WO2022206055A1 - 有机电致发光材料、电子元件及电子装置 - Google Patents

有机电致发光材料、电子元件及电子装置 Download PDF

Info

Publication number
WO2022206055A1
WO2022206055A1 PCT/CN2021/140628 CN2021140628W WO2022206055A1 WO 2022206055 A1 WO2022206055 A1 WO 2022206055A1 CN 2021140628 W CN2021140628 W CN 2021140628W WO 2022206055 A1 WO2022206055 A1 WO 2022206055A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
carbon atoms
unsubstituted
independently selected
Prior art date
Application number
PCT/CN2021/140628
Other languages
English (en)
French (fr)
Inventor
刘文强
金荣国
李应文
张鹤鸣
Original Assignee
陕西莱特光电材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 陕西莱特光电材料股份有限公司 filed Critical 陕西莱特光电材料股份有限公司
Priority to JP2022579054A priority Critical patent/JP7410599B2/ja
Priority to EP21934691.3A priority patent/EP4155298A4/en
Priority to KR1020227043416A priority patent/KR20220169948A/ko
Priority to US18/011,036 priority patent/US20240023428A1/en
Publication of WO2022206055A1 publication Critical patent/WO2022206055A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/57Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton
    • C07C211/61Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton with at least one of the condensed ring systems formed by three or more rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/54Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to two or three six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/57Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton
    • C07C211/58Naphthylamines; N-substituted derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/49Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
    • C07C255/58Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton containing cyano groups and singly-bound nitrogen atoms, not being further bound to other hetero atoms, bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/86Carbazoles; Hydrogenated carbazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/88Carbazoles; Hydrogenated carbazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/91Dibenzofurans; Hydrogenated dibenzofurans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/50Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/50Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D333/76Dibenzothiophenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/12Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/12Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/081Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/081Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te
    • C07F7/0812Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te comprising a heterocyclic ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/06Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members
    • C07C2603/10Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings
    • C07C2603/12Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings only one five-membered ring
    • C07C2603/18Fluorenes; Hydrogenated fluorenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/22Ortho- or ortho- and peri-condensed systems containing three rings containing only six-membered rings
    • C07C2603/26Phenanthrenes; Hydrogenated phenanthrenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/40Ortho- or ortho- and peri-condensed systems containing four condensed rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/93Spiro compounds
    • C07C2603/95Spiro compounds containing "not free" spiro atoms
    • C07C2603/96Spiro compounds containing "not free" spiro atoms containing at least one ring with less than six members
    • C07C2603/97Spiro compounds containing "not free" spiro atoms containing at least one ring with less than six members containing five-membered rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • H10K50/156Hole transporting layers comprising a multilayered structure
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/624Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing six or more rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene

Definitions

  • the present application belongs to the technical field of organic materials, and in particular relates to an organic electroluminescent material, an electronic component and an electronic device.
  • Organic electroluminescent devices also known as organic light-emitting diodes, refer to devices in which organic light-emitting materials are excited by an electric current to emit light under the action of an electric field.
  • organic electroluminescent devices Compared with inorganic light-emitting materials, organic electroluminescent devices (OLEDs) have the advantages of active light emission, large optical path range, low driving voltage, high brightness, high efficiency, low energy consumption, and simple fabrication process. Due to these advantages, organic electroluminescent materials and devices have become one of the most popular research topics in the scientific and industrial circles.
  • An organic electroluminescence device generally includes an anode, a hole transport layer, an organic electroluminescence layer as an energy conversion layer, an electron transport layer and a cathode which are stacked in sequence.
  • an electric field is generated between the two electrodes.
  • the electrons on the cathode side move to the electroluminescent layer, and the holes on the anode side also move to the light-emitting layer, and the electrons and holes combine in the electroluminescent layer.
  • Excitons are formed, and the excitons are in an excited state to release energy to the outside, thereby causing the electroluminescent layer to emit light to the outside.
  • organic electroluminescent materials for hole transport layers in organic electroluminescent devices have been disclosed. However, it is still necessary to continue to develop new materials to further improve the performance of electronic components.
  • the purpose of the present application is to provide an organic electroluminescent material, an electronic device and an electronic device.
  • the organic electroluminescent material can be used in an organic electroluminescent device to improve the performance of the organic electroluminescent device.
  • a first aspect of the present application provides an organic electroluminescent material having a structure as represented by formula I:
  • Ar 1 and Ar 2 are the same or different, and are independently selected from substituted or unsubstituted aryl groups with 6-40 carbon atoms and substituted or unsubstituted heteroaryl groups with 3-30 carbon atoms;
  • L 1 and L 2 are the same or different, and are each independently selected from a single bond, a substituted or unsubstituted arylene group with 6-30 carbon atoms, and a substituted or unsubstituted heteroarylene group with 6-30 carbon atoms base;
  • Ar 3 and Ar 4 are the same or different, and are each independently selected from substituted or unsubstituted aryl groups having 6 to 30 carbon atoms, substituted or unsubstituted heteroaryl groups having 3 to 30 carbon atoms, and Ar At least one of 3 and Ar 4 is selected from wherein, X is selected from C(R 3 R 4 ), O, S;
  • R 3 and R 4 are the same or different, and are each independently selected from an alkyl group having 1 to 5 carbon atoms, an aryl group having 6 to 12 carbon atoms, and a heteroaryl group having 3 to 12 carbon atoms; or , R 3 and R 4 form a saturated or unsaturated 5-13-membered ring;
  • R 1 and R 2 are the same or different, and are independently selected from deuterium, halogen group, cyano group, alkyl group with 1 to 5 carbon atoms, trialkylsilyl group with 3 to 12 carbon atoms, carbon Aryl having 6 to 12 atoms, and heteroaryl having 3 to 12 carbon atoms;
  • R 1 and R 2 are represented by Ri
  • n 1 and n 2 are represented by ni
  • ni represents the number of Ri
  • i is a variable, representing 1 and 2, when i is 1 and 2, ni is selected from 0, 1, 2, 3 or 4; and when n i is greater than 1, any two R i are the same or different; optionally, any two adjacent R i are connected to each other to form an unsaturated 6-10-membered ring ;
  • the substituents in Ar 1 , Ar 2 , L 1 , L 2 , Ar 3 and Ar 4 are the same or different, and are each independently selected from deuterium, halogen group, cyano group, trioxane having 3 to 12 carbon atoms Silyl group, triphenylsilyl group, alkyl group with 1 to 10 carbon atoms, aryl group with 6 to 20 carbon atoms, heteroaryl group with 3 to 20 carbon atoms, and 3 to 20 carbon atoms 10 cycloalkyl; optionally, any two adjacent substituents in Ar 1 and Ar 2 form a substituted or unsubstituted 3-15-membered ring, and the substituents in the 3-15-membered ring are independently It is selected from deuterium, halogen group, cyano group, trialkylsilyl group with 3-6 carbon atoms, triphenylsilyl group, and alkyl group with 1-5 carbon atoms.
  • a second aspect of the present application provides an electronic component, comprising an anode and a cathode disposed opposite to each other, and a functional layer disposed between the anode and the cathode; the functional layer includes the above-mentioned organic electroluminescent material.
  • a third aspect of the present application provides an electronic device including the above electronic component.
  • FIG. 1 is a schematic structural diagram of an organic electroluminescent device according to an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a first electronic device according to an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a photoelectric conversion device according to an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a second electronic device according to an embodiment of the present application.
  • a first aspect of the present application provides an organic electroluminescent material having a structure as represented by formula I:
  • Ar 1 and Ar 2 are the same or different, and are independently selected from substituted or unsubstituted aryl groups with 6-40 carbon atoms and substituted or unsubstituted heteroaryl groups with 3-30 carbon atoms;
  • L 1 and L 2 are the same or different, and are each independently selected from a single bond, a substituted or unsubstituted arylene group with 6-30 carbon atoms, and a substituted or unsubstituted heteroarylene group with 6-30 carbon atoms base;
  • Ar 3 and Ar 4 are the same or different, and are each independently selected from substituted or unsubstituted aryl groups having 6 to 30 carbon atoms, substituted or unsubstituted heteroaryl groups having 3 to 30 carbon atoms, and Ar At least one of 3 and Ar 4 is selected from wherein, X is selected from C(R 3 R 4 ), O, S;
  • R 3 and R 4 are the same or different, and are each independently selected from an alkyl group having 1 to 5 carbon atoms, an aryl group having 6 to 12 carbon atoms, and a heteroaryl group having 3 to 12 carbon atoms; or , R 3 and R 4 form a saturated or unsaturated 5-13-membered ring;
  • R 1 and R 2 are the same or different, and are independently selected from deuterium, halogen group, cyano group, alkyl group with 1 to 5 carbon atoms, trialkylsilyl group with 3 to 12 carbon atoms, carbon Aryl having 6 to 12 atoms, and heteroaryl having 3 to 12 carbon atoms;
  • R 1 and R 2 are represented by Ri
  • n 1 and n 2 are represented by ni
  • ni represents the number of Ri
  • i is a variable, representing 1 and 2, when i is 1 and 2, ni is selected from 0, 1, 2, 3 or 4; and when n i is greater than 1, any two R i are the same or different; optionally, any two adjacent R i are connected to each other to form an unsaturated 6-10-membered ring ;
  • the substituents in Ar 1 , Ar 2 , L 1 , L 2 , Ar 3 and Ar 4 are the same or different, and are each independently selected from deuterium, halogen group, cyano group, trioxane having 3 to 12 carbon atoms Silyl group, triphenylsilyl group, alkyl group with 1 to 10 carbon atoms, aryl group with 6 to 20 carbon atoms, heteroaryl group with 3 to 20 carbon atoms, and 3 to 20 carbon atoms 10 cycloalkyl; optionally, any two adjacent substituents in Ar 1 and Ar 2 form a substituted or unsubstituted 3-15-membered ring, and the substituents in the 3-15-membered ring are independently It is selected from deuterium, halogen group, cyano group, trialkylsilyl group with 3-6 carbon atoms, triphenylsilyl group, and alkyl group with 1-5 carbon atoms.
  • the terms “optional” and “optionally” mean that the subsequently described event or circumstance can but need not occur, and that the description includes instances where the event or circumstance does or does not occur.
  • “optionally, two adjacent substituents XX form a ring” means that the two substituents may but need not form a ring, including: the situation where two adjacent substituents form a ring and two A scenario in which adjacent substituents do not form a ring.
  • any two adjacent substituents in Ar 1 and Ar 2 form a substituted or unsubstituted 3-15-membered ring refers to any two adjacent substituents in Ar 1 and Ar 2
  • a substituted or unsubstituted 3- to 15-membered ring may be formed, and each may exist independently.
  • any two adjacent substituents may include two substituents on the same atom, and may also include two adjacent atoms each having one Substituents; wherein, when there are two substituents on the same atom, the two substituents can form a saturated or unsaturated ring with the atom to which they are commonly connected; when two adjacent atoms have one substituent respectively , the two substituents can be fused to form a ring.
  • any two adjacent R i are connected to each other to form an unsaturated 6-10-membered ring
  • any two adjacent R 2 are connected to each other to form an unsaturated 6-10 membered ring with the atoms to which they are commonly connected.
  • the ring may be, for example, an aromatic ring, and specific examples of the aromatic ring include a benzene ring naphthalene ring Philippine ring Wait).
  • one of Ar and Ar is selected from Ar 3 is Ar 4 is not or Ar 4 as Ar 3 is not
  • Ar 3 and Ar 4 are both selected from
  • each q is independently 0, 1, 2 or 3
  • each R is independently selected from hydrogen, deuterium, fluorine, chlorine
  • formula Q-1 represents that there are q substituents R" on the benzene ring.
  • each R" can be the same or different, and the options of each R" do not affect each other;
  • formula Q-2 indicates that each benzene ring of biphenyl has q substituents R", and the R" on the two benzene rings The number q of "substituents" can be the same or different, each R" can be the same or different, and the options of each R" do not affect each other.
  • substituted or unsubstituted means that the functional group described after the term may or may not have a substituent (hereinafter, for the convenience of description, the substituents are collectively referred to as Rc).
  • substituted or unsubstituted aryl refers to an aryl group having a substituent Rc or an unsubstituted aryl group.
  • the above-mentioned substituent group, namely Rc may be, for example, deuterium, halogen group, cyano group, trialkylsilyl group, triphenylsilyl group, alkyl group, aryl group, heteroaryl group, and cycloalkyl group.
  • the number of carbon atoms of a substituted or unsubstituted functional group refers to the number of all carbon atoms. For example, if L is selected from a substituted arylene group having 12 carbon atoms, then all carbon atoms in the arylene group and the substituents thereon are 12. For example: Ar is Then the number of carbon atoms is 10; L is Its carbon number is 12.
  • an aryl group refers to an optional functional group or substituent derived from an aromatic carbocyclic ring.
  • Aryl groups can be monocyclic aryl groups (eg, phenyl) or polycyclic aryl groups, in other words, aryl groups can be monocyclic aryl groups, fused-ring aryl groups, two or more monocyclic aryl groups conjugated through carbon-carbon bonds. Cyclic aryl groups, monocyclic aryl groups and fused-ring aryl groups linked by carbon-carbon bond conjugation, two or more fused-ring aryl groups linked by carbon-carbon bond conjugation.
  • two or more aromatic groups linked by carbon-carbon bond conjugation may also be considered aryl groups in the present application.
  • the fused ring aryl group may include, for example, a bicyclic fused aryl group (eg, naphthyl), a tricyclic fused aryl group (eg, phenanthrenyl, fluorenyl, anthracenyl), and the like.
  • the aryl group does not contain heteroatoms such as B, N, O, S, P, Se and Si.
  • biphenyl, terphenyl, etc. are aryl groups.
  • aryl groups may include, but are not limited to, phenyl, naphthyl, fluorenyl, anthracenyl, phenanthryl, biphenyl, terphenyl, benzo[9,10]phenanthryl, pyrenyl, benzofluoranthene base, Base et al.
  • the arylene group referred to refers to a divalent group formed by the further loss of one hydrogen atom from the aryl group.
  • a substituted aryl group may be one or more than two hydrogen atoms in the aryl group replaced by a group such as a deuterium atom, a halogen group, -CN, an aryl group, a heteroaryl group, a trialkylsilyl group, an alkyl group, a ring Alkyl, alkoxy and other groups are substituted.
  • a group such as a deuterium atom, a halogen group, -CN, an aryl group, a heteroaryl group, a trialkylsilyl group, an alkyl group, a ring Alkyl, alkoxy and other groups are substituted.
  • heteroaryl-substituted aryl groups include, but are not limited to, dibenzofuranyl-substituted phenyl groups, dibenzothienyl-substituted phenyl groups, pyridyl-substituted phenyl groups, and the like.
  • the number of carbon atoms in a substituted aryl group refers to the total number of carbon atoms in the aryl group and the substituent on the aryl group, for example, a substituted aryl group with a carbon number of 18 refers to the aryl group and the substituted aryl group.
  • the total number of carbon atoms in the base is 18.
  • a heteroaryl group refers to a monovalent aromatic ring or a derivative thereof containing at least one heteroatom in the ring, and the heteroatom can be at least one of B, O, N, P, Si, Se and S.
  • a heteroaryl group can be a monocyclic heteroaryl group or a polycyclic heteroaryl group, in other words, a heteroaryl group can be a single aromatic ring system or multiple aromatic ring systems linked by carbon-carbon bonds, and any aromatic
  • the ring system is an aromatic monocyclic ring or an aromatic fused ring.
  • heteroaryl groups can include thienyl, furyl, pyrrolyl, imidazolyl, thiazolyl, oxazolyl, oxadiazolyl, triazolyl, pyridyl, bipyridyl, pyrimidinyl, triazinyl, acridinyl, pyridazinyl, pyrazinyl, quinolinyl, quinazolinyl, quinoxalinyl, phenoxazinyl, phthalazinyl, pyridopyrimidinyl, pyridopyrazinyl, pyrazinopyrazinyl Azinyl, isoquinolinyl, indolyl, carbazolyl, benzoxazolyl, benzimidazolyl, benzothiazolyl, benzocarbazolyl, benzothienyl, dibenzothienyl, thiophene thieny
  • heteroarylene group refers to a divalent group formed by the further loss of one hydrogen atom from the heteroaryl group.
  • a substituted heteroaryl group may be a heteroaryl group in which one or more than two hydrogen atoms are replaced by a group such as a deuterium atom, a halogen group, -CN, an aryl group, a heteroaryl group, a trialkylsilyl group, an alkyl group , cycloalkyl, alkoxy and other groups.
  • aryl-substituted heteroaryl groups include, but are not limited to, phenyl-substituted dibenzofuranyl, phenyl-substituted dibenzothienyl, phenyl-substituted pyridyl, and the like. It should be understood that the number of carbon atoms in a substituted heteroaryl group refers to the total number of carbon atoms in the heteroaryl group and the substituents on the heteroaryl group.
  • the number of carbon atoms of the aryl group as a substituent may be 6 to 20, for example, the number of carbon atoms may be 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20.
  • Specific examples of aryl groups as substituents include, but are not limited to, phenyl, biphenyl, naphthyl, anthracenyl, phenanthryl, base.
  • the number of carbon atoms of the heteroaryl group as a substituent may be 3 to 20, for example, the number of carbon atoms may be 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 , 15, 16, 17, 18, 19, 20.
  • Specific examples of heteroaryl groups as substituents include, but are not limited to, pyridyl, pyrimidinyl, carbazolyl, dibenzofuranyl, dibenzothienyl, quinolinyl, quinazolinyl, quinoxalinyl , isoquinolinyl.
  • the unpositioned linker refers to a single bond extending from the ring system It means that one end of the linking bond can be connected to any position in the ring system through which the bond runs, and the other end is connected to the rest of the compound molecule.
  • the naphthyl group represented by the formula (f) is connected to other positions of the molecule through two non-positioned linkages running through the bicyclic ring.
  • the dibenzofuranyl group represented by the formula (X') is connected to other positions of the molecule through a non-positional linkage extending from the middle of one side of the benzene ring,
  • the meaning it represents includes any possible connection mode shown by formula (X'-1) to formula (X'-4):
  • the alkyl group having 1 to 10 carbon atoms may include a straight-chain alkyl group having 1 to 10 carbon atoms and a branched alkyl group having 3 to 10 carbon atoms.
  • the number of carbon atoms of the alkyl group can be, for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, and specific examples of the alkyl group include, but are not limited to, methyl, ethyl, n-propyl, isopropyl Propyl, n-butyl, isobutyl, tert-butyl, n-pentyl, isopentyl, neopentyl, n-hexyl, n-heptyl, n-octyl, 2-ethylhexyl, nonyl, decyl, 3,7-Dimethyloctyl, etc.
  • cycloalkyl examples include, but are not limited to, cyclopentyl, cyclohexyl, and adamantyl.
  • the halogen group may be, for example, fluorine, chlorine, bromine, or iodine.
  • Ar 1 and Ar 2 are each independently selected from substituted or unsubstituted aryl groups having 6 to 33 carbon atoms, and substituted or unsubstituted heteroaryl groups having 5 to 18 carbon atoms.
  • Ar 1 and Ar 2 are each independently selected from the group consisting of 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33 substituted or unsubstituted aryl groups, the number of carbon atoms is 5, 6, 7, 8, 9, 10, 11, 12, Substituted or unsubstituted heteroaryl of 13, 14, 15, 16, 17, 18.
  • the substituents in Ar 1 and Ar 2 are each independently selected from deuterium, fluorine, cyano, trimethylsilyl, triphenylsilyl, alkyl with 1 to 5 carbon atoms, Aryl with 6-12, heteroaryl with 5-12 carbon atoms, cycloalkyl with 5-10 carbon atoms; optionally, any two adjacent substitutions in Ar 1 and Ar 2 form a substituted or unsubstituted 5-13-membered ring, and the substituents in the 5-13-membered ring are independently selected from deuterium, fluorine, cyano, trimethylsilyl, triphenylsilyl, methyl , ethyl, isopropyl, tert-butyl.
  • Ar 1 and Ar 2 are each independently selected from substituted or unsubstituted phenyl, substituted or unsubstituted naphthyl, substituted or unsubstituted biphenyl, substituted or unsubstituted fluorenyl, substituted or unsubstituted Substituted dibenzofuranyl, substituted or unsubstituted dibenzothienyl, substituted or unsubstituted carbazolyl, substituted or unsubstituted phenanthryl, substituted or unsubstituted triphenylene, substituted or unsubstituted Pyreneyl, substituted or unsubstituted anthracenyl.
  • the substituents in Ar 1 and Ar 2 are each independently selected from deuterium, fluorine, cyano, trimethylsilyl, triphenylsilyl, methyl, ethyl, isopropyl, tert-butyl, Cyclopentyl, cyclohexyl, adamantyl, pyridyl, phenyl, naphthyl, biphenyl; optionally, any two adjacent substituents in Ar 1 and Ar 2 form adamantane Cyclopentane Cyclohexane Fluorene ring or tert-butyl substituted fluorene ring
