WO2023185039A1 - 有机化合物及包含其的电子元件和电子装置 - Google Patents

有机化合物及包含其的电子元件和电子装置 Download PDF

Info

Publication number
WO2023185039A1
WO2023185039A1 PCT/CN2022/135028 CN2022135028W WO2023185039A1 WO 2023185039 A1 WO2023185039 A1 WO 2023185039A1 CN 2022135028 W CN2022135028 W CN 2022135028W WO 2023185039 A1 WO2023185039 A1 WO 2023185039A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
unsubstituted
carbon atoms
same
Prior art date
Application number
PCT/CN2022/135028
Other languages
English (en)
French (fr)
Inventor
马天天
郭晓燕
刘云
Original Assignee
陕西莱特光电材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 陕西莱特光电材料股份有限公司 filed Critical 陕西莱特光电材料股份有限公司
Publication of WO2023185039A1 publication Critical patent/WO2023185039A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/12Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains three hetero rings
    • C07D487/16Peri-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • H10K50/155Hole transporting layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present application belongs to the technical field of organic materials, and in particular relates to an organic compound and electronic components and electronic devices containing the same.
  • organic electroluminescent devices also called organic light-emitting diodes
  • This type of electronic component usually includes a cathode and an anode arranged oppositely, and a functional layer arranged between the cathode and anode.
  • the functional layer is composed of multiple organic or inorganic film layers, and generally includes an energy conversion layer, a hole transport layer located between the energy conversion layer and the anode, and an electron transport layer located between the energy conversion layer and the cathode.
  • an organic electroluminescent device as an example, it generally includes an anode, a hole transport layer, an electroluminescent layer as an energy conversion layer, an electron transport layer and a cathode that are stacked in sequence.
  • anode When a voltage is applied to the cathode and anode, the two electrodes generate an electric field. Under the action of the electric field, the electrons on the cathode side move toward the electroluminescent layer, and the holes on the anode side also move toward the luminescent layer. The electrons and holes combine in the electroluminescent layer. Excitons are formed, and the excitons release energy outwards in the excited state, thereby causing the electroluminescent layer to emit light.
  • Organic charge transport materials are a type of organic semiconductor material that can achieve directional and orderly controllable migration of carriers under the action of an electric field to transport charges when carriers (electrons or holes) are injected.
  • This type of material requires excellent electron donating properties, low ionization potential, high hole mobility, good solubility and amorphous film-forming properties, strong fluorescence properties and photostability.
  • the hole transport layer materials are mainly poly(p-phenylene vinylene), triarylamine, hydrazone, butadiene, etc.
  • the excellent performance of triarylamine materials is one of the hot spots of research.
  • the existing technology discloses materials that can be used to prepare hole transport layers in organic electroluminescent devices.
  • the existing triarylamine hole transport layer materials perform poorly in terms of voltage, luminous efficiency, power and lifespan in the device, and there is huge room for improvement. Therefore, it is still necessary to continue to develop new materials to further improve the performance of electronic components.
  • the purpose of this application is to provide an organic compound and an electronic component and electronic device containing the same.
  • the organic compound can improve the performance of the electronic component and electronic device, such as reducing the driving voltage of the device. Improve device efficiency and lifespan.
  • an organic compound having a structure represented by Formula 1:
  • each R 1 , R 2 , R 3 and R 4 are the same or different, and are independently selected from deuterium, halogen group, cyano group, alkyl group with 1 to 10 carbon atoms, 6 to 20 carbon atoms. Aryl groups and heteroaryl groups with 5-20 carbon atoms;
  • R 5 , R 6 , R 7 and R 8 are each independently selected from hydrogen or the structure represented by Formula 1-1, and at least one of R 5 , R 6 , R 7 and R 8 is selected from the group represented by Formula 1-1 the structure shown;
  • L, L 1 and L 2 are the same or different, and are independently selected from single bonds, substituted or unsubstituted arylene groups with 6 to 30 carbon atoms, substituted or unsubstituted arylene groups with 3 to 30 carbon atoms. heteroaryl;
  • Ar 1 is selected from a substituted or unsubstituted aryl group with 6 to 30 carbon atoms, and a substituted or unsubstituted heteroaryl group with 3 to 30 carbon atoms;
  • Ar 2 is selected from the groups shown in Formula 1-2;
  • X is selected from C(R 11 R 12 ), O or S;
  • Each R 9 and R 10 are the same or different, and are independently selected from deuterium, halogen group, cyano group, alkyl group with 1-10 carbon atoms or aryl group with 6-12 carbon atoms;
  • R 11 and R 12 are the same or different, and are independently selected from an alkyl group with 1 to 10 carbon atoms or an aryl group with 6 to 12 carbon atoms;
  • n 1 is the number of R 1 , selected from 0, 1, 2, 3 or 4. When n 1 is greater than 1, any two R 1 are the same or different;
  • n 2 is the number of R 2 , selected from 0, 1, 2, 3 or 4. When n 2 is greater than 1, any two R 1 are the same or different;
  • n 3 is the number of R 3 , selected from 0, 1 or 2. When n 3 is greater than 1, any two R 3 are the same or different;
  • n 4 is the number of R 4 , selected from 0, 1, 2, 3 or 4. When n 4 is greater than 1, any two R 4 are the same or different;
  • n 9 is the number of R 9s , selected from 0, 1, 2 or 3. When n 9 is greater than 1, any two R 9s are the same or different;
  • n 10 is the number of R 10 , selected from 0, 1, 2, 3 or 4. When n 10 is greater than 1, any two R 10 are the same or different;
  • the substituents in L, L 1 , L 2 and Ar 1 are the same or different, and are independently selected from deuterium, halogen group, cyano group, alkyl group with 1-10 carbon atoms, 3 carbon atoms -10 cycloalkyl group, aryl group with 6-20 carbon atoms or heteroaryl group with 5-20 carbon atoms;
  • any two adjacent substituents in Ar 1 form a ring.
  • an electronic component including an anode and a cathode arranged oppositely, and a functional layer disposed between the anode and the cathode; the functional layer includes the above-mentioned organic compound.
  • an electronic device including the electronic component described in the second aspect.
  • the organic compound of this application connects an aromatic amine group to a large planar conjugated group and a dibenzo five-membered ring group.
  • the large planar conjugated group has a higher T1 value, which is beneficial to carriers and Transmission of energy.
  • the group connection method of the present application enables the compound to have high HOMO orbital coverage and strong polarity, thereby having good hole mobility.
  • the organic compound of this application can effectively avoid intermolecular stacking and improve the film-forming properties of the compound.
  • the organic compound of the present application is used as a material for the hole transport layer of an organic electroluminescent device, the operating voltage of the device can be significantly reduced, and the efficiency and life of the device can be improved.
  • Figure 1 is a schematic structural diagram of an organic electroluminescent device of the present application.
  • Figure 2 is a schematic structural diagram of an electronic device according to the present application.
  • Electron transport layer 320 320. Hole transport layer 330. Electron blocking layer 340. Organic light emitting layer 350. Electron transport layer
  • Example embodiments will now be described more fully with reference to the accompanying drawings.
  • Example embodiments may, however, be embodied in various forms and should not be construed as limited to the examples set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete and will fully convey the concepts of the example embodiments. be communicated to those skilled in the art.
  • the described features, structures or characteristics may be combined in any suitable manner in one or more embodiments. In the following description, numerous specific details are provided to provide a thorough understanding of embodiments of the present application.
  • the present application provides an organic compound having a structure represented by Formula 1:
  • each R 1 , R 2 , R 3 and R 4 are the same or different, and are independently selected from deuterium, halogen group, cyano group, alkyl group with 1 to 10 carbon atoms, 6 to 20 carbon atoms. Aryl groups and heteroaryl groups with 5-20 carbon atoms;
  • R 5 , R 6 , R 7 and R 8 are each independently selected from hydrogen or the structure represented by Formula 1-1, and at least one of R 5 , R 6 , R 7 and R 8 is selected from the group represented by Formula 1-1 the structure shown;
  • L, L 1 and L 2 are the same or different, and are independently selected from single bonds, substituted or unsubstituted arylene groups with 6 to 30 carbon atoms, substituted or unsubstituted arylene groups with 3 to 30 carbon atoms. heteroaryl;
  • Ar 1 is selected from a substituted or unsubstituted aryl group with 6 to 30 carbon atoms, and a substituted or unsubstituted heteroaryl group with 3 to 30 carbon atoms;
  • Ar 2 is selected from the groups shown in Formula 1-2;
  • X is selected from C(R 11 R 12 ), O or S;
  • Each R 9 and R 10 are the same or different, and are independently selected from deuterium, halogen group, cyano group, alkyl group with 1-10 carbon atoms or aryl group with 6-12 carbon atoms;
  • R 11 and R 12 are the same or different, and are independently selected from an alkyl group with 1 to 10 carbon atoms or an aryl group with 6 to 12 carbon atoms;
  • n 1 is the number of R 1 , selected from 0, 1, 2, 3 or 4. When n 1 is greater than 1, any two R 1 are the same or different;
  • n 2 is the number of R 2 , selected from 0, 1, 2, 3 or 4. When n 2 is greater than 1, any two R 1 are the same or different;
  • n 3 is the number of R 3 , selected from 0, 1 or 2;
  • n 4 is the number of R 4 , selected from 0, 1, 2, 3 or 4. When n 4 is greater than 1, any two R 4 are the same or different;
  • n 9 is the number of R 9s , selected from 0, 1, 2 or 3. When n 9 is greater than 1, any two R 9s are the same or different;
  • n 10 is the number of R 10 , selected from 0, 1, 2, 3 or 4. When n 10 is greater than 1, any two R 10 are the same or different;
  • the substituents in L, L 1 , L 2 and Ar 1 are the same or different, and are independently selected from deuterium, halogen group, cyano group, alkyl group with 1 to 10 carbon atoms, and 3 carbon atoms. -10 cycloalkyl group, aryl group with 6-20 carbon atoms or heteroaryl group with 5-20 carbon atoms;
  • any two adjacent substituents in Ar 1 form a ring.
  • the fluorenyl group can be substituted by 1 or 2 substituents, wherein, in the case where the above fluorenyl group is substituted, it can be: etc., but are not limited to this.
  • each...independently is and “...respectively and independently are” and “...are each independently selected from” are interchangeable, and should be understood in a broad sense. They can either be It means that in different groups, the specific options expressed by the same symbols do not affect each other. It can also mean that in the same group, the specific options expressed by the same symbols do not affect each other.
  • each q is independently 0, 1, 2 or 3
  • each R is independently selected from hydrogen, deuterium, fluorine, and chlorine.
  • Formula Q-1 represents that there are q substituents R" on the benzene ring.
  • each R can be the same or different, and the options of each R” do not affect each other;
  • Formula Q-2 indicates that there are q substituents R” on each benzene ring of biphenyl, and the R on the two benzene rings "The number of substituents q can be the same or different, each R" can be the same or different, and the options for each R" do not affect each other.
  • substituted or unsubstituted means that the functional group described after the term may or may not have a substituent (hereinafter, for convenience of description, the substituents are collectively referred to as Rc).
