WO2023011028A1 - 有机化合物、电子元件及电子装置 - Google Patents

有机化合物、电子元件及电子装置 Download PDF

Info

Publication number
WO2023011028A1
WO2023011028A1 PCT/CN2022/100251 CN2022100251W WO2023011028A1 WO 2023011028 A1 WO2023011028 A1 WO 2023011028A1 CN 2022100251 W CN2022100251 W CN 2022100251W WO 2023011028 A1 WO2023011028 A1 WO 2023011028A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
unsubstituted
carbon atoms
independently selected
Prior art date
Application number
PCT/CN2022/100251
Other languages
English (en)
French (fr)
Inventor
贾志艳
张鹤鸣
李应文
金荣国
Original Assignee
陕西莱特光电材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 陕西莱特光电材料股份有限公司 filed Critical 陕西莱特光电材料股份有限公司
Publication of WO2023011028A1 publication Critical patent/WO2023011028A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/54Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to two or three six-membered aromatic rings
    • C07C211/56Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to two or three six-membered aromatic rings the carbon skeleton being further substituted by halogen atoms or by nitro or nitroso groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/57Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton
    • C07C211/58Naphthylamines; N-substituted derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/57Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton
    • C07C211/61Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton with at least one of the condensed ring systems formed by three or more rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/49Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
    • C07C255/58Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton containing cyano groups and singly-bound nitrogen atoms, not being further bound to other hetero atoms, bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/86Carbazoles; Hydrogenated carbazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/88Carbazoles; Hydrogenated carbazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/91Dibenzofurans; Hydrogenated dibenzofurans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/50Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D333/76Dibenzothiophenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/12Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/12Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/081Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/624Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing six or more rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/05Isotopically modified compounds, e.g. labelled
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/06Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members
    • C07C2603/10Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings
    • C07C2603/12Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings only one five-membered ring
    • C07C2603/18Fluorenes; Hydrogenated fluorenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/22Ortho- or ortho- and peri-condensed systems containing three rings containing only six-membered rings
    • C07C2603/26Phenanthrenes; Hydrogenated phenanthrenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/40Ortho- or ortho- and peri-condensed systems containing four condensed rings
    • C07C2603/42Ortho- or ortho- and peri-condensed systems containing four condensed rings containing only six-membered rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/93Spiro compounds
    • C07C2603/94Spiro compounds containing "free" spiro atoms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present application belongs to the technical field of organic materials, and specifically provides an organic compound, an electronic component and an electronic device.
  • Such electronic components generally include a cathode and an anode oppositely arranged, and a functional layer arranged between the cathode and the anode.
  • the functional layer is composed of multiple organic or inorganic film layers, and generally includes an energy conversion layer, a hole transport layer located between the energy conversion layer and the anode, and an electron transport layer located between the energy conversion layer and the cathode.
  • an organic electroluminescent device as an example, it generally includes an anode, a hole transport layer, an organic light emitting layer, an electron transport layer and a cathode which are stacked in sequence.
  • the two electrodes When a voltage is applied to the cathode and anode, the two electrodes generate an electric field. Under the action of the electric field, the electrons on the cathode side move to the electroluminescent layer, and the holes on the anode side also move to the light-emitting layer. The electrons and holes combine to form in the organic light-emitting layer.
  • Excitons the excitons are in an excited state and release energy to the outside, thereby making the organic light-emitting layer emit light to the outside.
  • the organic electroluminescent element when driven or stored in a high-temperature environment, the organic electroluminescent element has adverse effects such as a change in light color, a decrease in luminous efficiency, an increase in driving voltage, and a shortening of the luminous lifetime.
  • Tg glass transition temperature
  • the currently reported hole transport layer materials generally have a small molecular weight, and the glass transition temperature of the material is low; during the use of the material, repeated charge and discharge will make the material easy to crystallize and the uniformity of the film will be destroyed, thereby affecting the service life of the material.
  • the purpose of this application is to provide an organic compound, an electronic component and an electronic device, and the use of the organic compound in an organic electroluminescent device can improve the performance of the device.
  • the first aspect of the present application provides an organic compound having a structure represented by formula I:
  • Ar 1 and Ar 2 are the same or different, and each is independently selected from a substituted or unsubstituted aryl group with 6 to 40 carbon atoms, a substituted or unsubstituted heteroaryl group with 3 to 30 carbon atoms;
  • L 1 and L 2 are the same or different, and each is independently selected from a single bond, a substituted or unsubstituted arylene group with 6 to 30 carbon atoms, a substituted or unsubstituted heterogeneous group with 3 to 30 carbon atoms Aryl;
  • the substituents in Ar 1 , Ar 2 , L 1 , and L 2 are the same or different, and are independently selected from deuterium, halogen groups, cyano groups, trialkylsilyl groups with 3 to 12 carbon atoms, and carbon atoms
  • the second aspect of the present application provides an electronic component, comprising an anode and a cathode disposed opposite to each other, and a functional layer disposed between the anode and the cathode; wherein the functional layer contains the above-mentioned organic compound.
  • a third aspect of the present application provides an electronic device, including the electronic component of the second aspect.
  • the organic compound of the present application uses 1,8-diphenyl substituted naphthyl as the core, the benzene at the 1st position of the naphthyl is connected to the fluorine atom (F), and the benzene at the 8th position is connected to the triarylamine structure.
  • the 1,8-diphenyl-substituted naphthyl has a large steric hindrance, which adjusts the spatial configuration of the molecule, can effectively avoid the stacking between molecules, and improve the film-forming property.
  • the electron distribution effect of this group can also be improved. hole mobility.
  • the benzene-linked F on the 1st position has a higher electronegativity, which makes the HOMO energy level and LUMO energy level of the compound can be better separated, ensuring that the material has a higher T 1 value.
  • the F atom has a smaller van der Waals radius and smaller steric hindrance, which can enhance the non-covalent interaction with the H atom and further improve the intermolecular aggregation, thereby ensuring the device has a higher hole mobility, and It can effectively block electrons and excitons from entering the hole transport layer.
  • the organic compound of the present application is applied to an organic electroluminescent device, which can simultaneously improve the luminous efficiency and service life of the device.
  • Fig. 1 is a schematic structural view of an organic electroluminescence device according to an embodiment of the present application.
  • Fig. 2 is a schematic diagram of a first electronic device according to an embodiment of the present application.
  • Fig. 3 is a schematic structural view of a photoelectric conversion device according to an embodiment of the present application.
  • Fig. 4 is a schematic diagram of a second electronic device according to an embodiment of the present application.
  • Example embodiments will now be described more fully with reference to the accompanying drawings.
  • Example embodiments may, however, be embodied in many forms and should not be construed as limited to the examples set forth herein; rather, these embodiments are provided so that this application will be thorough and complete and will fully convey the concept of example embodiments communicated to those skilled in the art.
  • the described features, structures, or characteristics may be combined in any suitable manner in one or more embodiments. In the following description, numerous specific details are provided in order to give a thorough understanding of embodiments of the present application.
  • the present application provides an organic compound having a structure represented by formula I:
  • Ar 1 and Ar 2 are the same or different, and each is independently selected from a substituted or unsubstituted aryl group with 6 to 40 carbon atoms, a substituted or unsubstituted heteroaryl group with 3 to 30 carbon atoms;
  • L 1 and L 2 are the same or different, and each is independently selected from a single bond, a substituted or unsubstituted arylene group with 6 to 30 carbon atoms, a substituted or unsubstituted heterogeneous group with 3 to 30 carbon atoms Aryl;
  • the substituents in Ar 1 , Ar 2 , L 1 , and L 2 are the same or different, and are independently selected from deuterium, halogen groups, cyano groups, trialkylsilyl groups with 3 to 12 carbon atoms, and carbon atoms
  • any two adjacent substituents form a ring means that these two substituents can form a ring but not necessarily form a ring, including: the situation where two adjacent substituents form a ring and two A situation where adjacent substituents do not form a ring.
  • any two adjacent substituents form a substituted or unsubstituted 3-15 membered ring
  • any two phase Adjacent substituents may be connected to each other to form a 3- to 15-membered ring, or in Ar 1 and Ar 2 , any two adjacent substituents may exist independently without forming a ring.
  • Any two adjacent may include two substituents on the same atom, and may also include one substituent on two adjacent atoms; wherein, when there are two substituents on the same atom, the two Two substituents can form a saturated or unsaturated ring with the atom to which they are jointly attached; when two adjacent atoms each have a substituent, the two substituents can be fused to form a ring.
