WO2024055648A1 - 有机化合物和有机电致发光器件及电子装置 - Google Patents

有机化合物和有机电致发光器件及电子装置 Download PDF

Info

Publication number
WO2024055648A1
WO2024055648A1 PCT/CN2023/099554 CN2023099554W WO2024055648A1 WO 2024055648 A1 WO2024055648 A1 WO 2024055648A1 CN 2023099554 W CN2023099554 W CN 2023099554W WO 2024055648 A1 WO2024055648 A1 WO 2024055648A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
substituted
unsubstituted
organic compound
Prior art date
Application number
PCT/CN2023/099554
Other languages
English (en)
French (fr)
Inventor
李林刚
金荣国
张鹤鸣
Original Assignee
陕西莱特光电材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 陕西莱特光电材料股份有限公司 filed Critical 陕西莱特光电材料股份有限公司
Publication of WO2024055648A1 publication Critical patent/WO2024055648A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/12Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/12Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • This application belongs to the technical field of organic luminescent materials, and specifically provides an organic compound and an organic electroluminescent device and electronic device using the same.
  • Organic electroluminescent devices also known as organic light-emitting diodes, refer to the phenomenon that organic light-emitting materials emit light when excited by current under the action of an electric field. It is a process of converting electrical energy into light energy.
  • organic electroluminescent diodes Compared with inorganic luminescent materials, organic electroluminescent diodes OLEDs have the advantages of active light emission, large optical path range, low driving voltage, high brightness, high efficiency, low energy consumption and simple manufacturing process. It is precisely because of these advantages that organic light-emitting materials and devices have become one of the most popular scientific research topics in the scientific community and industry.
  • Organic electroluminescent devices generally include an anode, a hole transport layer, an electroluminescent layer as an energy conversion layer, an electron transport layer and a cathode that are stacked in sequence.
  • a voltage is applied to the cathode and anode, the two electrodes generate an electric field.
  • the electrons on the cathode side move toward the electroluminescent layer, and the holes on the anode side also move toward the luminescent layer.
  • the electrons and holes combine in the electroluminescent layer.
  • Excitons are formed, and the excitons release energy outwards in the excited state, thereby causing the electroluminescent layer to emit light.
  • OLED display technology has been applied in smartphones, tablets and other fields, and will further expand to large-size applications such as TVs.
  • the luminous efficiency, service life and other properties of OLED devices Still needs further improvement.
  • Research on improving the performance of OLED light-emitting devices includes: reducing the operating voltage of the device, improving the luminous efficiency of the device, and increasing the service life of the device.
  • OLED optoelectronic functional materials to create higher-performance OLED functional materials.
  • the purpose of this application is to provide an organic compound and an organic electroluminescent device and an electronic device using the same.
  • the organic compound is used in an organic electroluminescent device and can improve the performance of the device.
  • the first aspect of the present application provides an organic compound, which has a structure shown in Formula 1:
  • X is selected from O or S;
  • Ar is selected from a substituted or unsubstituted aryl group with 6-15 carbon atoms, and the substituents in Ar are each independently selected from deuterium, cyano group or alkyl group with 1-4 carbon atoms;
  • L, L 1 and L 2 are the same or different, and are each independently selected from a single bond, a substituted or unsubstituted arylene group with 6 to 30 carbon atoms, a substituted or unsubstituted group with 5 to 30 carbon atoms. heteroarylene;
  • Ar 1 is selected from a substituted or unsubstituted aryl group with 6 to 40 carbon atoms, and a substituted or unsubstituted heteroaryl group with 5 to 40 carbon atoms;
  • the substituents in L, L 1 , L 2 and Ar 1 and R 1 , R 2 and R 3 are the same or different, and are each independently selected from deuterium, cyano group, aryl group with 6 to 18 carbon atoms, carbon Heteroaryl group with 5-18 atoms, trialkylsilyl group with 3-12 carbon atoms, alkyl group with 1-10 carbon atoms, deuterated alkyl group with 1-10 carbon atoms, carbon Cycloalkyl or triphenylsilyl group with 3-10 atoms; optionally, in Ar 1 , any two adjacent substituents form a 3-15 membered saturated or unsaturated ring;
  • n 1 represents the number of R 1 and is selected from 0, 1, 2, 3 or 4; when n 1 is greater than 1, each R 1 is the same or different;
  • n 2 represents the number of R 2 and is selected from 0, 1, 2 or 3; when n 2 is greater than 1, each R 2 is the same or different;
  • n 3 represents the number of R 3 and is selected from 0, 1, 2, 3 or 4; when n 3 is greater than 1, each R 3 is the same or different.
  • a second aspect of the present application provides an organic electroluminescent device, which contains the organic compound described in the first aspect of the present application.
  • a third aspect of the present application provides an electronic device, which includes the organic electroluminescent device described in the second aspect of the present application.
  • the organic compound of the present application is a triarylamine structure having an N-phenylcarbazole and a dibenzofuran (thiophene) group, in which fluorine (F) and aromatic substituents are simultaneously introduced on the benzene ring of the carbazole, so that the present invention
  • the organic compound applied for can not only effectively prevent the migration of electrons, but also promote the transmission of holes, and has high hole transmission efficiency; in addition, the compound applied for has an appropriate torque in space, thereby improving the thermal stability of the compound. sex.
  • the compound of the present application is applied to an organic electroluminescent device, the service life and luminous efficiency of the device can be further improved.
  • Figure 1 is a schematic structural diagram of an organic electroluminescent device according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of an electronic device according to an embodiment of the present application.
  • the present application provides an organic compound having a structure shown in Formula 1:
  • Ar is selected from a substituted or unsubstituted aryl group with 6-15 carbon atoms, and the substituents in Ar are each independently selected from deuterium, cyano group or alkyl group with 1-4 carbon atoms;
  • L, L 1 and L 2 are the same or different, and are each independently selected from a single bond, a substituted or unsubstituted arylene group with 6 to 30 carbon atoms, a substituted or unsubstituted group with 5 to 30 carbon atoms. heteroarylene;
  • Ar 1 is selected from a substituted or unsubstituted aryl group with 6 to 40 carbon atoms, and a substituted or unsubstituted heteroaryl group with 5 to 40 carbon atoms;
  • the substituents in L, L 1 , L 2 and Ar 1 and R 1 , R 2 and R 3 are the same or different, and are each independently selected from deuterium, cyano group, aryl group with 6 to 18 carbon atoms, carbon Heteroaryl group with 5-18 atoms, trialkylsilyl group with 3-12 carbon atoms, alkyl group with 1-10 carbon atoms, deuterated alkyl group with 1-10 carbon atoms, carbon Cycloalkyl or triphenylsilyl group with 3-10 atoms; optionally, in Ar 1 , any two adjacent substituents form a 3-15 membered saturated or unsaturated ring;
  • n 1 represents the number of R 1 and is selected from 0, 1, 2, 3 or 4; when n 1 is greater than 1, each R 1 is the same or different;
  • n 2 represents the number of R 2 and is selected from 0, 1, 2 or 3; when n 2 is greater than 1, each R 2 is the same or different;
  • n 3 represents the number of R 3 and is selected from 0, 1, 2, 3 or 4; when n 3 is greater than 1, each R 3 is the same or different.
  • each...independently is and “...respectively and independently are” and “...independently selected from” are interchangeable, and should be understood in a broad sense. They can either be It means that in different groups, the specific options expressed by the same symbols do not affect each other. It can also mean that in the same group, the specific options expressed by the same symbols do not affect each other.
  • each q is independently 0, 1, 2 or 3
  • each R" is independently selected from hydrogen, deuterium, fluorine, and chlorine.
  • Formula Q-1 represents that there are q substituents R" on the benzene ring.
  • each R can be the same or different, and the options of each R” do not affect each other;
  • Formula Q-2 indicates that there are q substituents R” on each benzene ring of biphenyl, and the R on the two benzene rings "The number of substituents q can be the same or different, each R" can be the same or different, and the options for each R" do not affect each other.
  • the terms “optionally” and “optionally” mean that the subsequently described event or circumstance may but need not occur, and the description includes instances where the event or circumstance does or does not occur.
  • “optionally, two adjacent substituents form a ring” means that the two substituents can form a ring but do not have to form a ring, which includes: the scenario where two adjacent substituents form a ring and the situation where two adjacent substituents form a ring. Scenarios where adjacent substituents do not form a ring.
  • substituted or unsubstituted means that the functional group described after the term may or may not have a substituent (hereinafter, for convenience of description, the substituents are collectively referred to as Rc).
  • substituted or unsubstituted aryl refers to an aryl group having a substituent Rc or an unsubstituted aryl group.
  • the above-mentioned substituent Rc may be, for example, deuterium, cyano group, heteroaryl group, aryl group, alkyl group, cycloalkyl group, deuterated alkyl group, trialkylsilyl group, triphenylsilyl group, etc.
  • the "substituted" functional group can be substituted by one or more substituents in the above-mentioned Rc; when two substituents Rc are connected to the same atom, the two substituents Rc can exist independently or be connected to each other. It forms a spiro ring with the atom; when there are two adjacent substituents Rc on the functional group, the two adjacent substituents Rc can exist independently or be fused with the functional group to which they are connected to form a ring.
  • Ring in this application includes saturated rings and unsaturated rings; saturated rings include cycloalkyl and heterocycloalkyl, and unsaturated rings include cycloalkenyl, heterocycloalkenyl, aryl and heteroaryl.
  • a ring system formed by n atoms is an n-membered ring.
  • phenyl is a 6-membered aryl group
  • fluorene ring is a 13-membered ring
  • cyclohexane is a 6-membered ring
  • adamantane is a 10-membered ring.
  • any two adjacent substituents form a saturated or unsaturated ring with 3-15 members
  • any two adjacent substituents form a saturated or unsaturated ring with 5-15 members
  • the ring formed is a saturated ring or an unsaturated ring, wherein the saturated ring is, for example, cyclopentane cyclohexane Unsaturated rings such as benzene ring, naphthalene ring or fluorene ring
