same or different, and are each independently selected from hydrogen, deuterium, cyano group, halogen group, alkyl group with 1 to 10 carbon atoms, halogenated alkyl group with 1 to 10 carbon atoms, Deuterated alkyl groups with 1 to 10 carbon atoms, trialkylsilyl groups with 3 to 12 carbon atoms, triphenylsilyl groups, aryl groups with 6 to 20 carbon atoms, and heterogeneous groups with 3 to 20 carbon atoms.
  • an organic electroluminescent device including an anode and a cathode arranged oppositely, and a functional layer disposed between the anode and the cathode; the functional layer includes the above-mentioned nitrogen-containing compound.
  • an electronic device including the organic electroluminescent device described in the second aspect.
  • the structure of the compound of the present application contains a naphthyl(phenanthrene)furanoxazole/thiazole-triazine/pyrimidine electron-deficient heteroaryl group, in which the naphth(phenanthrene)furanofuran and oxazole/thiazole groups both have electron transport properties.
  • the conjugated system is enlarged, which enhances the electron transport performance of the group;
  • the triazine or pyrimidine group has excellent electron transport properties;
  • the electron-deficient heteroaryl groups are connected, giving the compound of the present application excellent electron transport properties.
  • Mixing the compound of the present application and the hole transport material can form a hybrid host material, which can improve the carrier balance in the light-emitting layer, broaden the carrier recombination area, improve the exciton generation and utilization efficiency, and improve the luminous efficiency and life of the device.
  • Figure 1 is a schematic structural diagram of an organic electroluminescent device according to an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of an electronic device according to an embodiment of the present application.
  • Example embodiments will now be described more fully with reference to the accompanying drawings.
  • Example embodiments may, however, be embodied in various forms and should not be construed as limited to the examples set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete and will fully convey the concepts of the example embodiments. be communicated to those skilled in the art.
  • the described features, structures or characteristics may be combined in any suitable manner in one or more embodiments. In the following description, numerous specific details are provided to provide a thorough understanding of embodiments of the present application.
  • the present application provides a nitrogen-containing compound having a structure represented by Formula 1:
  • Y is selected from S or O;
  • Z 1 , Z 2 and Z 3 are selected from C(R 1 ) or N, and at least two of Z 1 , Z 2 and Z 3 are N;
  • Ring A is selected from naphthalene ring or phenanthrene ring;
  • L, L 1 and L 2 are the same or different, and are each independently selected from a single bond, a substituted or unsubstituted arylene group with 6 to 30 carbon atoms, a substituted or unsubstituted group with 3 to 30 carbon atoms. heteroarylene;
  • Ar 1 , Ar 2 and Ar 3 are the same or different, and are each independently selected from substituted or unsubstituted aryl groups and carbon atoms with 6 to 40 carbon atoms.
  • the substituents in L, L 1 , L 2 , Ar 1 , Ar 2 and Ar 3 are the same or different, and are each independently selected from deuterium, cyano group, halogen group, alkyl group with 1 to 10 carbon atoms, Haloalkyl group with 1 to 10 carbon atoms, deuterated alkyl group with 1 to 10 carbon atoms, trialkylsilyl group with 3 to 12 carbon atoms, triphenylsilyl group, 6 to 10 carbon atoms 20 aryl group, deuterated aryl group with 6 to 20 carbon atoms, heteroaryl group with 3 to 20 carbon atoms, cycloalkyl group with 3 to 10 carbon atoms, 1 to 10 carbon atoms Alkoxy group, alkylthio group with 1 to 10 carbon atoms, aryloxy group with 6 to 20 carbon atoms or arylthio group with 6 to 20 carbon atoms; optionally, any two adjacent
  • the substituents form a saturated or unsaturated 3
  • Each R 1 and R are the same or different, and are each independently selected from hydrogen, deuterium, cyano group, halogen group, alkyl group with 1 to 10 carbon atoms, halogenated alkyl group with 1 to 10 carbon atoms, Deuterated alkyl groups with 1 to 10 carbon atoms, trialkylsilyl groups with 3 to 12 carbon atoms, triphenylsilyl groups, aryl groups with 6 to 20 carbon atoms, and heterogeneous groups with 3 to 20 carbon atoms.
  • any two adjacent substituents form a ring means that the two substituents may or may not form a ring, that is, including: the scenario where two adjacent substituents form a ring and the situation where two adjacent substituents form a ring. A situation in which adjacent substituents do not form a ring.
  • any two adjacent substituents in Ar 1 , Ar 2 and Ar 3 form a ring means that any two adjacent substituents in Ar 1 , Ar 2 and Ar 3 form a ring with each other.
  • any two adjacent substituents among Ar 1 , Ar 2 and Ar 3 can also exist independently.
  • Any two adjacent atoms can include two substituents on the same atom, and can also include one substituent on two adjacent atoms; where, when there are two substituents on the same atom, both Each substituent can form a saturated or unsaturated spiro ring with the atom it is connected to together; when two adjacent atoms each have a substituent, the two substituents can be fused to form a ring.
  • each...independently is and “...respectively and independently are” and “...each independently is” are interchangeable, and should be understood in a broad sense. They can both refer to In different groups, the specific options expressed by the same symbols do not affect each other. It can also mean that in the same group, the specific options expressed by the same symbols do not affect each other.
  • each q is independently 0, 1, 2 or 3
  • each R" is independently selected from hydrogen, deuterium, fluorine, and chlorine.
  • Formula Q-1 represents that there are q substituents R" on the benzene ring.
  • each R can be the same or different, and the options of each R” do not affect each other;
  • Formula Q-2 indicates that there are q substituents R” on each benzene ring of biphenyl, and the R on the two benzene rings "The number of substituents q can be the same or different, each R" can be the same or different, and the options for each R" do not affect each other.
  • substituted or unsubstituted means that the functional group described after the term may or may not have a substituent (hereinafter, for convenience of description, the substituents are collectively referred to as Rc).
  • substituted or unsubstituted aryl refers to an aryl group having a substituent Rc or an unsubstituted aryl group.
  • Rc may be, for example, deuterium, halogen group, cyano group, heteroaryl group, aryl group, trialkylsilyl group, alkyl group, haloalkyl group, cycloalkyl group, etc.
  • the number of substitutions can be one or more.
  • plural refers to more than 2, such as 2, 3, 4, 5, 6, etc.
  • the hydrogen atoms in the compound structure of the present application include various isotope atoms of the hydrogen element, such as hydrogen (H), deuterium (D) or tritium (T).
  • the number of carbon atoms of a substituted or unsubstituted functional group refers to the number of all carbon atoms. For example, if L 1 is a substituted arylene group having 12 carbon atoms, then all of the carbon atoms in the arylene group and the substituents thereon are 12.
  • a ring such as a saturated or unsaturated 3-15-membered ring, including a saturated carbocyclic ring, a saturated heterocyclic ring, a partially unsaturated carbocyclic ring, a partially unsaturated heterocyclic ring, an aromatic carbocyclic ring, and an aromatic heterocyclic ring.
  • a 3- to 15-membered ring represents a ring with 3 to 15 ring atoms, including 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, and 15 ring atoms.
  • aryl refers to an optional functional group or substituent derived from an aromatic carbocyclic ring.
  • the aryl group can be a single-ring aryl group (such as phenyl) or a polycyclic aryl group.
  • the aryl group can be a single-ring aryl group, a fused-ring aryl group, or two or more single-ring aryl groups conjugated through a carbon-carbon bond.
  • Ring aryl groups monocyclic aryl groups conjugated through carbon-carbon bonds and fused-ring aryl groups, two or more fused-ring aryl groups connected through carbon-carbon bonds.
  • the condensed ring aryl group may include, for example, bicyclic condensed aryl groups (such as naphthyl), tricyclic condensed aryl groups (such as phenanthrenyl, fluorenyl, anthracenyl). base) etc.
  • Aryl groups do not contain heteroatoms such as B, N, O, S, P, Se and Si.
  • aryl groups may include, but are not limited to, phenyl, naphthyl, fluorenyl, spirobifluorenyl, anthracenyl, phenanthrenyl, biphenyl, terphenyl, triphenylene, perylene, benzo[9, 10]phenanthrenyl, pyrenyl, benzofluoranthranyl, Key et al.
  • the arylene group refers to a bivalent or multivalent group formed by further losing one or more hydrogen atoms from an aryl group.
  • terphenyl includes
  • the number of carbon atoms of a substituted aryl group refers to the total number of carbon atoms of the aryl group and the substituents on the aryl group.
  • a substituted aryl group with 18 carbon atoms refers to the aryl group and the substituent.
  • the total number of carbon atoms is 18.
  • the number of carbon atoms of the substituted or unsubstituted aryl group can be 6, 8, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 28, 30, 31, 33, 34, 35, 36, 38 or 40 etc.
  • the substituted or unsubstituted aryl group is a substituted or unsubstituted aryl group having 6 to 40 carbon atoms.
  • the substituted or unsubstituted aryl group is a substituted or unsubstituted aryl group having 6 to 40 carbon atoms.
  • 30 substituted or unsubstituted aryl groups are substituted or unsubstituted aryl groups.
  • the substituted or unsubstituted aryl groups are substituted or unsubstituted aryl groups with 6 to 25 carbon atoms. In other embodiments, the substituted or unsubstituted aryl groups are The aryl group is a substituted or unsubstituted aryl group with 6 to 15 carbon atoms.
  • the fluorenyl group may be substituted by one or more substituents.
  • the substituted fluorenyl group can be: etc., but are not limited to this.
  • aryl groups as substituents of L, L 1 , L 2 , Ar 1 , Ar 2 and Ar 3 include, but are not limited to, phenyl, naphthyl, phenanthrenyl, biphenyl, fluorenyl, di Methylfluorenyl and so on.
  • heteroaryl refers to a monovalent aromatic ring or its derivatives containing 1, 2, 3, 4, 5 or 6 heteroatoms in the ring.
  • the heteroatoms can be B, O, N, P, Si, One or more of Se and S.
  • a heteroaryl group can be a monocyclic heteroaryl group or a polycyclic heteroaryl group.
  • a heteroaryl group can be a single aromatic ring system or multiple aromatic ring systems conjugated through carbon-carbon bonds, and any aromatic
  • the ring system is an aromatic single ring or an aromatic fused ring.