  • each q is independently 0, 1, 2 or 3
  • each R" is independently selected from hydrogen, deuterium, fluorine, chlorine
  • its meaning is:
  • Formula Q-1 represents that there are q substituents R" on the benzene ring , each R" can be the same or different, and the options of each R" do not affect each other;
  • Formula Q-2 means that there are q substituents R" on each benzene ring of biphenyl, and the R on the two benzene rings
  • the number q of "substituents may be the same or different, and each R" may be the same or different, and the options of each R" do not affect each other.
  • substituted or unsubstituted means that the functional group described after the term may or may not have a substituent (hereinafter, for convenience of description, the substituent is collectively referred to as Rc).
  • substituted or unsubstituted aryl refers to an aryl group having a substituent Rc or an aryl group having no substituent.
  • substituent ie Rc
  • Rc can be, for example, deuterium, halogen, cyano, heteroaryl, aryl, alkyl, trialkylsilyl, haloalkyl and the like.
  • the number of carbon atoms in a substituted or unsubstituted functional group refers to the number of all carbon atoms. For example, if L 1 is a substituted arylene group with 12 carbon atoms, all the carbon atoms of the arylene group and the substituents thereon are 12.
  • aryl refers to an optional functional group or substituent derived from an aromatic carbocycle.
  • the aryl group can be a single-ring aryl group (such as phenyl) or a polycyclic aryl group, in other words, the aryl group can be a single-ring aryl group, a condensed ring aryl group, two or more single-ring aryl groups connected by carbon-carbon bond conjugation. Cyclic aryl groups, single-ring aryl groups and condensed-ring aryl groups connected through carbon-carbon bond conjugation, and two or more fused-ring aryl groups connected through carbon-carbon bond conjugation.
  • the fused ring aryl group may include, for example, a bicyclic fused aryl group (eg, naphthyl), a tricyclic fused aryl group (eg, phenanthrenyl, fluorenyl, anthracenyl) and the like.
  • the aryl group does not contain heteroatoms such as B, N, O, S, P, Se and Si.
  • biphenyl, terphenyl, etc. are aryl groups.
  • aryl groups may include, but are not limited to, phenyl, naphthyl, fluorenyl, anthracenyl, phenanthrenyl, biphenyl, terphenyl, benzo[9,10]phenanthrenyl, pyrenyl, benzofluoranthene base, Base etc.
  • the arylene group referred to refers to a divalent group formed by further losing a hydrogen atom from an aryl group.
  • the substituted aryl group can be that one or more than two hydrogen atoms in the aryl group are replaced by such as a deuterium atom, a halogen group, -CN, an aryl group, a heteroaryl group, a trialkylsilyl group, an alkyl group, a ring Alkyl, haloalkyl and other groups are substituted.
  • heteroaryl-substituted aryl groups include, but are not limited to, dibenzofuryl-substituted phenyl groups, dibenzothiophene-substituted phenyl groups, pyridine-substituted phenyl groups, and the like.
  • the number of carbon atoms in a substituted aryl group refers to the total number of carbon atoms in the aryl group and the substituent on the aryl group, for example, a substituted aryl group with 18 carbon atoms refers to the aryl group and the substituted The total number of carbon atoms in the group is 18.
  • heteroaryl refers to a monovalent aromatic ring or its derivatives containing at least one heteroatom in the ring, and the heteroatom can be at least one of B, O, N, P, Si, Se and S.
  • the heteroaryl group can be a monocyclic heteroaryl group or a polycyclic heteroaryl group, in other words, a heteroaryl group can be a single aromatic ring system, or a plurality of aromatic ring systems connected by carbon-carbon bond conjugation, and any aromatic
  • the ring system is an aromatic single ring or an aromatic fused ring.
  • heteroaryl groups may include thienyl, furyl, pyrrolyl, imidazolyl, thiazolyl, oxazolyl, oxadiazolyl, triazolyl, pyridyl, bipyridyl, pyrimidyl, triazinyl, Acridyl, pyridazinyl, pyrazinyl, quinolinyl, quinazolinyl, quinoxalinyl, phenoxazinyl, phthalazinyl, pyridopyrimidinyl, pyridopyrazinyl, pyrazinopyridine Azinyl, isoquinolyl, indolyl, carbazolyl, benzoxazolyl, benzimidazolyl, benzothiazolyl, benzocarbazolyl, benzothienyl, dibenzothienyl, thiophene Thienyl, benzofuryl, phen
  • thienyl, furyl, phenanthrolinyl, etc. are heteroaryl groups of a single aromatic ring system type, and N-phenylcarbazolyl and N-pyridylcarbazolyl are polycyclic rings linked by carbon-carbon bonds. System type heteroaryl.
  • the heteroarylene referred to refers to a divalent group formed by further loss of a hydrogen atom from the heteroaryl group.
  • the substituted heteroaryl group can be one or more than two hydrogen atoms in the heteroaryl group replaced by such as deuterium atom, halogen group, -CN, aryl group, heteroaryl group, trialkylsilyl group, alkyl group , cycloalkyl, haloalkyl and other groups are substituted.
  • aryl-substituted heteroaryl groups include, but are not limited to, phenyl-substituted dibenzofuryl, phenyl-substituted dibenzothienyl, phenyl-substituted pyridyl, and the like. It should be understood that the number of carbon atoms in a substituted heteroaryl group refers to the total number of carbon atoms in the heteroaryl group and the substituents on the heteroaryl group.
  • the alkyl group having 1 to 10 carbon atoms may include straight chain alkyl groups having 1 to 10 carbon atoms and branched chain alkyl groups having 3 to 10 carbon atoms.
  • the number of carbon atoms of the alkyl group is, for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.
  • alkyl group examples include, but are not limited to, methyl, ethyl, n-propyl, isopropyl Base, n-butyl, isobutyl, tert-butyl, n-pentyl, isopentyl, neopentyl, n-hexyl, n-heptyl, n-octyl, 2-ethylhexyl, nonyl, decyl, 3 ,7-Dimethyloctyl and so on.
  • the halogen group may be, for example, fluorine, chlorine, bromine, or iodine.
  • trialkylsilyl groups include, but are not limited to, trimethylsilyl groups, triethylsilyl groups, and the like.
  • haloalkyl examples include, but are not limited to, trifluoromethyl.
  • the number of carbon atoms of the cycloalkyl group having 3 to 10 carbon atoms may be 3, 4, 5, 6, 7, 8, 9, or 10, for example.
  • Specific examples of cycloalkyl include, but are not limited to, cyclopentyl, cyclohexyl, adamantyl.
  • the number of carbon atoms of the aryl group as a substituent may be 6 to 20, for example, the number of carbon atoms is 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 , 19, 20, specific examples include but are not limited to phenyl, biphenyl, naphthyl, anthracenyl, phenanthrenyl, base, fluorenyl.
  • the number of carbon atoms of the heteroaryl group as a substituent can be 3 to 20, for example, the number of carbon atoms is 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, specific examples include but are not limited to pyridyl, pyrimidyl, carbazolyl, dibenzofuryl, dibenzothienyl, quinolinyl, quinazolinyl, quinolyl Oxalinyl, isoquinolinyl.
  • a non-positioning linkage refers to a single bond protruding from the ring system It means that one end of the link can be connected to any position in the ring system that the bond runs through, and the other end is connected to the rest of the compound molecule.
  • the naphthyl group represented by the formula (f) is connected to other positions of the molecule through two unpositioned linkages that run through the bicyclic ring, and the meanings represented include the formula (f -1) to any possible connection shown in formula (f-10):
  • the dibenzofuryl group represented by the formula (X') is connected to other positions of the molecule through a non-positioning linkage extending from the middle of the benzene ring on one side.
  • the meanings indicated include any possible connection methods shown in formula (X'-1) ⁇ formula (X'-4):
  • Ar 1 and Ar 2 are each independently selected from a substituted or unsubstituted aryl group having 6-33 carbon atoms, and a substituted or unsubstituted heteroaryl group having 5-20 carbon atoms.
  • Ar 1 and Ar 2 are each independently selected from the group consisting of 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33 substituted or unsubstituted aryl groups, the number of carbon atoms is 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 substituted or unsubstituted heteroaryl.
  • the substituents in Ar 1 and Ar 2 are each independently selected from deuterium, fluorine, cyano, trialkylsilyl with 3 to 6 carbon atoms, haloalkyl with 1 to 5 carbon atoms, An alkyl group with 1 to 5 carbon atoms, an aryl group with 6 to 12 carbon atoms or a heteroaryl group with 5 to 12 carbon atoms; optionally, any two phases in Ar 1 and Ar 2
  • the adjacent substituents form a substituted or unsubstituted 5-13-membered ring; the substituents in the 5-13-membered ring are independently selected from deuterium, fluorine, cyano, trimethylsilyl, trifluoromethyl, methyl radical, ethyl, isopropyl or tert-butyl.
  • Ar and Ar are each independently selected from substituted or unsubstituted phenyl, substituted or unsubstituted naphthyl, substituted or unsubstituted biphenyl, substituted or unsubstituted fluorenyl, substituted or unsubstituted Substituted dibenzofuryl, substituted or unsubstituted pyridyl, substituted or unsubstituted dibenzothienyl, substituted or unsubstituted carbazolyl, substituted or unsubstituted phenanthrenyl, substituted or unsubstituted triethylene phenyl.
  • the substituents in Ar and Ar are selected from deuterium, fluorine, cyano, trimethylsilyl, trifluoromethyl, methyl, ethyl, isopropyl, tert-butyl, phenyl, naphthalene or biphenyl; optionally, in Ar 1 and Ar 2 , any two adjacent substituents form cyclopentane Cyclohexane Fluorene ring or tert-butyl substituted fluorene rings (e.g. ).
  • Ar and Ar are each independently selected from a substituted or unsubstituted group W , and the unsubstituted group W is selected from the following groups:
  • the substituted group W has one or more than two substituents independently selected from deuterium, fluorine, cyano, trimethylsilyl, trifluoromethyl, methyl, ethyl, Isopropyl, tert-butyl, phenyl, naphthyl or biphenyl, and when the number of substituents is more than 1, each substituent is the same or different.
  • Ar 1 and Ar 2 are each independently selected from Preferably, Ar 1 is Ar 2 is In this case, the application of the organic compound to an organic light-emitting device can further improve the service life of the device.
  • Ar and Ar are each independently selected from the following groups:
  • Ar 1 and Ar 2 are each independently selected from the following groups:
  • L and L are each independently selected from a single bond, a substituted or unsubstituted arylene group with 6 to 12 carbon atoms, a substituted or unsubstituted arylene group with 5 to 12 carbon atoms heteroaryl.
  • L and L are each independently selected from single bonds, substituted or unsubstituted arylene groups with 6, 7, 8, 9, 10, 11, and 12 carbon atoms, and 5, 6, or 12 carbon atoms. 7, 8, 9, 10, 11, 12 substituted or unsubstituted heteroarylene.