  • the number of carbon atoms of a substituted or unsubstituted functional group refers to the number of all carbon atoms. For example, if L 1 is selected from a substituted arylene group having 12 carbon atoms, then the total number of carbon atoms in the arylene group and its substituents is 12. For example: Ar 1 is Then its carbon number is 10; L 1 is Its carbon number is 12.
  • aryl refers to an optional functional group or substituent derived from an aromatic carbocyclic ring.
  • the aryl group can be a single-ring aryl group (such as phenyl) or a polycyclic aryl group.
  • the aryl group can be a single-ring aryl group, a fused-ring aryl group, or two or more single-ring aryl groups conjugated through a carbon-carbon bond.
  • Ring aryl groups monocyclic aryl groups conjugated through carbon-carbon bonds and fused-ring aryl groups, two or more fused-ring aryl groups conjugated through carbon-carbon bonds.
  • the condensed ring aryl group may include, for example, bicyclic condensed aryl group (such as naphthyl), tricyclic condensed aryl group (such as phenanthrenyl, fluorenyl, anthracenyl), etc.
  • Aryl groups do not contain heteroatoms such as B, N, O, S, P, Se and Si.
  • aryl groups may include, but are not limited to, phenyl, naphthyl, fluorenyl, anthracenyl, phenanthrenyl, biphenyl, terphenyl, benzo[9,10]phenanthrenyl, pyrenyl, benzofluoranthene base, Key et al.
  • the substituted aryl group may be one or more than two hydrogen atoms in the aryl group substituted by, for example, deuterium, cyano, aryl, heteroaryl, trialkylsilyl, alkyl, deuterated alkyl , cycloalkyl, triphenylsilyl and other groups substituted.
  • the number of carbon atoms of a substituted aryl group refers to the total number of carbon atoms of the aryl group and the substituents on the aryl group.
  • a substituted aryl group with a carbon number of 18 refers to the aryl group and its substituents. The total number of carbon atoms of the substituents is 18.
  • the fluorenyl group may be substituted.
  • the two substituents may be combined with each other to form a spiro structure.
  • substituted fluorenyl groups include, but are not limited to:
  • the arylene group refers to a bivalent group formed by further losing one hydrogen atom from an aryl group.
  • the number of carbon atoms of the substituted or unsubstituted aryl group may be 6-40.
  • the number of carbon atoms of the substituted or unsubstituted aryl group may be 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23 , 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39 or 40.
  • heteroaryl refers to a monovalent aromatic ring or its derivatives containing 1, 2, 3, 4, 5 or more heteroatoms in the ring.
  • the heteroatoms can be B, O, One or more of N, P, Si, Se and S.
  • a heteroaryl group can be a monocyclic heteroaryl group or a polycyclic heteroaryl group.
  • a heteroaryl group can be a single aromatic ring system or multiple aromatic ring systems conjugated through carbon-carbon bonds, and any aromatic
  • the ring system is an aromatic single ring or an aromatic fused ring.
  • heteroaryl groups may include thienyl, Furyl, pyrrolyl, imidazolyl, thiazolyl, oxazolyl, oxadiazolyl, triazolyl, pyridyl, bipyridyl, pyrimidinyl, triazinyl, acridinyl, pyridazinyl, pyrazinyl , quinolinyl, quinazolinyl, quinoxalinyl, phenoxazinyl, phthalazinyl, pyridopyrimidinyl, pyridopyrazinyl, pyrazinopyrazinyl, isoquinolinyl, indolyl , carbazolyl, benzoxazolyl, benzimidazolyl, benzothiazolyl, benzocarbazolyl, benzothienyl, dibenzothienyl, thienothienyl, benz
  • the substituted heteroaryl group may be one or more than two hydrogen atoms in the heteroaryl group substituted by, for example, deuterium, cyano, aryl, heteroaryl, trialkylsilyl, alkyl, deuterated Alkyl, cycloalkyl, triphenylsilyl and other groups are substituted.
  • the number of carbon atoms of a substituted heteroaryl group refers to the total number of carbon atoms of the heteroaryl group and the substituents on the heteroaryl group.
  • the number of carbon atoms of the substituted or unsubstituted heteroaryl group may be 5-40.
  • the number of carbon atoms of the substituted or unsubstituted heteroaryl group may be 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 34, 35, 36, 37, 38, 39 or 40.
  • non-located connecting bonds refer to single bonds protruding from the ring system. It means that one end of the bond can be connected to any position in the ring system that the bond penetrates, and the other end is connected to the rest of the compound molecule.
  • the naphthyl group represented by the formula (f) is connected to other positions of the molecule through two non-positioned bonds that penetrate the bicyclic ring, and its meaning includes such as the formula (f) -1) ⁇ Any possible connection method shown in formula (f-10):
  • the dibenzofuryl group represented by the formula (X') is connected to other positions of the molecule through an unpositioned bond extending from the middle of one side of the benzene ring, Its meaning includes any possible connection method shown in formula (X'-1) to formula (X'-4).
  • a non-positioned substituent in this application refers to a substituent connected through a single bond extending from the center of the ring system, which means that the substituent can be connected at any possible position in the ring system.
  • the substituent R' represented by the formula (Y) is connected to the quinoline ring through a non-positioned bond, and its meaning includes formula (Y-1) ⁇ Any possible connection method shown in formula (Y-7):
  • the number of carbon atoms of the alkyl group may be 1-10, specifically 1, 2, 3, 4, 5, 6, 7, 8, 9 or 10.
  • the alkyl group may include straight chain alkyl and branched alkyl groups.
  • Alkyl. Specific examples of alkyl groups include, but are not limited to, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, isopentyl, cyclopentyl, n-hexyl, heptyl, n-octyl, 2-ethylhexyl, nonyl, decyl, 3,7- Dimethyloctyl etc.
  • the number of carbon atoms of the aryl group as a substituent may be 6-18, and the number of carbon atoms is specifically 6, 10, 12, 13, 14, 15, etc.
  • Specific examples of the aryl group include, but are not limited to, Phenyl, naphthyl, biphenyl, phenanthrenyl, anthracenyl, etc.
  • the number of carbon atoms of the heteroaryl group as a substituent may be 5-18. Specific examples of the number of carbon atoms are 5, 8, 9, 10, 12, 13, 14, 15, etc.
  • Specific examples of the heteroaryl group include: Examples include, but are not limited to, pyridyl, quinolyl, isoquinolyl, dibenzofuryl, dibenzothienyl, carbazolyl, and the like.
  • the number of carbon atoms of the trialkylsilyl group as a substituent may be 3-12, for example, 3, 6, 7, 8, 9, etc. Specific examples thereof include, but are not limited to, trimethylsilyl group , ethyldimethylsilyl, triethylsilyl, etc.
  • the number of carbon atoms of the cycloalkyl group as a substituent may be 3-10, such as 5, 6, 8 or 10.
  • Specific examples include, but are not limited to, cyclopentyl, cyclohexyl, adamantyl, etc. .
  • the number of carbon atoms of the deuterated alkyl group as a substituent may be 1-10.
  • the deuterated alkyl group is a deuterated alkyl group having 1 to 4 carbon atoms.
  • Specific examples of deuterated alkyl groups include, but are not limited to, trideuterated methyl.
  • the structure of the organic compound may be as shown in Formula 1-1 or Formula 1-2:
  • Ar is selected from substituted or unsubstituted phenyl, substituted or unsubstituted naphthyl, substituted or unsubstituted biphenyl, and the substituents in Ar are each independently selected from deuterium, cyano, methyl, Ethyl, isopropyl or tert-butyl.
  • Ar is selected from the group consisting of:
  • Ar is selected from the group consisting of:
  • L, L 1 and L 2 are each independently selected from single bonds, and the number of carbon atoms is 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 , 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 substituted or unsubstituted arylene groups, with carbon atoms of 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 substituted or unsubstituted heteroarylene groups.
  • L, L 1 and L 2 are the same or different, and are each independently selected from a single bond, a substituted or unsubstituted arylene group having a carbon number of 6-18, a carbon number of 12-18 of substituted or unsubstituted heteroarylene.
  • L and L 2 are each independently selected from a single bond, a substituted or unsubstituted arylene group having 6 to 15 carbon atoms.
  • L 1 is selected from a single bond, a substituted or unsubstituted arylene group with 6 to 15 carbon atoms, and a substituted or unsubstituted heteroarylene group with 12 to 18 carbon atoms.
  • L, L1 , and L2 are the same or different, and are each independently selected from a single bond, substituted or unsubstituted phenylene, substituted or unsubstituted naphthylene, substituted or unsubstituted naphthylene, Biphenyl, substituted or unsubstituted fluorenylene, substituted or unsubstituted phenylene, substituted or unsubstituted dibenzofurylene, substituted or unsubstituted dibenzothienylene, substituted or unsubstituted of carbazolylidene.
  • the substituents in L, L 1 and L 2 are each independently selected from deuterium, cyano group, aryl group having 6-12 carbon atoms, Heteroaryl group with 5-12 carbon atoms, trialkylsilyl group with 3-7 carbon atoms or alkyl group with 1-4 carbon atoms.
  • the substituents in L, L 1 and L 2 are each independently selected from deuterium, cyano, methyl, ethyl, isopropyl, tert-butyl, trimethylsilyl, phenyl, naphthyl , biphenyl, dibenzofuranyl, dibenzothienyl or carbazolyl.
  • L, L 1 and L 2 are the same or different, and are each independently selected from a single bond, a substituted or unsubstituted group Z, wherein the unsubstituted group Z is selected from the following groups group of:
  • the substituents in substituted group Z are each independently selected from deuterium, cyano, methyl, ethyl, isopropyl, tert-butyl, trimethylsilyl, phenyl or naphthyl, when the individual substituents When the number is greater than 1, each substituent may be the same or different.
  • L, L 1 and L 2 are each independently selected from the group consisting of a single bond or the following groups:
  • L and L are each independently selected from the group consisting of a single bond or the following groups:
  • L 1 is selected from the group consisting of a single bond or the following groups:
  • Ar 1 is selected from the group consisting of carbon atoms with 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 substituted or unsubstituted aryl groups with carbon atoms of 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30 substituted or unsubstituted heteroaryl groups.
  • Ar 1 is selected from the group consisting of substituted or unsubstituted aryl groups having 6-25 carbon atoms, and substituted or unsubstituted heteroaryl groups having 12-25 carbon atoms.
  • Ar 1 is selected from substituted or unsubstituted phenyl, substituted or unsubstituted naphthyl, substituted or unsubstituted biphenyl, substituted or unsubstituted terphenyl, substituted or unsubstituted fluorene base, substituted or unsubstituted anthracenyl, substituted or unsubstituted phenanthrenyl, substituted or unsubstituted triphenylene, substituted or unsubstituted dibenzofuranyl, substituted or unsubstituted dibenzothienyl, substituted or unsubstituted carbazolyl.