  • heteroaryl groups may include thienyl, furyl, pyrrolyl, imidazolyl, thiazolyl, oxazolyl, oxadiazolyl, triazolyl, pyridyl, bipyridyl, pyrimidinyl, triazinyl, Acridinyl, pyridazinyl, pyrazinyl, quinolinyl, quinazolinyl, quinoxalinyl, phenoxazinyl, phthalazinyl, pyridopyrimidinyl, pyridopyrazinyl, pyrazinopyridyl Azinyl, isoquinolinyl, indolyl, carbazolyl, benzoxazolyl, benzimidazolyl, benzothiazolyl, benzocarbazolyl, benzothienyl, dibenzothienyl, thiophene Thiophenyl
  • the heteroarylene group refers to a bivalent or multivalent group formed by the heteroaryl group further losing one or more hydrogen atoms.
  • the number of carbon atoms of the substituted or unsubstituted heteroaryl group can be selected from 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 ,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39 or 40 wait.
  • the substituted or unsubstituted heteroaryl group is a substituted or unsubstituted heteroaryl group with a total carbon number of 3 to 40.
  • the substituted or unsubstituted heteroaryl group has a total carbon number of A substituted or unsubstituted heteroaryl group having 3 to 30 atoms. In other embodiments, the substituted or unsubstituted heteroaryl group is a substituted or unsubstituted heteroaryl group having a total carbon number of 5 to 12 carbon atoms.
  • heteroaryl groups as substituents of L, L 1 , L 2 , Ar 1 , Ar 2 and Ar 3 include, but are not limited to, pyridyl, carbazolyl, quinolyl, isoquinolyl, phenanthrene Rolinyl, benzoxazolyl, benzothiazolyl, benzimidazolyl, dibenzothienyl, dibenzofuranyl.
  • the substituted heteroaryl group may be one or more hydrogen atoms in the heteroaryl group substituted by deuterium atoms, halogen groups, -CN, aryl groups, heteroaryl groups, trialkylsilyl groups, alkyl groups, etc. , cycloalkyl, haloalkyl and other groups substituted.
  • the number of carbon atoms of a substituted heteroaryl group refers to the total number of carbon atoms of the heteroaryl group and the substituents on the heteroaryl group.
  • the alkyl group having 1 to 10 carbon atoms may include a linear alkyl group having 1 to 10 carbon atoms and a branched alkyl group having 3 to 10 carbon atoms.
  • the number of carbon atoms of the alkyl group may be, for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10.
  • Specific examples of the alkyl group include, but are not limited to, methyl, ethyl, n-propyl, Isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, isopentyl, neopentyl, n-hexyl, etc.
  • the halogen group can be, for example, fluorine, chlorine, bromine, or iodine.
  • trialkylsilyl include, but are not limited to, trimethylsilyl, triethylsilyl, etc.
  • haloalkyl refers to an alkyl group having one or more halogen substitutions. Specific examples include, but are not limited to, trifluoromethyl.
  • the number of carbon atoms of the cycloalkyl group having 3 to 10 carbon atoms may be, for example, 3, 4, 5, 6, 7, 8 or 10.
  • Specific examples of cycloalkyl include, but are not limited to, cyclopentyl, cyclohexyl, and adamantyl.
  • the single bond extending from the ring system involved in the connecting key is not located. It means that one end of the bond can be connected to any position in the ring system that the bond penetrates, and the other end is connected to the rest of the compound molecule.
  • the naphthyl group represented by the formula (f) is connected to other positions of the molecule through two non-positioned bonds that penetrate the bicyclic ring, and its meaning includes such as the formula (f) -1) ⁇ Any possible connection method shown in formula (f-10):
  • the dibenzofuryl group represented by the formula (X') is connected to other positions of the molecule through an unpositioned bond extending from the middle of one side of the benzene ring,
  • the meaning it represents includes any possible connection method shown in formula (X'-1) to formula (X'-4):
  • a non-positioned substituent in this application refers to a substituent connected through a single bond extending from the center of the ring system, which means that the substituent can be connected at any possible position in the ring system.
  • the substituent R' represented by the formula (Y) is connected to the quinoline ring through a non-positioned bond, and its meaning includes formula (Y-1) ⁇ Any possible connection method shown in formula (Y-7):
  • the compound represented by Formula 1 is selected from the structures represented by the following formulas (1-1) to (1-16):
  • the compound represented by Formula 1 is selected from the structures represented by the following formulas (2-1) to (2-11):
  • Z 1 and Z 3 are N, and Z 2 is selected from C(H) or N; or Z 1 and Z 2 are N, and Z 3 is selected from C(H) or N; or Z 1 , Z 2 and Z 3 are both N.
  • Ar 1 , Ar 2 and Ar 3 are each independently selected from the group consisting of 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 carbon atoms. , 20, 21, 22, 23, 24 or 25 substituted or unsubstituted aryl groups, with carbon atoms of 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18 , 19, 20, 21, 22, 23, 24 or 25 substituted or unsubstituted heteroaryl.
  • Ar 1 , Ar 2 and Ar 3 are the same or different, and each is independently selected from a substituted or unsubstituted aryl group with 6 to 25 carbon atoms, a substituted or unsubstituted aryl group with 5 to 24 carbon atoms. Unsubstituted heteroaryl.
  • the substituents in Ar 1 , Ar 2 and Ar 3 are each independently selected from deuterium, halogen groups, cyano groups, haloalkyl groups with 1 to 4 carbon atoms, and halogenated alkyl groups with 1 to 4 carbon atoms.
  • any two adjacent substituents form a benzene ring or a fluorene ring.
  • Ar 1 , Ar 2 and Ar 3 are each independently selected from substituted or unsubstituted phenyl, substituted or unsubstituted biphenyl, Substituted or unsubstituted terphenyl, substituted or unsubstituted naphthyl, substituted or unsubstituted anthracenyl, substituted or unsubstituted phenanthryl, substituted or unsubstituted fluorenyl, substituted or unsubstituted spirodifluorenyl , substituted or unsubstituted triphenylene, substituted or unsubstituted pyrenyl, substituted or unsubstituted perylene, substituted or unsubstituted pyridyl, substituted or unsubstituted dibenzothienyl, substituted or unsubstituted Dibenzofuranyl, substituted or unsubstituted carbazolyl, substituted or un
  • the substituents in Ar 1 , Ar 2 and Ar 3 are each independently selected from deuterium, fluorine, cyano, trideuteromethyl, trimethylsilyl, trifluoromethyl, cyclopentyl, cyclo Hexyl, adamantyl, methyl, ethyl, isopropyl, tert-butyl, phenyl, naphthyl, pyridyl, dibenzofuranyl, dibenzothienyl or carbazolyl, optionally Ar In 1 and Ar 2 , any two adjacent substituents form a benzene ring or a fluorene ring.
  • Ar 1 , Ar 2 and Ar 3 are each independently selected from a substituted or unsubstituted group W; wherein the unsubstituted group W is selected from the group consisting of:
  • the substituted group W is a group formed by replacing the unsubstituted group W with one or more substituents.
  • the substituents on the substituted group W are each independently selected from deuterium, fluorine, cyano, and trideuterium. Methyl, trimethylsilyl, trifluoromethyl, cyclopentyl, cyclohexyl, adamantyl, methyl, ethyl, isopropyl, tert-butyl, phenyl, naphthyl, pyridyl, di benzofuryl, dibenzothienyl, carbazolyl, benzoxazolyl or benzothiazolyl, and when the number of substituents on group W is greater than 1, each substituent may be the same or different.
  • Ar 1 and Ar 2 are each independently selected from the group consisting of:
  • Ar 3 is selected from a substituted or unsubstituted aryl group with 6 to 18 carbon atoms, a substituted or unsubstituted heteroaryl group with 12 to 18 carbon atoms; the substituents in Ar 3 are each Independently selected from deuterium, fluorine, cyano, trideuterated methyl, trimethylsilyl, trifluoromethyl, cyclopentyl, cyclohexyl, adamantyl, methyl, ethyl, isopropyl, tert. Butyl, phenyl, naphthyl, pyridyl or deuterated phenyl.
  • Ar 3 is selected from the group consisting of:
  • Ar 3 is selected from the group consisting of:
  • L, L 1 and L 2 are the same or different, and are each independently selected from a single bond, a substituted or unsubstituted arylene group with 6 to 15 carbon atoms, and a substituted or unsubstituted arylene group with 5 to 18 carbon atoms. of substituted or unsubstituted heteroarylene.
  • L, L 1 and L 2 are the same or different, and are each independently selected from a single bond, a carbon number of 6, 7, 8, 9, 10, 11, 12, 13, 14 or 15. Substituted or unsubstituted arylene, substituted or unsubstituted heteroarylene with carbon atoms of 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18 .
  • the substituents in L, L 1 and L 2 are each independently selected from deuterium, fluorine, cyano, alkyl with 1 to 5 carbon atoms, and trialkyl silicon with 3 to 8 carbon atoms. group, a fluoroalkyl group with 1 to 4 carbon atoms, a deuterated alkyl group with 1 to 4 carbon atoms, phenyl or naphthyl group.
  • L is selected from a single bond, substituted or unsubstituted phenylene, substituted or unsubstituted naphthylene, substituted or unsubstituted biphenylene, substituted or unsubstituted pyridylene, substituted Or unsubstituted dibenzothienylene, substituted or unsubstituted dibenzofurylene.
  • L 1 and L 2 are each independently selected from a single bond, substituted or unsubstituted phenylene, substituted or unsubstituted naphthylene, substituted or unsubstituted biphenylene, substituted or unsubstituted Substituted fluorenylene, substituted or unsubstituted phenylene, substituted or unsubstituted dibenzothienylene, substituted or unsubstituted dibenzofurylene, substituted or unsubstituted carbazolylene, substituted Or unsubstituted pyridylene, substituted or unsubstituted benzoxazolylene, substituted or unsubstituted benzothiazolylene.
  • the substituents in L, L 1 and L 2 are the same or different, and are each independently selected from deuterium, fluorine, cyano, methyl, ethyl, isopropyl, tert-butyl, trifluoromethyl , trideuterated methyl, trimethylsilyl or phenyl.
  • L, L 1 and L 2 are each independently selected from a single bond, a substituted or unsubstituted group Q, and the unsubstituted group Q is selected from the following groups:
  • the substituted group Q is a group formed by replacing the unsubstituted group Q with one or more substituents.
  • the substituents on the substituted group Q are each independently selected from deuterium, fluorine, cyano, and trideuterium. Methyl, trimethylsilyl, trifluoromethyl, cyclopentyl, cyclohexyl, adamantyl, methyl, ethyl, isopropyl, tert-butyl, phenyl, naphthyl, pyridyl, di benzofuranyl, dibenzothienyl or carbazolyl, and when the number of substituents on group Q is greater than 1, each substituent may be the same or different.
  • L, L 1 and L 2 are each independently selected from the group consisting of a single bond or the following groups:
  • L is selected from a single bond or the group consisting of:
  • L 1 and L 2 are each independently selected from the group consisting of a single bond or the following groups:
  • Each is independently selected from the group consisting of:
  • each R is the same or different, and each is independently selected from hydrogen, deuterium, cyano, fluorine, trideuterated methyl, trimethylsilyl, trifluoromethyl, cyclopentyl, cyclohexyl, adamantium Alkyl, methyl, ethyl, isopropyl, tert-butyl, phenyl, naphthyl, pyridyl, dibenzofuranyl, dibenzothienyl or carbazolyl.
  • each R1 is hydrogen, deuterium or cyano.
  • the nitrogen-containing compound is selected from the group consisting of the following compounds:
  • a second aspect of the application provides an organic electroluminescent device, including an anode, a cathode, and a functional layer disposed between the anode and the cathode; wherein the functional layer includes the nitrogen-containing compound described in the first aspect of the application.
  • the nitrogen-containing compound provided in this application can be used to form at least one organic film layer in the functional layer to improve the luminous efficiency, lifetime and other characteristics of the organic electroluminescent device.
  • the functional layer includes an organic light-emitting layer including the nitrogen-containing compound.
  • the organic light-emitting layer may be composed of the nitrogen-containing compound provided by this application, or may be composed of the nitrogen-containing compound provided by this application and other materials.
  • the organic electroluminescent device is as shown in Figure 1.
  • the organic electroluminescent device may include an anode 100, a hole injection layer 310, a first hole transport layer 321, a first hole transport layer 321, and a first hole injection layer 310, which are stacked in sequence.
  • the anode 100 includes an anode material, which is preferably a material with a large work function that facilitates injection of holes into the functional layer.
  • anode materials include: metals such as nickel, platinum, vanadium, chromium, copper, zinc and gold or alloys thereof; metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO) and indium zinc oxide (IZO) ; combined metals and oxides such as ZnO:Al or SnO 2 :Sb; or conductive polymers such as poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy) Thiophene] (PEDT), polypyrrole and polyaniline, but are not limited thereto.
  • a transparent electrode including indium tin oxide (ITO) as an anode is included.
  • the hole transport layer may include one or more hole transport materials.
  • the hole transport layer material may be selected from carbazole polymers, carbazole-linked triarylamine compounds or other types of compounds. Specifically, it may be selected From the compounds shown below or any combination thereof:
  • the first hole transport layer 321 may be composed of ⁇ -NPD.
  • second hole transport layer 322 is composed of HT-1.
  • a hole injection layer 310 is further provided between the anode 100 and the first hole transport layer 321 to enhance the ability to inject holes into the first hole transport layer 321 .
  • the hole injection layer 310 can be made of benzidine derivatives, starburst arylamine compounds, phthalocyanine derivatives or other materials, which are not particularly limited in this application.
  • the material of the hole injection layer 310 is, for example, selected from the following compounds or any combination thereof;
  • hole injection layer 310 consists of PD.
  • the organic light-emitting layer 330 may be composed of a single light-emitting material, or may include a host material and a guest material.
  • the organic light-emitting layer 330 is composed of a host material and a guest material. The holes injected into the organic light-emitting layer 330 and the electrons injected into the organic light-emitting layer 330 can recombine in the organic light-emitting layer 330 to form excitons, and the excitons transfer energy to The host material transfers energy to the guest material, thereby enabling the guest material to emit light.
  • the host material of the organic light-emitting layer 330 may include metal chelate compounds, bistyryl derivatives, aromatic amine derivatives, dibenzofuran derivatives or other types of materials.
  • the host material includes the nitrogen-containing compound of the present application.
  • the guest material of the organic light-emitting layer 330 can be a compound with a condensed aryl ring or its derivatives, a compound with a heteroaryl ring or its derivatives, an aromatic amine derivative or other materials, which is not specified in this application. limit. Guest materials are also called doping materials or dopants. According to the type of luminescence, it can be divided into fluorescent dopants and phosphorescent dopants. Specific examples of the phosphorescent dopant include, but are not limited to,
  • the organic electroluminescent device is a red organic electroluminescent device.
  • the host material of the organic light-emitting layer 330 includes the nitrogen-containing compound of the present application.
  • the guest material is, for example, RD-1.
  • the organic electroluminescent device is a green organic electroluminescent device.
  • the host material of the organic light-emitting layer 330 includes the nitrogen-containing compound of the present application.
  • the guest material may be fac-Ir(ppy) 3 , for example.
  • the electron transport layer 340 may be a single-layer structure or a multi-layer structure, and may include one or more electron transport materials.
  • the sub-transmission material can be selected from, but is not limited to, BTB, LiQ, benzimidazole derivatives, oxadiazole derivatives, quinoxaline derivatives or other electron transmission materials, which are not specifically limited in this application.
  • the materials of the electron transport layer 340 include but are not limited to the following compounds:
  • the electron transport layer 340 may be composed of ET-1 and LiQ, or composed of ET-2 and LiQ.
  • the cathode 200 may include a cathode material, which is a material with a small work function that facilitates electron injection into the functional layer.
  • cathode materials include, but are not limited to, metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin and lead or alloys thereof; or multilayer materials such as LiF/Al , Liq/Al, LiO 2 /Al, LiF/Ca, LiF/Al and BaF 2 /Ca.
  • a metal electrode containing magnesium and silver is included as the cathode.
  • an electron injection layer 350 is also provided between the cathode 200 and the electron transport layer 340 to enhance the ability of injecting electrons into the electron transport layer 340.
  • the electron injection layer 350 may include an inorganic material such as an alkali metal sulfide or an alkali metal halide, or may include a complex of an alkali metal and an organic substance.
  • the electron injection layer 350 may include ytterbium (Yb).
  • a third aspect of the present application provides an electronic device, including the organic electroluminescent device described in the second aspect of the present application.
  • the electronic device provided is an electronic device 400 , which includes the above-mentioned organic electroluminescent device.
  • the electronic device 400 may be, for example, a display device, a lighting device, an optical communication device, or other types of electronic devices.
  • it may include but is not limited to a computer screen, a mobile phone screen, a television, electronic paper, emergency lighting, an optical module, etc.
  • Sub-b2 to Sub-b13 were synthesized.
  • the reactant F shown in Table 5 was used instead of Sub-c1 to synthesize Sub-d2 to Sub-d14.
  • NMR data of compound 389 1 H-NMR (400MHz, Methylene-Chloride-D2) ⁇ ppm 9.55 (s, 1H), 8.82 (d, 2H), 8.65 (d, 1H), 8.38-8.34 (m, 3H), 8.28 (d,2H),8.08(d,1H),7.98(d,2H),7.88(d,1H),7.79-7.70(m,3H),7.67-7.51(m,8H),7.47(t,1H ),7.42-7.33(m,3H).
  • PD was vacuum evaporated on the experimental substrate (anode) to form a thickness of hole injection layer (HIL), and then vacuum evaporate ⁇ -NPD on the hole injection layer to form the first hole transport layer.
  • HIL hole injection layer
  • Compound HT-1 was vacuum evaporated on the first hole transport layer to form a thickness of the second hole transport layer.
  • compound 1:RH-P:RD-1 was co-evaporated at a evaporation rate ratio of 49%:49%:2% to form a layer with a thickness of Red light organic light emitting layer (EML).
  • EML Red light organic light emitting layer
  • compound ET-1 and LiQ are mixed at a weight ratio of 1:1 and evaporated to form Thick electron transport layer (ETL), Yb is evaporated on the electron transport layer to form a thickness of
  • the electron injection layer (EIL) is then mixed with magnesium (Mg) and silver (Ag) at an evaporation rate of 1:9, and vacuum evaporated on the electron injection layer to form a thickness of the cathode.
  • CPL Covering layer
  • An organic electroluminescent device was prepared using the same method as in Example 1, except that when preparing the organic light-emitting layer, compound X in the following Table 7 was used instead of compound 1 in Example 1.
  • An organic electroluminescent device was prepared using the same method as in Example 1, except that when preparing the organic light-emitting layer, Compound A, Compound B, and Compound C were used instead of Compound 1 in Example 1.
  • the structure of the main materials used is as follows:
  • the red organic electroluminescent devices prepared in Examples 1 to 40 and Comparative Examples 1 to 3 were tested for performance. Specifically, the IVL performance of the devices was tested under the condition of 10 mA/cm 2. The T95 device life was at 20 mA/cm 2 . The test was carried out under the conditions, and the test results are shown in Table 7.
  • the efficiency is increased by at least 12.3% and the lifespan is increased by at least 10.7%.
  • the structure of the compound of the present application contains a naphthofuranooxazole/thiazole-triazine/pyrimidine electron-deficient heteroaryl group, in which both the naphthofuran and oxazole/thiazole groups have electron transport properties, and the two are fused Afterwards, the conjugated system is enlarged, which enhances the electron transport performance of the group; the triazine and pyrimidine groups have excellent electron transport properties; the naphthofuranoxazole/thiazole and The triazine/pyrimidine electron-deficient heteroaryl group is connected, giving the compound of the present application excellent electron transport properties.
  • Mixing the compound of the present application and the hole transport material can form a hybrid host material, which can improve the carrier balance in the light-emitting layer, broaden the carrier recombination area, improve the exciton generation and utilization efficiency, and improve the luminous efficiency and life of the device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本申请涉及有机电致发光材料技术领域,提供一种含氮化合物及包含其的有机电致发光器件和电子装置。本申请的含氮化合物包含萘并呋喃并噁唑/噻唑基团的母核结构,将该含氮化合物用做有机电致发光器件的发光层主体材料时,可以显著提高器件的发光效率和使用寿命。

