WO2022089093A1 - 含氮化合物、电子元件和电子装置 - Google Patents

含氮化合物、电子元件和电子装置 Download PDF

Info

Publication number
WO2022089093A1
WO2022089093A1 PCT/CN2021/119457 CN2021119457W WO2022089093A1 WO 2022089093 A1 WO2022089093 A1 WO 2022089093A1 CN 2021119457 W CN2021119457 W CN 2021119457W WO 2022089093 A1 WO2022089093 A1 WO 2022089093A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon atoms
group
independently selected
nitrogen
containing compound
Prior art date
Application number
PCT/CN2021/119457
Other languages
English (en)
French (fr)
Inventor
岳娜
南朋
金荣国
李应文
Original Assignee
陕西莱特光电材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 陕西莱特光电材料股份有限公司 filed Critical 陕西莱特光电材料股份有限公司
Publication of WO2022089093A1 publication Critical patent/WO2022089093A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/02Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
    • C07D493/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present application relates to the technical field of organic electroluminescence, and in particular, to a nitrogen-containing compound, an electronic component and an electronic device.
  • Such electronic components such as organic electroluminescent devices or photoelectric conversion devices, generally include a cathode and an anode disposed opposite to each other, and a functional layer disposed between the cathode and the anode.
  • the functional layer is composed of multiple organic or inorganic film layers, and generally includes an energy conversion layer, a hole transport layer between the energy conversion layer and the anode, and an electron transport layer between the energy conversion layer and the cathode.
  • the electronic component when it is an organic electroluminescent device, it generally includes an anode, a hole transport layer, an organic light emitting layer as an energy conversion layer, an electron transport layer and a cathode which are stacked in this order.
  • the two electrodes When a voltage is applied to the cathode and anode, the two electrodes generate an electric field. Under the action of the electric field, the electrons on the cathode side move to the organic light-emitting layer, and the holes on the anode side also move to the light-emitting layer.
  • the electrons and holes combine in the organic light-emitting layer to form excitation
  • the excitons are in an excited state and release energy to the outside, so that the organic light-emitting layer emits light to the outside.
  • the purpose of the present application is to provide a nitrogen-containing compound, an electronic component and an electronic device.
  • the nitrogen-containing compound can be applied to the electronic component to improve the performance of the electronic component.
  • a first aspect of the present application provides a nitrogen-containing compound whose structure is shown in formula 1:
  • X, Y are each independently selected from O or S;
  • R 1 and R 2 are the same or different, and are independently selected from hydrogen or formula 2, and at least one of R 1 and R 2 is the structure shown in formula 2;
  • Ar 1 and Ar 2 are the same or different, and are independently selected from substituted or unsubstituted aryl groups having 6 to 40 carbon atoms, and substituted or unsubstituted heteroaryl groups having 3 to 40 carbon atoms;
  • L, L 1 and L 2 are the same or different, and are each independently selected from a single bond, a substituted or unsubstituted arylene group having 6 to 30 carbon atoms, and a substituted or unsubstituted arylene group having 2 to 30 carbon atoms.
  • R 3 and R 4 are the same or different, and are independently selected from hydrogen, deuterium, halogen group, cyano group, alkyl group with 1 to 10 carbon atoms, haloalkyl group with 1 to 5 carbon atoms, carbon atom Aryl group with 6-20 carbon atoms, heteroaryl group with carbon number of 3-20, trialkylsilyl group with carbon number of 3-12, triarylsilyl group with carbon number of 18-24, carbon atom A cycloalkyl group with 3 to 20 carbon atoms, a heterocycloalkyl group with 2 to 10 carbon atoms, and an alkoxy group with 1 to 10 carbon atoms;
  • n is the number of R 3 , and m is selected from 1, 2, 3, 4; when m is greater than 1, any two R 3 are the same or different;
  • n is the number of R 4 , and n is selected from 1, 2, 3, 4; when n is greater than 1, any two R 4 are the same or different;
  • the substituents on Ar 1 , Ar 2 , L, L 1 and L 2 are independently selected from deuterium, halogen group, cyano group, alkyl group with 1-10 carbon atoms, and alkyl group with 1-10 carbon atoms Halogenated alkyl groups, trialkylsilyl groups with 3 to 12 carbon atoms, aryl groups with 6 to 20 carbon atoms, heteroaryl groups with 3 to 20 carbon atoms, and cycloalkanes with 3 to 10 carbon atoms group, halogenated aryl group with 6-20 carbon atoms, heterocycloalkyl group with 2-10 carbon atoms, alkoxy group with 1-10 carbon atoms, triaryl group with 18-24 carbon atoms Silicon based.
  • a second aspect of the present application provides an electronic component, comprising an anode and a cathode disposed opposite to each other, and a functional layer disposed between the anode and the cathode; the functional layer comprises the above-mentioned nitrogen-containing compound;
  • a third aspect of the present application provides an electronic device, including the above electronic component.
  • the nitrogen-containing compound of the present application uses a dibenzo five-membered ring to condense a benzo five-membered ring It is the parent nucleus, and the three benzenes of the parent nucleus are in different planes, which makes the configuration of this type of material cambered.
  • the excessive stacking improves its photoelectric stability.
  • a hole transport material with high mobility is formed.
  • the core is a rigid group containing O or S, which improves the glass transition temperature and thermal stability of the molecule, so that it has better film-forming properties and stability.
  • the nitrogen-containing compound provided by the present invention can be used as a high-mobility hole transport material in an organic electroluminescent device, and the compound can effectively reduce the driving voltage and improve the photoelectric conversion efficiency of the device.
  • FIG. 1 is a schematic structural diagram of an organic electroluminescent device according to an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of an electronic device according to an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a photoelectric conversion device according to an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of an electronic device according to another embodiment of the present application.
  • a first aspect of the present application provides a nitrogen-containing compound whose structure is shown in formula 1:
  • X, Y are each independently selected from O or S;
  • R 1 and R 2 are the same or different, and are independently selected from hydrogen or formula 2, and at least one of R 1 and R 2 is the structure shown in formula 2;
  • Ar 1 and Ar 2 are the same or different, and are independently selected from substituted or unsubstituted aryl groups having 6 to 40 carbon atoms, and substituted or unsubstituted heteroaryl groups having 3 to 40 carbon atoms;
  • L, L 1 and L 2 are the same or different, and are each independently selected from a single bond, a substituted or unsubstituted arylene group having 6 to 30 carbon atoms, and a substituted or unsubstituted arylene group having 2 to 30 carbon atoms.
  • R 3 and R 4 are the same or different, and are independently selected from hydrogen, deuterium, halogen group, cyano group, alkyl group with 1 to 10 carbon atoms, haloalkyl group with 1 to 5 carbon atoms, carbon atom Aryl group with 6-20 carbon atoms, heteroaryl group with carbon number of 3-20, trialkylsilyl group with carbon number of 3-12, triarylsilyl group with carbon number of 18-24, carbon atom A cycloalkyl group with 3 to 20 carbon atoms, a heterocycloalkyl group with 2 to 10 carbon atoms, and an alkoxy group with 1 to 10 carbon atoms;
  • n represents the number of R 3 , and m is selected from 1, 2, 3 or 4; when m is greater than 1, any two R 3 are the same or different;
  • n represents the number of R 4 , and n is selected from 1, 2, 3 or 4; when n is greater than 1, any two R 4 are the same or different;
  • Substituents in Ar 1 , Ar 2 , L, L 1 and L 2 are independently selected from deuterium, halogen group, cyano group, alkyl group with 1-10 carbon atoms, and alkyl group with 1-10 carbon atoms Halogenated alkyl groups, trialkylsilyl groups with 3 to 12 carbon atoms, aryl groups with 6 to 20 carbon atoms, heteroaryl groups with 3 to 20 carbon atoms, and cycloalkanes with 3 to 10 carbon atoms group, halogenated aryl group with 6-20 carbon atoms, heterocycloalkyl group with 2-10 carbon atoms, alkoxy group with 1-10 carbon atoms, triaryl group with 18-24 carbon atoms Silicon based.
  • R 1 and R 2 is a structure represented by formula 2
  • one of R 1 and R 2 is a structure represented by formula 2, or that both R 1 and R 2 are of formula 2 shown structure.
  • the number of carbon atoms in a group refers to all carbon atoms.
  • all of the arylene group and the substituents thereon have 10 carbon atoms.
  • 9,9-dimethylfluorenyl is a substituted aryl group having 15 carbon atoms.
  • hetero refers to a functional group including at least one heteroatom such as B, N, O, S, Se, Si or P, and the remaining atoms are carbon and hydrogen .
  • each independently is” and “are independently” and “are independently selected from” can be interchanged, and should be understood in a broad sense, which can either refer to In different groups, the specific options expressed between the same symbols do not affect each other, and it can also mean that in the same group, the specific options expressed between the same symbols do not affect each other.
  • each q is independently 0, 1, 2 or 3, and each R "is independently selected from hydrogen, fluorine, chlorine” in the description, its meaning is:
  • formula Q-1 represents that there are q substituents R on the benzene ring ", each R” can be the same or different, and the options of each R" do not affect each other;
  • formula Q-2 indicates that each benzene ring of biphenyl has q substituents R", and the two benzene rings have q substituents R".
  • the number q of R" substituents may be the same or different, and each R" may be the same or different, and the options of each R" do not affect each other.
  • substituted or unsubstituted means no substituents or substituted with one or more substituents.
  • Substituents include, but are not limited to, deuterium, halo, cyano, alkyl, haloalkyl, trialkylsilyl, aryl, heteroaryl, haloaryl, cycloalkyl, heterocycloalkyl, alkane Oxygen, triarylsilyl.
  • any two adjacent substituents XX form a ring means that the two substituents may form a ring but need not form a ring, including: the situation where two adjacent substituents form a ring and two A scenario where adjacent substituents do not form a ring.
  • substituents connected to the same atom are connected to each other to form a saturated or unsaturated 5-18-membered aliphatic ring or a 5-18-membered aromatic ring with the atom to which they are commonly connected. , meaning: when there are two substituents connected to the same atom, these two substituents can exist independently, or can be connected to each other to form a saturated or unsaturated 5-18-membered Aliphatic ring or 5-18 membered aromatic ring.
  • the alkyl group having 1 to 10 carbon atoms may include a straight-chain alkyl group having 1 to 10 carbon atoms and a branched alkyl group having 3 to 10 carbon atoms.
  • the number of carbon atoms of the alkyl group can be, for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, and specific examples of the alkyl group include, but are not limited to, methyl, ethyl, n-propyl, isopropyl Propyl, n-butyl, isobutyl, tert-butyl, n-pentyl, isopentyl, neopentyl, n-hexyl, n-heptyl, n-octyl, 2-ethylhexyl, nonyl, decyl, 3,7-Dimethyloctyl, etc.
  • an aryl group refers to an optional functional group or substituent derived from an aromatic hydrocarbon ring.
  • Aryl groups can be monocyclic aryl groups (eg, phenyl) or polycyclic aryl groups, in other words, aryl groups can be monocyclic aryl groups, fused-ring aryl groups, two or more monocyclic aryl groups conjugated through carbon-carbon bonds. Cyclic aryl groups, monocyclic aryl groups and fused-ring aryl groups linked by carbon-carbon bond conjugation, two or more fused-ring aryl groups linked by carbon-carbon bond conjugation. That is, two or more aromatic groups linked by carbon-carbon bond conjugation can also be regarded as aryl groups in the present application.
  • the fused ring aryl group may include, for example, a bicyclic fused aryl group (eg, naphthyl), a tricyclic fused aryl group (eg, phenanthrenyl, fluorenyl, anthracenyl), and the like.
  • the aryl group does not contain heteroatoms such as B, N, O, S, Se, Si or P.
  • biphenyl, terphenyl, etc. are aryl groups.
  • aryl groups may include phenyl, naphthyl, fluorenyl, anthracenyl, phenanthrenyl, biphenyl, terphenyl, tetraphenyl, pentaphenyl, hexaphenyl, benzo[9,10 ] phenanthrene, pyrene, perylene, benzofluoranthene, Base et al.
  • the arylene group referred to refers to a divalent group formed by the further loss of one hydrogen atom from the aryl group.
  • a substituted aryl group means that one or more hydrogen atoms in the aryl group are replaced by other groups.
  • at least one hydrogen atom is replaced by D, F, Cl, I, CN, hydroxy, amino, branched alkyl, straight-chain alkyl, cycloalkyl, alkoxy, alkylamino, alkylthio, aryl, hetero Aryl or other group substitution.
  • heteroaryl-substituted aryl groups include, but are not limited to, dibenzofuranyl-substituted phenyl groups, dibenzothienyl-substituted phenyl groups, pyridyl-substituted phenyl groups, and the like. It should be understood that the number of carbon atoms in a substituted aryl group refers to the total number of carbon atoms in the aryl group and the substituents on the aryl group.
  • a heteroaryl group refers to a monovalent aromatic ring or a derivative thereof containing at least one heteroatom in the ring, and the heteroatom can be at least one of B, O, N, P, Si, Se and S.
  • a heteroaryl group can be a monocyclic heteroaryl group or a polycyclic heteroaryl group, in other words, a heteroaryl group can be a single aromatic ring system or multiple aromatic ring systems linked by carbon-carbon bonds, and any aromatic
  • the ring system is an aromatic monocyclic ring or an aromatic fused ring.
  • heteroaryl groups can include thienyl, furyl, pyrrolyl, imidazolyl, thiazolyl, oxazolyl, oxadiazolyl, triazolyl, pyridyl, bipyridyl, pyrimidinyl, triazinyl, acridinyl, pyridazinyl, pyrazinyl, quinolinyl, quinazolinyl, quinoxalinyl, phenoxazinyl, phthalazinyl, pyridopyrimidinyl, pyridopyrazinyl, pyrazinopyrazinyl Azinyl, isoquinolinyl, indolyl, carbazolyl, benzoxazolyl, benzimidazolyl, benzothiazolyl, benzocarbazolyl, benzothienyl, dibenzothienyl, thiophene thieny
  • heteroarylene group refers to a divalent group formed by the further loss of one hydrogen atom from the heteroaryl group.
  • a substituted heteroaryl group may be a heteroaryl group whose one or more hydrogen atoms are replaced by a group such as D, halogen group, -CN, aryl, heteroaryl, trialkylsilyl, alkyl, Cycloalkyl, haloalkyl and other groups are substituted.
  • aryl-substituted heteroaryl groups include, but are not limited to, phenyl-substituted dibenzofuranyl, phenyl-substituted dibenzothienyl, phenyl-substituted pyridyl, and the like. It should be understood that the number of carbon atoms in a substituted heteroaryl group refers to the total number of carbon atoms in the heteroaryl group and the substituents on the heteroaryl group.
  • the number of carbon atoms of the aryl group as a substituent may be 6 to 20, for example, the number of carbon atoms may be 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, specific examples of aryl groups as substituents include, but are not limited to, phenyl, biphenyl, naphthyl, anthracenyl, phenanthryl, base.
  • the number of carbon atoms of the heteroaryl group as a substituent may be 3 to 20, for example, the number of carbon atoms may be 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 , 15, 16, 17, 18, 19, 20, specific examples of heteroaryl groups as substituents include, but are not limited to, pyridyl, pyrimidinyl, carbazolyl, dibenzofuranyl, dibenzothienyl, Quinolinyl, quinazolinyl, quinoxalinyl, isoquinolinyl.