  • the substituents in Ar 1 are each independently selected from deuterium, cyano group, aryl group with 6 to 12 carbon atoms, heteroaryl group with 5 to 12 carbon atoms, and 3 carbon atoms. -7 trialkylsilyl group, alkyl group having 1-4 carbon atoms, deuterated alkyl group having 1-4 carbon atoms or cycloalkyl group having 5-10 carbon atoms; optionally, in In Ar 1 , any two adjacent substituents form a 5-15 membered saturated or unsaturated ring.
  • the substituents in Ar 1 are each independently selected from deuterium, cyano, methyl, ethyl, isopropyl, tert-butyl, cyclopentyl, cyclohexyl base, trimethylsilyl, trideuteratedmethyl, phenyl, naphthyl, biphenyl, pyridyl, dibenzofuranyl, dibenzothienyl or carbazolyl; optionally, any two Adjacent substituents form a benzene ring, cyclopentane, cyclohexane or fluorene ring.
  • Ar 1 is selected from a substituted or unsubstituted group W, wherein the unsubstituted group W is selected from the group consisting of:
  • the substituents in substituted group W are each independently selected from deuterium, cyano, methyl, ethyl, isopropyl, tert-butyl, trideuteratedmethyl, trimethylsilyl, phenyl or naphthyl , when the number of substituents is greater than 1, each substituent may be the same or different.
  • Ar 1 is selected from the group consisting of:
  • Ar 1 is selected from the group consisting of:
  • R 1 , R 2 and R 3 are the same or different, and are each independently selected from deuterium, cyano group, aryl group with 6 to 12 carbon atoms, trisulfide with 3 to 7 carbon atoms.
  • R 1 , R 2 and R 3 are the same or different, and are each independently selected from deuterium, cyano, methyl, ethyl, isopropyl, tert-butyl, trideuterated methyl, phenyl or naphthyl.
  • the organic compound is selected from the group consisting of:
  • a second aspect of the application provides an organic electroluminescent device, including an anode, a cathode, and a functional layer disposed between the anode and the cathode, wherein the functional layer includes the method described in the first aspect of the application.
  • organic compounds The organic compounds provided in this application can be used to form at least one organic film layer in the functional layer to improve the lifespan and other characteristics of electronic components.
  • the functional layer includes a hole transport layer containing the organic compound of the present application.
  • the hole transport layer includes a first hole transport layer and a second hole transport layer (also called “electron blocking layer”, “luminescence auxiliary layer”), and is opposite to the second hole transport layer A transport layer, the first hole transport layer is closer to the anode, wherein the second hole transport layer contains the organic compound.
  • the organic electroluminescent device includes an anode 100, a first hole transport layer 321, a second hole transport layer 322, and an energy conversion layer stacked in sequence.
  • the first hole transport layer 321 and the second hole transport layer 322 constitute a hole transport layer 320 .
  • the anode 100 includes an anode material, which is preferably a material with a large work function that facilitates injection of holes into the functional layer 300 .
  • anode materials include: metals such as nickel, platinum, vanadium, chromium, copper, zinc and gold or their alloys; metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO) and indium zinc oxide (IZO); Combined metals and oxides such as ZnO:Al or SnO 2 :Sb; or conductive polymers such as poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene ](PEDT), polypyrrole and polyaniline, but not limited thereto.
  • a transparent electrode including indium tin oxide (ITO) as an anode is included.
  • the first hole transport layer 321 may include one or more hole transport materials, and the hole transport materials may be selected from carbazole polymers, carbazole-linked triarylamine compounds, or other types of compounds. There are no special restrictions on this application. Specific examples of the hole transport material include, but are not limited to:
  • the material of the first hole transport layer 321 is HT-4.
  • the material of the second hole transport layer 322 is selected from the organic compounds of the present application.
  • the organic light-emitting layer 330 may be composed of a single light-emitting material, or may include a host material and a guest material.
  • the organic light-emitting layer 330 is composed of a host material and a guest material.
  • the holes injected into the organic light-emitting layer 330 and the electrons injected into the organic light-emitting layer 330 can recombine in the organic light-emitting layer 330 to form excitons, and the excitons transfer energy to the host material.
  • the host material transfers energy to the guest material, thereby enabling the guest material to emit light.
  • the host material of the organic light-emitting layer 330 may be metal chelate compounds, bistyryl derivatives, aromatic amine derivatives, dibenzofuran derivatives or other types of materials. Specific examples of the host material include, but are not limited to, the following compounds:
  • the host material is BH-2.
  • the guest material of the organic light-emitting layer 330 can be a compound with a condensed aryl ring or its derivatives, a compound with a heteroaryl ring or its derivatives, an aromatic amine derivative or other materials, which is not specified in this application. limit.
  • the guest material is selected from at least one of the following compounds:
  • the guest material is BD-3.
  • the electron transport layer 340 may have a single-layer structure or a multi-layer structure, and may include one or more electron transport materials.
  • the electron transport material is selected from, but is not limited to, benzimidazole derivatives, oxadiazole derivatives, quinoxaline derivatives or other electron transport materials.
  • the electron transport layer material is selected from the group consisting of LiQ and the following compounds:
  • the material of the electron transport layer 340 is composed of LiQ and ET-2.
  • the cathode 200 may include a cathode material, which is a material with a small work function that facilitates electron injection into the functional layer.
  • cathode materials include, but are not limited to, metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin and lead or alloys thereof; or multilayer materials such as LiF/Al , Liq/Al, LiO 2 /Al, LiF/Ca, LiF/Al and BaF 2 /Ca. It is preferred to include a metal electrode containing magnesium and silver as the cathode.
  • a hole injection layer 310 is further provided between the anode 100 and the first hole transport layer 321 to enhance the ability to inject holes into the first hole transport layer 321 .
  • the hole injection layer 310 can be made of benzidine derivatives, starburst arylamine compounds, phthalocyanine derivatives or other materials, which are not particularly limited in this application.
  • the hole injection layer 310 is selected from one or more than two of the following compounds:
  • the material of the hole injection layer 310 is F4-TCNQ.
  • an electron injection layer 350 is also provided between the cathode 200 and the electron transport layer 340 to enhance the ability to inject electrons into the electron transport layer 340 .
  • the electron injection layer 350 may include an inorganic material such as an alkali metal sulfide or an alkali metal halide, or may include a complex of an alkali metal and an organic substance.
  • the electron injection layer 350 contains LiQ or Yb.
  • a third aspect of the present application provides an electronic device, including the organic electroluminescent device described in the second aspect of the present application.
  • the electronic device is an electronic device 400
  • the electronic device 400 includes the above-mentioned organic electroluminescent device.
  • the electronic device 400 may be, for example, a display device, a lighting device, an optical communication device, or other types of electronic devices.
  • it may include but is not limited to a computer screen, a mobile phone screen, a television, electronic paper, emergency lighting, an optical module, etc.
  • Example 1 Blue organic electroluminescent device
  • the organic electroluminescent device is prepared by the following process: the thickness is sequentially
  • the ITO/Ag/ITO substrate is cut into a size of 40mm (length) ⁇ 40mm (width) ⁇ 0.7mm (thickness), and the photolithography process is used to prepare it into an experimental substrate with cathode overlap area, anode and insulating layer patterns.
  • F4-TCNQ was vacuum evaporated on the experimental substrate (anode) to form a thickness of hole injection layer (HIL), and vacuum evaporate HT-4 on the hole injection layer to form a thickness of the first hole transport layer.
  • HIL hole injection layer
  • Compound 1 was vacuum evaporated on the first hole transport layer to form a thickness of the second hole transport layer.
  • BH-2 is used as the main body, and BD-3 is simultaneously doped and co-evaporated according to a film thickness ratio of 100:3 to form a thickness of organic light-emitting layer (EML).
  • EML organic light-emitting layer
  • ET-2 and LiQ were co-evaporated with a film thickness ratio of 1:1 to form a thickness of electron transport layer (ETL), and then Yb is evaporated on the electron transport layer to form a thickness of
  • ETL electron transport layer
  • Yb is evaporated on the electron transport layer to form a thickness of
  • the electron injection layer (EIL) is then mixed with magnesium (Mg) and silver (Ag) at an evaporation rate of 1:9, and vacuum evaporated on the electron injection layer to form a thickness of the cathode.
  • CPL organic covering layer
  • Organic electroluminescence was produced using the same method as in Example 1, except that when forming the second hole transport layer, other compounds shown in the following Table 4 ("Second Hole Transport Layer” column) were used instead of Compound 1. device.
  • An organic electroluminescent device was produced using the same method as in Example 1, except that Compound A, Compound B and Compound C were used instead of Compound 1 when forming the second hole transport layer.
  • Performance analysis was performed on the organic electroluminescent devices prepared in the above embodiments and comparative examples, in which the IVL performance (voltage, color coordinates and efficiency) of the device was analyzed at a current density of 10mA/ cm2 , and at a current density of 20mA/ cm2 Analyze the T95 lifetime of the device at a current density of The results are shown in Table 4.
  • Examples 1-37 were prepared using the organic compound of the present application as the second hole transport layer (ie, electron blocking layer). While maintaining a lower operating voltage, the current efficiency of the electromechanical luminescent device is increased by at least 12.5%, and the T95 life is increased by at least 10.7%. It can be seen that applying the compound of the present application as the second hole transport layer to an organic electroluminescent device can further improve the luminous efficiency and service life of the device while maintaining a lower operating voltage of the device.
  • the organic compound of the present application ie, electron blocking layer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本申请属于有机发光材料领域,具体涉及一种有机化合物以及使用其的有机电致发光器件和电子装置。所述有机化合物的结构如式(1)所示,所述有机化合物用于有机电致发光器件中,可提高器件的性能。