Description

含氮化合物及有机电致发光器件和电子装置
相关申请的交叉引用
本申请要求于2022年6月13日递交的申请号为CN202210662921.9的中国专利申请的优先权,在此引用上述中国专利申请的内容全文以作为本申请的一部分。
技术领域
本申请涉及有机电致发光材料技术领域,尤其涉及含氮化合物及包含其的有机电致发光器件和电子装置。
背景技术
随着电子技术的发展和材料科学的进步,用于实现电致发光或者光电转化的电子元器件的应用范围越来越广泛。有机电致发光器件(OLED),通常包括相对设置的阴极和阳极,以及设置于阴极和阳极之间的功能层。该功能层由多层有机或者无机膜层组成,且一般包括有机发光层、空穴传输层、电子传输层等。当阴阳两极施加电压时,两电极产生电场,在电场的作用下,阴极侧的电子向电致发光层移动,阳极侧的空穴也向发光层移动,电子和空穴在电致发光层结合形成激子,激子处于激发态向外释放能量,进而使得电致发光层对外发光。
现有的有机电致发光器件中,最主要的问题体现在寿命和效率,随着显示器的大面积化,驱动电压也随之提高,发光效率及电流效率也需要提高,因此,有必要继续研发新型的材料,以进一步提高有机电致发光器件的性能。
发明内容
针对现有技术存在的上述问题,本申请的目的在于提供一种含氮化合物及包含其的电子元件和电子装置,该含氮化合物用于有机电致发光器件中,可以提高器件的性能。
根据本申请的第一方面,提供一种含氮化合物,所述含氮化合物具有由式1所示结构:
其中,Y选自S或者O;
X和Z中的一者为—N=,另一者为O或S;
Z1、Z2和Z3选自C(R1)或N,且Z1、Z2和Z3中至少两个为N;
环A选自萘环或菲环;
L、L1和L2相同或不同,且各自独立地选自单键、碳原子数为6~30的取代或未取代的亚芳基、碳原子数为3~30的取代或未取代的亚杂芳基;
Ar1、Ar2和Ar3相同或不同,且各自独立地选自碳原子数为6~40的取代或未取代的芳基、碳原子数为3~40的取代或未取代的杂芳基、碳原子数为1~10的烷基或碳原子数为3~10的环烷基;
L、L1、L2、Ar1、Ar2和Ar3中的取代基相同或不同,且各自独立地选自氘、氰基、卤素基团、碳原子数为1~10的烷基、碳原子数为1~10的卤代烷基、碳原子数为1~10的氘代烷基、碳原子数为3~12的三烷基硅基、三苯基硅基、碳原子数为6~20的芳基、碳原子数为6~20的氘代芳基、碳原子数为3~20的杂芳基、碳原子数为3~10的环烷基、碳原子数为1~10的烷氧基、碳原子数为1~10的烷硫基、碳原子数为6~20的芳氧基或碳原子数为6~20的芳硫基;任选地,任意两个相邻的取代基形成饱和或不饱和的3~15元环;
各R1和R相同或不同,且各自独立选自氢、氘、氰基、卤素基团、碳原子数为1~10的烷基、碳原子数为1~10的卤代烷基、碳原子数为1~10的氘代烷基、碳原子数为3~12的三烷基硅基、三苯基硅基、碳原子数为6~20的芳基、碳原子数为3~20的杂芳基或碳原子数为3~10的环烷基;任意两个相邻的R1或R形成环;n选自1、2、3、4、5、6、7、8或9。
根据本申请的第二方面,提供一种有机电致发光器件,包括相对设置的阳极和阴极,以及设于所述阳极和所述阴极之间的功能层;所述功能层包含上述的含氮化合物。
根据本申请的第三方面,提供了一种电子装置,包括第二方面所述的有机电致发光器件。
本申请化合物结构中包含萘(菲)并呋喃并噁唑/噻唑—三嗪/嘧啶缺电子杂芳基,其中萘(菲)并呋喃和噁唑/噻唑基团均具有电子传输特性,二者稠合之后使得共轭体系增大,使得基团的电子传输性能得到增强;三嗪或嘧啶基团具有优异的电子传输性能;将萘(菲)并呋喃并噁唑/噻唑和三嗪、嘧啶类缺电子杂芳基相连,赋予本申请化合物优异的电子传输特性。将本申请化合物和空穴传输材料相混合可形成混合型主体材料,可以改善发光层中载流子平衡,拓宽载流子复合区域,提高激子生成和利用效率,提高器件发光效率和寿命。
附图说明
附图是用来提供对本申请的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本申请,但并不构成对本申请的限制。
图1是本申请一种实施方式的有机电致发光器件的结构示意图。
图2是本申请一种实施方式的电子装置的结构示意图。
附图标记:
100、阳极           200、阴极           300、功能层     310、空穴注入层
321、第一空穴传输层 322、第二空穴传输层 330、有机发光层 340、电子传输层
350、电子注入层     400、电子装置
具体实施方式
现在将参考附图更全面地描述示例性实施方式。然而,示例性实施方式能够以多种形式实施,且不应被理解为限于在此阐述的范例;相反,提供这些实施例使得本申请将更加全面和完整,并将示例性实施方式的构思全面地传达给本领域的技术人员。所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多个实施方式中。在下面的描述中,提供许多具体细节从而给出对本申请的实施例的充分理解。
第一方面,本申请提供一种含氮化合物,所述含氮化合物具有由式1所示的结构:
其中,Y选自S或者O;
X和Z中的一者为—N=,另一者为O或S;
Z1、Z2和Z3选自C(R1)或N,且Z1、Z2和Z3中至少两个为N;
环A选自萘环或菲环;
L、L1和L2相同或不同,且各自独立地选自单键、碳原子数为6~30的取代或未取代的亚芳基、碳原子数为3~30的取代或未取代的亚杂芳基;
Ar1、Ar2和Ar3相同或不同,且各自独立地选自碳原子数为6~40的取代或未取代的芳基、碳原 子数为3~40的取代或未取代的杂芳基、碳原子数为1~10的烷基或碳原子数为3~10的环烷基;
L、L1、L2、Ar1、Ar2和Ar3中的取代基相同或不同,且各自独立地选自氘、氰基、卤素基团、碳原子数为1~10的烷基、碳原子数为1~10的卤代烷基、碳原子数为1~10的氘代烷基、碳原子数为3~12的三烷基硅基、三苯基硅基、碳原子数为6~20的芳基、碳原子数为6~20的氘代芳基、碳原子数为3~20的杂芳基、碳原子数为3~10的环烷基、碳原子数为1~10的烷氧基、碳原子数为1~10的烷硫基、碳原子数为6~20的芳氧基或碳原子数为6~20的芳硫基;任选地,任意两个相邻的取代基形成饱和或不饱和的3~15元环;
各R1和R相同或不同,且各自独立选自氢、氘、氰基、卤素基团、碳原子数为1~10的烷基、碳原子数为1~10的卤代烷基、碳原子数为1~10的氘代烷基、碳原子数为3~12的三烷基硅基、三苯基硅基、碳原子数为6~20的芳基、碳原子数为3~20的杂芳基或碳原子数为3~10的环烷基;任意两个相邻的R1和/或任意两个相邻的R形成环;n选自1、2、3、4、5、6、7、8或9。
本申请中,术语“任选”、“任选地”意味着随后所描述的事件或者环境可以发生也可以不发生。例如,“任选地,任意两个相邻的取代基形成环”意味着这两个取代基可以形成环也可以不形成环,即包括:两个相邻的取代基形成环的情景和两个相邻的取代基不形成环的情景。再比如,“任选地,Ar1、Ar2和Ar3中,任意两个相邻的取代基形成环”是指Ar1、Ar2和Ar3中的任意两个相邻的取代基相互连接形成环,或者Ar1、Ar2和Ar3中的任意两个相邻的取代基也可以各自独立的存在。“任意两个相邻”可以包括同一个原子上具有两个取代基,还可以包括两个相邻的原子上分别具有一个取代基;其中,当同一个原子上具有两个取代基时,两个取代基可以与其共同连接的原子形成饱和或不饱和的螺环;当两个相邻的原子上分别具有一个取代基时,这两个取代基可以稠合成环。
本申请中,所采用的描述方式“各……独立地为”与“……分别独立地为”和“……各自独立地为”可以互换,均应做广义理解,其既可以是指在不同基团中,相同符号之间所表达的具体选项之间互相不影响,也可以表示在相同的基团中,相同符号之间所表达的具体选项之间互相不影响。例如,其中,各q独立地为0、1、2或3,各R”独立地选自氢、氘、氟、氯”,其含义是:式Q-1表示苯环上有q个取代基R”,各个R”可以相同也可以不同,每个R”的选项之间互不影响;式Q-2表示联苯的每一个苯环上有q个取代基R”,两个苯环上的R”取代基的个数q可以相同或不同,各个R”可以相同也可以不同,每个R”的选项之间互不影响。
本申请中,“取代或未取代的”这样的术语是指,在该术语后面记载的官能团可以具有或不具有取代基(下文为了便于描述,将取代基统称为Rc)。举例来讲,“取代或未取代的芳基”是指具有取代基Rc的芳基或者没有取代的芳基。其中上述的取代基即Rc例如可以为氘、卤素基团、氰基、杂芳基、芳基、三烷基硅基、烷基、卤代烷基、环烷基等。取代的个数可以是1个或多个。
本申请中,“多个”是指2个以上,例如2个、3个、4个、5个、6个,等。
本申请中,用术语“和/或”连接两个要素,表示两个要素同时出现或者两个要素择一出现。
本申请化合物结构中的氢原子,包括氢元素的各种同位素原子,例如氢(H)、氘(D)或氚(T)。
本申请中,取代或未取代的官能团的碳原子数,指的是所有碳原子数。举例而言,若L1为碳原子数为12的取代的亚芳基,则亚芳基及其上的取代基的所有碳原子数为12。
本申请中,提及形成环,例如饱和或不饱和的3~15元环,包括饱和碳环、饱和杂环、部分不饱和碳环、部分不饱和杂环、芳香性碳环、芳香性杂环;当用n元作为环的前缀时,n为整数,表示环的环原子个数为n个。例如3~15元环表示具有3个至15个环原子的环,包括3、4、5、6、7、8、9、10、11、12、13、14、15个环原子环。
本申请中,芳基指的是衍生自芳香碳环的任选官能团或取代基。芳基可以是单环芳基(例如苯基)或多环芳基,换言之,芳基可以是单环芳基、稠环芳基、通过碳碳键共轭连接的两个或者更多个单环芳基、通过碳碳键共轭连接的单环芳基和稠环芳基、通过碳碳键连接的两个或者更多个稠环芳基。即,除非另有说明,通过碳碳键共轭连接的两个或者更多个芳香基团也可以视为本申请的芳基。其中,稠环芳基例如可以包括双环稠合芳基(例如萘基)、三环稠合芳基(例如菲基、芴基、蒽 基)等。芳基中不含有B、N、O、S、P、Se和Si等杂原子。芳基的实例可以包括但不限于,苯基、萘基、芴基、螺二芴基、蒽基、菲基、联苯基、三联苯基、三亚苯基、苝基、苯并[9,10]菲基、芘基、苯并荧蒽基、基等。
本申请中,涉及的亚芳基是指芳基进一步失去一个或多个氢原子所形成的二价或多价基团。
本申请中,三联苯基包括
本申请中,取代的芳基的碳原子数,指的是芳基和芳基上的取代基的碳原子总数,例如碳原子数为18的取代的芳基,指的是芳基和取代基的总碳原子数为18。
本申请中,取代或未取代的芳基(亚芳基)的碳原子数可以为6、8、10、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、28、30、31、33、34、35、36、38或40等。在一些实施方式中,取代或未取代的芳基是碳原子数为6~40的取代或未取代的芳基,另一些实施方式中,取代或未取代的芳基是碳原子数为6~30的取代或未取代的芳基,另一些实施方式中,取代或未取代的芳基是碳原子数为6~25的取代或未取代的芳基,另一些实施方式中,取代或未取代的芳基是碳原子数为6~15的取代或未取代的芳基。
本申请中,芴基可以被1个或多个取代基取代。在上述芴基被取代的情况下,取代的芴基可以为:等,但并不限定于此。
本申请中,作为L、L1、L2、Ar1、Ar2和Ar3的取代基的芳基,例如但不限于,苯基、萘基、菲基、联苯基、芴基、二甲基芴基等等。
在本申请中,杂芳基是指环中包含1、2、3、4、5或6个杂原子的一价芳香环或其衍生物,杂原子可以是B、O、N、P、Si、Se和S中的一种或多种。杂芳基可以是单环杂芳基或多环杂芳基,换言之,杂芳基可以是单个芳香环体系,也可以是通过碳碳键共轭连接的多个芳香环体系,且任一芳香环体系为一个芳香单环或者一个芳香稠环。示例地,杂芳基可以包括噻吩基、呋喃基、吡咯基、咪唑基、噻唑基、噁唑基、噁二唑基、三唑基、吡啶基、联吡啶基、嘧啶基、三嗪基、吖啶基、哒嗪基、吡嗪基、喹啉基、喹唑啉基、喹喔啉基、吩噁嗪基、酞嗪基、吡啶并嘧啶基、吡啶并吡嗪基、吡嗪并吡嗪基、异喹啉基、吲哚基、咔唑基、苯并噁唑基、苯并咪唑基、苯并噻唑基、苯并咔唑基、苯并噻吩基、二苯并噻吩基、噻吩并噻吩基、苯并呋喃基、菲咯啉基、异噁唑基、噻二唑基、吩噻嗪基、硅芴基、二苯并呋喃基以及N-苯基咔唑基、N-吡啶基咔唑基、N-甲基咔唑基等,而不限于此。
本申请中,涉及的亚杂芳基是指杂芳基进一步失去一个或多个氢原子所形成的二价或多价基团。
本申请中,取代或未取代的杂芳基(亚杂芳基)的碳原子数可以选自3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39或40等。在一些实施方式中,取代或未取代的杂芳基是总碳原子数为3~40的取代或未取代的杂芳基,另一些实施方式中,取代或未取代的杂芳基是总碳原子数为3~30的取代或未取代的杂芳基,另一些实施方式中,取代或未取代的杂芳基是总碳原子数为5~12的取代或未取代的杂芳基。
本申请中,作为L、L1、L2、Ar1、Ar2和Ar3的取代基的杂芳基例如但不限于,吡啶基、咔唑基、喹啉基、异喹啉基、菲啰啉基、苯并噁唑基、苯并噻唑基、苯并咪唑基、二苯并噻吩基、二苯并呋喃基。
本申请中,取代的杂芳基可以是杂芳基中的一个或者两个以上氢原子被诸如氘原子、卤素基团、-CN、芳基、杂芳基、三烷基硅基、烷基、环烷基、卤代烷基等基团取代。应当理解地是,取代的杂芳基的碳原子数,指的是杂芳基和杂芳基上的取代基的碳原子总数。
本申请中,碳原子数为1~10的烷基可以包括碳原子数1至10的直链烷基和碳原子数3至10的支链烷基。烷基的碳原子数例如可以为1、2、3、4、5、6、7、8、9、10个,烷基的具体实例包括但不限于,甲基、乙基、正丙基、异丙基、正丁基、异丁基、叔丁基、正戊基、异戊基、新戊基、正己基等。
本申请中,卤素基团例如可以为氟、氯、溴、碘。
本申请中,三烷基硅基的具体实例包括但不限于,三甲基硅基、三乙基硅基等。
本申请中,卤代烷基是指烷基上具有1个或多个卤素取代,具体实例包括但不限于,三氟甲基。
本申请中,碳原子数为3~10的环烷基的碳原子数例如可以为3、4、5、6、7、8或10。环烷基的具体实例包括但不限于,环戊基、环己基、金刚烷基。
本申请中,不定位连接键涉及的从环体系中伸出的单键其表示该连接键的一端可以连接该键所贯穿的环体系中的任意位置,另一端连接化合物分子其余部分。举例而言,如下式(f)中所示地,式(f)所表示的萘基通过两个贯穿双环的不定位连接键与分子其他位置连接,其所表示的含义,包括如式(f-1)~式(f-10)所示出的任一可能的连接方式:
再举例而言,如下式(X')中所示地,式(X')所表示的二苯并呋喃基通过一个从一侧苯环中间伸出的不定位连接键与分子其他位置连接,其所表示的含义,包括如式(X'-1)~式(X'-4)所示出的任一可能的连接方式:
本申请中的不定位取代基,指的是通过一个从环体系中央伸出的单键连接的取代基,其表示该取代基可以连接在该环体系中的任何可能位置。例如,如下式(Y)中所示地,式(Y)所表示的取代基R'通过一个不定位连接键与喹啉环连接,其所表示的含义,包括如式(Y-1)~式(Y-7)所示出的任一可能的连接方式:
在一些实施方式中,式1所示化合物选自以下式(1-1)~(1-16)所示结构:

在一些实施方式中,式1所示化合物选自以下式(2-1)~(2-11)所示结构:
在一些实施方式中,Z1和Z3为N,Z2选自C(H)或N;或者Z1和Z2为N,Z3选自C(H)或N;或者Z1、Z2和Z3均为N。
在一些实施方式中,Ar1、Ar2和Ar3各自独立地选自碳原子数为6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24或25的取代或未取代的芳基,碳原子数为5、6、7、8、9、10、12、13、14、15、16、17、18、19、20、21、22、23、24或25的取代或未取代的杂芳基。
在一些实施方式中,Ar1、Ar2和Ar3相同或不同,且各自独立地选自碳原子数为6~25的取代或未取代的芳基、碳原子数为5~24的取代或未取代的杂芳基。
在一些实施方式中,Ar1、Ar2和Ar3中的取代基各自独立地选自氘、卤素基团、氰基、碳原子数为1~4的卤代烷基、碳原子数为1~4的氘代烷基、碳原子数为1~4的烷基、碳原子数为5~10的环烷基、碳原子数为6~15的芳基、碳原子数为5~12的杂芳基、碳原子数为3~8的三烷基硅基或碳原子数为6~15的氘代芳基,任选地,任意两个相邻的取代基形成苯环或芴环。
在一些实施方式中,Ar1、Ar2和Ar3各自独立地选自取代或未取代的苯基、取代或未取代的联苯基、 取代或未取代的三联苯基、取代或未取代的萘基、取代或未取代的蒽基、取代或未取代的菲基、取代或未取代的芴基、取代或未取代的螺二芴基、取代或未取代的三亚苯基、取代或未取代的芘基、取代或未取代的苝基、取代或未取代的吡啶基、取代或未取代的二苯并噻吩基、取代或未取代的二苯并呋喃基、取代或未取代的咔唑基、取代或未取代的喹啉基、取代或未取代的菲罗啉基、取代或未取代的苯并噻唑基、取代或未取代的苯并噁唑基、取代或未取代的苯并咪唑基。
可选地,Ar1、Ar2和Ar3中的取代基各自独立地选自氘、氟、氰基、三氘代甲基、三甲基硅基、三氟甲基、环戊基、环己基、金刚烷基、甲基、乙基、异丙基、叔丁基、苯基、萘基、吡啶基、二苯并呋喃基、二苯并噻吩基或咔唑基,任选地,Ar1和Ar2中,任意两个相邻的取代基形成苯环或芴环。
在一些实施方式中,Ar1、Ar2和Ar3各自独立地选自取代或未取代的基团W;其中,所述未取代的基团W选自如下基团构成的组:
取代的基团W为未取代的基团W被一个或两个以上取代基取代所形成的基团,取代的基团W上的取代基各自独立地选自氘、氟、氰基、三氘代甲基、三甲基硅基、三氟甲基、环戊基、环己基、金刚烷基、甲基、乙基、异丙基、叔丁基、苯基、萘基、吡啶基、二苯并呋喃基、二苯并噻吩基、咔唑基、苯并噁唑基或苯并噻唑基,且当基团W上的取代基个数大于1时,各取代基相同或不同。
在一些实施方式中,Ar1和Ar2分别独立地选自以下基团构成的组:

在一些实施方式中,Ar3选自碳原子数为6~18的取代或未取代的芳基、碳原子数为12~18的取代或未取代的杂芳基;Ar3中的取代基各自独立地选自氘、氟、氰基、三氘代甲基、三甲基硅基、三氟甲基、环戊基、环己基、金刚烷基、甲基、乙基、异丙基、叔丁基、苯基、萘基、吡啶基或氘代苯基。
在一些实施方式中,Ar3选自以下基团构成的组:
在一些实施方式中,Ar3选自以下基团构成的组:

在一些实施方式中,L、L1和L2相同或不同,且各自独立地选自单键、碳原子数为6~15的取代或未取代的亚芳基、碳原子数为5~18的取代或未取代的亚杂芳基。
在一些实施方式中,L、L1和L2相同或不同,且各自独立地选自单键、碳原子数为6、7、8、9、10、11、12、13、14或15的取代或未取代的亚芳基、碳原子数为5、6、7、8、9、10、11、12、13、14、15、16、17或18的取代或未取代的亚杂芳基。
可选地,L、L1和L2中的取代基各自独立地选自氘、氟、氰基、碳原子数为1~5的烷基、碳原子数为3~8的三烷基硅基、碳原子数为1~4的氟代烷基、碳原子数为1~4的氘代烷基、苯基或萘基。
在一些实施方式中,L选自单键、取代或未取代的亚苯基、取代或未取代的亚萘基、取代或未取代的亚联苯基、取代或未取代的亚吡啶基、取代或未取代的亚二苯并噻吩基、取代或未取代的亚二苯并呋喃基。
在一些实施方式中,L1和L2各自独立地选自单键、取代或未取代的亚苯基、取代或未取代的亚萘基、取代或未取代的亚联苯基、取代或未取代的亚芴基、取代或未取代的亚菲基、取代或未取代的亚二苯并噻吩基、取代或未取代的亚二苯并呋喃基、取代或未取代的亚咔唑基、取代或未取代的亚吡啶基、取代或未取代的亚苯并噁唑基、取代或未取代的亚苯并噻唑基。
可选地,L、L1和L2中的取代基相同或不同,且各自独立地选自氘、氟、氰基、甲基、乙基、异丙基、叔丁基、三氟甲基、三氘代甲基、三甲基硅基或苯基。
可选地,L、L1和L2各自独立地选自单键、取代或未取代的基团Q,所述未取代的基团Q选自如下基团:
取代的基团Q为未取代的基团Q被一个或两个以上取代基取代所形成的基团,取代的基团Q上的取代基各自独立地选自氘、氟、氰基、三氘代甲基、三甲基硅基、三氟甲基、环戊基、环己基、金刚烷基、甲基、乙基、异丙基、叔丁基、苯基、萘基、吡啶基、二苯并呋喃基、二苯并噻吩基或咔唑基,且当基团Q上的取代基个数大于1时,各取代基相同或不同。
在一些实施方式中,L、L1和L2各自独立地选自单键或以下基团构成的组:
在一些实施方式中,L选自单键或以下基团构成的组:
在一些实施方式中,L1和L2各自独立地选自单键或以下基团构成的组:
在一些实施方式中,各自独立地选自以下基团构成的组:

可选地,各R相同或不同,且各自独立地选自氢、氘、氰基、氟、三氘代甲基、三甲基硅基、三氟甲基、环戊基、环己基、金刚烷基、甲基、乙基、异丙基、叔丁基、苯基、萘基、吡啶基、二苯并呋喃基、二苯并噻吩基或咔唑基。
可选地,各R1为氢、氘或氰基。
可选地,所述含氮化合物选自以下所示的化合物构成的组:
















本申请的第二方面,提供一种有机电致发光器件,包括阳极、阴极,以及设置在阳极与阴极之间的功能层;其中,功能层包含本申请第一方面所述的含氮化合物。
本申请所提供的含氮化合物可以用于形成功能层中的至少一个有机膜层,以改善有机电致发光器件的发光效率和寿命等特性。
可选地,所述功能层包括有机发光层,所述有机发光层包括所述含氮化合物。其中,有机发光层既可以由本申请所提供的含氮化合物组成,也可以由本申请所提供的含氮化合物和其他材料共同组成。
按照一种具体的实施方式,所述有机电致发光器件如图1所示,有机电致发光器件可以包括依次层叠设置的阳极100、空穴注入层310、第一空穴传输层321、第二空穴传输层(空穴辅助层)322、有机 发光层330、电子传输层340、电子注入层350和阴极200。
本申请中,阳极100包括阳极材料,其优选地是有助于空穴注入至功能层中的具有大逸出功(功函数,work function)材料。阳极材料的具体实例包括:金属如镍、铂、钒、铬、铜、锌和金或它们的合金;金属氧化物如氧化锌、氧化铟、氧化铟锡(ITO)和氧化铟锌(IZO);组合的金属和氧化物如ZnO:Al或SnO2:Sb;或导电聚合物如聚(3-甲基噻吩)、聚[3,4-(亚乙基-1,2-二氧基)噻吩](PEDT)、聚吡咯和聚苯胺,但不限于此。优选包括包含氧化铟锡(铟锡氧化物,indium tin oxide)(ITO)作为阳极的透明电极。
本申请中,空穴传输层可以包括一种或者多种空穴传输材料,空穴传输层材料可以选自咔唑多聚体、咔唑连接三芳胺类化合物或者其他类型的化合物,具体可以选自如下所示的化合物或者其任意组合:
在一种实施方式中,第一空穴传输层321可由α-NPD组成。
在一种实施方式中,第二空穴传输层322由HT-1组成。
可选地,在阳极100和第一空穴传输层321之间还设置有空穴注入层310,以增强向第一空穴传输层321注入空穴的能力。空穴注入层310可以选用联苯胺衍生物、星爆状芳基胺类化合物、酞菁衍生物或者其他材料,本申请对此不做特殊的限制。所述空穴注入层310的材料例如选自如下化合物或者其任意组合;

在一种实施方式中,空穴注入层310由PD组成。
本申请中,有机发光层330可以由单一发光材料组成,也可以包括主体材料和客体材料。可选地,有机发光层330由主体材料和客体材料组成,注入有机发光层330的空穴和注入有机发光层330的电子可以在有机发光层330复合而形成激子,激子将能量传递给主体材料,主体材料将能量传递给客体材料,进而使得客体材料能够发光。
有机发光层330的主体材料可以包含金属螯合类化合物、双苯乙烯基衍生物、芳香族胺衍生物、二苯并呋喃衍生物或者其他类型的材料。可选地,所述主体材料包含本申请的含氮化合物。
有机发光层330的客体材料可以为具有缩合芳基环的化合物或其衍生物、具有杂芳基环的化合物或其衍生物、芳香族胺衍生物或者其他材料,本申请对此不做特殊的限制。客体材料又称为掺杂材料或掺杂剂。按发光类型可以分为荧光掺杂剂和磷光掺杂剂。所述磷光掺杂剂的具体实例包括但不限于,
在本申请的一种实施方式中,所述有机电致发光器件为红色有机电致发光器件。在一种更具体的实施方式中,有机发光层330的主体材料包含本申请的含氮化合物。客体材料例如为RD-1。
在本申请的一种实施方式中,所述有机电致发光器件为绿色有机电致发光器件。在一种更具体的实施方式中,有机发光层330的主体材料包含本申请的含氮化合物。客体材料例如可以为fac-Ir(ppy)3
电子传输层340可以为单层结构,也可以为多层结构,其可以包括一种或者多种电子传输材料,电 子传输材料可以选自但不限于,BTB、LiQ、苯并咪唑衍生物、噁二唑衍生物、喹喔啉衍生物或者其他电子传输材料,本申请对比不作特殊限定。所述电子传输层340的材料包含但不限于以下化合物:
在本申请的一种实施方式中,电子传输层340可以由ET-1和LiQ组成,或者由ET-2和LiQ组成。
本申请中,阴极200可以包括阴极材料,其是有助于电子注入至功能层中的具有小逸出功的材料。阴极材料的具体实例包括但不限于,金属如镁、钙、钠、钾、钛、铟、钇、锂、钆、铝、银、锡和铅或它们的合金;或多层材料如LiF/Al、Liq/Al、LiO2/Al、LiF/Ca、LiF/Al和BaF2/Ca。可选地,包括包含镁和银的金属电极作为阴极。
可选地,在阴极200和电子传输层340之间还设置有电子注入层350,以增强向电子传输层340注入电子的能力。电子注入层350可以包括有碱金属硫化物、碱金属卤化物等无机材料,或者可以包括碱金属与有机物的络合物。在本申请的一种实施方式中,电子注入层350可以包括镱(Yb)。
本申请第三方面提供一种电子装置,包括本申请第二方面所述的有机电致发光器件。
按照一种实施方式,如图2所示,所提供的电子装置为电子装置400,其包括上述有机电致发光器件。电子装置400例如可以为显示装置、照明装置、光通讯装置或者其他类型的电子装置,例如可以包括但不限于电脑屏幕、手机屏幕、电视机、电子纸、应急照明灯、光模块等。
下面结合合成实施例来具体说明本申请的含氮化合物的合成方法,但是本公开并不因此而受到任何限制。
合成实施例
所属领域的专业人员应该认识到,本申请所描述的化学反应可以用来合适地制备许多本申请的有机化合物,且用于制备本申请的化合物的其它方法都被认为是在本申请的范围之内。例如,根据本申请那些非例证的化合物的合成可以成功地被所属领域的技术人员通过修饰方法完成,如适当的保护干扰基团,通过利用其他已知的试剂除了本申请所描述的,或将反应条件做一些常规的修改。本申请中未提到的合成方法的化合物的都是通过商业途径获得的原料产品。
7-溴-1-碘-2萘硫酚的合成:
氮气氛围下,向1000mL三口瓶中依次加入7-溴-1-碘-2萘胺(CAS:2411719-24-7,17.40g,50mmol),浓盐酸(25mL)和去离子水(25mL),用冰水浴将体系降温至0℃,向体系中滴加亚硝酸钠(3.45g,50mmol)的水溶液(25mL),滴加完毕后向反应体系中滴加硫氰酸钾(9.72g,100mmol)和三氯化铁(4.1g,25mmol)的水溶液(25mL),滴加完毕后让体系缓慢升温至室温后搅拌反应过夜。将反应液倒入去离子水中(200mL),用二氯甲烷萃取(100mL×3次),合并有机相并用无水硫酸钠干燥,过滤后减压蒸馏除去溶剂得粗品,粗品不需纯化直接用于下一步反应。
氮气氛围下,向1000mL三口瓶中一次加入所得的粗品,九水硫化钠(9.61g,100mmol),乙醇(180mL)和去离子水(360mL),升温至回流搅拌反应16h。待反应体系冷却至室温后,过滤,滤液用1M的稀盐酸酸化至pH=2,然后用二氯甲烷萃取(100mL×3次),合并有机相并用无水硫酸钠干 燥,过滤后减压蒸馏除去溶剂得粗品;用正庚烷作为流动相对粗品进行硅胶柱色谱提纯,得到白色固体,即7-溴-1-碘-2萘硫酚(8.03g,收率44%)。
Sub-a1的合成:
氮气氛围下,向500mL三口瓶中依次加入7-溴-2-苯基苯并噁唑(CAS:1268137-13-8,12.06g,44mmol),联硼酸频那醇酯(12.28g,48.4mmol),醋酸钾(9.50g,96.8mmol)和1,4-二氧六环(120mL),开启搅拌和加热,待体系升温至40℃,迅速加入三(二亚苄基丙酮)二钯(Pd2(dba)3,0.40g,0.44mmol)和2-二环己基膦-2',4',6'三异丙基联苯(XPhos,0.42g,0.88mmol),继续升温至回流,搅拌反应过夜。待体系冷却至室温后,向体系中加入200mL水,充分搅拌30min,减压抽滤,滤饼用去离子水洗至中性,再用100mL无水乙醇淋洗,得灰色固体;粗品用正庚烷打浆一次,再用200mL甲苯溶清后过硅胶柱,除去催化剂,浓缩后得白色固体Sub-a1(10.17g,收率72%)。
参照Sub-a1的合成,使用表1中所示的反应物A替代7-溴-2-苯基苯并噁唑,合成Sub-a2至Sub-a4。
表1:Sub-a2至Sub-a4的合成
Sub-b1的合成:
氮气氛围下,向500mL三口瓶中依次加入Sub-a1(17.66g,55mmol),7-溴-1-碘-2-羟基萘(17.45g,50mmol),四(三苯基膦)钯(Pd(PPh3)4,0.58g,0.5mmol),无水碳酸钠(10.60g,100mmol),甲苯(180mL),无水乙醇(45mL)和去离子水(45mL),开启搅拌和加热,升温至回流反应16h。待体系冷却至室温后,用二氯甲烷萃取(150mL×3次),合并有机相并用无水硫酸镁干燥,过滤后减压蒸馏除去溶剂,得粗品。用正庚烷作为流动相进行硅胶柱色谱提纯,得到白色固体Sub-b1(11.03g,收率53%)。
参照Sub-b1的合成,使用表2中所示的反应物B替代Sub-a1,反应物C替代7-溴-1-碘-2-羟基萘,合成Sub-b2至Sub-b13。
表2:Sub-b2至Sub-b13的合成

Sub-c1的合成:
氮气氛围下,向500mL三口瓶中依次加入Sub-b1(20.81g,50mmol),过氧化苯甲酸叔丁酯(BzOOt-Bu,19.42g,100mmol),醋酸钯(1.12g,5mmol),3-硝基吡啶(0.62g,5mmol),六氟苯(C6F6,210mL)和N,N'-二甲基咪唑啉酮(DMI,140mL),开启搅拌和加热,升温至90℃反应4h。待体系冷却至室温后,用乙酸乙酯萃取(100mL×3次),有机相用无水硫酸镁干燥,过滤后减压蒸馏除去溶剂,得粗品。使用正庚烷/二氯甲烷作为流动相进行硅胶柱色谱提纯,得到白色固体Sub-c1(10.77g,收率52%)。
参照Sub-c1使用表3中所示的反应物D替代Sub-b1,合成Sub-c2至Sub-c11。
表3:Sub-c2至Sub-c11的合成


Sub-c12的合成:
氮气氛围下,向100mL三口瓶加入Sub-c1(10.36g,25mmol)和200mL氘代苯‐D6,升温至60℃后向其中添加三氟甲磺酸(22.51g,150mmol),继续升温至沸腾搅拌反应24小时。待反应体系冷却至室温后,向其中添加50mL重水,搅拌10分钟后加入饱和K3PO4水溶液中和反应液。用二氯甲烷萃取有机层(50mL×3次),合并有机相用无水硫酸钠干燥,过滤后减压蒸馏除去溶剂,得粗品。使用正庚烷/二氯甲烷作为流动相进行硅胶柱色谱提纯,得到白色固体Sub-c12(6.82g,收率64%)。
Sub-c13的合成:
氮气氛围下,向250mL三口瓶加入Sub-b12(10.80g,25mmol)、二氯化钯(0.22g,1.25mmol)和DMSO(120mL),升温至140℃后搅拌12小时。待反应体系冷却至室温后,用二氯甲烷萃取有机层(50mL×3次),合并有机相并无水硫酸钠干燥,过滤后减压蒸馏除去溶剂,得粗品。使用正庚烷/二氯甲烷作为流动相进行硅胶柱色谱提纯,得到白色固体Sub-c13(7.85g,收率73%)。
参照Sub-c13,使用表4中所示的反应物E替代Sub-b12,合成Sub-c14。
表4:Sub-c14的合成
Sub-d1的合成:
氮气氛围下,向250mL三口瓶中依次加入Sub-c1(10.36g,25mmol),联硼酸频那醇酯(7.62g,30mmol),醋酸钾(5.40g,55mmol)和1,4-二氧六环(100mL),开启搅拌和加热,待体系升温至40℃,迅速加入三(二亚苄基丙酮)二钯(0.23g,0.25mmol)和2-二环己基膦-2',4',6'三异丙基联苯(0.24g,0.5mmol),继续升温至回流,搅拌反应过夜。待体系冷却至室温后,向体系中加入100mL水,充分搅拌30min,减压抽滤,滤饼用去离子水洗至中性,再用50mL无水乙醇淋洗,得灰色固体;粗品用正庚烷打浆一次,再用100mL甲苯溶清后过硅胶柱,除去催化剂,得白色固体Sub-d1(7.15g,收率62%)。
参照Sub-d1的合成,使用表5中所示的反应物F替代Sub-c1,合成Sub-d2至Sub-d14。
表5:Sub-d2至Sub-d14的合成

化合物1的合成:
氮气氛围下,向250mL三口瓶中,依次加入Sub-d1(11.53g,25mmol),SM-1(CAS:1300115-09-6,5.55g,20mmol),醋酸钯(0.045g,0.2mmol),2-二环己基膦-2',4',6'三异丙基联苯(0.19g,0.4mmol),无水碳酸钾(5.53g,40mmol),甲苯(120mL),四氢呋喃(30mL)和去离子水(30mL),开启搅拌和加热,升温至回流反应16h。待体系冷却至室温后,用二氯甲烷萃取(100mL×3次),合并有机相并用无水硫酸镁干燥后,过滤后减压蒸馏除去溶剂,得粗品。用二氯甲烷/正庚烷作为流动相进行硅胶柱色谱提纯,得到白色固体化合物1(8.99g,收率78%),m/z=577.2[M+H]+
参照化合物1的合成,使用表6中所示的反应物G替代Sub-d1,反应物H替代SM-1,合成表6中的本申请化合物。
表6:本申请化合物的合成







部分化合物的核磁数据:
化合物6核磁数据:1H-NMR(400MHz,Methylene-Chloride-D2)δppm 9.41(s,1H),8.82(d,2H),8.65(d,1H),8.36-8.33(m,3H),8.29-8.23(m,2H),8.11(d,1H),8.06(d,1H),7.77-7.48(m,12H),7.37(t,1H);
化合物389核磁数据:1H-NMR(400MHz,Methylene-Chloride-D2)δppm 9.55(s,1H),8.82(d,2H),8.65(d,1H),8.38-8.34(m,3H),8.28(d,2H),8.08(d,1H),7.98(d,2H),7.88(d,1H),7.79-7.70(m,3H),7.67-7.51(m,8H),7.47(t,1H),7.42-7.33(m,3H)。
有机电致发光器件制备及评估:
实施例1:红色有机电致发光器件的制备
先通过以下过程进行阳极预处理:在厚度依次为的ITO/Ag/ITO基板上,利用紫外臭氧以及O2:N2等离子进行表面处理,以增加阳极的功函数,采用有机溶剂清洗ITO基板表面,以清除ITO基板表面的杂质及油污。
在实验基板(阳极)上真空蒸镀PD以形成厚度为的空穴注入层(HIL),然后在空穴注入层上真空蒸镀α-NPD,形成为的第一空穴传输层。
在第一空穴传输层上真空蒸镀化合物HT-1,形成厚度为的第二空穴传输层。
接着,在第二空穴传输层上,将化合物1:RH-P:RD-1以49%:49%:2%的蒸镀速率比例进行共同蒸镀,形成厚度为的红光有机发光层(EML)。
在有机发光层上,将化合物ET-1和LiQ以1:1的重量比进行混合并蒸镀形成厚的电子传输层(ETL),将Yb蒸镀在电子传输层上以形成厚度为的电子注入层(EIL),然后将镁(Mg)和银(Ag)以1:9的蒸镀速率混合,真空蒸镀在电子注入层上,形成厚度为的阴极。
此外,在上述阴极上真空蒸镀CP-1,形成厚度为的覆盖层(CPL),从而完成红色有机电致发光器件的制造。
实施例2~40
除了在制作有机发光层时,分别以下表7中的化合物X代替实施例1中的化合物1之外,利用与实施例1相同的方法制备有机电致发光器件。
比较例1~3
除了在制作有机发光层时,分别以化合物A、化合物B、化合物C代替实施例1中的化合物1之外,利用与实施例1相同的方法制备有机电致发光器件。
其中,在各实施例及比较例中,所用的主要材料的结构如下:
对实施例1~40和比较例1~3制备所得的红色有机电致发光器件进行性能测试,具体在10mA/cm2的条件下测试了器件的IVL性能,T95器件寿命在20mA/cm2的条件下进行测试,测试结果见表7。
表7

根据上表7可知,将本发明化合物用做红色有机电致发光器件的主体材料时,效率至少提高12.3%,寿命至少提高了10.7%。究其原因,本申请化合物结构中包含萘并呋喃并噁唑/噻唑—三嗪/嘧啶缺电子杂芳基,其中萘并呋喃和噁唑/噻唑基团均具有电子传输特性,二者稠合之后使得共轭体系增大,使得基团的电子传输性能得到增强;三嗪和嘧啶基团具有优异的电子传输性能;将萘并呋喃并噁唑/噻唑和 三嗪/嘧啶缺电子杂芳基相连,赋予本申请化合物优异的电子传输特性。将本申请化合物和空穴传输材料相混合可形成混合型主体材料,可以改善发光层中载流子平衡,拓宽载流子复合区域,提高激子生成和利用效率,提高器件发光效率和寿命。

Claims (14)

  1. 含氮化合物,其特征在于,所述含氮化合物具有由式1所示结构:
    其中,Y选自S或者O;
    X和Z中的一者为—N=,另一者为O或S;
    Z1、Z2和Z3选自C(R1)或N,且Z1、Z2和Z3中至少两个为N;
    环A选自萘环或菲环;
    L、L1和L2相同或不同,且各自独立地选自单键、碳原子数为6~30的取代或未取代的亚芳基、碳原子数为3~30的取代或未取代的亚杂芳基;
    Ar1、Ar2和Ar3相同或不同,且各自独立地选自碳原子数为6~40的取代或未取代的芳基、碳原子数为3~40的取代或未取代的杂芳基、碳原子数为1~10的烷基或碳原子数为3~10的环烷基;
    L、L1、L2、Ar1、Ar2和Ar3中的取代基相同或不同,且各自独立地选自氘、氰基、卤素基团、碳原子数为1~10的烷基、碳原子数为1~10的卤代烷基、碳原子数为1~10的氘代烷基、碳原子数为3~12的三烷基硅基、三苯基硅基、碳原子数为6~20的芳基、碳原子数为6~20的氘代芳基、碳原子数为3~20的杂芳基、碳原子数为3~10的环烷基、碳原子数为1~10的烷氧基、碳原子数为1~10的烷硫基、碳原子数为6~20的芳氧基或碳原子数为6~20的芳硫基;任选地,任意两个相邻的取代基形成饱和或不饱和的3~15元环;
    各R1和R相同或不同,且各自独立选自氢、氘、氰基、卤素基团、碳原子数为1~10的烷基、碳原子数为1~10的卤代烷基、碳原子数为1~10的氘代烷基、碳原子数为3~12的三烷基硅基、三苯基硅基、碳原子数为6~20的芳基、碳原子数为3~20的杂芳基或碳原子数为3~10的环烷基;任意两个相邻的R1或R形成环;n选自1、2、3、4、5、6、7、8或9。
  2. 根据权利要求1所述的含氮化合物,其中,含氮化合物选自以下式(1-1)~(1-16)所示结构:

  3. 根据权利要求1或2所述的含氮化合物,其中,Z1和Z3为N,Z2选自C(H)或N;
    或者Z1和Z2为N,Z3选自C(H)或N;
    或者Z1、Z2和Z3均为N。
  4. 根据权利要求1~3中任意一项所述的含氮化合物,其中,Ar1、Ar2和Ar3相同或不同,且各自独立地选自碳原子数为6~25的取代或未取代的芳基、碳原子数为5~20的取代或未取代的杂芳基;
    可选地,Ar1、Ar2和Ar3中的取代基各自独立地选自氘、卤素基团、氰基、碳原子数为1~4的卤代烷基、碳原子数为1~4的氘代烷基、碳原子数为1~4的烷基、碳原子数为5~10的环烷基、碳原子数为6~15的芳基、碳原子数为5~12的杂芳基、碳原子数为3~8的三烷基硅基或碳原子数为6~15的氘代芳基,任选地,任意两个相邻的取代基形成苯环或芴环。
  5. 根据权利要求1~4中任意一项所述的含氮化合物,其中,Ar1、Ar2和Ar3各自独立地选自取代或未取代的基团W;所述未取代的基团W选自如下基团构成的组:
    取代的基团W中具有一个或两个以上取代基,取代的基团W的取代基各自独立地选自氘、氟、氰基、三氘代甲基、三甲基硅基、三氟甲基、环戊基、环己基、金刚烷基、甲基、乙基、异丙基、叔丁基、苯基、萘基、吡啶基、二苯并呋喃基、二苯并噻吩基、咔唑基、苯并噁唑基或苯并噻唑基,且当基团W上的取代基个数大于1时,各取代基相同或不同。
  6. 根据权利要求1~5中任意一项所述的含氮化合物,其中,L、L1和L2相同或不同,且各自独立地选自单键、碳原子数为6~15的取代或未取代的亚芳基、碳原子数为5~18的取代或未取代的亚杂芳基;
    可选地,L、L1和L2中的取代基各自独立地选自氘、氟、氰基、碳原子数为1~5的烷基、碳原子数为3~8的三烷基硅基、碳原子数为1~4的氟代烷基、碳原子数为1~4的氘代烷基、苯基或萘基。
  7. 根据权利要求1~6中任意一项所述的含氮化合物,其中,L、L1和L2各自独立地选自单键、取代或未取代的基团Q,所述未取代的基团Q选自如下基团:
    取代的基团Q中具有一个或两个以上取代基,取代的基团Q的取代基各自独立地选自氘、氟、氰基、三氘代甲基、三甲基硅基、三氟甲基、环戊基、环己基、金刚烷基、甲基、乙基、异丙基、叔丁基、苯基、萘基、吡啶基、二苯并呋喃基、二苯并噻吩基或咔唑基,且当基团Q上的取代基个数大于1时,各取代基相同或不同。
  8. 根据权利要求1~7中任意一项所述的含氮化合物,其中,Ar1和Ar2分别独立地选自以下基团构成的组:

    Ar3选自以下基团构成的组:

  9. 根据权利要求1~8中任意一项所述的含氮化合物,其中,L选自单键或以下基团构成的组:
    可选地,L1和L2各自独立地选自单键或以下基团构成的组:

  10. 根据权利要求1~9中任意一项所述的含氮化合物,其中,各自独立地选自以下基团构成的组:
    可选地,Ar3选自以下基团构成的组:

  11. 根据权利要求1~10中任意一项所述的含氮化合物,其中,各R相同或不同,且各自独立地选自氢、氘、氰基、氟、三氘代甲基、三甲基硅基、三氟甲基、环戊基、环己基、金刚烷基、甲基、乙基、异丙基、叔丁基、苯基、萘基、吡啶基、二苯并呋喃基、二苯并噻吩基或咔唑基。
  12. 根据权利要求1~11中任意一项所述的含氮化合物,其中,所述含氮化合物选自以下化合物所构成的组:















  13. 有机电致发光器件,包括相对设置的阳极和阴极,以及设于所述阳极和所述阴极之间的功能层;其特征在于,所述功能层包含权利要求1~12中任一项所述的含氮化合物;
    可选地,所述功能层包括有机发光层,所述有机发光层包含所述含氮化合物。
  14. 电子装置,其特征在于,包括权利要求13所述的有机电致发光器件。
PCT/CN2023/081183 2022-06-13 2023-03-13 含氮化合物及有机电致发光器件和电子装置 WO2023241137A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210662921.9 2022-06-13
CN202210662921.9A CN117263954A (zh) 2022-06-13 2022-06-13 含氮化合物及有机电致发光器件和电子装置

Publications (1)

Publication Number Publication Date
WO2023241137A1 true WO2023241137A1 (zh) 2023-12-21

Family

ID=89193120

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/081183 WO2023241137A1 (zh) 2022-06-13 2023-03-13 含氮化合物及有机电致发光器件和电子装置

Country Status (2)

Country Link
CN (1) CN117263954A (zh)
WO (1) WO2023241137A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109689655A (zh) * 2016-09-14 2019-04-26 默克专利有限公司 具有咔唑结构的化合物
CN113024529A (zh) * 2021-03-12 2021-06-25 吉林奥来德光电材料股份有限公司 一种有机电致发光材料和有机电致发光器件
CN113045585A (zh) * 2021-03-16 2021-06-29 吉林奥来德光电材料股份有限公司 一种有机稠环化合物及其制备方法和应用
CN113354687A (zh) * 2020-03-06 2021-09-07 环球展览公司 有机电致发光材料和装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109689655A (zh) * 2016-09-14 2019-04-26 默克专利有限公司 具有咔唑结构的化合物
CN113354687A (zh) * 2020-03-06 2021-09-07 环球展览公司 有机电致发光材料和装置
CN113024529A (zh) * 2021-03-12 2021-06-25 吉林奥来德光电材料股份有限公司 一种有机电致发光材料和有机电致发光器件
CN113045585A (zh) * 2021-03-16 2021-06-29 吉林奥来德光电材料股份有限公司 一种有机稠环化合物及其制备方法和应用

Also Published As

Publication number Publication date
CN117263954A (zh) 2023-12-22

Similar Documents

Publication Publication Date Title
WO2022089428A1 (zh) 含氮化合物、包含其的电子元件和电子装置
CN114456174B (zh) 含氮化合物及包含其的电子元件和电子装置
CN113285038A (zh) 一种有机电致发光器件及电子装置
WO2023231531A1 (zh) 含氮化合物、有机电致发光器件和电子装置
WO2024007511A1 (zh) 芳胺化合物及有机电致发光器件和电子装置
WO2023134228A1 (zh) 含氮化合物及包含其的有机电致发光器件和电子装置
CN113912615B (zh) 含氮化合物及包含其的电子元件和电子装置
CN114075203B (zh) 一种有机化合物以及使用其的有机电致发光器件和电子装置
CN116969969A (zh) 含氮化合物及有机电致发光器件和电子装置
WO2023241137A1 (zh) 含氮化合物及有机电致发光器件和电子装置
WO2023241136A1 (zh) 杂环化合物及有机电致发光器件和电子装置
WO2023197744A1 (zh) 含氮化合物及有机电致发光器件和电子装置
WO2024131166A1 (zh) 含氮化合物及有机电致发光器件和电子装置
WO2024060668A1 (zh) 含氮化合物及有机电致发光器件和电子装置
WO2023246154A1 (zh) 含氮化合物及有机电致发光器件和电子装置
WO2024098735A1 (zh) 有机化合物、有机电致发光器件及电子装置
WO2024051479A1 (zh) 有机电致发光器件和电子装置
WO2024131005A1 (zh) 有机化合物、有机电致发光器件和电子装置
WO2024078137A1 (zh) 有机电致发光器件和电子装置
WO2024041060A1 (zh) 芳胺化合物及有机电致发光器件和电子装置
CN115304615B (zh) 杂环化合物及有机电致发光器件和电子装置
WO2024041183A1 (zh) 有机化合物、有机电致发光器件和电子装置
WO2023185039A1 (zh) 有机化合物及包含其的电子元件和电子装置
CN115504982B (zh) 含氮化合物及包含其的有机电致发光器件和电子装置
CN118005622A (zh) 有机化合物及有机电致发光器件和电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23822709

Country of ref document: EP

Kind code of ref document: A1