  • substituted or unsubstituted aryl refers to an aryl group having a substituent Rc or an unsubstituted aryl group.
  • the above-mentioned substituent Rc may be, for example, deuterium, halogen group, cyano group, heteroaryl group, aryl group, trialkylsilyl group, alkyl group, haloalkyl group, cycloalkyl group, etc.
  • the number of carbon atoms of a substituted or unsubstituted functional group refers to the number of all carbon atoms. For example, if L 1 is a substituted arylene group having 12 carbon atoms, then all of the carbon atoms in the arylene group and the substituents thereon are 12.
  • aryl refers to an optional functional group or substituent derived from an aromatic carbocyclic ring.
  • the aryl group can be a single-ring aryl group (such as phenyl) or a polycyclic aryl group.
  • the aryl group can be a single-ring aryl group, a fused-ring aryl group, or two or more single-ring aryl groups conjugated through a carbon-carbon bond.
  • Ring aryl groups monocyclic aryl groups conjugated through carbon-carbon bonds and fused-ring aryl groups, two or more fused-ring aryl groups conjugated through carbon-carbon bonds.
  • the condensed ring aryl group may include, for example, bicyclic condensed aryl group (such as naphthyl), tricyclic condensed aryl group (such as phenanthrenyl, fluorenyl, anthracenyl), etc.
  • Aryl groups do not contain heteroatoms such as B, N, O, S, P, Se and Si.
  • aryl groups may include, but are not limited to, phenyl, naphthyl, fluorenyl, anthracenyl, phenanthrenyl, biphenyl, terphenyl, benzo[9,10]phenanthrenyl, pyrenyl, benzofluoranthene base, base, spirobifluorenyl base, etc.
  • the arylene group refers to a bivalent group formed by the aryl group further losing one hydrogen atom.
  • terphenyl includes
  • the substituted aryl group may be one or more hydrogen atoms in the aryl group substituted by groups such as deuterium atoms, halogen groups, cyano groups, aryl groups, heteroaryl groups, alkyl groups, cycloalkyl groups, etc. .
  • the number of carbon atoms of a substituted aryl group refers to the total number of carbon atoms of the aryl group and the substituents on the aryl group.
  • a substituted aryl group with a carbon number of 18 refers to the aryl group and the substituted aryl group.
  • the total number of carbon atoms in the base is 18.
  • heteroaryl refers to a monovalent aromatic ring or its derivatives containing 1, 2, 3, 4, 5, 6 or 7 heteroatoms in the ring.
  • the heteroatoms can be B, O, N, P, Si At least one of , Se and S.
  • a heteroaryl group can be a monocyclic heteroaryl group or a polycyclic heteroaryl group.
  • a heteroaryl group can be a single aromatic ring system or multiple aromatic ring systems conjugated through carbon-carbon bonds, and any aromatic
  • the ring system is an aromatic single ring or an aromatic fused ring.
  • heteroaryl groups may include thienyl, furyl, pyrrolyl, imidazolyl, thiazolyl, oxazolyl, oxadiazolyl, triazolyl, pyridyl, bipyridyl, pyrimidinyl, triazinyl, Acridinyl, pyridazinyl, pyrazinyl, quinolinyl, quinazolinyl, quinoxalinyl, phenoxazinyl, phthalazinyl, pyridopyrimidinyl, pyridopyrazinyl, pyrazinopyridyl Azinyl, isoquinolinyl, indolyl, carbazolyl, benzoxazolyl, benzimidazolyl, benzothiazolyl, benzocarbazolyl, benzothienyl, dibenzothienyl, thiophene Thiophenyl
  • thienyl, furyl, phenanthrolinyl, etc. are heteroaryl groups with a single aromatic ring system type, and N-phenylcarbazolyl and N-pyridylcarbazolyl are polycyclic rings connected by conjugation of carbon-carbon bonds.
  • System type heteroaryl In this application, the heteroarylene group refers to a bivalent group formed by the heteroaryl group further losing one hydrogen atom.
  • a substituted heteroaryl group may be one or more hydrogen atoms in the heteroaryl group substituted by a group such as a deuterium atom, a halogen group, a cyano group, an aryl group, a heteroaryl group, an alkyl group, a cycloalkyl group, etc. group replaced.
  • a group such as a deuterium atom, a halogen group, a cyano group, an aryl group, a heteroaryl group, an alkyl group, a cycloalkyl group, etc. group replaced.
  • the number of carbon atoms of a substituted heteroaryl group refers to the total number of carbon atoms of the heteroaryl group and the substituents on the heteroaryl group.
  • the number of carbon atoms of the substituted or unsubstituted aryl group may be 6-25, for example, the number of carbon atoms may be 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 ,18,19,20,21,22,23,24,25.
  • aryl groups as substituents include, but are not limited to, phenyl, biphenyl, naphthyl, fluorenyl, phenanthrenyl, anthracenyl, base.
  • the number of carbon atoms of the substituted or unsubstituted heteroaryl group may be 5-20, for example, the number of carbon atoms may be 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20.
  • heteroaryl groups as substituents include, but are not limited to, triazinyl, pyridyl, pyrimidinyl, carbazolyl, dibenzofuranyl, dibenzothienyl, quinolyl, Quinazolinyl, quinoxalinyl, isoquinolinyl, carbazolyl, N-phenylcarbazolyl.
  • unlocated connecting bonds refer to single bonds protruding from the ring system. It means that one end of the bond can be connected to any position in the ring system that the bond penetrates, and the other end is connected to the rest of the compound molecule.
  • the alkyl group having 1 to 10 carbon atoms may include a linear alkyl group having 1 to 10 carbon atoms and a branched alkyl group having 3 to 10 carbon atoms.
  • the number of carbon atoms of the alkyl group may be, for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10.
  • alkyl group examples include, but are not limited to, methyl, ethyl, n-propyl, iso Propyl, n-butyl, isobutyl, tert-butyl, n-pentyl, isopentyl, neopentyl, n-hexyl, n-octyl, 2-ethylhexyl, nonyl, decyl, 3,7- Dimethyloctyl etc.
  • the halogen group can be, for example, fluorine, chlorine, bromine, or iodine.
  • the number of carbon atoms of the cycloalkyl group having 3 to 10 carbon atoms may be, for example, 3, 4, 5, 6, 7, 8, or 10.
  • Specific examples of cycloalkyl include, but are not limited to, cyclopentyl and cyclohexyl.
  • the naphthyl group represented by the formula (f) is connected to other positions of the molecule through two non-positioned bonds that penetrate the bicyclic ring, and its meaning includes such as the formula (f) -1)-Any possible connection method shown in formula (f-10).
  • the dibenzofuryl group represented by the formula (X') is connected to other positions of the molecule through an unpositioned bond extending from the middle of one side of the benzene ring, Its meaning includes any possible connection method shown in formula (X'-1) to formula (X'-4).
  • one and only one of R 5 , R 6 , R 7 and R 8 is selected from the structure shown in Formula 1-1.
  • the organic compound has the structure shown in Formula 1-A:
  • Ar 1 is selected from a substituted or unsubstituted aryl group with 6 to 25 carbon atoms, and a substituted or unsubstituted heteroaryl group with 5 to 20 carbon atoms.
  • Ar 1 is selected from the group consisting of carbon atoms with 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 substituted or unsubstituted aryl groups with carbon atoms of 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 substituted or unsubstituted aryl groups of heteroaryl.
  • the substituents in Ar 1 are each independently selected from deuterium, fluorine, cyano, alkyl with 1-5 carbon atoms, cycloalkyl with 5-10 carbon atoms or 6 carbon atoms. -12 aryl group.
  • any two adjacent substituents can form cyclohexane cyclopentane Benzene ring, naphthalene ring or fluorene ring
  • any two adjacent substituents in Ar 1 form a saturated or unsaturated ring with 5-13 carbon atoms.
  • substituents in Ar 1 include, but are not limited to: deuterium, fluorine, cyano, methyl, ethyl, isopropyl, tert-butyl, trimethylsilyl, trifluoromethyl, cyclopentyl base, cyclohexyl, phenyl, naphthyl or biphenyl.
  • Ar 1 is selected from substituted or unsubstituted phenyl, substituted or unsubstituted naphthyl, substituted or unsubstituted biphenyl, substituted or unsubstituted fluorenyl, substituted or unsubstituted phenanthrenyl, substituted or unsubstituted terphenyl, substituted or unsubstituted dibenzofuranyl, substituted or unsubstituted dibenzothienyl, substituted or unsubstituted spirodifluorenyl.
  • the substituents in Ar 1 are each independently selected from deuterium, fluorine, cyano, methyl, ethyl, n-propyl, isopropyl, tert-butyl, cyclopentyl, cyclohexyl, phenyl, Naphthyl or biphenyl.
  • Ar 1 is selected from a substituted or unsubstituted group W, wherein the unsubstituted group W is selected from the following groups:
  • the substituted group W has one or more substituents, and the substituents are independently selected from deuterium, fluorine, cyano, methyl, ethyl, isopropyl, tert-butyl, cyclopentyl, cyclohexyl, phenyl, naphthyl, biphenyl, dibenzofuranyl or dibenzothienyl, and when the number of substituents is greater than 1, each substituent may be the same or different.
  • Ar 1 is selected from the group consisting of:
  • Ar 1 is selected from the following groups:
  • n 1 , n 2 , n 3 and n 4 are all 0.
  • each R 1 , R 2 , R 3 and R 4 are independently selected from deuterium, fluorine, cyano, methyl, ethyl, n-propyl, isopropyl, tert-butyl or phenyl.
  • n 9 and n 10 are both 0.
  • each R 9 and R 10 are independently selected from deuterium, fluorine, cyano, methyl, ethyl, n-propyl, isopropyl, tert-butyl or phenyl.
  • X is selected from C(R 11 R 12 ), and both R 11 and R 12 are methyl.
  • X is selected from O or S.
  • Ar 2 is selected from the group consisting of:
  • Each R 9 and R 10 is independently selected from deuterium, fluorine, cyano, methyl, ethyl, n-propyl, isopropyl, tert-butyl or phenyl.
  • Ar 2 is selected from the group consisting of:
  • Ar 2 is selected from the group consisting of:
  • L, L 1 and L 2 are the same or different, and are each independently selected from a single bond, a substituted or unsubstituted arylene group with a carbon number of 6-20, a carbon number of 5-20 20 substituted or unsubstituted heteroarylene groups.
  • L, L 1 and L 2 are the same or different, each independently selected from a single bond, and the number of carbon atoms is 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 , 18, 19, 20 substituted or unsubstituted arylene groups with carbon atoms of 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 substituted or unsubstituted heteroarylene groups.
  • the substituents in L, L 1 and L 2 are the same or different, and are each independently selected from deuterium, fluorine, cyano group, alkyl group with 1 to 5 carbon atoms or phenyl group.
  • L, L 1 and L 2 are the same or different, and are each independently selected from a single bond, a substituted or unsubstituted arylene group with 6-15 carbon atoms, a substituted or unsubstituted arylene group with 12-18 carbon atoms. Unsubstituted heteroarylene.
  • L 1 and L 2 are the same or different, and are each independently selected from single bonds, substituted or unsubstituted arylene groups with 6 to 15 carbon atoms.
  • L, L 1 and L 2 are the same or different, and each is independently selected from a single bond, substituted or unsubstituted phenylene, substituted or unsubstituted naphthylene, substituted or unsubstituted Biphenylene group, substituted or unsubstituted fluorenylene group, substituted or unsubstituted dibenzofurylene group, substituted or unsubstituted dibenzothienylene group, substituted or unsubstituted carbazolylene group.
  • the substituents in L, L 1 and L 2 are the same or different, and are each independently selected from deuterium, fluorine, cyano, methyl, ethyl, isopropyl, tert-butyl, cyclohexyl or phenyl .
  • L is selected from a single bond, substituted or unsubstituted phenylene, substituted or unsubstituted naphthylene, substituted or unsubstituted biphenylene, substituted or unsubstituted fluorenylene, substituted or unsubstituted Substituted dibenzofurylene, substituted or unsubstituted dibenzothienylene.
  • L is selected from substituted or unsubstituted phenylene, substituted or unsubstituted naphthylene, substituted or unsubstituted biphenylene, substituted or unsubstituted fluorenylene, substituted or unsubstituted phenylene.
  • the material When L is not a single bond, that is, when the nitrogen-containing group of the organic compound of the present application is connected to the aromatic amine through an aryl group or a heteroaryl group, the material has a deeper HOMO energy level, which is conducive to hole injection and transport.