  • the substituents in L1 and L2 are each independently selected from deuterium, fluorine, cyano, trialkylsilyl with 3 to 6 carbon atoms, alkyl with 1 to 5 carbon atoms, carbon A haloalkyl group or a phenyl group having 1 to 5 atoms.
  • L and L are each independently selected from a single bond, substituted or unsubstituted phenylene, substituted or unsubstituted naphthylene, substituted or unsubstituted biphenylene.
  • the substituents in L and L are each independently selected from deuterium, fluorine, cyano, trimethylsilyl, methyl, ethyl, isopropyl, tert-butyl, trifluoromethyl, benzene base or naphthyl.
  • L and L are each independently selected from a single bond, or a substituted or unsubstituted group V, and the unsubstituted group V is selected from the following groups:
  • the substituted group V has one or more than two substituents independently selected from methyl, ethyl, isopropyl, tert-butyl or phenyl, and when the number of substituents is greater than When 1, each substituent is the same or different.
  • L 1 and L 2 are each independently selected from a single bond or the group consisting of the following groups:
  • L1 and L2 are each independently selected from a single bond or the group consisting of the following groups:
  • the organic compound is selected from the group consisting of the following compounds:
  • the present application provides an electronic component, comprising an anode and a cathode disposed opposite to each other, and a functional layer disposed between the anode and the cathode; the functional layer includes the organic compound of the present application.
  • the electronic component is an organic electroluminescent device or a photoelectric conversion device.
  • the functional layer includes a hole transport layer, and the hole transport layer contains the organic compound of the present application.
  • the hole transport layer includes a first hole transport layer and a second hole transport layer, and the first hole transport layer is closer to the anode than the second hole transport layer , wherein the second hole transport layer comprises the organic compound of the present application.
  • the electronic component may be an organic electroluminescent device.
  • an organic electroluminescent device may include an anode 100 , a first hole transport layer 321 , a second hole transport layer 322 , an organic light-emitting layer 330 , an electron transport layer 340 and a cathode 200 stacked up.
  • the first hole transport layer 321 and the second hole transport layer 322 constitute the hole transport layer 320 .
  • the anode 100 includes the following anode material, which is preferably a material with a large work function (work function) that facilitates hole injection into the functional layer.
  • anode materials include: metals such as nickel, platinum, vanadium, chromium, copper, zinc and gold or their alloys; metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO) and indium zinc oxide (IZO); Combined metals and oxides such as ZnO:Al or SnO 2 :Sb; or conducting polymers such as poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene ](PEDT), polypyrrole and polyaniline, but not limited thereto. It preferably includes a transparent electrode comprising indium tin oxide (ITO) as an anode.
  • ITO indium tin oxide
  • the first hole transport layer 321 includes one or more hole transport materials, and the hole transport materials can be selected from carbazole polymers, carbazole-linked triarylamine compounds, or other types of compounds.
  • the first hole transport layer 321 may be composed of the compound NPB, and the second hole transport layer 322 may contain the compound of the present application.
  • the organic light-emitting layer 330 may be composed of a single light-emitting layer material, or may include a host material and a dopant material.
  • the organic light-emitting layer 330 is composed of a host material and a dopant material. The holes injected into the organic light-emitting layer 330 and the electrons injected into the organic light-emitting layer 330 can recombine in the organic light-emitting layer 330 to form excitons, and the excitons transfer energy To the host material, the host material transfers energy to the dopant material, thereby enabling the dopant material to emit light.
  • the host material of the organic light-emitting layer 330 may be metal chelate compounds, bistyryl derivatives, aromatic amine derivatives, dibenzofuran derivatives or other types of materials, which are not particularly limited in this application.
  • the host material of the organic light emitting layer 330 is RH-1.
  • the dopant material of the organic light-emitting layer 330 may be a compound with a condensed aryl ring or its derivatives, a compound with a heteroaryl ring or its derivatives, an aromatic amine derivative, or other materials, and this application does not make a special statement about it. limits.
  • the dopant material of the organic light emitting layer 330 is Ir(piq) 2 (acac).
  • the electron transport layer 340 can be a single-layer structure or a multilayer structure, and it can include one or more electron transport materials.
  • the electron transport material can be selected from but not limited to, ET-1, TPBi, LiQ, benzimidazole Derivatives, oxadiazole derivatives, quinoxaline derivatives or other electron transport materials.
  • the cathode 200 may include a cathode material, which is a material with a small work function that facilitates electron injection into the functional layer.
  • cathode materials include, but are not limited to, metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin, and lead or alloys thereof; or multilayer materials such as LiF/Al , Liq/Al, LiO 2 /Al, LiF/Ca, LiF/Al, and BaF 2 /Ca.
  • a metal electrode comprising magnesium and silver is preferably included as the cathode.
  • a hole injection layer 310 may be disposed between the anode 100 and the first hole transport layer 321 to enhance the ability to inject holes into the first hole transport layer 321 .
  • the hole injection layer 310 can be selected from benzidine derivatives, starburst arylamine compounds, phthalocyanine derivatives or other materials, which are not particularly limited in this application.
  • the hole injection layer 310 may consist of HAT-CN.
  • an electron injection layer 350 may be disposed between the cathode 200 and the electron transport layer 340 to enhance the ability to inject electrons into the electron transport layer 340 .
  • the electron injection layer 350 may include inorganic materials such as alkali metal sulfides and alkali metal halides, or may include complexes of alkali metals and organic compounds.
  • the electron injection layer 350 may include Yb.
  • the organic electroluminescence device is a red light device.
  • the electronic component is a photoelectric conversion device.
  • the photoelectric conversion device may include an anode 100 and a cathode 200 disposed opposite to each other, and a functional layer 300 disposed between the anode 100 and the cathode 200; the functional layer 300 includes the organic compound provided in this application.
  • the photoelectric conversion device may include an anode 100 , a hole transport layer 320 , a photoelectric conversion layer 360 , an electron transport layer 340 and a cathode 200 which are sequentially stacked.
  • the hole transport layer contains the organic compound of the present application.
  • the photoelectric conversion device may be a solar cell, especially an organic thin film solar cell.
  • a solar cell includes an anode, a hole transport layer, a photoelectric conversion layer, an electron transport layer, and a cathode that are sequentially stacked, wherein the hole transport layer contains the organic compound.
  • the present application provides an electronic device, including the electronic component provided in the second aspect of the present application.
  • the electronic device is a first electronic device 400
  • the first electronic device 400 includes the above-mentioned organic electroluminescent device.
  • the first electronic device 400 may be, for example, a display device, a lighting device, an optical communication device or other types of electronic devices, such as but not limited to computer screens, mobile phone screens, televisions, electronic paper, emergency lights, optical modules, etc.
  • the electronic device is a second electronic device 500, and the second electronic device 500 includes the above-mentioned photoelectric conversion device.
  • the second electronic device 500 may be, for example, a solar power generation device, a light detector, a fingerprint identification device, an optical module, a CCD camera or other types of electronic devices.
  • the compounds of the synthetic methods not mentioned in this application are all raw material products obtained through commercial channels.
  • IMA-x listed in Table 1 is synthesized with reference to the method of IMA-1, the difference is that raw material 1 is used to replace 1-bromo-8-(2-fluorophenyl)naphthalene, raw material 2 is used to replace 4-aminophenylboronic acid, Wherein, the main raw material used, the synthetic intermediate and its yield are shown in Table 1.
  • Embodiment 1 red organic electroluminescent device
  • the ITO/Ag/ITO substrate manufactured by Corning
  • HIL hole injection layer
  • HTL first hole transport layer
  • Compound 13 is vacuum evaporated on the first hole transport layer to form a thickness of the second hole transport layer.
  • RH-1 and Ir(piq) 2 were co-evaporated with a 95%:5% evaporation ratio to form a thickness of organic light-emitting layer (R-EML).
  • ET-1 and LiQ were co-evaporated with a 1:1 evaporation ratio to form a thickness of The electron transport layer (ETL), and then Yb is evaporated on the electron transport layer to form a thickness of Electron injection layer (EIL), and then magnesium (Mg) and silver (Ag) were vacuum evaporated on the electron injection layer with a deposition rate of 1:9 to form a thickness of of the cathode.
  • An organic electroluminescent device was fabricated using the same method as in Example 1, except that compounds shown in Table 5 below were used instead of Compound 13 when forming the second hole transport layer.
  • An organic electroluminescent device was fabricated by the same method as in Example 1, except that Compound A, Compound B, Compound C, Compound D, and Compound E were used instead of Compound 13 when forming the second hole transport layer.
  • the performance of the organic electroluminescent devices of Examples 1-55 is improved; specifically, the organic electroluminescent devices of Examples 1-55 Compared with the comparative example, the current efficiency of the luminescent device is increased by at least 15.9%, and the lifetime is increased by at least 12.2%. Therefore, using the organic compound of the present application as the second hole-transporting layer of an organic electroluminescent device has the advantages of improving the current efficiency and service life while maintaining a low operating voltage.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明涉及一种有机化合物、电子元件及电子装置。本发明的有机化合物结构式如式(I)表示,所述有机化合物应用于有机电致发光器件中,可显著改善器件的性能。

