WO2023231531A1 - 含氮化合物、有机电致发光器件和电子装置 - Google Patents

含氮化合物、有机电致发光器件和电子装置 Download PDF

Info

Publication number
WO2023231531A1
WO2023231531A1 PCT/CN2023/083502 CN2023083502W WO2023231531A1 WO 2023231531 A1 WO2023231531 A1 WO 2023231531A1 CN 2023083502 W CN2023083502 W CN 2023083502W WO 2023231531 A1 WO2023231531 A1 WO 2023231531A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
substituted
unsubstituted
nitrogen
Prior art date
Application number
PCT/CN2023/083502
Other languages
English (en)
French (fr)
Inventor
马天天
杨雷
Original Assignee
陕西莱特光电材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 陕西莱特光电材料股份有限公司 filed Critical 陕西莱特光电材料股份有限公司
Publication of WO2023231531A1 publication Critical patent/WO2023231531A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6558Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom containing at least two different or differently substituted hetero rings neither condensed among themselves nor condensed with a common carbocyclic ring or ring system
    • C07F9/65583Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom containing at least two different or differently substituted hetero rings neither condensed among themselves nor condensed with a common carbocyclic ring or ring system each of the hetero rings containing nitrogen as ring hetero atom

Definitions

  • the present application belongs to the technical field of organic materials, and in particular relates to a nitrogen-containing compound and an organic electroluminescent device and electronic device containing the nitrogen-containing compound.
  • An organic electroluminescent device usually includes a cathode and an anode arranged oppositely, and a functional layer arranged between the cathode and anode.
  • the functional layer is composed of multiple organic or inorganic film layers, and generally includes an organic light-emitting layer, a hole transport layer, an electron transport layer, etc.
  • the electrons on the cathode side move toward the electroluminescent layer, and the holes on the anode side also move toward the luminescent layer.
  • the electrons and holes combine in the electroluminescent layer.
  • Excitons are formed, and the excitons release energy outwards in the excited state, thereby causing the electroluminescent layer to emit light.
  • the purpose of this application is to provide a nitrogen-containing compound and an organic electroluminescent device and electronic device containing the nitrogen-containing compound.
  • the nitrogen-containing compound can improve the organic electroluminescent device and electronic device.
  • the performance of the device such as reducing the drive voltage of the device, improving device efficiency and lifespan.
  • the first aspect of the present application provides a nitrogen-containing compound having a structure shown in Formula I:
  • Ring A is selected from aromatic rings with 6 to 14 carbon atoms;
  • Each R 1 is the same or different, and is independently selected from deuterium, halogen group, cyano group, alkyl group with 1 to 10 carbon atoms, cycloalkyl group with 1 to 10 carbon atoms, 1 to 10 carbon atoms. 10 haloalkyl groups, deuterated alkyl groups with 1 to 10 carbon atoms, aryl groups with 6 to 20 carbon atoms, and heteroaryl groups with 3 to 20 carbon atoms;
  • n 1 is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8 or 9;
  • L 1 and L 2 are the same or different, and are each independently selected from a single bond, a substituted or unsubstituted arylene group with 6 to 30 carbon atoms, and a substituted or unsubstituted heteroarylene group with 3 to 30 carbon atoms. base;
  • Ar 1 and Ar 2 are the same or different, and are each independently selected from a substituted or unsubstituted aryl group with 6 to 30 carbon atoms, and a substituted or unsubstituted heteroaryl group with 3 to 30 carbon atoms;
  • the substituents in L 1 , L 2 , Ar 1 and Ar 2 are the same or different, and are each independently selected from deuterium, cyano group, halogen group, alkyl group with 1 to 10 carbon atoms, and 1 carbon atom. ⁇ 10 haloalkyl group, deuterated alkyl group with 1 to 10 carbon atoms, trialkylsilyl group with 3 to 12 carbon atoms, triphenylsilyl group, aryl group with 6 to 20 carbon atoms, Heteroaryl groups with 3 to 20 carbon atoms, cycloalkyl groups with 3 to 10 carbon atoms, and arylphosphineoxy groups with 6 to 18 carbon atoms;
  • any two adjacent substituents form a saturated or unsaturated 3 to 15-membered ring.
  • a second aspect of the application provides an organic electroluminescent device, including an anode and a cathode arranged oppositely, and a functional layer disposed between the anode and the cathode; the functional layer includes the above-mentioned nitrogen-containing compound .
  • a third aspect of the present application provides an electronic device, including the organic electroluminescent device described in the second aspect.
  • the structure of the compound of the present application includes a tetramethylcyclohexanocarbazole-triazine structure, in which the triazine group is connected to the nitrogen atom of tetramethylcyclohexanocarbazole.
  • This special connection method makes the target molecule
  • the larger conjugation plane of the carbazole molecule can be fully utilized to improve the charge mobility of the target molecule.
  • the structure of tetramethylcyclohexane can further enhance the charge transport ability of the carbazole group.
  • the spatial configuration of the four methyl groups is outside the conjugation plane of the carbazole group, forming a certain steric hindrance and finely regulating the intermolecular stacking of the compound, allowing the compound to form in the functional layer of the device.
  • Figure 1 is a schematic structural diagram of an organic electroluminescent device of the present application.
  • FIG. 2 is a schematic structural diagram of an electronic device according to the present application.
  • the purpose of this application is to provide a nitrogen-containing compound and an organic electroluminescent device and electronic device containing the nitrogen-containing compound.
  • the nitrogen-containing compound can improve the organic electroluminescent device and electronic device.
  • the performance of the device such as reducing the drive voltage of the device, improving device efficiency and lifespan.
  • the first aspect of the present application provides a nitrogen-containing compound having a structure shown in Formula I:
  • Ring A is selected from aromatic rings with 6 to 14 carbon atoms;
  • Each R 1 is the same or different, and is independently selected from deuterium, halogen group, cyano group, alkyl group with 1 to 10 carbon atoms, cycloalkyl group with 1 to 10 carbon atoms, 1 to 10 carbon atoms. 10 haloalkyl groups, deuterated alkyl groups with 1 to 10 carbon atoms, aryl groups with 6 to 20 carbon atoms, and heteroaryl groups with 3 to 20 carbon atoms;
  • n 1 is selected from 0, 1, 2, 3, 4, 5, 6, 7, 8 or 9;
  • L 1 and L 2 are the same or different, and are each independently selected from a single bond, a substituted or unsubstituted arylene group with 6 to 30 carbon atoms, and a substituted or unsubstituted heteroarylene group with 3 to 30 carbon atoms. base;
  • Ar 1 and Ar 2 are the same or different, and are each independently selected from a substituted or unsubstituted aryl group with 6 to 30 carbon atoms, and a substituted or unsubstituted heteroaryl group with 3 to 30 carbon atoms;
  • the substituents in L 1 , L 2 , Ar 1 and Ar 2 are the same or different, and are each independently selected from deuterium, cyano group, halogen group, alkyl group with 1 to 10 carbon atoms, and 1 carbon atom. ⁇ 10 haloalkyl group, deuterated alkyl group with 1 to 10 carbon atoms, trialkylsilyl group with 3 to 12 carbon atoms, triphenylsilyl group, aryl group with 6 to 20 carbon atoms, Heteroaryl group with 3 to 20 carbon atoms, cycloalkyl group with 3 to 10 carbon atoms, and phosphineoxy group with 6 to 18 carbon atoms;
  • any two adjacent substituents form a saturated or unsaturated 3 to 15-membered ring.
  • any two adjacent substituents form a ring means that the two substituents may or may not form a ring, that is, including: the scenario where two adjacent substituents form a ring and the situation where two adjacent substituents form a ring. Scenarios where adjacent substituents do not form a ring.
  • any two adjacent substituents in Ar 1 and Ar 2 form a saturated or unsaturated 3 to 15-membered ring refers to any two phases in Ar 1 and Ar 2
  • the adjacent substituents can be connected to each other to form a saturated or unsaturated 3-15-membered ring, or any two adjacent substituents in Ar 1 and Ar 2 can also exist independently.
  • any two adjacent atoms can include two substituents on the same atom, and can also include one substituent on two adjacent atoms; where, when there are two substituents on the same atom, both Each substituent can form a saturated or unsaturated spiro ring with the atom it is connected to together; when two adjacent atoms each have a substituent, the two substituents can be fused to form a ring.
  • "3-15 membered ring” means that the number of ring carbon atoms is 3-15, that is, the number of ring carbon atoms of "3-15 membered ring” can be 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 or 15.
  • the number of carbon atoms in the fluorene ring is 13, making it a 13-membered ring.
  • saturated or unsaturated 3-15-membered ring include but are not limited to cyclohexane, cyclopentane, adamantane, benzene ring, naphthalene ring, phenanthrene ring or fluorene ring.
  • each...independently is and “...respectively and independently are” and “...each independently is” are interchangeable, and should be understood in a broad sense. They can both refer to In different groups, the specific options expressed by the same symbols do not affect each other. It can also mean that in the same group, the specific options expressed by the same symbols do not affect each other.
  • each q is independently 0, 1, 2 or 3
  • each R" is independently selected from hydrogen, deuterium, fluorine, and chlorine.
  • Formula Q-1 represents that there are q substituents R" on the benzene ring.
  • each R can be the same or different, and the options of each R” do not affect each other;
  • Formula Q-2 indicates that there are q substituents R” on each benzene ring of biphenyl, and the R on the two benzene rings "The number of substituents q can be the same or different, each R" can be the same or different, and the options for each R" do not affect each other.
  • substituted or unsubstituted means that the functional group described after the term may or may not have a substituent (hereinafter, for convenience of description, the substituents are collectively referred to as Rc).
  • substituted or unsubstituted aryl refers to an aryl group having a substituent Rc or an unsubstituted aryl group.
  • the above-mentioned substituent Rc can be, for example, deuterium, cyano group, halogen group, alkyl group, haloalkyl group, deuterated alkyl group, trialkylsilyl group, triphenylsilyl group, aryl group, heteroaryl group, ring Alkyl, arylphosphineoxy, etc.
  • the number of substitutions can be one or more.
  • plural refers to more than 2, such as 2, 3, 4, 5, 6, etc.
  • the number of carbon atoms of a substituted or unsubstituted functional group refers to the number of all carbon atoms. For example, if L 1 is a substituted arylene group having 12 carbon atoms, then all of the carbon atoms in the arylene group and the substituents thereon are 12.
  • aryl refers to an optional functional group or substituent derived from an aromatic carbocyclic ring.
  • the aryl group can be a single-ring aryl group (such as phenyl) or a polycyclic aryl group.
  • the aryl group can be a single-ring aryl group, a fused-ring aryl group, or two or more single-ring aryl groups conjugated through a carbon-carbon bond.
  • Ring aryl groups monocyclic aryl groups conjugated through carbon-carbon bonds and fused-ring aryl groups, two or more fused-ring aryl groups conjugated through carbon-carbon bonds.
  • the condensed ring aryl group may include, for example, bicyclic condensed aryl group (such as naphthyl), tricyclic condensed aryl group (such as phenanthrenyl, fluorenyl, anthracenyl), etc.
  • Aryl groups do not contain heteroatoms such as B, N, O, S, P, Se and Si.
  • aryl groups may include, but are not limited to, phenyl, naphthyl, fluorenyl, anthracenyl, phenanthrenyl, biphenyl, terphenyl, triphenylene, perylene, benzo[9,10]phenanthrenyl, Pyrenyl, benzofluoranthene, Key et al.
  • the arylene group refers to a bivalent group formed by the aryl group further losing one hydrogen atom.
  • terphenyl includes
  • the number of carbon atoms of a substituted aryl group refers to the total number of carbon atoms of the aryl group and the substituents on the aryl group.
  • a substituted aryl group with 18 carbon atoms refers to the aryl group and the substituent.
  • the total number of carbon atoms is 18.
  • the number of carbon atoms of the substituted or unsubstituted aryl group may be 6, 10, 12, 13, 14, 15, 16, 17, 18, 20, 25 or 30.
  • the substituted or unsubstituted aryl group is a substituted or unsubstituted aryl group having 6 to 30 carbon atoms.
  • the substituted or unsubstituted aryl group is a substituted or unsubstituted aryl group having 6 to 30 carbon atoms.
  • the substituted or unsubstituted aryl group is a substituted or unsubstituted aryl group with a carbon number of 6 to 18.
  • the substituted or unsubstituted aryl group is The aryl group is a substituted or unsubstituted aryl group with 6 to 12 carbon atoms.
  • the fluorenyl group can be substituted by one or more substituents, wherein any two adjacent substituents can be combined with each other to form a substituted or unsubstituted spirocyclic structure.
  • the substituted fluorenyl group can be: etc., but are not limited to this.
  • aryl groups as substituents of L 1 , L 2 , Ar 1 and Ar 2 include, but are not limited to, phenyl, naphthyl, phenanthrenyl, biphenyl, fluorenyl, dimethylfluorenyl, etc. .
  • heteroaryl refers to a monovalent aromatic ring or its derivatives containing 1, 2, 3, 4, 5 or 6 heteroatoms in the ring.
  • the heteroatoms can be B, O, N, P, Si, One or more of Se and S.
  • a heteroaryl group can be a monocyclic heteroaryl group or a polycyclic heteroaryl group.
  • a heteroaryl group can be a single aromatic ring system or multiple aromatic ring systems conjugated through carbon-carbon bonds, and any aromatic
  • the ring system is an aromatic single ring or an aromatic fused ring.
  • heteroaryl groups may include thienyl, furyl, pyrrolyl, imidazolyl, thiazolyl, oxazolyl, oxadiazolyl, triazolyl, pyridyl, bipyridyl, pyrimidinyl, triazinyl, Acridinyl, pyridazinyl, pyrazinyl, quinolinyl, quinazolinyl, quinoxalinyl, phenoxazinyl, phthalazinyl, pyridopyrimidinyl, pyridopyrazinyl, pyrazinopyridyl Azinyl, isoquinolinyl, indolyl, carbazolyl, benzoxazolyl, benzimidazolyl, benzothiazolyl, benzocarbazolyl, benzothienyl, dibenzothienyl, thiophene Thiophenyl
  • the number of carbon atoms of the substituted or unsubstituted heteroaryl group can be selected from 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 , 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 or 30.
  • the substituted or unsubstituted heteroaryl group is a substituted or unsubstituted heteroaryl group with a total carbon number of 3 to 30.
  • the substituted or unsubstituted heteroaryl group is Or the unsubstituted heteroaryl group is a substituted or unsubstituted heteroaryl group with a total carbon number of 5 to 20.
  • the substituted or unsubstituted heteroaryl group is a total carbon number of 5 to 12 Substituted or unsubstituted heteroaryl.
  • heteroaryl groups as substituents of L 1 , L 2 , Ar 1 and Ar 2 include, but are not limited to, pyridyl, carbazolyl, dibenzothienyl, and dibenzofuranyl.
  • the substituted heteroaryl group may be one or more hydrogen atoms in the heteroaryl group substituted by deuterium atoms, halogen groups, -CN, aryl groups, heteroaryl groups, trialkylsilyl groups, alkyl groups, etc. , cycloalkyl, haloalkyl and other groups substituted.
  • the number of carbon atoms of a substituted heteroaryl group refers to the total number of carbon atoms of the heteroaryl group and the substituents on the heteroaryl group.
  • the alkyl group having 1 to 10 carbon atoms may include a linear alkyl group having 1 to 10 carbon atoms and a branched alkyl group having 3 to 10 carbon atoms.
  • the number of carbon atoms of the alkyl group may be, for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10.
  • Specific examples of the alkyl group include, but are not limited to, methyl, ethyl, n-propyl, Isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, isopentyl, neopentyl, n-hexyl, etc.
  • the halogen group can be, for example, fluorine, chlorine, bromine, or iodine.
  • arylphosphineoxy examples include, but are not limited to, diphenylphosphineoxy and the like.
  • haloalkyl groups include, but are not limited to, trifluoromethyl.
  • the number of carbon atoms of the cycloalkyl group having 3 to 10 carbon atoms may be, for example, 3, 4, 5, 6, 7, 8 or 10.
  • Specific examples of cycloalkyl include, but are not limited to, cyclopentyl, cyclohexyl, and adamantyl.
  • the single bond extending from the ring system involved in the connecting key is not located. It means that one end of the bond can be connected to any position in the ring system that the bond penetrates, and the other end is connected to the rest of the compound molecule.
  • the naphthyl group represented by the formula (f) is connected to other positions of the molecule through two non-positioned bonds that penetrate the bicyclic ring, and its meaning includes such as the formula (f) -1) ⁇ Any possible connection method shown in formula (f-10).
  • the dibenzofuryl group represented by the formula (X') is connected to other positions of the molecule through an unpositioned bond extending from the middle of one side of the benzene ring, Its meaning includes any possible connection method shown in formula (X'-1) to formula (X'-4).
  • the nitrogen-containing compound is selected from compounds represented by formula A-1:
  • the nitrogen-containing compound has a structure represented by Formula B-1, Formula B-2, Formula B-3 or Formula B-4:
  • the nitrogen-containing compound has a structure represented by formula C-1, formula C-2 or formula C-3:
  • Ring A is selected from benzene ring or naphthalene ring.
  • Ring A is selected from the following structures:
  • n 1 is selected from 0 or 1.
  • each R 1 is the same or different, and is independently selected from deuterium, fluorine, cyano, methyl, ethyl, n-propyl, isopropyl, tert-butyl or phenyl.
  • each R 1 is the same or different, and is independently selected from deuterium or phenyl.
  • each R 1 is the same or different, and is independently selected from phenyl.
  • L 1 and L 2 are the same or different, and are independently selected from single bonds, substituted or unsubstituted arylene groups with 6 to 12 carbon atoms, and arylene groups with 5 to 12 carbon atoms. Substituted or unsubstituted heteroarylene.
  • the substituents in L 1 and L 2 are the same or different, and are independently selected from deuterium, halogen group, cyano group, alkyl group with 1 to 5 carbon atoms or phenyl group.
  • L 1 and L 2 are the same or different, and are independently selected from a single bond, a substituted or unsubstituted phenylene group, a substituted or unsubstituted naphthylene group, a substituted or unsubstituted naphthylene group, Biphenyl, substituted or unsubstituted carbazolylene, substituted or unsubstituted dibenzofurylene, substituted or unsubstituted dibenzothienylene.
  • the substituents in L 1 and L 2 are the same or different, and are independently selected from deuterium, fluorine, cyano, methyl, ethyl, n-propyl, isopropyl, tert-butyl or phenyl.
  • L 1 and L 2 are the same or different, and are independently selected from a single bond, a substituted or unsubstituted group V, and the unsubstituted group V is selected from the group consisting of the following groups:
  • the substituted group V contains one or more substituents, each of which is independently selected from deuterium, fluorine, cyano, methyl, ethyl, n-propyl, isopropyl, tert-butyl Or phenyl; and when the substituted group V contains more than two substituents, the substituents may be the same or different.
  • L 1 and L 2 are the same or different, and are each independently selected from the group consisting of a single bond or the following groups:
  • Ar 1 and Ar 2 are the same or different, and are independently selected from substituted or unsubstituted aryl groups with 6 to 25 carbon atoms, substituted or unsubstituted aryl groups with 5 to 20 carbon atoms. of heteroaryl.
  • the substituents in Ar 1 and Ar 2 are the same or different, and are each independently selected from deuterium, halogen group, cyano group, alkyl group with 1 to 5 carbon atoms, and 5 to 10 carbon atoms. Cycloalkyl group, aryl group with 6 to 12 carbon atoms, arylphosphineoxy group with 6 to 12 carbon atoms;
  • any two adjacent substituents form a fluorene ring
  • Ar 1 and Ar 2 are the same or different, and are independently selected from substituted or unsubstituted phenyl, substituted or unsubstituted naphthyl, substituted or unsubstituted biphenyl, substituted or Unsubstituted phenanthrene group, substituted or unsubstituted fluorenyl group, substituted or unsubstituted spirobifluorenyl group, substituted or unsubstituted triphenylene group, substituted or unsubstituted terphenyl group, substituted or unsubstituted pyridyl group, Substituted or unsubstituted carbazolyl, substituted or unsubstituted dibenzofuranyl, substituted or unsubstituted dibenzothienyl.
  • the substituents in Ar 1 and Ar 2 are the same or different, and are each independently selected from deuterium, fluorine, cyano, adamantyl, methyl, ethyl, n-propyl, isopropyl, tert-butyl base, phenyl or diphenylphosphineoxy group.
  • Ar 1 and Ar 2 are the same or different, and are independently selected from substituted or unsubstituted group W; wherein, unsubstituted group W is selected from the group consisting of the following groups:
  • the substituted group W has one or more substituents, and the substituents in the substituted group W are each independently selected from deuterium, fluorine, cyano, adamantyl, methyl, ethyl, n- Propyl, isopropyl, tert-butyl, phenyl or diphenylphosphineoxy group, and when the number of substituents on group W is greater than 1, each substituent may be the same or different.
  • Ar 1 and Ar 2 are the same or different, and are independently selected from the group consisting of the following groups:
  • Ar 1 and Ar 2 are the same or different, and are independently selected from the group consisting of the following groups:
  • the nitrogen-containing compound is selected from the group consisting of:
  • the present application provides an organic electroluminescent device, including an anode, a cathode, and a functional layer disposed between the anode and the cathode; wherein the functional layer contains the nitrogen-containing compound described in the first aspect of the application.
  • the nitrogen-containing compound provided in this application can be used to form at least one organic film layer in the functional layer to improve the luminous efficiency, lifetime and other characteristics of the organic electroluminescent device.
  • the functional layer includes an organic light-emitting layer, and the organic light-emitting layer includes the nitrogen-containing compound.
  • the organic light-emitting layer may be composed of the nitrogen-containing compound provided by this application, or may be composed of the nitrogen-containing compound provided by this application and other materials.
  • the functional layer further includes a hole transport layer located between the anode and the organic light-emitting layer.
  • the hole transport layer includes a first hole transport layer and a second hole transport layer, and the first hole transport layer is closer to the anode than the second hole transport layer.
  • the organic electroluminescent device is as shown in Figure 1.
  • the organic electroluminescent device may include an anode 100, a hole injection layer 310, a first hole transport layer 321, a first hole transport layer 321, and a first hole injection layer 310, which are stacked in sequence.
  • the anode 100 includes an anode material, which is preferably a material with a large work function that facilitates injection of holes into the functional layer.
  • anode materials include: metals such as nickel, platinum, vanadium, chromium, copper, zinc and gold or their alloys; metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO) and indium zinc oxide (IZO); Combined metals and oxides such as ZnO:Al or SnO 2 :Sb; or conductive polymers such as poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene ](PEDT), polypyrrole and polyaniline, but not limited thereto.
  • a transparent electrode including indium tin oxide (ITO) as an anode is included.
  • the hole transport layer may include one or more hole transport materials.
  • the hole transport layer material may be selected from carbazole polymers, carbazole-linked triarylamine compounds or other types of compounds. Specifically, it may be selected From the compounds shown below or any combination thereof:
  • the first hole transport layer 321 may be composed of HT-15.
  • the second hole transport layer 322 is composed of HT-17.
  • the second hole transport layer 322 is composed of HT-20.
  • a hole injection layer 310 may also be provided between the anode 100 and the first hole transport layer 321 to enhance the ability to inject holes into the first hole transport layer 321 .
  • the hole injection layer 310 can be made of benzidine derivatives, starburst arylamine compounds, phthalocyanine derivatives or other materials, which are not particularly limited in this application.
  • the material of the hole injection layer 310 may, for example, be selected from the following compounds or any combination thereof;
  • the hole injection layer 310 is composed of HI-01.
  • the organic light-emitting layer 330 may be composed of a single light-emitting material, or may include a host material and a guest material.
  • the organic light-emitting layer 330 is composed of a host material and a guest material. The holes injected into the organic light-emitting layer 330 and the electrons injected into the organic light-emitting layer 330 can recombine in the organic light-emitting layer 330 to form excitons, and the excitons transfer energy to The host material transfers energy to the guest material, thereby enabling the guest material to emit light.
  • the host material of the organic light-emitting layer 330 may include metal chelate compounds, bistyryl derivatives, aromatic amine derivatives, dibenzofuran derivatives or other types of materials.
  • the host material includes the nitrogen-containing compound of the present application.
  • the guest material of the organic light-emitting layer 330 can be a compound with a condensed aryl ring or its derivatives, a compound with a heteroaryl ring or its derivatives, an aromatic amine derivative or other materials, which is not specified in this application. limit. Guest materials are also called doping materials or dopants. According to the type of luminescence, it can be divided into fluorescent dopants and phosphorescent dopants. For example, specific examples of the phosphorescent dopant include, but are not limited to,
  • the organic electroluminescent device is a red organic electroluminescent device.
  • the host material of the organic light-emitting layer 330 includes the nitrogen-containing compound of the present application.
  • the guest material may be RD-01, for example.
  • the organic electroluminescent device is a green organic electroluminescent device.
  • the host material of the organic light-emitting layer 330 includes the nitrogen-containing compound of the present application.
  • the guest material may be GD-01, for example.
  • the electron transport layer 340 may have a single-layer structure or a multi-layer structure, and may include one or more electron transport materials.
  • the electron transport materials may be selected from, but are not limited to, ET-2, LiQ, and benzimidazole derivatives. , oxadiazole derivatives, quinoxaline derivatives or other electron transport materials, there are no special limitations for comparison in this application.
  • the materials of the electron transport layer 340 include but are not limited to the following compounds:
  • the electron transport layer 340 may be composed of ET-2 and LiQ.
  • the cathode 200 may include a cathode material, which is a material with a small work function that facilitates electron injection into the functional layer.
  • cathode materials include, but are not limited to, metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin and lead or alloys thereof; or multilayer materials such as LiF/Al , Liq/Al, LiO 2 /Al, LiF/Ca, LiF/Al and BaF 2 /Ca.
  • a metal electrode containing magnesium and silver is included as the cathode.
  • an electron injection layer 350 may also be provided between the cathode 200 and the electron transport layer 340 to enhance the ability to inject electrons into the electron transport layer 340.
  • the electron injection layer 350 may include an inorganic material such as an alkali metal sulfide or an alkali metal halide, or may include a complex of an alkali metal and an organic substance.
  • the electron injection layer 350 may include ytterbium (Yb).
  • a third aspect of the present application provides an electronic device, including the organic electroluminescent device described in the second aspect of the present application.
  • the electronic device provided is an electronic device 400 , which includes the above-mentioned organic electroluminescent device.
  • the electronic device 400 may be, for example, a display device, a lighting device, an optical communication device, or other types of electronic devices.
  • it may include but is not limited to a computer screen, a mobile phone screen, a television, electronic paper, emergency lighting, an optical module, etc.
  • 1,1,4,4-Tetramethyl-1,2,3,4-tetralin-6-boronic acid (15.0g; 64.6mmol), 2-bromonitrobenzene (13.1g; 64.6mmol), Tetrakis triphenylphosphine palladium (1.5 g; 1.3 mmol), potassium carbonate (17.9 g; 129.2 mmol), tetrabutylammonium bromide (4.2 g; 12.9 mmol), toluene (120 mL), ethanol (30 mL) and deionized Water (30 mL) was added to a nitrogen-protected round-bottomed flask, heated to 75°C to 80°C, and stirred for 10 hours; the reaction solution was cooled to room temperature, deionized water (200 mL) was added, and the liquids were separated.
  • HI-01 was vacuum evaporated on the experimental substrate (anode) to form a thickness of hole injection layer (HIL), and then vacuum evaporate HT-15 on the hole injection layer to form a thickness of the first hole transport layer.
  • HIL hole injection layer
  • Compound HT-17 was vacuum evaporated on the first hole transport layer to form a thickness of the second hole transport layer.
  • compound A3:GH-P:GD-01 was co-evaporated at a evaporation rate ratio of 45%:45%:10% to form a thickness of organic light-emitting layer (green light-emitting layer).
  • compound ET-2 and LiQ are mixed at a weight ratio of 1:1 and evaporated to form Thick electron transport layer (ETL), Yb is evaporated on the electron transport layer to form a thickness of
  • the electron injection layer (EIL) is then mixed with magnesium (Mg) and silver (Ag) at an evaporation rate of 1:9, and vacuum evaporated on the electron injection layer to form a thickness of the cathode.
  • CP-1 was vacuum evaporated on the above cathode to form a thickness of organic covering layer to complete the manufacturing of green organic electroluminescent devices.
  • An organic electroluminescent device was prepared using the same method as in Example 1, except that the compounds in Table 6 below (collectively referred to as "Compound X”) were used instead of Compound A3 in Example 1 when making the organic light-emitting layer.
  • An organic electroluminescent device was prepared using the same method as in Example 1, except that when preparing the organic light-emitting layer, Compound A, Compound B and Compound C were used instead of Compound A3 in Example 1.
  • the green organic electroluminescent devices prepared in Examples 1 to 19 and Comparative Examples 1 to 3 were tested for performance. Specifically, the IVL performance of the device was tested under the condition of 10 mA/cm 2. The T95 device life was at 20 mA/cm 2 . The test was carried out under the conditions, and the test results are shown in Table 6.
  • HI-01 was vacuum evaporated on the experimental substrate (anode) to form a thickness of hole injection layer (HIL), and then vacuum evaporate HT-15 on the hole injection layer to form a thickness of the first hole transport layer.
  • HIL hole injection layer
  • the compound HT-20 is vacuum evaporated on the first hole transport layer to form a thickness of the second hole transport layer.
  • RH-P compound C1: RD-01 was co-evaporated at a evaporation rate ratio of 49%: 49%: 2% to form a layer with a thickness of organic light-emitting layer (EML).
  • EML organic light-emitting layer
  • compound ET-2 and LiQ are mixed at a weight ratio of 1:1 and evaporated to form Thick electron transport layer (ETL), Yb is evaporated on the electron transport layer to form a thickness of
  • the electron injection layer (EIL) is then mixed with magnesium (Mg) and silver (Ag) at an evaporation rate of 1:9, and vacuum evaporated on the electron injection layer to form a thickness of the cathode.
  • CP-1 was vacuum evaporated on the above cathode to form a thickness of The organic covering layer is used to complete the fabrication of red organic electroluminescent devices.
  • An organic electroluminescent device was prepared using the same method as in Example 1, except that the compounds in Table 7 below (collectively referred to as "Compound X”) replaced the compound C1 in Example 1 when making the organic light-emitting layer.
  • An organic electroluminescent device was prepared using the same method as in Example 1, except that when preparing the organic light-emitting layer, Compound D and Compound E were used instead of Compound C1 in Example 20.
  • Performance testing was performed on the red organic electroluminescent devices prepared in Examples 20 to 25 and Comparative Examples 4 and 5. Specifically, the IVL performance of the device was tested under the condition of 10mA/ cm2 , and the T95 device life was tested under the condition of 20mA/ cm2 . The test was carried out below, and the test results are shown in Table 7.
  • the structure of the compound of the present application includes a tetramethylcyclohexanocarbazole-triazine structure, in which the triazine group is connected to the nitrogen atom of tetramethylcyclohexanocarbazole.
  • This special connection method makes the target molecule
  • the larger conjugation plane of the carbazole molecule can be fully utilized to improve the charge mobility of the target molecule.
  • the structure of tetramethylcyclohexane can further enhance the charge transport ability of the carbazole group.
  • the spatial configuration of the four methyl groups is outside the conjugation plane of the carbazole group, forming a certain steric hindrance and finely regulating the intermolecular stacking of the compound, which can make the compound in the functional layer of the device Form an amorphous film with good stability. Therefore, when the compound of the present application is used as a host material, the carrier balance in the light-emitting layer can be improved, the carrier recombination area can be broadened, the exciton generation and utilization efficiency can be improved, and the luminous efficiency of the device can be improved; at the same time, when the compound of the present application is used as a host material, , can form a better amorphous film and improve the life of the device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

提供了一种含氮化合物、有机电致发光器件和电子装置。所述含氮化合物具有如式Ⅰ所示的结构,将该含氮化合物应用于有机电致发光器件中,可显著改善器件的性能。

Description

含氮化合物、有机电致发光器件和电子装置
相关申请的交叉引用
本申请要求于2022年5月30日递交的申请号为202210599631.4的中国专利申请以及2022年7月20日递交的申请号为202210856822.4的中国专利申请的优先权,在此引用上述中国专利申请的内容全文以作为本申请的一部分。
技术领域
本申请属于有机材料技术领域,尤其涉及一种含氮化合物及包含该含氮化合物的有机电致发光器件及电子装置。
背景技术
随着电子技术的发展和材料科学的进步,用于实现电致发光或者光电转化的电子元器件的应用范围越来越广泛。有机电致发光器件(OLED),通常包括相对设置的阴极和阳极,以及设置于阴极和阳极之间的功能层。该功能层由多层有机或者无机膜层组成,且一般包括有机发光层、空穴传输层、电子传输层等。当阴阳两极施加电压时,两电极产生电场,在电场的作用下,阴极侧的电子向电致发光层移动,阳极侧的空穴也向发光层移动,电子和空穴在电致发光层结合形成激子,激子处于激发态向外释放能量,进而使得电致发光层对外发光。
现有的有机电致发光器件中,最主要的问题为寿命和效率,随着显示器的大面积化,驱动电压也随之提高,发光效率及电流效率也需要提高,因此,有必要继续研发新型的材料,以进一步提高有机电致发光器件的性能。
发明内容
针对现有技术存在的上述问题,本申请的目的在于提供一种含氮化合物及包含该含氮化合物的有机电致发光器件和电子装置,所述含氮化合物可以改善有机电致发光器件和电子装置的性能,例如降低器件的驱动电压,提升器件效率和寿命。
本申请的第一方面,提供一种含氮化合物,该含氮化合物具有如式Ⅰ所示的结构:
其中,环A选自碳原子数为6~14的芳香环;
各R1相同或不同,分别独立地选自氘、卤素基团、氰基、碳原子数为1~10的烷基、碳原子数为1~10的环烷基、碳原子数为1~10的卤代烷基、碳原子数为1~10的氘代烷基、碳原子数为6~20的芳基、碳原子数为3~20的杂芳基;
n1选自0、1、2、3、4、5、6、7、8或9;
L1和L2相同或不同,各自独立地选自单键、碳原子数为6~30的取代或未取代的亚芳基、碳原子数为3~30的取代或未取代的亚杂芳基;
Ar1和Ar2相同或不同,且各自独立地选自碳原子数为6~30的取代或未取代的芳基、碳原子数为3~30的取代或未取代的杂芳基;
L1、L2、Ar1和Ar2中的取代基相同或不同,且各自独立地选自氘、氰基、卤素基团、碳原子数为1~10的烷基、碳原子数为1~10的卤代烷基、碳原子数为1~10的氘代烷基、碳原子数为3~12的三烷基硅基、三苯基硅基、碳原子数为6~20的芳基、碳原子数为3~20的杂芳基、碳原子数为3~10的环烷基、碳原子数为6~18的芳基膦氧基;
任选地,在Ar1和Ar2中,任意两个相邻的取代基形成饱和或不饱和的3~15元环。
本申请的第二方面,提供一种有机电致发光器件,包括相对设置的阳极和阴极,以及设于所述阳极和所述阴极之间的功能层;所述功能层包含上述的含氮化合物。
本申请的第三方面,提供了一种电子装置,包含第二方面所述的有机电致发光器件。
本申请化合物结构中包含四甲基环己烷并咔唑-三嗪的结构,其中三嗪基团与四甲基环己烷并咔唑的氮原子相连,这种特殊的连接方式使得目标分子可以充分利用咔唑分子较大的共轭平面,提高目标分子的电荷迁移率。同时四甲基环己烷的结构可以进一步增强咔唑基团的电荷传输能力。此外,四个甲基在空间构型上是处于咔唑基团共轭平面之外,形成一定的空间位阻,对化合物的分子间堆积进行精细的调控,可以使得化合物在器件功能层中形成稳定性较好的无定型薄膜。因此,将本申请化合物作为主体材料时,可以改善发光层中载流子平衡,拓宽载流子复合区域,提高激子生成和利用效率,提高器件发光效率;同时本申请化合物在作为主体材料时,能够形成较好的无定型态薄膜,提高器件的寿命。
附图说明
附图是用来提供对本申请的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本申请,但并不构成对本申请的限制。
图1是本申请一种的有机电致发光器件的结构示意图。
图2是本申请一种的电子装置的结构示意图。
附图标记
100、阳极          200、阴极            300、功能层          310、空穴注入层
320、空穴传输层     321、第一空穴传输层  322、第二空穴传输层  330、有机发光层
340、电子传输层     350、电子注入层      400、电子装置
具体实施方式
针对现有技术存在的上述问题,本申请的目的在于提供一种含氮化合物及包含该含氮化合物的有机电致发光器件和电子装置,所述含氮化合物可以改善有机电致发光器件和电子装置的性能,例如降低器件的驱动电压,提升器件效率和寿命。
本申请的第一方面,提供一种含氮化合物,该含氮化合物具有如式Ⅰ所示的结构:
其中,环A选自碳原子数为6~14的芳香环;
各R1相同或不同,分别独立地选自氘、卤素基团、氰基、碳原子数为1~10的烷基、碳原子数为1~10的环烷基、碳原子数为1~10的卤代烷基、碳原子数为1~10的氘代烷基、碳原子数为6~20的芳基、碳原子数为3~20的杂芳基;
n1选自0、1、2、3、4、5、6、7、8或9;
L1和L2相同或不同,各自独立地选自单键、碳原子数为6~30的取代或未取代的亚芳基、碳原子数为3~30的取代或未取代的亚杂芳基;
Ar1和Ar2相同或不同,且各自独立地选自碳原子数为6~30的取代或未取代的芳基、碳原子数为3~30的取代或未取代的杂芳基;
L1、L2、Ar1和Ar2中的取代基相同或不同,且各自独立地选自氘、氰基、卤素基团、碳原子数为1~10的烷基、碳原子数为1~10的卤代烷基、碳原子数为1~10的氘代烷基、碳原子数为3~12的三烷基硅基、三苯基硅基、碳原子数为6~20的芳基、碳原子数为3~20的杂芳基、碳原子数为3~10的环烷基、碳原子数为6~18的膦氧基;
任选地,在Ar1和Ar2中,任意两个相邻的取代基形成饱和或不饱和的3~15元环。
本申请中,术语“任选”、“任选地”意味着随后所描述的事件或者环境可以发生也可以不发生。例如,“任选地,任意两个相邻取代基形成环”意味着这两个取代基可以形成环也可以不形成环,即包括:两个相邻的取代基形成环的情景和两个相邻的取代基不形成环的情景。再比如,“任选地,在Ar1和Ar2中,的任意两个相邻的取代基形成饱和或不饱和的3~15元环”是指Ar1和Ar2中的任意两个相邻的取代基可以相互连接形成饱和或不饱和的3~15元环,或者Ar1和Ar2中的任意两个相邻的取代基也可以各自独立的存在。“任意两个相邻”可以包括同一个原子上具有两个取代基,还可以包括两个相邻的原子上分别具有一个取代基;其中,当同一个原子上具有两个取代基时,两个取代基可以与其共同连接的原子形成饱和或不饱和的螺环;当两个相邻的原子上分别具有一个取代基时,这两个取代基可以稠合成环。在本申请中,“3~15元环”是指成环碳原子数为3~15,,即,“3~15元环”的成环碳原子数可以为3、4、5、6、7、8、9、10、11、12、13、14或15。例如:芴环的成环碳原子数为13,为13元环。在本申请中,“饱和或不饱和的3~15元环”具体实例包括但不限于环己烷、环戊烷、金刚烷、苯环、萘环、菲环或芴环。
本申请中,所采用的描述方式“各……独立地为”与“……分别独立地为”和“……各自独立地为”可以互换,均应做广义理解,其既可以是指在不同基团中,相同符号之间所表达的具体选项之间互相不影响,也可以表示在相同的基团中,相同符号之间所表达的具体选项之间互相不影响。例如,其中,各q独立地为0、1、2或3,各R”独立地选自氢、氘、氟、氯”,其含义是:式Q-1表示苯环上有q个取代基R”,各个R”可以相同也可以不同,每个R”的选项之间互不影响;式Q-2表示联苯的每一个苯环上有q个取代基R”,两个苯环上的R”取代基的个数q可以相同或不同,各个R”可以相同也可以不同,每个R”的选项之间互不影响。
本申请中,“取代或未取代的”这样的术语是指,在该术语后面记载的官能团可以具有或不具有取代基(下文为了便于描述,将取代基统称为Rc)。举例来讲,“取代或未取代的芳基”是指具有取代基Rc的芳基或者没有取代的芳基。其中上述的取代基即Rc例如可以为氘、氰基、卤素基团、烷基、卤代烷基、氘代烷基、三烷基硅基、三苯基硅基、芳基、杂芳基、环烷基、芳基膦氧基等。取代的个数可以是1个或多个。
本申请中,“多个”是指2个以上,例如2个、3个、4个、5个、6个,等。
本申请中,取代或未取代的官能团的碳原子数,指的是所有碳原子数。举例而言,若L1为碳原子数为12的取代的亚芳基,则亚芳基及其上的取代基的所有碳原子数为12。
本申请中,芳基指的是衍生自芳香碳环的任选官能团或取代基。芳基可以是单环芳基(例如苯基)或多环芳基,换言之,芳基可以是单环芳基、稠环芳基、通过碳碳键共轭连接的两个或者更多个单环芳基、通过碳碳键共轭连接的单环芳基和稠环芳基、通过碳碳键共轭连接的两个或者更多个稠环芳基。即,除非另有说明,通过碳碳键共轭连接的两个或者更多个芳香基团也可以视为本申请的芳基。其中,稠环芳基例如可以包括双环稠合芳基(例如萘基)、三环稠合芳基(例如菲基、芴基、蒽基)等。芳基中不含有B、N、O、S、P、Se和Si等杂原子。芳基的实例可以包括但不限于,苯基、萘基、芴基、蒽基、菲基、联苯基、三联苯基、三亚苯基、苝基、苯并[9,10]菲基、芘基、苯并荧蒽基、基等。本申请中,涉及的亚芳基是指芳基进一步失去一个氢原子所形成的二价基团。
本申请中,三联苯基包括
本申请中,取代的芳基的碳原子数,指的是芳基和芳基上的取代基的碳原子总数,例如碳原子数为18的取代的芳基,指的是芳基和取代基的总碳原子数为18。
本申请中,取代或未取代的芳基的碳原子数可以为6、10、12、13、14、15、16、17、18、20、25或30。在一些实施方案中,取代或未取代的芳基是碳原子数为6~30的取代或未取代的芳基,另一些实施方式中,取代或未取代的芳基是碳原子数为6~25的取代或未取代的芳基,另一些实施方式中,取代或未取代的芳基是碳原子数为6~18的取代或未取代的芳基,另一些实施方式中,取代或未取代的芳基是碳原子数为6~12的取代或未取代的芳基。
本申请中,芴基可以被1个或多个取代基取代,其中,任意相邻的2个取代基可以彼此结合而形成取代或未取代的螺环结构。在上述芴基被取代的情况下,取代的芴基可以为: 等,但并不限定于此。
本申请中,作为L1、L2、Ar1和Ar2的取代基的芳基例如但不限于,苯基、萘基、菲基、联苯基、芴基、二甲基芴基等等。
在本申请中,杂芳基是指环中包含1、2、3、4、5或6个杂原子的一价芳香环或其衍生物,杂原子可以是B、O、N、P、Si、Se和S中的一种或多种。杂芳基可以是单环杂芳基或多环杂芳基,换言之,杂芳基可以是单个芳香环体系,也可以是通过碳碳键共轭连接的多个芳香环体系,且任一芳香环体系为一个芳香单环或者一个芳香稠环。示例地,杂芳基可以包括噻吩基、呋喃基、吡咯基、咪唑基、噻唑基、噁唑基、噁二唑基、三唑基、吡啶基、联吡啶基、嘧啶基、三嗪基、吖啶基、哒嗪基、吡嗪基、喹啉基、喹唑啉基、喹喔啉基、吩噁嗪基、酞嗪基、吡啶并嘧啶基、吡啶并吡嗪基、吡嗪并吡嗪基、异喹啉基、吲哚基、咔唑基、苯并噁唑基、苯并咪唑基、苯并噻唑基、苯并咔唑基、苯并噻吩基、二苯并噻吩基、噻吩并噻吩基、苯并呋喃基、菲咯啉基、异噁唑基、噻二唑基、苯并噻唑基、吩噻嗪基、硅芴基、二苯并呋喃基以及N-苯基咔唑基、N-吡啶基咔唑基、N-甲基咔唑基等,而不限于此。
本申请中,取代或未取代的杂芳基的碳原子数可以选自3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、20、21、22、23、24、25、26、27、28、29或30。在一些实施方案中,取代或未取代的杂芳基是总碳原子数为3~30的取代或未取代的杂芳基,另一些实施方式中,取代 或未取代的杂芳基是总碳原子数为5~20的取代或未取代的杂芳基,另一些实施方式中,取代或未取代的杂芳基是总碳原子数为5~12的取代或未取代的杂芳基。
本申请中,作为L1、L2、Ar1和Ar2的取代基的杂芳基例如但不限于,吡啶基、咔唑基、二苯并噻吩基、二苯并呋喃基。
本申请中,取代的杂芳基可以是杂芳基中的一个或者两个以上氢原子被诸如氘原子、卤素基团、-CN、芳基、杂芳基、三烷基硅基、烷基、环烷基、卤代烷基等基团取代。应当理解地是,取代的杂芳基的碳原子数,指的是杂芳基和杂芳基上的取代基的碳原子总数。
本申请中,碳原子数为1~10的烷基可以包括碳原子数1至10的直链烷基和碳原子数3至10的支链烷基。烷基的碳原子数例如可以为1、2、3、4、5、6、7、8、9、10个,烷基的具体实例包括但不限于,甲基、乙基、正丙基、异丙基、正丁基、异丁基、叔丁基、正戊基、异戊基、新戊基、正己基等。
本申请中,卤素基团例如可以为氟、氯、溴、碘。
本申请中,芳基膦氧基的具体实例包括但不限于,二苯基膦氧基等。
本申请中,卤代烷基的具体实例包括但不限于,三氟甲基。
本申请中,碳原子数为3~10的环烷基的碳原子数例如可以为3、4、5、6、7、8或10。环烷基的具体实例包括但不限于,环戊基、环己基、金刚烷基。
本申请中,不定位连接键涉及的从环体系中伸出的单键其表示该连接键的一端可以连接该键所贯穿的环体系中的任意位置,另一端连接化合物分子其余部分。举例而言,如下式(f)中所示地,式(f)所表示的萘基通过两个贯穿双环的不定位连接键与分子其他位置连接,其所表示的含义,包括如式(f-1)~式(f-10)所示出的任一可能的连接方式。
再举例而言,如下式(X')中所示地,式(X')所表示的二苯并呋喃基通过一个从一侧苯环中间伸出的不定位连接键与分子其他位置连接,其所表示的含义,包括如式(X'-1)~式(X'-4)所示出的任一可能的连接方式。
在本申请一些实施方式中,所述含氮化合物选自式A-1所示的化合物:
在本申请一些实施方式中,所述含氮化合物具有式B-1、式B-2、式B-3或式B-4所示的结构:
在本申请一些实施方式中,所述含氮化合物具有式C-1、式C-2或式C-3所示的结构:
在本申请一些实施方式中,环A选自苯环或萘环。
在本申请一些实施方式中,环A选自以下结构:
*位置表示与式Ⅰ中的*位置相互稠合的位点。
在本申请一些实施方式中,n1选自0或1。
在本申请一些实施方式中,各R1相同或不同,分别独立地选自氘、氟、氰基、甲基、乙基、正丙基、异丙基、叔丁基或苯基。
可选地,各R1相同或不同,分别独立地选自氘或苯基。
进一步可选地,各R1相同或不同,分别独立地选自苯基。
在本申请一些实施方式中,式Ⅰ中的选自以下结构组成的组:
在本申请一些实施方式中,L1和L2相同或不同,分别独立地选自单键、碳原子数为6~12的取代或未取代的亚芳基、碳原子数为5~12的取代或未取代的亚杂芳基。
可选地,L1和L2中的取代基相同或不同,分别独立地选自氘、卤素基团、氰基、碳原子数为1-5的烷基或苯基。
在本申请另一些实施方式中,L1和L2相同或不同,分别独立地选自单键、取代或未取代的亚苯基、取代或未取代的亚萘基、取代或未取代的亚联苯基、取代或未取代的亚咔唑基、取代或未取代的亚二苯并呋喃基、取代或未取代的亚二苯并噻吩基。
可选地,L1和L2中的取代基相同或不同,分别独立地选自氘、氟、氰基、甲基、乙基、正丙基、异丙基、叔丁基或苯基。
在本申请一些实施方式中,L1和L2相同或不同,分别独立地选自单键、取代或未取代的基团V,未取代的基团V选自如下基团组成的组:
其中,表示化学键;取代的基团V含有一个或两个以上取代基,所述取代基各自独立地选自氘、氟、氰基、甲基、乙基、正丙基、异丙基、叔丁基或苯基;且当所述取代的基团V含有两个以上取代基时,所述取代基相同或者不相同。
在本申请一些实施方式中,L1和L2相同或不同,分别独立地选自单键或以下基团组成的组:

在本申请一些实施方式中,Ar1和Ar2相同或不同,分别独立地选自碳原子数为6~25的取代或未取代的芳基、碳原子数为5~20的取代或未取代的杂芳基。
可选地,Ar1和Ar2中的取代基相同或不同,且各自独立地选自氘、卤素基团、氰基、碳原子数为1~5的烷基、碳原子数为5~10的环烷基、碳原子数为6~12的芳基、碳原子数为6~12的芳基膦氧基;
任选地,在Ar1和Ar2中,任意两个相邻的取代基形成芴环
在本申请另一些实施方式中,Ar1和Ar2相同或不同,分别独立地选自取代或未取代的苯基、取代或未取代的萘基、取代或未取代的联苯基、取代或未取代的菲基、取代或未取代的芴基、取代或未取代的螺二芴基、取代或未取代的三亚苯基、取代或未取代的三联苯基、取代或未取代的吡啶基、取代或未取代的咔唑基、取代或未取代的二苯并呋喃基、取代或未取代的二苯并噻吩基。
可选地,Ar1和Ar2中的取代基相同或不同,且各自独立地选自氘、氟、氰基、金刚烷基、甲基、乙基、正丙基、异丙基、叔丁基、苯基或二苯基膦氧基。
在本申请一些实施方式中,Ar1和Ar2相同或不同,分别独立地选自取代或未取代的基团W;其中,未取代的基团W选自如下基团组成的组:
其中,表示化学键;取代的基团W中具有一个或两个以上取代基,取代的基团W中的取代基各自独立地选自氘、氟、氰基、金刚烷基、甲基、乙基、正丙基、异丙基、叔丁基、苯基或二苯基膦氧基,且当基团W上的取代基个数大于1时,各取代基相同或不同。
可选地,Ar1和Ar2相同或不同,分别独立地选自以下基团组成的组:
具体地,Ar1和Ar2相同或不同,分别独立地选自以下基团组成的组:
在本申请一些实施方式中,各自独立地选自以下基团组成的组:

在本申请一些实施方式中,分别独立地选自以下基团组成的组:
在本申请一些实施方式中,选自以下结构组成的组:

可选地,所述含氮化合物选自以下化合物组成的组:








第二方面,本申请提供一种有机电致发光器件,包括阳极、阴极,以及设置在阳极与阴极之间的功能层;其中,功能层包含本申请第一方面所述的含氮化合物。
本申请所提供的含氮化合物可以用于形成功能层中的至少一个有机膜层,以改善有机电致发光器件的发光效率和寿命等特性。
可选地,所述功能层包括包括有机发光层,所述有机发光层包括所述含氮化合物。其中,有机发光层既可以由本申请所提供的含氮化合物组成,也可以由本申请所提供的含氮化合物和其他材料共同组成。
可选地,所述功能层还包括空穴传输层,所述空穴传输层位于所述阳极和有机发光层之间。
在一种实施方式中,所述空穴传输层包括第一空穴传输层和第二空穴传输层,所述第一空穴传输层相对所述第二空穴传输层更靠近所述阳极。
按照一种具体的实施方式,所述有机电致发光器件如图1所示,有机电致发光器件可以包括依次层叠设置的阳极100、空穴注入层310、第一空穴传输层321、第二空穴传输层(空穴辅助层)322、有机发光层330、电子传输层340、电子注入层350和阴极200。
可选地,阳极100包括以下阳极材料,其优选地是有助于空穴注入至功能层中的具有大逸出功(功函数,work function)材料。阳极材料具体实例包括:金属如镍、铂、钒、铬、铜、锌和金或它们的合金;金属氧化物如氧化锌、氧化铟、氧化铟锡(ITO)和氧化铟锌(IZO);组合的金属和氧化物如ZnO:Al或SnO2:Sb;或导电聚合物如聚(3-甲基噻吩)、聚[3,4-(亚乙基-1,2-二氧基)噻吩](PEDT)、聚吡咯和聚苯胺,但不限于此。优选包括包含氧化铟锡(铟锡氧化物,indium tin oxide)(ITO)作为阳极的透明电极。
本申请中,空穴传输层可以包括一种或者多种空穴传输材料,空穴传输层材料可以选自咔唑多聚体、咔唑连接三芳胺类化合物或者其他类型的化合物,具体可以选自如下所示的化合物或者其任意组合:

在一种实施方式中,第一空穴传输层321可由HT-15组成。
在本申请的一种实施方式中,第二空穴传输层322由HT-17组成。
在本申请的另一些实施方式中,第二空穴传输层322由HT-20组成。
可选地,在阳极100和第一空穴传输层321之间还可以设置有空穴注入层310,以增强向第一空穴传输层321注入空穴的能力。空穴注入层310可以选用联苯胺衍生物、星爆状芳基胺类化合物、酞菁衍生物或者其他材料,本申请对此不做特殊的限制。所述空穴注入层310的材料例如可以选自如下化合物或者其任意组合;
在本申请的一种实施方式中,空穴注入层310由HI-01组成。
可选地,有机发光层330可以由单一发光材料组成,也可以包括主体材料和客体材料。可选地,有机发光层330由主体材料和客体材料组成,注入有机发光层330的空穴和注入有机发光层330的电子可以在有机发光层330复合而形成激子,激子将能量传递给主体材料,主体材料将能量传递给客体材料,进而使得客体材料能够发光。
有机发光层330的主体材料可以包含金属螯合类化合物、双苯乙烯基衍生物、芳香族胺衍生物、二苯并呋喃衍生物或者其他类型的材料。可选地,所述主体材料包含本申请的含氮化合物。
有机发光层330的客体材料可以为具有缩合芳基环的化合物或其衍生物、具有杂芳基环的化合物或其衍生物、芳香族胺衍生物或者其他材料,本申请对此不做特殊的限制。客体材料又称为掺杂材料或掺杂剂。按发光类型可以分为荧光掺杂剂和磷光掺杂剂。例如,所述磷光掺杂剂的具体实例包括但不限于,

在本申请的一种实施方式中,所述有机电致发光器件为红色有机电致发光器件。在一种更具体的实施方式中,有机发光层330的主体材料包含本申请的含氮化合物。客体材料例如可以为RD-01。
在本申请的一种实施方式中,所述有机电致发光器件为绿色有机电致发光器件。在一种更具体的实施方式中,有机发光层330的主体材料包含本申请的含氮化合物。客体材料例如可以为GD-01。
电子传输层340可以为单层结构,也可以为多层结构,其可以包括一种或者多种电子传输材料,电子传输材料可以选自但不限于,ET-2、LiQ、苯并咪唑衍生物、噁二唑衍生物、喹喔啉衍生物或者其他电子传输材料,本申请对比不作特殊限定。所述电子传输层340的材料包含但不限于以下化合物:

在本申请的一种实施方式中,电子传输层340可以由ET-2和LiQ组成。
本申请中,阴极200可以包括阴极材料,其是有助于电子注入至功能层中的具有小逸出功的材料。阴极材料的具体实例包括但不限于,金属如镁、钙、钠、钾、钛、铟、钇、锂、钆、铝、银、锡和铅或它们的合金;或多层材料如LiF/Al、Liq/Al、LiO2/Al、LiF/Ca、LiF/Al和BaF2/Ca。可选地,包括包含镁和银的金属电极作为阴极。
可选地,在阴极200和电子传输层340之间还可以设置有电子注入层350,以增强向电子传输层340注入电子的能力。电子注入层350可以包括有碱金属硫化物、碱金属卤化物等无机材料,或者可以包括碱金属与有机物的络合物。在本申请的一种实施方式中,电子注入层350可以包括镱(Yb)。
本申请第三方面提供一种电子装置,包括本申请第二方面所述的有机电致发光器件。
按照一种实施方式,如图2所示,所提供的电子装置为电子装置400,其包括上述有机电致发光器件。电子装置400例如可以为显示装置、照明装置、光通讯装置或者其他类型的电子装置,例如可以包括但不限于电脑屏幕、手机屏幕、电视机、电子纸、应急照明灯、光模块等。
下面结合合成实施例来具体说明本申请的含氮化合物的合成方法,但是本公开并不因此而受到任何限制。
合成实施例
所属领域的专业人员应该认识到,本申请所描述的化学反应可以用来合适地制备许多本申请的含氮化合物,且用于制备本申请的化合物的其它方法都被认为是在本申请的范围之内。例如,根据本申请那些非例证的化合物的合成可以成功地被所属领域的技术人员通过修饰方法完成,如适当的保护干扰基团,通过利用其他已知的试剂除了本申请所描述的,或将反应条件做一些常规的修改。本申请中未提到的合成方法的化合物的都是通过商业途径获得的原料产品。
中间体b1的合成:
将1,1,4,4-四甲基-1,2,3,4-四氢萘-6-硼酸(15.0g;64.6mmol),2-溴硝基苯(13.1g;64.6mmol),四三苯基膦钯(1.5g;1.3mmol),碳酸钾(17.9g;129.2mmol),四丁基溴化铵(4.2g;12.9mmol),甲苯(120mL),乙醇(30mL)和去离子水(30mL)加入氮气保护的圆底烧瓶中,升温至75℃~80℃,搅拌反应10小时;将反应液降至室温,加入去离子水(200mL),分液,有机相水洗后使用无水硫酸镁干燥,减压除去溶剂;所得粗品使用二氯甲烷/正庚烷溶剂体系进行硅胶柱色谱提纯,得到白色固体中间体b1(16.3g;收率:82%)。
参照中间体b1的合成方法,使用下表1中反应物A替代2-溴硝基苯,合成下表1中所示中间体化合物:
表1

中间体c1的合成:
将中间体b1(16.0g;51.7mmol),三苯基膦(33.9g;129.3mmol),邻二氯苯(150mL)加入氮气保护的圆底烧瓶中,搅拌条件下升温至175℃~180℃,搅拌18小时;将反应液降至室温,加入去离子水(300mL),分液,有机相水洗后用无水硫酸镁干燥,高温减压条件下除去溶剂;所得粗品使用二氯甲烷/正庚烷体系进行硅胶柱色谱提纯,得到白色固体中间体c1(12.5g;收率:87%)。
参照中间体c1的合成方法,使用下表2中反应物B替代中间体b1,合成下表2中所示中间体化合物:
表2
化合物A3的合成:
将中间体c1(12.0g;43.3mmol),sub 1(22.3g;64.9mmol)和N,N-二甲基甲酰胺(DMF)(100mL)加入圆底烧瓶中,氮气保护下搅拌降温至-5℃~0℃,加入氢化钠(1.0g;43.3mmol 1),在-5℃~0℃搅拌反应30分钟后,升至20℃~25℃,反应24小时;停止反应,反应液使用水洗后分液,有机相使用无水硫酸镁干燥,减压除去溶剂得到粗品;对粗品使用甲苯/正庚烷溶剂体系进行重结晶提纯,得到白色固体化合物A3(16.1g;收率:64%)。
参照化合物A3的合成方法,使用下表3中反应物C替代中间体c1,以及反应物D替代sub 1,合成下表3中所示的化合物:
表3




部分化合物质谱数据如下表4所示:
表4
部分化合物核磁数据如下表5所示:
表5
有机电致发光器件的制备
实施例1:绿色有机电致发光器件的制备
先通过以下过程进行阳极预处理:在厚度依次为的ITO/Ag/ITO基板上,利用紫外臭氧以及O2:N2等离子进行表面处理,以增加阳极的功函数,采用有机溶剂清洗ITO基板表面,以清除ITO基板表面的杂质及油污。
在实验基板(阳极)上真空蒸镀HI-01以形成厚度为的空穴注入层(HIL),然后在空穴注入层上真空蒸镀HT-15形成厚度为的第一空穴传输层。
在第一空穴传输层上真空蒸镀化合物HT-17,形成厚度为的第二空穴传输层。
在第二空穴传输层上,将化合物A3:GH-P:GD-01以45%:45%:10%的蒸镀速率比例进行共同蒸镀,形成厚度为的有机发光层(绿色发光层)。
在有机发光层上,将化合物ET-2和LiQ以1:1的重量比进行混合并蒸镀形成厚的电子传输层(ETL),将Yb蒸镀在电子传输层上以形成厚度为的电子注入层(EIL),然后将镁(Mg)和银(Ag)以1:9的蒸镀速率混合,真空蒸镀在电子注入层上,形成厚度为的阴极。
此外,在上述阴极上真空蒸镀CP-1,形成厚度为的有机覆盖层,从而完成绿色有机电致发光器件的制造。
实施例2~19
除了在制作有机发光层时,以下表6中的化合物(统称为“化合物X”)代替实施例1中的化合物A3之外,利用与实施例1相同的方法制备有机电致发光器件。
比较例1~3
除了在制作有机发光层时,分别以化合物A、化合物B和化合物C代替实施例1中的化合物A3之外,利用与实施例1相同的方法制备有机电致发光器件。
对实施例1~19和比较例1~3制备所得的绿色有机电致发光器件进行性能测试,具体在10mA/cm2的条件下测试了器件的IVL性能,T95器件寿命在20mA/cm2的条件下进行测试,测试结果见表6。
表6
参考上表6可知,将本申请化合物用做有机电致发光器件的主体材料,与比较例1~3相比,本申请化合物作为绿光主体材料时,器件的效率至少提高了13.3%,寿命至少提高10.7%。
实施例20:红色有机电致发光器件的制备
先通过以下过程进行阳极预处理:在厚度依次为的ITO/Ag/ITO基板上,利用紫外臭氧以及O2:N2等离子进行表面处理,以增加阳极的功函数,采用有机溶剂清洗ITO/Ag/ITO基板表面,以清除基板表面的杂质及油污。
在实验基板(阳极)上真空蒸镀HI-01以形成厚度为的空穴注入层(HIL),然后在空穴注入层上真空蒸镀HT-15,形成厚度为的第一空穴传输层。
在第一空穴传输层上真空蒸镀化合物HT-20,形成厚度为的第二空穴传输层。
接着,在第二空穴传输层上,将RH-P:化合物C1:RD-01以49%:49%:2%的蒸镀速率比例进行共同蒸镀,形成厚度为的有机发光层(EML)。
在有机发光层上,将化合物ET-2和LiQ以1:1的重量比进行混合并蒸镀形成厚的电子传输层(ETL),将Yb蒸镀在电子传输层上以形成厚度为的电子注入层(EIL),然后将镁(Mg)和银(Ag)以1:9的蒸镀速率混合,真空蒸镀在电子注入层上,形成厚度为的阴极。
此外,在上述阴极上真空蒸镀CP-1,形成厚度为的有机覆盖层,从而完成红色有机电致发光器件的制造。
实施例21~25
除了在制作有机发光层时,以下表7中的化合物(统称为“化合物X”)代替实施例1中的化合物C1之外,利用与实施例1相同的方法制备有机电致发光器件。
比较例4~5
除了在制作有机发光层时,分别以化合物D和化合物E代替实施例20中的化合物C1之外,利用与实施例1相同的方法制备有机电致发光器件。
其中,在制备各实施例及比较例时,所用的主要化合物结构如下:
对实施例20~25和比较例4和5制备所得的红色有机电致发光器件进行性能测试,具体在10mA/cm2的条件下测试器件的IVL性能,T95器件寿命在20mA/cm2的条件下进行测试,测试结果见表7。
表7
根据表7可知,将本申请化合物用做有机电致发光器件的主体材料,与比较例4和5相比,本申请化合物作为红光主体材料时,器件效率至少提高12.9%,寿命至少提高了12.5%。
本申请化合物结构中包含四甲基环己烷并咔唑-三嗪的结构,其中三嗪基团与四甲基环己烷并咔唑的氮原子相连,这种特殊的连接方式使得目标分子可以充分利用咔唑分子较大的共轭平面,提高目标分子的电荷迁移率。同时四甲基环己烷的结构可以进一步增强咔唑基团的电荷传输能力。此外,四个甲基的在空间构型上是处于咔唑基团共轭平面之外,形成一定的空间位阻,对化合物的分子间堆积进行精细的调控,可以使得化合物在器件功能层中形成稳定性较好的无定型薄膜。因此,将本申请化合物作为主体材料时,可以改善发光层中载流子平衡,拓宽载流子复合区域,提高激子生成和利用效率,提高器件发光效率;同时本申请化合物在作为主体材料时,能够形成较好的无定型态薄膜,提高器件的寿命。
本领域的普通技术人员可以理解,上述各实施方式是实现本申请的具体实施例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本申请的精神和范围。

Claims (14)

  1. 一种含氮化合物,其中,该含氮化合物具有如式Ⅰ所示的结构:
    其中,环A为碳原子数为6~14的芳香环;
    各R1相同或不同,分别独立地选自氘、卤素基团、氰基、碳原子数为1~10的烷基、碳原子数为1~10的环烷基、碳原子数为1~10的卤代烷基、碳原子数为1~10的氘代烷基、碳原子数为6~20的芳基、碳原子数为3~20的杂芳基;
    n1选自0、1、2、3、4、5、6、7、8或9;
    L1和L2相同或不同,各自独立地选自单键、碳原子数为6~30的取代或未取代的亚芳基、碳原子数为3~30的取代或未取代的亚杂芳基;
    Ar1和Ar2相同或不同,且各自独立地选自碳原子数为6~30的取代或未取代的芳基、碳原子数为3~30的取代或未取代的杂芳基;
    L1、L2、Ar1和Ar2中的取代基相同或不同,且各自独立地选自氘、氰基、卤素基团、碳原子数为1~10的烷基、碳原子数为1~10的卤代烷基、碳原子数为1~10的氘代烷基、碳原子数为3~12的三烷基硅基、三苯基硅基、碳原子数为6~20的芳基、碳原子数为3~20的杂芳基、碳原子数为3~10的环烷基、碳原子数为6~18的芳基膦氧基;
    任选地,在Ar1和Ar2中,任意两个相邻的取代基形成饱和或不饱和的3~15元环。
  2. 根据权利要求1所述的含氮化合物,其中,环A选自苯环或萘环。
  3. 根据权利要求1所述的含氮化合物,其中,各R1相同或不同,分别独立地选自氘、氟、氰基、甲基、乙基、正丙基、异丙基、叔丁基或苯基。
  4. 根据权利要求1所述的含氮化合物,其中,式Ⅰ中的选自以下结构组成的组:

  5. 根据权利要求1所述的含氮化合物,其中,L1和L2相同或不同,分别独立地选自单键、碳原子数为6~12的取代或未取代的亚芳基、碳原子数为5~12的取代或未取代的亚杂芳基;
    优选地,L1和L2中的取代基相同或不同,分别独立地选自氘、卤素基团、氰基、碳原子数为1-5的烷基或苯基。
  6. 根据权利要求1所述的含氮化合物,其中,L1和L2相同或不同,分别独立地选自单键、取代或未取代的亚苯基、取代或未取代的亚萘基、取代或未取代的亚联苯基、取代或未取代的亚咔唑基、取代或未取代的亚二苯并呋喃基、取代或未取代的亚二苯并噻吩基;
    优选地,L1和L2中的取代基相同或不同,分别独立地选自氘、氟、氰基、甲基、乙基、正丙基、异丙基、叔丁基或苯基。
  7. 根据权利要求1所述的含氮化合物,其中,Ar1和Ar2相同或不同,分别独立地选自碳原子数为6~25的取代或未取代的芳基、碳原子数为5~20的取代或未取代的杂芳基;
    优选地,Ar1和Ar2中的取代基相同或不同,且各自独立地选自氘、卤素基团、氰基、碳原子数为1~5的烷基、碳原子数为5~10的环烷基、碳原子数为6~12的芳基、碳原子数为6~12的芳基膦氧基;
    任选地,在Ar1和Ar2中,任意两个相邻的取代基形成芴环。
  8. 根据权利要求1所述的含氮化合物,其中,Ar1和Ar2相同或不同,分别独立地选自取代或未取代的基团W;其中,未取代的基团W选自如下基团组成的组:
    其中,表示化学键;取代的基团W中具有一个或两个以上取代基,取代的基团W中的取代基各自独立地选自氘、氟、氰基、金刚烷基、甲基、乙基、正丙基、异丙基、叔丁基、苯基或二苯基膦氧基,且当基团W上的取代基个数大于1时,各取代基相同或不同。
  9. 根据权利要求1所述的含氮化合物,其中,Ar1和Ar2相同或不同,分别独立地选自以下基团组成的组:
  10. 根据权利要求1所述的含氮化合物,其中,各自独立地选自以下基团组成的组:
  11. 根据权利要求1所述的含氮化合物,其中,选自以下结构组成的组:

  12. 根据权利要求1所述的含氮化合物,其中,所述含氮化合物选自以下化合物组成的组:








  13. 有机电致发光器件,其中,包括相对设置的阳极和阴极,以及设于所述阳极和所述阴极之间的功能层;
    所述功能层包含权利要求1~12任意一项所述的含氮化合物;
    优选地,所述功能层包含有机发光层;
    优选地,所述有机电致发光器件为绿色有机电致发光器件;
    优选地,所述有机电致发光器件为红色有机电致发光器件。
  14. 电子装置,其中,包含权利要求13所述的有机电致发光器件。
PCT/CN2023/083502 2022-05-30 2023-03-23 含氮化合物、有机电致发光器件和电子装置 WO2023231531A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210599631 2022-05-30
CN202210599631.4 2022-05-30
CN202210856822.4A CN115385898B (zh) 2022-05-30 2022-07-20 含氮化合物、有机电致发光器件和电子装置
CN202210856822.4 2022-07-20

Publications (1)

Publication Number Publication Date
WO2023231531A1 true WO2023231531A1 (zh) 2023-12-07

Family

ID=84116737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/083502 WO2023231531A1 (zh) 2022-05-30 2023-03-23 含氮化合物、有机电致发光器件和电子装置

Country Status (2)

Country Link
CN (1) CN115385898B (zh)
WO (1) WO2023231531A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115385898B (zh) * 2022-05-30 2023-09-12 陕西莱特光电材料股份有限公司 含氮化合物、有机电致发光器件和电子装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130052485A (ko) * 2011-11-11 2013-05-22 (주)씨에스엘쏠라 유기발광화합물 및 이를 이용한 유기 광소자
WO2017023126A1 (ko) * 2015-08-04 2017-02-09 주식회사 두산 유기 발광 화합물 및 이를 이용한 유기 전계 발광 소자
CN113501824A (zh) * 2021-06-10 2021-10-15 浙江华显光电科技有限公司 一种稠杂环有机化合物及使用该化合物的有机光电元件
CN114075202A (zh) * 2021-06-01 2022-02-22 陕西莱特迈思光电材料有限公司 一种含氮化合物及包含其的有机电致发光器件和电子装置
CN114105992A (zh) * 2021-06-18 2022-03-01 陕西莱特迈思光电材料有限公司 含氮化合物及包含其的有机电致发光器件和电子装置
CN114436942A (zh) * 2022-02-18 2022-05-06 长春海谱润斯科技股份有限公司 一种含有咔唑基团的芳胺化合物及其有机电致发光器件
CN114805179A (zh) * 2022-04-15 2022-07-29 陕西莱特光电材料股份有限公司 含氮化合物及有机电致发光器件和电子装置
CN115385898A (zh) * 2022-05-30 2022-11-25 陕西莱特光电材料股份有限公司 含氮化合物、有机电致发光器件和电子装置
CN115557937A (zh) * 2022-01-12 2023-01-03 陕西莱特光电材料股份有限公司 含氮化合物及包含其的有机电致发光器件和电子装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101512014B1 (ko) * 2012-04-05 2015-04-16 (주)씨에스엘쏠라 신규한 아릴카바졸일아크리딘계 유기 발광 화합물 및 이를 포함하는 유기 전기발광 소자

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130052485A (ko) * 2011-11-11 2013-05-22 (주)씨에스엘쏠라 유기발광화합물 및 이를 이용한 유기 광소자
WO2017023126A1 (ko) * 2015-08-04 2017-02-09 주식회사 두산 유기 발광 화합물 및 이를 이용한 유기 전계 발광 소자
CN114075202A (zh) * 2021-06-01 2022-02-22 陕西莱特迈思光电材料有限公司 一种含氮化合物及包含其的有机电致发光器件和电子装置
CN113501824A (zh) * 2021-06-10 2021-10-15 浙江华显光电科技有限公司 一种稠杂环有机化合物及使用该化合物的有机光电元件
CN114105992A (zh) * 2021-06-18 2022-03-01 陕西莱特迈思光电材料有限公司 含氮化合物及包含其的有机电致发光器件和电子装置
CN115557937A (zh) * 2022-01-12 2023-01-03 陕西莱特光电材料股份有限公司 含氮化合物及包含其的有机电致发光器件和电子装置
CN114436942A (zh) * 2022-02-18 2022-05-06 长春海谱润斯科技股份有限公司 一种含有咔唑基团的芳胺化合物及其有机电致发光器件
CN114805179A (zh) * 2022-04-15 2022-07-29 陕西莱特光电材料股份有限公司 含氮化合物及有机电致发光器件和电子装置
CN115385898A (zh) * 2022-05-30 2022-11-25 陕西莱特光电材料股份有限公司 含氮化合物、有机电致发光器件和电子装置

Also Published As

Publication number Publication date
CN115385898B (zh) 2023-09-12
CN115385898A (zh) 2022-11-25

Similar Documents

Publication Publication Date Title
CN113683519B (zh) 一种有机化合物及包含其的电子元件和电子装置
CN114133332B (zh) 有机化合物、电子元件及电子装置
WO2023045729A1 (zh) 含氮化合物及电子元件和电子装置
WO2022267801A1 (zh) 一种有机化合物及包含其的有机电致发光器件和电子装置
WO2022100194A1 (zh) 含氮化合物、有机电致发光器件和电子装置
WO2023231531A1 (zh) 含氮化合物、有机电致发光器件和电子装置
WO2023202198A1 (zh) 有机材料、电子元件和电子装置
WO2024007511A1 (zh) 芳胺化合物及有机电致发光器件和电子装置
WO2023216669A1 (zh) 有机化合物、有机电致发光器件和电子装置
WO2023134228A1 (zh) 含氮化合物及包含其的有机电致发光器件和电子装置
WO2023185078A1 (zh) 有机化合物和电子元件及电子装置
WO2022217791A1 (zh) 一种组合物及包含其的电子元件和电子装置
WO2023241137A1 (zh) 含氮化合物及有机电致发光器件和电子装置
WO2023241136A1 (zh) 杂环化合物及有机电致发光器件和电子装置
WO2023185039A1 (zh) 有机化合物及包含其的电子元件和电子装置
CN114335399B (zh) 有机电致发光器件及包括其的电子装置
WO2024041183A1 (zh) 有机化合物、有机电致发光器件和电子装置
WO2024041060A1 (zh) 芳胺化合物及有机电致发光器件和电子装置
WO2024098735A1 (zh) 有机化合物、有机电致发光器件及电子装置
CN115521214B (zh) 有机化合物及包含其的电子元件和电子装置
WO2024041079A1 (zh) 有机化合物、有机电致发光器件和电子装置
CN114230472B (zh) 有机化合物、包含其的电子元件及电子装置
WO2024051479A1 (zh) 有机电致发光器件和电子装置
WO2024060668A1 (zh) 含氮化合物及有机电致发光器件和电子装置
WO2023246154A1 (zh) 含氮化合物及有机电致发光器件和电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23814728

Country of ref document: EP

Kind code of ref document: A1