Description

有机化合物和有机电致发光器件及电子装置
相关申请的交叉引用
本申请要求于2022年09月15日递交的申请号为CN202211121384.3的中国专利申请的优先权,在此引用上述中国专利申请的内容全文以作为本申请的一部分。
技术领域
本申请属于有机发光材料技术领域,具体提供一种有机化合物以及使用其的有机电致发光器件和电子装置。
背景技术
有机电致发光器件(OLED)又称为有机发光二极管,是指有机发光材料在电场作用下,受到电流的激发而发光的现象。它是一种将电能转换为光能的过程。相比于无机发光材料,有机电致发光二极管OLED具有主动发光、光程范围大、驱动电压低、亮度大、效率高、耗能少以及制作工艺简单等优点。正是由于这些优点,有机发光材料与器件已经成为科学界和产业界十分热门的科研课题之一。
有机电致发光器件一般包括依次层叠设置的阳极、空穴传输层、作为能量转化层的电致发光层、电子传输层和阴极。当阴阳两极施加电压时,两电极产生电场,在电场的作用下,阴极侧的电子向电致发光层移动,阳极侧的空穴也向发光层移动,电子和空穴在电致发光层结合形成激子,激子处于激发态向外释放能量,进而使得电致发光层对外发光。
当前,OLED显示技术已经在智能手机,平板电脑等领域获得应用,进一步还将向电视等大尺寸应用领域扩展,但是,和实际的产品应用要求相比,OLED器件的发光效率,使用寿命等性能还需要进一步提升。对于OLED发光器件提高性能的研究包括:降低器件的工作电压,提高器件的发光效率,提高器件的使用寿命等。为了实现OLED器件的性能的不断提升,不但需要从OLED器件结构和制作工艺的创新,更需要OLED光电功能材料不断研究和创新,创制出更高性能OLED的功能材料。
发明内容
针对现有技术存在的上述问题,本申请的目的在于提供一种有机化合物以及使用其的有机电致发光器件和电子装置,该有机化合物用于有机电致发光器件中,可提高器件的性能。
为了实现上述目的,本申请第一方面提供一种有机化合物,该有机化合物具有如式1所示的结构:
其中,X选自O或S;
Ar选自碳原子数为6-15的取代或未取代的芳基,Ar中的取代基各自独立地选自氘、氰基或碳原子数为1-4的烷基;
L、L1和L2相同或不同,且各自独立地选自单键、碳原子数为6-30的取代或未取代的亚芳基、碳原子数为5-30的取代或未取代的亚杂芳基;
Ar1选自碳原子数为6-40的取代或未取代的芳基、碳原子数为5-40的取代或未取代的杂芳基;
L、L1、L2和Ar1中的取代基以及R1、R2和R3相同或不同,且各自独立地选自氘、氰基、碳原子数为6-18的芳基、碳原子数为5-18的杂芳基、碳原子数为3-12的三烷基硅基、碳原子数为1-10的烷基、碳原子数为1-10的氘代烷基、碳原子数为3-10的环烷基或三苯基硅基;任选地,在Ar1中,任意两个相邻的取代基形成3-15元的饱和或不饱和环;
n1表示R1的个数,且选自0、1、2、3或4;当n1大于1时,各R1相同或不同;
n2表示R2的个数,且选自0、1、2或3;当n2大于1时,各R2相同或不同;
n3表示R3的个数,且选自0、1、2、3或4;当n3大于1时,各R3相同或不同。
本申请第二方面提供一种有机电致发光器件,所述有机电致发光器件包含本申请第一方面所述的有机化合物。
本申请第三方面提供一种电子装置,所述电子装置包括本申请第二方面所述的有机电致发光器件。
本申请的有机化合物是具有N-苯基咔唑和二苯并呋喃(噻吩)基的三芳胺结构,其中,在咔唑的苯环上同时引入氟(F)和芳香性取代基,使得本申请的有机化合物既能有效阻止电子的迁移,又能促进空穴的传输,且具有较高的空穴传输效率;另外,本申请的化合物在空间上具有适当的扭矩,从而提高化合物的热稳定性。本申请的化合物应用到有机电致发光器件上,能进一步提高器件的使用寿命和发光效率。
本申请的其他特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
图1是本申请一种实施方式的有机电致发光器件的结构示意图。
图2是本申请一种实施方式的电子装置的示意图。
附图标记说明
100、阳极;200、阴极;300、功能层;310、空穴注入层;320、空穴传输层;321、第一空穴
传输层;322、第二空穴传输层;330、有机发光层;340、电子传输层;350、电子注入层;400、电子装置。
具体实施方式
以下结合附图对本申请的具体实施方式进行详细说明。应当理解地是,此处所描述的具体实施方式仅用于说明和解释本申请,并不用于限制本申请。
第一方面,本申请提供一种有机化合物,该有机化合物具有式1所示的结构:
Ar选自碳原子数为6-15的取代或未取代的芳基,Ar中的取代基各自独立地选自氘、氰基或碳原子数为1-4的烷基;
L、L1和L2相同或不同,且各自独立地选自单键、碳原子数为6-30的取代或未取代的亚芳基、碳原子数为5-30的取代或未取代的亚杂芳基;
Ar1选自碳原子数为6-40的取代或未取代的芳基、碳原子数为5-40的取代或未取代的杂芳基;
L、L1、L2和Ar1中的取代基以及R1、R2和R3相同或不同,且各自独立地选自氘、氰基、碳原子数为6-18的芳基、碳原子数为5-18的杂芳基、碳原子数为3-12的三烷基硅基、碳原子数为1-10的烷基、碳原子数为1-10的氘代烷基、碳原子数为3-10的环烷基或三苯基硅基;任选地,在Ar1中,任意两个相邻的取代基形成3-15元的饱和或不饱和环;
n1表示R1的个数,且选自0、1、2、3或4;当n1大于1时,各R1相同或不同;
n2表示R2的个数,且选自0、1、2或3;当n2大于1时,各R2相同或不同;
n3表示R3的个数,且选自0、1、2、3或4;当n3大于1时,各R3相同或不同。
在本申请中,所采用的描述方式“各……独立地为”与“……分别独立地为”和“……独立地选自”可以互换,均应做广义理解,其既可以是指在不同基团中,相同符号之间所表达的具体选项之间互相不影响,也可以表示在相同的基团中,相同符号之间所表达的具体选项之间互相不影响。例如,“其中,各q独立地为0、1、2或3,各R”独立地选自氢、氘、氟、氯”,其含义是:式Q-1表示苯环上有q个取代基R”,各个R”可以相同也可以不同,每个R”的选项之间互不影响;式Q-2表示联苯的每一个苯环上有q个取代基R”,两个苯环上的R”取代基的个数q可以相同或不同,各个R”可以相同也可以不同,每个R”的选项之间互不影响。
在本申请中,术语“任选”、“任选地”意味着随后所描述的事件或者环境可以但不必发生,该说明包括该事情或者环境发生或者不发生的场合。例如,“任选地,两个相邻的取代基形成环”意味着这两个取代基可以形成环但不是必须形成环,其包括:两个相邻的取代基形成环的情景和两个相邻的取代基不形成环的情景。
在本申请中,“取代或未取代的”这样的术语是指,在该术语后面记载的官能团可以具有或不具有取代基(下文为了便于描述,将取代基统称为Rc)。例如,“取代或未取代的芳基”是指具有取代基Rc的芳基或者非取代的芳基。其中上述的取代基即Rc例如可以为氘、氰基、杂芳基、芳基、烷基、环烷基、氘代烷基、三烷基硅基、三苯基硅基等。“取代的”官能团可以被上述Rc中的1个或2个以上的取代基取代;当同一个原子上连接有两个取代基Rc时,这两个取代基Rc可以独立地存在或者相互连接以与所述原子形成螺环;当官能团上存在两个相邻的取代基Rc时,相邻的两个取代基Rc可以独立地存在或者与其所连接的官能团稠合成环。
本申请中的“环”包含饱和环、不饱和环;饱和环即环烷基、杂环烷基,不饱和环包括环烯基、杂环烯基、芳基和杂芳基。在本申请中,n个原子形成的环体系,即为n元环。例如,苯基为6元芳基;芴环属于13元环,环己烷属于6元环,金刚烷属于10元环。
在本申请中,“任意两个相邻的取代基形成3-15元的饱和或不饱和环”、“任意两个相邻的取代基形成5-15元的饱和或不饱和环”中,所形成的环是饱和环或不饱和环,其中,饱和环例如为环戊烷环己烷不饱和环例如为苯环、萘环或芴环
在本申请中,取代或未取代的官能团的碳原子数,指的是所有碳原子数。举例而言,若L1选自碳原子数为12的取代的亚芳基,则亚芳基及其上的取代基的碳原子总数12。例如:Ar1则其碳原子数为10;L1其碳原子数为12。
在本申请中,芳基指的是衍生自芳香碳环的任选官能团或取代基。芳基可以是单环芳基(例如苯基)或多环芳基,换言之,芳基可以是单环芳基、稠环芳基、通过碳碳键共轭连接的两个或者更多个单环芳基、通过碳碳键共轭连接的单环芳基和稠环芳基、通过碳碳键共轭连接的两个或者更多个稠环芳基。即,除非另有说明,通过碳碳键共轭连接的两个或者更多个芳香基团也可以视为本申请的芳基。其中,稠环芳基例如可以包括双环稠合芳基(例如萘基)、三环稠合芳基(例如菲基、芴基、蒽基)等。芳基中不含有B、N、O、S、P、Se和Si等杂原子。芳基的实例可以包括但不限于,苯基、萘基、芴基、蒽基、菲基、联苯基、三联苯基、苯并[9,10]菲基、芘基、苯并荧蒽基、基等。
在本申请中,取代的芳基可以是芳基中的一个或者两个以上的氢原子被诸如氘、氰基、芳基、杂芳基、三烷基硅基、烷基、氘代烷基、环烷基、三苯基硅基等基团取代。应当理解地是,取代的芳基的碳原子数,指的是芳基和芳基上的取代基的碳原子总数,例如碳原子数为18的取代的芳基,指的是芳基及其取代基的总碳原子数为18。另外,本申请中,芴基可以是取代的,当具有两个取代基时,两个取代基可以彼此结合形成螺结构。取代的芴基的具体实例包括但不限于:
在本申请中,涉及的亚芳基是指芳基进一步失去一个氢原子所形成的二价基团。
在本申请中,取代或未取代的芳基的碳原子数可以为6-40。例如,取代或未取代的芳基的碳原子数可以为6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33、34、35、36、37、38、39或40。
在本申请中,杂芳基是指环中包含1个、2个、3个、4个、5个或更多个杂原子的一价芳香环或其衍生物,杂原子可以是B、O、N、P、Si、Se和S中的一种或多种。杂芳基可以是单环杂芳基或多环杂芳基,换言之,杂芳基可以是单个芳香环体系,也可以是通过碳碳键共轭连接的多个芳香环体系,且任一芳香环体系为一个芳香单环或者一个芳香稠环。示例地,杂芳基可以包括噻吩基、 呋喃基、吡咯基、咪唑基、噻唑基、噁唑基、噁二唑基、三唑基、吡啶基、联吡啶基、嘧啶基、三嗪基、吖啶基、哒嗪基、吡嗪基、喹啉基、喹唑啉基、喹喔啉基、吩噁嗪基、酞嗪基、吡啶并嘧啶基、吡啶并吡嗪基、吡嗪并吡嗪基、异喹啉基、吲哚基、咔唑基、苯并噁唑基、苯并咪唑基、苯并噻唑基、苯并咔唑基、苯并噻吩基、二苯并噻吩基、噻吩并噻吩基、苯并呋喃基、菲咯啉基、异噁唑基、噻二唑基、吩噻嗪基、硅芴基、二苯并呋喃基以及N-苯基咔唑基、N-吡啶基咔唑基、N-甲基咔唑基等,而不限于此。在本申请中,涉及的亚杂芳基是指杂芳基进一步失去一个氢原子所形成的二价基团。
在本申请中,取代的杂芳基可以是杂芳基中的一个或者两个以上的氢原子被诸如氘、氰基、芳基、杂芳基、三烷基硅基、烷基、氘代烷基、环烷基、三苯基硅基等基团取代。应当理解地是,取代的杂芳基的碳原子数,指的是杂芳基和杂芳基上的取代基的碳原子总数。
在本申请中,取代或未取代的杂芳基的碳原子数可以为5-40。例如,取代或未取代的杂芳基的碳原子数可以为5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、34、35、36、37、38、39或40。
本申请中,不定位连接键是指从环体系中伸出的单键其表示该连接键的一端可以连接该键所贯穿的环体系中的任意位置,另一端连接化合物分子其余部分。
举例而言,如下式(f)中所示地,式(f)所表示的萘基通过两个贯穿双环的不定位连接键与分子其他位置连接,其所表示的含义,包括如式(f-1)~式(f-10)所示出的任一可能的连接方式:
再举例而言,如下式(X')中所示地,式(X')所表示的二苯并呋喃基通过一个从一侧苯环中间伸出的不定位连接键与分子其他位置连接,其所表示的含义,包括如式(X'-1)~式(X'-4)所示出的任一可能的连接方式。
本申请中的不定位取代基,指的是通过一个从环体系中央伸出的单键连接的取代基,其表示该取代基可以连接在该环体系中的任何可能位置。例如,如下式(Y)中所示地,式(Y)所表示的取代基R'通过一个不定位连接键与喹啉环连接,其所表示的含义,包括如式(Y-1)~式(Y-7)所示出的任一可能的连接方式:
在本申请中,烷基的碳原子数可以为1-10,具体可以为1、2、3、4、5、6、7、8、9或10,烷基可以包括直链烷基和支链烷基。烷基的具体实例包括但不限于,甲基、乙基、正丙基、异丙基、 正丁基、异丁基、叔丁基、正戊基、异戊基、环戊基、正己基、庚基、正辛基、2-乙基己基、壬基、癸基、3,7-二甲基辛基等。
在本申请中,作为取代基的芳基的碳原子数可以为6-18,碳原子数具体如为6、10、12、13、14、15等,芳基的具体实例包括但不限于,苯基、萘基、联苯基、菲基、蒽基等。
在本申请中,作为取代基的杂芳基的碳原子数可以为5-18,碳原子数具体例如为5、8、9、10、12、13、14、15等,杂芳基的具体实例包括但不限于,吡啶基、喹啉基、异喹啉基、二苯并呋喃基、二苯并噻吩基、咔唑基等。
在本申请中,作为取代基的三烷基硅基的碳原子数可以为3-12,例如为3、6、7、8、9等,其具体实例包括但不限于,三甲基硅基、乙基二甲基硅基、三乙基硅基等。
在本申请中,作为取代基的环烷基的碳原子数可以为3-10,例如为5、6、8或10,具体实例包括但不限于,环戊基、环己基、金刚烷基等。
在本申请中,作为取代基的氘代烷基的碳原子数可以为1-10。例如氘代烷基为碳原子数1-4的氘代烷基。氘代烷基的具体实例包括但不限于,三氘代甲基。
本申请中,所述有机化合物的结构可以如式1-1或式1-2所示:
可选地,Ar选自取代或未取代的苯基、取代或未取代的萘基、取代或未取代的联苯基,Ar中的取代基各自独立地选自氘、氰基、甲基、乙基、异丙基或叔丁基。
在一些实施方式中,Ar选自以下基团所组成的组:
可选地,Ar选自以下基团所组成的组:
本申请中,L、L1和L2各自独立地选自单键,碳原子数为6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30的取代或未取代的亚芳基,碳原子数为5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30的取代或未取代的亚杂芳基。
在一些实施方式中,L、L1和L2相同或不同,且各自独立地选自单键,碳原子数为6-18的取代或未取代的亚芳基,碳原子数为12-18的取代或未取代的亚杂芳基。
可选地,L和L2各自独立地选自单键,碳原子数为6-15的取代或未取代的亚芳基。
可选地,L1选自单键、碳原子数为6-15的取代或未取代的亚芳基、碳原子数为12-18的取代或未取代的亚杂芳基。
在一些实施方式中,L、L1和L2相同或不同,且各自独立地选自单键、取代或未取代的亚苯基、取代或未取代的亚萘基、取代或未取代的亚联苯基、取代或未取代的亚芴基、取代或未取代的亚菲基、取代或未取代的亚二苯并呋喃基、取代或未取代的亚二苯并噻吩基、取代或未取代的亚咔唑基。
在一些实施方式中,L、L1和L2中的取代基各自独立地选自氘、氰基、碳原子数为6-12的芳基、 碳原子数为5-12的杂芳基、碳原子数为3-7的三烷基硅基或碳原子数为1-4的烷基。
可选地,L、L1和L2中的取代基各自独立地选自氘、氰基、甲基、乙基、异丙基、叔丁基、三甲基硅基、苯基、萘基、联苯基、二苯并呋喃基、二苯并噻吩基或咔唑基。
在一些实施方式中,L、L1和L2相同或不同,且各自独立地选自单键、取代或未取代的基团Z,其中,未取代的基团Z选自以下基团所组成的组:
取代的基团Z中的取代基各自独立地选自氘、氰基、甲基、乙基、异丙基、叔丁基、三甲基硅基、苯基或萘基,当取代基的个数大于1时,各取代基相同或不同。
在一些实施方式中,L、L1和L2各自独立地选自单键或以下基团所组成的组:
在一些更具体的实施方式中,L和L2各自独立地选自单键或以下基团所组成的组:
在一些更具体的实施方式中,L1选自单键或以下基团所组成的组:
可选地,Ar1选自碳原子数为6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30的取代或未取代的芳基,碳原子数为5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30的取代或未取代的杂芳基。
在一些实施方式中,Ar1选自碳原子数为6-25的取代或未取代的芳基、碳原子数为12-25的取代或未取代的杂芳基。
在一些实施方式中,Ar1选自取代或未取代的苯基、取代或未取代的萘基、取代或未取代的联苯基、取代或未取代的三联苯基、取代或未取代的芴基、取代或未取代的蒽基、取代或未取代的菲基、取代或未取代的三亚苯基、取代或未取代的二苯并呋喃基、取代或未取代的二苯并噻吩基、取代或未取代的咔唑基。
在一些实施方式中,Ar1中的取代基各自独立地选自氘、氰基、碳原子数为6-12的芳基、碳原子数为5-12的杂芳基、碳原子数为3-7的三烷基硅基、碳原子数为1-4的烷基、碳原子数为1-4的氘代烷基或碳原子数为5-10的环烷基;任选地,在Ar1中,任意两个相邻的取代基形成5-15元的饱和或不饱和环。
可选地,Ar1中的取代基各自独立地选自氘、氰基、甲基、乙基、异丙基、叔丁基、环戊基、环己 基、三甲基硅基、三氘代甲基、苯基、萘基、联苯基、吡啶基、二苯并呋喃基、二苯并噻吩基或咔唑基;任选地,任意两个相邻的取代基形成苯环、环戊烷、环己烷或芴环。
在一些实施方式中,Ar1选自取代或未取代的基团W,其中,未取代的基团W选自以下基团所组成的组:
取代的基团W中的取代基各自独立地选自氘、氰基、甲基、乙基、异丙基、叔丁基、三氘代甲基、三甲基硅基、苯基或萘基,当取代基的个数大于1时,各取代基相同或不同。
可选地,Ar1选自以下基团所组成的组:
进一步可选地,Ar1选自以下基团所组成的组:

在一些实施方式中,选自以下基团所组成的组:
在一种实施方式中,R1、R2和R3相同或不同,且各自独立地选自氘、氰基、碳原子数为6-12的芳基、碳原子数为3-7的三烷基硅基、碳原子数为1-4的烷基或碳原子数为1-4的氘代烷基。
可选地,R1、R2和R3相同或不同,且各自独立地选自氘、氰基、甲基、乙基、异丙基、叔丁基、三氘代甲基、苯基或萘基。
可选地,所述有机化合物选自以下化合物所组成的组:












本申请第二方面提供一种有机电致发光器件,包括阳极、阴极,以及设置在所述阳极与所述阴极之间的功能层,其中,所述功能层包含本申请第一方面所述的有机化合物。本申请所提供的有机化合物可以用于形成功能层中的至少一个有机膜层,以改善电子元件的寿命等特性。
可选地,所述功能层包括空穴传输层,所述空穴传输层包含本申请的有机化合物。
进一步可选地,所述空穴传输层包括第一空穴传输层和第二空穴传输层(也称为“电子阻挡层”、“发光辅助层”),且相对所述第二空穴传输层,所述第一空穴传输层更靠近所述阳极,其中,所述第二空穴传输层包含所述有机化合物。
按照一种具体的实施方式,如图1所示,所述有机电致发光器件包括依次层叠设置的阳极100、第一空穴传输层321、第二空穴传输层322、作为能量转化层的有机发光层330、电子传输层340和阴极200。所述第一空穴传输层321和第二空穴传输层322构成空穴传输层320。
可选地,阳极100包括以下阳极材料,其优选地是有助于空穴注入至功能层300中的具有大逸出功(功函数,work function)材料。阳极材料具体实例包括:金属如镍、铂、钒、铬、铜、锌和金或它们的合金;金属氧化物如氧化锌、氧化铟、氧化铟锡(ITO)和氧化铟锌(IZO);组合的金属和氧化物如ZnO:Al或SnO2:Sb;或导电聚合物如聚(3-甲基噻吩)、聚[3,4-(亚乙基-1,2-二氧基)噻吩](PEDT)、聚吡咯和聚苯胺,但不限于此。优选包括包含氧化铟锡(铟锡氧化物,indium tin oxide)(ITO)作为阳极的透明电极。
可选地,第一空穴传输层321可以包含一种或者多种空穴传输材料,空穴传输材料可以选自咔唑多聚体、咔唑连接三芳胺类化合物或者其他类型的化合物,本申请对此不做特殊的限定。所述空穴传输材料的具体实例包括但不限于:
在一种具体的实施方式中,所述第一空穴传输层321的材料为HT-4。
可选地,所述第二空穴传输层322的材料选自本申请的有机化合物。
在本申请中,有机发光层330可以由单一发光材料组成,也可以包括主体材料和客体材料。优选有机发光层330由主体材料和客体材料组成,注入有机发光层330的空穴和注入有机发光层330的电子可以在有机发光层330复合而形成激子,激子将能量传递给主体材料,主体材料将能量传递给客体材料,进而使得客体材料能够发光。
有机发光层330的主体材料可以为金属螯合类化合物、双苯乙烯基衍生物、芳香族胺衍生物、二苯并呋喃衍生物或者其他类型的材料。所述主体材料的具体实例包括但不限于以下化合物:

在一种具体的实施方式中,所述主体材料为BH-2。
有机发光层330的客体材料可以为具有缩合芳基环的化合物或其衍生物、具有杂芳基环的化合物或其衍生物、芳香族胺衍生物或者其他材料,本申请对此不做特殊的限制。例如,所述客体材料选自以下化合物中的至少一种:
在一种具体的实施方式中,所述客体材料为BD-3。
本申请中,电子传输层340可以为单层结构,也可以为多层结构,其可以包括一种或者多种电子传输材料。电子传输材料选自但不限于,苯并咪唑衍生物、恶二唑衍生物、喹喔啉衍生物或者其他电子传输材料,例如,电子传输层材料选自LiQ和以下化合物所组成的组:
在一种具体的实施方式中,电子传输层340的材料由LiQ和ET-2组成。
本申请中,阴极200可以包括阴极材料,其是有助于电子注入至功能层中的具有小逸出功的材料。阴极材料的具体实例包括但不限于,金属如镁、钙、钠、钾、钛、铟、钇、锂、钆、铝、银、锡和铅或它们的合金;或多层材料如LiF/Al、Liq/Al、LiO2/Al、LiF/Ca、LiF/Al和BaF2/Ca。优选包括包含镁和银的金属电极作为阴极。
可选地,如图1所示,在阳极100和第一空穴传输层321之间还设置有空穴注入层310,以增强向第一空穴传输层321注入空穴的能力。空穴注入层310可以选用联苯胺衍生物、星爆状芳基胺类化合物、酞菁衍生物或者其他材料,本申请对此不做特殊的限制。例如,空穴注入层310选自以下化合物中的一种或两种以上:
在一种具体的实施方式中,所述空穴注入层310的材料为F4-TCNQ。
可选地,如图1所示,在阴极200和电子传输层340之间还设置有电子注入层350,以增强向电子传输层340注入电子的能力。电子注入层350可以包括有碱金属硫化物、碱金属卤化物等无机材料,或者可以包括碱金属与有机物的络合物。例如,电子注入层350包含LiQ或Yb。
本申请第三方面提供一种电子装置,包含本申请第二方面所述的有机电致发光器件。
按照一种实施方式,如图2所示,所述电子装置为电子装置400,该电子装置400包括上述有机电致发光器件。电子装置400例如可以为显示装置、照明装置、光通讯装置或者其他类型的电子装置,例如可以包括但不限于电脑屏幕、手机屏幕、电视机、电子纸、应急照明灯、光模块等。
下面通过实施例来进一步说明本申请,但是本申请并不因此而受到任何限制。本申请中未提到的合成方法的化合物的都可通过商业途径获得的原料产品。
1、IM AX的合成
以IM A1为例说明IM AX的合成。
(1)将4-联苯硼酸(19.8g,100.00mmol)、2-溴-4-氟硝基苯(22.00g,100.00mmol)、四三苯基膦钯(2.31g,2.00mmol)、四丁基溴化铵(3.22g,10.00mmol)以及碳酸钾(27.6g,200mmol)加入到甲苯(80mL)、乙醇(40mL)和水(20mL)的混合溶剂中,氮气保护下加热至72℃,搅拌反应15h;而后冷却至室温,所得反应液使用水洗后加入硫酸镁干燥,过滤后将滤液减压除去溶剂,得粗品;使用甲苯对粗品进行重结晶(1g粗品∶3mL甲苯)提纯,得到淡黄色的IM A1-1(21.09g,收率:72%)。
(2)将IM A1-1(14.66g,50.00mmol)、三苯基膦(39.34g,150.00mmol)和邻二氯苯(150mL)加入到250mL三口瓶中,氮气保护下加热至160℃,搅拌反应18h;而后冷却至室温,所得反应液使用水洗后,以甲苯萃取,将所得萃取液加入硫酸镁干燥,过滤后将滤液减压除去溶剂,得粗品;使用正庚烷和二氯甲烷对粗品进行重结晶提纯,得到IM A1(9.93g,收率:76%)。
参照IM A1的方法合成表1中其他IM AX,不同的是,以原料1代替4-联苯硼酸,以原料2代替2-溴-4-氟硝基苯,所采用的主要原料、合成的IM AX及其收率如表1所示。
表1


2、IM BX的合成
以IM B1为例说明IM BX的合成。
将IM A1(6.53g,25.00mmol)、3-氯-1-溴苯(4.78g,25.00mmol)、三(二亚苄基丙酮)二钯(0.23g,0.25mmol)、2-二环己基磷-2’,4’,6’-三异丙基联苯(0.24g,0.50mmol)和叔丁醇钠(4.8g,50.0mmol)加入到甲苯(50mL)中,氮气保护下加热至108℃,搅拌反应3h;而后冷却至室温,所得反应液使用水洗,分出的有机相加入硫酸镁干燥,过滤后将滤液减压除去溶剂,得到粗品。使用甲苯对粗品进行重结晶(1g粗品∶6mL甲苯)提纯,得到白色的IM B1(4.83g,收率:52.0%)。
参照IM B1的方法合成表2中其他IM BX,不同的是,以原料3代替IM A1,以原料4代替3-氯-1-溴苯,所合成的IM BX及其收率如表2所示。
表2



合成例1
将IM B1(7.43g,20.00mmol)、原料Sub A(8.23g,20.00mmol)、三(二亚苄基丙酮)二钯(0.18g,0.20mmol)、2-二环己基磷-2’,6’-二甲氧基联苯(0.16g,0.40mmol)和叔丁醇钠(3.85g,40.00mmol)加入到甲苯(100mL)中,氮气保护下加热至105℃,搅拌4h;而后冷却至室温,所得反应液经水洗,分出的有机相加入硫酸镁干燥,过滤后将滤液减压除去溶剂,得粗品;使用甲苯对粗品进行重结晶(1g粗品∶12mL甲苯)提纯,得到白色固体,即化合物1(10.91g,收率:73%),质谱(m/z)=747.3[M+H]+
合成例2-37
参照化合物1的方法合成表3中其他化合物,不同的是,以原料5代替IM B1,以原料6代替Sub A,所采用的主要原料,合成的化合物及其收率和质谱结果如表3所示。
表3





化合物216的核磁数据1H-NMR(400MHz,CD2Cl2)δppm:8.22(d,1H),7.97(d,1H),7.93(d,1H),7.76-7.72(m,2H),7.62(d,2H),7.55-7.51(m,4H),7.50-7.46(m,3H),7.45-7.31(m,8H),7.23(d,1H),7.21(s,1H),7.10(s,1H),7.03(d,1H),6.98(d,1H),6.92(d,1H),6.82(s,1H),6.72(d,2H)。
有机电致发光器件制备及评估
实施例1:蓝色有机电致发光器件
通过以下过程制备有机电致发光器件:将厚度依次为的ITO/Ag/ITO基板切割成40mm(长)×40mm(宽)×0.7mm(厚)的尺寸,采用光刻工序,将其制备成具有阴极搭接区、阳极以及绝缘层图案的实验基板,用紫外臭氧以及O2:N2等离子进行表面处理,以增加阳极的功函数,并采用有机溶剂清洗基板表面,以清除基板表面的杂质及油污。
在实验基板(阳极)上真空蒸镀F4-TCNQ,以形成厚度为的空穴注入层(HIL),并且在空穴注入层上真空蒸镀HT-4,形成厚度为的第一空穴传输层。
在第一空穴传输层上真空蒸镀化合物1,形成厚度为的第二空穴传输层。
在第二空穴传输层上,将BH-2作为主体,按照膜厚比100:3同时掺杂BD-3共同蒸镀,形成厚度为的有机发光层(EML)。
在有机发光层上,将ET-2和LiQ以1:1的膜厚比进行共蒸镀,形成厚度为的电子传输层(ETL),再将Yb蒸镀在电子传输层上以形成厚度为的电子注入层(EIL),然后将镁(Mg)和银(Ag)以1:9的蒸镀速率混合,真空蒸镀在电子注入层上,形成厚度为的阴极。
此外,在上述阴极上蒸镀CP-1,以形成厚度为的有机覆盖层(CPL),从而完成有机电致发光器件的制造。
实施例2-37
除了在形成第二空穴传输层时,分别以下表4中所示的其他化合物(“第二空穴传输层”列)替代化合物1以外,利用与实施例1相同的方法制作有机电致发光器件。
比较例1-3
除了在形成第二空穴传输层时,分别以化合物A、化合物B和化合物C代替化合物1以外,利用与实施例1相同的方法制作有机电致发光器件。
以上实施例和比较例中,所使用的主要材料的结构如下所示。
对上述实施例和比较例所制备的有机电致发光器件进行性能分析,其中,在10mA/cm2的电流密度下分析了器件的IVL性能(电压、色坐标和效率),在20mA/cm2的电流密度下分析器件的T95寿命。结果如表4所示。
表4

结合表4的结果,将实施例1-37和比较例1-3相比,实施例1-37以本申请的有机化合物作为第二空穴传输层(即,电子阻挡层)所制备的有机电致发光器件在保持较低的工作电压的情况下,电流效率至少提高了12.5%,T95寿命至少提高了10.7%。可见,将本申请的化合物作为第二空穴传输层应用到有机电致发光器件中,在维持器件具有较低工作电压下,能进一步提高器件的发光效率和使用寿命。
以上结合附图详细描述了本申请的优选实施方式,但是,本申请并不限于上述实施方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,这些简单变型均属于本申请的保护范围。此外,本申请的各种不同的实施方式之间也可以进行任意组合,只要其不违背本公开的思想,其同样应当视为本申请所公开的内容。

Claims (15)

  1. 有机化合物,其特征在于,该有机化合物具有式1所示的结构:
    其中,X选自O或S;
    Ar选自碳原子数为6-15的取代或未取代的芳基,Ar中的取代基各自独立地选自氘、氰基或碳原子数为1-4的烷基;
    L、L1和L2相同或不同,且各自独立地选自单键、碳原子数为6-30的取代或未取代的亚芳基、碳原子数为5-30的取代或未取代的亚杂芳基;
    Ar1选自碳原子数为6-40的取代或未取代的芳基、碳原子数为5-40的取代或未取代的杂芳基;
    L、L1、L2和Ar1中的取代基以及R1、R2和R3相同或不同,且各自独立地选自氘、氰基、碳原子数为6-18的芳基、碳原子数为5-18的杂芳基、碳原子数为3-12的三烷基硅基、碳原子数为1-10的烷基、碳原子数为1-10的氘代烷基、碳原子数为3-10的环烷基或三苯基硅基;任选地,在Ar1中,任意两个相邻的取代基形成3-15元的饱和或不饱和环;
    n1表示R1的个数,且选自0、1、2、3或4;当n1大于1时,各R1相同或不同;
    n2表示R2的个数,且选自0、1、2或3;当n2大于1时,各R2相同或不同;
    n3表示R3的个数,且选自0、1、2、3或4;当n3大于1时,各R3相同或不同。
  2. 根据权利要求1所述的有机化合物,其中,Ar选自取代或未取代的苯基、取代或未取代的萘基、取代或未取代的联苯基,Ar中的取代基各自独立地选自氘、氰基、甲基、乙基、异丙基或叔丁基。
  3. 根据权利要求1所述的有机化合物,其中,Ar选自以下基团所组成的组:
  4. 根据权利要求1所述的有机化合物,其中,L、L1和L2相同或不同,且各自独立地选自单键、碳原子数为6-18的取代或未取代的亚芳基、碳原子数为12-18的取代或未取代的亚杂芳基;
    可选地,L、L1和L2中的取代基各自独立地选自氘、氰基、碳原子数为6-12的芳基、碳原子数为5-12的杂芳基、碳原子数为3-7的三烷基硅基或碳原子数为1-4的烷基。
  5. 根据权利要求1所述的有机化合物,其中,L、L1和L2相同或不同,且各自独立地选自单键、取代或未取代的基团Z,未取代的基团Z选自以下基团所组成的组:
    取代的基团Z中的取代基各自独立地选自氘、氰基、甲基、乙基、异丙基、叔丁基、三甲基硅基、苯基或萘基,当取代基的个数大于1时,各取代基相同或不同。
  6. 根据权利要求1所述的有机化合物,其中,L和L2各自独立地选自单键或以下基团所组成的组:
    L1选自单键或以下基团所组成的组:
  7. 根据权利要求1所述的有机化合物,其中,Ar1选自碳原子数为6-25的取代或未取代的芳基、碳原子数为12-25的取代或未取代的杂芳基;
    可选地,Ar1中的取代基各自独立地选自氘、氰基、碳原子数为6-12的芳基、碳原子数为5-12的杂芳基、碳原子数为3-7的三烷基硅基、碳原子数为1-4的烷基、碳原子数为1-4的氘代烷基或碳原子数为5-10的环烷基;任选地,在Ar1中,任意两个相邻的取代基形成5-15元的饱和或不饱和环。
  8. 根据权利要求1所述的有机化合物,其中,Ar1选自取代或未取代的基团W,未取代的基团W选自以下基团所组成的组:
    取代的基团W中的取代基各自独立地选自氘、氰基、甲基、乙基、异丙基、叔丁基、三氘代甲基、三甲基硅基、苯基或萘基,当取代基的个数大于1时,各取代基相同或不同。
  9. 根据权利要求1所述的有机化合物,其中,Ar1选自以下基团所组成的组:
  10. 根据权利要求1所述的有机化合物,其中,选自以下基团所组成的组:

  11. 根据权利要求1所述的有机化合物,其中,R1、R2和R3相同或不同,各自独立地选自:氘、氰基、甲基、乙基、异丙基、叔丁基、三氘代甲基、苯基或萘基。
  12. 根据权利要求1所述的有机化合物,其中,所述有机化合物选自以下化合物所组成的组:












  13. 有机电致发光器件,包括阳极、阴极,以及设置在所述阳极和阴极之间的功能层,其特征在于,所述功能层包含权利要求1-12中任一项所述的有机化合物。
  14. 根据权利要求13所述的有机电致发光器件,其中,所述功能层包括空穴传输层,所述空穴传输层包含所述有机化合物;
    可选地,所述空穴传输层包括第一空穴传输层和第二空穴传输层,且相对所述第二空穴传输层,所述第一空穴传输层更靠近所述阳极,其中,所述第二空穴传输层包含所述有机化合物。
  15. 电子装置,包括权利要求13或14所述的有机电致发光器件。
PCT/CN2023/099554 2022-09-15 2023-06-09 有机化合物和有机电致发光器件及电子装置 WO2024055648A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211121384.3 2022-09-15
CN202211121384.3A CN116854673A (zh) 2022-09-15 2022-09-15 有机化合物和有机电致发光器件及电子装置

Publications (1)

Publication Number Publication Date
WO2024055648A1 true WO2024055648A1 (zh) 2024-03-21

Family

ID=88217738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/099554 WO2024055648A1 (zh) 2022-09-15 2023-06-09 有机化合物和有机电致发光器件及电子装置

Country Status (2)

Country Link
CN (1) CN116854673A (zh)
WO (1) WO2024055648A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014030921A1 (en) * 2012-08-21 2014-02-27 Rohm And Haas Electronic Materials Korea Ltd. Novel organic electroluminescence compounds and organic electroluminescence device containing the same
KR20160052136A (ko) * 2014-11-04 2016-05-12 덕산네오룩스 주식회사 유기전기소자용 조성물을 이용한 디스플레이 장치 및 유기전기소자
KR20160054855A (ko) * 2014-11-07 2016-05-17 덕산네오룩스 주식회사 유기전기소자용 조성물을 이용한 디스플레이 장치 및 유기전기소자
CN111032652A (zh) * 2018-05-11 2020-04-17 株式会社Lg化学 含氮的环状化合物和包含其的颜色转换膜
CN113511996A (zh) * 2021-07-20 2021-10-19 陕西莱特光电材料股份有限公司 有机电致发光材料、电子元件及电子装置
CN113683603A (zh) * 2021-03-24 2021-11-23 陕西莱特光电材料股份有限公司 一种有机化合物及包含其的电子器件和电子装置
WO2022028334A1 (zh) * 2020-08-05 2022-02-10 陕西莱特光电材料股份有限公司 含氮化合物以及包含其的电子元件和电子装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014030921A1 (en) * 2012-08-21 2014-02-27 Rohm And Haas Electronic Materials Korea Ltd. Novel organic electroluminescence compounds and organic electroluminescence device containing the same
KR20160052136A (ko) * 2014-11-04 2016-05-12 덕산네오룩스 주식회사 유기전기소자용 조성물을 이용한 디스플레이 장치 및 유기전기소자
KR20160054855A (ko) * 2014-11-07 2016-05-17 덕산네오룩스 주식회사 유기전기소자용 조성물을 이용한 디스플레이 장치 및 유기전기소자
CN111032652A (zh) * 2018-05-11 2020-04-17 株式会社Lg化学 含氮的环状化合物和包含其的颜色转换膜
WO2022028334A1 (zh) * 2020-08-05 2022-02-10 陕西莱特光电材料股份有限公司 含氮化合物以及包含其的电子元件和电子装置
CN113683603A (zh) * 2021-03-24 2021-11-23 陕西莱特光电材料股份有限公司 一种有机化合物及包含其的电子器件和电子装置
CN113511996A (zh) * 2021-07-20 2021-10-19 陕西莱特光电材料股份有限公司 有机电致发光材料、电子元件及电子装置

Also Published As

Publication number Publication date
CN116854673A (zh) 2023-10-10

Similar Documents

Publication Publication Date Title
WO2021135207A1 (zh) 含氮化合物、电子元件和电子装置
WO2022089428A1 (zh) 含氮化合物、包含其的电子元件和电子装置
WO2022206055A1 (zh) 有机电致发光材料、电子元件及电子装置
WO2022262365A1 (zh) 有机化合物及包含其的电子元件和电子装置
WO2022213905A1 (zh) 有机化合物以及使用其的电子元件和电子装置
WO2023011028A1 (zh) 有机化合物、电子元件及电子装置
WO2022088865A1 (zh) 含氮化合物、电子元件和电子装置
WO2023045729A1 (zh) 含氮化合物及电子元件和电子装置
CN114133333B (zh) 含氮化合物、电子元件和电子装置
WO2021233311A1 (zh) 有机化合物以及使用其的电子元件和电子装置
WO2022042267A1 (zh) 含氮化合物、电子元件和电子装置
WO2022089093A1 (zh) 含氮化合物、电子元件和电子装置
WO2022222646A1 (zh) 含氮化合物、电子元件和电子装置
WO2024055658A1 (zh) 含氮化合物和电子元件及电子装置
WO2023207375A1 (zh) 含氮化合物和电子元件及电子装置
WO2024087586A1 (zh) 有机化合物及包含其的电子元件和电子装置
WO2023273416A1 (zh) 有机化合物、有机电致发光器件和电子装置
WO2022100194A1 (zh) 含氮化合物、有机电致发光器件和电子装置
WO2024078287A1 (zh) 有机化合物、有机电致发光器件和电子装置
WO2024037073A1 (zh) 含氮化合物、电子元件和电子装置
WO2023202198A1 (zh) 有机材料、电子元件和电子装置
WO2023231531A1 (zh) 含氮化合物、有机电致发光器件和电子装置
WO2023216669A1 (zh) 有机化合物、有机电致发光器件和电子装置
WO2023185078A1 (zh) 有机化合物和电子元件及电子装置
WO2024007511A1 (zh) 芳胺化合物及有机电致发光器件和电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23864387

Country of ref document: EP

Kind code of ref document: A1