Description

有机化合物、电子元件及电子装置
相关申请的交叉引用
本申请要求于2021年8月6日递交的申请号为CN202110901145.9的中国专利申请的优先权,上述中国专利申请的全部内容通过引用并入本申请中。
技术领域
本申请属于有机材料技术领域,具体提供一种有机化合物、电子元件及电子装置。
背景技术
随着电子技术的发展和材料科学的进步,用于实现电致发光或者光电转化的电子元器件的应用范围越来越广泛。该类电子元器件通常包括相对设置的阴极和阳极,以及设置于阴极和阳极之间的功能层。该功能层由多层有机或者无机膜层组成,且一般包括能量转化层、位于能量转化层与阳极之间的空穴传输层、位于能量转化层与阴极之间的电子传输层。
以有机电致发光器件为例,其一般包括依次层叠设置的阳极、空穴传输层、有机发光层、电子传输层和阴极。当阴阳两极施加电压时,两电极产生电场,在电场的作用下,阴极侧的电子向电致发光层移动,阳极侧的空穴也向发光层移动,电子和空穴在有机发光层结合形成激子,激子处于激发态向外释放能量,进而使得有机发光层对外发光。
通常,在高温环境下驱动或保管有机电致发光元件时,有机电致发光元件会产生光颜色的变化、发光效率的降低、驱动电压的升高、发光寿命的缩短等不良影响。为了防止该影响,必须升高空穴传输层材料的玻璃化转变温度(Tg)。目前报道的空穴传输层材料由于分子量普遍较小,材料的玻璃化温度较低;在材料使用过程中,反复充电放电会使材料容易结晶、薄膜的均一性被破坏,从而影响材料使用寿命。
因此,开发稳定高效的空穴传输层材料,以改善电荷迁移率、降低驱动电压、提高器件发光效率、延长器件寿命,具有非常重要的实际应用价值。
发明内容
本申请的目的在于提供一种有机化合物、电子元件及电子装置,将该有机化合物用于有机电致发光器件能够改善器件的性能。
本申请的第一方面提供一种有机化合物,其具有如式Ⅰ表示的结构:
Figure PCTCN2022100251-appb-000001
其中,Ar 1和Ar 2相同或不同,且各自独立地选自碳原子数为6~40的取代或未取代的芳基、碳原子数为3~30的取代或未取代的杂芳基;
L 1和L 2相同或不同,且各自独立地选自单键、碳原子数为6~30的取代或未取代的亚芳基、碳原子数为3~30的取代或未取代的亚杂芳基;
Ar 1、Ar 2、L 1、L 2中的取代基相同或不同,且各自独立地选自氘、卤素基团、氰基、碳原子数 为3~12的三烷基硅基、碳原子数为1~10的烷基、碳原子数为1~10的卤代烷基、碳原子数为6~20的芳基或碳原子数为3~20的杂芳基;任选地,在Ar 1和Ar 2中,任意两个相邻的取代基形成取代或未取代的3~15元环,所述3~15元环中的取代基独立地选自氘、卤素基团、氰基、碳原子数为3~6的三烷基硅基、碳原子数为1~5的烷基或碳原子数为1~5的卤代烷基。
本申请的第二方面提供一种电子元件,包括相对设置的阳极和阴极,以及设于所述阳极和所述阴极之间的功能层;其中,所述功能层包含上述的有机化合物。
本申请的第三方面提供一种电子装置,包括第二方面的电子元件。
本申请的有机化合物以1,8-二苯基取代的萘基为母核,萘基1号位上的苯连接氟原子(F),8号位上的苯连接三芳胺结构。1,8-二苯基取代的萘基具有较大的位阻,调整了分子的空间构型,可以有效避免分子之间的堆叠,提高成膜性,该基团的电子分布效应还可提升空穴迁移率。进一步地,1号位上的苯连接的F具有较高的电负性,使得化合物HOMO能级与LUMO能级可以更好地分离,保证材料具有更高的T 1值。另外,F原子具有较小的范德华半径以及较小的空间位阻,可以增强与H原子的非共价相互作用,进一步改善分子间的聚集,从而保证器件具有较高的空穴迁移率,并且能够有效地阻挡电子、激子进入到空穴传输层中。本申请的有机化合物应用到有机电致发光器件中,能同时提高器件的发光效率和使用寿命。
本申请的其他特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本申请的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本申请,但并不构成对本申请的限制。
图1是本申请一种实施方式的有机电致发光器件的结构示意图。
图2是本申请一种实施方式的第一电子装置的示意图。
图3是本申请一种实施方式的光电转化器件的结构示意图。
图4是本申请一种实施方式的第二电子装置的示意图。
附图标记说明
100、阳极;200、阴极;300、功能层;310、空穴注入层;320、空穴传输层;321、第一空穴传输层;322、第二空穴传输层;330、有机发光层;340、电子传输层;350、电子注入层;360、光电转化层;400、第一电子装置;500、第二电子装置
具体实施方式
现在将参考附图更全面地描述示例性实施方式。然而,示例性实施方式能够以多种形式实施,且不应被理解为限于在此阐述的范例;相反,提供这些实施方式使得本申请将更加全面和完整,并将示例性实施方式的构思全面地传达给本领域的技术人员。所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施方式中。在下面的描述中,提供许多具体细节从而给出对本申请的实施方式的充分理解。
第一方面,本申请提供一种有机化合物,其具有如式Ⅰ表示的结构:
Figure PCTCN2022100251-appb-000002
其中,Ar 1和Ar 2相同或不同,且各自独立地选自碳原子数为6~40的取代或未取代的芳基、碳原子数为3~30的取代或未取代的杂芳基;
L 1和L 2相同或不同,且各自独立地选自单键、碳原子数为6~30的取代或未取代的亚芳基、碳原子数为3~30的取代或未取代的亚杂芳基;
Ar 1、Ar 2、L 1、L 2中的取代基相同或不同,且各自独立地选自氘、卤素基团、氰基、碳原子数为3~12的三烷基硅基、碳原子数为1~10的烷基、碳原子数为1~10的卤代烷基、碳原子数为6~20的芳基或碳原子数为3~20的杂芳基;任选地,在Ar 1和Ar 2中,任意两个相邻的取代基形成取代或未取代的3~15元环,所述3~15元环中的取代基独立地选自氘、卤素基团、氰基、碳原子数为3~6的三烷基硅基、碳原子数为1~5的烷基或碳原子数为1~5的卤代烷基。
本申请中,术语“任选”、“任选地”意味着随后所描述的事件或者环境可以但不必发生,该说明包括该事情或者环境发生或者不发生的场合。例如,“任选地,任意两个相邻的取代基形成环”意味着这两个取代基可以形成环但不是必须形成环,包括:两个相邻的取代基形成环的情景和两个相邻的取代基不形成环的情景。再比如,“任选地,在Ar 1和Ar 2中,任意两个相邻的取代基形成取代或未取代的3~15元环”包括:在Ar 1和Ar 2中,任意两个相邻的取代基可以相互连接形成3~15元环,或者在Ar 1和Ar 2中,任意两个相邻的取代基也可以各自独立的存在而不形成环。“任意两个相邻”可以包括同一个原子上具有两个取代基,还可以包括两个相邻的原子上分别具有一个取代基;其中,当同一个原子上具有两个取代基时,两个取代基可以与其共同连接的该原子形成饱和或不饱和的环;当两个相邻的原子上分别具有一个取代基时,这两个取代基可以稠合成环。
本申请中,所采用的描述方式“各自独立地选自”与“分别独立地选自”、“独立地为”、“独立地选自”可以互换,均应做广义理解,其既可以是指在不同基团中,相同符号之间所表达的具体选项之间互相不影响,也可以表示在相同的基团中,相同符号之间所表达的具体选项之间互相不影响。例如,“
Figure PCTCN2022100251-appb-000003
其中,各q独立地为0、1、2或3,各R”独立地选自氢、氘、氟、氯”,其含义是:式Q-1表示苯环上有q个取代基R”,各个R”可以相同也可以不同,每个R”的选项之间互不影响;式Q-2表示联苯的每一个苯环上有q个取代基R”,两个苯环上的R”取代基的个数q可以相同或不同,各个R”可以相同也可以不同,每个R”的选项之间互不影响。
本申请中,“取代或未取代的”这样的术语是指,在该术语后面记载的官能团可以具有或不具有取代基(下文为了便于描述,将取代基统称为Rc)。例如,“取代或未取代的芳基”是指具有取代基Rc的芳基或者没有取代基的芳基。其中上述的取代基即Rc例如可以为氘、卤素、氰基、杂芳基、芳基、烷基、三烷基硅基、卤代烷基等。
本申请中,取代或未取代的官能团的碳原子数,指的是所有碳原子数。举例而言,若L 1为碳原子数为12的取代的亚芳基,则亚芳基及其上的取代基的所有碳原子数为12。
本申请中,芳基指的是衍生自芳香碳环的任选官能团或取代基。芳基可以是单环芳基(例如苯基)或多环芳基,换言之,芳基可以是单环芳基、稠环芳基、通过碳碳键共轭连接的两个或者更多个单环芳基、通过碳碳键共轭连接的单环芳基和稠环芳基、通过碳碳键共轭连接的两个或者更多个稠环芳基。即,除非另有说明,通过碳碳键共轭连接的两个或者更多个芳香基团也可以视为本申请的芳基。其中,稠环芳基例如可以包括双环稠合芳基(例如,萘基)、三环稠合芳基(例如,菲基、芴基、蒽基)等。芳基中不含有B、N、O、S、P、Se和Si等杂原子。举例而言,在本申请中,联苯基、三联苯基等为芳基。芳基的实例可以包括但不限于,苯基、萘基、 芴基、蒽基、菲基、联苯基、三联苯基、苯并[9,10]菲基、芘基、苯并荧蒽基、
Figure PCTCN2022100251-appb-000004
基等。
本申请中,涉及的亚芳基是指芳基进一步失去一个氢原子所形成的二价基团。
本申请中,取代的芳基可以是芳基中的一个或者两个以上氢原子被诸如氘原子、卤素基团、-CN、芳基、杂芳基、三烷基硅基、烷基、环烷基、卤代烷基等基团取代。杂芳基取代的芳基的具体实例包括但不限于,二苯并呋喃基取代的苯基、二苯并噻吩取代的苯基、吡啶取代的苯基等。应当理解地是,取代的芳基的碳原子数,指的是芳基和芳基上的取代基的碳原子总数,例如碳原子数为18的取代的芳基,指的是芳基和取代基的总碳原子数为18。
本申请中,杂芳基是指环中包含至少一个杂原子的一价芳香环或其衍生物,杂原子可以是B、O、N、P、Si、Se和S中的至少一种。杂芳基可以是单环杂芳基或多环杂芳基,换言之,杂芳基可以是单个芳香环体系,也可以是通过碳碳键共轭连接的多个芳香环体系,且任一芳香环体系为一个芳香单环或者一个芳香稠环。示例地,杂芳基可以包括噻吩基、呋喃基、吡咯基、咪唑基、噻唑基、噁唑基、噁二唑基、三唑基、吡啶基、联吡啶基、嘧啶基、三嗪基、吖啶基、哒嗪基、吡嗪基、喹啉基、喹唑啉基、喹喔啉基、吩噁嗪基、酞嗪基、吡啶并嘧啶基、吡啶并吡嗪基、吡嗪并吡嗪基、异喹啉基、吲哚基、咔唑基、苯并噁唑基、苯并咪唑基、苯并噻唑基、苯并咔唑基、苯并噻吩基、二苯并噻吩基、噻吩并噻吩基、苯并呋喃基、菲咯啉基、异噁唑基、噻二唑基、吩噻嗪基、硅芴基、二苯并呋喃基以及N-苯基咔唑基、N-吡啶基咔唑基、N-甲基咔唑基等,而不限于此。其中,噻吩基、呋喃基、菲咯啉基等为单个芳香环体系类型的杂芳基,N-苯基咔唑基、N-吡啶基咔唑基为通过碳碳键共轭连接的多环体系类型的杂芳基。