  • Ar 1 and Ar 2 are each independently selected from substituted or unsubstituted groups W, and unsubstituted groups W are selected from the following groups:
  • the substituted group W has one or more substituents, each of which is independently selected from deuterium, fluorine, cyano, trimethylsilyl, triphenylsilyl, methyl, ethyl group, isopropyl group, tert-butyl group, cyclopentyl group, cyclohexyl group, adamantyl group, pyridyl group, phenyl group, naphthyl group, biphenyl group, and when the number of substituent groups is more than 1, each substituent group is the same or different .
  • substituents each of which is independently selected from deuterium, fluorine, cyano, trimethylsilyl, triphenylsilyl, methyl, ethyl group, isopropyl group, tert-butyl group, cyclopentyl group, cyclohexyl group, adamantyl group, pyridyl group, phenyl group, naphthy
  • Ar 1 and Ar 2 are each independently selected from the following groups:
  • Ar 1 and Ar 2 are each independently selected from the following groups:
  • L 1 and L 2 are each independently selected from a single bond, a substituted or unsubstituted arylene group having 6 to 20 carbon atoms.
  • L 1 and L 2 are each independently selected from single bonds, substitutions with carbon atoms of 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 or unsubstituted arylene.
  • the substituents in L 1 and L 2 are each independently selected from deuterium, fluorine, cyano, alkyl with 1-5 carbon atoms, aryl group with 6-12 carbon atoms, trimethylsilicon base.
  • L 1 and L 2 are each independently selected from a single bond, a substituted or unsubstituted arylene group having 6 to 12 carbon atoms.
  • the substituents in L 1 and L 2 are each independently selected from deuterium, fluorine, cyano, methyl, ethyl, isopropyl, tert-butyl, phenyl, trimethylsilyl.
  • L 1 and L 2 are each independently selected from a single bond, substituted or unsubstituted phenylene, substituted or unsubstituted naphthylene, and substituted or unsubstituted biphenylene.
  • the substituents in L 1 and L 2 are each independently selected from deuterium, fluorine, cyano, methyl, ethyl, isopropyl, tert-butyl, phenyl, trimethylsilyl.
  • L and L are each independently selected from a single bond, a substituted or unsubstituted group V, and the unsubstituted group V is selected from the following groups:
  • the substituted group V has one or more substituents, each of which is independently selected from deuterium, fluorine, cyano, methyl, ethyl, isopropyl, tert-butyl, phenyl , naphthyl, trimethylsilyl, and when the number of substituents is greater than 1, each substituent is the same or different.
  • L 1 and L 2 are each independently selected from a single bond or the following groups:
  • L 1 and L 2 are each independently selected from a single bond or the following groups:
  • Ar 3 and Ar 4 are each independently selected from a substituted or unsubstituted aryl group with 6-20 carbon atoms, a substituted or unsubstituted hetero group with 12-16 carbon atoms Aryl; and at least one of Ar 3 and Ar 4 is selected from
  • Ar 3 and Ar 4 are each independently selected from substituted or unsubstituted with 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 carbon atoms
  • the aryl group is a substituted or unsubstituted heteroaryl group with 12, 13, 14, 15, 16 carbon atoms.
  • the substituents in Ar 3 and Ar 4 are each independently selected from deuterium, fluorine, cyano, trimethylsilyl, triphenylsilyl, alkyl with 1 to 5 carbon atoms, It is an aryl group of 6 to 12 and a heteroaryl group of 3 to 12 carbon atoms.
  • Ar 3 and Ar 4 are each independently selected from substituted or unsubstituted groups Q, and unsubstituted groups Q are selected from the following groups:
  • the substituted group Q has one or more substituents, each of which is independently selected from deuterium, fluorine, cyano, trimethylsilyl, triphenylsilyl, methyl, ethyl group, isopropyl group, tert-butyl group, phenyl group, naphthyl group, biphenyl group, and when the number of substituent groups is greater than 1, each substituent group is the same or different.
  • Ar and Ar are each independently selected from the following groups:
  • Ar and Ar are each independently selected from the following groups:
  • Ar 3 is selected from
  • R 3 and R 4 are each independently selected from methyl, ethyl, isopropyl, tert-butyl, phenyl, naphthyl, biphenyl, pyridyl, pyrimidinyl, quinolyl, Isoquinolyl, dibenzofuranyl, dibenzothienyl, carbazolyl; alternatively, R 3 and R 4 form cyclopentane, cyclohexane, fluorene rings.
  • R 1 and R 2 are each independently selected from deuterium, fluoro, cyano, methyl, ethyl, isopropyl, tert-butyl, trimethylsilyl, phenyl, naphthyl, bi Phenyl, pyridyl, pyrimidinyl, quinolyl, isoquinolyl, dibenzofuranyl, dibenzothienyl, carbazolyl.
  • the organic electroluminescent material is selected from the group consisting of the following compounds:
  • a second aspect of the present application provides an electronic component, comprising an anode and a cathode disposed opposite to each other, and a functional layer disposed between the anode and the cathode; the functional layer includes the organic electroluminescent material of the present application.
  • the functional layer includes a hole transport layer
  • the hole transport layer includes the organic electroluminescent material of the present application.
  • the electronic element is an organic electroluminescence device or a photoelectric conversion device.
  • the electronic component is an organic electroluminescence device.
  • the hole transport layer includes a first hole transport layer and a second hole transport layer, the first hole transport layer is closer to the anode than the second hole transport layer, wherein,
  • the second hole transport layer includes the organic electroluminescent material of the present application.
  • the electronic component may be an organic electroluminescent device.
  • the organic electroluminescent device may include an anode 100 , a first hole transport layer 321 , a second hole transport layer 322 , an organic light emitting layer 330 , an electron transport layer 340 and a cathode 200 which are stacked in sequence.
  • the anode 100 includes an anode material, which is preferably a material with a large work function that facilitates hole injection into the functional layer.
  • anode materials include: metals such as nickel, platinum, vanadium, chromium, copper, zinc and gold or alloys thereof; metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO) and indium zinc oxide (IZO); Combined metals and oxides such as ZnO:Al or SnO2: Sb; or conducting polymers such as poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene ](PEDT), polypyrrole and polyaniline, but not limited thereto. It is preferable to include a transparent electrode comprising indium tin oxide (ITO) as an anode.
  • ITO indium tin oxide
  • the hole transport layer includes one or more hole transport materials, and the hole transport materials can be selected from carbazole polymers, carbazole-linked triarylamine compounds or other types of compounds, which are not covered in this application. Make special restrictions.
  • the hole transport layer includes a first hole transport layer 321 and a second hole transport layer 322 .
  • the first hole transport layer 321 is not limited, for example, it may be composed of the compound NPB.
  • the second hole transport layer 322 contains the organic electroluminescent material of the present application.
  • the organic light-emitting layer 330 may be composed of a single light-emitting layer material, or may include a host material and a dopant material.
  • the organic light-emitting layer 330 is composed of a host material and a dopant material.
  • the holes injected into the organic light-emitting layer 330 and the electrons injected into the organic light-emitting layer 330 can recombine in the organic light-emitting layer 330 to form excitons, and the excitons transfer energy.
  • the host material transfers energy to the dopant material, thereby enabling the dopant material to emit light.
  • the host material of the organic light-emitting layer 330 may be metal chelate compounds, bis-styryl derivatives, aromatic amine derivatives, dibenzofuran derivatives or other types of materials, which are not specifically limited in this application.
  • the host material of the organic light-emitting layer 330 may be RH-1 or GH-1.
  • the dopant material of the organic light-emitting layer 330 may be a compound having a condensed aryl ring or a derivative thereof, a compound having a heteroaryl ring or a derivative thereof, an aromatic amine derivative or other materials, which are not specially made in this application. limits.
  • the dopant material of the organic light-emitting layer 330 may be Ir(dmpq) 2 (acac) or Ir(ppy) 3 .
  • the electron transport layer 340 may be a single-layer structure or a multi-layer structure, which may include one or more electron transport materials, and the electron transport materials may be selected from, but not limited to, ET-1, ET-2, TPBi, LiQ , benzimidazole derivatives, oxadiazole derivatives, quinoxaline derivatives or other electron transport materials.
  • a hole blocking layer may also be provided between the organic light emitting layer and the electron transport layer.
  • the material of the hole blocking layer can be selected with reference to the prior art, which is not limited in this application, for example, it can be HB-1.
  • the cathode 200 may include a cathode material, which is a material with a small work function that facilitates the injection of electrons into the functional layer.
  • cathode materials include, but are not limited to, metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin, and lead or alloys thereof; or multi-layer materials such as LiF/Al , Liq/Al, LiO 2 /Al, LiF/Ca, LiF/Al and BaF 2 /Ca.
  • a metal electrode comprising magnesium and silver is preferably included as the cathode.
  • a hole injection layer 310 may be further disposed between the anode 100 and the first hole transport layer 321 to enhance the capability of injecting holes into the first hole transport layer 321 .
  • the hole injection layer 310 can be selected from benzidine derivatives, starburst arylamine compounds, phthalocyanine derivatives or other materials, which are not specifically limited in this application.
  • the hole injection layer 310 may be composed of HAT-CN or F4-TCNQ.
  • an electron injection layer 350 may also be disposed between the cathode 200 and the electron transport layer 340 to enhance the capability of injecting electrons into the electron transport layer 340 .
  • the electron injection layer 350 may include inorganic materials such as alkali metal sulfide and alkali metal halide, or may include a complex compound of alkali metal and organic matter.
  • the electron injection layer 350 may include Yb.
  • the electronic component may be a photoelectric conversion device.
  • the photoelectric conversion device may include an anode 100 and a cathode 200 disposed opposite to each other, and a functional layer 300 disposed between the anode 100 and the cathode 200; the functional layer 300 includes the organic electroluminescent material provided in the present application .
  • the photoelectric conversion device may include an anode 100, a hole transport layer 320, a photoelectric conversion layer 360, an electron transport layer 340 and a cathode 200 which are stacked in sequence.
  • the photoelectric conversion device may be a solar cell, especially an organic thin film solar cell.
  • a solar cell may include an anode, a hole transport layer, an organic light-emitting layer, an electron transport layer, and a cathode that are stacked in sequence, wherein the hole transport layer includes the present invention.
  • the applied organic electroluminescent material may be any organic electroluminescent material.
  • a third aspect of the present application provides an electronic device, including the electronic component provided in the second aspect of the present application.
  • the electronic device is a first electronic device 400 , which includes the above-mentioned organic electroluminescent device.
  • the first electronic device 400 may be, for example, a display device, a lighting device, an optical communication device, or other types of electronic devices, such as but not limited to computer screens, mobile phone screens, televisions, electronic paper, emergency lighting, light modules, and the like.
  • the electronic device is a second electronic device 500 including the above-mentioned photoelectric conversion device.
  • the second electronic device 500 may be, for example, a solar power generation device, a light detector, a fingerprint identification device, an optical module, a CCD camera, or other types of electronic devices.
  • the compounds of the synthetic methods not mentioned in this application are all raw materials obtained through commercial channels.
  • IM x-1 listed in table 1 is synthesized with reference to the method for IM a-1, the difference is that raw material 1 is used to replace phenylboronic acid, and wherein, the main raw material used, the synthetic intermediate and the yield thereof are as shown in table 1 .
  • the anode is prepared by the following process: the thickness is
  • the ITO substrate was cut into a size of 40mm (length) ⁇ 40mm (width) ⁇ 0.7mm (thickness), and a photolithography process was used to prepare it into an experimental substrate with cathode, anode and insulating layer patterns, and use ultraviolet ozone and O 2 :N 2 plasma is used for surface treatment to increase the work function of the anode (experimental substrate), and the substrate surface is cleaned with organic solvent to remove impurities and oil stains on the substrate surface.
  • HAT-CN was vacuum evaporated on the experimental substrate (anode) to form a thickness of of hole injection layer (HIL), and then vacuum-evaporated NPB on the hole injection layer to form a thickness of the first hole transport layer.
  • HIL hole injection layer
  • the compound RH-1: Ir(dmpq) 2 (acac) was co-evaporated at a weight ratio of 95%: 5% to form a thickness of The red emissive layer (EML).
  • Compound HB-1 was vacuum evaporated on the red light-emitting layer to form a thickness of the hole blocking layer. Then on the hole blocking layer, compound ET-1 and LiQ were mixed in a weight ratio of 1:1 and evaporated to form Thick electron transport layer (ETL), Yb was evaporated on the electron transport layer to form a thickness of The electron injection layer (EIL) of the the cathode.
  • ET-1 Thick electron transport layer
  • ETL Thick electron transport layer
  • EIL electron injection layer
  • the thickness of vacuum evaporation on the above-mentioned cathode is The CP-1 is formed to form an organic capping layer (CPL), thereby completing the fabrication of an organic electroluminescent device.
  • CPL organic capping layer
  • An organic electroluminescent device was prepared in the same manner as in Example 1, except that the compounds in Table 5 were respectively used in place of Compound 1 used in Example 1 when forming the second hole transport layer.
  • An organic electroluminescence device was prepared in the same manner as in Example 1, except that Compound A, Compound B, and Compound C were used instead of Compound 1 used in Example 1 when forming the second hole transport layer.
  • the performance of the red organic electroluminescent devices prepared in Examples 1 to 52 and Comparative Examples 1 to 3 was tested. Specifically, the IVL performance of the devices was tested under the condition of 10mA/cm 2. The life of T95 device was 20mA/cm 2 . The test was carried out under the conditions, and the test results are shown in Table 5.
  • Examples 1 to 52 the compounds described in the present invention are used as the material of the second hole transport layer, and the prepared red organic electroluminescent devices have the characteristics of high efficiency and long life. Specifically, compared with Comparative Examples 1 to 3, the luminous efficiency of Examples 1 to 52 is increased by at least 13.7%, the external quantum efficiency is increased by at least 12.2%, and the lifetime is increased by at least 12.3%.
  • the anode is prepared by the following process: the thickness is The ITO substrate was cut into a size of 40mm (length) ⁇ 40mm (width) ⁇ 0.7mm (thickness), and a photolithography process was used to prepare it into an experimental substrate with patterns of cathodes, anodes and insulating layers, using ultraviolet ozone and O 2 : N2 plasma is used for surface treatment to increase the work function of the anode (experimental substrate), and the surface of the substrate is cleaned with an organic solvent to remove impurities and oil stains on the surface of the substrate.
  • HAT-CN was vacuum evaporated on the experimental substrate (anode) to form a thickness of of hole injection layer (HIL), and then vacuum-evaporated NPB on the hole injection layer to form a thickness of the first hole transport layer.
  • HIL hole injection layer
  • Compound 251 is vacuum evaporated on the first hole transport layer to form a thickness of the second hole transport layer.
  • the compound GH-1:Ir(ppy) 3 was co-evaporated at a weight ratio of 95%:5% to form a thickness of The green light emitting layer (EML).
  • EML green light emitting layer
  • Compound ET-2 and LiQ were mixed at a weight ratio of 1:1 on the light-emitting layer and evaporated to form Thick electron transport layer (ETL), Yb was evaporated on the electron transport layer to form a thickness of The electron injection layer (EIL) of the the cathode.
  • ETL Thick electron transport layer
  • EIL electron injection layer
  • the thickness of vacuum evaporation on the above-mentioned cathode is The CP-1 is formed to form an organic capping layer (CPL), thereby completing the fabrication of an organic electroluminescent device.
  • CPL organic capping layer
  • An organic electroluminescent device was prepared in the same manner as in Application Example 1, except that the compounds in Table 7 were respectively used instead of Compound 251 used in Application Example 1 when forming the second hole transport layer.
  • An organic electroluminescent device was prepared in the same manner as in Application Example 1, except that Compound A, Compound B, Compound D, and Compound E were used instead of Compound 251 used in Application Example 1 when forming the second hole transport layer. .
  • the green organic electroluminescent devices prepared in Application Examples 1 to 17 and Comparative Examples 4 to 7 were tested for performance. Specifically, the performance of the devices was tested under the condition of 10 mA/cm 2 . The test results are shown in Table 7.
  • Application Examples 1 to 17 the compounds of the present invention are used as the material of the second hole transport layer, and the prepared green organic electroluminescent devices have the characteristics of high efficiency and long life. Specifically, compared with Comparative Examples 4 to 7, Application Examples 1 to 17 have at least 12.5% improvement in luminous efficiency, at least 17.6% improvement in external quantum efficiency, and at least 11.7% improvement in lifetime.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

本申请涉及有机材料技术领域,提供了一种有机电致发光材料、电子器件及电子装置。所述有机电致发光材料具有如式(Ⅰ)表示的结构。本申请的有机电致发光材料用于有机电致发光器件,可以有效地提升器件的性能。

Description

有机电致发光材料、电子元件及电子装置
相关申请的交叉引用
本申请要求于2021年4月2日递交的申请号为202110363862.0的中国专利申请以及2021年7月7日递交的申请号为202110770912.7的中国专利申请的优先权,在此引用上述中国专利申请的内容全文以作为本申请的一部分。
技术领域
本申请属于有机材料技术领域,尤其涉及一种有机电致发光材料、电子元件及电子装置。
背景技术
有机电致发光器件又称为有机发光二极管,是指有机发光材料在电场作用下,受到电流的激发而发光的器件。相比于无机发光材料,有机电致发光器件OLED具有主动发光、光程范围大、驱动电压低、亮度大、效率高、耗能少以及制作工艺简单等优点。由于这些优点,有机电致发光材料与器件已经成为科学界和产业界十分热门的科研课题之一。
有机电致发光器件一般包括依次层叠设置的阳极、空穴传输层、作为能量转化层的有机电致发光层、电子传输层和阴极。当阴阳两极施加电压时,两电极产生电场,在电场的作用下,阴极侧的电子向电致发光层移动,阳极侧的空穴也向发光层移动,电子和空穴在电致发光层结合形成激子,激子处于激发态向外释放能量,进而使得电致发光层对外发光。
现有技术中,已公开了用于有机电致发光器件中的空穴传输层的有机电致发光材料。然而,依然有必要继续研发新型材料,以进一步提高电子元器件的性能。
发明内容
本申请的目的在于提供一种有机电致发光材料、电子器件及电子装置,所述有机电致发光材料应用于有机电致发光器件中,可提高有机电致发光器件的性能。
本申请的第一方面提供一种有机电致发光材料,其具有如式Ⅰ表示的结构:
Figure PCTCN2021140628-appb-000001
其中,Ar 1和Ar 2相同或不同,且各自独立地选自碳原子数为6~40的取代或未取代的芳基、碳原子数为3~30的取代或未取代的杂芳基;
L 1和L 2相同或不同,且各自独立选自单键、碳原子数为6~30的取代或未取代的亚芳基、碳原子数为6~30的取代或未取代的亚杂芳基;
Ar 3和Ar 4相同或不同,且各自独立地选自碳原子数为6~30的取代或未取代的芳基、碳原子 数为3~30的取代或未取代的杂芳基,且Ar 3和Ar 4中的至少一个选自
Figure PCTCN2021140628-appb-000002
其中,X选自C(R 3R 4)、O、S;
R 3和R 4相同或不同,且各自独立地选自碳原子数为1~5的烷基、碳原子数为6~12的芳基、碳原子数为3~12的杂芳基;或者,R 3和R 4形成饱和或不饱和的5~13元环;
R 1和R 2相同或不同,且各自独立地选自氘、卤素基团、氰基、碳原子数为1~5的烷基、碳原子数为3~12的三烷基硅基、碳原子数为6~12的芳基、碳原子数为3~12的杂芳基;
R 1、R 2以R i表示,n 1和n 2以n i表示,n i表示R i的个数,i为变量,表示1和2,当i为1和2时,n i选自0、1、2、3或4;且当n i大于1时,任意两个R i相同或不同;任选地,任意两个相邻的R i相互连接形成不饱和的6~10元环;
Ar 1、Ar 2、L 1、L 2、Ar 3和Ar 4中的取代基相同或不同,且各自独立地选自氘、卤素基团、氰基、碳原子数为3~12的三烷基硅基、三苯基硅基、碳原子数为1~10的烷基、碳原子数为6~20的芳基、碳原子数为3~20的杂芳基、碳原子数为3~10的环烷基;任选地,Ar 1和Ar 2中的任意两个相邻的取代基形成取代或未取代的3~15元环,所述3~15元环中的取代基独立地选自氘、卤素基团、氰基、碳原子数为3~6的三烷基硅基、三苯基硅基、碳原子数为1~5的烷基。
本申请的第二方面提供一种电子元件,包括相对设置的阳极和阴极,以及设于所述阳极和所述阴极之间的功能层;所述功能层包含上述有机电致发光材料。
本申请的第三方面提供一种电子装置,包括上述电子元件。
本申请有机电致发光材料的分子结构中,苯的连续相邻的三个取代位置,依次连接芳胺、第一芳香基团(Ar 3)、第二芳香基团(Ar 4),且第一芳香基团和第二芳香基团中的至少一者包含特定的二苯并五元环,这样增强了分子的空间构型能力,提高了材料的玻璃化温度,同时增强了分子间的共轭性,在形成深的HOMO的同时形成高的LUMO;另外,连接于苯上的芳胺中的N能够增加分子共轭性,从而实现器件的高效率,即使分子量较小的分子也具有高的Tg,故而驱动器件时可防止重结晶化,本申请的有机电致发光材料具有较高的稳定性,有利于制造具有更长寿命的电子器件。
本申请的其他特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本申请的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本申请,但并不构成对本申请的限制。
图1是本申请一种实施方式的有机电致发光器件的结构示意图。
图2是本申请一种实施方式的第一电子装置的结构示意图。
图3是本申请一种实施方式的光电转化器件的结构示意图。
图4是本申请一种实施方式的第二电子装置的结构示意图。
附图标记说明
100、阳极           200、阴极           300、功能层      310、空穴注入层
321、第一空穴传输层 322、第二空穴传输层 330、有机发光层  320、空穴传输层
340、电子传输层     350、电子注入层     360、光电转化层  400、第一电子装置
500、第二电子装置
具体实施方式
现在将参考附图更全面地描述示例性实施方式。然而,示例性实施例能够以多种形式实施,且不应被理解为限于在此阐述的范例;相反,提供这些实施方式使得本申请将更加全面和完整,并将示例性实施方式的构思全面地传达给本领域的技术人员。所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施方式中。在下面的描述中,提供许多具体细节从而给出对本申请的实施方式的充分理解。
本申请的第一方面提供一种有机电致发光材料,其具有如式Ⅰ表示的结构:
Figure PCTCN2021140628-appb-000003
其中,Ar 1和Ar 2相同或不同,且各自独立地选自碳原子数为6~40的取代或未取代的芳基、碳原子数为3~30的取代或未取代的杂芳基;
L 1和L 2相同或不同,且各自独立选自单键、碳原子数为6~30的取代或未取代的亚芳基、碳原子数为6~30的取代或未取代的亚杂芳基;
Ar 3和Ar 4相同或不同,且各自独立地选自碳原子数为6~30的取代或未取代的芳基、碳原子数为3~30的取代或未取代的杂芳基,且Ar 3和Ar 4中至少一个选自
Figure PCTCN2021140628-appb-000004
其中,X选自C(R 3R 4)、O、S;
R 3和R 4相同或不同,且各自独立地选自碳原子数为1~5的烷基、碳原子数为6~12的芳基、碳原子数为3~12的杂芳基;或者,R 3和R 4形成饱和或不饱和的5~13元环;
R 1和R 2相同或不同,且各自独立地选自氘、卤素基团、氰基、碳原子数为1~5的烷基、碳原子数为3~12的三烷基硅基、碳原子数为6~12的芳基、碳原子数为3~12的杂芳基;
R 1、R 2以R i表示,n 1和n 2以n i表示,n i表示R i的个数,i为变量,表示1和2,当i为1和2时,n i选自0、1、2、3或4;且当n i大于1时,任意两个R i相同或不同;任选地,任意两个相邻的R i相互连接形成不饱和的6~10元环;
Ar 1、Ar 2、L 1、L 2、Ar 3和Ar 4中的取代基相同或不同,且各自独立地选自氘、卤素基团、氰基、碳原子数为3~12的三烷基硅基、三苯基硅基、碳原子数为1~10的烷基、碳原子数为6~20的芳基、碳原子数为3~20的杂芳基、碳原子数为3~10的环烷基;任选地,Ar 1和Ar 2中的任意两个相邻的取代基形成取代或未取代的3~15元环,所述3~15元环中的取代基独立地选自氘、卤素基团、氰基、碳原子数为3~6的三烷基硅基、三苯基硅基、碳原子数为1~5的烷基。
本申请中,术语“任选”、“任选地”意味着随后所描述的事件或者环境可以但不必发生,该说明包括该事情或者环境发生或者不发生的场合。例如,“任选地,两个相邻取代基××形成环”意味着这两个取代基可以形成环但不是必须形成环,包括:两个相邻的取代基形成环的情景和两个相邻的取代基不形成环的情景。再比如,“任选地,Ar 1和Ar 2中任意两个相邻的取代基形成取代或未 取代的3~15元环”是指Ar 1和Ar 2中任意两个相邻的取代基可以形成取代或未取代的3~15元环,也可以各自独立地存在。
本申请中,“任意两个相邻的取代基形成环”中,“任意两个相邻”可以包括同一个原子上具有两个取代基,还可以包括两个相邻的原子上分别具有一个取代基;其中,当同一个原子上具有两个取代基时,两个取代基可以与其共同连接的该原子形成饱和或不饱和的环;当两个相邻的原子上分别具有一个取代基时,这两个取代基可以稠合成环。例如“任意两个相邻的R i相互连接形成不饱和的6~10元环”包括任意两个相邻的R 1相互连接以与它们共同连接的原子形成不饱和的6~10元环,或者任意两个相邻的R 2相互连接以与它们共同连接的原子形成不饱和的6~10元环。该环可以例如为芳香环,该芳香环的具体实例包括苯环
Figure PCTCN2021140628-appb-000005
萘环
Figure PCTCN2021140628-appb-000006
菲环
Figure PCTCN2021140628-appb-000007
等)。
可选地,Ar 3和Ar 4中的一个选自
Figure PCTCN2021140628-appb-000008
Ar 3
Figure PCTCN2021140628-appb-000009
Ar 4不为
Figure PCTCN2021140628-appb-000010
或者Ar 4
Figure PCTCN2021140628-appb-000011
Ar 3不为
Figure PCTCN2021140628-appb-000012
可选地,Ar 3和Ar 4均选自
Figure PCTCN2021140628-appb-000013
本申请中,
Figure PCTCN2021140628-appb-000014
是指与其他取代基或结合位置结合的位置。
本申请中,所采用的描述方式“各自独立地选自”与“分别独立地选自”可以互换,均应做广义理解,其既可以是指在不同基团中,相同符号之间所表达的具体选项之间互相不影响,也可以表示在相同的基团中,相同符号之间所表达的具体选项之间互相不影响。例如,
Figure PCTCN2021140628-appb-000015
其中,各q独立地为0、1、2或3,各R”独立地选自氢、氘、氟、氯”,其含义是:式Q-1表示苯环上有q个取代基R”,各个R”可以相同也可以不同,每个R”的选项之间互不影响;式Q-2表示联苯的每一个苯环上有q个取代基R”,两个苯环上的R”取代基的个数q可以相同或不同,各个R”可以相同也可以不同,每个R”的选项之间互不影响。
本申请中,“取代或未取代的”这样的术语是指,在该术语后面记载的官能团可以具有或不具有取代基(下文为了便于描述,将取代基统称为Rc)。例如,“取代或未取代的芳基”是指具有取代基Rc的芳基或者非取代的芳基。其中上述的取代基即Rc例如可以为氘、卤素基团、氰基、三烷基硅基、三苯基硅基、烷基、芳基、杂芳基、环烷基。
本申请中,取代或未取代的官能团的碳原子数,指的是所有碳原子数。举例而言,若L选自碳原子数为12的取代的亚芳基,则亚芳基及其上的取代基的所有碳原子数为12。例如:Ar为
Figure PCTCN2021140628-appb-000016
则其碳原子数为10;L为
Figure PCTCN2021140628-appb-000017
其碳原子数为12。
本申请中,芳基指的是衍生自芳香碳环的任选官能团或取代基。芳基可以是单环芳基(例 如苯基)或多环芳基,换言之,芳基可以是单环芳基、稠环芳基、通过碳碳键共轭连接的两个或者更多个单环芳基、通过碳碳键共轭连接的单环芳基和稠环芳基、通过碳碳键共轭连接的两个或者更多个稠环芳基。即,除非另有说明,通过碳碳键共轭连接的两个或者更多个芳香基团也可以视为本申请的芳基。其中,稠环芳基例如可以包括双环稠合芳基(例如萘基)、三环稠合芳基(例如菲基、芴基、蒽基)等。芳基中不含有B、N、O、S、P、Se和Si等杂原子。举例而言,在本申请中,联苯基、三联苯基等为芳基。芳基的实例可以包括但不限于,苯基、萘基、芴基、蒽基、菲基、联苯基、三联苯基、苯并[9,10]菲基、芘基、苯并荧蒽基、
Figure PCTCN2021140628-appb-000018
基等。本申请中,涉及的亚芳基是指芳基进一步失去一个氢原子所形成的二价基团。
本申请中,取代的芳基可以是芳基中的一个或者两个以上氢原子被诸如氘原子、卤素基团、-CN、芳基、杂芳基、三烷基硅基、烷基、环烷基、烷氧基等基团取代。杂芳基取代的芳基的具体实例包括但不限于,二苯并呋喃基取代的苯基、二苯并噻吩基取代的苯基、吡啶基取代的苯基等。应当理解地是,取代的芳基的碳原子数,指的是芳基和芳基上的取代基的碳原子总数,例如碳原子数为18的取代的芳基,指的是芳基和取代基的总碳原子数为18。
本申请中,杂芳基是指环中包含至少一个杂原子的一价芳香环或其衍生物,杂原子可以是B、O、N、P、Si、Se和S中的至少一种。杂芳基可以是单环杂芳基或多环杂芳基,换言之,杂芳基可以是单个芳香环体系,也可以是通过碳碳键共轭连接的多个芳香环体系,且任一芳香环体系为一个芳香单环或者一个芳香稠环。示例地,杂芳基可以包括噻吩基、呋喃基、吡咯基、咪唑基、噻唑基、噁唑基、噁二唑基、三唑基、吡啶基、联吡啶基、嘧啶基、三嗪基、吖啶基、哒嗪基、吡嗪基、喹啉基、喹唑啉基、喹喔啉基、吩噁嗪基、酞嗪基、吡啶并嘧啶基、吡啶并吡嗪基、吡嗪并吡嗪基、异喹啉基、吲哚基、咔唑基、苯并噁唑基、苯并咪唑基、苯并噻唑基、苯并咔唑基、苯并噻吩基、二苯并噻吩基、噻吩并噻吩基、苯并呋喃基、菲咯啉基、异噁唑基、噻二唑基、苯并噻唑基、吩噻嗪基、硅芴基、二苯并呋喃基以及N-苯基咔唑基、N-吡啶基咔唑基、N-甲基咔唑基等,而不限于此。其中,噻吩基、呋喃基、菲咯啉基等为单个芳香环体系类型的杂芳基,N-苯基咔唑基、N-吡啶基咔唑基为通过碳碳键共轭连接的多环体系类型的杂芳基。本申请中,涉及的亚杂芳基是指杂芳基进一步失去一个氢原子所形成的二价基团。
本申请中,取代的杂芳基可以是杂芳基中的一个或者两个以上氢原子被诸如氘原子、卤素基团、-CN、芳基、杂芳基、三烷基硅基、烷基、环烷基、烷氧基等基团取代。芳基取代的杂芳基的具体实例包括但不限于,苯基取代的二苯并呋喃基、苯基取代的二苯并噻吩基、苯基取代的吡啶基等。应当理解地是,取代的杂芳基的碳原子数,指的是杂芳基和杂芳基上的取代基的碳原子总数。