  • the explanation for an aryl group can be applied to an arylene group
  • the explanation for a heteroaryl group also applies to a heteroarylene group
  • the explanation for an alkyl group can be applied to an alkylene group
  • the explanation for a cycloalkyl group can be applied to in cycloalkylene.
  • a ring system formed by n atoms is an n-membered ring.
  • phenyl is a 6-membered aryl group.
  • the 6-10-membered aromatic ring refers to a benzene ring, an indene ring, and a naphthalene ring.
  • the "ring” in this application includes saturated and unsaturated rings; saturated rings include cycloalkyl, heterocycloalkyl, and unsaturated rings include cycloalkenyl, heterocycloalkenyl, aryl and heteroaryl.
  • the non-positioning connecting bond refers to the single bond extending from the ring system It means that one end of the linking bond can be connected to any position in the ring system through which the bond runs, and the other end is connected to the rest of the compound molecule.
  • the naphthyl group represented by the formula (f) is connected to other positions of the molecule through two non-positioned linkages running through the bicyclic ring. -1) to any possible connection method shown in formula (f-10).
  • the phenanthrene represented by the formula (X') is connected to other positions of the molecule through a non-positioned link extending from the middle of one side of the benzene ring, and the meaning it represents, Any possible connection modes shown by formula (X'-1) to formula (X'-4) are included.
  • a non-positioned substituent in the present application refers to a substituent attached through a single bond extending from the center of the ring system, which means that the substituent may be attached at any possible position in the ring system.
  • the substituent R' group represented by the formula (Y) is connected to the quinoline ring through a non-positioning link, and the meanings it represents include the formula (Y-1) ⁇ Any possible connection mode shown by formula (Y-7).
  • the halogen group may be, for example, fluorine, chlorine, bromine, or iodine.
  • trialkylsilyl include, but are not limited to, trimethylsilyl, triethylsilyl, and the like.
  • triarylsilyl groups include, but are not limited to, triphenylsilyl groups and the like.
  • haloalkyl examples include, but are not limited to, trifluoromethyl.
  • cycloalkyl examples include, but are not limited to, cyclopentyl, cyclohexyl, and adamantyl.
  • any one of these substituents can be selected from deuterium, fluorine, chlorine, cyano, number of carbon atoms 3-20 substituted or unsubstituted heteroaryl, 6-20 substituted or unsubstituted aryl, methyl, ethyl, isopropyl, tert-butyl, cyclopropyl, cyclobutyl base, cyclopentyl, cyclohexyl, etc.
  • the heteroaryl group may be selected from pyridyl, pyrimidinyl, indolyl, furanyl, thiazolyl, dibenzothiazolyl , Dibenzofuranyl, etc.
  • the aryl group may be selected from phenyl, biphenyl, terphenyl, naphthyl, anthracenyl, phenanthryl, fluorenyl and the like.
  • one of R 1 and R 2 is hydrogen, and the other is the structure shown in formula 2. That is, only one structure represented by formula 2 is connected in the nitrogen-containing compound provided by the present application. In this way, it is beneficial to control the molecular weight of the nitrogen-containing compound of the present application, and to facilitate the evaporation of the nitrogen-containing compound at a lower temperature.
  • both m and n are 0.
  • L, L 1 and L 2 are each independently selected from the group consisting of a single bond or a group represented by formula j-1 to formula j-10:
  • M 2 is selected from single bond or represents a chemical bond
  • Q 1 to Q 5 and Q' 1 to Q' 4 are each independently selected from N or C(J 3 ), and at least one of Q 1 to Q 5 is selected from N; when two or more of Q 1 to Q 5 are selected from N; When selected from C(J 3 ), any two J 3 are the same or different; when two or more of Q' 1 to Q' 4 are selected from C(J 3 ), any two J 3 are the same or different;
  • Q 6 to Q 13 are each independently selected from N, C or C(J 4 ), and at least one of Q 6 to Q 13 is selected from N; when two or more of Q 6 to Q 13 are selected from C(J 4 ) ), any two J 4 are the same or different;
  • J 3 to J 4 are each independently selected from hydrogen, deuterium, halogen group, cyano group, alkyl group having 1 to 5 carbon atoms, haloalkyl group having 1 to 10 carbon atoms, and alkyl group having 6 to 20 carbon atoms aryl, heteroaryl with 3 to 20 carbon atoms, cycloalkyl with 3 to 10 carbon atoms, heterocycloalkyl with 2 to 10 carbon atoms, alkane with 1 to 10 carbon atoms Oxygen;
  • E 1 to E 12 are each independently selected from deuterium, halogen group, cyano group, alkyl group having 1 to 5 carbon atoms, haloalkyl group having 1 to 10 carbon atoms, and aryl group having 6 to 20 carbon atoms. group, heteroaryl group with 3 to 20 carbon atoms, cycloalkyl group with 3 to 10 carbon atoms, heterocycloalkyl group with 2 to 10 carbon atoms, alkoxy group with 1 to 10 carbon atoms ;
  • e 1 to e 12 are represented by er, and E 1 to E 12 are represented by Er ;
  • r is a variable, representing any integer from 1 to 12; er represents the number of substituents Er ; when r is 1, 2, or 3 , 4, 5, 6 or 12, er is selected from 0, 1, 2, 3 or 4; when r is 7 or 10, er is selected from 0, 1, 2, 3, 4, 5 or 6; When r is 11, er is selected from 0, 1, 2, 3, 4, 5, 6 or 7; when r is 8 or 9, er is selected from 0, 1, 2, 3, 4, 5, 6, 7 or 8; when er is greater than 1, any two Er are the same or different;
  • K 3 is selected from O, S, Se, N(E 13 ), C(E 14 E 15 ), Si(E 16 E 17 ); wherein, E 13 , E 14 , E 15 , E 16 and E 17 are each independently is selected from an alkyl group having 1 to 5 carbon atoms, an aryl group having 6 to 20 carbon atoms, a heteroaryl group having 3 to 20 carbon atoms, or E 14 and E 15 are connected to each other to be connected together with them The atoms of E 16 and E 17 form a saturated or unsaturated ring with 3 to 15 carbon atoms, or E 16 and E 17 are connected to each other to form a saturated or unsaturated ring with 3 to 15 carbon atoms, for example In terms of equation j-7 Among them, when M 2 is a single bond, E 10 is all hydrogen, K 4 is a single bond, and K 3 is C (E 14 E 15 ), optionally E 14 and E 15 are connected to each other to be connected together with them Atom forming a 5-13-member
  • K 4 is selected from single bond, O, S, Se, N(E 18 ), C(E 19 E 20 ), Si(E 21 E 22 ); wherein, E 18 , E 19 , E 20 , E 21 and E 22 are each independently selected from an alkyl group having 1 to 5 carbon atoms, an aryl group having 6 to 20 carbon atoms, a heteroaryl group having 3 to 20 carbon atoms, or E 19 and E 20 are connected to each other to be connected with each other.
  • the atoms to which they are commonly connected form a saturated or unsaturated ring with 3 to 15 carbon atoms, or E 21 and E 22 are connected to each other to form a saturated or unsaturated ring with 3 to 15 carbon atoms with their commonly connected atoms Ring, this application does not specifically limit the number of carbon atoms in the ring formed by E 19 and E 20 , the number of carbon atoms in the ring formed by E 21 and E 22 , the carbon atoms formed by E 19 and E 20 , and the carbon atoms formed by E 21 and E 22 The number is the same as that of E 14 and E 15 forming a ring, and will not be repeated here.
  • L, L 1 and L 2 are each independently selected from a single bond, a substituted or unsubstituted arylene group having 6 to 20 carbon atoms, and a substituted or unsubstituted arylene group having 12 to 20 carbon atoms.
  • Heteroaryl are each independently selected from single bonds, and the number of carbon atoms is 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20
  • L, L 1 and L 2 are each independently selected from a single bond or from the group formed by the following groups:
  • L, L 1 and L 2 are each independently selected from a single bond, a substituted or unsubstituted arylene group having 6 to 12 carbon atoms, and a substituted or unsubstituted arylene group having 12 to 18 carbon atoms. Heteroaryl.
  • the substituents in L, L 1 and L 2 are independently selected from deuterium, fluorine, cyano, trimethylsilyl, alkyl with 1-5 carbon atoms, and 6- An aryl group of 12 and a heteroaryl group having 3 to 10 carbon atoms.
  • L, L 1 and L 2 are each independently selected from a single bond or are selected from the group formed by the following groups:
  • L, L and L are each independently selected from single bond, phenylene, tolylylene , phenyl - substituted phenylene, biphenylene, terphenylene, naphthylene, 9,9-dimethylfluorenyl, phenanthrene, anthracene, dibenzofuranylene, dibenzothienylene, N-phenylcarbazolyl.
  • Ar 1 and Ar 2 are independently selected from the group consisting of groups represented by formula i-1 to formula i-11:
  • M 1 is selected from single bond or
  • G 1 to G 5 and G' 1 to G' 4 are each independently selected from N, C or C(J 1 ), and at least one of G 1 to G 5 is selected from N; when two of G 1 to G 5 are selected from N; When more than one is selected from C(J 1 ), any two J 1 are the same or different;
  • G 6 to G 13 are each independently selected from N, C or C(J 2 ), and at least one of G 6 to G 13 is selected from N; when two or more of G 6 to G 13 are selected from C(J 2 ) ), any two J 2 are the same or different;
  • Z 1 is selected from hydrogen, deuterium, halogen group, cyano group, alkyl group with 1-5 carbon atoms, halogenated alkyl group with 1-5 carbon atoms, trialkylsilyl group with 3-12 carbon atoms , cycloalkyl with 3 to 10 carbon atoms, alkoxy with 1 to 10 carbon atoms, triarylsilyl with 18 to 24 carbon atoms;
  • Z 2 to Z 9 and Z 16 are each independently selected from hydrogen, deuterium, halogen group, cyano group, alkyl group having 1 to 5 carbon atoms, haloalkyl group having 1 to 5 carbon atoms, Trialkylsilyl group of 3-12, heteroaryl group of carbon number of 3-18, cycloalkyl group of carbon number of 3-10, alkoxy group of carbon number of 1-10, carbon number of 18-24 triarylsilyl groups;
  • Z 10 to Z 15 are each independently selected from hydrogen, deuterium, halogen group, cyano group, alkyl group having 1 to 5 carbon atoms, haloalkyl group having 1 to 5 carbon atoms, and alkyl group having 3 to 12 carbon atoms trialkylsilyl group, aryl group with 6-18 carbon atoms, heteroaryl group with 3-18 carbon atoms, cycloalkyl group with 3-10 carbon atoms, cycloalkyl group with 1-10 carbon atoms Alkoxy, triarylsilyl with 18 to 24 carbon atoms;
  • J 1 to J 2 are each independently selected from hydrogen, deuterium, halogen group, cyano group, alkyl group having 1 to 5 carbon atoms, haloalkyl group having 1 to 5 carbon atoms, and alkyl group having 3 to 12 carbon atoms trialkylsilyl group, aryl group with 6-18 carbon atoms, heteroaryl group with 3-18 carbon atoms, cycloalkyl group with 3-10 carbon atoms, cycloalkyl group with 1-10 carbon atoms Alkoxy, triarylsilyl with 18 to 24 carbon atoms;
  • h 1 to h 16 are represented by h k
  • Z 1 to Z 16 are represented by Z k
  • k is a variable, representing any integer from 1 to 16
  • h k represents the number of substituents Z k ; wherein, when k is selected from 5 When k is selected from 0, 1, 2 or 3; when k is selected from 2, 7, 8, 12 or 16, h k is selected from 0, 1, 2, 3 or 4; when k is selected from 1, 3 , 4, 6 or 9, h k is selected from 0, 1, 2, 3, 4 or 5; when k is 13, h k is selected from 0, 1, 2, 3, 4, 5 or 6; when k is When selected from 10 or 14, h k is selected from 0, 1, 2, 3, 4, 5, 6 or 7; when k is 15, h k is selected from 0, 1, 2, 3, 4, 5, 6 , 7 or 8; when k is 11, h k is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8 or 9; and when h k is greater than 1, any two Z k are the same or
  • K 1 is selected from O, S, N(Z 17 ), C(Z 18 Z 19 ), Si(Z 20 Z 21 ); wherein Z 17 , Z 18 , Z 19 , Z 20 , Z 21 are independently selected from each other From an alkyl group having 1 to 5 carbon atoms, an aryl group having 6 to 18 carbon atoms, or a heteroaryl group having 3 to 18 carbon atoms, or the above-mentioned Z 18 and Z 19 are connected to each other to be connected together with them
  • the atoms form a saturated or unsaturated ring with 3 to 15 carbon atoms, or the above-mentioned Z 20 and Z 21 are connected to each other so that the atoms that are connected together with them form a saturated or unsaturated ring with 3 to 15 carbon atoms, the present
  • the application does not specifically limit the number of carbon atoms in the ring of Z 18 and Z 19 , and the number of carbon atoms in the ring of Z 20 and Z 21.
  • K 2 is selected from single bond, O, S, N(Z 22 ), C(Z 23 Z 24 ), Si(Z 25 Z 26 ); wherein Z 22 , Z 23 , Z 24 , Z 25 , Z 26 are each independently selected from an alkyl group having 1 to 5 carbon atoms, an aryl group having 6 to 18 carbon atoms, or a heteroaryl group having 3 to 18 carbon atoms, or the above Z 23 and Z 24 are connected to each other to be connected with them
  • the commonly connected atoms form a saturated or unsaturated ring with 3 to 15 carbon atoms, or the above-mentioned Z 25 and Z 26 are connected to each other to form a saturated or unsaturated ring with 3 to 15 carbon atoms with their commonly connected atoms Ring, this application does not specifically limit the number of carbon atoms in the ring of Z 23 and Z 24 , the number of carbon atoms in the ring of Z 25 and Z 26 , the carbon atoms of the ring of Z 23 and Z 24
  • Ar 1 and Ar 2 are each independently selected from a substituted or unsubstituted aryl group with 6-25 carbon atoms and a substituted or unsubstituted heteroaryl group with 12-24 carbon atoms.
  • Ar 1 and Ar 2 are independently selected from the group consisting of 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, Substituted or unsubstituted aryl groups of 23, 24, 25, substituted or unsubstituted heteroaryl groups with carbon atoms of 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 base.
  • the substituents in Ar 1 and Ar 2 are independently selected from deuterium, fluorine, cyano, trimethylsilyl, alkyl groups with 1 to 5 carbon atoms, and alkyl groups with 6 to 12 carbon atoms.
  • Ar 1 and Ar 2 are independently selected from substituted or unsubstituted group W, and unsubstituted group W is selected from the group consisting of:
  • the substituted group W has one or more substituents, each independently selected from deuterium, fluorine, cyano, methyl, ethyl, isopropyl, tert-butyl, phenyl, naphthyl , biphenyl, pyridyl, carbazolyl, dibenzofuranyl or dibenzothienyl.
  • Ar 1 and Ar 2 are independently selected from the group consisting of the following groups:
  • Ar 1 and Ar 2 are independently selected from the group consisting of the following groups:
  • Ar 1 and Ar 2 are each independently selected from substituted or unsubstituted following groups: phenyl, naphthyl, biphenyl, terphenyl, phenanthrenyl, anthracenyl, 9,9-spirobifluorene base, 9,9-dimethylfluorenyl, pyridyl, carbazolyl, pyrimidinyl, 1,10-phenanthroline, pyridazinyl, triazinyl, quinolinyl, isoquinolinyl, quinazoline group, pyrazinyl, quinoxalinyl, pyrenyl, N-phenylcarbazolyl, dibenzofuranyl or dibenzothienyl; the substituted group is substituted by a group selected from the group consisting of: deuterium, fluorine, cyano, trimethylsilyl, methyl, ethyl, isopropyl, tert-butyl, phen
  • the substituents in Ar 1 and Ar 2 are each independently selected from deuterium, fluorine, cyano, trimethylsilyl, methyl, ethyl, isopropyl, tert-butyl, phenyl, naphthyl , pyridyl, dibenzofuranyl, cyclohexyl, carbazolyl or dibenzothienyl.
  • the nitrogen-containing compound is selected from the group consisting of:
  • a second aspect of the present application provides an electronic component comprising an anode and a cathode disposed opposite to each other, and a functional layer disposed between the anode and the cathode; the functional layer includes the nitrogen-containing compound of the present application.
  • the functional layer includes a hole transport layer, and the hole transport layer includes the nitrogen-containing compound.
  • the electronic component is an organic electroluminescence device or a photoelectric conversion device.
  • the hole transport layer includes a first hole transport layer and a second hole transport layer, the first hole transport layer is closer to the anode than the second hole transport layer, wherein, The second hole transport layer includes the nitrogen-containing compound.
  • the electronic component may be an organic electroluminescent device.
  • the organic electroluminescent device may include an anode 100 , a first hole transport layer 321 , a second hole transport layer 322 , an organic light emitting layer 330 , an electron transport layer 340 and a cathode 200 which are stacked in sequence.
  • the anode 100 includes an anode material, which is preferably a material with a large work function that facilitates hole injection into the functional layer.
  • anode materials include: metals such as nickel, platinum, vanadium, chromium, copper, zinc and gold or alloys thereof; metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO) and indium zinc oxide (IZO); Combined metals and oxides such as ZnO:Al or SnO2: Sb; or conducting polymers such as poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene ](PEDT), polypyrrole and polyaniline, but not limited thereto. It is preferable to include a transparent electrode comprising indium tin oxide (ITO) as an anode.
  • ITO indium tin oxide
  • the first hole transport layer 321 includes one or more hole transport materials, and the hole transport materials can be selected from carbazole polymers, carbazole-linked triarylamine compounds or other types of compounds. There is no special restriction on this.
  • the first hole transport layer 321 may be composed of the compound NPB, and the second hole transport layer 322 may contain the nitrogen-containing compound of the present application.
  • the organic light-emitting layer 330 may be composed of a single light-emitting layer material, or may include a host material and a dopant material.
  • the organic light-emitting layer 330 is composed of a host material and a dopant material.
  • the holes injected into the organic light-emitting layer 330 and the electrons injected into the organic light-emitting layer 330 can recombine in the organic light-emitting layer 330 to form excitons, and the excitons transfer energy.
  • the host material transfers energy to the dopant material, thereby enabling the dopant material to emit light.
  • the host material of the organic light-emitting layer 330 may be metal chelate compounds, bis-styryl derivatives, aromatic amine derivatives, dibenzofuran derivatives or other types of materials, which are not specifically limited in this application.
  • the host materials of the organic light-emitting layer 330 may be GH-n1 and GH-n2.
  • the dopant material of the organic light-emitting layer 330 may be a compound having a condensed aryl ring or a derivative thereof, a compound having a heteroaryl ring or a derivative thereof, an aromatic amine derivative or other materials, which are not specially made in this application. limits.
  • the dopant material of the organic light-emitting layer 330 may be Ir(ppy) 3 .
  • the electron transport layer 340 may be a single-layer structure or a multi-layer structure, which may include one or more electron transport materials, and the electron transport materials may be selected from, but not limited to, TPBi, LiQ, benzimidazole derivatives, oxadiazole derivatives, quinoxaline derivatives or other electron transport materials.
  • the electron transport layer 340 may be composed of ET-06 and LiQ.
  • the cathode 200 may include a cathode material, which is a material with a small work function that facilitates the injection of electrons into the functional layer.
  • cathode materials include, but are not limited to, metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin, and lead or alloys thereof; or multi-layer materials such as LiF/Al , Liq/Al, LiO 2 /Al, LiF/Ca, LiF/Al and BaF 2 /Ca.
  • a metal electrode comprising magnesium and silver is preferably included as the cathode.
  • a hole injection layer 310 may be further disposed between the anode 100 and the first hole transport layer 321 to enhance the capability of injecting holes into the first hole transport layer 321 .
  • the hole injection layer 310 can be selected from benzidine derivatives, starburst arylamine compounds, phthalocyanine derivatives or other materials, which are not specifically limited in this application.
  • the hole injection layer 310 may be HAT-CN.
  • an electron injection layer 350 may also be disposed between the cathode 200 and the electron transport layer 340 to enhance the capability of injecting electrons into the electron transport layer 340 .
  • the electron injection layer 350 may include inorganic materials such as alkali metal sulfide and alkali metal halide, or may include a complex compound of alkali metal and organic matter.
  • the electron injection layer 350 may be Yb.
  • the electronic component may be a photoelectric conversion device.
  • the photoelectric conversion device may include an anode 100 and a cathode 200 disposed opposite to each other, and a functional layer 300 disposed between the anode 100 and the cathode 200 ; the functional layer 300 includes the nitrogen-containing compound provided in the present application.
  • the photoelectric conversion device may include an anode 100 , a hole transport layer 320 , a photoelectric conversion layer 360 , an electron transport layer 340 and a cathode 200 which are stacked in sequence.
  • the photoelectric conversion device may be a solar cell, especially an organic thin film solar cell.
  • a solar cell may include an anode, a hole transport layer, a photoelectric conversion layer, an electron transport layer and a cathode that are stacked in sequence, wherein the hole transport layer includes the Nitrogenous compounds.
  • a third aspect of the present application provides an electronic device, including the electronic component provided by the second aspect of the present application.
  • the electronic device is a first electronic device 400
  • the first electronic device 400 includes the above-mentioned organic electroluminescence device.
  • the first electronic device 400 may be, for example, a display device, a lighting device, an optical communication device, or other types of electronic devices, such as but not limited to computer screens, mobile phone screens, televisions, electronic paper, emergency lighting, light modules, and the like.
  • the electronic device is a second electronic device 500
  • the second electronic device 500 includes the above-mentioned photoelectric conversion device.
  • the second electronic device 500 may be, for example, a solar power generation device, a light detector, a fingerprint identification device, an optical module, a CCD camera, or other types of electronic devices.
  • the compounds of the synthetic methods not mentioned in this application are all raw materials obtained through commercial channels.
  • IM A-1-1 45 g, 136.20 mmol
  • (2-fluorophenyl)boronic acid 34.3 g, 245.16 mmol
  • toluene 350 mL
  • water 60 mL
  • IM A-1-2 40 g, 110.87 mmol
  • boron tribromide 25.0 g, 99.78 mmol
  • dichloromethane 240 mL
  • methanol 100 mL
  • water 50 mL
  • the reaction solution was transferred to a separatory funnel, extracted with dichloromethane, dried, filtered, concentrated, and passed through the column. It was recrystallized with a mixed solvent of dichloromethane and n-heptane to LC>98%. Drying gave white solid IMA-1-3 (33.2 g, yield 90%).
  • IM A-2-1 50 g, 168.94 mmol
  • (2-fluorophenyl)boronic acid 47.18 g, 337.89 mmol
  • toluene 350 mL
  • water 60 mL
  • IMA-2-2 40 g, 122.57 mmol
  • boron tribromide 55.27 g, 22.07 mmol
  • dichloromethane 240 mL
  • methanol 100 mL
  • water 50 mL
  • the reaction solution was transferred to a separatory funnel, extracted with dichloromethane, dried, filtered, concentrated, and passed through the column. It was recrystallized with a mixed solvent of dichloromethane and n-heptane to LC>98%. Oven to obtain white solid IM A-2-3 (33.27 g, yield 91%).
  • IM A-2-4 (15 g, 58.08 mmol) and dibromoethane (10 mL) to a 250 mL three-necked flask, dissolve at -80°C to -90°C until clear, and slowly add n -BuLi (96mL, 2M) was added to the reaction system, and the reaction was stirred at -75°C to -80°C for 30min. After thorough stirring, dichloromethane was added for extraction, the organic phases were combined, washed with water until neutral, and anhydrous magnesium sulfate was used.
  • IM A-3-1 50 g, 166.03 mmol
  • potassium carbonate 192 mmol
  • DMF 300 mL
  • the reaction solution was reversely precipitated in water to obtain a solid, which was then recrystallized twice with THF and ethanol to obtain IMA-3-2 (37.34 g, yield 81%).
  • IM A-3-2 35 g, 124.49 mmol
  • 400 mL of THF were added to a 1000 mL three-necked flask, and cooled to -78°C.
  • n-BuLi 1.6 M, 100 mL, 120 mmol
  • Triisopropyl borate 70.31 g, 373.47 mmol
  • IM A-3-3 (30 g, 92.32 mmol) and 2-iodophenol (20.42 g, 92.82 mmol) were dissolved in 300 mL of THF, and potassium carbonate (19.14 g, 138.48 mmol) was dissolved in 150 mL of H2O was added. Tetrakis(triphenylphosphine)palladium (1.07 g, 0.92 mmol) was added to the obtained mixed solution, and the mixture was stirred under reflux at 70° C. for 8 h under an argon atmosphere.
  • the obtained reaction solution was cooled to room temperature, transferred to a separatory funnel, and extracted with DCM.
  • the obtained extract was dried over magnesium sulfate, filtered and concentrated, and the resulting sample was purified by silica gel column chromatography to obtain IM A-3-4 (26.5 g, yield 77%).
  • IM A-3-4 25 g, 66.98 mmol
  • K 2 CO 3 13.89 g, 100.47 mmol
  • 200 mL of NMP 200 mL
  • the obtained reaction solution was cooled to room temperature, transferred to a separatory funnel, and 150 mL of H 2 O was added, followed by extraction with ethyl acetate.
  • the obtained extract was purified by silica gel column chromatography to obtain IM A-3 (15.63 g, yield 66%).
  • the obtained reaction solution was cooled to room temperature, transferred to a separatory funnel, and extracted with DCM.
  • the obtained extract was dried over magnesium sulfate, filtered and concentrated, and the resulting sample was purified by silica gel column chromatography to obtain IM A-4-1 (27.67 g, yield 77%).
  • IMA was synthesized by the above reaction formula -5 (67% yield).
  • IM A-1 (14.0 g, 37.74 mmol), 4-aminobiphenyl (8.97 g, 38.5 mmol), tris(dibenzylideneacetone)dipalladium (0.35 g, 0.38 mmol), 2-dicyclohexylphosphine -2',4',6'-triisopropylbiphenyl (0.36g, 0.75mmol) and sodium tert-butoxide (10.88g, 113.23mmol) were added to toluene (140mL), heated to 108°C under nitrogen protection, Stirred for 3h; then cooled to room temperature, the reaction solution was washed with water until neutral, the organic phase was dried by adding magnesium sulfate, filtered, and the filtrate was decompressed to remove the solvent; the crude product was purified by recrystallization using a dichloromethane/n-heptane system to obtain a light Yellow solid IM A-1-B (15.08 g, 79
  • IM A-2 (14.0 g, 37.74 mmol), 4-aminobiphenyl (8.97 g, 38.5 mmol), tris(dibenzylideneacetone)dipalladium (0.35 g, 0.38 mmol), 2-dicyclohexylphosphine -2',4',6'-triisopropylbiphenyl (0.36g, 0.75mmol) and sodium tert-butoxide (10.88g, 113.23mmol) were added to toluene (140mL), heated to 108°C under nitrogen protection, Stirred for 3h; then cooled to room temperature, the reaction solution was washed with water until neutral, the organic phase was dried by adding magnesium sulfate, filtered, and the filtrate was decompressed to remove the solvent; the crude product was purified by recrystallization using a dichloromethane/n-heptane system to obtain a light Yellow solid IM A-2-B (15.08 g, 79
  • IM A-2 (15 g, 44.49 mmol), p-chlorophenylboronic acid (7.03 g, 44.93 mmol), tetrakis(triphenylphosphine) palladium (1.54 g, 1.33 mmol), potassium carbonate (9.22 g, 66.73 mmol), Tetrabutylammonium chloride (TBAC) (6.18g, 2.22mmol) were added to the three-necked flasks respectively, toluene (100mL), ethanol (50mL) and water (40mL) were weighed and added to the reactor, refluxed at 80°C for 12h, when At the end of the reaction, use CH 2 Cl 2 and water for extraction, take the organic phase and dry it over anhydrous MgSO 4 , filter with suction, concentrate the organic layer, and purify the crude product through silica gel column to obtain IM A-2-C (10.67 g, yield 65%).
  • IM A-2-C (14.0 g, 37.74 mmol), 4-aminobiphenyl (8.97 g, 38.5 mmol), tris(dibenzylideneacetone)dipalladium (0.35 g, 0.38 mmol), 2-bicyclo Hexylphosphine-2',4',6'-triisopropylbiphenyl (0.36g, 0.75mmol) and sodium tert-butoxide (10.88g, 113.23mmol) were added to toluene (140mL), heated to 108 under nitrogen protection °C, stirred for 3 h; then cooled to room temperature, the reaction solution was washed with water until neutral, the organic phase was dried by adding magnesium sulfate, filtered, and the filtrate was decompressed to remove the solvent; the crude product was purified by recrystallization using a dichloromethane/n-heptane system, IM A-2-A (15.08 g, 79.33%
  • IM A-1 (20 g, 68.32 mmol), p-chlorophenylboronic acid (10.79 g, 69.01 mmol), tetrakis(triphenylphosphine) palladium (2.39 g, 2.07 mmol), potassium carbonate (14.16 g, 102.49 mmol), Tetrabutylammonium chloride (TBAC) (0.95g, 3.42mmol) were added to the three-necked flasks respectively, toluene (150mL), ethanol (70mL) and water (40mL) were weighed and added to the reactor, refluxed at 80°C for 12h, when At the end of the reaction, use CH 2 Cl 2 and water for extraction, take the organic phase and dry it over anhydrous MgSO 4 , filter with suction, concentrate the organic layer, and purify the crude product through silica gel column to obtain IM A-1-C (16.38 g, yield 65%).
  • IM A-1-C (14.0 g, 37.74 mmol), 4-aminobiphenyl (8.97 g, 38.5 mmol), tris(dibenzylideneacetone)dipalladium (0.35 g, 0.38 mmol), 2-bicyclo Hexylphosphine-2',4',6'-triisopropylbiphenyl (0.36g, 0.75mmol) and sodium tert-butoxide (10.88g, 113.23mmol) were added to toluene (140mL), heated to 108 under nitrogen protection °C, stirred for 3 h; then cooled to room temperature, the reaction solution was washed with water until neutral, the organic phase was dried by adding magnesium sulfate, filtered, and the filtrate was decompressed to remove the solvent; the crude product was purified by recrystallization using a dichloromethane/n-heptane system, IM A-1-A (15.08 g, 79.33%
  • Anodes were prepared by the following process: ITO thickness was The substrate (manufactured by Corning) was cut into a size of 40mm x 40mm x 0.7mm, and a photolithography process was used to prepare it into an experimental substrate with cathode, anode and insulating layer patterns, and UV ozone and O 2 : N 2 plasma were used for surface treatment. Treatment to increase the work function of the anode (experimental substrate) and to remove scum.
  • F4-TCNQ was vacuum evaporated on the experimental substrate (anode) to form a thickness of The hole injection layer (HIL), and NPB was evaporated on the hole injection layer to form a thickness of The first hole transport layer (HTL-1).
  • HIL hole injection layer
  • HTL-1 The first hole transport layer
  • HTL-2 The second hole transport layer
  • GH-n1:GH-n2:Ir(ppy) 3 was co-evaporated in a ratio of 50%:50%:5% (evaporation rate) to form a thickness of green organic light-emitting layer (EML).
  • ET-06 and LiQ were mixed at a weight ratio of 1:1 and evaporated to form Thick electron transport layer (ETL), LiQ was evaporated on the electron transport layer to form a thickness of The electron injection layer (EIL) of the the cathode.
  • ETL Thick electron transport layer
  • EIL electron injection layer
  • the thickness of the vapor deposition on the above cathode is The CP-05 is formed to form an organic capping layer (CPL), thereby completing the fabrication of the organic light-emitting device.
  • CPL organic capping layer
  • an organic electroluminescence device was produced by the same method as in Example 1 by replacing the compound 1 in Example 1 with the compound shown in the compound column of Table 7.
  • Example 1 When forming the second hole transport layer, compound A, compound B, compound C, and compound D were respectively used to replace compound 1 in Example 1, and an organic electroluminescence device was fabricated by the same method as in Example 1.
  • the driving voltages of the organic electroluminescent devices in Examples 1 to 56 as the compounds for the second hole transport layer are at least lower than those of Comparative Examples 1 to 4 of the devices corresponding to the known compounds. 0.11V, the current efficiency (Cd/A) is increased by at least 18.34%, the external quantum efficiency is increased by at least 18.38%, the lifetime is increased by at least 12.54%, and the highest lifetime can be increased by 187h.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本申请属于有机材料技术领域,提供了一种如式1所示的含氮化合物、电子元件和电子装置。该含氮化合物能够改善电子元件的性能。

Description

含氮化合物、电子元件和电子装置
相关申请的交叉引用
本申请要求于2020年10月28日递交的申请号为202011173931.3的中国专利申请的优先权,在此引用上述中国专利申请的内容全文以作为本申请的一部分。
技术领域
本申请涉及有机电致发光技术领域,尤其涉及一种含氮化合物、电子元件和电子装置。
背景技术
随着电子技术的发展和材料科学的进步,用于实现电致发光或者光电转化的电子元件的应用范围越来越广泛。该类电子元件,例如有机电致发光器件或者光电转化器件,通常包括相对设置的阴极和阳极,以及设置于阴极和阳极之间的功能层。该功能层由多层有机或者无机膜层组成,且一般包括能量转化层、位于能量转化层与阳极之间的空穴传输层、位于能量转化层与阴极之间的电子传输层。
举例而言,当电子元件为有机电致发光器件时,其一般包括依次层叠设置的阳极、空穴传输层、作为能量转化层的有机发光层、电子传输层和阴极。当阴阳两极施加电压时,两电极产生电场,在电场的作用下,阴极侧的电子向有机发光层移动,阳极侧的空穴也向发光层移动,电子和空穴在有机发光层结合形成激子,激子处于激发态向外释放能量,进而使得有机发光层对外发光。
所述背景技术部分公开的上述信息仅用于加强对本申请的背景的理解,因此它可以包括不构成对本领域普通技术人员已知的现有技术的信息。
发明内容
本申请的目的在于提供一种含氮化合物、电子元件和电子装置,所述含氮化合物应用到电子元件中,可提高电子元件的性能。
为实现上述发明目的,本申请采用如下技术方案:
本申请的第一方面提供一种含氮化合物,其结构如式1所示:
Figure PCTCN2021119457-appb-000001
其中,X、Y各自独立地选自O或S;
R 1和R 2相同或不同,且分别独立地选自氢或式2,且R 1和R 2中至少一者为式2所示的结构;
Ar 1和Ar 2相同或不同,且分别独立地选自碳原子数为6~40的取代或未取代的芳基、碳原子数为3~40的取代或未取代的杂芳基;
L、L 1和L 2相同或不同,且各自独立地选自单键、碳原子数为6~30的取代或未取代的亚芳基、碳原子数为2~30的取代或未取代的亚杂芳基;
R 3和R 4相同或不同,且分别独立地选自氢、氘、卤素基团、氰基、碳原子数为1~10的烷基、碳原子数为1~5的卤代烷基、碳原子数为6~20的芳基、碳原子数为3~20的杂芳基、碳原子数为 3~12的三烷基硅基、碳原子数为18~24的三芳基硅基、碳原子数为3~20的环烷基、碳原子数为2~10的杂环烷基、碳原子数为1~10的烷氧基;
m为R 3的个数,且m选自1、2、3、4;当m大于1时,任意两个R 3相同或不同;
n为R 4的个数,且n选自1、2、3、4;当n大于1时,任意两个R 4相同或不同;
Ar 1、Ar 2、L、L 1、L 2上的取代基分别独立地选自氘、卤素基团、氰基、碳原子数为1~10的烷基、碳原子数为1~10的卤代烷基、碳原子数为3~12的三烷基硅基、碳原子数为6~20的芳基、碳原子数为3~20的杂芳基、碳原子数为3~10的环烷基、碳原子数为6~20的卤代芳基、碳原子数为2~10的杂环烷基、碳原子数为1~10的烷氧基、碳原子数为18~24的三芳基硅基。
本申请的第二方面提供一种电子元件,包括相对设置的阳极和阴极,以及设于所述阳极和所述阴极之间的功能层;所述功能层包含上述的含氮化合物;
本申请的第三方面提供一种电子装置,包括上述的电子元件。
本申请的含氮化合物以二苯并五元环稠合苯并五元环
Figure PCTCN2021119457-appb-000002
为母核,母核的三个苯处于不同平面,使得这一类材料构型呈弧面型,两个共轭面保证了其较好的迁移率,弯曲的空间构型,减少了分子间的过分堆叠,提升了其光电稳定性。同时,结合三芳胺类化合物良好的空穴传输性,形成了具有高迁移率的空穴传输材料。同时该母核为含O或S的刚性基团,提升了分子的玻璃化转变温度及热稳定性,使其具有较好成膜性和稳定性。本发明提供的含氮化合物可用作有机电致发光器件中的高迁移率的空穴传输材料,这类化合物能够有效降低驱动电压,提升器件光电转化效率。
附图说明
通过参照附图详细描述其示例实施方式,本申请的上述和其它特征及优点将变得更加明显。
图1是本申请一种实施方式的有机电致发光器件的结构示意图。
图2是本申请一种实施方式的电子装置的结构示意图。
图3是本申请一种实施方式的光电转化器件的结构示意图。
图4是本申请另一种实施方式的电子装置的结构示意图。
附图标记如下:
100、阳极          200、阴极            300、功能层          310、空穴注入层
320、空穴传输层    321、第一空穴传输层  322、第二空穴传输层  330、有机发光层
340、电子传输层    350、电子注入层      360、光电转化层      400、第一电子装置
500、第二电子装置
具体实施方式
现在将参考附图更全面地描述实施方式。然而,实施方式能够以多种形式实施,且不应被理解为限于在此阐述的范例;相反,提供这些实施方式使得本申请将更加全面和完整,并将实施方式的构思全面地传达给本领域的技术人员。所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施方式中。在下面的描述中,提供许多具体细节从而给出对本申请的实施方式的充分理解。
在图中,为了清晰,可能夸大了区域和层的厚度。在图中相同的附图标记表示相同或类似的结构,因而将省略它们的详细描述。
本申请的第一方面提供一种含氮化合物,其结构如式1所示:
Figure PCTCN2021119457-appb-000003
其中,X、Y各自独立地选自O或S;
R 1和R 2相同或不同,且分别独立地选自氢或式2,且R 1和R 2中至少一者为式2所示的结构;
Ar 1和Ar 2相同或不同,且分别独立地选自碳原子数为6~40的取代或未取代的芳基、碳原子数为3~40的取代或未取代的杂芳基;
L、L 1和L 2相同或不同,且各自独立地选自单键、碳原子数为6~30的取代或未取代的亚芳基、碳原子数为2~30的取代或未取代的亚杂芳基;
R 3和R 4相同或不同,且分别独立地选自氢、氘、卤素基团、氰基、碳原子数为1~10的烷基、碳原子数为1~5的卤代烷基、碳原子数为6~20的芳基、碳原子数为3~20的杂芳基、碳原子数为3~12的三烷基硅基、碳原子数为18~24的三芳基硅基、碳原子数为3~20的环烷基、碳原子数为2~10的杂环烷基、碳原子数为1~10的烷氧基;
m表示R 3的个数,且m选自1、2、3或4;当m大于1时,任意两个R 3相同或不同;
n表示R 4的个数,且n选自1、2、3或4;当n大于1时,任意两个R 4相同或不同;
Ar 1、Ar 2、L、L 1、L 2中的取代基分别独立地选自氘、卤素基团、氰基、碳原子数为1~10的烷基、碳原子数为1~10的卤代烷基、碳原子数为3~12的三烷基硅基、碳原子数为6~20的芳基、碳原子数为3~20的杂芳基、碳原子数为3~10的环烷基、碳原子数为6~20的卤代芳基、碳原子数为2~10的杂环烷基、碳原子数为1~10的烷氧基、碳原子数为18~24的三芳基硅基。
本申请中,“R 1和R 2中至少一者为式2所示的结构”是指R 1和R 2中的一个为式2所示的结构,或者R 1和R 2均为式2所示的结构。
本申请中,基团的碳原子数,指的是所有碳原子数。举例而言,碳原子数为10的取代的亚芳基中,亚芳基及其上的取代基的所有碳原子数为10。示例性地,9,9-二甲基芴基为碳原子数为15的取代的芳基。
本申请中,当没有另外提供具体的定义时,“杂”是指在一个官能团中包括至少1个B、N、O、S、Se、Si或P等杂原子,且其余原子为碳和氢。
本申请中,所采用的描述方式“各……独立地为”与“……分别独立地为”和“……独立地选自”可以互换,均应做广义理解,其既可以是指在不同基团中,相同符号之间所表达的具体选项之间互相不影响,也可以表示在相同的基团中,相同符号之间所表达的具体选项之间互相不影响。举例而言:在“
Figure PCTCN2021119457-appb-000004
其中,各q独立地为0、1、2或3,各R”独立地选自氢、氟、氯”的描述中,其含义是:式Q-1表示苯环上有q个取代基R”,各个R”可以相同也可以不同,每个R”的选项之间互不影响;式Q-2表示联苯的每一个苯环上有q个取代基R”,两个苯环上的R”取代基的个数q可以相同或不同,各个R”可以相同也可以不同,每个R”的选项之间互不影响。
本申请中,术语“取代或未取代的”是指没有取代基或者被一个或多个取代基取代。取代基包括但不限于,氘、卤素基团、氰基、烷基、卤代烷基、三烷基硅基、芳基、杂芳基、卤代芳基、环烷基、杂环烷基、烷氧基、三芳基硅基。
本申请中,“任选”或者“任选地”意味着随后所描述的事件或者环境可以发生也可以不发生, 该说明包括该事情或者环境发生或者不发生的场合。例如,“任选地,任意两个相邻取代基××形成环”意味着这两个取代基可以形成环但不是必须形成环,包括:两个相邻的取代基形成环的情景和两个相邻的取代基不形成环的情景。再比如,“任选地,连接于同一原子上的两个取代基之间相互连接以与它们共同连接的原子形成饱和或不饱和的5~18元脂肪族环或5~18元芳香环”,意思是:当有两个取代基连接于同一原子上时,这两个取代基可以各自独立地存在,也可以相互连接,以与它们共同连接的原子形成饱和或不饱和的5~18元脂肪族环或5~18元芳香环。
本申请中,碳原子数为1~10的烷基可以包括碳原子数1至10的直链烷基和碳原子数3至10的支链烷基。烷基的碳原子数例如可以为1、2、3、4、5、6、7、8、9、10,烷基的具体实例包括但不限于,甲基、乙基、正丙基、异丙基、正丁基、异丁基、叔丁基、正戊基、异戊基、新戊基、正己基、正庚基、正辛基、2-乙基己基、壬基、癸基、3,7-二甲基辛基等。
本申请中,芳基指的是衍生自芳香烃环的任选官能团或取代基。芳基可以是单环芳基(例如苯基)或多环芳基,换言之,芳基可以是单环芳基、稠环芳基、通过碳碳键共轭连接的两个或者更多个单环芳基、通过碳碳键共轭连接的单环芳基和稠环芳基、通过碳碳键共轭连接的两个或者更多个稠环芳基。即,通过碳碳键共轭连接的两个或者更多个芳香基团也可以视为本申请的芳基。其中,稠环芳基例如可以包括双环稠合芳基(例如萘基)、三环稠合芳基(例如菲基、芴基、蒽基)等。芳基中不含有B、N、O、S、Se、Si或P等杂原子。举例而言,本申请中,联苯基、三联苯基等为芳基。芳基的示例可以包括苯基、萘基、芴基、蒽基、菲基、联苯基、三联苯基、四联苯基、五联苯基、六联苯基、苯并[9,10]菲基、芘基、苝基、苯并荧蒽基、
Figure PCTCN2021119457-appb-000005
基等。本申请中,涉及的亚芳基是指芳基进一步失去一个氢原子所形成的二价基团。
本申请中,取代的芳基,指的是芳基中的一个或者多个氢原子被其它基团所取代。例如至少一个氢原子被D、F、Cl、I、CN、羟基、氨基、支链烷基、直链烷基、环烷基、烷氧基、烷胺基、烷硫基、芳基、杂芳基或者其他基团取代。杂芳基取代的芳基的具体实例包括但不限于,二苯并呋喃基取代的苯基、二苯并噻吩基取代的苯基、吡啶基取代的苯基等。应当理解的是,取代的芳基的碳原子数,指的是芳基及其芳基上的取代基的总碳原子数。
本申请中,杂芳基是指环中包含至少一个杂原子的一价芳香环或其衍生物,杂原子可以是B、O、N、P、Si、Se和S中的至少一种。杂芳基可以是单环杂芳基或多环杂芳基,换言之,杂芳基可以是单个芳香环体系,也可以是通过碳碳键共轭连接的多个芳香环体系,且任一芳香环体系为一个芳香单环或者一个芳香稠环。示例地,杂芳基可以包括噻吩基、呋喃基、吡咯基、咪唑基、噻唑基、噁唑基、噁二唑基、三唑基、吡啶基、联吡啶基、嘧啶基、三嗪基、吖啶基、哒嗪基、吡嗪基、喹啉基、喹唑啉基、喹喔啉基、吩噁嗪基、酞嗪基、吡啶并嘧啶基、吡啶并吡嗪基、吡嗪并吡嗪基、异喹啉基、吲哚基、咔唑基、苯并噁唑基、苯并咪唑基、苯并噻唑基、苯并咔唑基、苯并噻吩基、二苯并噻吩基、噻吩并噻吩基、苯并呋喃基、菲咯啉基、异噁唑基、噻二唑基、苯并噻唑基、吩噻嗪基、硅芴基、二苯并呋喃基以及N-苯基咔唑基、N-吡啶基咔唑基、N-甲基咔唑基等,而不限于此。其中,噻吩基、呋喃基、菲咯啉基等为单个芳香环体系类型的杂芳基,N-苯基咔唑基、N-吡啶基咔唑基为通过碳碳键共轭连接的多环体系类型的杂芳基。本申请中,涉及的亚杂芳基是指杂芳基进一步失去一个氢原子所形成的二价基团。
本申请中,取代的杂芳基可以是杂芳基中的一个或者两个以上氢原子被诸如D、卤素基团、-CN、芳基、杂芳基、三烷基硅基、烷基、环烷基、卤代烷基等基团取代。芳基取代的杂芳基的具体实例包括但不限于,苯基取代的二苯并呋喃基、苯基取代的二苯并噻吩基、苯基取代的吡啶基等。应当理解地是,取代的杂芳基的碳原子数,指的是杂芳基和杂芳基上的取代基的碳原 子总数。
本申请中,作为取代基的芳基的碳原子数可以为6~20,例如碳原子数可以为6、7、8、9、10、11、12、13、14、15、16、17、18、19、20,作为取代基的芳基的具体实例包括但不限于,苯基、联苯基、萘基、蒽基、菲基、
Figure PCTCN2021119457-appb-000006
基。
本申请中,作为取代基的杂芳基的碳原子数可以为3~20,例如碳原子数可以为3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20,作为取代基的杂芳基的具体实例包括但不限于,吡啶基、嘧啶基、咔唑基、二苯并呋喃基、二苯并噻吩基、喹啉基、喹唑啉基、喹喔啉基、异喹啉基。
本申请中,对芳基的解释可应用于亚芳基,对杂芳基的解释同样应用于亚杂芳基,对烷基的解释可应用于亚烷基,对环烷基的解释可应用于亚环烷基。
本发明中,n个原子形成的环体系,即为n元环。例如,苯基为6元芳基。6~10元芳环就是指苯环、茚环和萘环等。
本申请中的“环”包含饱和环、不饱和环;饱和环包括环烷基、杂环烷基,不饱和环包括环烯基、杂环烯基、芳基和杂芳基。
本申请中,
Figure PCTCN2021119457-appb-000007
含义一样,均是指与其他取代基或结合位置结合的位置。
本申请中的不定位连接键,是指从环体系中伸出的单键
Figure PCTCN2021119457-appb-000008
其表示该连接键的一端可以连接该键所贯穿的环体系中的任意位置,另一端连接化合物分子其余部分。
举例而言,如下式(f)中所示地,式(f)所表示的萘基通过两个贯穿双环的不定位连接键与分子其他位置连接,其所表示的含义,包括如式(f-1)~式(f-10)所示出的任一可能的连接方式。
Figure PCTCN2021119457-appb-000009
例如,下式(X’)中所示的,式(X’)所表示的菲基通过一个从一侧苯环中间伸出的不定位连接键与分子其他位置连接,其所表示的含义,包括如式(X’-1)~式(X’-4)所示出的任一可能的连接方式。
Figure PCTCN2021119457-appb-000010
本申请中的不定位取代基,指的是通过一个从环体系中央伸出的单键连接的取代基,其表示该取代基可以连接在该环体系中的任何可能位置。例如,下式(Y)中所示的,式(Y)所表示的取代基R’基通过一个不定位连接键与喹啉环连接,其所表示的含义,包括如式(Y-1)~式(Y-7)所示出的任一可能的连接方式。
Figure PCTCN2021119457-appb-000011
Figure PCTCN2021119457-appb-000012
本申请中,卤素基团例如可以为氟、氯、溴、碘。
本申请中,三烷基硅基的具体实例包括但不限于,三甲基硅基、三乙基硅基等。
本申请中,三芳基硅基的具体实例包括但不限于,三苯基硅基等。
本申请中,卤代烷基的具体实例包括但不限于,三氟甲基。
本申请中,环烷基的具体实例包括但不限于,环戊基、环己基、金刚烷基。
可选地,在申请中,当Ar 1、Ar 2、L、L 1或L 2上具有取代基时,这些取代基中的任意一个可以选自氘、氟、氯、氰基、碳原子数为3~20的取代或未取代的杂芳基、碳原子数为6~20的取代或未取代的芳基、甲基、乙基、异丙基、叔丁基、环丙基、环丁基、环戊基、环己基等。进一步地,在Ar 1、Ar 2、L、L 1或L 2中的取代基中,杂芳基可以选自吡啶基、嘧啶基、吲哚基、呋喃基、噻唑基、二苯并噻唑基、二苯并呋喃基等。在Ar 1、Ar 2、L、L 1或L 2中的取代基中,芳基可以选自苯基、联苯基、三联苯基、萘基、蒽基、菲基、芴基等。
本申请的一种实施方式中,R 1、R 2中的一个为氢,另一个为式2所示的结构。即,本申请提供的含氮化合物中仅连接一个式2所示的结构。如此,利于控制本申请的含氮化合物的分子量,便于该含氮化合物在较低的温度下进行蒸镀。
本申请的一种实施方式中,m和n均为0。
本申请的一些实施方案中,L、L 1和L 2各自独立地选自单键或者式j-1至式j-10所示的基团所组成的组:
Figure PCTCN2021119457-appb-000013
其中,M 2选自单键或者
Figure PCTCN2021119457-appb-000014
表示化学键;
Q 1~Q 5和Q’ 1~Q’ 4各自独立地选自N或者C(J 3),且Q 1~Q 5中至少一个选自N;当Q 1~Q 5中的两个以上选自C(J 3)时,任意两个J 3相同或不同;当Q’ 1~Q’ 4中的两个以上选自C(J 3)时,任意两个J 3相同或不同;
Q 6~Q 13各自独立地选自N、C或者C(J 4),且Q 6~Q 13中至少一个选自N;当Q 6~Q 13中的两个以上选自C(J 4)时,任意两个J 4相同或不同;
J 3~J 4各自独立地选自氢、氘、卤素基团、氰基、碳原子数为1~5的烷基、碳原子数为1~10的卤代烷基、碳原子数为6~20的芳基、碳原子数为3~20的杂芳基、碳原子数为3~10的环烷基、碳 原子数为2~10的杂环烷基、碳原子数为1~10的烷氧基;
E 1~E 12各自独立地选自氘、卤素基团、氰基、碳原子数为1~5的烷基、碳原子数为1~10的卤代烷基、碳原子数为6~20的芳基、碳原子数为3~20的杂芳基、碳原子数为3~10的环烷基、碳原子数为2~10的杂环烷基、碳原子数为1~10的烷氧基;
e 1~e 12以e r表示,E 1~E 12以E r表示;r为变量,表示1~12的任意整数;e r表示取代基E r的数量;当r为1、2、3、4、5、6或12时,e r选自0、1、2、3或者4;当r为7或10时,e r选自0、1、2、3、4、5或者6;当r为11时,e r选自0、1、2、3、4、5、6或者7;当r为8或9时,e r选自0、1、2、3、4、5、6、7或者8;当e r大于1时,任意两个E r相同或不同;
K 3选自O、S、Se、N(E 13)、C(E 14E 15)、Si(E 16E 17);其中,E 13、E 14、E 15、E 16和E 17各自独立地选自碳原子数为1~5的烷基、碳原子数为6~20的芳基、碳原子数为3~20的杂芳基,或者E 14和E 15相互连接以与它们共同连接的原子形成碳原子数为3~15的饱和或不饱和的环,或者E 16和E 17相互连接以与它们共同连接的原子形成碳原子数为3~15的饱和或不饱和的环,举例而言,在式j-7
Figure PCTCN2021119457-appb-000015
中,当M 2为单键时,E 10均为氢,K 4为单键,K 3为C(E 14E 15)时,任选地E 14和E 15相互连接以与它们共同连接的原子形成5-13元的饱和或不饱和环指的是:E 14和E 15可以相互连接形成一个环,也可以是相互独立地存在;当E 14和E 15成环时,该环的碳原子数可以是5元环,例如
Figure PCTCN2021119457-appb-000016
也可以是6元环,例如
Figure PCTCN2021119457-appb-000017
还可以是13元环,例如
Figure PCTCN2021119457-appb-000018
当然,E 14和E 15成环的碳原子数还可以为其他数值,此处不再一一列举,本申请不对此该环的碳原子数进行特殊限定;
K 4选自单键、O、S、Se、N(E 18)、C(E 19E 20)、Si(E 21E 22);其中,E 18、E 19、E 20、E 21和E 22各自独立地选自碳原子数为1~5的烷基、碳原子数为6~20的芳基、碳原子数为3~20的杂芳基,或者E 19和E 20相互连接以与它们共同连接的原子形成碳原子数为3~15的饱和或不饱和的环,或者E 21和E 22相互连接以与它们共同连接的原子形成碳原子数为3~15的饱和或不饱和的环,本申请不对E 19和E 20成环的碳原子数、E 21和E 22成环的碳原子数进行特殊限定,E 19和E 20成环、E 21和E 22成环的碳原子数与E 14和E 15成环同理,此处不再赘述。
可选地,L、L 1和L 2各自独立地选自单键、碳原子数为6~20的取代或未取代的亚芳基、碳原子数为12~20的取代或未取代的亚杂芳基。例如,L、L 1和L 2各自独立地选自单键,碳原子数为6、7、8、9、10、11、12、13、14、15、16、17、18、19、20的取代或未取代的亚芳基,碳原子数为12、13、14、15、16、17、18、19、20的取代或未取代的亚杂芳基。
可选地,L、L 1和L 2各自独立地选自单键或者选自如下基团所形成的组:
Figure PCTCN2021119457-appb-000019
可选地,L、L 1和L 2各自独立地选自单键、碳原子数为6~12的取代或未取代的亚芳基、碳原子数为12~18的取代或未取代的亚杂芳基。
可选地,L、L 1和L 2中的取代基分别独立地选自氘、氟、氰基、三甲基硅基、碳原子数为1~5的烷基、碳原子数为6~12的芳基、碳原子数为3~10的杂芳基。
进一步可选地,L、L 1和L 2各自独立地选自单键或者选自如下基团所形成的组:
Figure PCTCN2021119457-appb-000020
可选地,L、L 1和L 2各自独立地选自单键、亚苯基、亚甲苯基、苯基取代的亚苯基、亚联苯基、亚三联苯基、亚萘基、亚9,9-二甲基芴基、亚菲基、亚蒽基、亚二苯并呋喃基、亚二苯并噻吩基、亚N-苯基咔唑基。
本申请的一些实施方案中,Ar 1和Ar 2分别独立地选自式i-1至式i-11所示的基团所组成的组:
Figure PCTCN2021119457-appb-000021
其中,M 1选自单键或者
Figure PCTCN2021119457-appb-000022
G 1~G 5和G’ 1~G’ 4各自独立地选自N、C或者C(J 1),且G 1~G 5中至少一个选自N;当G 1~G 5中的两个以上选自C(J 1)时,任意两个J 1相同或不同;
G 6~G 13各自独立地选自N、C或者C(J 2),且G 6~G 13中至少一个选自N;当G 6~G 13中的两个以上选自C(J 2)时,任意两个J 2相同或不同;
Z 1选自氢、氘、卤素基团、氰基、碳原子数为1~5的烷基、碳原子数为1~5的卤代烷基、碳原子数为3~12的三烷基硅基、碳原子数为3~10的环烷基、碳原子数为1~10的烷氧基、碳原子数为18~24的三芳基硅基;
Z 2~Z 9、Z 16各自独立地选自氢、氘、卤素基团、氰基、碳原子数为1~5的烷基、碳原子数为1~5的卤代烷基、碳原子数为3~12的三烷基硅基、碳原子数为3~18的杂芳基、碳原子数为3~10的环烷基、碳原子数为1~10的烷氧基、碳原子数为18~24的三芳基硅基;
Z 10~Z 15各自独立地选自氢、氘、卤素基团、氰基、碳原子数为1~5的烷基、碳原子数为1~5的卤代烷基、碳原子数为3~12的三烷基硅基、碳原子数为6~18的芳基、碳原子数为3~18的杂芳基、碳原子数为3~10的环烷基、碳原子数为1~10的烷氧基、碳原子数为18~24的三芳基硅基;
J 1~J 2各自独立地选自氢、氘、卤素基团、氰基、碳原子数为1~5的烷基、碳原子数为1~5的 卤代烷基、碳原子数为3~12的三烷基硅基、碳原子数为6~18的芳基、碳原子数为3~18的杂芳基、碳原子数为3~10的环烷基、碳原子数为1~10的烷氧基、碳原子数为18~24的三芳基硅基;
h 1~h 16以h k表示,Z 1~Z 16以Z k表示,k为变量,表示1~16的任意整数,h k表示取代基Z k的个数;其中,当k选自5时,h k选自0、1、2或者3;当k选自2、7、8、12或者16时,h k选自0、1、2、3或者4;当k选自1、3、4、6或者9时,h k选自0、1、2、3、4或者5;当k为13时,h k选自0、1、2、3、4、5或者6;当k选自10或者14时,h k选自0、1、2、3、4、5、6或者7;当k为15时,h k选自0、1、2、3、4、5、6、7或者8;当k为11时,h k选自0、1、2、3、4、5、6、7、8或9;且当h k大于1时,任意两个Z k相同或不同;
K 1选自O、S、N(Z 17)、C(Z 18Z 19)、Si(Z 20Z 21);其中,Z 17、Z 18、Z 19、Z 20、Z 21各自独立地选自碳原子数为1~5的烷基、碳原子数为6~18的芳基或者碳原子数为3~18的杂芳基,或者上述Z 18和Z 19相互连接以与它们共同连接的原子形成碳原子数为3~15的饱和或不饱和的环,或者上述Z 20和Z 21相互连接以与它们共同连接的原子形成碳原子数为3~15的饱和或不饱和的环,本申请不对Z 18和Z 19成环的碳原子数、Z 20和Z 21成环的碳原子数进行特殊限定,Z 18和Z 19成环、Z 20和Z 21成环的碳原子数与E 14和E 15成环同理,此处不再赘述;
K 2选自单键、O、S、N(Z 22)、C(Z 23Z 24)、Si(Z 25Z 26);其中,Z 22、Z 23、Z 24、Z 25、Z 26各自独立地选自碳原子数为1~5的烷基、碳原子数为6~18的芳基或者碳原子数为3~18的杂芳基,或者上述Z 23和Z 24相互连接以与它们共同连接的原子形成碳原子数为3~15的饱和或不饱和的环,或者上述Z 25和Z 26相互连接以与它们共同连接的原子形成碳原子数为3~15的饱和或不饱和的环,本申请不对Z 23和Z 24成环的碳原子数、Z 25和Z 26成环的碳原子数进行特殊限定,Z 23和Z 24成环、Z 25和Z 26成环的碳原子数与E 14和E 15成环同理,此处不再赘述。
可选地,Ar 1和Ar 2分别独立地选自碳原子数为6~25的取代或未取代的芳基、碳原子数为12~24的取代或未取代杂芳基。例如,Ar 1和Ar 2分别独立地选自碳原子数为6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25的取代或未取代的芳基,碳原子数为12、13、14、15、16、17、18、19、20、21、22、23、24的取代或未取代杂芳基。
可选地,Ar 1和Ar 2中的取代基分别独立地选自氘、氟、氰基、三甲基硅基、碳原子数为1~5的烷基、碳原子数为6~12的芳基、碳原子数为5~12的杂芳基。
可选地,Ar 1和Ar 2分别独立地选自取代或未取代的基团W,未取代的基团W选自如下基团所组成的组:
Figure PCTCN2021119457-appb-000023
取代的基团W具有一个或两个以上的取代基,所述取代基各自独立地选自氘、氟、氰基、甲基、乙基、异丙基、叔丁基、苯基、萘基、联苯基、吡啶基、咔唑基、二苯并呋喃基或者二苯并噻吩基。
可选地,Ar 1和Ar 2分别独立地选自如下基团所组成的组:
Figure PCTCN2021119457-appb-000024
进一步可选地,Ar 1和Ar 2分别独立地选自如下基团所组成的组:
Figure PCTCN2021119457-appb-000025
可选地,Ar 1和Ar 2分别独立地选自取代或未取代的如下基团:苯基、萘基、联苯基、三联苯基、菲基、蒽基、9,9-螺二芴基、9,9-二甲基芴基、吡啶基、咔唑基、嘧啶基、1,10-菲罗啉、哒嗪基、三嗪基、喹啉基、异喹啉基、喹唑啉基、吡嗪基、喹喔啉基、芘基、N-苯基咔唑基、二苯并呋喃基或者二苯并噻吩基;所述取代的基团是被选自如下基团所取代:氘、氟、氰基、三甲基硅基、甲基、乙基、异丙基、叔丁基、苯基、萘基、吡啶基、二苯并呋喃基、环己基、咔唑基或者二苯并噻吩基;取代基有多个时,多个取代基相同或不同。
可选地,Ar 1和Ar 2中的取代基各自独立地选自氘、氟、氰基、三甲基硅基、甲基、乙基、异丙基、叔丁基、苯基、萘基、吡啶基、二苯并呋喃基、环己基、咔唑基或二苯并噻吩基。
可选地,式2中的
Figure PCTCN2021119457-appb-000026
相同或不同,且各自独立地选自如下基团所形成的组:
Figure PCTCN2021119457-appb-000027
Figure PCTCN2021119457-appb-000028
可选地,所述含氮化合物选自如下化合物所组成的组:
Figure PCTCN2021119457-appb-000029
Figure PCTCN2021119457-appb-000030
Figure PCTCN2021119457-appb-000031
Figure PCTCN2021119457-appb-000032
Figure PCTCN2021119457-appb-000033
Figure PCTCN2021119457-appb-000034
Figure PCTCN2021119457-appb-000035
Figure PCTCN2021119457-appb-000036
Figure PCTCN2021119457-appb-000037
Figure PCTCN2021119457-appb-000038
本申请的第二方面提供一种电子元件,包括相对设置的阳极和阴极,以及设于所述阳极和所述阴极之间的功能层;所述功能层包含本申请的含氮化合物。
可选地,所述功能层包括空穴传输层,所述空穴传输层包含所述含氮化合物。
优选地,所述电子元件有机电致发光器件或光电转换器件。
更优选地,所述空穴传输层包括第一空穴传输层和第二空穴传输层,所述第一空穴传输层相对所述第二空穴传输层更靠近所述阳极,其中,所述第二空穴传输层包含所述的含氮化合物。
在一种实施方式中,电子元件可以为有机电致发光器件。如图1所示,有机电致发光器件可以包括依次层叠设置的阳极100、第一空穴传输层321、第二空穴传输层322、有机发光层330、电子传输层340和阴极200。
可选地,阳极100包括以下阳极材料,其优选地是有助于空穴注入至功能层中的具有大逸出功(功函数,work function)材料。阳极材料具体实例包括:金属如镍、铂、钒、铬、铜、锌和金或它们的合金;金属氧化物如氧化锌、氧化铟、氧化铟锡(ITO)和氧化铟锌(IZO);组合的金属和氧化物如ZnO∶Al或SnO 2∶Sb;或导电聚合物如聚(3-甲基噻吩)、聚[3,4-(亚乙基-1,2-二氧基)噻吩](PEDT)、聚吡咯和聚苯胺,但不限于此。优选包括包含氧化铟锡(铟锡氧化物,indium tin oxide)(ITO)作为阳极的透明电极。
可选地,第一空穴传输层321包括一种或者多种空穴传输材料,空穴传输材料可以选自咔唑多聚体、咔唑连接三芳胺类化合物或者其他类型的化合物,本申请对此不做特殊的限定。例如,第一空穴传输层321可以由化合物NPB组成,第二空穴传输层322可以含有本申请的含氮化合物。
可选地,有机发光层330可以由单一发光层材料组成,也可以包括主体材料和掺杂材料。可选地,有机发光层330由主体材料和掺杂材料组成,注入有机发光层330的空穴和注入有机发光层330的电子可以在有机发光层330复合而形成激子,激子将能量传递给主体材料,主体材料将能量传递给掺杂材料,进而使得掺杂材料能够发光。
有机发光层330的主体材料可以为金属螯合类化合物、双苯乙烯基衍生物、芳香族胺衍生物、二苯并呋喃衍生物或者其他类型的材料,本申请对此不做特殊的限制。在本申请的一种实施方式中,有机发光层330的主体材料可以为GH-n1和GH-n2。
有机发光层330的掺杂材料可以为具有缩合芳基环的化合物或其衍生物、具有杂芳基环的化合物或其衍生物、芳香族胺衍生物或者其他材料,本申请对此不做特殊的限制。在本申请的一种实施方式中,有机发光层330的掺杂材料可以为Ir(ppy) 3
电子传输层340可以为单层结构,也可以为多层结构,其可以包括一种或者多种电子传输材 料,电子传输材料可以选自但不限于,TPBi、LiQ、苯并咪唑衍生物、噁二唑衍生物、喹喔啉衍生物或者其他电子传输材料。在本申请的一种实施方式中,电子传输层340可以由ET-06和LiQ组成。
本申请中,阴极200可以包括阴极材料,其是有助于电子注入材料至功能层中的具有小逸出功的材料。阴极材料的具体实例包括但不限于,金属如镁、钙、钠、钾、钛、铟、钇、锂、钆、铝、银、锡和铅或它们的合金;或多层材料如LiF/Al、Liq/Al、LiO 2/Al、LiF/Ca、LiF/Al和BaF 2/Ca。优选包括包含镁和银的金属电极作为阴极。
可选地,如图1所示,在阳极100和第一空穴传输层321之间还可以设置有空穴注入层310,以增强向第一空穴传输层321注入空穴的能力。空穴注入层310可以选用联苯胺衍生物、星爆状芳基胺类化合物、酞菁衍生物或者其他材料,本申请对此不做特殊的限制。例如,空穴注入层310可以为HAT-CN。
可选地,如图1所示,在阴极200和电子传输层340之间还可以设置有电子注入层350,以增强向电子传输层340注入电子的能力。电子注入层350可以包括有碱金属硫化物、碱金属卤化物等无机材料,或者可以包括碱金属与有机物的络合物。例如,电子注入层350可以为Yb。
按照另一种实施方式,电子元件可以为光电转化器件。如图3所示,该光电转化器件可以包括相对设置的阳极100和阴极200,以及设于阳极100和阴极200之间的功能层300;功能层300包含本申请所提供的含氮化合物。
按照一种具体的实施方式,如图3所示,光电转化器件可包括依次层叠设置的阳极100、空穴传输层320、光电转化层360、电子传输层340和阴极200。
可选地,光电转化器件可以为太阳能电池,尤其是可以为有机薄膜太阳能电池。举例而言,在本申请的一种实施方式中,太阳能电池可以包括依次层叠设置的阳极、空穴传输层、光电转化层、电子传输层和阴极,其中,空穴传输层包含有本申请的含氮化合物。
本申请的第三方面提供一种电子装置,包括本申请第二方面提供的电子元件。
按照一种实施方式,如图2所示,所述电子装置为第一电子装置400,该第一电子装置400包括上述有机电致发光器件。第一电子装置400例如可以为显示装置、照明装置、光通讯装置或者其他类型的电子装置,例如可以包括但不限于电脑屏幕、手机屏幕、电视机、电子纸、应急照明灯、光模块等。
按照另一种实施方式,如图4所示,所述电子装置为第二电子装置500,第二电子装置500包括上述光电转化器件。第二电子装置500例如可以为太阳能发电设备、光检测器、指纹识别设备、光模块、CCD相机或则其他类型的电子装置。
下面结合合成实施例来具体说明本申请的含氮化合物的合成方法,但是本公开并不因此而受到任何限制。
本申请中未提到的合成方法的化合物的都是通过商业途径获得的原料产品。
1、中间体IM A-1的制备
Figure PCTCN2021119457-appb-000039
向500mL的反应瓶中加入1-氯-3,5-二甲氧基苯(30g,173.80mmol)、N-溴代丁二酰亚胺(61.87g,347.6mmol)、乙腈(240mL),搅拌至澄清,加入二苯二硫醚(100mL),在常温下搅拌1h,反 应完毕,使用有机相水洗、干燥、过滤并浓缩。使用二氯甲烷和正庚烷混合溶剂重结晶至LC>98%。然后,烘干得到白色固体IM A-1-1(51.68g,收率90%)。
Figure PCTCN2021119457-appb-000040
在氮气保护下,向1L的反应瓶中加入IM A-1-1(45g,136.20mmol)、(2-氟苯基)硼酸(34.3g,245.16mmol)、甲苯(350mL)、水(60mL)、碳酸钠(21.65g,204.3mmol),搅拌至澄清,加热升温至60℃,迅速加入四(三苯基膦)钯(4.72g,4.08mmol),之后继续升温至80℃,回流搅拌反应3h,反应完毕,降至室温,用二氯甲烷萃取,使用有机相水洗、干燥、过滤、浓缩。使用二氯甲烷和正庚烷混合溶剂重结晶至LC>98%。然后,烘干得到白色固体IM A-1-2(45.2g,收率92%)。
Figure PCTCN2021119457-appb-000041
在0℃下,向500mL的三口烧瓶中加入IM A-1-2(40g,110.87mmol)、三溴化硼(25.0g,99.78mmol)、二氯甲烷(240mL),之后在室温下搅拌24h,向溶液中加入甲醇(100mL)、水(50mL),反应12h,反应结束后,将反应液转移至分液漏斗,采用二氯甲烷进行萃取,干燥、过滤、浓缩后过柱。用二氯甲烷和正庚烷混合溶剂重结晶至LC>98%。烘干得到白色固体IM A-1-3(33.2g,收率90%)。
Figure PCTCN2021119457-appb-000042
向500mL的三口烧瓶中加入IM A-1-3(30g,109.7mmol)、N-甲基-吡咯烷酮(240mL),之后搅拌至澄清后向其加入碳酸钾(22.74g,164.54mmol),在室温下搅拌反应2h,反应结束后,用甲醇(300mL)、水(600mL)萃取,干燥、过滤、浓缩后过柱。用二氯甲烷和正庚烷混合溶剂重结晶至LC>98%。烘干得到白色固体IM A-1(23.44g,收率73%)。
2、中间体A-2的制备
Figure PCTCN2021119457-appb-000043
向500mL的反应瓶中加入1,3-二甲氧基苯(30.5g,220.74mmol)、N-溴代丁二酰亚胺(78.58g,441.48mmol)、乙腈(240mL),之后搅拌至澄清,加入二苯二硫醚(100mL),在常温下搅拌1h,反应完毕,有机相水洗,干燥、过滤、浓缩。用二氯甲烷和正庚烷混合溶剂重结晶至LC>98%。烘干得到白色固体IM A-2-1(59.45g,收率91%)。
Figure PCTCN2021119457-appb-000044
在氮气保护下,向1000mL的反应瓶中加入IM A-2-1(50g,168.94mmol)、(2-氟苯基)硼酸(47.18g,337.89mmol)、甲苯(350mL)、水(60mL)、碳酸钠(26.86g,253.4mmol),加完, 搅拌至澄清,加热升温至60℃,迅速加入四(三苯基膦)钯(5.86g,5.07mmol),之后继续升温至80℃,回流搅拌反应3h,反应完毕,降至室温,用二氯甲烷萃取,有机相水洗,干燥、过滤、浓缩。用二氯甲烷和正庚烷混合溶剂重结晶至LC>98%,烘干,得到白色固体IM A-2-2(50.72g,收率92%)。
Figure PCTCN2021119457-appb-000045
在0℃下,向1000mL的三口烧瓶中加入IM A-2-2(40g,122.57mmol)、三溴化硼(55.27g,22.07mmol)、二氯甲烷(240mL),之后在室温下搅拌24h,向溶液中加入甲醇(100mL)、水(50mL),反应12h,反应结束后,将反应液转移至分液漏斗,采用二氯甲烷进行萃取,干燥、过滤、浓缩后过柱。用二氯甲烷和正庚烷混合溶剂重结晶至LC>98%。烘干,得到白色固体IM A-2-3(33.27g,收率91%)。
Figure PCTCN2021119457-appb-000046
向2L的三口烧瓶中加入IM A-2-3(30g,100.57mmol)、N-甲基-吡咯烷酮(240mL),搅拌至澄清后向其中加入碳酸钾(20.85g,150.85mmol),在室温下搅拌反应2h,反应结束后,用甲醇(300mL)、水(600mL)萃取,干燥、过滤、浓缩后过柱。用二氯甲烷和正庚烷混合溶剂重结晶至LC>98%,烘干,得到白色固体IM A-2-4(18.96g,收率73%)。
Figure PCTCN2021119457-appb-000047
在氮气下,向250mL的三口烧瓶中加入IM A-2-4(15g,58.08mmol)、二溴乙烷(10mL),在-80℃至-90℃下溶解至澄清后,缓慢滴加n-BuLi(96mL,2M)至反应体系中,在-75℃至-80℃下搅拌反应30min,充分搅拌后,加入二氯甲烷进行萃取,合并有机相,水洗至中性,用无水硫酸镁进行干燥,过滤后减压除去溶剂,将所得油状物加入至有正庚烷的烧瓶内,加热回流至澄清溶液,置于-20℃下重结晶,得到白色固体IM A-2(18.41g,收率94%)。
3、中间体IM A-3的制备
Figure PCTCN2021119457-appb-000048
将(2-巯苯基)硼酸(30g,194.82mmol)、1,2-二溴-3,5-二氟苯(52.97g,217.5mmol)、200mL的四氢呋喃和100mL的水进行混合,加热至60℃,然后添加碳酸钾(326.25mmol)和四(三苯基膦)钯(2.175mmol),在70℃下回流搅拌3h。反应后,恢复至室温,反应溶液萃取有机层后,有机层用氯仿和己烷进行两次重结晶,从而得到IM A-3-1(52.80g,收率90%)。
Figure PCTCN2021119457-appb-000049
将IM A-3-1(50g,166.03mmol)、碳酸钾(192mmol)、DMF(300mL)混合,在60℃下加热并回流搅拌1h。反应后,恢复至室温,反应溶液在水中反向沉淀而得到固体后,用THF和乙醇实施两次重结晶,从而得到IM A-3-2(37.34g,收率81%)。
Figure PCTCN2021119457-appb-000050
在1000mL的三口烧瓶中加入IM A-3-2(35g,124.49mmol)和400mL的THF,冷却至-78℃。向其中滴加n-BuLi(1.6M,100mL,120mmol),在-78℃搅拌20分钟。在得到的混合溶液中加入硼酸三异丙酯(70.31g,373.47mmol),在-78℃搅拌1h后,然后升至室温,搅拌4h。在得到的反应溶液中加入1N的HCl(200mL),搅拌1h后,浓缩,移至分液漏斗,加入200mL的水后,用CH 2Cl 2进行萃取。将得到的萃取液用MgSO 4干燥,过滤、浓缩后,利用甲苯-己烷重结晶,从而得到IM A-3-3(68g,收率60%)。
Figure PCTCN2021119457-appb-000051
在1000mL的三口烧瓶中,将IM A-3-3(30g,92.32mmol)和2-碘苯酚(20.42g,92.82mmol)溶解于300mL的THF,将碳酸钾(19.14g,138.48mmol)溶解于150mL的H 2O加入其中。在得到的混合溶液中添加四(三苯基膦)钯(1.07g,0.92mmol),在氩气气氛下,70℃下回流搅拌8h。反应结束时,将得到的反应溶液冷却至室温后,移至分液漏斗,用DCM进行萃取。将得到的萃取液用硫酸镁干燥,过滤并浓缩后,将作为结果得到的试料用硅胶柱色谱进行纯化,从而得到IM A-3-4(26.5g,收率77%)。
Figure PCTCN2021119457-appb-000052
在500mL的三口烧瓶中加入IM A-3-4(25g,66.98mmol)、K 2CO 3(13.89g,100.47mmol)和200mL的NMP,在氩气气氛中,在150℃搅拌8h。反应结束后,将得到的反应溶液冷却至室温,移至分液漏斗,加入150mL的H 2O后,用乙酸乙酯进行萃取。将得到的萃取液用硅胶柱色谱进行纯化,从而得到IM A-3(15.63g,收率66%)。
4、中间体IM A-4的制备
Figure PCTCN2021119457-appb-000053
向1000mL的三口烧瓶中加入IM A-3-3(30g,92.32mmol)和2-碘苯硫醇(21.91g,92.82mmol)的THF溶液,然后将碳酸钾(19.14g,138.48mmol)溶解于150mL的H 2O加入其中。在得到的混合溶液中添加四(三苯基膦)钯(1.07g,0.92mmol),在氩气气氛下,75℃下回流搅拌8h。反应结束时,将得到的反应溶液冷却至室温后,移至分液漏斗,用DCM进行萃取。将得到的萃取液用硫酸镁干燥,过滤并浓缩后,将作为结果得到的试料用硅胶柱色谱进行纯化,从而得到IM A-4-1 (27.67g,收率77%)。
Figure PCTCN2021119457-appb-000054
在500mL的三口烧瓶中加入IM A-4-1(25g,64.22mmol)、K 2CO 3(13.3g,96.33mmol)和200mL的NMP,在氩气气氛下,150℃搅拌8h。反应结束后,将得到的反应溶液冷却至室温,移至分液漏斗,加入150mL的H 2O后,用乙酸乙酯进行萃取。将得到的萃取液用硅胶柱色谱进行纯化,从而得到IM A-4(15.65g,收率66%)。
5、中间体IM A-5的制备
Figure PCTCN2021119457-appb-000055
参照IM A-3的制备过程,并将1,2-二溴-3,5-二氟苯变更为1,3-二溴-2,4-二氟苯,通过上述的反应式合成IM A-5(收率67%)。
6、中间体IM A-6的制备
Figure PCTCN2021119457-appb-000056
参照IM A-4的制备方法,将1,2-二溴-3,5-二氟苯变更为1,3-二溴-2,4-二氟苯,通过上述的反应式合成IM A-6(收率62%)。
7、化合物1的制备
Figure PCTCN2021119457-appb-000057
将IM A-1(14.0g,37.74mmol)、4-氨基联苯(8.97g,38.5mmol)、三(二亚苄基丙酮)二钯(0.35g,0.38mmol)、2-二环己基膦-2’,4’,6’-三异丙基联苯(0.36g,0.75mmol)以及叔丁醇钠(10.88g,113.23mmol)加入甲苯(140mL)中,氮气保护下加热至108℃,搅拌3h;而后冷却至室温,反应液使用水洗至中性,有机相加入硫酸镁干燥,过滤后将滤液减压除去溶剂;使用二氯甲烷/正庚烷体系对粗品进行重结晶提纯,得到淡黄色固体IM A-1-B(15.08g,收率79.33%)。
Figure PCTCN2021119457-appb-000058
将IM A-1-B(10g,23.50mmol)、4-溴联苯(5.48g,23.5mmol)、三(二亚苄基丙酮)二钯(0.47g,0.47mmol)、2-二环己基膦-2’,6’-二甲氧基联苯(0.34g,0.94mmol)以及叔丁醇钠(3.39g,35.25mmol)加入甲苯(100mL)中,氮气保护下加热至108℃,搅拌3h;而后冷却至室温,反应液使用水洗后加入硫酸镁干燥,过滤后将滤液减压除去溶剂;使用甲苯体系对粗品进行重结晶提纯,得到白色固体化合物1(8.69g,收率64%);质谱(m/z)=578.20[M+H] +
参照化合物1的方法合成表1中所列的化合物,不同之处在于,使用原料1代替IM A-1,使用原料2代替4-氨基联苯,使用原料3代替4-溴联苯,其中,使用的主要原料、合成的化合物及最后一步收率、质谱示于表1中。
表1
Figure PCTCN2021119457-appb-000059
Figure PCTCN2021119457-appb-000060
8、化合物109的制备
Figure PCTCN2021119457-appb-000061
将IM A-2(14.0g,37.74mmol)、4-氨基联苯(8.97g,38.5mmol)、三(二亚苄基丙酮)二钯(0.35g,0.38mmol)、2-二环己基膦-2’,4’,6’-三异丙基联苯(0.36g,0.75mmol)以及叔丁醇钠(10.88g,113.23mmol)加入甲苯(140mL)中,氮气保护下加热至108℃,搅拌3h;而后冷却至室温,反应液使用水洗至中性,有机相加入硫酸镁干燥,过滤后将滤液减压除去溶剂;使用二氯甲烷/正庚烷体系对粗品进行重结晶提纯,得到淡黄色固体IM A-2-B(15.08g,收率79.33%)。
Figure PCTCN2021119457-appb-000062
将IM A-2-B(10g,23.50mmol)、4-溴联苯(5.48g,23.5mmol)、三(二亚苄基丙酮)二钯(0.47g,0.47mmol)、2-二环己基膦-2’,6’-二甲氧基联苯(0.34g,0.94mmol)以及叔丁醇钠(3.39g,35.25mmol)加入甲苯(100mL)中,氮气保护下加热至108℃,搅拌3h;而后冷却至室温,反应液使用水洗后加入硫酸镁干燥,过滤后将滤液减压除去溶剂;使用甲苯体系对粗品进行重结晶提纯,得到白色固体化合物109(8.69g,收率64%);质谱(m/z)=578.20[M+H] +
参照化合物109的方法合成表2中所列的化合物,不同之处在于,使用原料4代替IM A-2,使用原料5代替4-氨基联苯,使用原料6代替4-溴联苯,其中,使用的主要原料、合成的化合物及最后一步收率、质谱示于表2中。
表2
Figure PCTCN2021119457-appb-000063
Figure PCTCN2021119457-appb-000064
9、化合物225的制备
Figure PCTCN2021119457-appb-000065
将IM A-2(15g,44.49mmol)、对氯苯硼酸(7.03g,44.93mmol)、四(三苯基膦)钯(1.54g,1.33mmol)、碳酸钾(9.22g,66.73mmol)、四丁基氯化铵(TBAC)(6.18g,2.22mmol)分别加入三口烧瓶中,量取甲苯(100mL)、乙醇(50mL)、水(40mL)加入反应器中,80℃下回流12h,当反应结束时,使用CH 2Cl 2和水进行萃取,取有机相无水MgSO 4干燥,抽滤,浓缩有机层,粗产 物硅胶过柱提纯,得到IM A-2-C(10.67g,收率65%)。
Figure PCTCN2021119457-appb-000066
将IM A-2-C(14.0g,37.74mmol)、4-氨基联苯(8.97g,38.5mmol)、三(二亚苄基丙酮)二钯(0.35g,0.38mmol)、2-二环己基膦-2’,4’,6’-三异丙基联苯(0.36g,0.75mmol)以及叔丁醇钠(10.88g,113.23mmol)加入甲苯(140mL)中,氮气保护下加热至108℃,搅拌3h;而后冷却至室温,反应液使用水洗至中性,有机相加入硫酸镁干燥,过滤后将滤液减压除去溶剂;使用二氯甲烷/正庚烷体系对粗品进行重结晶提纯,得到淡黄色固体IM A-2-A(15.08g,收率79.33%)。
Figure PCTCN2021119457-appb-000067
将IM A-2-A(10g,23.50mmol)、4-溴联苯(5.48g,23.5mmol)、三(二亚苄基丙酮)二钯(0.47g,0.47mmol)、2-二环己基膦-2',6'-二甲氧基联苯(0.34g,0.94mmol)以及叔丁醇钠(3.39g,35.25mmol)加入甲苯(100mL)中,氮气保护下加热至108℃,搅拌3h;而后冷却至室温,反应液使用水洗后加入硫酸镁干燥,过滤后将滤液减压除去溶剂;使用甲苯体系对粗品进行重结晶提纯,得到白色固体化合物225(8.69g,收率64%);质谱(m/z)=654.24[M+H] +
参照化合物225的方法合成表3所列的化合物,不同之处在于,使用原料7代替IM A-2,使用原料8代替对氯苯硼酸,使用原料9代替4-氨基联苯,使用原料10代替4-溴联苯,其中,使用的主要原料、合成的化合物及最后一步收率、质谱展示于表3中。
表3
Figure PCTCN2021119457-appb-000068
Figure PCTCN2021119457-appb-000069
Figure PCTCN2021119457-appb-000070
10、化合物301的制备
Figure PCTCN2021119457-appb-000071
将IM A-1(20g,68.32mmol)、对氯苯硼酸(10.79g,69.01mmol)、四(三苯基膦)钯(2.39g,2.07mmol)、碳酸钾(14.16g,102.49mmol)、四丁基氯化铵(TBAC)(0.95g,3.42mmol)分别加入三口烧瓶中,量取甲苯(150mL)、乙醇(70mL)、水(40mL)加入反应器中,80℃下回流12h,当反应结束时,使用CH 2Cl 2和水进行萃取,取有机相无水MgSO 4干燥,抽滤,浓缩有机层,粗产物硅胶过柱提纯,得到IM A-1-C(16.38g,收率65%)。
Figure PCTCN2021119457-appb-000072
将IM A-1-C(14.0g,37.74mmol),4-氨基联苯(8.97g,38.5mmol),三(二亚苄基丙酮)二钯(0.35g,0.38mmol),2-二环己基膦-2’,4’,6’-三异丙基联苯(0.36g,0.75mmol)以及叔丁醇钠(10.88g,113.23mmol)加入甲苯(140mL)中,氮气保护下加热至108℃,搅拌3h;而后冷却至室温,反应液使用水洗至中性,有机相加入硫酸镁干燥,过滤后将滤液减压除去溶剂;使用二氯甲烷/正庚烷体系对粗品进行重结晶提纯,得到淡黄色固体IM A-1-A(15.08g,收率79.33%)。
Figure PCTCN2021119457-appb-000073
将IM A-1-A(10g,23.50mmol)、4-溴联苯(5.48g,23.5mmol)、三(二亚苄基丙酮)二钯(0.47g,0.47mmol)、2-二环己基膦-2’,6’-二甲氧基联苯(0.34g,0.94mmol)以及叔丁醇钠(3.39g,35.25mmol)加入甲苯(100mL)中,氮气保护下加热至108℃,搅拌3h;而后冷却至室温,反应液使用水洗后加入硫酸镁干燥,过滤后将滤液减压除去溶剂;使用甲苯体系对粗品进行重结晶提纯,得到白色固体化合物301(8.69g,收率64%);质谱(m/z)=654.24[M+H] +
参照化合物301的方法合成表4所列的化合物,使用原料11代替IM A-1,使用原料12代替对氯苯硼酸,使用原料13代替4-氨基联苯,使用原料14代替4-溴联苯,其中,使用的主要原料、合成的化合物及最后一步收率、质谱示于表4中。
表4
Figure PCTCN2021119457-appb-000074
Figure PCTCN2021119457-appb-000075
Figure PCTCN2021119457-appb-000076
化合物核磁数据如下表5所示
表5
Figure PCTCN2021119457-appb-000077
实施例1:绿色有机电致发光器件
通过以下过程制备阳极:将ITO厚度为
Figure PCTCN2021119457-appb-000078
的基板(康宁制造)切割成40mm×40mm×0.7mm的尺寸,采用光刻工序,将其制备成具有阴极、阳极以及绝缘层图案的实验基板,利用紫外臭氧以及O 2∶N 2等离子进行表面处理,以增加阳极(实验基板)的功函数的和清除浮渣。
在实验基板(阳极)上真空蒸镀F4-TCNQ以形成厚度为
Figure PCTCN2021119457-appb-000079
的空穴注入层(HIL),并且在空穴注入层蒸镀NPB,形成厚度为
Figure PCTCN2021119457-appb-000080
的第一空穴传输层(HTL-1)。
在第一空穴传输层上真空蒸镀化合物1,形成厚度为
Figure PCTCN2021119457-appb-000081
的第二空穴传输层(HTL-2)。
在第二空穴传输层上,将GH-n1∶GH-n2∶Ir(ppy) 3以50%∶50%∶5%(蒸镀速率)的比例进行共同蒸镀,形成厚度为
Figure PCTCN2021119457-appb-000082
的绿色有机发光层(EML)。
将ET-06和LiQ以1∶1的重量比进行混合并蒸镀形成了
Figure PCTCN2021119457-appb-000083
厚的电子传输层(ETL),将LiQ蒸镀在电子传输层上以形成厚度为
Figure PCTCN2021119457-appb-000084
的电子注入层(EIL),然后将镁(Mg)和银(Ag)以1∶9的蒸镀速率混合,真空蒸镀在电子注入层上,形成厚度为
Figure PCTCN2021119457-appb-000085
的阴极。
在上述阴极上蒸镀厚度为
Figure PCTCN2021119457-appb-000086
的CP-05,形成有机覆盖层(CPL),从而完成有机发光器件的制造。
实施例2~实施例56
在形成第二空穴传输层时,以表7中化合物列所示的化合物代替实施例1中的化合物1,利用与实施例1相同的方法制作有机电致发光器件。
比较例1~4
在形成第二空穴传输层时,分别以化合物A、化合物B、化合物C、化合物D代替实施例1中的化合物1,利用与实施例1相同的方法制作有机电致发光器件。
在实施例和比较例中,所使用的各个材料的结构式如下表6:
表6
Figure PCTCN2021119457-appb-000087
对如上制得的有机电致发光器件是在15mA/cm 2条件下分析器件的性能,其结果示于下表7:
表7:有机电致发光器件的性能测试结果
Figure PCTCN2021119457-appb-000088
Figure PCTCN2021119457-appb-000089
Figure PCTCN2021119457-appb-000090
根据表7的结果可知,作为第二空穴传输层的化合物的实施例1~56与已公知的化合物所对应的器件比较例1~4相比,有机电致发光器件的驱动电压至少降低了0.11V,电流效率(Cd/A)至少提高了18.34%,外量子效率至少提高了18.38%,寿命最少提高了12.54%,最高的寿命可提高187h。

Claims (14)

  1. 一种含氮化合物,所述含氮化合物的结构如式1所示:
    Figure PCTCN2021119457-appb-100001
    其中,X、Y各自独立地选自O或S;
    R 1和R 2相同或不同,且分别独立地选自氢或式2,且R 1和R 2中至少一者为式2所示的结构;
    Ar 1和Ar 2相同或不同,且分别独立地选自碳原子数为6~40的取代或未取代的芳基、碳原子数为3~40的取代或未取代的杂芳基;
    L、L 1和L 2相同或不同,且各自独立地选自单键、碳原子数为6~30的取代或未取代的亚芳基、碳原子数为2~30的取代或未取代的亚杂芳基;
    R 3和R 4相同或不同,且分别独立地选自氢、氘、卤素基团、氰基、碳原子数为1~10的烷基、碳原子数为1~5的卤代烷基、碳原子数为6~20的芳基、碳原子数为3~20的杂芳基、碳原子数为3~12的三烷基硅基、碳原子数为18~24的三芳基硅基、碳原子数为3~20的环烷基、碳原子数为2~10的杂环烷基、碳原子数为1~10的烷氧基;
    m表示R 3的个数,且m选自1、2、3或4;当m大于1时,任意两个R 3相同或不同;
    n表示R 4的个数,且n选自1、2、3或4;当n大于1时,任意两个R 4相同或不同;
    Ar 1、Ar 2、L、L 1、L 2中的取代基分别独立地选自氘、卤素基团、氰基、碳原子数为1~10的烷基、碳原子数为1~10的卤代烷基、碳原子数为3~12的三烷基硅基、碳原子数为6~20的芳基、碳原子数为3~20的杂芳基、碳原子数为3~10的环烷基、碳原子数为6~20的卤代芳基、碳原子数为2~10的杂环烷基、碳原子数为1~10的烷氧基、碳原子数为18~24的三芳基硅基。
  2. 根据权利要求1所述的含氮化合物,其中,L、L 1和L 2各自独立地选自单键或者式j-1至式j-10所示的基团所组成的组:
    Figure PCTCN2021119457-appb-100002
    其中,M 2选自单键或者
    Figure PCTCN2021119457-appb-100003
    表示化学键;
    Q 1~Q 5和Q’ 1~Q’ 4各自独立地选自N或者C(J 3),且Q 1~Q 5中至少一个选自N;当Q 1~Q 5中的两个以上选自C(J 3)时,任意两个J 3相同或不同;当Q’ 1~Q’ 4中的两个以上选自C(J 3)时,任意两个J 3相同或不同;
    Q 6~Q 13各自独立地选自N、C或者C(J 4),且Q 6~Q 13中至少一个选自N;当Q 6~Q 13中的两个以上选自C(J 4)时,任意两个J 4相同或不同;
    J 3~J 4各自独立地选自氢、氘、卤素基团、氰基、碳原子数为1~5的烷基、碳原子数为1~10的卤代烷基、碳原子数为6~20的芳基、碳原子数为3~20的杂芳基、碳原子数为3~10的环烷基、碳原子数为2~10的杂环烷基、碳原子数为1~10的烷氧基;
    E 1~E 12各自独立地选自氘、卤素基团、氰基、碳原子数为1~5的烷基、碳原子数为1~10的卤代烷基、碳原子数为6~20的芳基、碳原子数为3~20的杂芳基、碳原子数为3~10的环烷基、碳原子数为2~10的杂环烷基、碳原子数为1~10的烷氧基;
    e 1~e 12以e r表示,E 1~E 12以E r表示;r为变量,表示1~12的任意整数;e r表示取代基E r的数量;当r为1、2、3、4、5、6或12时,e r选自0、1、2、3或者4;当r为7或10时,e r选自0、1、2、3、4、5或者6;当r为11时,e r选自0、1、2、3、4、5、6或者7;当r为8或9时,e r选自0、1、2、3、4、5、6、7或者8;当e r大于1时,任意两个E r相同或不同;
    K 3选自O、S、Se、N(E 13)、C(E 14E 15)、Si(E 16E 17);其中,E 13、E 14、E 15、E 16和E 17各自独立地选自碳原子数为1~5的烷基、碳原子数为6~20的芳基、碳原子数为3~20的杂芳基,或者E 14和E 15相互连接以与它们共同连接的原子形成碳原子数为3~15的饱和或不饱和的环,或者E 16和E 17相互连接以与它们共同连接的原子形成碳原子数为3~15的饱和或不饱和的环;
    K 4选自单键、O、S、Se、N(E 18)、C(E 19E 20)、Si(E 21E 22);其中,E 18、E 19、E 20、E 21和E 22各自独立地选自碳原子数为1~5的烷基、碳原子数为6~20的芳基、碳原子数为3~20的杂芳基,或者E 19和E 20相互连接以与它们共同连接的原子形成碳原子数为3~15的饱和或不饱和的环,或者E 21和E 22相互连接以与它们共同连接的原子形成碳原子数为3~15的饱和或不饱和的环。
  3. 根据权利要求1所述的含氮化合物,其中,L、L 1和L 2各自独立地选自单键或者选自如下基团所形成的组:
    Figure PCTCN2021119457-appb-100004
  4. 根据权利要求1所述的含氮化合物,其中,L、L 1和L 2各自独立地选自单键、碳原子数为6~12的取代或未取代的亚芳基、碳原子数为12~18的取代或未取代的亚杂芳基。
  5. 根据权利要求1所述的含氮化合物,其中,L、L 1和L 2中的取代基分别独立地选自氘、氟、氰基、三甲基硅基、碳原子数为1~5的烷基、碳原子数为6~12的芳基、碳原子数为3~10的杂芳基。
  6. 根据权利要求1所述的含氮化合物,其中,Ar 1和Ar 2分别独立地选自式i-1至式i-11所示的基团所组成的组:
    Figure PCTCN2021119457-appb-100005
    Figure PCTCN2021119457-appb-100006
    其中,M 1选自单键或者
    Figure PCTCN2021119457-appb-100007
    G 1~G 5和G’ 1~G’ 4各自独立地选自N、C或者C(J 1),且G 1~G 5中至少一个选自N;当G 1~G 5中的两个以上选自C(J 1)时,任意两个J 1相同或不同;
    G 6~G 13各自独立地选自N、C或者C(J 2),且G 6~G 13中至少一个选自N;当G 6~G 13中的两个以上选自C(J 2)时,任意两个J 2相同或不同;
    Z 1选自氢、氘、卤素基团、氰基、碳原子数为1~5的烷基、碳原子数为1~5的卤代烷基、碳原子数为3~12的三烷基硅基、碳原子数为3~10的环烷基、碳原子数为1~10的烷氧基、碳原子数为18~24的三芳基硅基;
    Z 2~Z 9、Z 16各自独立地选自氢、氘、卤素基团、氰基、碳原子数为1~5的烷基、碳原子数为1~5的卤代烷基、碳原子数为3~12的三烷基硅基、碳原子数为3~18的杂芳基、碳原子数为3~10的环烷基、碳原子数为1~10的烷氧基、碳原子数为18~24的三芳基硅基;
    Z 10~Z 15各自独立地选自氢、氘、卤素基团、氰基、碳原子数为1~5的烷基、碳原子数为1~5的卤代烷基、碳原子数为3~12的三烷基硅基、碳原子数为6~18的芳基、碳原子数为3~18的杂芳基、碳原子数为3~10的环烷基、碳原子数为1~10的烷氧基、碳原子数为18~24的三芳基硅基;
    J 1~J 2各自独立地选自氢、氘、卤素基团、氰基、碳原子数为1~5的烷基、碳原子数为1~5的卤代烷基、碳原子数为3~12的三烷基硅基、碳原子数为6~18的芳基、碳原子数为3~18的杂芳基、碳原子数为3~10的环烷基、碳原子数为1~10的烷氧基、碳原子数为18~24的三芳基硅基;
    h 1~h 16以h k表示,Z 1~Z 16以Z k表示,k为变量,表示1~16的任意整数,h k表示取代基Z k的个数;其中,当k选自5时,h k选自0、1、2或者3;当k选自2、7、8、12或者16时,h k选自0、1、2、3或者4;当k选自1、3、4、6或者9时,h k选自0、1、2、3、4或者5;当k为13时,h k选自0、1、2、3、4、5或者6;当k选自10或者14时,h k选自0、1、2、3、4、5、6或者7;当k为15时,h k选自0、1、2、3、4、5、6、7或者8;当k为11时,h k选自0、1、2、3、4、5、6、7、8或9;且当h k大于1时,任意两个Z k相同或不同;
    K 1选自O、S、N(Z 17)、C(Z 18Z 19)、Si(Z 20Z 21);其中,Z 17、Z 18、Z 19、Z 20、Z 21各自独立地选自碳原子数为1~5的烷基、碳原子数为6~18的芳基或者碳原子数为3~18的杂芳基,或者上述Z 18和Z 19相互连接以与它们共同连接的原子形成碳原子数为3~15的饱和或不饱和的环,或者上述Z 20和Z 21相互连接以与它们共同连接的原子形成碳原子数为3~15的饱和或不饱和的环;
    K 2选自单键、O、S、N(Z 22)、C(Z 23Z 24)、Si(Z 25Z 26);其中,Z 22、Z 23、Z 24、Z 25、Z 26各自独立地选自碳原子数为1~5的烷基、碳原子数为6~18的芳基或者碳原子数为3~18的杂芳基,或者上述Z 23 和Z 24相互连接以与它们共同连接的原子形成碳原子数为3~15的饱和或不饱和的环,或者上述Z 25和Z 26相互连接以与它们共同连接的原子形成碳原子数为3~15的饱和或不饱和的环。
  7. 根据权利要求1所述的含氮化合物,其中,Ar 1和Ar 2分别独立地选自碳原子数为6~25的取代或未取代的芳基、碳原子数为12~24的取代或未取代的杂芳基。
  8. 根据权利要求1所述的含氮化合物,其中,Ar 1和Ar 2中的取代基分别独立地选自氘、氟、氰基、三甲基硅基、碳原子数为1~5的烷基、碳原子数为6~12的芳基、碳原子数为5~12的杂芳基。
  9. 根据权利要求1所述的含氮化合物,其中,Ar 1和Ar 2分别独立地选自取代或未取代的基团W,未取代的基团W选自如下基团所组成的组:
    Figure PCTCN2021119457-appb-100008
    取代的基团W具有一个或两个以上的取代基,所述取代基各自独立地选自氘、氟、氰基、甲基、乙基、异丙基、叔丁基、苯基、萘基、联苯基、吡啶基、咔唑基、二苯并呋喃基或者二苯并噻吩基。
  10. 根据权利要求1所述的含氮化合物,其中,式2中的
    Figure PCTCN2021119457-appb-100009
    相同或不同,且各自独立地选自如下基团所形成的组:
    Figure PCTCN2021119457-appb-100010
    Figure PCTCN2021119457-appb-100011
  11. 根据权利要求1所述的含氮化合物,其中,所述含氮化合物选自如下化合物所组成的组:
    Figure PCTCN2021119457-appb-100012
    Figure PCTCN2021119457-appb-100013
    Figure PCTCN2021119457-appb-100014
    Figure PCTCN2021119457-appb-100015
    Figure PCTCN2021119457-appb-100016
    Figure PCTCN2021119457-appb-100017
    Figure PCTCN2021119457-appb-100018
    Figure PCTCN2021119457-appb-100019
    Figure PCTCN2021119457-appb-100020
    Figure PCTCN2021119457-appb-100021
  12. 一种电子元件,其中,包括相对设置的阳极和阴极,以及设于所述阳极和所述阴极之间的功能层;所述功能层包含权利要求1~11任一项所述的含氮化合物。
  13. 根据权利要求12所述的电子元件,其中,所述功能层包括空穴传输层,所述空穴传输层包括所述的含氮化合物;
    优选地,所述电子元件有机电致发光器件或光电转换器件;
    更优选地,所述空穴传输层包括第一空穴传输层和第二空穴传输层,所述第一空穴传输层相对所述第二空穴传输层更靠近所述阳极,其中,所述第二空穴传输层包含所述的含氮化合物。
  14. 一种电子装置,其中,包括权利要求12或13所述的电子元件。
PCT/CN2021/119457 2020-10-28 2021-09-18 含氮化合物、电子元件和电子装置 WO2022089093A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011173931.3 2020-10-28
CN202011173931.3A CN112159414B (zh) 2020-10-28 2020-10-28 含氮化合物、电子元件和电子装置

Publications (1)

Publication Number Publication Date
WO2022089093A1 true WO2022089093A1 (zh) 2022-05-05

Family

ID=73864946

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/119457 WO2022089093A1 (zh) 2020-10-28 2021-09-18 含氮化合物、电子元件和电子装置

Country Status (2)

Country Link
CN (1) CN112159414B (zh)
WO (1) WO2022089093A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112159414B (zh) * 2020-10-28 2022-01-28 陕西莱特光电材料股份有限公司 含氮化合物、电子元件和电子装置
CN113717059B (zh) * 2021-03-12 2022-11-22 陕西莱特光电材料股份有限公司 一种有机化合物及包含其的电子元件和电子装置
CN113214280B (zh) * 2021-04-27 2023-06-23 陕西莱特迈思光电材料有限公司 有机化合物及包含其的电子器件和电子装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100507002B1 (ko) * 2002-11-12 2005-08-08 기아자동차주식회사 차량의 토크로드 제거용 지지부재 및 이 지지부재를 포함하는 장치
JP2013087090A (ja) * 2011-10-18 2013-05-13 Idemitsu Kosan Co Ltd 芳香族アミン誘導体およびそれを用いた有機エレクトロルミネッセンス素子
CN110317206A (zh) * 2018-03-29 2019-10-11 江苏三月光电科技有限公司 一种以三芳胺为核心的化合物及其应用
KR20190140747A (ko) * 2018-06-12 2019-12-20 주식회사 엘지화학 화합물, 이를 포함하는 감광성 수지 조성물, 감광재, 컬러필터, 및 디스플레이 장치
CN110892539A (zh) * 2017-07-27 2020-03-17 Sfc株式会社 能够低电压驱动且具有高效率、长寿命特性的有机发光元件
CN110885333A (zh) * 2018-09-11 2020-03-17 江苏三月光电科技有限公司 一种以苯并[1,2-b:5,4-b’]二苯并呋喃为核心的化合物及其应用
CN111349063A (zh) * 2018-12-21 2020-06-30 乐金显示有限公司 有机发光装置
CN112159414A (zh) * 2020-10-28 2021-01-01 陕西莱特光电材料股份有限公司 含氮化合物、电子元件和电子装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100507002B1 (ko) * 2002-11-12 2005-08-08 기아자동차주식회사 차량의 토크로드 제거용 지지부재 및 이 지지부재를 포함하는 장치
JP2013087090A (ja) * 2011-10-18 2013-05-13 Idemitsu Kosan Co Ltd 芳香族アミン誘導体およびそれを用いた有機エレクトロルミネッセンス素子
CN110892539A (zh) * 2017-07-27 2020-03-17 Sfc株式会社 能够低电压驱动且具有高效率、长寿命特性的有机发光元件
CN110317206A (zh) * 2018-03-29 2019-10-11 江苏三月光电科技有限公司 一种以三芳胺为核心的化合物及其应用
KR20190140747A (ko) * 2018-06-12 2019-12-20 주식회사 엘지화학 화합물, 이를 포함하는 감광성 수지 조성물, 감광재, 컬러필터, 및 디스플레이 장치
CN110885333A (zh) * 2018-09-11 2020-03-17 江苏三月光电科技有限公司 一种以苯并[1,2-b:5,4-b’]二苯并呋喃为核心的化合物及其应用
CN111349063A (zh) * 2018-12-21 2020-06-30 乐金显示有限公司 有机发光装置
CN112159414A (zh) * 2020-10-28 2021-01-01 陕西莱特光电材料股份有限公司 含氮化合物、电子元件和电子装置

Also Published As

Publication number Publication date
CN112159414A (zh) 2021-01-01
CN112159414B (zh) 2022-01-28

Similar Documents

Publication Publication Date Title
WO2021135207A1 (zh) 含氮化合物、电子元件和电子装置
WO2022083598A1 (zh) 一种含氮化合物以及使用其的电子元件和电子装置
WO2022206396A1 (zh) 主体材料组合物和有机电致发光器件及电子装置
WO2022206493A1 (zh) 有机化合物及包含其的电子元件和电子装置
WO2022088865A1 (zh) 含氮化合物、电子元件和电子装置
WO2022089093A1 (zh) 含氮化合物、电子元件和电子装置
WO2022213905A1 (zh) 有机化合物以及使用其的电子元件和电子装置
WO2021233311A1 (zh) 有机化合物以及使用其的电子元件和电子装置
WO2021082504A1 (zh) 含氮化合物、电子元件和电子装置
CN113861044B (zh) 有机化合物及包含其的电子元件和电子装置
WO2022042267A1 (zh) 含氮化合物、电子元件和电子装置
WO2024055658A1 (zh) 含氮化合物和电子元件及电子装置
CN115960001B (zh) 有机化合物及包含其的电子元件和电子装置
WO2022100194A1 (zh) 含氮化合物、有机电致发光器件和电子装置
WO2021136006A1 (zh) 含氮化合物、电子元件和电子装置
WO2024037073A1 (zh) 含氮化合物、电子元件和电子装置
WO2023231531A1 (zh) 含氮化合物、有机电致发光器件和电子装置
WO2024007511A1 (zh) 芳胺化合物及有机电致发光器件和电子装置
WO2023179094A1 (zh) 有机化合物及包含其的电子元件和电子装置
WO2023185078A1 (zh) 有机化合物和电子元件及电子装置
CN115557937B (zh) 含氮化合物及包含其的有机电致发光器件和电子装置
CN114133351B (zh) 含氮化合物及包含其的电子元件和电子装置
WO2022028334A1 (zh) 含氮化合物以及包含其的电子元件和电子装置
CN114497424B (zh) 有机电致发光器件及包括其的电子装置
CN114181166B (zh) 有机化合物及包含其的电子元件和电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21884823

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21884823

Country of ref document: EP

Kind code of ref document: A1