本申请中,涉及的亚杂芳基是指杂芳基进一步失去一个氢原子所形成的二价基团。
本申请中,取代的杂芳基可以是杂芳基中的一个或者两个以上氢原子被诸如氘原子、卤素基团、-CN、芳基、杂芳基、三烷基硅基、烷基、环烷基、卤代烷基等基团取代。芳基取代的杂芳基的具体实例包括但不限于,苯基取代的二苯并呋喃基、苯基取代的二苯并噻吩基、苯基取代的吡啶基等。应当理解地是,取代的杂芳基的碳原子数,指的是杂芳基和杂芳基上的取代基的碳原子总数。
本申请中,碳原子数为1~10的烷基可以包括碳原子数1至10的直链烷基和碳原子数3至10的支链烷基。烷基的碳原子数例如为1、2、3、4、5、6、7、8、9、10,烷基的具体实例包括但不限于,甲基、乙基、正丙基、异丙基、正丁基、异丁基、叔丁基、正戊基、异戊基、新戊基、正己基、正庚基、正辛基、2-乙基己基、壬基、癸基、3,7-二甲基辛基等。
本申请中,卤素基团例如可以为氟、氯、溴、碘。
本申请中,三烷基硅基的具体实例包括但不限于,三甲基硅基、三乙基硅基等。
本申请中,卤代烷基的具体实例包括但不限于,三氟甲基。
本申请中,碳原子数为3~10的环烷基的碳原子数例如可以为3、4、5、6、7、8、9、10。环烷基的具体实例包括但不限于,环戊基、环己基、金刚烷基。
本申请中,作为取代基的芳基的碳原子数可以为6~20,例如碳原子数为6、7、8、9、10、11、12、13、14、15、16、17、18、19、20,具体实例包括但不限于苯基、联苯基、萘基、蒽基、菲基、
Figure PCTCN2022100251-appb-000005
基、芴基。
本申请中,作为取代基的杂芳基的碳原子数可以为3~20,例如碳原子数为3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20,具体实例包括但不限于吡啶基、嘧啶基、咔唑基、二苯并呋喃基、二苯并噻吩基、喹啉基、喹唑啉基、喹喔啉基、异喹啉基。
本申请中,不定位连接键涉及的是从环体系中伸出的单键
Figure PCTCN2022100251-appb-000006
其表示该连接键的一端可以连接该键所贯穿的环体系中的任意位置,另一端连接化合物分子其余部分。举例而言,如下式(f)中所示地,式(f)所表示的萘基通过两个贯穿双环的不定位连接键与分子其他位置连接,其所表示的含义,包括如式(f-1)~式(f-10)所示出的任一可能的连接方式:
Figure PCTCN2022100251-appb-000007
再例如,如下式(X')中所示地,式(X')所表示的二苯并呋喃基通过一个从一侧苯环中间伸出的不定位连接键与分子其他位置连接,其所表示的含义,包括如式(X'-1)~式(X'-4)所示出的任一可能的连接方式:
Figure PCTCN2022100251-appb-000008
在一些实施方式中,Ar 1和Ar 2各自独立地选自碳原子数为6~33的取代或未取代的芳基、碳原子数为5~20的取代或未取代的杂芳基。例如,Ar 1和Ar 2各自独立地选自碳原子数为6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、31、32、33的取代或未取代的芳基,碳原子数为5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20的取代或未取代的杂芳基。
可选地,Ar 1和Ar 2中的取代基各自独立地选自氘、氟、氰基、碳原子数为3~6的三烷基硅基、碳原子数为1~5的卤代烷基、碳原子数为1~5的烷基、碳原子数为6~12的芳基或碳原子数为5~12的杂芳基;任选地,在Ar 1和Ar 2中的任意两个相邻的取代基形成取代或未取代的5~13元环;所述5~13元环中的取代基独立地选自氘、氟、氰基、三甲基硅基、三氟甲基、甲基、乙基、异丙基或叔丁基。
可选地,Ar 1和Ar 2各自独立地选自取代或未取代的苯基、取代或未取代的萘基、取代或未取代的联苯基、取代或未取代的芴基、取代或未取代的二苯并呋喃基、取代或未取代的吡啶基、取代或未取代的二苯并噻吩基、取代或未取代的咔唑基、取代或未取代的菲基、取代或未取代的三亚苯基。
优选地,Ar 1和Ar 2中的取代基选自氘、氟、氰基、三甲基硅基、三氟甲基、甲基、乙基、异丙基、叔丁基、苯基、萘基或联苯基;任选地,在Ar 1和Ar 2中,任意两个相邻的取代基形成环戊烷
Figure PCTCN2022100251-appb-000009
环己烷
Figure PCTCN2022100251-appb-000010
芴环
Figure PCTCN2022100251-appb-000011
或叔丁基取代的芴环(例如
Figure PCTCN2022100251-appb-000012
)。
可选地,Ar 1和Ar 2各自独立地选自取代或未取代的基团W,未取代的基团W选自以下基团:
Figure PCTCN2022100251-appb-000013
其中,取代的基团W中具有一个或两个以上的取代基,所述取代基独立地选自氘、氟、氰基、三甲基硅基、三氟甲基、甲基、乙基、异丙基、叔丁基、苯基、萘基或联苯基,且当取代基个数大于1时,各取代基相同或不同。
在一种实施方式中,Ar 1和Ar 2各自独立地选自
Figure PCTCN2022100251-appb-000014
Figure PCTCN2022100251-appb-000015
优选地,Ar 1
Figure PCTCN2022100251-appb-000016
Ar 2
Figure PCTCN2022100251-appb-000017
这种情况下,所述有机化合物应用到有机发光器件中,能进一步提高器件的使用寿命。
可选地,Ar 1和Ar 2各自独立地选自以下基团:
Figure PCTCN2022100251-appb-000018
进一步可选地,Ar 1和Ar 2各自独立地选自以下基团:
Figure PCTCN2022100251-appb-000019
Figure PCTCN2022100251-appb-000020
在一些实施方式中,L 1和L 2各自独立地选自单键、碳原子数为6~12的取代或未取代的亚芳基、碳原子数为5~12的取代或未取代的亚杂芳基。例如,L 1和L 2各自独立地选自单键,碳原子数为6、7、8、9、10、11、12的取代或未取代的亚芳基,碳原子数为5、6、7、8、9、10、11、12的取代或未取代的亚杂芳基。
优选地,L 1和L 2中的取代基各自独立地选自氘、氟、氰基、碳原子数为3~6的三烷基硅基、碳原子数为1~5的烷基、碳原子数为1~5的卤代烷基或苯基。
可选地,L 1和L 2各自独立地选自单键、取代或未取代的亚苯基、取代或未取代的亚萘基、取代或未取代的亚联苯基。
优选地,L 1和L 2中的取代基各自独立地选自氘、氟、氰基、三甲基硅基、甲基、乙基、异丙基、叔丁基、三氟甲基、苯基或萘基。
可选地,L 1和L 2各自独立地选自选自单键、或者取代或未取代的基团V,未取代的基团V选自以下基团:
Figure PCTCN2022100251-appb-000021
其中,取代的基团V中具有一个或两个以上的取代基,所述取代基独立地选自甲基、乙基、异丙基、叔丁基或苯基,且当取代基个数大于1时,各取代基相同或不同。
可选地,L 1和L 2各自独立地选自单键或者如下基团组成的组:
Figure PCTCN2022100251-appb-000022
进一步可选地,L 1和L 2各自独立地选自单键或者如下基团组成的组:
Figure PCTCN2022100251-appb-000023
可选地,所述有机化合物选自以下化合物所组成的组:
Figure PCTCN2022100251-appb-000024
Figure PCTCN2022100251-appb-000025
Figure PCTCN2022100251-appb-000026
Figure PCTCN2022100251-appb-000027
Figure PCTCN2022100251-appb-000028
第二方面,本申请提供一种电子元件,包括相对设置的阳极和阴极,以及设于所述阳极和所述阴极之间的功能层;所述功能层包含本申请的有机化合物。
可选地,所述电子元件是有机电致发光器件或光电转换器件。
可选地,所述功能层包括空穴传输层,所述空穴传输层包含本申请的有机化合物。
进一步可选地,所述空穴传输层包括第一空穴传输层和第二空穴传输层,相对于所述第二空穴传输层,所述第一空穴传输层更靠近所述阳极,其中,所述第二空穴传输层包含本申请的有机化合物。
在一种实施方式中,电子元件可以为有机电致发光器件。如图1所示,有机电致发光器件可以包括层叠设置的阳极100、第一空穴传输层321、第二空穴传输层322、有机发光层330、电子传输层340和阴极200。其中,第一空穴传输层321和第二空穴传输层322构成空穴传输层320。
可选地,阳极100包括以下阳极材料,其优选地是有助于空穴注入至功能层中的具有大逸出功(功函数,work function)材料。阳极材料具体实例包括:金属如镍、铂、钒、铬、铜、锌和金或它们的合金;金属氧化物如氧化锌、氧化铟、氧化铟锡(ITO)和氧化铟锌(IZO);组合的金属和氧化物如ZnO:Al或SnO 2:Sb;或导电聚合物如聚(3-甲基噻吩)、聚[3,4-(亚乙基-1,2-二氧基)噻吩](PEDT)、聚吡咯和聚苯胺,但不限于此。优选包括包含氧化铟锡(铟锡氧化物,indium tin oxide)(ITO)作为阳极的透明电极。
可选地,第一空穴传输层321包括一种或者多种空穴传输材料,空穴传输材料可以选自咔唑多聚体、咔唑连接三芳胺类化合物或者其他类型的化合物,本申请对此不做特殊的限定。例如,第一空穴传输层321可以由化合物NPB组成,第二空穴传输层322可以含有本申请的化合物。
可选地,有机发光层330可以由单一发光层材料组成,也可以包括主体材料和掺杂材料。可选地,有机发光层330由主体材料和掺杂材料组成,注入有机发光层330的空穴和注入有机发光层330的电子可以在有机发光层330复合而形成激子,激子将能量传递给主体材料,主体材料将能量传递给掺杂材料,进而使得掺杂材料能够发光。
有机发光层330的主体材料可以为金属螯合类化合物、双苯乙烯基衍生物、芳香族胺衍生物、二苯并呋喃衍生物或者其他类型的材料,本申请对此不做特殊的限制。在本申请的一种实施方式中,有机发光层330的主体材料为RH-1。
有机发光层330的掺杂材料可以为具有缩合芳基环的化合物或其衍生物、具有杂芳基环的化合物或其衍生物、芳香族胺衍生物或者其他材料,本申请对此不做特殊的限制。在本申请的一种实施方式中,有机发光层330的掺杂材料为Ir(piq) 2(acac)。
电子传输层340可以为单层结构,也可以为多层结构,其可以包括一种或者多种电子传输材料,电子传输材料可以选自但不限于,ET-1、TPBi、LiQ、苯并咪唑衍生物、噁二唑衍生物、喹喔啉衍生物或者其他电子传输材料。