  • L 1 is selected from a single bond, substituted or unsubstituted phenylene, substituted or unsubstituted naphthylene, substituted or unsubstituted biphenylene, and substituted or unsubstituted fluorenylene.
  • L2 is selected from single bond, substituted or unsubstituted phenylene.
  • L, L 1 and L 2 are the same or different, and are each independently selected from a single bond, a substituted or unsubstituted group Q; wherein the unsubstituted group Q is selected from the following groups group of:
  • the substituted group Q has one or more substituents, and the substituents are independently selected from deuterium, fluorine, cyano, methyl, ethyl, isopropyl, tert-butyl, phenyl, naphthalene group or biphenyl group, and when the number of substituents is greater than 1, each substituent may be the same or different.
  • L, L 1 and L 2 are the same or different, and are each independently selected from the group consisting of a single bond or the following groups:
  • L is selected from a single bond or the following groups:
  • L 1 is independently selected from a single bond or the following groups:
  • L2 is selected from a single bond or
  • the organic compound is selected from the group consisting of:
  • the present application provides an electronic component, including an anode and a cathode arranged oppositely, and a functional layer disposed between the anode and the cathode; the functional layer contains the organic compound of the present application.
  • the electronic component is an organic electroluminescent device.
  • the electronic component is an organic electroluminescent device.
  • the organic electroluminescent device may include an anode 100 , a hole transport layer 320 , an electron blocking layer 330 , an organic light emitting layer 340 , an electron transport layer 350 and a cathode 200 that are stacked in sequence.
  • the organic electroluminescent device is a blue organic electroluminescent device.
  • the anode 100 includes an anode material, which is optionally a material with a large work function that facilitates injection of holes into the functional layer.
  • anode materials include: metals such as nickel, platinum, vanadium, chromium, copper, zinc and gold or their alloys; metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO) and indium zinc oxide (IZO); Combined metals and oxides such as ZnO:Al or SnO2 :Sb ; or conductive polymers such as poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene ](PEDT), polypyrrole and polyaniline, but not limited thereto.
  • a transparent electrode including indium tin oxide (ITO) as an anode is preferred.
  • the hole transport layer 320 includes one or more hole transport materials.
  • the hole transport materials may be selected from carbazole polymers, carbazole-linked triarylamine compounds, or other types of compounds. Those skilled in the art Can refer to existing technology selection.
  • the hole transport layer 320 is an organic compound as described in this application.
  • the electron blocking layer 330 includes one or more electron blocking materials.
  • the electron blocking materials may be selected from carbazole polymers or other types of compounds, which are not specifically limited in this application.
  • the material of the electron blocking layer 330 is selected from the group consisting of the following compounds:
  • the electron blocking layer 330 is HT-16.
  • a hole injection layer 310 may also be provided between the anode 100 and the hole transport layer 320 to enhance the ability to inject holes into the hole transport layer 320.
  • the hole injection layer 310 can be made of benzidine derivatives, starburst arylamine compounds, phthalocyanine derivatives or other materials, which are not particularly limited in this application.
  • the material of the hole injection layer 310 may, for example, be selected from the following compounds or any combination thereof;
  • the hole injection layer 310 is composed of F4-TCNQ.
  • the organic light-emitting layer 340 may be composed of a single light-emitting layer material, or may include a host material and a doping material.
  • the organic light-emitting layer 340 is composed of a host material and a doping material. The holes injected into the organic light-emitting layer 340 and the electrons injected into the organic light-emitting layer 340 can recombine in the organic light-emitting layer 340 to form excitons, and the excitons transfer energy. To the host material, the host material transfers energy to the doping material, thereby enabling the doping material to emit light.
  • the main material of the organic light-emitting layer 340 may be metal chelate compounds, bistyryl derivatives, aromatic amine derivatives, dibenzofuran derivatives or other types of materials, which are not specifically limited in this application.
  • the host material of the organic light-emitting layer 340 is BH-01.
  • the guest material of the organic light-emitting layer 340 may be a compound with a condensed aryl ring or its derivatives, a compound with a heteroaryl ring or its derivatives, an aromatic amine derivative or other materials, which is not specified in this application. limit. Guest materials are also called doping materials or dopants. According to the type of luminescence, it can be divided into fluorescent dopants and phosphorescent dopants. For example, specific examples of the blue fluorescent dopant include but are not limited to:
  • the guest material of the organic light-emitting layer 340 is BD-01.
  • the electron transport layer 350 may have a single-layer structure or a multi-layer structure, and may include one or more electron transport materials.
  • the electron transport materials may be selected from, but are not limited to, ET-1, LiQ, and benzimidazole derivatives. , oxadiazole derivatives, quinoxaline derivatives or other electron transport materials, there are no special limitations for comparison in this application.
  • the materials of the electron transport layer 350 include but are not limited to the following compounds:
  • the electron transport layer 350 is composed of BCP and LiQ.
  • the cathode 200 may include a cathode material, which is a material with a small work function that facilitates electron injection into the functional layer.
  • cathode materials include, but are not limited to, metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin and lead or alloys thereof; or multilayer materials such as LiF/Al , Liq/Al, LiO 2 /Al, LiF/Ca, LiF/Al and BaF 2 /Ca.
  • a metal electrode containing magnesium and silver is included as the cathode.
  • an electron injection layer 360 may also be provided between the cathode 200 and the electron transport layer 350 to enhance the ability to inject electrons into the electron transport layer 350 .
  • the electron injection layer 360 may include an inorganic material such as an alkali metal sulfide or an alkali metal halide, or may include a complex of an alkali metal and an organic substance.
  • the electron injection layer 360 may include ytterbium (Yb).
  • a third aspect of this application provides an electronic device, including the electronic component described in the second aspect of this application.
  • the electronic device provided is an electronic device 400 , which includes the above-mentioned organic electroluminescent device.
  • the electronic device 400 may be, for example, a display device, a lighting device, an optical communication device, or other types of electronic devices.
  • it may include but is not limited to a computer screen, a mobile phone screen, a television, electronic paper, emergency lighting, an optical module, etc.
  • the compounds of the synthesis methods not mentioned in this application are all raw material products obtained through commercial channels.
  • the reactant D in Table 4 is used instead of N-phenyl-3-dibenzofuran-2-amine to synthesize the compound in Table 4.
  • the main raw materials used, the synthesized compounds and the yield of the last step are shown in Table 4.
  • the reactant E in Table 5 is used to replace intermediate a1
  • the reactant F is used to replace N-phenyl-3-dibenzofuran-2-amine to synthesize the compound in Table 5.
  • the main raw materials used, the synthesized compounds and the yield of the last step are shown in Table 5.
  • Embodiments of the present application also provide an organic electroluminescent device, including an anode, a cathode, and an organic layer between the anode and the cathode.
  • the organic layer includes the above-mentioned organic compound of the present application.
  • the anode is prepared by the following process: a thickness of The ITO substrate (manufactured by Corning) was cut into a size of 40mm ⁇ 40mm ⁇ 0.7mm, and the photolithography process was used to prepare it into an experimental substrate with cathode, anode and insulating layer patterns, using ultraviolet ozone and O 2 : N 2 plasma. Surface treatment to increase the work function of the anode (experimental substrate) and remove scum.
  • F4-TCNQ was vacuum evaporated on the experimental substrate (anode) to form a thickness of hole injection layer (HIL), and compound 1 is evaporated on the hole injection layer to form a thickness of hole transport layer (HTL).
  • HIL hole injection layer
  • HTL hole transport layer
  • EBL Electron blocking layer
  • B-EML blue light-emitting layer
  • BCP and LiQ are evaporated at a weight ratio of 1:1 to form Thick electron transport layer (ETL).
  • ETL Thick electron transport layer
  • Yb is evaporated on the electron transport layer to form a thickness of Electron injection layer (EIL), and then vacuum evaporate magnesium and silver on the electron injection layer at a evaporation rate of 1:10 to form a thickness of the cathode.
  • EIL Electron injection layer
  • the evaporation thickness on the above cathode is CP-01 is used to form an organic coating layer (CPL), thereby completing the manufacture of organic light-emitting devices.
  • CPL organic coating layer
  • An organic electroluminescent device was prepared using the same method as Example 1, except that when preparing the hole transport layer, compound 1 was replaced with the compounds shown in Table 8.
  • An organic electroluminescent device was prepared using the same method as in Example 1, except that when preparing the hole transport layer, compound 1 was replaced with compound A, compound B, compound C, and compound D respectively.
  • the performance test was performed on the blue organic electroluminescent devices prepared in Examples 1-39 and Comparative Examples 1-4. Specifically, the photoelectric properties of the devices were tested under the condition of 20 mA/cm 2 . The test results are shown in Table 8.
  • the device performance of the compounds of the present application is improved.
  • the organic compound of the present application uses an arylamine group to connect a special nitrogen-containing group and a dibenzo five-membered ring, which can greatly increase the hole mobility of the compound molecule, thereby reducing the voltage of the device and Improve luminous efficiency.
  • the compound of the present application has a relatively suitable energy band width and ultraviolet-visible light absorption range, and can reduce the extinction effect and improve efficiency when used as a hole transport layer.
  • the organic compound of the present application when used to prepare a blue organic electroluminescent device, it can effectively improve the luminous efficiency of the organic electroluminescent device and extend its life.
  • the nitrogen-containing group of the organic compound of the present application is connected to the aromatic amine through an aryl group or a heteroaryl group, the device lifetime is improved even more significantly.
  • the reason may be that when the nitrogen-containing group of the organic compound of the present application is connected to an arylamine through an aryl group or a heteroaryl group, the material has a deeper HOMO energy level, which is conducive to hole injection and transport.
  • the organic compound of the present application when used to prepare an organic electroluminescent device, it can effectively reduce the driving voltage of the device, and at the same time, it can also improve the efficiency and life of the device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本申请涉及一种有机化合物及包含其的电子元件和电子装置。本申请的有机化合物结构式如式(1)所示,将该有机化合物应用于有机电致发光器件中,可显著改善器件的性能。

Description

有机化合物及包含其的电子元件和电子装置
相关申请的交叉引用
本申请要求于2022年4月1日递交的申请号为202210339773.7的中国专利申请的优先权,在此引用上述中国专利申请的内容全文以作为本申请的一部分。
技术领域
本申请属于有机材料技术领域,尤其涉及一种有机化合物及包含其的电子元件和电子装置。
背景技术
随着电子技术的发展和材料科学的进步,电致发光或者光电转化的电子元器件的研究范围越来越广泛。其中,有机电致发光器件又称为有机发光二极管,是指有机发光材料在电场作用下,受到电流的激发而发光的现象。该类电子元器件通常包括相对设置的阴极和阳极,以及设置于阴极和阳极之间的功能层。该功能层由多层有机或者无机膜层组成,且一般包括能量转化层、位于能量转化层与阳极之间的空穴传输层、位于能量转化层与阴极之间的电子传输层。以有机电致发光器件为例,其一般包括依次层叠设置的阳极、空穴传输层、作为能量转化层的电致发光层、电子传输层和阴极。当阴阳两极施加电压时,两电极产生电场,在电场的作用下,阴极侧的电子向电致发光层移动,阳极侧的空穴也向发光层移动,电子和空穴在电致发光层结合形成激子,激子处于激发态向外释放能量,进而使得电致发光层对外发光。
有机电荷传输材料是一类当有载流子(电子或空穴)注入时,在电场作用下可以实现载流子的定向有序的可控迁移从而达到传输电荷的有机半导体材料。这类材料需要优秀的给电子特性、较低的离子化电位、高空穴迁移率、良溶解性与无定形成膜性、较强荧光性能与光稳定性。目前,空穴传输层材料主要是聚对苯撑乙烯类、三芳胺类、腙类、丁二烯类等。三芳胺类材料的性能较为优异是研究的热点之一,现有技术公开了可以在有机电致发光器件中制备空穴传输层的材料。但是现有的三芳胺类空穴传输层材料在器件中的电压、发光效率、功率以及寿命方面表现不佳,有非常大的改进提升空间。因此,依然有必要继续研发新型的材料,以进一步提高电子元器件的性能。
发明内容
针对现有技术存在的上述问题,本申请的目的在于提供一种有机化合物及包含其的电子元件和电子装置,所述有机化合物可以改善电子元件和电子装置的性能,例如降低器件的驱动电压,提升器件效率和寿命。
为了实现上述发明目的,本申请采用如下技术方案:
根据本申请的第一方面,提供一种有机化合物,具有如式1表示的结构:
Figure PCTCN2022135028-appb-000001
Figure PCTCN2022135028-appb-000002
其中,各R 1、R 2、R 3和R 4相同或不同,分别独立地选自氘、卤素基团、氰基、碳原子数为1-10的烷基、碳原子数为6-20的芳基、碳原子数为5-20的杂芳基;
R 5、R 6、R 7和R 8分别独立地选自氢或式1-1所示的结构,且R 5、R 6、R 7和R 8中至少有一个选自式1-1所示的结构;
L、L 1和L 2相同或不同,分别独立地选自单键、碳原子数为6-30的取代或未取代的亚芳基、碳原子数为3-30的取代或未取代的亚杂芳基;
Ar 1选自碳原子数为6-30的取代或未取代的芳基、碳原子数为3-30的取代或未取代的杂芳基;
Ar 2选自式1-2所示的基团;
X选自C(R 11R 12)、O或S;
各R 9和R 10相同或不同,分别独立地选自氘、卤素基团、氰基、碳原子数为1-10的烷基或碳原子数为6-12的芳基;
R 11和R 12相同或不同,分别独立地选自碳原子数为1-10的烷基或碳原子数为6-12的芳基;
n 1为R 1的个数,选自0、1、2、3或4,当n 1大于1时,任意两个R 1相同或不同;
n 2为R 2的个数,选自0、1、2、3或4,当n 2大于1时,任意两个R 1相同或不同;
n 3为R 3的个数,选自0、1或2,当n 3大于1时,任意两个R 3相同或不同;
n 4为R 4的个数,选自0、1、2、3或4,当n 4大于1时,任意两个R 4相同或不同;
n 9为R 9的个数,选自0、1、2或3,当n 9大于1时,任意两个R 9相同或不同;
n 10为R 10的个数,选自0、1、2、3或4,当n 10大于1时,任意两个R 10相同或不同;
所述L、L 1、L 2和Ar 1中的取代基相同或不同,分别独立的选自氘、卤素基团、氰基、碳原子数为1-10的烷基、碳原子数为3-10的环烷基、碳原子数为6-20的芳基或碳原子数为5-20的杂芳基;
任选地,Ar 1中的任意两个相邻的取代基形成环。
根据本申请的第二方面,提供一种电子元件,包括相对设置的阳极和阴极,以及设于所述阳极和所述阴极之间的功能层;所述功能层包含上述的有机化合物。
根据本申请的第三方面,提供了一种电子装置,包括第二方面所述的电子元件。
本申请的有机化合物将芳胺基团与大平面共轭基团和二苯并五元环类基团连接,其中,大平面共轭基团具有较高的T1值,有利于载流子以及能量的传输。本申请的这种基团连接方式使得化合物具有高的HOMO轨道覆盖率以及强极性,从而具有良好的空穴迁移率。本申请的有机化合物可有效避免分子间堆叠,提升化合物成膜性。将本申请的有机化合物作为有机电致发光器件的空穴传输层材料时,可以显著降低器件的工作电压,并提升器件的效率和寿命。
本申请的其他特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本申请的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本申请,但并不构成对本申请的限制。
图1是本申请的一种有机电致发光器件的结构示意图。
图2是本申请的一种电子装置的结构示意图。
附图标记
100、阳极        200、阴极             300、功能层           310、空穴注入层
320、空穴传输层  330、电子阻挡层       340、有机发光层       350、电子传输层
360、电子注入层  400、电子装置
具体实施方式
现在将参考附图更全面地描述示例性实施方式。然而,示例性实施方式能够以多种形式实施,且不应被理解为限于在此阐述的范例;相反,提供这些实施例使得本申请将更加全面和完整,并将示例性实施方式的构思全面地传达给本领域的技术人员。所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多个实施方式中。在下面的描述中,提供许多具体细节从而给出对本申请的实施例的充分理解。
第一方面,本申请提供一种有机化合物,具有如式1表示的结构:
Figure PCTCN2022135028-appb-000003
其中,各R 1、R 2、R 3和R 4相同或不同,分别独立地选自氘、卤素基团、氰基、碳原子数为1-10的烷基、碳原子数为6-20的芳基、碳原子数为5-20的杂芳基;
R 5、R 6、R 7和R 8分别独立地选自氢或式1-1所示的结构,且R 5、R 6、R 7和R 8中至少有一个选自式1-1所示的结构;
L、L 1和L 2相同或不同,分别独立地选自单键、碳原子数为6-30的取代或未取代的亚芳基、碳原子数为3-30的取代或未取代的亚杂芳基;
Ar 1选自碳原子数为6-30的取代或未取代的芳基、碳原子数为3-30的取代或未取代的杂芳基;
Ar 2选自式1-2所示的基团;
X选自C(R 11R 12)、O或S;
各R 9和R 10相同或不同,分别独立地选自氘、卤素基团、氰基、碳原子数为1-10的烷基或碳原子数为6-12的芳基;
R 11和R 12相同或不同,分别独立地选自碳原子数为1-10的烷基或碳原子数为6-12的芳基;
n 1为R 1的个数,选自0、1、2、3或4,当n 1大于1时,任意两个R 1相同或不同;
n 2为R 2的个数,选自0、1、2、3或4,当n 2大于1时,任意两个R 1相同或不同;
n 3为R 3的个数,选自0、1或2;
n 4为R 4的个数,选自0、1、2、3或4,当n 4大于1时,任意两个R 4相同或不同;
n 9为R 9的个数,选自0、1、2或3,当n 9大于1时,任意两个R 9相同或不同;
n 10为R 10的个数,选自0、1、2、3或4,当n 10大于1时,任意两个R 10相同或不同;
所述L、L 1、L 2、Ar 1中的取代基相同或不同,分别独立的选自氘、卤素基团、氰基、碳原子数为1-10的烷基、碳原子数为3-10的环烷基、碳原子数为6-20的芳基或碳原子数为5-20的杂芳基;
任选地,Ar 1中的任意两个相邻的取代基形成环。
本申请中,芴基可以被1个或2个取代基取代,其中,在上述芴基被取代的情况下,可以为:
Figure PCTCN2022135028-appb-000004
等,但并不限定于此。
本申请中,所采用的描述方式“各……独立地为”与“……分别独立地为”和“……各自独立地选自”可以互换,均应做广义理解,其既可以是指在不同基团中,相同符号之间所表达的具体选项之间互相不影响,也可以表示在相同的基团中,相同符号之间所表达的具体选项之间互相不影响。例如,“
Figure PCTCN2022135028-appb-000005
其中,各q独立地为0、1、2或3,各R”独立地选自氢、氘、氟、氯”,其含义是:式Q-1表示苯环上有q个取代基R”,各个R”可以相同也可以不同,每个R”的选项之间互不影响;式Q-2表示联苯的每一个苯环上有q个取代基R”,两个苯环上的R”取代基的个数q可以相同或不同,各个R”可以相同也可以不同,每个R”的选项之间互不影响。
本申请中,“取代或未取代的”这样的术语是指,在该术语后面记载的官能团可以具有或不具有取代基(下文为了便于描述,将取代基统称为Rc)。举例来讲,“取代或未取代的芳基”是指具有取代基Rc的芳基或者没有取代的芳基。其中上述的取代基即Rc例如可以为氘、卤素基团、氰基、杂芳基、芳基、三烷基硅基、烷基、卤代烷基、环烷基等。
本申请中,取代或未取代的官能团的碳原子数,指的是所有碳原子数。举例而言,若L 1为碳原子数为12的取代的亚芳基,则亚芳基及其上的取代基的所有碳原子数为12。
本申请中,芳基指的是衍生自芳香碳环的任选官能团或取代基。芳基可以是单环芳基(例如苯基)或多环芳基,换言之,芳基可以是单环芳基、稠环芳基、通过碳碳键共轭连接的两个或者更多个单环芳基、通过碳碳键共轭连接的单环芳基和稠环芳基、通过碳碳键共轭连接的两个或者更多个稠环芳基。即,除非另有说明,通过碳碳键共轭连接的两个或者更多个芳香基团也可以视为本申请的芳基。其中,稠环芳基例如可以包括双环稠合芳基(例如萘基)、三环稠合芳基(例如菲基、芴基、蒽基)等。芳基中不含有B、N、O、S、P、Se和Si等杂原子。芳基的实例可以包括但不限于,苯基、萘基、芴基、蒽基、菲基、联苯基、三联苯基、苯并[9,10]菲基、芘基、苯并荧蒽基、
Figure PCTCN2022135028-appb-000006
基、螺二芴基等。本申请中,涉及的亚芳基是指芳基进一步失去一个氢原子所形成的二价基团。
本申请中,三联苯基包括
Figure PCTCN2022135028-appb-000007
本申请中,取代的芳基可以是芳基中的一个或者两个以上氢原子被诸如氘原子、卤素基团、氰基、芳基、杂芳基、烷基、环烷基等基团取代。应当理解地是,取代的芳基的碳原子数,指的是芳基和芳基上的取代基的碳原子总数,例如碳原子数为18的取代的芳基,指的是芳基和取代基的总碳原子数为18。
本申请中,杂芳基是指环中包含1、2、3、4、5、6或7个杂原子的一价芳香环或其衍生物,杂原子可以是B、O、N、P、Si、Se和S中的至少一种。杂芳基可以是单环杂芳基或多环杂芳基,换言之,杂芳基可以是单个芳香环体系,也可以是通过碳碳键共轭连接的多个芳香环体系,且任一芳香环体系为一个芳香单环或者一个芳香稠环。示例地,杂芳基可以包括噻吩基、呋喃基、吡咯基、咪唑基、噻唑基、噁唑基、噁二唑基、三唑基、吡啶基、联吡啶基、嘧啶基、三嗪基、吖啶基、哒嗪基、吡嗪基、喹啉基、喹唑啉基、喹喔啉基、吩噁嗪基、酞嗪基、吡啶并嘧啶基、吡啶并吡嗪基、吡嗪并吡嗪基、异喹啉基、吲哚基、咔唑基、苯并噁唑基、苯并咪唑基、苯并噻唑基、苯并咔唑基、苯并噻吩基、二苯并噻吩基、噻吩并噻吩基、苯并呋喃基、菲咯啉基、异噁唑基、噻二唑基、苯并噻唑基、吩噻嗪基、硅芴基、二苯并呋喃基以及N-苯基咔唑基、N-吡啶基咔唑基、N-甲基咔唑基等,而不限于此。其中,噻吩基、呋喃基、菲咯啉基等为单个芳香环体系类型的杂芳基,N-苯基咔唑基、N-吡啶基咔唑基为通过碳碳键共轭连接的多环体系类型的杂芳基。本申请中,涉及的亚杂芳基是指杂芳基进一步失去一个氢原子所形成的二价基团。
本申请中,取代的杂芳基可以是杂芳基中的一个或者两个以上氢原子被诸如氘原子、卤素基团、氰基、芳基、杂芳基、烷基、环烷基等基团取代。应当理解地是,取代的杂芳基的碳原子数,指的是杂芳基和杂芳基上的取代基的碳原子总数。
本申请中,取代或未取代的芳基的碳原子数可以为6-25,例如碳原子数可以为6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25。
在本申请中,作为取代基的芳基的具体实例包括但不限于,苯基、联苯基、萘基、芴基、菲基、蒽基、
Figure PCTCN2022135028-appb-000008
基。
本申请中,取代或未取代的杂芳基的碳原子数可以为5-20,例如碳原子数可以为5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20。
在本申请中,作为取代基的杂芳基的具体实例包括但不限于,三嗪基、吡啶基、嘧啶基、咔唑基、二苯并呋喃基、二苯并噻吩基、喹啉基、喹唑啉基、喹喔啉基、异喹啉基、咔唑基、N-苯基咔唑基。
本申请中,不定位连接键涉及的是从环体系中伸出的单键
Figure PCTCN2022135028-appb-000009
其表示该连接键的一端可以连接该键所贯穿的环体系中的任意位置,另一端连接化合物分子其余部分。
本申请中,碳原子数为1-10的烷基可以包括碳原子数1至10的直链烷基和碳原子数3至10的支链烷基。烷基的碳原子数例如可以为1、2、3、4、5、6、7、8、9、10,烷基的具体实例包括但不限于,甲基、乙基、正丙基、异丙基、正丁基、异丁基、叔丁基、正戊基、异戊基、新戊基、正己基、正辛基、2-乙基己基、壬基、癸基、3,7-二甲基辛基等。
本申请中,卤素基团例如可以为氟、氯、溴、碘。
本申请中,碳原子数为3-10的环烷基的碳原子数例如可以为3、4、5、6、7、8、10。环烷基的具体实例包括但不限于,环戊基、环己基。
举例而言,如下式(f)中所示地,式(f)所表示的萘基通过两个贯穿双环的不定位连接键与分子其他位置连接,其所表示的含义,包括如式(f-1)-式(f-10)所示出的任一可能的连接方式。
Figure PCTCN2022135028-appb-000010
再举例而言,如下式(X')中所示地,式(X')所表示的二苯并呋喃基通过一个从一侧苯环中间伸出的不定位连接键与分子其他位置连接,其所表示的含义,包括如式(X'-1)-式(X'-4)所示出的任一可能的连接方式。
Figure PCTCN2022135028-appb-000011
在本申请一些实施方式中,R 5、R 6、R 7和R 8中有且仅有一个选自式1-1所示的结构。
在本申请一些实施方式中,所述有机化合物具有式1-A所示的结构:
Figure PCTCN2022135028-appb-000012
式1-A中,Ar 1、Ar 2、L 1、L 2、L、R 1、R 2、R 3、R 4、n 1、n 2、n 3的限定同式1。
在本申请一些实施方式中,Ar 1选自碳原子数为6-25的取代或未取代的芳基、碳原子数为5-20的取代或未取代的杂芳基。
可选地,Ar 1选自碳原子数为6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25的取代或未取代的芳基,碳原子数为5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20的取代或未取代的杂芳基。
可选地,Ar 1中的取代基各自独立地选自氘、氟、氰基、碳原子数为1-5的烷基、碳原子数为5-10的环烷基或碳原子数为6-12的芳基。
可选地,在Ar 1中,任意两个相邻的取代基可以形成环己烷
Figure PCTCN2022135028-appb-000013
环戊烷
Figure PCTCN2022135028-appb-000014
苯 环、萘环或芴环
Figure PCTCN2022135028-appb-000015
任选地,Ar 1中的任意两个相邻的取代基形成碳原子数为5-13的饱和或不饱和环。
具体地,Ar 1中的取代基具体实例包括但不限于:氘、氟、氰基、甲基、乙基、异丙基、叔丁基、三甲基硅基、三氟甲基、环戊基、环己基、苯基、萘基或联苯基。
在本申请另一些实施方式中,Ar 1选自取代或未取代的苯基、取代或未取代的萘基、取代或未取代的联苯基、取代或未取代的芴基、取代或未取代的菲基、取代或未取代的三联苯基、取代或未取代的二苯并呋喃基、取代或未取代的二苯并噻吩基、取代或未取代的螺二芴基。
可选地,Ar 1中的取代基各自独立地选自氘、氟、氰基、甲基、乙基、正丙基、异丙基、叔丁基、环戊基、环己基、苯基、萘基或联苯基。
在本申请一些实施方式中,Ar 1选自取代或未取代的基团W,其中未取代的基团W选自以下基团:
Figure PCTCN2022135028-appb-000016
其中,取代的基团W中具有一个或两个以上取代基,所述取代基独立地选自氘、氟、氰基、甲基、乙基、异丙基、叔丁基、环戊基、环己基、苯基、萘基、联苯基、二苯并呋喃基或二苯并噻吩基,且当所述取代基个数大于1时,各取代基相同或不同。
可选地,Ar 1选自以下基团所组成的组:
Figure PCTCN2022135028-appb-000017
在一些具体的实施方式中,Ar 1选自以下基团:
Figure PCTCN2022135028-appb-000018
在本申请一些实施方式中,n 1、n 2、n 3和n 4均为0。
在本申请一些实施方式中,各R 1、R 2、R 3和R 4分别独立地选自氘、氟、氰基、甲基、乙基、正丙基、异丙基、叔丁基或苯基。
在本申请一些实施方式中,n 9和n 10均为0。
在本申请一些实施方式中,各R 9和R 10分别独立地选自氘、氟、氰基、甲基、乙基、正丙基、异丙基、叔丁基或苯基。
在本申请一些实施方式中,X选自C(R 11R 12),且R 11和R 12均为甲基。
在本申请一些实施方式中,X选自O或S。
在本申请一些实施方式中,Ar 2选自以下基团组成的组:
Figure PCTCN2022135028-appb-000019
各R 9和R 10分别独立地选自氘、氟、氰基、甲基、乙基、正丙基、异丙基、叔丁基或苯基。
在本申请一些实施方式中,Ar 2选自如下基团组成的组:
Figure PCTCN2022135028-appb-000020
在本申请一些具体实施方式中,Ar 2选自以下基团组成的组:
Figure PCTCN2022135028-appb-000021
在本申请一些实施方式中,L、L 1和L 2相同或不同,各自独立地选自单键、碳原子数为6-20的取代或未取代的亚芳基、碳原子数为5-20的取代或未取代的亚杂芳基。
可选地,L、L 1和L 2相同或不同,各自独立地选自单键,碳原子数为6、7、8、9、10、11、12、13、14、15、16、17、18、19、20的取代或未取代的亚芳基,碳原子数为5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20的取代或未取代的亚杂芳基。
可选地,L、L 1和L 2中的取代基相同或不同,各自独立地选自氘、氟、氰基、碳原子数为1-5的烷基或苯基。
可选地,L、L 1和L 2相同或不同,各自独立地选自单键、碳原子数为6-15的取代或未取代的亚芳基、碳原子数为12-18的取代或未取代的亚杂芳基。
可选地,L 1和L 2相同或不同,分别独立地选自单键、取代或未取代的碳原子数为6-15的亚芳基。
在本申请一些实施方式中,L、L 1和L 2相同或不同,各自独立地选自单键、取代或未取代的亚苯基、取代或未取代的亚萘基、取代或未取代的亚联苯基、取代或未取代的亚芴基、取代或未取代基的亚二苯并呋喃基、取代或未取代基的亚二苯并噻吩基、取代或未取代的亚咔唑基。
可选地,L、L 1和L 2中的取代基相同或不同,各自独立地选自氘、氟、氰基、甲基、乙基、异丙基、叔丁基、环己基或苯基。
可选地,L选自单键、取代或未取代的亚苯基、取代或未取代的亚萘基、取代或未取代的亚联苯基、取代或未取代的亚芴基、取代或未取代的亚二苯并呋喃基、取代或未取代的亚二苯并噻吩基。
可选地,L选自取代或未取代的亚苯基、取代或未取代的亚萘基、取代或未取代的亚联苯基、取代或未取代的亚芴基、取代或未取代的亚二苯并呋喃基、取代或未取代的亚二苯并噻吩基、取代或未取代的亚咔唑基。
当L不为单键时,即本申请有机化合物的含氮基团与芳胺通过芳基或杂芳基连接时,材料具有较深的HOMO能级,有利于空穴的注入和传输。
可选地,L 1选自单键、取代或未取代亚苯基、取代或未取代的亚萘基、取代或未取代的亚联苯基、取代或未取代的亚芴基。
可选地,L 2选自单键、取代或未取代亚苯基。
在本申请一些实施方式中,L、L 1和L 2相同或不同,各自独立地选自单键、取代或未取代的基团Q;其中,未取代的基团Q选自以下基团组成的组:
Figure PCTCN2022135028-appb-000022
其中,取代的基团Q中具有一个或两个以上取代基,所述取代基独立地选自氘、氟、氰基、甲基、乙基、异丙基、叔丁基、苯基、萘基或联苯基,且当所述取代基个数大于1时,各取代基相同或不同。
可选地,L、L 1和L 2相同或不同,各自独立地选自单键或者以下基团所组成的组:
Figure PCTCN2022135028-appb-000023
进一步可选地,L选自单键或者以下基团:
Figure PCTCN2022135028-appb-000024
进一步可选地,L 1独立地选自单键或者以下基团:
Figure PCTCN2022135028-appb-000025
进一步可选地,L 2选自单键或者
Figure PCTCN2022135028-appb-000026
可选地,所述有机化合物选自如下化合物组成的组:
Figure PCTCN2022135028-appb-000027
Figure PCTCN2022135028-appb-000028
Figure PCTCN2022135028-appb-000029
Figure PCTCN2022135028-appb-000030
Figure PCTCN2022135028-appb-000031
Figure PCTCN2022135028-appb-000032
Figure PCTCN2022135028-appb-000033
Figure PCTCN2022135028-appb-000034
Figure PCTCN2022135028-appb-000035
Figure PCTCN2022135028-appb-000036
Figure PCTCN2022135028-appb-000037
Figure PCTCN2022135028-appb-000038
Figure PCTCN2022135028-appb-000039
Figure PCTCN2022135028-appb-000040
第二方面,本申请提供一种电子元件,包括相对设置的阳极和阴极,以及设于阳极和阴极之间的功能层;所述功能层包含本申请的有机化合物。
可选地,所述电子元件为有机电致发光器件。
在本申请一些实施方式中,电子元件为有机电致发光器件。如图1所示,有机电致发光器件可以包括依次层叠设置的阳极100、空穴传输层320、电子阻挡层330、有机发光层340、电子传输层350和阴极200。
在本申请一些具体的实施方式中,有机电致发光器件为蓝色有机电致发光器件。
可选地,阳极100包括以下阳极材料,其可选地是有助于空穴注入至功能层中的具有大逸出功(功函数,work function)材料。阳极材料具体实例包括:金属如镍、铂、钒、铬、铜、锌和金或它们的合金;金属氧化物如氧化锌、氧化铟、氧化铟锡(ITO)和氧化铟锌(IZO);组合的金属和氧化物如ZnO∶Al或SnO 2∶Sb;或导电聚合物如聚(3-甲基噻吩)、聚[3,4-(亚乙基-1,2-二氧基)噻吩](PEDT)、聚吡咯和聚苯胺,但不限于此。优选包括氧化铟锡(铟锡氧化物,indiumtin oxide)(ITO)作为阳极的透明电极。
可选地,空穴传输层320包括一种或者多种空穴传输材料,空穴传输材料可以选自咔唑多聚体、咔唑连接三芳胺类化合物或者其他类型的化合物,本领域技术人员可参照现有技术选择。
在一种具体实施方式中,空穴传输层320为本申请所述的有机化合物。
可选地,电子阻挡层330包括一种或多种电子阻挡材料,电子阻挡材料可以选自咔唑多聚体或者其他类型化合物,本申请对此不做特殊的限定。例如,所述电子阻挡层330的材料选自以下化合物所组成的组:
Figure PCTCN2022135028-appb-000041
在本申请一些实施方式中,电子阻挡层330为HT-16。
可选地,在阳极100和空穴传输层320之间还可以设置有空穴注入层310,以增强向空穴传输层320注入空穴的能力。空穴注入层310可以选用联苯胺衍生物、星爆状芳基胺类化合物、酞菁衍生物或者其他材料,本申请对此不做特殊的限制。所述空穴注入层310的材料例如可以选自如下化合物或者其任意组合;
Figure PCTCN2022135028-appb-000042
在本申请一些实施方式中,空穴注入层310由F4-TCNQ组成。
可选地,有机发光层340可以由单一发光层材料组成,也可以包括主体材料和掺杂材料。可选地,有机发光层340由主体材料和掺杂材料组成,注入有机发光层340的空穴和注入有机发光层340的电子可以在有机发光层340复合而形成激子,激子将能量传递给主体材料,主体材料将能量传递给掺杂材料,进而使得掺杂材料能够发光。
有机发光层340的主体材料可以为金属螯合类化合物、双苯乙烯基衍生物、芳香族胺衍生物、二苯并呋喃衍生物或者其他类型的材料,本申请对此不做特殊的限制。
在本申请一些实施方式中,有机发光层340的主体材料为BH-01。
有机发光层340的客体材料可以为具有缩合芳基环的化合物或其衍生物、具有杂芳基环的化合物或其衍生物、芳香族胺衍生物或者其他材料,本申请对此不做特殊的限制。客体材料又称为掺杂材料或掺杂剂。按发光类型可以分为荧光掺杂剂和磷光掺杂剂。例如,所述蓝光荧光掺杂剂的具体实例包括但不限于:
Figure PCTCN2022135028-appb-000043
Figure PCTCN2022135028-appb-000044
在本申请的一些具体实施方式中,有机发光层340的客体材料为BD-01。
电子传输层350可以为单层结构,也可以为多层结构,其可以包括一种或者多种电子传输材料,电子传输材料可以选自但不限于,ET-1、LiQ、苯并咪唑衍生物、噁二唑衍生物、喹喔啉衍生物或者其他电子传输材料,本申请对比不作特殊限定。所述电子传输层350的材料包含但不限于以下化合物:
Figure PCTCN2022135028-appb-000045
在本申请一些具体实施方式中,电子传输层350由BCP和LiQ组成。
本申请中,阴极200可以包括阴极材料,其是有助于电子注入至功能层中的具有小逸出功的 材料。阴极材料的具体实例包括但不限于,金属如镁、钙、钠、钾、钛、铟、钇、锂、钆、铝、银、锡和铅或它们的合金;或多层材料如LiF/Al、Liq/Al、LiO 2/Al、LiF/Ca、LiF/Al和BaF 2/Ca。可选地,包括包含镁和银的金属电极作为阴极。
可选地,在阴极200和电子传输层350之间还可以设置有电子注入层360,以增强向电子传输层350注入电子的能力。电子注入层360可以包括有碱金属硫化物、碱金属卤化物等无机材料,或者可以包括碱金属与有机物的络合物。在本申请一些实施方式中,电子注入层360可以包括镱(Yb)。
本申请第三方面提供一种电子装置,包括本申请第二方面所述的电子元件。
按照一种实施方式,如图2所示,所提供的电子装置为电子装置400,其包括上述有机电致发光器件。电子装置400例如可以为显示装置、照明装置、光通讯装置或者其他类型的电子装置,例如可以包括但不限于电脑屏幕、手机屏幕、电视机、电子纸、应急照明灯、光模块等。
下面结合合成实施例来具体说明本申请的有机化合物的合成方法,但是本申请并不因此而受到任何限制。
本申请中未提到的合成方法的化合物的都是通过商业途径获得的原料产品。
合成实施例
1、中间体aX的合成
中间体a1的合成
Figure PCTCN2022135028-appb-000046
将吲哚并咔唑(50.0g;195.1mmol),2,4-二溴-1-氟苯(41.3g;162.6mmol),碳酸铯(105.9g;325.1mmol),N,N-二甲基甲酰胺(500mL)加入到圆底烧瓶中,氮气保护条件下搅拌升温至150℃-153℃,反应12小时。将反应混合物降至室温,水洗,分离有机相,使用无水硫酸镁干燥后减压除去溶剂;粗品使用二氯甲烷/正庚烷作为洗脱剂进行硅胶柱色谱提纯,而后使用甲苯/正庚烷进行重结晶提纯,得到白色固体中间体a1(38.6g;收率58%)。
参照中间体a1的合成方法,以表1中的反应物A替代2,4-二溴-1-氟苯,合成表1所示的中间体a2。其中,使用的主要原料、合成的中间体及其收率如表1所示。
表1
Figure PCTCN2022135028-appb-000047
2、中间体a1-X的合成
中间体a1-1的合成
Figure PCTCN2022135028-appb-000048
将中间体a1(25g;61.1mmol),4-氯苯硼酸(11.5g;73.3mmol),四(三苯基膦)钯(0.7g;0.6mmol),碳酸钾(16.9g;122.2mmol),四丁基溴化铵(2.0g;6.1mmol),甲苯(200mL),乙醇(100mL)和去离子水(50mL)加入到圆底烧瓶中,氮气保护条件下搅拌升温至75℃-80℃,反应12小时。将反应混合物降至室温,水洗,分离有机相,使用无水硫酸镁干燥后减压除去溶剂;粗品使用二氯甲烷/正庚烷作为洗脱剂进行硅胶柱色谱提纯,而后使用甲苯/正庚烷进行重结晶提纯,得到白色固体中间体a1-1(20.2g;收率75%)。
参照中间体a1-1的合成方法,以表2中的反应物B替代4-氯苯硼酸,合成表2所示的中间体。其中,使用的主要原料、合成的中间体及其收率如表2所示。
表2
Figure PCTCN2022135028-appb-000049
Figure PCTCN2022135028-appb-000050
Figure PCTCN2022135028-appb-000051
参照中间体a1-1的合成方法,以中间体a2替代a1,以表3中的反应物C替代4-氯苯硼酸,合成表3所示的中间体。其中,使用的主要原料、合成的中间体及其收率如表3所示。
表3
Figure PCTCN2022135028-appb-000052
3、化合物的合成
化合物1的合成
Figure PCTCN2022135028-appb-000053
将中间体a1(10g;24.4mmol),N-苯基-3-二苯并呋喃-2-胺(5.8g;22.2mmol),三(二亚苄基丙酮)二钯(0.2g;0.2mmol),2-二环己基磷-2,6-二甲氧基联苯(0.2g;0.4mmol),叔丁醇钠(3.2g;33.3mmol)和甲苯(200mL)加入到氮气保护的圆底烧瓶中,搅拌条件下升温至105℃~110℃,反应16小时;将反应液降至室温,使用水洗后分离有机相,使用无水硫酸镁干燥,减压除去溶剂;使用二氯甲烷/正庚烷对所得粗品进行硅胶柱色谱提纯,而后使用甲苯/正庚烷进行重结晶提纯,得到白色固体化合物1(9.8g;收率75%)。
合成例2-13:
参照化合物1的合成方法,采用表4中反应物D替代N-苯基-3-二苯并呋喃-2-胺,合成表4中化合物。其中,使用的主要原料、合成的化合物及其最后一步收率如表4所示。
表4
Figure PCTCN2022135028-appb-000054
Figure PCTCN2022135028-appb-000055
Figure PCTCN2022135028-appb-000056
合成例14~39:
参照化合物1的合成方法,采用表5中反应物E替代中间体a1,反应物F代替N-苯基-3-二苯并呋喃-2-胺,合成表5中化合物。其中,使用的主要原料、合成的化合物及其最后一步收率如表5所示。
表5
Figure PCTCN2022135028-appb-000057
Figure PCTCN2022135028-appb-000058
Figure PCTCN2022135028-appb-000059
Figure PCTCN2022135028-appb-000060
Figure PCTCN2022135028-appb-000061
化合物表征数据:
化合物质谱数据如下表6所示:
表6
化合物1 m/z=588.2[M+H] + 化合物263 m/z=756.2[M+H] +
化合物4 m/z=664.2[M+H] + 化合物265 m/z=766.3[M+H] +
化合物21 m/z=754.2[M+H] + 化合物266 m/z=796.3[M+H] +
化合物47 m/z=638.2[M+H] + 化合物270 m/z=816.3[M+H] +
化合物96 m/z=740.3[M+H] + 化合物272 m/z=740.3[M+H] +
化合物117 m/z=704.3[M+H] + 化合物275 m/z=832.3[M+H] +
化合物137 m/z=704.2[M+H] + 化合物276 m/z=756.2[M+H] +
化合物174 m/z=806.3[M+H] + 化合物277 m/z=790.3[M+H] +
化合物190 m/z=770.2[M+H] + 化合物278 m/z=842.4[M+H] +
化合物209 m/z=844.3[M+H] + 化合物279 m/z=766.3[M+H] +
化合物216 m/z=690.3[M+H] + 化合物280 m/z=806.3[M+H] +
化合物231 m/z=766.3[M+H] + 化合物281 m/z=816.3[M+H] +
化合物297 m/z=632.2[M+H] + 化合物282 m/z=830.3[M+H] +
化合物237 m/z=704.3[M+H] + 化合物283 m/z=796.3[M+H] +
化合物241 m/z=670.3[M+H] + 化合物284 m/z=872.3[M+H] +
化合物249 m/z=796.3[M+H] + 化合物285 m/z=830.3[M+H] +
化合物251 m/z=730.2[M+H] + 化合物295 m/z=669.3[M+H] +
化合物255 m/z=766.3[M+H] + 化合物298 m/z=720.3[M+H] +
化合物257 m/z=780.3[M+H] + 化合物299 m/z=705.2[M+H] +
化合物260 m/z=680.2[M+H] +    
部分中间体及化合物核磁数据如下表7所示:
表7
Figure PCTCN2022135028-appb-000062
有机电致发光器件制备及评估:
本申请实施方式还提供了一种有机电致发光器件,包括阳极、阴极以及介于阳极和阴极之间的有机层,有机层包括本申请的上述有机化合物。下面,通过实施例对本申请的有机电致发光器件进行详细说明。但是,下述实施例仅是本申请的示例,而非限定本申请。
实施例1:蓝色有机电致发光器件的制备
通过以下过程制备阳极:将厚度为
Figure PCTCN2022135028-appb-000063
的ITO基板(康宁制造)切割成40mm×40mm×0.7mm的尺寸,采用光刻工序,将其制备成具有阴极、阳极以及绝缘层图案的实验基板,利用紫外臭氧以及O 2:N 2等离子进行表面处理,以增加阳极(实验基板)的功函数的和清除浮渣。
在实验基板(阳极)上真空蒸镀F4-TCNQ以形成厚度为
Figure PCTCN2022135028-appb-000064
的空穴注入层(HIL),并且在空穴注入层蒸镀化合物1,形成厚度为
Figure PCTCN2022135028-appb-000065
的空穴传输层(HTL)。
在空穴传输层上真空蒸镀HT-16,形成厚度为
Figure PCTCN2022135028-appb-000066
的电子阻挡层(EBL)。
在电子阻挡层上,将BH-01掺杂1%(膜厚比)的BD-01进行共同蒸镀,形成厚度为
Figure PCTCN2022135028-appb-000067
的有机发光层(蓝光发光层,B-EML)。
在有机发光层上,将BCP和LiQ以1:1的重量比蒸镀形成
Figure PCTCN2022135028-appb-000068
厚的电子传输层(ETL)。
将Yb蒸镀在电子传输层上以形成厚度为
Figure PCTCN2022135028-appb-000069
的电子注入层(EIL),然后将镁和银以1﹕10的蒸镀速率真空蒸镀在电子注入层上,形成厚度为
Figure PCTCN2022135028-appb-000070
的阴极。
此外,在上述阴极上蒸镀厚度为
Figure PCTCN2022135028-appb-000071
的CP-01,形成有机覆盖层(CPL),从而完成有机发光器件的制造。
实施例2-实施例39:
采用与实施例1相同的方法制备有机电致发光器件,不同之处仅在于,在制备空穴传输层时,将化合物1分别更换为表8中所示的化合物。
比较例1-比较例4:
采用与实施例1相同的方法制备有机电致发光器件,不同之处仅在于,在制备空穴传输层时,将化合物1分别更换为化合物A、化合物B、化合物C、化合物D。
其中,在制备有机电致发光器件时,对比例与实施例所使用的各个材料的结构如下:
Figure PCTCN2022135028-appb-000072
对实施例1-39和比较例1-4制备所得的蓝色有机电致发光器件进行性能测试,具体在20mA/cm 2的条件下测试了器件的光电性能,测试结果见表8。
表8
Figure PCTCN2022135028-appb-000073
Figure PCTCN2022135028-appb-000074
参考上表可知,实施例1-39将本申请化合物用作空穴传输层材料时,与比较例1-4相比,对于器件的电流电压和寿命有着较为明显的改善,电流效率至少提高了10.7%,寿命至少提高了12%。
本申请化合物相比于比较例1-4,器件性能均有所提升。与比较例1相比,本申请有机化合物使用芳胺基团连接特殊的含氮基团及二苯并五元环,能够大幅提升化合物分子的空穴迁移率,从而可以降低器件的电压,并提升发光效率。
与比较例2-4相比,本申请化合物具有相对合适的能带宽度和紫外可见光吸收范围,作为空穴传输层时可以降低消光作用,提高效率。
因此,本申请的有机化合物在用于制备蓝色有机电致发光器件时,可以有效改善有机电致发光器件的发光效率,并延长其寿命。尤其是当本申请有机化合物的含氮基团与芳胺通过芳基或杂芳基连接时,器件寿命提升更为显著。究其原因,可能在于,当本申请有机化合物的含氮基团与芳胺通过芳基或杂芳基连接时,材料具有较深的HOMO能级,有利于空穴的注入和传输。
因此,本申请的有机化合物用于制备有机电致发光器件时,可以有效的降低器件的驱动电压,同时对器件效率和寿命也有提升效果。
本领域的普通技术人员可以理解,上述各实施方式是实现本申请的具体实施例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本申请的精神和范围。

Claims (13)

  1. 一种有机化合物,具有如式1表示的结构:
    Figure PCTCN2022135028-appb-100001
    其中,各R 1、R 2、R 3和R 4相同或不同,分别独立地选自氘、卤素基团、氰基、碳原子数为1-10的烷基、碳原子数为6-20的芳基、碳原子数为5-20的杂芳基;
    R 5、R 6、R 7和R 8分别独立地选自氢或式1-1所示的结构,且R 5、R 6、R 7和R 8中至少有一个选自式1-1所示的结构;
    L、L 1和L 2相同或不同,分别独立地选自单键、碳原子数为6-30的取代或未取代的亚芳基、碳原子数为3-30的取代或未取代的亚杂芳基;
    Ar 1选自碳原子数为6-30的取代或未取代的芳基、碳原子数为3-30的取代或未取代的杂芳基;
    Ar 2选自式1-2所示的基团;
    X选自C(R 11R 12)、O或S;
    各R 9和R 10相同或不同,分别独立地选自氘、卤素基团、氰基、碳原子数为1-10的烷基或碳原子数为6-12的芳基;
    R 11和R 12相同或不同,分别独立地选自碳原子数为1-10的烷基或碳原子数为6-12的芳基;
    n 1为R 1的个数,选自0、1、2、3或4,当n 1大于1时,任意两个R 1相同或不同;
    n 2为R 2的个数,选自0、1、2、3或4,当n 2大于1时,任意两个R 1相同或不同;
    n 3为R 3的个数,选自0、1或2,当n 3大于1时,任意两个R 3相同或不同;
    n 4为R 4的个数,选自0、1、2、3或4,当n 4大于1时,任意两个R 4相同或不同;
    n 9为R 9的个数,选自0、1、2或3,当n 9大于1时,任意两个R 9相同或不同;
    n 10为R 10的个数,选自0、1、2、3或4,当n 10大于1时,任意两个R 10相同或不同;
    所述L、L 1、L 2和Ar 1中的取代基相同或不同,分别独立的选自氘、卤素基团、氰基、碳原子数为1-10的烷基、碳原子数为3-10的环烷基、碳原子数为6-20的芳基或碳原子数为5-20的杂芳基;
    任选地,Ar 1中的任意两个相邻的取代基形成环。
  2. 根据权利要求1所述的有机化合物,其中,所述有机化合物具有式1-A所示的结构:
    Figure PCTCN2022135028-appb-100002
    式1-A中,Ar 1、Ar 2、L 1、L 2、L、R 1、R 2、R 3、R 4、n 1、n 2、n 3的限定同式1。
  3. 根据权利要求1或2所述的有机化合物,其中,Ar 1选自碳原子数为6-25的取代或未取代的芳基、碳原子数为5-20的取代或未取代的杂芳基;
    可选地,Ar 1中的取代基相同或不同,各自独立地选自氘、氟、氰基、碳原子数为1-5的烷基、碳原子数为5-10的环烷基或碳原子数为6-12的芳基;
    任选地,Ar 1中的任意两个相邻的取代基形成碳原子数为5-13的饱和或不饱和环。
  4. 根据权利要求1或2所述的有机化合物,其中,Ar 1选自取代或未取代的苯基、取代或未取代的萘基、取代或未取代的联苯基、取代或未取代的芴基、取代或未取代的菲基、取代或未取代的三联苯基、取代或未取代的二苯并呋喃基、取代或未取代的二苯并噻吩基、取代或未取代的螺二芴基;
    可选地,Ar 1的取代基相同或不同,各自独立地选自氘、氟、氰基、甲基、乙基、正丙基、异丙基、叔丁基、环戊基、环己基、苯基、萘基或联苯基。
  5. 根据权利要求1或2所述的有机化合物,其中,所述Ar 2选自以下基团所组成的组:
    Figure PCTCN2022135028-appb-100003
    各R 9和R 10分别独立地选自氘、氟、氰基、甲基、乙基、正丙基、异丙基、叔丁基或苯基。
  6. 根据权利要求1或2所述的有机化合物,其中,所述Ar 2选自以下基团组成的组:
    Figure PCTCN2022135028-appb-100004
  7. 根据权利要求1或2所述的有机化合物,其中,L、L 1和L 2相同或不同,各自独立地选自单键、碳原子数为6-20的取代或未取代的亚芳基、碳原子数为5-20的取代或未取代的亚杂芳基;
    可选地,L、L 1和L 2中的取代基相同或不同,各自独立地选自氘、氟、氰基、碳原子数为1-5的烷基或苯基。
  8. 根据权利要求1或2所述的有机化合物,其中,L、L 1和L 2相同或不同,各自独立地选自单键、取代或未取代的亚苯基、取代或未取代的亚萘基、取代或未取代的亚联苯基、取代或未取代的亚芴基、取代或未取代基的亚二苯并呋喃基、取代或未取代基的亚二苯并噻吩、取代或未取 代的亚咔唑基;
    可选地,L、L 1和L 2中的取代基相同或不同,各自独立地选自氘、氟、氰基、甲基、乙基、异丙基、叔丁基、环己基或苯基。
  9. 根据权利要求1或2所述的有机化合物,其中,各R 1、R 2、R 3和R 4相同或不同,分别独立地选自氘、氟、氰基、甲基、乙基、异丙基、叔丁基、环己基或苯基。
  10. 根据权利要求1所述的有机化合物,其中,所述有机化合物选自以下化合物所组成的组:
    Figure PCTCN2022135028-appb-100005
    Figure PCTCN2022135028-appb-100006
    Figure PCTCN2022135028-appb-100007
    Figure PCTCN2022135028-appb-100008
    Figure PCTCN2022135028-appb-100009
    Figure PCTCN2022135028-appb-100010
    Figure PCTCN2022135028-appb-100011
    Figure PCTCN2022135028-appb-100012
    Figure PCTCN2022135028-appb-100013
    Figure PCTCN2022135028-appb-100014
    Figure PCTCN2022135028-appb-100015
    Figure PCTCN2022135028-appb-100016
    Figure PCTCN2022135028-appb-100017
    Figure PCTCN2022135028-appb-100018
  11. 一种电子元件,包括相对设置的阳极和阴极,以及设于所述阳极和所述阴极之间的功能层;其中,所述功能层包含权利要求1-10中任一项所述的有机化合物;
    可选地,所述电子元件为有机电致发光器件。
  12. 根据权利要求11所述的电子元件,其中,所述功能层包括空穴传输层,所述空穴传输层包含所述有机化合物。
  13. 一种电子装置,包括权利要求11或12所述的电子元件。
PCT/CN2022/135028 2022-04-01 2022-11-29 有机化合物及包含其的电子元件和电子装置 WO2023185039A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210339773.7 2022-04-01
CN202210339773.7A CN116332945A (zh) 2022-04-01 2022-04-01 有机化合物及包含其的电子元件和电子装置

Publications (1)

Publication Number Publication Date
WO2023185039A1 true WO2023185039A1 (zh) 2023-10-05

Family

ID=86877881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/135028 WO2023185039A1 (zh) 2022-04-01 2022-11-29 有机化合物及包含其的电子元件和电子装置

Country Status (2)

Country Link
CN (1) CN116332945A (zh)
WO (1) WO2023185039A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210046294A (ko) * 2019-10-18 2021-04-28 솔브레인 주식회사 형광 재료 및 이를 포함하는 유기 발광 다이오드
KR20210046295A (ko) * 2019-10-18 2021-04-28 솔브레인 주식회사 형광 재료 및 이를 포함하는 유기 발광 다이오드
KR20210129497A (ko) * 2020-04-20 2021-10-28 삼성에스디아이 주식회사 유기 광전자 소자용 화합물, 유기 광전자 소자 및 표시 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210046294A (ko) * 2019-10-18 2021-04-28 솔브레인 주식회사 형광 재료 및 이를 포함하는 유기 발광 다이오드
KR20210046295A (ko) * 2019-10-18 2021-04-28 솔브레인 주식회사 형광 재료 및 이를 포함하는 유기 발광 다이오드
KR20210129497A (ko) * 2020-04-20 2021-10-28 삼성에스디아이 주식회사 유기 광전자 소자용 화합물, 유기 광전자 소자 및 표시 장치

Also Published As

Publication number Publication date
CN116332945A (zh) 2023-06-27

Similar Documents

Publication Publication Date Title
WO2022206055A1 (zh) 有机电致发光材料、电子元件及电子装置
WO2022012439A1 (zh) 有机化合物以及使用其的电子元件和电子装置
WO2022083598A1 (zh) 一种含氮化合物以及使用其的电子元件和电子装置
WO2021218588A1 (zh) 一种含氮化合物以及使用其的电子元件和电子装置
WO2022262365A1 (zh) 有机化合物及包含其的电子元件和电子装置
WO2023011028A1 (zh) 有机化合物、电子元件及电子装置
WO2022213905A1 (zh) 有机化合物以及使用其的电子元件和电子装置
WO2022222737A1 (zh) 含氮化合物及包含其的电子元件和电子装置
WO2023045729A1 (zh) 含氮化合物及电子元件和电子装置
WO2022222646A1 (zh) 含氮化合物、电子元件和电子装置
WO2023207375A1 (zh) 含氮化合物和电子元件及电子装置
WO2022206389A1 (zh) 含氮化合物及包含其的电子元件和电子装置
WO2022100194A1 (zh) 含氮化合物、有机电致发光器件和电子装置
WO2022105313A1 (zh) 有机化合物以及使用其的有机电致发光器件和电子装置
WO2023216669A1 (zh) 有机化合物、有机电致发光器件和电子装置
WO2023202198A1 (zh) 有机材料、电子元件和电子装置
WO2023231531A1 (zh) 含氮化合物、有机电致发光器件和电子装置
WO2024037073A1 (zh) 含氮化合物、电子元件和电子装置
WO2024007511A1 (zh) 芳胺化合物及有机电致发光器件和电子装置
WO2023179094A1 (zh) 有机化合物及包含其的电子元件和电子装置
WO2023185078A1 (zh) 有机化合物和电子元件及电子装置
WO2023134228A1 (zh) 含氮化合物及包含其的有机电致发光器件和电子装置
CN114335399B (zh) 有机电致发光器件及包括其的电子装置
WO2022217791A1 (zh) 一种组合物及包含其的电子元件和电子装置
WO2023185039A1 (zh) 有机化合物及包含其的电子元件和电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22934857

Country of ref document: EP

Kind code of ref document: A1