本申请中,作为取代基的芳基的碳原子数可以为6~20,例如碳原子数可以为6、7、8、9、10、11、12、13、14、15、16、17、18、19、20。作为取代基的芳基的具体实例包括但不限于,苯基、联苯基、萘基、蒽基、菲基、
Figure PCTCN2021140628-appb-000019
基。
本申请中,作为取代基的杂芳基的碳原子数可以为3~20,例如碳原子数可以为3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20。作为取代基的杂芳基的具体实例包括但不限于,吡啶基、嘧啶基、咔唑基、二苯并呋喃基、二苯并噻吩基、喹啉基、喹唑啉基、喹喔啉基、异喹啉基。
本申请中,不定位连接键涉及的是从环体系中伸出的单键
Figure PCTCN2021140628-appb-000020
其表示该连接键的一端可以连接该键所贯穿的环体系中的任意位置,另一端连接化合物分子其余部分。
举例而言,如下式(f)中所示地,式(f)所表示的萘基通过两个贯穿双环的不定位连接键与分子其他位置连接,其所表示的含义,包括如式(f-1)~式(f-10)所示出的任一可能的连接方式:
Figure PCTCN2021140628-appb-000021
再举例而言,如下式(X')中所示地,式(X')所表示的二苯并呋喃基通过一个从一侧苯环中间伸出的不定位连接键与分子其他位置连接,其所表示的含义,包括如式(X'-1)~式(X'-4)所示出的任一可能的连接方式:
Figure PCTCN2021140628-appb-000022
本申请中,碳原子数为1~10的烷基可以包括碳原子数1至10的直链烷基和碳原子数3至10的支链烷基。烷基的碳原子数例如可以为1、2、3、4、5、6、7、8、9、10,烷基的具体实例包括但不限于,甲基、乙基、正丙基、异丙基、正丁基、异丁基、叔丁基、正戊基、异戊基、新戊基、正己基、正庚基、正辛基、2-乙基己基、壬基、癸基、3,7-二甲基辛基等。
本申请中,环烷基的具体实例包括但不限于,环戊基、环己基、金刚烷基。
本申请中,卤素基团例如可以为氟、氯、溴、碘。
本申请中,三烷基硅基的具体实例包括但不限于,三甲基硅基、三乙基硅基等。
在一些实施方式中,Ar 1和Ar 2各自独立地选自碳原子数为6~33的取代或未取代的芳基、碳原子数为5~18的取代或未取代的杂芳基。例如,Ar 1和Ar 2各自独立地选自碳原子数为6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33的取代或未取代的芳基,碳原子数为5、6、7、8、9、10、11、12、13、14、15、16、17、18的取代或未取代的杂芳基。
优选地,Ar 1和Ar 2中的取代基各自独立地选自氘、氟、氰基、三甲基硅基、三苯基硅基、碳原子数为1~5的烷基、碳原子数为6~12的芳基、碳原子数为5~12的杂芳基、碳原子数为5~10环烷基;任选地,在Ar 1和Ar 2中的任意两个相邻的取代基形成取代或未取代的5~13元环,所述5~13元环中的取代基各自独立地选自氘、氟、氰基、三甲基硅基、三苯基硅基、甲基、乙基、异丙基、叔丁基。
可选地,Ar 1和Ar 2各自独立地选自取代或未取代的苯基、取代或未取代的萘基、取代或未取代的联苯基、取代或未取代的芴基、取代或未取代的二苯并呋喃基、取代或未取代的二苯并噻吩基、取代或未取代的咔唑基、取代或未取代的菲基、取代或未取代的三亚苯基、取代或未取代的芘基、取代或未取代的蒽基。
优选地,Ar 1和Ar 2中的取代基各自独立地选自氘、氟、氰基、三甲基硅基、三苯基硅基、甲基、乙基、异丙基、叔丁基、环戊基、环己基、金刚烷基、吡啶基、苯基、萘基、联苯基;任选地, Ar 1和Ar 2中的任意两个相邻的取代基形成金刚烷
Figure PCTCN2021140628-appb-000023
环戊烷
Figure PCTCN2021140628-appb-000024
环己烷
Figure PCTCN2021140628-appb-000025
芴环
Figure PCTCN2021140628-appb-000026
或叔丁基取代的芴环
Figure PCTCN2021140628-appb-000027
可选地,Ar 1和Ar 2各自独立地选自取代或未取代的基团W,未取代的基团W选自以下基团:
Figure PCTCN2021140628-appb-000028
其中,取代的基团W上具有一个或两个以上的取代基,所述取代基各自独立地选自氘、氟、氰基、三甲基硅基、三苯基硅基、甲基、乙基、异丙基、叔丁基、环戊基、环己基、金刚烷基、吡啶基、苯基、萘基、联苯基,且当取代基个数大于1时,各取代基相同或不同。
可选地,Ar 1和Ar 2各自独立地选自以下基团:
Figure PCTCN2021140628-appb-000029
进一步可选地,Ar 1和Ar 2各自独立地选自以下基团:
Figure PCTCN2021140628-appb-000030
Figure PCTCN2021140628-appb-000031
在一些实施方式中,L 1和L 2各自独立地选自单键、碳原子数为6~20的取代或未取代的亚芳基。例如,L 1和L 2各自独立地选自单键,碳原子数为6、7、8、9、10、11、12、13、14、15、16、17、18、19、20的取代或未取代的亚芳基。
优选地,L 1和L 2中的取代基各自独立地选自氘、氟、氰基、碳原子数为1~5的烷基、碳原子数为6~12的芳基、三甲基硅基。
可选地,L 1和L 2各自独立地选自单键、碳原子数为6~12的取代或未取代的亚芳基。
优选地,L 1和L 2中的取代基各自独立地选自氘、氟、氰基、甲基、乙基、异丙基、叔丁基、苯基、三甲基硅基。
可选地,L 1和L 2各自独立地选自单键、取代或未取代的亚苯基、取代或未取代的亚萘基、取代或未取代的亚联苯基。
优选地,L 1和L 2中的取代基各自独立地选自氘、氟、氰基、甲基、乙基、异丙基、叔丁基、苯基、三甲基硅基。
在一些实施方式中,L 1和L 2各自独立地选自单键、取代或未取代的基团V,未取代的基团V选自以下基团:
Figure PCTCN2021140628-appb-000032
其中,取代的基团V上具有一个或两个以上的取代基,所述取代基各自独立地选自氘、氟、氰基、甲基、乙基、异丙基、叔丁基、苯基、萘基、三甲基硅基,且当取代基个数大于1时,各取代基相同或不同。
可选地,L 1和L 2各自独立地选自单键或以下基团:
Figure PCTCN2021140628-appb-000033
可选地,L 1和L 2各自独立地选自单键或以下基团:
Figure PCTCN2021140628-appb-000034
在本申请的一种实施方式中,Ar 3和Ar 4各自独立地选自碳原子数为6~20的取代或未取代的芳基、碳原子数为12~16的取代或未取代的杂芳基;且Ar 3和Ar 4中至少一个选自
Figure PCTCN2021140628-appb-000035
例如,Ar 3和Ar 4各自独立地选自碳原子数为6、7、8、9、10、11、12、13、14、15、16、17、18、19、20的取代或未取代的芳基,碳原子数为12、13、14、15、16的取代或未取代的杂芳基。
优选地,Ar 3和Ar 4中的取代基各自独立地选自氘、氟、氰基、三甲基硅基、三苯基硅基、碳原子数为1~5的烷基、碳原子数为6~12的芳基、碳原子数为3~12的杂芳基。
可选地,Ar 3和Ar 4各自独立地选自取代或未取代的基团Q,未取代的基团Q选自以下基团:
Figure PCTCN2021140628-appb-000036
其中,取代的基团Q上具有一个或两个以上的取代基,所述取代基各自独立地选自氘、氟、氰基、三甲基硅基、三苯基硅基、甲基、乙基、异丙基、叔丁基、苯基、萘基、联苯基,且当取代基个数大于1时,各取代基相同或不同。
进一步可选地,Ar 3和Ar 4各自独立地选自以下基团:
Figure PCTCN2021140628-appb-000037
更可选地,Ar 3和Ar 4各自独立地选自以下基团:
Figure PCTCN2021140628-appb-000038
Figure PCTCN2021140628-appb-000039
优选地,Ar 3选自
Figure PCTCN2021140628-appb-000040
在一些实施方式中,R 3和R 4各自独立地选自甲基、乙基、异丙基、叔丁基、苯基、萘基、联苯基、吡啶基、嘧啶基、喹啉基、异喹啉基、二苯并呋喃基、二苯并噻吩基、咔唑基;或者,R 3和R 4形成环戊烷、环己烷、芴环。
在一些实施方式中,R 1和R 2各自独立地选自氘、氟、氰基、甲基、乙基、异丙基、叔丁基、三甲基硅基、苯基、萘基、联苯基、吡啶基、嘧啶基、喹啉基、异喹啉基、二苯并呋喃基、二苯并噻吩基、咔唑基。
可选地,所述有机电致发光材料选自以下化合物所组成的组:
Figure PCTCN2021140628-appb-000041
Figure PCTCN2021140628-appb-000042
Figure PCTCN2021140628-appb-000043
Figure PCTCN2021140628-appb-000044
Figure PCTCN2021140628-appb-000045
Figure PCTCN2021140628-appb-000046
Figure PCTCN2021140628-appb-000047
Figure PCTCN2021140628-appb-000048
Figure PCTCN2021140628-appb-000049
Figure PCTCN2021140628-appb-000050
Figure PCTCN2021140628-appb-000051
Figure PCTCN2021140628-appb-000052
Figure PCTCN2021140628-appb-000053
Figure PCTCN2021140628-appb-000054
Figure PCTCN2021140628-appb-000055
Figure PCTCN2021140628-appb-000056
Figure PCTCN2021140628-appb-000057
Figure PCTCN2021140628-appb-000058
Figure PCTCN2021140628-appb-000059
Figure PCTCN2021140628-appb-000060
Figure PCTCN2021140628-appb-000061
Figure PCTCN2021140628-appb-000062
本申请的第二方面提供一种电子元件,包括相对设置的阳极和阴极,以及设于所述阳极和所述阴极之间的功能层;所述功能层包含本申请的有机电致发光材料。
可选地,所述功能层包括空穴传输层,所述空穴传输层包含本申请的有机电致发光材料。
可选地,所述电子元件为有机电致发光器件或光电转换器件。
优选地,所述电子元件为有机电致发光器件。
更优选地,所述空穴传输层包括第一空穴传输层和第二空穴传输层,所述第一空穴传输层相对所述第二空穴传输层更靠近所述阳极,其中,所述第二空穴传输层包含本申请的有机电致发光材料。
在一种实施方式中,电子元件可以为有机电致发光器件。如图1所示,有机电致发光器件可以包括依次层叠设置的阳极100、第一空穴传输层321、第二空穴传输层322、有机发光层330、电子传输层340和阴极200。
可选地,阳极100包括以下阳极材料,其优选地是有助于空穴注入至功能层中的具有大逸出 功(功函数,work function)材料。阳极材料具体实例包括:金属如镍、铂、钒、铬、铜、锌和金或它们的合金;金属氧化物如氧化锌、氧化铟、氧化铟锡(ITO)和氧化铟锌(IZO);组合的金属和氧化物如ZnO∶Al或SnO 2∶Sb;或导电聚合物如聚(3-甲基噻吩)、聚[3,4-(亚乙基-1,2-二氧基)噻吩](PEDT)、聚吡咯和聚苯胺,但不限于此。优选包括包含氧化铟锡(铟锡氧化物,indium tin oxide)(ITO)作为阳极的透明电极。
可选地,空穴传输层包括一种或者多种空穴传输材料,空穴传输材料可以选自咔唑多聚体、咔唑连接三芳胺类化合物或者其他类型的化合物,本申请对此不做特殊的限定。例如,空穴传输层包括第一空穴传输层321和第二空穴传输层322。
可选地,第一空穴传输层321不做限制,例如可以由化合物NPB组成。
可选地,第二空穴传输层322含有本申请的有机电致发光材料。
可选地,有机发光层330可以由单一发光层材料组成,也可以包括主体材料和掺杂材料。可选地,有机发光层330由主体材料和掺杂材料组成,注入有机发光层330的空穴和注入有机发光层330的电子可以在有机发光层330复合而形成激子,激子将能量传递给主体材料,主体材料将能量传递给掺杂材料,进而使得掺杂材料能够发光。
有机发光层330的主体材料可以为金属螯合类化合物、双苯乙烯基衍生物、芳香族胺衍生物、二苯并呋喃衍生物或者其他类型的材料,本申请对此不做特殊的限制。在本申请的一种实施方式中,有机发光层330的主体材料可以为RH-1或GH-1。
有机发光层330的掺杂材料可以为具有缩合芳基环的化合物或其衍生物、具有杂芳基环的化合物或其衍生物、芳香族胺衍生物或者其他材料,本申请对此不做特殊的限制。在本申请的一种实施方式中,有机发光层330的掺杂材料可以为Ir(dmpq) 2(acac)或Ir(ppy) 3
电子传输层340可以为单层结构,也可以为多层结构,其可以包括一种或者多种电子传输材料,电子传输材料可以选自但不限于,ET-1、ET-2、TPBi、LiQ、苯并咪唑衍生物、噁二唑衍生物、喹喔啉衍生物或者其他电子传输材料。
任选地,在有机发光层和电子传输层之间还可设置空穴阻挡层(HBL)。空穴阻挡层的材料可参照现有技术选择,本申请不做限制,例如可以为HB-1。
本申请中,阴极200可以包括阴极材料,其是有助于电子注入材料至功能层中的具有小逸出功的材料。阴极材料的具体实例包括但不限于,金属如镁、钙、钠、钾、钛、铟、钇、锂、钆、铝、银、锡和铅或它们的合金;或多层材料如LiF/Al、Liq/Al、LiO 2/Al、LiF/Ca、LiF/Al和BaF 2/Ca。优选包括包含镁和银的金属电极作为阴极。
可选地,如图1所示,在阳极100和第一空穴传输层321之间还可以设置有空穴注入层310,以增强向第一空穴传输层321注入空穴的能力。空穴注入层310可以选用联苯胺衍生物、星爆状芳基胺类化合物、酞菁衍生物或者其他材料,本申请对此不做特殊的限制。例如,空穴注入层310可以由HAT-CN或F4-TCNQ组成。
可选地,如图1所示,在阴极200和电子传输层340之间还可以设置有电子注入层350,以增强向电子传输层340注入电子的能力。电子注入层350可以包括有碱金属硫化物、碱金属卤化物等无机材料,或者可以包括碱金属与有机物的络合物。例如,电子注入层350可以包括Yb。
按照另一种实施方式,电子元件可以为光电转化器件。如图3所示,该光电转化器件可以包括相对设置的阳极100和阴极200,以及设于阳极100和阴极200之间的功能层300;功能层300包含本申请所提供的有机电致发光材料。
按照一种具体的实施方式,如图3所示,光电转化器件可包括依次层叠设置的阳极100、空穴 传输层320、光电转化层360、电子传输层340和阴极200。
可选地,光电转化器件可以为太阳能电池,尤其是可以为有机薄膜太阳能电池。举例而言,在本申请的一种实施方式中,太阳能电池可以包括依次层叠设置的阳极、空穴传输层、有机发光层、电子传输层和阴极,其中,所述空穴传输层包含有本申请的有机电致发光材料。
本申请第三方面提供一种电子装置,包括本申请第二方面提供的电子元件。
按照一种实施方式,如图2所示,所述电子装置为第一电子装置400,包括上述有机电致发光器件。第一电子装置400例如可以为显示装置、照明装置、光通讯装置或者其他类型的电子装置,例如可以包括但不限于电脑屏幕、手机屏幕、电视机、电子纸、应急照明灯、光模块等。
按照另一种实施方式,如图4所示,所述电子装置为第二电子装置500,包括上述光电转化器件。第二电子装置500例如可以为太阳能发电设备、光检测器、指纹识别设备、光模块、CCD相机或则其他类型的电子装置。
下面结合合成实施例来具体说明本申请的有机电致发光材料的合成方法,但是本公开并不因此而受到任何限制。
本申请中未提到的合成方法的化合物的都是通过商业途径获得的原料产品。
合成实施例
1、中间体的合成
(1)中间体IM a-1的合成:
Figure PCTCN2021140628-appb-000063
向装有机械搅拌、温度计、球形冷凝管的三口瓶中通入氮气(0.100L/min)置换15min,依次加入1-溴-2-碘-3-氯苯(80.0g,252mmol)、苯硼酸(31.04g,254.52mmol)、四(三苯基膦)钯(6.9g,1.3mmol)、碳酸钾(86.97g,630.22mmol)、四丁基溴化铵(8.1g,25.2mmol),并加入甲苯(800mL)、乙醇(150mL)和水(150mL)的混合溶剂。开启搅拌,升温至78~80℃反应72h,反应结束后,冷却至室温。反应液经水洗后分离出有机相,使用无水硫酸镁干燥有机相,过滤后将滤液减压蒸馏除去溶剂;使用二氯甲烷/正庚烷体系对粗品进行硅胶柱色谱提纯,得到白色固体的IM a-1(37.78g,收率56%)。
参照IM a-1的方法合成表1所列的IM x-1,不同之处在于,使用原料1代替苯硼酸,其中,使用的主要原料、合成的中间体及其收率如表1所示。
表1
Figure PCTCN2021140628-appb-000064
Figure PCTCN2021140628-appb-000065
Figure PCTCN2021140628-appb-000066
(2)中间体IM a-2的合成
Figure PCTCN2021140628-appb-000067
向装有机械搅拌、温度计、恒压滴加漏斗的三口瓶中通氮气(0.100L/min)置换15min,依次加入IM a-1(20.0g,74.75mmol)、二苯并呋喃-3-硼酸(15.85g,74.75mmol)、四(三苯基膦)钯(0.44g,0.37mmol)、碳酸钾(25.79g,186.9mmol)、四丁基溴化铵(2.4g,7.5mmol),并加入甲苯(200mL)、乙醇(40mL)和水(40mL)的混合溶剂。开启搅拌,升温至78~80℃反应63h,反应结束后,冷却至室温。反应液水洗后分离有机相,使用无水硫酸镁干燥有机相,过滤后将滤液减压蒸馏除去溶剂;使用二氯甲烷/正庚烷体系对粗品进行硅胶柱色谱提纯,得到白色固体的IM a-2(15.91g,收率60%)。
参照IM a-2的方法合成表2所列的中间体,不同之处在于,使用表1中的IM x-1代替IM a-1,使用原料2代替二苯并呋喃-3-硼酸,其中,使用的主要原料、合成的中间体及其收率如表2所示。
表2
Figure PCTCN2021140628-appb-000068
Figure PCTCN2021140628-appb-000069
Figure PCTCN2021140628-appb-000070
Figure PCTCN2021140628-appb-000071
Figure PCTCN2021140628-appb-000072
2、化合物的合成
(1)中间体IM 1-1的合成
Figure PCTCN2021140628-appb-000073
向装有机械搅拌、温度计、球形冷凝管的三口瓶中通入氮气(0.200L/min)置换15min,依次加入IM m-2(15g,39.37mmol)、4-氨基联苯(6.66g,39.37mmol)、三(二亚苄基丙酮)二钯(0.18g,0.2mmol)、2-二环己基膦-2’,4’,6’-三异丙基联苯(0.2g,0.4mmol)、叔丁醇钠(5.64g,58.76mmol)和甲苯(110mL),在105~110℃下,回流反应4h,反应结束后,冷却至室温。有机相使用水洗后,加入无水硫酸镁干燥有机相,过滤后将滤液减压蒸馏除去溶剂;使用二氯甲烷/正庚烷体系对粗品进行硅胶柱色谱提纯,得到白色固体的IM 1-1(15.17g,收率75%)。
(2)化合物1的合成
Figure PCTCN2021140628-appb-000074
向装有机械搅拌、温度计、球形冷凝管的三口瓶中通入氮气(0.100L/min)置换15min,依次加入IM 1-1(10g,19.47mmol)、4-溴联苯(4.54g,19.47mmol)、三(二亚苄基丙酮)二钯(0.36g,0.39mmol)、2-二环己基膦-2’,4’,6’-三异丙基联苯(0.32g,0.78mmol)、叔丁醇钠(4.11g,42.83mmol)和甲苯(100mL),105~110℃下,回流反应30h,反应结束后,冷却至室温。有机相水洗后,分液,加入无水硫酸镁干燥有机相,过滤后将滤液减压蒸馏除去溶剂;使用二氯甲烷/正庚烷体系对粗品进行硅胶柱色谱提纯,得到白色固体的化合物1(4.54g,收率35%)。质谱(m/z)=666.3[M+H] +
参照化合物1的方法合成表3所列的化合物,不同之处在于,使用原料3代替IM m-2,使用原料4代替4-氨基联苯,使用原料5代替4-溴联苯。其中,使用的主要原料、合成的化合物及其最后一步收率和质谱如表3所示:
表3
Figure PCTCN2021140628-appb-000075
Figure PCTCN2021140628-appb-000076
Figure PCTCN2021140628-appb-000077
Figure PCTCN2021140628-appb-000078
Figure PCTCN2021140628-appb-000079
Figure PCTCN2021140628-appb-000080
Figure PCTCN2021140628-appb-000081
Figure PCTCN2021140628-appb-000082
Figure PCTCN2021140628-appb-000083
Figure PCTCN2021140628-appb-000084
Figure PCTCN2021140628-appb-000085
化合物259的核磁
1H-NMR(CD 2Cl 2,400MHz):7.82(d,1H),7.67(d,2H),7.59-7.07(m,22H),7.07-6.71(m,7H),6.71-6.58(m,4H),6.57-5.6.01(m,3H)。
化合物17的核磁
1H-NMR(CD 2Cl 2,400MHz):7.83(d,1H),7.78-7.41(m,10H),7.41-7.16(m,9H),7.15-6.77(m,9H),1.35-1.15(m,12H)。
有机电致发光器件的制备及评估
实施例1
红色有机电致发光器件
通过以下过程制备阳极:将厚度为
Figure PCTCN2021140628-appb-000086
的ITO基板切割成40mm(长)×40mm(宽)×0.7mm(厚)的尺寸,采用光刻工序,将其制备成具有阴极、阳极以及绝缘层图案的实验基板,并利用紫外臭氧以及O 2∶N 2等离子进行表面处理,以增加阳极(实验基板)的功函数,并采用有机溶剂清洗基板表面,以清除基板表面的杂质及油污。
在实验基板(阳极)上真空蒸镀HAT-CN以形成厚度为
Figure PCTCN2021140628-appb-000087
的空穴注入层(HIL),然后在空穴注入层上真空蒸镀NPB,以形成厚度为
Figure PCTCN2021140628-appb-000088
的第一空穴传输层。
在第一空穴传输层上真空蒸镀化合物1,形成厚度为
Figure PCTCN2021140628-appb-000089
的第二空穴传输层。
在第二空穴传输层上,将化合物RH-1∶Ir(dmpq) 2(acac)以95%∶5%的重量比进行共同蒸镀,形成厚度为
Figure PCTCN2021140628-appb-000090
的红色发光层(EML)。
在红色发光层上真空蒸镀化合物HB-1,以形成厚度为
Figure PCTCN2021140628-appb-000091
的空穴阻挡层。然后在空穴阻挡层上,将化合物ET-1和LiQ以1∶1的重量比进行混合并蒸镀形成
Figure PCTCN2021140628-appb-000092
厚的电子传输层(ETL), 将Yb蒸镀在电子传输层上以形成厚度为
Figure PCTCN2021140628-appb-000093
的电子注入层(EIL),然后将镁(Mg)和银(Ag)以1∶9的蒸镀速率混合,真空蒸镀在电子注入层上,形成厚度为
Figure PCTCN2021140628-appb-000094
的阴极。
此外,在上述阴极上真空蒸镀厚度为
Figure PCTCN2021140628-appb-000095
的CP-1,形成有机覆盖层(CPL),从而完成有机电致发光器件的制作。
实施例2~52
除了在形成第二空穴传输层时,分别以表5中的化合物代替实施例1中使用的化合物1之外,采用与实施例1相同的方法制备有机电致发光器件。
比较例1~3
除了在形成第二空穴传输层时,分别以化合物A、化合物B、化合物C代替实施例1中使用的化合物1之外,采用与实施例1相同的方法制备有机电致发光器件。
在实施例和比较例中,所采用的主要材料的结构式如表4所示。
表4
Figure PCTCN2021140628-appb-000096
对实施例1~52和比较例1~3制备所得的红色有机电致发光器件进行性能测试,具体在10mA/cm 2的条件下测试了器件的IVL性能,T95器件寿命在20mA/cm 2的条件下进行测试,测试结果见表5。
表5
Figure PCTCN2021140628-appb-000097
Figure PCTCN2021140628-appb-000098
Figure PCTCN2021140628-appb-000099
参考表5可知,实施例1~52将本发明所述的化合物作为第二空穴传输层材料,所制备得到的红色有机电致发光器件具有高效率和长寿命的特征。具体来说,就实施例1~52与比较例1~3相比,发光效率至少提高了13.7%,外量子效率至少提高了12.2%,寿命至少提高了12.3%。
应用例1:
绿色有机电致发光器件
通过以下过程制备阳极:将厚度为
Figure PCTCN2021140628-appb-000100
的ITO基板切割成40mm(长)×40mm(宽)×0.7mm(厚)的尺寸,采用光刻工序,将其制备成具有阴极、阳极以及绝缘层图案的实验基板,利用紫外臭氧以及O 2∶N 2等离子进行表面处理,以增加阳极(实验基板)的功函数,并采用有机溶剂清洗基板表面,以清除基板表面的杂质及油污。
在实验基板(阳极)上真空蒸镀HAT-CN以形成厚度为
Figure PCTCN2021140628-appb-000101
的空穴注入层(HIL),然后在空穴注入层上真空蒸镀NPB,以形成厚度为
Figure PCTCN2021140628-appb-000102
的第一空穴传输层。
在第一空穴传输层上真空蒸镀化合物251,形成厚度为
Figure PCTCN2021140628-appb-000103
的第二空穴传输层。
在第二空穴传输层上,将化合物GH-1∶Ir(ppy) 3以95%∶5%的重量比进行共同蒸镀,形成厚度为
Figure PCTCN2021140628-appb-000104
的绿光发光层(EML)。
在发光层上将化合物ET-2和LiQ以1∶1的重量比进行混合并蒸镀形成
Figure PCTCN2021140628-appb-000105
厚的电子传输层(ETL),将Yb蒸镀在电子传输层上以形成厚度为
Figure PCTCN2021140628-appb-000106
的电子注入层(EIL),然后将镁(Mg)和银(Ag)以1∶9的蒸镀速率混合,真空蒸镀在电子注入层上,形成厚度为
Figure PCTCN2021140628-appb-000107
的阴极。
此外,在上述阴极上真空蒸镀厚度为
Figure PCTCN2021140628-appb-000108
的CP-1,形成有机覆盖层(CPL),从而完成有机电致发光器件的制作。
应用例2~17
除了在形成第二空穴传输层时,分别以表7中的化合物代替应用例1中使用的化合物251之外,采用与应用例1相同的方法制备有机电致发光器件。
比较例4~7
除了在形成第二空穴传输层时,分别以化合物A、化合物B、化合物D、化合物E代替应用例1中使用的化合物251之外,采用与应用例1相同的方法制备有机电致发光器件。
在应用例和比较例中,所采用的各个材料的结构式如表6所示。
表6
Figure PCTCN2021140628-appb-000109
Figure PCTCN2021140628-appb-000110
对应用例1~17和比较例4~7制备所得的绿色有机电致发光器件进行性能测试,具体在10mA/cm 2的条件下测试了器件的性能,测试结果见表7。
表7
Figure PCTCN2021140628-appb-000111
参考表7可知,应用例1~17将本发明所述的化合物作为第二空穴传输层材料,所制备得到的绿有机电致发光器件具有高效率和长寿命的特征。具体来说,就应用例1~17与比较例4~7相比,发光效率至少提高了12.5%,外量子效率至少提高了17.6%,寿命至少提高了11.7%。
本领域的普通技术人员可以理解,上述各实施方式是实现本发明的具体实施例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本发明的精神和范围。

Claims (18)

  1. 一种有机电致发光材料,其具有如式Ⅰ表示的结构:
    Figure PCTCN2021140628-appb-100001
    其中,Ar 1和Ar 2相同或不同,且各自独立地选自碳原子数为6~40的取代或未取代的芳基、碳原子数为3~30的取代或未取代的杂芳基;
    L 1和L 2相同或不同,且各自独立选自单键、碳原子数为6~30的取代或未取代的亚芳基、碳原子数为6~30的取代或未取代的亚杂芳基;
    Ar 3和Ar 4相同或不同,且各自独立地选自碳原子数为6~30的取代或未取代的芳基、碳原子数为3~30的取代或未取代的杂芳基,且Ar 3和Ar 4中至少一个选自
    Figure PCTCN2021140628-appb-100002
    其中,X选自C(R 3R 4)、O、S;
    R 3和R 4相同或不同,且各自独立地选自碳原子数为1~5的烷基、碳原子数为6~12的芳基、碳原子数为3~12的杂芳基;或者,R 3和R 4形成饱和或不饱和的5~13元环;
    R 1和R 2相同或不同,且各自独立地选自氘、卤素基团、氰基、碳原子数为1~5的烷基、碳原子数为3~12的三烷基硅基、碳原子数为6~12的芳基、碳原子数为3~12的杂芳基;
    R 1、R 2以R i表示,n 1和n 2以n i表示,n i表示R i的个数,i为变量,表示1和2,当i为1和2时,n i选自0、1、2、3或4;且当n i大于1时,任意两个R i相同或不同;任选地,任意两个相邻的R i相互连接形成不饱和的6~10元环;
    Ar 1、Ar 2、L 1、L 2、Ar 3和Ar 4中的取代基相同或不同,且各自独立地选自氘、卤素基团、氰基、碳原子数为3~12的三烷基硅基、三苯基硅基、碳原子数为1~10的烷基、碳原子数为6~20的芳基、碳原子数为3~20的杂芳基、碳原子数为3~10的环烷基;任选地,Ar 1和Ar 2中的任意两个相邻的取代基形成取代或未取代的3~15元环,所述3~15元环中的取代基独立地选自氘、卤素基团、氰基、碳原子数为3~6的三烷基硅基、三苯基硅基、碳原子数为1~5的烷基。
  2. 根据权利要求1所述的有机电致发光材料,其中,Ar 1和Ar 2各自独立地选自碳原子数为6~33的取代或未取代的芳基、碳原子数为5~18的取代或未取代的杂芳基;
    优选地,Ar 1和Ar 2中的取代基各自独立地选自氘、氟、氰基、三甲基硅基、三苯基硅基、碳原子数为1~5的烷基、碳原子数为6~12的芳基、碳原子数为5~12的杂芳基、碳原子数为5~10的环烷基;任选地,Ar 1和Ar 2中的任意两个相邻的取代基形成取代或未取代的5~13元环,所述5~13元环中的取代基各自独立地选自氘、氟、氰基、三甲基硅基、三苯基硅基、甲基、乙基、异丙基、叔丁基。
  3. 根据权利要求1所述的有机电致发光材料,其中,Ar 1和Ar 2各自独立地选自取代或未取代的苯基、取代或未取代的萘基、取代或未取代的联苯基、取代或未取代的芴基、取代或未取代的二 苯并呋喃基、取代或未取代的二苯并噻吩基、取代或未取代的咔唑基、取代或未取代的菲基、取代或未取代的三亚苯基、取代或未取代的芘基、取代或未取代的蒽基;
    优选地,Ar 1和Ar 2中的取代基各自独立地选自氘、氟、氰基、三甲基硅基、三苯基硅基、甲基、乙基、异丙基、叔丁基、环戊基、环己基、金刚烷基、吡啶基、苯基、萘基、联苯基;任选地,Ar 1和Ar 2中的任意两个相邻的取代基形成金刚烷、环戊烷、环己烷、芴环或叔丁基取代的芴环。
  4. 根据权利要求1所述的有机电致发光材料,其中,Ar 1和Ar 2各自独立地选自取代或未取代的基团W,未取代的基团W选自以下基团:
    Figure PCTCN2021140628-appb-100003
    其中,取代的基团W上具有一个或两个以上的取代基,所述取代基各自独立地选自氘、氟、氰基、三甲基硅基、三苯基硅基、甲基、乙基、异丙基、叔丁基、环戊基、环己基、金刚烷基、吡啶基、苯基、萘基、联苯基,且当取代基个数大于1时,各取代基相同或不同。
  5. 根据权利要求1所述的有机电致发光材料,其中,Ar 1和Ar 2各自独立地选自以下基团:
    Figure PCTCN2021140628-appb-100004
    Figure PCTCN2021140628-appb-100005
  6. 根据权利要求1所述的有机电致发光材料,其中,L 1和L 2各自独立地选自单键、碳原子数为6~20的取代或未取代的亚芳基;
    优选地,L 1和L 2中的取代基各自独立地选自氘、氟、氰基、碳原子数为1~5的烷基、碳原子数为6~12的芳基、三甲基硅基。
  7. 根据权利要求1所述的有机电致发光材料,其中,L 1和L 2各自独立地选自单键、碳原子数为6~12的取代或未取代的亚芳基;
    优选地,L 1和L 2中的取代基各自独立地选自氘、氟、氰基、甲基、乙基、异丙基、叔丁基、苯基、三甲基硅基。
  8. 根据权利要求1所述的有机电致发光材料,其中,L 1和L 2各自独立地选自单键、取代或未取代的亚苯基、取代或未取代的亚萘基、取代或未取代的亚联苯基;
    优选地,L 1和L 2中的取代基各自独立地选自氘、氟、氰基、甲基、乙基、异丙基、叔丁基、苯基、三甲基硅基。
  9. 根据权利要求1所述的有机电致发光材料,其中,L 1和L 2各自独立地选自单键或以下基团:
    Figure PCTCN2021140628-appb-100006
  10. 根据权利要求1所述的有机电致发光材料,其中,Ar 3和Ar 4各自独立地选自碳原子数为6~20的取代或未取代的芳基、碳原子数为12~16的取代或未取代的杂芳基;且Ar 3和Ar 4中至少一个选自
    Figure PCTCN2021140628-appb-100007
    优选地,Ar 3和Ar 4中的取代基各自独立地选自氘、氟、氰基、三甲基硅基、三苯基硅基、碳原子数为1~5的烷基、碳原子数为6~12的芳基、碳原子数为3~12的杂芳基。
  11. 根据权利要求1所述的有机电致发光材料,其中,Ar 3和Ar 4各自独立地选自取代或未取代的基团Q,未取代的基团Q选自以下基团:
    Figure PCTCN2021140628-appb-100008
    其中,取代的基团Q上具有一个或两个以上的取代基,所述取代基各自独立地选自氘、氟、 氰基、三甲基硅基、三苯基硅基、甲基、乙基、异丙基、叔丁基、苯基、萘基、联苯基,且当取代基个数大于1时,各取代基相同或不同。
  12. 根据权利要求1所述的有机电致发光材料,其中,Ar 3和Ar 4各自独立地选自以下基团:
    Figure PCTCN2021140628-appb-100009
  13. 根据权利要求1所述的有机电致发光材料,其中,R 3和R 4各自独立地选自甲基、乙基、异丙基、叔丁基、苯基、萘基、联苯基、吡啶基、嘧啶基、喹啉基、异喹啉基、二苯并呋喃基、二苯并噻吩基、咔唑基;或者,R 3和R 4形成环戊烷、环己烷、芴环。
  14. 根据权利要求1所述的有机电致发光材料,其中,R 1和R 2各自独立地选自氘、氟、氰基、甲基、乙基、异丙基、叔丁基、三甲基硅基、苯基、萘基、联苯基、吡啶基、嘧啶基、喹啉基、异喹啉基、二苯并呋喃基、二苯并噻吩基、咔唑基。
  15. 根据权利要求1所述的有机电致发光材料,其中,所述有机电致发光材料选自以下化合物所组成的组:
    Figure PCTCN2021140628-appb-100010
    Figure PCTCN2021140628-appb-100011
    Figure PCTCN2021140628-appb-100012
    Figure PCTCN2021140628-appb-100013
    Figure PCTCN2021140628-appb-100014
    Figure PCTCN2021140628-appb-100015
    Figure PCTCN2021140628-appb-100016
    Figure PCTCN2021140628-appb-100017
    Figure PCTCN2021140628-appb-100018
    Figure PCTCN2021140628-appb-100019
    Figure PCTCN2021140628-appb-100020
    Figure PCTCN2021140628-appb-100021
    Figure PCTCN2021140628-appb-100022
    Figure PCTCN2021140628-appb-100023
    Figure PCTCN2021140628-appb-100024
    Figure PCTCN2021140628-appb-100025
    Figure PCTCN2021140628-appb-100026
    Figure PCTCN2021140628-appb-100027
    Figure PCTCN2021140628-appb-100028
    Figure PCTCN2021140628-appb-100029
    Figure PCTCN2021140628-appb-100030
    Figure PCTCN2021140628-appb-100031
  16. 一种电子元件,包括相对设置的阳极和阴极,以及设于所述阳极和所述阴极之间的功能层;
    所述功能层包含权利要求1~15任一项所述的有机电致发光材料。
  17. 根据权利要求16所述的电子元件,其中,所述功能层包括空穴传输层,所述空穴传输层包含所述有机电致发光材料;
    优选地,所述电子元件为有机电致发光器件或光电转换器件;
    更优选地,所述电子元件为有机电致发光器件,所述空穴传输层包括第一空穴传输层和第二空穴传输层,所述第一空穴传输层相对所述第二空穴传输层更靠近所述阳极,其中,所述第二空穴传输层包含所述的有机电致发光材料。
  18. 一种电子装置,包括权利要求16或17所述的电子元件。
PCT/CN2021/140628 2021-04-02 2021-12-22 有机电致发光材料、电子元件及电子装置 WO2022206055A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022579054A JP7410599B2 (ja) 2021-04-02 2021-12-22 有機エレクトロルミネッセンス材料、電子素子及び電子装置
EP21934691.3A EP4155298A4 (en) 2021-04-02 2021-12-22 ORGANIC ELECTROLUMINESCENT MATERIAL, ELECTRONIC ELEMENT AND ELECTRONIC DEVICE
KR1020227043416A KR20220169948A (ko) 2021-04-02 2021-12-22 유기 전계 발광 재료, 전자 소자 및 전자 장치
US18/011,036 US20240023428A1 (en) 2021-04-02 2021-12-22 Organic electroluminescent material, electronic element, and electronic device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110363862.0 2021-04-02
CN202110363862 2021-04-02
CN202110770912.7A CN113501800B (zh) 2021-04-02 2021-07-07 有机电致发光材料、电子元件及电子装置
CN202110770912.7 2021-07-07

Publications (1)

Publication Number Publication Date
WO2022206055A1 true WO2022206055A1 (zh) 2022-10-06

Family

ID=78012102

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/140628 WO2022206055A1 (zh) 2021-04-02 2021-12-22 有机电致发光材料、电子元件及电子装置

Country Status (6)

Country Link
US (1) US20240023428A1 (zh)
EP (1) EP4155298A4 (zh)
JP (1) JP7410599B2 (zh)
KR (1) KR20220169948A (zh)
CN (2) CN115028540B (zh)
WO (1) WO2022206055A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115028540B (zh) * 2021-04-02 2023-10-10 陕西莱特光电材料股份有限公司 有机电致发光材料、电子元件及电子装置
CN115594598A (zh) * 2021-06-28 2023-01-13 北京鼎材科技有限公司(Cn) 一种有机化合物及其应用
CN113511996B (zh) * 2021-07-20 2022-09-13 陕西莱特光电材料股份有限公司 有机电致发光材料、电子元件及电子装置
CN116023353A (zh) * 2021-10-25 2023-04-28 奥来德(上海)光电材料科技有限公司 一种发光辅助材料及制备方法、有机电致发光器件及其应用
CN116120265A (zh) * 2021-11-12 2023-05-16 奥来德(上海)光电材料科技有限公司 一种含芳胺基团的发光辅助材料及其制备方法与应用
JPWO2023199832A1 (zh) * 2022-04-12 2023-10-19
CN114933577A (zh) * 2022-05-20 2022-08-23 吉林奥来德光电材料股份有限公司 一种发光辅助材料、其制备方法及应用
CN115784904B (zh) * 2022-09-14 2024-03-22 陕西莱特光电材料股份有限公司 含氮化合物和电子元件及电子装置
CN116003363A (zh) * 2023-01-18 2023-04-25 长春海谱润斯科技股份有限公司 一种三芳胺类化合物及其有机电致发光器件

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110317139A (zh) * 2019-05-09 2019-10-11 北京鼎材科技有限公司 一种化合物及其应用以及包含该化合物的有机电致发光器件
CN110577511A (zh) * 2018-06-07 2019-12-17 江苏三月光电科技有限公司 一种以三芳胺结构为核心的化合物及其制备方法
CN110903276A (zh) * 2018-09-17 2020-03-24 北京鼎材科技有限公司 有机化合物及有机电致发光器件
CN111138298A (zh) * 2019-12-31 2020-05-12 陕西莱特光电材料股份有限公司 含氮化合物、电子元件和电子装置
WO2021085982A1 (ko) * 2019-11-01 2021-05-06 덕산네오룩스 주식회사 복수의 발광보조층을 포함하는 유기전기소자 및 이를 포함하는 전자 장치
WO2021201449A1 (ko) * 2020-03-31 2021-10-07 덕산네오룩스 주식회사 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
CN113501800A (zh) * 2021-04-02 2021-10-15 陕西莱特光电材料股份有限公司 有机电致发光材料、电子元件及电子装置
CN113511996A (zh) * 2021-07-20 2021-10-19 陕西莱特光电材料股份有限公司 有机电致发光材料、电子元件及电子装置
CN113773207A (zh) * 2021-06-18 2021-12-10 陕西莱特光电材料股份有限公司 有机化合物及包含其的电子元件和电子装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106688119B (zh) * 2014-07-09 2019-07-23 保土谷化学工业株式会社 有机电致发光器件
JP6534853B2 (ja) * 2015-04-21 2019-06-26 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子およびその製造方法
CN110317184A (zh) * 2018-03-29 2019-10-11 江苏三月光电科技有限公司 一种基于双二甲基芴的化合物、制备方法及其应用
EP4269406A3 (en) * 2019-11-19 2023-11-08 Duk San Neolux Co., Ltd. Compound for organic electrical element, organic electrical element using same and electronic device thereof
CN112430225B (zh) * 2020-10-30 2022-05-17 陕西莱特光电材料股份有限公司 含氮化合物、电子元件和电子装置
JP7196363B2 (ja) * 2020-11-05 2022-12-26 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
CN115594598A (zh) * 2021-06-28 2023-01-13 北京鼎材科技有限公司(Cn) 一种有机化合物及其应用
CN115594702A (zh) * 2021-06-28 2023-01-13 北京鼎材科技有限公司(Cn) 一种化合物及其应用、一种有机电致发光器件

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110577511A (zh) * 2018-06-07 2019-12-17 江苏三月光电科技有限公司 一种以三芳胺结构为核心的化合物及其制备方法
CN110903276A (zh) * 2018-09-17 2020-03-24 北京鼎材科技有限公司 有机化合物及有机电致发光器件
CN110317139A (zh) * 2019-05-09 2019-10-11 北京鼎材科技有限公司 一种化合物及其应用以及包含该化合物的有机电致发光器件
WO2021085982A1 (ko) * 2019-11-01 2021-05-06 덕산네오룩스 주식회사 복수의 발광보조층을 포함하는 유기전기소자 및 이를 포함하는 전자 장치
CN111138298A (zh) * 2019-12-31 2020-05-12 陕西莱特光电材料股份有限公司 含氮化合物、电子元件和电子装置
WO2021201449A1 (ko) * 2020-03-31 2021-10-07 덕산네오룩스 주식회사 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
CN113501800A (zh) * 2021-04-02 2021-10-15 陕西莱特光电材料股份有限公司 有机电致发光材料、电子元件及电子装置
CN113773207A (zh) * 2021-06-18 2021-12-10 陕西莱特光电材料股份有限公司 有机化合物及包含其的电子元件和电子装置
CN113511996A (zh) * 2021-07-20 2021-10-19 陕西莱特光电材料股份有限公司 有机电致发光材料、电子元件及电子装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4155298A4 *

Also Published As

Publication number Publication date
CN113501800A (zh) 2021-10-15
JP7410599B2 (ja) 2024-01-10
US20240023428A1 (en) 2024-01-18
KR20220169948A (ko) 2022-12-28
EP4155298A1 (en) 2023-03-29
CN115028540B (zh) 2023-10-10
JP2023531932A (ja) 2023-07-26
CN113501800B (zh) 2022-06-24
CN115028540A (zh) 2022-09-09
EP4155298A4 (en) 2023-11-29

Similar Documents

Publication Publication Date Title
WO2022206055A1 (zh) 有机电致发光材料、电子元件及电子装置
CN112110825B (zh) 一种芳胺化合物、使用其的电子元件及电子装置
WO2022262365A1 (zh) 有机化合物及包含其的电子元件和电子装置
WO2022213905A1 (zh) 有机化合物以及使用其的电子元件和电子装置
CN113511996B (zh) 有机电致发光材料、电子元件及电子装置
CN114133332B (zh) 有机化合物、电子元件及电子装置
WO2022088865A1 (zh) 含氮化合物、电子元件和电子装置
WO2022199449A1 (zh) 有机化合物及包含其的电子器件和电子装置
CN111909043A (zh) 含氮化合物、电子元件和电子装置
WO2022134602A1 (zh) 含氮化合物、电子元件和电子装置
WO2023045729A1 (zh) 含氮化合物及电子元件和电子装置
WO2021233311A1 (zh) 有机化合物以及使用其的电子元件和电子装置
WO2021136197A1 (zh) 含氮化合物、电子元件和电子装置
WO2024087586A1 (zh) 有机化合物及包含其的电子元件和电子装置
CN115784904A (zh) 含氮化合物和电子元件及电子装置
WO2022100194A1 (zh) 含氮化合物、有机电致发光器件和电子装置
WO2023134228A1 (zh) 含氮化合物及包含其的有机电致发光器件和电子装置
CN115650899B (zh) 含氮化合物、电子元件和电子装置
WO2022206389A1 (zh) 含氮化合物及包含其的电子元件和电子装置
CN113896720B (zh) 有机化合物、电子元件及电子装置
WO2022028334A1 (zh) 含氮化合物以及包含其的电子元件和电子装置
CN113493455B (zh) 有机化合物、电子元件和电子装置
WO2024055648A1 (zh) 有机化合物和有机电致发光器件及电子装置
CN114335399B (zh) 有机电致发光器件及包括其的电子装置
WO2023087557A1 (zh) 有机电致发光器件及电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21934691

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227043416

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022579054

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021934691

Country of ref document: EP

Effective date: 20221219

NENP Non-entry into the national phase

Ref country code: DE