本申请中,阴极200可以包括阴极材料,其是有助于电子注入材料至功能层中的具有小逸出功的材料。阴极材料的具体实例包括但不限于,金属如镁、钙、钠、钾、钛、铟、钇、锂、钆、铝、银、锡和铅或它们的合金;或多层材料如LiF/Al、Liq/Al、LiO 2/Al、LiF/Ca、LiF/Al和BaF 2/Ca。优选包括包含镁和银的金属电极作为阴极。
可选地,如图1所示,在阳极100和第一空穴传输层321之间可以设置有空穴注入层310,以增强向第一空穴传输层321注入空穴的能力。空穴注入层310可以选用联苯胺衍生物、星爆状芳基胺类化合物、酞菁衍生物或者其他材料,本申请对此不做特殊的限制。例如,空穴注入层310可以由HAT-CN组成。
可选地,如图1所示,在阴极200和电子传输层340之间可以设置有电子注入层350,以增强向电子传输层340注入电子的能力。电子注入层350可以包括有碱金属硫化物、碱金属卤化物等无机材料,或者可以包括碱金属与有机物的络合物。例如,电子注入层350可以包括Yb。
可选地,所述有机电致发光器件为红光器件。
按照另一种实施方式,电子元件为光电转化器件。如图3所示,该光电转化器件可以包括相对设置的阳极100和阴极200,以及设于阳极100和阴极200之间的功能层300;功能层300包含本申请所提供的有机化合物。
按照一种具体的实施方式,如图3所示,光电转化器件可包括依次层叠设置的阳极100、空穴传输层320、光电转化层360、电子传输层340和阴极200。
可选地,所述空穴传输层包含有本申请的有机化合物。
可选地,光电转化器件可以为太阳能电池,尤其是可以为有机薄膜太阳能电池。举例而言,在本申请的一种实施方式中,太阳能电池包括依次层叠设置的阳极、空穴传输层、光电转化层、电子传输层和阴极,其中,空穴传输层包含有本申请的有机化合物。
第三方面,本申请提供一种电子装置,包括本申请第二方面提供的电子元件。
按照一种实施方式,如图2所示,所述电子装置为第一电子装置400,第一电子装置400包括上述有机电致发光器件。第一电子装置400例如可以为显示装置、照明装置、光通讯装置或者其他类型的电子装置,例如可以包括但不限于电脑屏幕、手机屏幕、电视机、电子纸、应急照明灯、光模块等。
按照另一种实施方式,如图4所示,所述电子装置为第二电子装置500,第二电子装置500包括上述光电转化器件。第二电子装置500例如可以为太阳能发电设备、光检测器、指纹识别设备、光模块、CCD相机或则其他类型的电子装置。
下面结合合成例来具体说明本申请的有机化合物的合成方法,但是本公开并不因此而受到任何限制。
本申请中未提到的合成方法的化合物的都是通过商业途径获得的原料产品。
合成例1 IM A-1的合成
Figure PCTCN2022100251-appb-000029
在氮气气氛下,向500mL的三口烧瓶中投入1-溴-8-(2-氟苯基)萘(20g,66.4mmol)、4-氨基苯硼酸(10g,73.1mmol)、四(三苯基膦)钯(0.33g,0.38mmol)、碳酸钾(18.4g,132.8mmol)、160mL的甲苯、80mL的乙醇和40mL的水,加热至70~80℃,回流过夜。将反应液冷却到室温后,水洗三遍,最后用饱和氯化铵水溶液萃取一遍,合并有机相,用无水硫酸镁干燥后,旋蒸浓缩。将获得的固体物质用乙醇重结晶,得到IM A-1(13.2g,收率63.5%)。
参照IM A-1的方法合成表1所列的IM A-x,不同之处在于,使用原料1代替1-溴-8-(2-氟苯基)萘,使用原料2代替4-氨基苯硼酸,其中,使用的主要原料、合成的中间体及其收率如表1所示。
表1
Figure PCTCN2022100251-appb-000030
Figure PCTCN2022100251-appb-000031
合成例2 IM B-1的合成
Figure PCTCN2022100251-appb-000032
在氮气气氛下,将IM A-1(5.5g,17.5mmol)、4-溴联苯(4g,17.2mmol)和50mL的甲苯投入100mL的三口烧瓶中,升温至70℃,依次加入叔丁醇钠(2.5g,25.8mmol)、X-Phos(0.16g,0.34mmol)和Pd 2(dba) 3(0.16g,0.17mmol),然后升温至110℃回流反应2h,降至室温,将反应液水洗三次,用无水硫酸镁干燥,静置30min后,抽滤、减压浓缩、过柱层析色谱柱,得到IM B-1(6.3g,收率78.2%)。
参照IM B-1的方法合成表2所列的IM B-x,不同之处在于,使用IM A-x代替IM A-1,使用原料3代替4-溴联苯,其中,使用的主要原料、合成的中间体及其收率如表2所示。
表2
Figure PCTCN2022100251-appb-000033
Figure PCTCN2022100251-appb-000034
Figure PCTCN2022100251-appb-000035
Figure PCTCN2022100251-appb-000036
合成例3化合物13的合成
Figure PCTCN2022100251-appb-000037
在氮气气氛下,将IM B-1(5g,10.7mmol)、4-溴联苯(2.5g,10.7mmol)和50mL的甲苯投入100mL的三口烧瓶中,升温至70℃,依次加入叔丁醇钠(1.5g,16.1mmol)、2-双环己基膦-2',6'-二甲氧基-1,1'-二联苯(S-Phos)(0.09g,0.21mmol)和Pd 2(dba) 3(0.10g,0.11mmol),然后升温至110℃回流反应2h,降至室温,将反应液水洗三次,用无水硫酸镁干燥静置30min,抽滤、减压浓缩、过柱层析色谱柱,最后使用正庚烷重结晶,得到化合物13(3.7g,收率55.8%);质谱(m/z)=618.25[M+H] +
参照化合物13的方法合成表3所列的化合物,不同之处在于,使用IM B-x代替IM B-1,使用原料4代替4-溴联苯,其中,使用的主要原料、合成的化合物及其收率和质谱如表3所示。
表3
Figure PCTCN2022100251-appb-000038
Figure PCTCN2022100251-appb-000039
Figure PCTCN2022100251-appb-000040
Figure PCTCN2022100251-appb-000041
Figure PCTCN2022100251-appb-000042
Figure PCTCN2022100251-appb-000043
Figure PCTCN2022100251-appb-000044
化合物13的核磁数据:
1H-NMR(CDCl 3,400MHz):7.82-7.80(d,2H),7.59-7.50(m,10H),7.42-7.12(m,14H),6.77-6.75(d,2H),6.51-6.48(d,4H)。
化合物131的核磁数据:
1H-NMR(CDCl 3,400MHz):8.21-8.19(d,1H),8.06-8.04(d,1H),7.96-7.94(d,1H),7.78-7.75(d,2H),7.64-7.63(d,1H),7.57-7.48(m,7H),7.44-7.25(m,12H),6.95-6.93(m,1H),6.84-6.82(d,2H),6.68-6.66(d,2H)。
器件实施例
实施例1:红色有机电致发光器件
将厚度为
Figure PCTCN2022100251-appb-000045
的ITO/Ag/ITO基板(康宁制造)切割成40mm(长)×40mm(宽)×0.7mm(高)的尺寸,采用光刻工序,将其制备成具有阳极以及绝缘层图案的实验基板,并利用紫外臭氧以及O 2∶N 2等离子进行表面处理,以增加阳极(实验基板)的功函数并清除浮渣。
首先,在实验基板(阳极)上真空蒸镀HAT-CN,形成厚度为
Figure PCTCN2022100251-appb-000046
的空穴注入层(HIL),再在空穴注入层上蒸镀NPB,形成厚度为
Figure PCTCN2022100251-appb-000047
的第一空穴传输层(HTL)。
在第一空穴传输层上真空蒸镀化合物13,形成厚度为
Figure PCTCN2022100251-appb-000048
的第二空穴传输层。
在第二空穴传输层上,将RH-1和Ir(piq) 2(acac)以95%∶5%蒸镀比共同蒸镀,以形成厚度为
Figure PCTCN2022100251-appb-000049
的有机发光层(R-EML)。
在有机发光层上,将ET-1和LiQ以1∶1蒸镀比共同蒸镀,以形成厚度为
Figure PCTCN2022100251-appb-000050
的电子传输层(ETL),再将Yb蒸镀在电子传输层上以形成厚度为
Figure PCTCN2022100251-appb-000051
的电子注入层(EIL),然后将镁(Mg)和银(Ag)以1∶9的蒸镀速率真空蒸镀在电子注入层上,形成厚度为
Figure PCTCN2022100251-appb-000052
的阴极。
最后,在阴极上蒸镀CP-1,形成厚度为
Figure PCTCN2022100251-appb-000053
的有机覆盖层(CPL),从而完成有机发光器件的制造。
实施例2~实施例55
除了在形成第二空穴传输层时,以下表5中所示的化合物替代化合物13以外,利用与实施例1相同的方法制作有机电致发光器件。
比较例1~比较例5
除了在形成第二空穴传输层时,以化合物A、化合物B、化合物C、化合物D、化合物E替代化合物13以外,利用与实施例1相同的方法制作有机电致发光器件。
以上实施例和比较例使用的主要材料结构如下表4所示:
表4
Figure PCTCN2022100251-appb-000054
Figure PCTCN2022100251-appb-000055
对实施例和比较例制备的器件进行性能测试,其中,IVL(工作电压、电流效率、色坐标)数据是在10mA/cm 2电流密度下测试,T95寿命是20mA/cm 2电流密度下测试,结果如表5所示。
表5
Figure PCTCN2022100251-appb-000056
Figure PCTCN2022100251-appb-000057
根据上述表5的结果可知,相较于比较例1~5的有机电致发光器件,实施例1~55的有机电致发光器件性能得到改善;具体来说,实施例1~55的有机电致发光器件与比较例相比,电流效率至少提高了15.9%,寿命至少提高了12.2%。因此,将本申请的有机化合物用作有机电致发光器件的第二空穴传输层,具有在保持低工作电压的同时,能同时提高电流效率和使用寿命。
本领域的普通技术人员可以理解,上述各实施方式是实现本发明的具体实施例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本发明的精神和范围。

Claims (12)

  1. 有机化合物,其特征在于,所述有机化合物具有如式Ⅰ表示的结构:
    Figure PCTCN2022100251-appb-100001
    其中,Ar 1和Ar 2相同或不同,且各自独立地选自碳原子数为6~40的取代或未取代的芳基、碳原子数为3~30的取代或未取代的杂芳基;
    L 1和L 2相同或不同,且各自独立地选自单键、碳原子数为6~30的取代或未取代的亚芳基、碳原子数为3~30的取代或未取代的亚杂芳基;
    Ar 1、Ar 2、L 1、L 2中的取代基相同或不同,且各自独立地选自氘、卤素基团、氰基、碳原子数为3~12的三烷基硅基、碳原子数为1~10的烷基、碳原子数为1~10的卤代烷基、碳原子数为6~20的芳基或碳原子数为3~20的杂芳基;任选地,在Ar 1和Ar 2中,任意两个相邻的取代基形成取代或未取代的3~15元环,所述3~15元环中的取代基独立地选自氘、卤素基团、氰基、碳原子数为3~6的三烷基硅基、碳原子数为1~5的烷基或碳原子数为1~5的卤代烷基。
  2. 根据权利要求1所述的有机化合物,其中,Ar 1和Ar 2各自独立地选自碳原子数为6~33的取代或未取代的芳基、碳原子数为5~20的取代或未取代的杂芳基;
    优选地,Ar 1和Ar 2中的取代基各自独立地选自氘、氟、氰基、碳原子数为3~6的三烷基硅基、碳原子数为1~5的卤代烷基、碳原子数为1~5的烷基、碳原子数为6~12的芳基或碳原子数为5~12的杂芳基;任选地,在Ar 1和Ar 2中,任意两个相邻的取代基形成取代或未取代的5~13元环;所述5~13元环中的取代基独立地选自氘、氟、氰基、三甲基硅基、三氟甲基、甲基、乙基、异丙基或叔丁基。
  3. 根据权利要求1所述的有机化合物,其中,Ar 1和Ar 2各自独立地选自取代或未取代的苯基、取代或未取代的萘基、取代或未取代的联苯基、取代或未取代的芴基、取代或未取代的二苯并呋喃基、取代或未取代的吡啶基、取代或未取代的二苯并噻吩基、取代或未取代的咔唑基、取代或未取代的菲基、取代或未取代的三亚苯基;
    优选地,Ar 1和Ar 2中的取代基相同或不同,且各自独立地选自氘、氟、氰基、三甲基硅基、三氟甲基、甲基、乙基、异丙基、叔丁基、苯基、萘基或联苯基;任选地,在Ar 1和Ar 2中,任意两个相邻的取代基形成环戊烷、环己烷、芴环、或叔丁基取代的芴环。
  4. 根据权利要求1所述的有机化合物,其中,Ar 1和Ar 2各自独立地选自取代或未取代的基团W,未取代的基团W选自以下基团:
    Figure PCTCN2022100251-appb-100002
    取代的基团W中具有一个或两个以上的取代基,所述取代基独立地选自氘、氟、氰基、三甲基硅基、三氟甲基、甲基、乙基、异丙基、叔丁基、苯基、萘基或联苯基,且当取代基个数大于1时, 各取代基相同或不同。
  5. 根据权利要求1所述的有机化合物,其中,Ar 1和Ar 2各自独立地选自以下基团:
    Figure PCTCN2022100251-appb-100003
  6. 根据权利要求1所述的有机化合物,其中,L 1和L 2各自独立地选自单键、碳原子数为6~12的取代或未取代的亚芳基、碳原子数为5~12的取代或未取代的亚杂芳基;
    优选地,L 1和L 2中的取代基各自独立地选自氘、氟、氰基、碳原子数为3~6的三烷基硅基、碳原子数为1~5的烷基、碳原子数为1~5的卤代烷基或苯基。
  7. 根据权利要求1所述的有机化合物,其中,L 1和L 2各自独立地选自单键、取代或未取代的亚苯基、取代或未取代的亚萘基、取代或未取代的亚联苯基;
    优选地,L 1和L 2中的取代基各自独立地选自氘、氟、氰基、三甲基硅基、甲基、乙基、异丙基、叔丁基、三氟甲基或苯基。
  8. 根据权利要求1所述的有机化合物,其中,L 1和L 2各自独立地选自单键、或者取代或未取代的基团V,未取代的基团V选自以下基团:
    Figure PCTCN2022100251-appb-100004
    取代的基团V中具有一个或两个以上的取代基,所述取代基独立地选自甲基、乙基、异丙基、叔丁基或苯基,且当取代基个数大于1时,各取代基相同或不同。
  9. 根据权利要求1所述的有机化合物,其中,所述有机化合物选自以下化合物所组成的组:
    Figure PCTCN2022100251-appb-100005
    Figure PCTCN2022100251-appb-100006
    Figure PCTCN2022100251-appb-100007
    Figure PCTCN2022100251-appb-100008
    Figure PCTCN2022100251-appb-100009
  10. 电子元件,其特征在于,所述电子元件包括相对设置的阳极和阴极,以及设于所述阳极和所述阴极之间的功能层;其中,所述功能层包含权利要求1~9中任一项所述的有机化合物。
  11. 根据权利要求10所述的电子元件,其中,所述功能层包括空穴传输层,所述空穴传输层包含所述有机化合物;
    优选地,所述电子元件为有机电致发光器件或光电转换器件;
    更优选地,所述电子元件为有机电致发光器件,所述空穴传输层包括第一空穴传输层和第二空穴传输层,所述第一空穴传输层相对所述第二空穴传输层更靠近所述阳极,其中,所述第二空穴传输层包含所述的有机化合物。
  12. 电子装置,其特征在于,所述电子装置包括权利要求10或11所述的电子元件。
PCT/CN2022/100251 2021-08-06 2022-06-21 有机化合物、电子元件及电子装置 WO2023011028A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110901145.9A CN114133332B (zh) 2021-08-06 2021-08-06 有机化合物、电子元件及电子装置
CN202110901145.9 2021-08-06

Publications (1)

Publication Number Publication Date
WO2023011028A1 true WO2023011028A1 (zh) 2023-02-09

Family

ID=80394168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/100251 WO2023011028A1 (zh) 2021-08-06 2022-06-21 有机化合物、电子元件及电子装置

Country Status (2)

Country Link
CN (1) CN114133332B (zh)
WO (1) WO2023011028A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113683519B (zh) * 2021-04-02 2022-12-06 陕西莱特光电材料股份有限公司 一种有机化合物及包含其的电子元件和电子装置
CN114133332B (zh) * 2021-08-06 2023-06-09 陕西莱特光电材料股份有限公司 有机化合物、电子元件及电子装置
KR20240052748A (ko) * 2021-08-26 2024-04-23 이데미쓰 고산 가부시키가이샤 화합물, 유기 전기발광 소자용 재료, 유기 전기발광 소자, 및 전자 기기
US20230371368A1 (en) * 2022-05-11 2023-11-16 Samsung Display Co., Ltd. Light emitting element and amine compound for the same
KR102462241B1 (ko) * 2022-08-16 2022-11-04 덕산네오룩스 주식회사 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
CN115466184A (zh) * 2022-09-20 2022-12-13 北京八亿时空液晶科技股份有限公司 一种有机化合物及其应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108863813A (zh) * 2017-05-10 2018-11-23 三星显示有限公司 胺化合物和包括该胺化合物的有机电致发光装置
KR20190077158A (ko) * 2017-12-22 2019-07-03 삼성디스플레이 주식회사 유기 전계 발광 소자 및 유기 전계 발광 소자용 아민 화합물
JP2019135228A (ja) * 2018-01-26 2019-08-15 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 有機電界発光素子及び有機電界発光素子用モノアミン化合物
CN111217716A (zh) * 2018-11-23 2020-06-02 三星显示有限公司 有机电致发光器件和用于有机电致发光器件的单胺化合物
CN111433319A (zh) * 2017-11-28 2020-07-17 罗门哈斯电子材料韩国有限公司 有机电致发光化合物以及包含其的有机电致发光装置
CN113735719A (zh) * 2021-04-09 2021-12-03 陕西莱特光电材料股份有限公司 一种有机化合物以及使用其的电子元件和电子装置
CN114133332A (zh) * 2021-08-06 2022-03-04 陕西莱特光电材料股份有限公司 有机化合物、电子元件及电子装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6081210B2 (ja) * 2012-02-10 2017-02-15 ケミプロ化成株式会社 単分子でエキシプレックス発光を示す化合物
KR102440238B1 (ko) * 2014-10-17 2022-09-06 엘지디스플레이 주식회사 공간 전하 이동 화합물, 이를 포함하는 유기발광다이오드소자 및 표시장치
KR102217527B1 (ko) * 2018-04-27 2021-02-22 삼성디스플레이 주식회사 아민 화합물 및 이를 포함하는 유기 전계 발광 소자
CN111909043B (zh) * 2020-07-09 2022-04-12 陕西莱特迈思光电材料有限公司 含氮化合物、电子元件和电子装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108863813A (zh) * 2017-05-10 2018-11-23 三星显示有限公司 胺化合物和包括该胺化合物的有机电致发光装置
CN111433319A (zh) * 2017-11-28 2020-07-17 罗门哈斯电子材料韩国有限公司 有机电致发光化合物以及包含其的有机电致发光装置
US20210193925A1 (en) * 2017-11-28 2021-06-24 Rohm And Haas Electronic Materials Korea Ltd. Organic electroluminescent compound and organic electroluminescent device comprising the same
KR20190077158A (ko) * 2017-12-22 2019-07-03 삼성디스플레이 주식회사 유기 전계 발광 소자 및 유기 전계 발광 소자용 아민 화합물
JP2019135228A (ja) * 2018-01-26 2019-08-15 三星ディスプレイ株式會社Samsung Display Co.,Ltd. 有機電界発光素子及び有機電界発光素子用モノアミン化合物
CN111217716A (zh) * 2018-11-23 2020-06-02 三星显示有限公司 有机电致发光器件和用于有机电致发光器件的单胺化合物
CN113735719A (zh) * 2021-04-09 2021-12-03 陕西莱特光电材料股份有限公司 一种有机化合物以及使用其的电子元件和电子装置
CN114133332A (zh) * 2021-08-06 2022-03-04 陕西莱特光电材料股份有限公司 有机化合物、电子元件及电子装置

Also Published As

Publication number Publication date
CN114133332B (zh) 2023-06-09
CN114133332A (zh) 2022-03-04

Similar Documents

Publication Publication Date Title
WO2023011028A1 (zh) 有机化合物、电子元件及电子装置
WO2022206055A1 (zh) 有机电致发光材料、电子元件及电子装置
WO2022262365A1 (zh) 有机化合物及包含其的电子元件和电子装置
WO2022088865A1 (zh) 含氮化合物、电子元件和电子装置
WO2021223650A1 (zh) 一种含氮化合物以及使用其的电子元件和电子装置
WO2022213905A1 (zh) 有机化合物以及使用其的电子元件和电子装置
WO2022199449A1 (zh) 有机化合物及包含其的电子器件和电子装置
WO2022267661A1 (zh) 有机化合物以及使用其的电子元件和电子装置
CN113651826B (zh) 一种含氮化合物以及使用其的电子元件和电子装置
CN113233987B (zh) 一种含氮化合物及包含其的电子元件和电子装置
CN114133333B (zh) 含氮化合物、电子元件和电子装置
WO2021136197A1 (zh) 含氮化合物、电子元件和电子装置
CN113173858B (zh) 含氮化合物、电子元件和电子装置
WO2024055658A1 (zh) 含氮化合物和电子元件及电子装置
WO2023207375A1 (zh) 含氮化合物和电子元件及电子装置
WO2022100194A1 (zh) 含氮化合物、有机电致发光器件和电子装置
WO2024037073A1 (zh) 含氮化合物、电子元件和电子装置
WO2023202198A1 (zh) 有机材料、电子元件和电子装置
WO2023216669A1 (zh) 有机化合物、有机电致发光器件和电子装置
WO2023179094A1 (zh) 有机化合物及包含其的电子元件和电子装置
WO2023134228A1 (zh) 含氮化合物及包含其的有机电致发光器件和电子装置
CN113896720B (zh) 有机化合物、电子元件及电子装置
WO2022206389A1 (zh) 含氮化合物及包含其的电子元件和电子装置
CN113651703B (zh) 有机化合物、电子元件和电子装置
WO2023185039A1 (zh) 有机化合物及包含其的电子元件和电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22851744

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18288425

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE