WO2022217791A1 - 一种组合物及包含其的电子元件和电子装置 - Google Patents

一种组合物及包含其的电子元件和电子装置 Download PDF

Info

Publication number
WO2022217791A1
WO2022217791A1 PCT/CN2021/112152 CN2021112152W WO2022217791A1 WO 2022217791 A1 WO2022217791 A1 WO 2022217791A1 CN 2021112152 W CN2021112152 W CN 2021112152W WO 2022217791 A1 WO2022217791 A1 WO 2022217791A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
unsubstituted
group
carbon atoms
independently selected
Prior art date
Application number
PCT/CN2021/112152
Other languages
English (en)
French (fr)
Inventor
马天天
张孔燕
南朋
Original Assignee
陕西莱特光电材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 陕西莱特光电材料股份有限公司 filed Critical 陕西莱特光电材料股份有限公司
Priority to US18/011,723 priority Critical patent/US20230200233A1/en
Publication of WO2022217791A1 publication Critical patent/WO2022217791A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/652Cyanine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/90Multiple hosts in the emissive layer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present application relates to the technical field of organic electroluminescence, and in particular, to a composition and electronic components and electronic devices comprising the same.
  • OLED Organic electroluminescent device
  • LCD liquid crystal display
  • Organic electroluminescent devices typically comprise an anode, a cathode, and an organic layer formed between the two electrodes.
  • the organic layer may include a hole injection layer, a hole transport layer, a hole assist layer, an electron blocking layer, a light emitting layer (containing host and dopant materials), a hole blocking layer, an electron transport layer, an electron injection layer, and the like.
  • a voltage is applied to the organic electroluminescent device, holes and electrons are injected into the light-emitting layer from the anode and the cathode, respectively.
  • the injected holes and electrons recombine to form excitons.
  • the excitons are in an excited state to release energy outward, thereby causing the light-emitting layer to emit light to the outside.
  • fluorescent light-emitting is light-emitting using singlet excitons, so 25% is the limit of quantum efficiency in organic electroluminescent elements.
  • phosphorescence it uses triplet excitons to emit light, so in the case of effective intersystem crossing by triplet excitons, the theoretical internal quantum efficiency can reach 100% (that is, using all singlet excitons). doublet and triplet excitons).
  • elements with optimal performance are designed corresponding to the luminescence mechanisms of fluorescent and phosphorescent types.
  • the emissive layer (EML) of the green light OLED device is usually prepared by doping a dye with a single host material. Since the mobility of hole-type (P) materials is generally higher than that of electron-type (N) materials, the green light host material is usually a single N-type material, and the use of a single N-type green light host material tends to have lower holes. Mobility even has a strong hole blocking effect, which leads to insufficient recombination of electrons and holes in the light-emitting layer, low energy utilization rate, and ultimately low current efficiency and seriously affects device life.
  • the energy gap of the compound used in the light-emitting layer of the phosphorescent device must be large. This is because the value of the singlet energy of a certain compound is usually greater than the value of the triplet energy of the compound. Therefore, in order to effectively close the triplet energy in the light-emitting layer of the phosphorescent device in the element, when disposing the electron transport layer and the hole transport layer adjacent to the light-emitting layer, it is necessary to use the electron transport layer and the hole transport layer than the phosphorescent light-emitting layer. Compounds with higher triplet energy.
  • the purpose of the present application is to overcome the above-mentioned deficiencies in the prior art, and to provide a composition and an electronic component and electronic device containing the same, which can improve the luminous efficiency and prolong the life of the device.
  • composition for an organic optoelectronic device comprising a first compound and a second compound
  • the mass percentage of the first compound is 1% to 99%, and the mass percentage of the second compound is 1% to 99%;
  • the first compound is represented by formula I:
  • a and B are the same or different, and are independently selected from substituted or unsubstituted aryl groups with 6-30 carbon atoms, substituted or unsubstituted heteroaryl groups with 3-30 carbon atoms, formula I A group represented by -1 or a group represented by formula I-2, and at least one of A and B is selected from a group represented by formula I-1 or a group represented by formula I-2;
  • U 1 , U 2 and U 3 are the same or different, and are each independently selected from N or C(R), and at least one of U 1 , U 2 and U 3 is N;
  • Each R, R 1 , R 2 , R 3 , R 4 , R 5 is independently selected from hydrogen, deuterium, halogen group, cyano group, aryl group with 6-12 carbon atoms, 5- 12 heteroaryl, alkyl with 1-5 carbon atoms, haloalkyl with 1-5 carbon atoms, cycloalkyl with 3-10 carbon atoms;
  • n 1 represents the number of substituents R 1 , n 1 is selected from 1, 2 or 3, when n 1 is greater than 1, any two R 1 are the same or different;
  • n 2 represents the number of substituent R 2 , n 2 is selected from 1, 2, 3 or 4, when n 2 is greater than 1, any two R 2 are the same or different, optionally, any two adjacent R 2 2 form a ring;
  • n 3 represents the number of substituent R 3 , n 3 is selected from 1, 2, 3 or 4, when n 3 is greater than 1, any two R 3 are the same or different;
  • n 4 represents the number of substituent R 4 , n 4 is selected from 1 or 2, when n 4 is 2, any two R 4 are the same or different;
  • n 5 represents the number of substituent R 5 , n 5 is selected from 1, 2, 3 or 4, when n 5 is greater than 1, any two R 5 are the same or different;
  • X is selected from S or O;
  • L, L 1 , L 2 , L 3 and L 4 are the same or different, and are each independently selected from a single bond, a substituted or unsubstituted arylene group having 6-30 carbon atoms, a 3-30 carbon atom group substituted or unsubstituted heteroarylene;
  • Ar 1 and Ar 2 are the same or different, and are independently selected from substituted or unsubstituted aryl groups with 6-30 carbon atoms and substituted or unsubstituted heteroaryl groups with 3-30 carbon atoms;
  • the substituents in A, B, L, L 1 , L 2 , L 3 , L 4 , Ar 1 and Ar 2 are the same or different, and are independently selected from deuterium, halogen group, cyano group, carbon atom Heteroaryl group with 3-20 carbon atoms, aryl group with carbon number of 6-20, trialkylsilyl group with carbon number of 3-12, alkyl group with carbon number of 1-10, carbon number of 1-10 haloalkyl, 3-10 carbon cycloalkyl, 2-10 carbon heterocycloalkyl or 1-10 carbon alkoxy;
  • any two adjacent substituents form a ring
  • the second compound is represented by formula II:
  • Each of R 6 , R 7 , R 8 and R 9 is independently selected from hydrogen, deuterium, halogen group, cyano group, aryl group with 6-25 carbon atoms, and heteroaryl group with 5-25 carbon atoms , alkyl with 1-10 carbon atoms, haloalkyl with 1-10 carbon atoms, cycloalkyl with 3-10 carbon atoms;
  • n 6 represents the number of substituent R 6 , n 6 is selected from 1, 2, 3 or 4, when n 6 is greater than 1, any two R 6 are the same or different;
  • n 7 represents the number of substituent R 7 , n 7 is selected from 1, 2 or 3, when n 7 is greater than 1, any two R 7 are the same or different;
  • n 8 represents the number of substituent R 8 , n 8 is selected from 1, 2 or 3, when n 8 is greater than 1, any two R 8 are the same or different;
  • n 9 represents the number of substituent R 9 , n 9 is selected from 1, 2, 3 or 4, when n 9 is greater than 1, any two R 9 are the same or different;
  • L 5 and L 6 are the same or different, and are independently selected from a single bond, a substituted or unsubstituted arylene group with 6-30 carbon atoms, and a substituted or unsubstituted heteroarylene group with 3-30 carbon atoms Aryl;
  • Ar 5 and Ar 6 are the same or different, and are independently selected from substituted or unsubstituted aryl groups having 6-30 carbon atoms, and substituted or unsubstituted heteroaryl groups having 3-30 carbon atoms;
  • the substituents in L 5 , L 6 , Ar 5 and Ar 6 are the same or different, and are independently selected from deuterium, halogen group, cyano group, heteroaryl group with 3-20 carbon atoms, Aryl with 6-20, trialkylsilyl with 3-12 carbon atoms, alkyl with 1-10 carbon atoms, haloalkyl with 1-10 carbon atoms, 3-10 carbon atoms cycloalkyl, heterocycloalkyl with 2-10 carbon atoms or alkoxy with 1-10 carbon atoms;
  • any two adjacent substituents form a ring.
  • GH-N is an electron-type host material
  • GH-P is a hole-type host material
  • the composition provided by the present application includes a first compound and a second compound.
  • the first compound has a relatively strong bipolar characteristic of electron characteristics
  • the second compound has a relatively strong bipolar characteristic of hole characteristics. Therefore, the first compound has a relatively strong bipolar characteristic of electron characteristics.
  • a compound and a second compound can be used together to increase charge mobility and stability, thereby significantly improving luminous efficiency and lifetime characteristics.
  • the first compound includes a nitrogen-containing six-membered ring with high electron transport properties to transport electrons stably and efficiently, thereby reducing driving voltage, improving current efficiency, and achieving long-lifetime characteristics of the device; HOMO-energy carbazole structure that efficiently injects and transports holes, thereby contributing to improved device properties; compositions comprising the first and second compounds ultimately enable tuning of electron and hole properties within the device stack , to achieve the best balance.
  • an electronic component comprising an anode, a cathode, and at least one functional layer between the anode and the cathode, the functional layer comprising the composition described in the first aspect of the present application;
  • the functional layer includes an organic electroluminescent layer, and the organic electroluminescent layer includes the composition.
  • an electronic device including the electronic component described in the second aspect of the present application.
  • FIG. 1 is a schematic structural diagram of the organic electroluminescent device of the present application.
  • FIG. 2 is a schematic structural diagram of an electronic device according to an embodiment of the present application.
  • Example embodiments will now be described more fully with reference to the accompanying drawings.
  • Example embodiments can be embodied in various forms and should not be construed as limited to the examples set forth herein; rather, these embodiments are provided so that this application will be thorough and complete, and will fully convey the concept of example embodiments to those skilled in the art.
  • the described features, structures, or characteristics may be combined in any suitable manner in one or more embodiments. In the following description, numerous specific details are provided in order to give a thorough understanding of the embodiments of the present application.
  • the present application provides a composition for an organic optoelectronic device, the composition comprising a first compound and a second compound;
  • the mass percentage of the first compound is 1% to 99%, and the mass percentage of the second compound is 1% to 99%;
  • the first compound is represented by formula I;
  • a and B are the same or different, and are independently selected from substituted or unsubstituted aryl groups with 6-30 carbon atoms, substituted or unsubstituted heteroaryl groups with 3-30 carbon atoms, formula The group represented by I-1 or the group represented by the formula I-2, and at least one of A and B is selected from the group represented by the formula I-1 or the group represented by the formula I-2;
  • U 1 , U 2 and U 3 are the same or different, and are each independently selected from N or C(R), and at least one of U 1 , U 2 and U 3 is N;
  • Each R, R 1 , R 2 , R 3 , R 4 , R 5 is independently selected from hydrogen, deuterium, halogen group, cyano group, aryl group with 6-12 carbon atoms, 5- 12 heteroaryl, alkyl with 1-5 carbon atoms, haloalkyl with 1-5 carbon atoms, cycloalkyl with 3-10 carbon atoms;
  • n 1 represents the number of substituents R 1 , n 1 is selected from 1, 2 or 3, when n 1 is greater than 1, any two R 1 are the same or different;
  • n 2 represents the number of substituent R 2 , n 2 is selected from 1, 2, 3 or 4, when n 2 is greater than 1, any two R 2 are the same or different, optionally, any two adjacent R 2 2 form a ring;
  • n 3 represents the number of substituent R 3 , n 3 is selected from 1, 2, 3 or 4, when n 3 is greater than 1, any two R 3 are the same or different;
  • n 4 represents the number of substituent R 4 , n 4 is selected from 1 or 2, when n 4 is 2, any two R 4 are the same or different;
  • n 5 represents the number of substituent R 5 , n 5 is selected from 1, 2, 3 or 4, when n 5 is greater than 1, any two R 5 are the same or different;
  • X is selected from S or O;
  • L, L 1 , L 2 , L 3 and L 4 are the same or different, and are each independently selected from a single bond, a substituted or unsubstituted arylene group having 6-30 carbon atoms, a 3-30 carbon atom group substituted or unsubstituted heteroarylene;
  • Ar 1 and Ar 2 are the same or different, and are independently selected from substituted or unsubstituted aryl groups with 6-30 carbon atoms and substituted or unsubstituted heteroaryl groups with 3-30 carbon atoms;
  • the substituents in A, B, L, L 1 , L 2 , L 3 , L 4 , Ar 1 and Ar 2 are the same or different, and are independently selected from deuterium, halogen group, cyano group, carbon atom Heteroaryl group with 3-20 carbon atoms, aryl group with carbon number of 6-20, trialkylsilyl group with carbon number of 3-12, alkyl group with carbon number of 1-10, carbon number of 1-10 haloalkyl, 3-10 carbon cycloalkyl, 2-10 carbon heterocycloalkyl or 1-10 carbon alkoxy;
  • any two adjacent substituents form a ring
  • the second compound is represented by formula II:
  • Each of R 6 , R 7 , R 8 and R 9 is independently selected from hydrogen, deuterium, halogen group, cyano group, aryl group with 6-25 carbon atoms, and heteroaryl group with 5-25 carbon atoms , alkyl with 1-10 carbon atoms, haloalkyl with 1-10 carbon atoms, cycloalkyl with 3-10 carbon atoms;
  • n 6 represents the number of substituent R 6 , n 6 is selected from 1, 2, 3 or 4, when n 6 is greater than 1, any two R 6 are the same or different;
  • n 7 represents the number of substituent R 7 , n 7 is selected from 1, 2 or 3, when n 7 is greater than 1, any two R 7 are the same or different;
  • n 8 represents the number of substituent R 8 , n 8 is selected from 1, 2 or 3, when n 8 is greater than 1, any two R 8 are the same or different;
  • n 9 represents the number of substituent R 9 , n 9 is selected from 1, 2, 3 or 4, when n 9 is greater than 1, any two R 9 are the same or different;
  • L 5 and L 6 are the same or different, and are independently selected from a single bond, a substituted or unsubstituted arylene group with 6-30 carbon atoms, and a substituted or unsubstituted heteroarylene group with 3-30 carbon atoms Aryl;
  • Ar 5 and Ar 6 are the same or different, and are independently selected from substituted or unsubstituted aryl groups having 6-30 carbon atoms, and substituted or unsubstituted heteroaryl groups having 3-30 carbon atoms;
  • the substituents in L 5 , L 6 , Ar 5 and Ar 6 are the same or different, and are independently selected from deuterium, halogen group, cyano group, heteroaryl group with 3-20 carbon atoms, Aryl with 6-20, trialkylsilyl with 3-12 carbon atoms, alkyl with 1-10 carbon atoms, haloalkyl with 1-10 carbon atoms, 3-10 carbon atoms cycloalkyl, heterocycloalkyl with 2-10 carbon atoms or alkoxy with 1-10 carbon atoms;
  • any two adjacent substituents form a ring.
  • each q is independently 0, 1, 2 or 3
  • each R is independently selected from hydrogen, deuterium, fluorine, chlorine
  • formula Q-1 represents that there are q substituents R" on the benzene ring.
  • each R" can be the same or different, and the options of each R" do not affect each other;
  • formula Q-2 indicates that each benzene ring of biphenyl has q substituents R", and the R" on the two benzene rings The number q of "substituents" can be the same or different, each R" can be the same or different, and the options of each R" do not affect each other.
  • the terms “optional” and “optionally” mean that the subsequently described event or circumstance can, but need not, occur, and that the description includes instances where the event or circumstance does or does not occur.
  • “optionally, two adjacent substituents form a ring;” means that the two substituents may but need not form a ring, including: scenarios where two adjacent substituents form a ring and two phases The case where the adjacent substituents do not form a ring.
  • any two adjacent substituents may include two substituents on the same atom, and may also include two adjacent atoms each has one substituent; wherein, when there are two substituents on the same atom, the two substituents can form a saturated or unsaturated ring with the atom to which they are commonly connected; when two adjacent atoms have two substituents respectively In the case of one substituent, the two substituents may be fused to form a ring.
  • a saturated or unsaturated ring with 5-13 carbon atoms can be formed, for example: benzene ring, naphthalene ring, fluorene ring, phenanthrene ring, anthracene ring, cyclopentane, cyclohexane, adamantane, etc.
  • substituted or unsubstituted means that the functional group described after the term may or may not have a substituent (hereinafter, for the convenience of description, the substituents are collectively referred to as Rc).
  • substituted or unsubstituted aryl refers to an aryl group having a substituent Rc or an unsubstituted aryl group.
  • substituent namely Rc
  • Rc can be, for example, deuterium, halogen group, cyano group, heteroaryl group with 3-20 carbon atoms, aryl group with 6-20 carbon atoms, aryl group with 3-12 carbon atoms
  • Trialkylsilyl group alkyl group with 1-10 carbon atoms, haloalkyl group with 1-10 carbon atoms, cycloalkyl group with 3-10 carbon atoms, heterocycle with 2-10 carbon atoms
  • the "substituted" functional group may be substituted by one or more than two substituents in the above Rc; when two substituents Rc are attached to the same atom, the two substituents Rc may exist independently Or connected to each other to form a ring with the atoms; when there are two adjacent substituents Rc on a functional group, the two adjacent substituents Rc may exist independently or be condensed to form a ring with the functional group to which they are connected.
  • the number of carbon atoms of a substituted or unsubstituted functional group refers to the number of all carbon atoms. For example, if L is selected from a substituted arylene group having 12 carbon atoms, then all carbon atoms in the arylene group and the substituents thereon are 12. For example: Ar 1 is Then the number of carbon atoms is 15; L 1 is Its carbon number is 12.
  • hetero refers to a functional group including at least 1 heteroatom selected from B, N, O, S, P, Si or Se and the remaining atoms are carbon and hydrogen.
  • An unsubstituted alkyl group can be a "saturated alkyl group" without any double or triple bonds.
  • alkyl may include straight or branched chain alkyl groups.
  • An alkyl group can have 1 to 10 carbon atoms, and in this application, a numerical range such as “1 to 10" refers to each integer in the given range; for example, “1 to 10 carbon atoms” means that 1 can be included alkanes of carbon atoms, 2 carbon atoms, 3 carbon atoms, 4 carbon atoms, 5 carbon atoms, 6 carbon atoms, 7 carbon atoms, 8 carbon atoms, 9 carbon atoms, 10 carbon atoms base.
  • alkyl groups can be substituted or unsubstituted.
  • the alkyl group is selected from alkyl groups with 1-5 carbon atoms, and specific examples include, but are not limited to, methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, sec-butyl , tert-butyl and pentyl.
  • cycloalkyl refers to saturated hydrocarbons containing alicyclic structures, including monocyclic and fused ring structures.
  • Cycloalkyl groups can have 3-10 carbon atoms, and a numerical range such as "3 to 10" refers to each integer in the given range; Cycloalkyl of 4 carbon atoms, 5 carbon atoms, 6 carbon atoms, 7 carbon atoms, 8 carbon atoms, 9 carbon atoms or 10 carbon atoms.
  • cycloalkyl groups may be substituted or unsubstituted. For example, cyclohexyl.
  • aryl refers to an optional functional group or substituent derived from an aromatic carbocyclic ring.
  • Aryl groups can be monocyclic aryl groups (eg, phenyl) or polycyclic aryl groups, in other words, aryl groups can be monocyclic aryl groups, fused-ring aryl groups, two or more monocyclic aryl groups conjugated through carbon-carbon bonds. Cyclic aryl groups, monocyclic aryl groups and fused-ring aryl groups linked by carbon-carbon bond conjugation, two or more fused-ring aryl groups linked by carbon-carbon bond conjugation. That is, unless otherwise specified, two or more aromatic groups linked by carbon-carbon bond conjugation may also be considered aryl groups in the present application.
  • the fused ring aryl group may include, for example, a bicyclic fused aryl group (eg, naphthyl), a tricyclic fused aryl group (eg, phenanthrenyl, fluorenyl, anthracenyl), and the like.
  • the aryl group does not contain heteroatoms such as B, N, O, S, P, Se and Si.
  • aryl groups may include, but are not limited to, phenyl, naphthyl, fluorenyl, anthracenyl, phenanthryl, biphenyl, terphenyl, tetraphenyl, pentaphenyl, benzo[9,10] phenanthryl, pyrenyl, benzofluoranthene, Base et al.
  • the "substituted or unsubstituted aryl group" of the present application contains 6-30 carbon atoms, in some embodiments, the number of carbon atoms in the aryl group is 6-25, in some embodiments, the carbon atoms in the aryl group The number of atoms is 6-20, in other embodiments, the number of carbon atoms in the substituted or unsubstituted aryl group is 6-18, and in other embodiments the number of carbon atoms in the substituted or unsubstituted aryl group The number is 6-12.
  • the number of carbon atoms of a substituted or unsubstituted aryl group can be 6, 12, 13, 14, 15, 18, 20, 24, 25, 30 , of course, the number of carbon atoms can also be other numbers, which will not be listed here.
  • biphenyl can be understood as a phenyl substituted aryl group, and can also be understood as an unsubstituted aryl group.
  • the arylene group referred to refers to a divalent group formed by the further loss of one hydrogen atom from the aryl group.
  • the substituted aryl group may be one or more hydrogen atoms in the aryl group replaced by a group such as a deuterium atom, a halogen group, a cyano group, an aryl group, a heteroaryl group, a trialkylsilyl group, an alkyl group, Cycloalkyl, alkoxy and other groups are substituted.
  • a group such as a deuterium atom, a halogen group, a cyano group, an aryl group, a heteroaryl group, a trialkylsilyl group, an alkyl group, Cycloalkyl, alkoxy and other groups are substituted.
  • heteroaryl-substituted aryl groups include, but are not limited to, carbazolyl-substituted phenyl, dibenzothiophene-substituted phenyl, quinoxaline-substituted phenyl, and the like.
  • the number of carbon atoms in a substituted aryl group refers to the total number of carbon atoms in the aryl group and the substituents on the aryl group, for example, a substituted aryl group with a carbon number of 18 refers to the aryl group and its substituents.
  • the total number of carbon atoms of the substituents is 18.
  • aryl groups as substituents include, but are not limited to, phenyl, naphthyl, anthracenyl, phenanthryl, dimethylfluorenyl, biphenyl and the like.
  • heteroaryl refers to a monovalent aromatic ring or its derivatives containing 1, 2, 3, 4, 5, 6 or 7 heteroatoms in the ring, and the heteroatoms can be B, O, N, P, At least one of Si, Se and S.
  • a heteroaryl group can be a monocyclic heteroaryl group or a polycyclic heteroaryl group, in other words, a heteroaryl group can be a single aromatic ring system or multiple aromatic ring systems linked by carbon-carbon bonds, and any aromatic
  • the ring system is an aromatic monocyclic ring or an aromatic fused ring.
  • heteroaryl groups can include thienyl, furyl, pyrrolyl, imidazolyl, thiazolyl, oxazolyl, oxadiazolyl, triazolyl, pyridyl, bipyridyl, pyrimidinyl, triazinyl, acridinyl, pyridazinyl, pyrazinyl, quinolinyl, quinazolinyl, quinoxalinyl, phenoxazinyl, phthalazinyl, pyridopyrimidinyl, pyridopyrazinyl, pyrazinopyrazinyl Azinyl, isoquinolinyl, indolyl, carbazolyl, benzoxazolyl, benzimidazolyl, benzothiazolyl, benzocarbazolyl, benzothienyl, dibenzothienyl, thiophene thieny
  • thienyl, furanyl, phenanthroline, etc. are heteroaryl groups of a single aromatic ring system type
  • N-phenylcarbazolyl and N-pyridylcarbazolyl are polycyclic groups connected by carbon-carbon bond conjugation System type of heteroaryl.
  • the "substituted or unsubstituted heteroaryl" of the present application contains 3-30 carbon atoms, in some embodiments, the number of carbon atoms in the substituted or unsubstituted heteroaryl is 5-25, in other implementations In the scheme, the number of carbon atoms in the substituted or unsubstituted heteroaryl group is 3-20, in other embodiments, the number of carbon atoms in the substituted or unsubstituted heteroaryl group is 3-12, in other embodiments, the number of carbon atoms in the substituted or unsubstituted heteroaryl group is 3-12.
  • the number of carbon atoms in the substituted or unsubstituted heteroaryl group is 3-20, and in other embodiments, the number of carbon atoms in the substituted or unsubstituted heteroaryl group can be 5-12 indivual.
  • the number of carbon atoms can be 3, 4, 5, 7, 12, 13, 18, 20, 24, 25 or 30.
  • the number of carbon atoms can also be are other quantities, which will not be listed here.
  • the heteroarylene group referred to refers to a divalent group formed by the further loss of one hydrogen atom from the heteroaryl group.
  • a substituted heteroaryl group may be a heteroaryl group in which one or more than two hydrogen atoms are replaced by, for example, a deuterium atom, a halogen group, a cyano group, an aryl group, a heteroaryl group, a trialkylsilyl group, an alkane group group, cycloalkyl, alkoxy and other groups.
  • aryl-substituted heteroaryl groups include, but are not limited to, phenyl-substituted dibenzofuranyl, phenyl-substituted dibenzothienyl, N-phenylcarbazolyl, and the like. It should be understood that the number of carbon atoms in a substituted heteroaryl group refers to the total number of carbon atoms in the heteroaryl group and the substituents on the heteroaryl group.
  • heteroaryl groups as substituents include, but are not limited to, carbazolyl, dibenzofuranyl, and dibenzothienyl.
  • halogen groups may include fluorine, iodine, bromine, chlorine, and the like.
  • a non-positioned connecting bond refers to a single bond extending from the ring system It means that one end of the linking bond can be connected to any position in the ring system through which the bond runs, and the other end is connected to the rest of the compound molecule.
  • the naphthyl group represented by the formula (f) is connected to other positions of the molecule through two non-positioned linkages running through the bicyclic ring. -1)-Any possible connection mode shown in formula (f-10).
  • the dibenzofuranyl group represented by the formula (X') is connected to other positions of the molecule through a non-positional linkage extending from the middle of one side of the benzene ring,
  • the meaning represented by it includes any possible connection manner as shown by formula (X'-1)-formula (X'-4).
  • two of U 1 , U 2 , and U 3 are N, and the other is C(R); or U 1 , U 2 , and U 3 are all N.
  • each R, R 1 , R 2 , R 3 , R 4 , R 5 is independently selected from hydrogen, deuterium, fluorine, cyano, methyl, ethyl, n-propyl, Isopropyl, tert-butyl, phenyl, pyridyl, trifluoromethyl, biphenyl, or, any two adjacent R 2 form a benzene ring, a naphthalene ring or a phenanthrene ring.
  • each of R, R 1 , R 3 , R 4 , R 5 is hydrogen.
  • each R 2 is independently selected from hydrogen, deuterium, fluorine, cyano, methyl, ethyl, n-propyl, isopropyl, tert-butyl, phenyl, naphthyl, pyridyl, trifluoromethyl group or biphenyl, or any two adjacent R 2 are connected to each other to form a 5-13-membered ring, for example, any two adjacent R 2 are connected to each other to form a benzene ring, a naphthalene ring or a phenanthrene ring.
  • the R 2 are each independently selected from: deuterium, fluorine, cyano, methyl, ethyl, n-propyl, isopropyl, tert-butyl, phenyl, naphthyl, biphenyl, pyridyl , carbazolyl, dibenzofuranyl, dibenzothienyl, cyclopentyl, cyclohexyl or trifluoromethyl.
  • a saturated or unsaturated ring having 5-13 carbon atoms refers to a ring-forming carbon atom having 5-13 carbon atoms.
  • a and B are independently selected from substituted or unsubstituted aryl groups with 6-25 carbon atoms, 5-20 carbon atoms
  • the substituents in A and B are independently selected from deuterium, halogen group, cyano group, aryl group with 6-12 carbon atoms, heteroaryl group with 5-12 carbon atoms, An alkyl group having 1-5 carbon atoms or a cycloalkyl group having 3-10 carbon atoms.
  • a and B are independently selected from substituted or unsubstituted phenyl, substituted or unsubstituted naphthyl, substituted or unsubstituted Substituted biphenyl, substituted or unsubstituted phenanthryl, substituted or unsubstituted anthracenyl, substituted or unsubstituted pyridyl, substituted or unsubstituted trifenthyl, substituted or unsubstituted spirobifluorenyl, Substituted or unsubstituted pyridyl, substituted or unsubstituted quinolyl, substituted or unsubstituted isoquinolyl, substituted or unsubstituted dibenzofuranyl, substituted or unsubstituted carbazolyl, substituted or unsubstituted Substituted dibenzothienyl, substitute
  • the substituents in A and B are each independently selected from: deuterium, fluorine, cyano, methyl, ethyl, n-propyl, isopropyl, tert-butyl, phenyl, naphthyl, Biphenyl, pyridyl, carbazolyl, dibenzofuranyl, dibenzothienyl, cyclopentyl or cyclohexyl.
  • the L, L 1 , L 2 , L 3 and L 4 are the same or different, and are independently selected from single bonds and 6 carbon atoms.
  • the substituents in L, L 1 , L 2 , L 3 and L 4 are independently selected from deuterium, halogen group, cyano group, aryl group with 6-12 carbon atoms, carbon atom Alkyl with a number of 1-5.
  • the L, L 1 , L 2 , L 3 and L 4 are the same or different, and are independently selected from single bond, substituted or unsubstituted phenylene, substituted or unsubstituted naphthylene, substituted or unsubstituted biphenylene, substituted or unsubstituted pyridylene, substituted or unsubstituted dibenzofuranyl, substituted or unsubstituted dibenzothienyl, substituted or unsubstituted fluorenylene, substituted or unsubstituted carbazolylylene, substituted or unsubstituted anthracylene;
  • the substituents in L, L 1 , L 2 , L 3 and L 4 are each independently selected from: deuterium, cyano, fluorine, methyl, ethyl, n-propyl, isopropyl, tert-butyl or phenyl.
  • the L, L 1 , L 2 , L 3 and L 4 are the same or different, and are independently selected from single bonds or substituted or unsubstituted
  • the group V, the unsubstituted group V is selected from the group consisting of:
  • the substituted group V has one or more substituents, each of which is independently selected from deuterium, cyano, fluorine, methyl, ethyl, n-propyl, isopropyl, tert-butyl , phenyl; when the number of substituents in group V is greater than 1, the substituents are the same or different.
  • L, L 1 , L 2 , L 3 and L 4 are independently selected from the group consisting of a single bond or the following groups:
  • Ar 1 and Ar 2 are each independently selected from substituted or unsubstituted aryl groups with 6-25 carbon atoms, 4 carbon atoms -20 substituted or unsubstituted heteroaryl;
  • the substituents in the Ar 1 are independently selected from deuterium, halogen groups, cyano groups, aryl groups with 6-12 carbon atoms, heteroaryl groups with 5-12 carbon atoms, carbon atoms Alkyl having 1-5 atoms or cycloalkyl having 3-10 carbon atoms;
  • any two adjacent substituents in Ar 1 form a saturated or unsaturated ring with 5-13 carbon atoms.
  • any two adjacent substituents form a cyclopentane, cyclohexane, adamantane or fluorene ring.
  • the substituents in the Ar are independently selected from deuterium, halogen groups, cyano groups, aryl groups with 6-12 carbon atoms, heteroaryl groups with 5-12 carbon atoms, carbon atoms Alkyl with 1-5 atoms, haloalkyl with 1-5 carbon atoms, cycloalkyl with 3-10 carbon atoms;
  • any two adjacent substituents in Ar 2 form a saturated or unsaturated ring with 5-13 carbon atoms.
  • any two adjacent substituents form a cyclopentane, cyclohexane, adamantane or fluorene ring.
  • Ar 1 and Ar 2 are each independently selected from substituted or unsubstituted phenyl, substituted or unsubstituted biphenyl, substituted or unsubstituted Naphthyl, substituted or unsubstituted dibenzofuranyl, substituted or unsubstituted dibenzothienyl, substituted or unsubstituted fluorenyl, substituted or unsubstituted N-phenylcarbazolyl, substituted or unsubstituted carbazolyl, substituted or unsubstituted phenanthryl, substituted or unsubstituted anthracenyl, substituted or unsubstituted terphenyl, substituted or unsubstituted pyridyl, substituted or unsubstituted pyrenyl, substituted or unsubstituted quinolyl, substituted or unsubstituted isoquinolyl,
  • the substituents in Ar 1 and Ar 2 are independently selected from deuterium, cyano, fluorine, methyl, ethyl, n-propyl, isopropyl, tert-butyl, phenyl, naphthyl , biphenyl or carbazolyl;
  • any two adjacent substituents form cyclopentane, cyclohexane, adamantane or fluorene rings
  • the Ar 1 and Ar 2 are each independently selected from substituted or unsubstituted groups W 1 , and the unsubstituted group W 1 is selected from the following groups Formed group:
  • the substituted group W 1 has one or more substituents, each of which is independently selected from deuterium, cyano, fluorine, methyl, ethyl, n-propyl, isopropyl, tert-butyl group, phenyl group, naphthyl group, biphenyl group or carbazolyl group; when the number of substituent groups in group W 1 is greater than 1, each substituent group is the same or different.
  • the Ar 1 is selected from the group consisting of the following groups:
  • the Ar is selected from the group consisting of the following groups :
  • any one of the A and B is selected from the group of formula I-1 or the group of formula I-2, and the other is selected from the following groups:
  • A is a group represented by formula I-1
  • B is selected from substituted or unsubstituted phenyl, substituted or unsubstituted naphthyl, substituted or unsubstituted biphenyl, substituted or unsubstituted or unsubstituted phenanthryl, substituted or unsubstituted anthracenyl, substituted or unsubstituted pyridyl, substituted or unsubstituted trifenthyl, substituted or unsubstituted spirobifluorenyl, substituted or unsubstituted pyridyl , substituted or unsubstituted quinolyl, substituted or unsubstituted isoquinolyl, substituted or unsubstituted dibenzofuranyl, substituted or unsubstituted carbazolyl, substituted or unsubstituted dibenzothienyl , substituted or unsub
  • A is a group represented by formula I-2
  • B is selected from substituted or unsubstituted phenyl, substituted or unsubstituted naphthyl, substituted or unsubstituted biphenyl, substituted or unsubstituted or unsubstituted phenanthryl, substituted or unsubstituted anthracenyl, substituted or unsubstituted pyridyl, substituted or unsubstituted trifenthyl, substituted or unsubstituted spirobifluorenyl, substituted or unsubstituted pyridyl , substituted or unsubstituted quinolyl, substituted or unsubstituted isoquinolyl, substituted or unsubstituted dibenzofuranyl, substituted or unsubstituted carbazolyl, substituted or unsubstituted dibenzothienyl , substituted or unsub
  • B is a group represented by formula I-1, and A is selected from substituted or unsubstituted phenyl, substituted or unsubstituted naphthyl, substituted or unsubstituted biphenyl, substituted or unsubstituted or unsubstituted phenanthryl, substituted or unsubstituted anthracenyl, substituted or unsubstituted pyridyl, substituted or unsubstituted trifenthyl, substituted or unsubstituted spirobifluorenyl, substituted or unsubstituted pyridyl , substituted or unsubstituted quinolyl, substituted or unsubstituted isoquinolyl, substituted or unsubstituted dibenzofuranyl, substituted or unsubstituted carbazolyl, substituted or unsubstituted dibenzothienyl , substituted or unsub
  • B is a group represented by formula I-2, and A is selected from substituted or unsubstituted phenyl, substituted or unsubstituted naphthyl, substituted or unsubstituted biphenyl, substituted or unsubstituted or unsubstituted phenanthryl, substituted or unsubstituted anthracenyl, substituted or unsubstituted pyridyl, substituted or unsubstituted trifenthyl, substituted or unsubstituted spirobifluorenyl, substituted or unsubstituted pyridyl , substituted or unsubstituted quinolyl, substituted or unsubstituted isoquinolyl, substituted or unsubstituted dibenzofuranyl, substituted or unsubstituted carbazolyl, substituted or unsubstituted dibenzothienyl, The group consisting of substituted or unsubstitute
  • the first compound is selected from the group formed by the following compounds:
  • the second compound can be selected from the compounds shown in the following structures:
  • each of R 6 , R 7 , R 8 , and R 9 is independently selected from hydrogen, deuterium, halogen group, cyano group, and the number of carbon atoms is 6 -18 aryl, C5-12 heteroaryl, C1-5 alkyl, C1-5 haloalkyl, C3-6 cycloalkane base.
  • each of R 6 , R 7 , R 8 and R 9 is independently selected from hydrogen, phenyl, naphthyl, biphenyl, dibenzothienyl, fluorenyl, phenanthryl, and terphenyl.
  • each of R 6 , R 7 , R 8 and R 9 is independently selected from the group consisting of hydrogen or the following groups:
  • each of R 6 , R 7 , R 8 and R 9 is independently selected from hydrogen or phenyl.
  • the L 5 and L 6 are independently selected from a single bond, a substituted or unsubstituted arylene group with 6-12 carbon atoms, a carbon Substituted or unsubstituted heteroarylene groups having 3-20 atoms
  • L 5 and L 6 are independently selected from single bonds, substituted or unsubstituted arylene groups with 6-12 carbon atoms, and substituted or unsubstituted arylene groups with 3-12 carbon atoms. or unsubstituted heteroarylene;
  • the substituents in L 5 and L 6 are independently selected from deuterium, halogen group, cyano group, alkyl group with 1-5 carbon atoms or phenyl group.
  • the L 5 and L 6 are independently selected from single bond, substituted or unsubstituted phenylene, substituted or substituted naphthylene, substituted or unsubstituted biphenylene, substituted or unsubstituted carbazolylylene;
  • the substituents in L 5 and L 6 are each independently selected from: deuterium, fluorine, cyano, methyl, ethyl, n-propyl, isopropyl, tert-butyl or phenyl.
  • the L 5 and L 6 are the same or different, and are independently selected from a single bond or a substituted or unsubstituted group P, an unsubstituted group P is selected from the group consisting of:
  • the substituted group P has one or more substituents, each of which is independently selected from deuterium, cyano, fluorine, methyl, ethyl, n-propyl, isopropyl, tert-butyl or phenyl; when the number of substituents in group P is greater than 1, each substituent is the same or different.
  • L 5 and L 6 are independently selected from the group consisting of a single bond or the following groups:
  • Ar 5 and Ar 6 are independently selected from substituted or unsubstituted aryl groups with 6-25 carbon atoms, 5- A substituted or unsubstituted heteroaryl of 12;
  • the substituents in Ar 5 and Ar 6 are independently selected from deuterium, halogen group, alkyl group with 1-5 carbon atoms, and aryl group with 6-12 carbon atoms.
  • any two adjacent substituents form a saturated or unsaturated ring having 5-13 carbon atoms.
  • any two adjacent substituents form a fluorene ring.
  • the substituents in Ar 5 and Ar 6 are each independently selected from: deuterium, fluorine, cyano, halogen, methyl, ethyl, n-propyl, isopropyl, tert-butyl, benzene group, naphthyl or biphenyl.
  • Ar 5 and Ar 6 are independently selected from substituted or unsubstituted phenyl, substituted or unsubstituted naphthyl, substituted or unsubstituted bi phenyl, substituted or unsubstituted terphenyl, substituted or unsubstituted fluorenyl, substituted or unsubstituted phenanthryl, substituted or unsubstituted pyridyl, substituted or unsubstituted dibenzofuranyl, substituted or unsubstituted Substituted dibenzothienyl, substituted or unsubstituted carbazolyl, substituted or unsubstituted triphenylene.
  • Ar 5 and Ar 6 are independently selected from substituted or unsubstituted phenyl, substituted or unsubstituted naphthyl, substituted or unsubstituted biphenyl, substituted or unsubstituted terphenyl, Substituted or unsubstituted fluorenyl, substituted or unsubstituted phenanthryl, substituted or unsubstituted pyridyl, substituted or unsubstituted dibenzofuranyl, substituted or unsubstituted dibenzothienyl.
  • Ar 5 and Ar 6 are the same or different, and are independently selected from substituted or unsubstituted groups Q, and the unsubstituted group Q is selected from A group consisting of the following groups:
  • the substituted group Q has one or more substituents, each of which is independently selected from deuterium, cyano, fluorine, methyl, ethyl, n-propyl, isopropyl, tert-butyl , phenyl, naphthyl or biphenyl; when the number of substituents in group Q is greater than 1, each substituent is the same or different.
  • Ar 5 and Ar 6 are independently selected from the group consisting of the following groups:
  • the second compound is selected from the group formed by the following compounds:
  • the composition is a mixture of the first compound and the second compound.
  • the mixture can be formed by uniformly mixing the first compound and the second compound by mechanical stirring.
  • the present application does not specifically limit the relative content of the two types of compounds in the composition, which can be selected according to the specific application of the organic electroluminescent device.
  • the mass percentage of the first compound may be 1% to 99%
  • the mass percentage of the second compound may be 1% to 99%.
  • the mass ratio of the first compound to the second compound may be 1:99, 20:80, 30:70, 40:60, 45:65, 50:50, 55:45, 60:40, 70:30, 80:20, 99:1, etc.
  • the composition is composed of a first compound and a second compound, wherein based on the total weight of the composition, the mass percentage of the first compound is 20% to 80%, The mass percentage of the second compound is 20% to 80%.
  • the mass percentage of the first compound is 30% to 60%, and the content of the second compound is 30% to 60%.
  • the mass percentage content is 40% to 70%.
  • the device when the composition is applied to an organic electroluminescent device, the device can have both high luminous efficiency and long service life, and is especially suitable for use as an electronic device. display device.
  • the mass percentage of the first compound is 40% to 60%, and the mass percentage of the second compound is 40% to 60%. More preferably, the mass percentage of the first compound is 40% to 50%, and the mass percentage of the second compound is 50% to 60%.
  • the present application also provides the application of the composition as the host material of the organic electroluminescent layer of the organic electroluminescent device.
  • the composition is used as a host material for a green phosphorescent organic electroluminescent device.
  • the present application also provides an electronic component for realizing photoelectric conversion.
  • the electronic component includes an anode and a cathode disposed oppositely, and at least one functional layer interposed between the anode and the cathode, the functional layer comprising the composition of the present application.
  • the electronic component is an organic electroluminescence device.
  • the organic electroluminescent device of the present application includes an anode 100 , a cathode 200 , and at least one functional layer 300 between the anode layer and the cathode layer.
  • the functional layer 300 includes a hole injection layer 310 , The hole transport layer 320, the organic electroluminescence layer 330, the hole blocking layer 340, the electron transport layer 350 and the electron injection layer 360; the hole transport layer 320 includes a first hole transport layer 321 and a second hole transport layer 322 ; The hole injection layer 310, the hole transport layer 320, the organic electroluminescence layer 330, the hole blocking layer 340, the electron transport layer 350 and the electron injection layer 360 can be formed on the anode 100 in sequence, and the organic electroluminescence layer 330 can be Contains the composition described in the first aspect of the present application, the composition comprises: a first compound and a second compound, the first compound preferably contains at least one of compounds 1-705, and the second compound preferably contains compounds II-1 to At least one of II-255.
  • the first compound has a bipolar characteristic in which the electron characteristic is relatively strong
  • the second compound has a bipolar characteristic in which the hole characteristic is relatively strong
  • the present application also provides an electronic component, which is a green organic electroluminescence device, comprising an anode and a cathode disposed opposite to each other, and at least one functional layer between the anode and the cathode, the functional layer comprising the combination of the present application thing.
  • an electronic component which is a green organic electroluminescence device, comprising an anode and a cathode disposed opposite to each other, and at least one functional layer between the anode and the cathode, the functional layer comprising the combination of the present application thing.
  • the organic electroluminescent layer of the organic electroluminescent device comprises the composition of the present application, and the composition is used for the main part of the organic electroluminescent layer of the organic electroluminescent device.
  • the organic electroluminescent layer further includes a dopant
  • the dopant may be, for example, a phosphorescent dopant, such as a green phosphorescent dopant.
  • a small amount of a dopant is mixed with the host compound to induce light emission, and the dopant may typically be a substance that emits light by multiple excitations to a triplet state or beyond, such as a metal complex.
  • the dopant may be, for example, an inorganic, organic or organic/inorganic compound, and one or more species thereof may be used.
  • Examples of the dopant may be phosphorescent dopants, and examples of the phosphorescent dopant may include Ir, Pt, Os, Ti, Zr, Hf, Eu, Tb, Tm, Fe, Co, Ni, Ru, Rh, Organometallic compounds of Pd or combinations thereof.
  • the phosphorescent dopant can be Ir(ppy) 3 , Ir(pbi) 2 (acac), Ir(nbi) 2 (acac), Ir(fbi) 2 (acac), Ir(tbi) 2 (acac), Ir(pybi) 2 (acac), Ir(3mppy) 3 , Ir(npy) 2 acac, Ir(mppy) 3 , Ir(ppy) 2 (acac), fac-Ir(ppy) 3 , but not limited thereto.
  • the anode 100 includes an anode material, which is preferably a material with a large work function that facilitates hole injection into the functional layer.
  • anode materials include: metals such as nickel, platinum, vanadium, chromium, copper, zinc and gold or alloys thereof; metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO) and indium zinc oxide (IZO); Combined metals and oxides such as ZnO:Al or SnO2 :Sb; or conducting polymers such as poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene ](PEDT), polypyrrole and polyaniline, but not limited thereto. It is preferable to include a transparent electrode comprising indium tin oxide (ITO) as an anode.
  • ITO indium tin oxide
  • the hole transport layer 320 may include one or more hole transport materials, and the hole transport materials may be selected from carbazole polymers, carbazole-linked triarylamine compounds or other types of compounds. This does not make special restrictions.
  • the hole transport layer 320 may include a first hole transport layer 321 and a second hole transport layer 322; the first hole transport layer 321 is adjacent to the second hole transport layer 322 and is opposite to the second hole transport layer 322 closer to the anode.
  • the first hole transport layer 321 is composed of the compound NPB
  • the second hole transport layer 322 is composed of the compound PAPB.
  • the organic electroluminescent layer 330 may be composed of a single light-emitting material, or may include a host material and a guest material.
  • the organic electroluminescent layer 330 is composed of a host material and a guest material. The holes and electrons injected into the organic electroluminescent layer 330 can recombine in the organic electroluminescent layer 330 to form excitons, and the excitons transfer energy to the organic electroluminescent layer 330. Host material, the host material transfers energy to the guest material, thereby enabling the guest material to emit light.
  • the host material of the organic electroluminescent layer 330 is composed of the compositions G-X-Y provided by the present application.
  • GH-N is an electron-type host material
  • GH-P is a hole-type host material.
  • the composition G-X-Y provided in the present application includes a first compound and a second compound, the first compound is GH-N, which has relatively strong bipolar characteristics of electrons, and the second compound is GH-P, which has hole characteristics The relatively strong bipolar character, therefore, the first compound and the second compound can be used together to increase charge mobility and stability, thereby significantly improving the luminous efficiency and lifetime characteristics.
  • the first compound includes a nitrogen-containing six-membered ring with high electron transport properties to transport electrons stably and efficiently, thereby reducing driving voltage, improving current efficiency, and realizing long-life characteristics of the device; HOMO-energy carbazole or amine structure, which efficiently injects and transports holes, thereby helping to improve device characteristics; the composition comprising the first compound and the second compound ultimately enables control of electrons and holes within the device stack Adjustment of characteristics to achieve the best balance.
  • the guest material of the organic electroluminescent layer 330 can be a compound having a condensed aryl ring or a derivative thereof, a compound having a heteroaryl ring or a derivative thereof, an aromatic amine derivative or other materials, which are not described in this application. special restrictions.
  • the guest material of the organic electroluminescent layer 330 may be Ir(mppy) 3 .
  • the electron transport layer 350 may be a single-layer structure or a multi-layer structure, which may include one or more electron transport materials, and the electron transport materials may be selected from benzimidazole derivatives, oxadiazole derivatives, quinoxaline Derivatives or other electron transport materials, which are not specifically limited in this application.
  • the electron transport layer 350 may be composed of ET-06 and LiQ.
  • a hole blocking layer 340 is disposed between the organic electroluminescent layer 330 and the electron transport layer 350 .
  • the hole blocking layer may include one or more hole blocking materials, which are not specifically limited in this application.
  • the cathode 200 includes a cathode material, which is a material with a small work function that facilitates electron injection into the functional layer.
  • cathode materials include: metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin and lead or alloys thereof; or multi-layer materials such as LiF/Al, Liq/ Al, LiO 2 /Al, LiF/Ca, LiF/Al and BaF 2 /Ca, but not limited thereto.
  • a metal electrode comprising silver and magnesium is preferably included as the cathode.
  • a hole injection layer 310 may also be disposed between the anode 100 and the hole transport layer 320 to enhance the capability of injecting holes into the hole transport layer 320 .
  • the hole injection layer 310 can be selected from benzidine derivatives, starburst arylamine compounds, phthalocyanine derivatives or other materials, which are not specifically limited in this application.
  • the hole injection layer 310 may be composed of F4-TCNQ.
  • an electron injection layer 360 may also be disposed between the cathode 200 and the electron transport layer 350 to enhance the capability of injecting electrons into the electron transport layer 350 .
  • the electron injection layer 360 may include inorganic materials such as alkali metal sulfide and alkali metal halide, or may include a complex compound of alkali metal and organic matter.
  • the electron injection layer 360 may include ytterbium (Yb).
  • the present application also provides an electronic device, which includes the electronic components described in the present application.
  • the electronic device provided by the present application is an electronic device 400
  • the electronic device 400 includes any one of the organic electroluminescent devices described in the above organic electroluminescent device embodiments.
  • the electronic device may be a display device, a lighting device, an optical communication device or other types of electronic devices, such as but not limited to computer screens, mobile phone screens, televisions, electronic paper, emergency lighting, light modules, and the like. Since the electronic device 400 has the above-mentioned organic electroluminescence device, it has the same beneficial effects, and details are not described herein again.
  • B-1 (50.0g, 182.40mmol), m-chlorobenzeneboronic acid (31.37g, 200.64mmol) (A-1), potassium carbonate (55.5 g, 401.3 mmol), tetrakis(triphenylphosphine)palladium (4.2 g, 3.6 mmol), tetrabutylammonium bromide (1.2 g, 3.6 mmol), and toluene ( 400 mL), a mixed solvent of ethanol (200 mL) and water (100 mL).
  • intermediate sub1-I-A11 With reference to the synthesis method of intermediate sub1-I-A11, the intermediate shown in the following table 3 is synthesized, wherein reactant B-X replaces reactant B-1 (X is 15, 16 or 17), wherein reactant A-X (X is 9 , 10, 11 or 14) instead of reactant A-8, the intermediate sub1-I-AX (X is 12, 13, 14 or 17) as shown in Table 3 below was synthesized.
  • the intermediate shown in the following table 5 is synthesized, wherein the reactant D-X replaces the reactant D-1 (X is 2-6 or 8), and the intermediate shown in the following table 5 is synthesized sub A-X (X is 20-24 or 26).
  • Extract with toluene and water combine the organic phases, dry with anhydrous magnesium sulfate, filter and concentrate, and use dichloromethane/n-heptane system to purify the crude product by silica gel column chromatography to obtain a solid intermediate sub B-1 (38.1 g , the yield is 56%).
  • Extract with toluene and water combine the organic phases, dry with anhydrous magnesium sulfate, filter and concentrate, and use dichloromethane/n-heptane system to purify the crude product by silica gel column chromatography to obtain a solid intermediate sub B-7 (17.3 g , the yield is 55%).
  • Extract with toluene and water combine the organic phases, dry with anhydrous magnesium sulfate, filter and concentrate, and use dichloromethane/n-heptane system to purify the crude product by silica gel column chromatography to obtain a solid intermediate sub A-I-29 (32.5 g , the yield is 55%).
  • the intermediate shown in the following table 10 is synthesized, wherein the reactant A-X (12 or 15) replaces the reactant A-5, and the intermediate sub A-I-X (X (X) shown in the following table 10 is synthesized 30 or 33).
  • intermediate c I-1 With reference to the synthetic method of intermediate c I-1, the intermediate shown in the following table 13 is synthesized, wherein reactant A-X replaces reactant A-1 (X is 1, 4 or 5), reactant B-M replaces reactant B-1 (M is 1-7, 9, 12-17 or 20-22), the intermediate c I-Z (Z is 2-7, 9 or 12-22) shown in Table 13 below was synthesized.
  • intermediate c II-1 Referring to the synthesis method of intermediate c II-1, the intermediate shown in the following table 14 was synthesized, wherein intermediate c I-Y replaced intermediate c I-1 (Y was 2-7, 9, 12-14 or 17-20) , the intermediate c II-X (X is 2-7, 9, 12-14 or 17-20) as shown in Table 14 below was synthesized.
  • the anode 100ITO substrate was cut into a size of 40mm (length) x 40mm (width) x 0.7mm (thickness), and a photolithography process was used to prepare it into an experimental substrate with a cathode 200, an anode 100 and an insulating layer pattern, using ultraviolet ozone And O 2 :N 2 plasma is used for surface treatment to increase the work function of the anode 100 (experimental substrate), and the surface of the ITO substrate is cleaned with an organic solvent to remove scum and oil stains on the surface of the ITO substrate.
  • Compound F4-TCNQ (see below for structural formula) was vacuum evaporated on the experimental substrate to form a thickness of A hole injection layer 310 (HIL) of the first hole transport layer 321 (HTL1); vacuum evaporation of PAPB on the first hole transport layer 321 (HTL1) to form The second hole transport layer 322 (HTL2).
  • HIL hole injection layer 310
  • PAPB PAPB
  • the composition GH-1-1 and Ir(mppy) 3 were co-evaporated in a ratio of 100%: 10% (evaporation rate) to form a thickness of green organic electroluminescent layer (EML).
  • EML green organic electroluminescent layer
  • ET-06 and LiQ were mixed in a weight ratio of 1:1 and evaporated to form Thick electron transport layer 350 (ETL), then Yb is evaporated on the electron transport layer to form a thickness of The electron injection layer 360 (EIL).
  • Magnesium (Mg) and silver (Ag) were vacuum-deposited on the electron injection layer at a film thickness ratio of 1:10 to form a thickness of the cathode 200.
  • the organic electroluminescence was fabricated by the same method as in Example 1, except that the host material composition GH-1-1 was replaced by the GH-X-Y-based host material composition shown in Table 17 below when the organic electroluminescent layer was formed, respectively. light-emitting device.
  • Organic electroluminescence was produced by the same method as in Example 1, except that the GH-X-Y-based host material composition shown in Table 17 below was used instead of the host material composition GH-1-1 when the organic electroluminescence layer was formed device.
  • the used host material compositions GH-X-Y were obtained by mixing the first compounds in Preparation Examples 1 to 43 and the second compounds in Preparation Examples 44 to 64, respectively.
  • the specific compositions are shown in Table 17. wherein, the mass ratio refers to the ratio of the mass percentage of the compound shown in the first column to the compound shown in the latter column in the table.
  • the mass ratio refers to the ratio of the mass percentage of the compound shown in the first column to the compound shown in the latter column in the table.
  • the mass ratio refers to the ratio of the mass percentage of the compound shown in the first column to the compound shown in the latter column in the table.
  • Table 17 it can be seen from Table 17 that GH-1-1 is composed of compound 67 and compound II-6 mixed in a mass ratio of 40:60; the main material GH-D1-1
  • GH-D1-1 is prepared by mixing Compound A and Compound II-1 in a mass ratio of 40:60.
  • the IVL performance of the device was tested under the condition of 20 mA/cm 2
  • the lifetime of the T95 device was also tested under the condition of 20 mA/cm 2 .
  • the results are shown in Table 17.
  • the composition of the present application as the host material of the organic electroluminescent layer, compared with Comparative Examples 1-4, the performances of the organic electroluminescent devices prepared in Examples 1-53 were improved.
  • the T95 lifetime is increased by at least 15.3% and the current efficiency is increased by at least 15.3% under the condition that the proportions are not much different.
  • the organic electroluminescent device using the composition of the present application as the host material of the organic electroluminescent layer shows higher luminous efficiency and longer service life, and also has lower driving voltage.
  • the composition of the present application is used as the host material of the organic electroluminescent layer of the electronic component, and the luminous efficiency (Cd/A), external quantum efficiency (EQE) and life time (T95) of the electronic component are significantly improved. improve.
  • the mass percentage content of the first compound is 40%-60%
  • the mass percentage content of the second compound is 40%-60%
  • the organic electroluminescent device has better performance. Therefore, by using the composition of the present application in an organic electroluminescent layer, an organic electroluminescent device with high luminous efficiency and long lifetime can be prepared.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

公开了一种用于有机光电器件的组合物及其电子元件和电子装置,属于有机电致发光技术领域。公开的组合物包括:第一化合物和第二化合物;第一化合物由式I表示,第二化合物由式II表示。

Description

一种组合物及包含其的电子元件和电子装置
相关申请的交叉引用
本申请要求于2021年4月13日递交的申请号为CN202110397589.3的中国专利申请和2021年6月11日递交的申请号为CN202110657299.8的中国专利申请的优先权,在此引用上述中国专利申请的内容全文以作为本申请的一部分。
技术领域
本申请涉及有机电致发光技术领域,具体而言,涉及一种组合物及包含其的电子元件和电子装置。
背景技术
近年来,有机电致发光器件(OLED,Organic electroluminescent device)作为下一代平板显示技术已受到人们的广泛关注。与液晶显示器LCD相比,OLED具有更宽广的色域、更高的对比度、更宽的温度适应范围、更快的响应时间以及可以实现柔性显示等。
有机电致发光器件(OLED)通常包含阳极、阴极和在这两个电极之间形成的有机层。该有机层可以包含空穴注入层、空穴传输层、空穴辅助层、电子阻挡层、发光层(含有主体和掺杂剂材料)、空穴阻挡层、电子传输层、电子注入层等。若对有机电致发光器件施加电压,则由阳极和阴极分别将空穴与电子注入到发光层。接着在发光层中,所注入的空穴与电子再结合,形成激子。激子处于激发态向外释放能量,进而使得发光层对外发光。
根据电子自旋的统计规则,单重态激子和三重态激子是按照25%:75%的比例生成。而且依据发光原理的分类,荧光发光是利用单重态激子的发光,所以25%是有机电致发光元件内量子效率的极限。而对于磷光发光来说,它是利用三重态激子的发光,因此在由三重态激子有效地进行系间窜越的情况下,理论上内量子效率可以达到100%(即利用所有的单重态和三重态激子)。对于有机电致发光器件,对应于荧光型和磷光型的发光机理来设计性能最优的元件。特别是对于磷光型的有机电致发光器件,由其发光特性已知,单纯地挪用荧光元件技术时,得不到高性能的元件。但是,随着产业化进程的加快,具备低功耗、高效率、长寿命的OLED材料和器件设计方案越来越多的引起人们的关注。目前更为常见的OLED器件结构中,以绿光器件为例,绿光OLED器件的发光层(EML)通常由单一的主体材料掺杂染料制备。由于空穴型(P)材料的迁移率普遍高于电子型(N)材料,绿光主体材料却通常是单一的N型材料,使用单一的N型绿光主体材料往往具有较低的空穴迁移率甚至具备很强的空穴阻挡作用,因此导致电子与空穴在发光层的复合不充分,能量利用率低,最终导致电流效率低且严重影响器件寿命。
此外,对磷光发光来说,磷光器件发光层中使用的化合物的能隙必须大。这是由于,某种化合物的单重态能量的值通常大于该化合物的三重态能量的值。因此,为了将磷光器件发光层中的三重态能量有效地关闭在元件内,在设置与发光层邻接的电子传输层和空穴传输层时,必须使用电子传输层和空穴传输层比磷光发光性材料具有更大的三重态能量的化合物。
目前,有机电致发光器件的使用过程中仍存在性能较差的问题,例如存在驱动电压过高、发光效率过低或者寿命较短等问题,这些都影响了有机电致发光器件的使用领域,因此,仍有必要对该领域进行进一步研究,以改善有机电致发光器件的性能。
发明内容
本申请的目的在于克服上述现有技术中的不足,提供一种组合物及包含其的电子元件和电子装置,可提高发光效率,延长器件寿命。
为实现上述发明目的,本申请采用如下技术方案:
根据本申请的第一个方面,提供了一种用于有机光电器件的组合物,所述组合物包括第一化合物和第二化合物;
以组合物的总重量为基准,所述第一化合物的质量百分含量为1%~99%,所述第二化合物的质量百分含量为1%~99%;
所述第一化合物由式I表示:
Figure PCTCN2021112152-appb-000001
其中,
Figure PCTCN2021112152-appb-000002
表示化学键,A、B相同或不同,分别独立地选自碳原子数为6-30的取代或未取代的芳基、碳原子数为3-30的取代或未取代的杂芳基、式I-1所示的基团或式I-2所示的基团,且A和B中至少有一个选自式I-1所示的基团或式I-2所示的基团;
U 1、U 2和U 3相同或不同,且分别独立地选自N或C(R),且U 1、U 2和U 3中的至少一个为N;
各R、R 1、R 2、R 3、R 4、R 5分别独立地选自氢、氘、卤素基团、氰基、碳原子数为6-12的芳基、碳原子数为5-12的杂芳基、碳原子数为1-5的烷基、碳原子数为1-5的卤代烷基、碳原子数为3-10的环烷基;
n 1表示取代基R 1的个数,n 1选自1、2或3,当n 1大于1时,任意两个R 1相同或不同;
n 2表示取代基R 2的个数,n 2选自1、2、3或4,当n 2大于1时,任意两个R 2相同或不同,任选地,任意两个相邻的R 2形成环;
n 3表示取代基R 3的个数,n 3选自1、2、3或4,当n 3大于1时,任意两个R 3相同或不同;
n 4表示取代基R 4的个数,n 4选自1或2,当n 4为2时,任意两个R 4相同或不同;
n 5表示取代基R 5的个数,n 5选自1、2、3或4,当n 5大于1时,任意两个R 5相同或不同;
X选自S或O;
L、L 1、L 2、L 3和L 4相同或不同,且分别独立地选自单键、碳原子数为6-30的取代或未取代的亚芳基、碳原子数为3-30的取代或未取代的亚杂芳基;
Ar 1和Ar 2相同或不同,且分别独立地选自碳原子数为6-30的取代或未取代的芳基、碳原子数为3-30的取代或未取代的杂芳基;
所述A、B、L、L 1、L 2、L 3、L 4、Ar 1和Ar 2中的取代基相同或不同,且分别独立地选自氘、卤素基团、氰基、碳原子数为3-20的杂芳基、碳原子数为6-20的芳基、碳原子数为3-12的三烷基硅基、碳原子数为1-10的烷基、碳原子数为1-10的卤代烷基、碳原子数为3-10的环烷基、碳原子数为2-10的杂环烷基或碳原子数为1-10的烷氧基;
任选地,在Ar 1和Ar 2中,任意两个相邻的取代基形成环;
所述第二化合物由式II表示:
Figure PCTCN2021112152-appb-000003
其中,
Figure PCTCN2021112152-appb-000004
表示化学键,
各R 6、R 7、R 8、R 9分别独立地选自氢、氘、卤素基团、氰基、碳原子数为6-25的芳基、碳原子数为5-25的杂芳基、碳原子数为1-10的烷基、碳原子数为1-10的卤代烷基、碳原子为3-10的环烷基;
n 6表示取代基R 6的个数,n 6选自1、2、3或4,当n 6大于1时,任意两个R 6相同或不同;
n 7表示取代基R 7的个数,n 7选自1、2或3,当n 7大于1时,任意两个R 7相同或不同;
n 8表示取代基R 8的个数,n 8选自1、2或3,当n 8大于1时,任意两个R 8相同或不同;
n 9表示取代基R 9的个数,n 9选自1、2、3或4,当n 9大于1时,任意两个R 9相同或不同;
L 5和L 6相同或不同,且分别独立地选自单键、碳原子数为6-30的取代或未取代的亚芳基、碳原子数为3-30的取代或未取代的亚杂芳基;
Ar 5和Ar 6相同或不同,且分别独立地选自碳原子数为6-30的取代或未取代的芳基、碳原子数为3-30的取代或未取代的杂芳基;
L 5、L 6、Ar 5和Ar 6中的取代基相同或不同,且分别独立地选自氘、卤素基团、氰基、碳原子数为3-20的杂芳基、碳原子数为6-20的芳基、碳原子数为3-12的三烷基硅基、碳原子数为1-10的烷基、碳原子数为1-10的卤代烷基、碳原子数为3-10的环烷基、碳原子数为2-10的杂环烷基或碳原子数为1-10的烷氧基;
任选地,在Ar 5和Ar 6中,任意两个相邻的取代基形成环。
在本申请中,GH-N为电子型主体材料,GH-P为空穴型主体材料。
本申请提供的组合物包括第一化合物和第二化合物,第一化合物具有电子特征相对较强的双极特征,而第二化合物为其具有空穴特征相对较强的双极特征,因此,第一化合物和第二化合物可以一起用于增加电荷迁移率和稳定性,从而显著地改善发光效率和寿命特征。具体地,第一化合物包括具有高电子传输特性的含氮六元环,用以稳定且有效地传输电子,从而降低驱动电压、提高电流效率并实现器件的长寿命特性;第二化合物包含具有高HOMO能量的咔唑结构,其有效地注入和输送空穴,从而有助于改善器件特性;包含第一化合物和第二化合物的组合物最终能够实现对器件堆叠内的电子和空穴特性的调节,以实现最佳的平衡。
根据本申请的第二个方面,提供一种电子元件,包括阳极、阴极、以及介于阳极与阴极之间的至少一层功能层,功能层包含本申请第一方面所述的组合物;
优选地,所述功能层包括有机电致发光层,所述有机电致发光层包括所述组合物。
根据本申请的第三个方面,提供一种电子装置,包括本申请第二方面所述的电子元件。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请。
附图说明
附图是用来提供对本申请的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本申请,但并不构成对本申请的限制。
在附图中:
图1是本申请的有机电致发光器件的结构示意图。
图2是本申请一种实施方式的电子装置的结构示意图。
附图标记说明
100、阳极;200、阴极;300、功能层;310、空穴注入层;320、空穴传输层;321、第一空穴传输层;322、第二空穴传输层;330、有机电致发光层;340、空穴阻挡层;350、电子传输层;360、电子注入层;400、电子装置。
具体实施方式
现在将参考附图更全面地描述示例实施例。然而,示例实施例能够以多种形式实施,且不应被 理解为限于在此阐述的范例;相反,提供这些实施例使得本申请将更加全面和完整,并将示例实施例的构思全面地传达给本领域的技术人员。所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施例中。在下面的描述中,提供许多具体细节从而给出对本申请的实施例的充分理解。
在图中,为了清晰,可能夸大了区域和层的厚度。在图中相同的附图标记表示相同或类似的结构,因而将省略它们的详细描述。
本申请提供了一种用于有机光电器件的组合物,所述组合物包括第一化合物和第二化合物;
以组合物的总重量为基准,所述第一化合物的质量百分含量为1%~99%,所述第二化合物的质量百分含量为1%~99%;
所述第一化合物由式I表示;
Figure PCTCN2021112152-appb-000005
其中,
Figure PCTCN2021112152-appb-000006
表示化学键,A和B相同或不同,且分别独立地选自碳原子数为6-30的取代或未取代的芳基、碳原子数为3-30的取代或未取代的杂芳基、式I-1所示的基团或式I-2所示的基团,且A和B中至少有一个选自式I-1所示的基团或式I-2所示的基团;
U 1、U 2和U 3相同或不同,且分别独立地选自N或C(R),且U 1、U 2和U 3中的至少一个为N;
各R、R 1、R 2、R 3、R 4、R 5分别独立地选自氢、氘、卤素基团、氰基、碳原子数为6-12的芳基、碳原子数为5-12的杂芳基、碳原子数为1-5的烷基、碳原子数为1-5的卤代烷基、碳原子数为3-10的环烷基;
n 1表示取代基R 1的个数,n 1选自1、2或3,当n 1大于1时,任意两个R 1相同或不同;
n 2表示取代基R 2的个数,n 2选自1、2、3或4,当n 2大于1时,任意两个R 2相同或不同,任选地,任意两个相邻的R 2形成环;
n 3表示取代基R 3的个数,n 3选自1、2、3或4,当n 3大于1时,任意两个R 3相同或不同;
n 4表示取代基R 4的个数,n 4选自1或2,当n 4为2时,任意两个R 4相同或不同;
n 5表示取代基R 5的个数,n 5选自1、2、3或4,当n 5大于1时,任意两个R 5相同或不同;
X选自S或O;
L、L 1、L 2、L 3和L 4相同或不同,且分别独立地选自单键、碳原子数为6-30的取代或未取代的亚芳基、碳原子数为3-30的取代或未取代的亚杂芳基;
Ar 1和Ar 2相同或不同,且分别独立地选自碳原子数为6-30的取代或未取代的芳基、碳原子数为3-30的取代或未取代的杂芳基;
所述A、B、L、L 1、L 2、L 3、L 4、Ar 1和Ar 2中的取代基相同或不同,且分别独立地选自氘、卤素基团、氰基、碳原子数为3-20的杂芳基、碳原子数为6-20的芳基、碳原子数为3-12的三烷基硅基、碳原子数为1-10的烷基、碳原子数为1-10的卤代烷基、碳原子数为3-10的环烷基、碳原子数为2-10的杂环烷基或碳原子数为1-10的烷氧基;
任选地,在Ar 1和Ar 2中,任意两个相邻的取代基形成环;
所述第二化合物由式II表示:
Figure PCTCN2021112152-appb-000007
其中,
Figure PCTCN2021112152-appb-000008
表示化学键,
各R 6、R 7、R 8、R 9分别独立地选自氢、氘、卤素基团、氰基、碳原子数为6-25的芳基、碳原子数为5-25的杂芳基、碳原子数为1-10的烷基、碳原子数为1-10的卤代烷基、碳原子为3-10的环烷基;
n 6表示取代基R 6的个数,n 6选自1、2、3或4,当n 6大于1时,任意两个R 6相同或不同;
n 7表示取代基R 7的个数,n 7选自1、2或3,当n 7大于1时,任意两个R 7相同或不同;
n 8表示取代基R 8的个数,n 8选自1、2或3,当n 8大于1时,任意两个R 8相同或不同;
n 9表示取代基R 9的个数,n 9选自1、2、3或4,当n 9大于1时,任意两个R 9相同或不同;
L 5和L 6相同或不同,且分别独立地选自单键、碳原子数为6-30的取代或未取代的亚芳基、碳原子数为3-30的取代或未取代的亚杂芳基;
Ar 5和Ar 6相同或不同,且分别独立地选自碳原子数为6-30的取代或未取代的芳基、碳原子数为3-30的取代或未取代的杂芳基;
L 5、L 6、Ar 5和Ar 6中的取代基相同或不同,且分别独立地选自氘、卤素基团、氰基、碳原子数为3-20的杂芳基、碳原子数为6-20的芳基、碳原子数为3-12的三烷基硅基、碳原子数为1-10的烷基、碳原子数为1-10的卤代烷基、碳原子数为3-10的环烷基、碳原子数为2-10的杂环烷基或碳原子数为1-10的烷氧基;
任选地,在Ar 5和Ar 6中,任意两个相邻的取代基形成环。
在本申请中,所采用的描述方式“各自独立地选自”与“分别独立地选自”可以互换,均应做广义理解,其既可以是指在不同基团中,相同符号之间所表达的具体选项之间互相不影响,也可以表示在相同的基团中,相同符号之间所表达的具体选项之间互相不影响。例如,“
Figure PCTCN2021112152-appb-000009
其中,各q独立地为0、1、2或3,各R”独立地选自氢、氘、氟、氯”,其含义是:式Q-1表示苯环上有q个取代基R”,各个R”可以相同也可以不同,每个R”的选项之间互不影响;式Q-2表示联苯的每一个苯环上有q个取代基R”,两个苯环上的R”取代基的个数q可以相同或不同,各个R”可以相同也可以不同,每个R”的选项之间互不影响。
在本申请中,术语“任选”、“任选地”意味着随后所描述的事件或者环境可以发生但不是必须发生,该说明包括该事情或者环境发生或者不发生的场合。例如,“任选地,两个相邻取代基形成环;”意味着这两个取代基可以形成环但不是必须形成环,包括:两个相邻的取代基形成环的情景和两个相邻的取代基不形成环的情景。
在本申请中,“任意两个相邻的取代基形成环”中,“任意两个相邻的取代基”可以包括同一个原子上具有两个取代基,还可以包括两个相邻的原子上分别具有一个取代基;其中,当同一个原子上具有两个取代基时,两个取代基可以与其共同连接的该原子形成饱和或不饱和的环;当两个相邻的原子上分别具有一个取代基时,这两个取代基可以稠合成环。举例而言,当Ar 1有2个或2个以上的取代基时,且任意相邻的取代基形成环时,可以形成饱和或不饱和的碳原子数为5-13的环, 例如:苯环、萘环、芴环、菲环、蒽环、环戊烷、环己烷、金刚烷等等。
在本申请中,“取代或未取代的”这样的术语是指,在该术语后面记载的官能团可以具有或不具有取代基(下文为了便于描述,将取代基统称为Rc)。例如,“取代或未取代的芳基”是指具有取代基Rc的芳基或者非取代的芳基。其中上述的取代基即Rc例如可以为氘、卤素基团、氰基、碳原子数为3-20的杂芳基、碳原子数为6-20的芳基、碳原子数为3-12的三烷基硅基、碳原子数为1-10的烷基、碳原子数为1-10的卤代烷基、碳原子数为3-10的环烷基、碳原子数为2-10的杂环烷基、碳原子数为1-10的烷氧基。在本申请中,“取代的”官能团可以被上述Rc中的一个或2个以上的取代基取代;当同一个原子上连接有两个取代基Rc时,这两个取代基Rc可以独立地存在或者相互连接以与所述原子形成环;当官能团上存在两个相邻的取代基Rc时,两个相邻的取代基Rc可以独立地存在或者与其所连接的官能团稠合成环。
在本申请中,取代或未取代的官能团的碳原子数,指的是所有碳原子数。举例而言,若L选自取代的碳原子数为12的亚芳基,则亚芳基及其上的取代基的所有碳原子数为12。例如:Ar 1
Figure PCTCN2021112152-appb-000010
则其碳原子数为15;L 1
Figure PCTCN2021112152-appb-000011
其碳原子数为12。
在本申请中,当没有另外提供具体的定义时,“杂”是指在一个官能团中包括至少1个选自B、N、O、S、P、Si或Se的杂原子且其余原子为碳和氢。未取代的烷基可以是没有任何双键或三键的“饱和烷基基团”。
在本申请中,“烷基”可以包括直链烷基或支链烷基。烷基可具有1至10个碳原子,在本申请中,诸如“1至10”的数值范围是指给定范围中的各个整数;例如,“1至10个碳原子”是指可包含1个碳原子、2个碳原子、3个碳原子、4个碳原子、5个碳原子、6个碳原子、7个碳原子、8个碳原子、9个碳原子、10个碳原子的烷基。此外,烷基可为取代的或未取代的。
可选地,烷基选自碳原子数为1-5的烷基,具体施例包括但不限于,甲基、乙基、丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基和戊基。
在本申请中,环烷基指的是含有脂环结构的饱和烃,包含单环和稠环结构。环烷基可具有3-10个碳原子,诸如“3至10”的数值范围是指给定范围中的各个整数;例如,“3至10个碳原子”是指可包含3个碳原子、4个碳原子、5个碳原子、6个碳原子、7个碳原子、8个碳原子、9个碳原子或10个碳原子的环烷基。此外,环烷基可为取代的或未取代的。例如,环己烷基。
在本申请中,芳基指的是衍生自芳香碳环的任选官能团或取代基。芳基可以是单环芳基(例如苯基)或多环芳基,换言之,芳基可以是单环芳基、稠环芳基、通过碳碳键共轭连接的两个或者更多个单环芳基、通过碳碳键共轭连接的单环芳基和稠环芳基、通过碳碳键共轭连接的两个或者更多个稠环芳基。即,除非另有说明,通过碳碳键共轭连接的两个或者更多个芳香基团也可以视为本申请的芳基。其中,稠环芳基例如可以包括双环稠合芳基(例如萘基)、三环稠合芳基(例如菲基、芴基、蒽基)等。芳基中不含有B、N、O、S、P、Se和Si等杂原子。芳基的实例可以包括但不限于,苯基、萘基、芴基、蒽基、菲基、联苯基、三联苯基、四联苯基、五联苯基、苯并[9,10]菲基、芘基、苯并荧蒽基、
Figure PCTCN2021112152-appb-000012
基等。
本申请的“取代或未取代的芳基”含有6-30个碳原子,在一些实施例中,芳基中的碳原子数是6-25个,在一些实施例中,芳基中的碳原子数是6-20个,在另一些实施例中,取代或未取代的芳基中的碳原子数是6-18个,在另一些实施例中取代或未取代的芳基中的碳原子数是6-12个。举例而言,本申请中,取代或未取代的芳基的碳原子数量可以是6个、12个、13个、14个、15个、18个、20个、24个、25个、30个,当然,碳原子数还可以是其他数量,在此不再一一列举。在本申请中,联苯基可以理解为苯基取代的芳基,也可以理解为未取代的芳基。
本申请中,涉及的亚芳基是指芳基进一步失去一个氢原子所形成的二价基团。
在本申请中,取代的芳基可以是芳基中的一个或者两个以上氢原子被诸如氘原子、卤素基团、氰基、芳基、杂芳基、三烷基硅基、烷基、环烷基、烷氧基等基团取代。杂芳基取代的芳基 的具体实例包括但不限于,咔唑基取代的苯基、二苯并噻吩取代的苯基、喹喔啉取代的苯基等。应当理解地是,取代的芳基的碳原子数,指的是芳基和芳基上的取代基的碳原子总数,例如碳原子数为18的取代的芳基,指的是芳基及其取代基的总碳原子数为18。
在本申请中,作为取代基的芳基,具体实例包括但不限于:苯基、萘基、蒽基、菲基、二甲基芴基、联苯基等等。
在本申请中,杂芳基是指环中包含1、2、3、4、5、6或7个杂原子的一价芳香环或其衍生物,杂原子可以是B、O、N、P、Si、Se和S中的至少一种。杂芳基可以是单环杂芳基或多环杂芳基,换言之,杂芳基可以是单个芳香环体系,也可以是通过碳碳键共轭连接的多个芳香环体系,且任一芳香环体系为一个芳香单环或者一个芳香稠环。示例地,杂芳基可以包括噻吩基、呋喃基、吡咯基、咪唑基、噻唑基、噁唑基、噁二唑基、三唑基、吡啶基、联吡啶基、嘧啶基、三嗪基、吖啶基、哒嗪基、吡嗪基、喹啉基、喹唑啉基、喹喔啉基、吩噁嗪基、酞嗪基、吡啶并嘧啶基、吡啶并吡嗪基、吡嗪并吡嗪基、异喹啉基、吲哚基、咔唑基、苯并噁唑基、苯并咪唑基、苯并噻唑基、苯并咔唑基、苯并噻吩基、二苯并噻吩基、噻吩并噻吩基、苯并呋喃基、菲咯啉基、异噁唑基、噻二唑基、苯并噻唑基、吩噻嗪基、硅芴基、二苯并呋喃基以及N-芳基咔唑基(如N-苯基咔唑基)、N-杂芳基咔唑基(如N-吡啶基咔唑基)、N-烷基咔唑基(如N-甲基咔唑基)等,而不限于此。其中,噻吩基、呋喃基、菲咯啉基等为单个芳香环体系类型的杂芳基,N-苯基咔唑基、N-吡啶基咔唑基为通过碳碳键共轭连接的多环体系类型的杂芳基。
本申请的“取代或未取代的杂芳基”含有3-30个碳原子,在一些实施方案中,取代或未取代的杂芳基中的碳原子数是5-25个,在另一些实施方案中,取代或未取代的杂芳基中的碳原子数是3-20个,在另一些实施方案中,取代或未取代的杂芳基中的碳原子数是3-12个,在另一些实施方案中,取代或未取代的杂芳基中的碳原子数是3-20个,在另一些实施例方案中,取代或未取代的杂芳基中的碳原子数可以是5-12个。举例而言,其碳原子数量可以是3个、4个、5个、7个、12个、13个、18个、20个、24个、25个或30个,当然,碳原子数还可以是其他数量,在此不再一一列举。
本申请中,涉及的亚杂芳基是指杂芳基进一步失去一个氢原子所形成的二价基团。
在本申请中,取代的杂芳基可以是杂芳基中的一个或者两个以上氢原子被诸如氘原子、卤素基团、氰基、芳基、杂芳基、三烷基硅基、烷基、环烷基、烷氧基等基团取代。芳基取代的杂芳基的具体实例包括但不限于,苯基取代的二苯并呋喃基、苯基取代的二苯并噻吩基、N-苯基咔唑基等。应当理解地是,取代的杂芳基的碳原子数,指的是杂芳基和杂芳基上的取代基的碳原子总数。
在本申请中,作为取代基的杂芳基,具体实例包括但不限于:咔唑基、二苯并呋喃基、二苯并噻吩基。
在本申请中,卤素基团可以包括氟、碘、溴、氯等。
本申请中,不定位连接键是指从环体系中伸出的单键
Figure PCTCN2021112152-appb-000013
其表示该连接键的一端可以连接该键所贯穿的环体系中的任意位置,另一端连接化合物分子其余部分。
举例而言,如下式(f)中所示地,式(f)所表示的萘基通过两个贯穿双环的不定位连接键与分子其他位置连接,其所表示的含义,包括如式(f-1)-式(f-10)所示出的任一可能的连接方式。
Figure PCTCN2021112152-appb-000014
再举例而言,如下式(X')中所示地,式(X')所表示的二苯并呋喃基通过一个从一侧苯环中间伸出的不定位连接键与分子其他位置连接,其所表示的含义,包括如式(X'-1)-式(X'-4)所示出的任一可能的连接方式。
Figure PCTCN2021112152-appb-000015
下文中对于不定位连接或不定位取代的含义与此处相同,后续将不再进行赘述。
在本申请一种实施方式中,U 1、U 2、U 3中,有2个为N,另一个为C(R);或者U 1、U 2、U 3均为N。
在本申请一种实施方式中,各R、R 1、R 2、R 3、R 4、R 5分别独立地选自氢、氘、氟、氰基、甲基、乙基、正丙基、异丙基、叔丁基、苯基、吡啶基、三氟甲基、联苯基,或者,任意两个相邻的R 2形成苯环、萘环或菲环。
可选地,各R、R 1、R 3、R 4、R 5均为氢。
可选地,R 2各自独立地选自氢、氘、氟、氰基、甲基、乙基、正丙基、异丙基、叔丁基、苯基、萘基、吡啶基、三氟甲基或联苯基,或者任意两个相邻的R 2相互连接形成5-13元环,例如任意两个相邻的R 2相互连接形成苯环、萘环或菲环。
具体地,所述R 2各自独立地选自:氘、氟、氰基、甲基、乙基、正丙基、异丙基、叔丁基、苯基、萘基、联苯基、吡啶基、咔唑基、二苯并呋喃基、二苯并噻吩基、环戊烷基、环己烷基或三氟甲基。
在本申请中,“碳原子数为5-13的饱和或不饱和环”指的是成环碳原子数为5-13。
在本申请中,式I-1
Figure PCTCN2021112152-appb-000016
所示的基团选自以下结构:
Figure PCTCN2021112152-appb-000017
在本申请的一种实施方式中,所述第一化合物中,所述A和B分别独立地选自碳原子数为6-25的取代或未取代的芳基、碳原子数为5-20的取代或未取代的杂芳基、式I-1所示的基团或式I-2所示的基团,且A和B中有且仅有一个选自式I-1所示的基团或式I-2所示的基团。
可选地,所述A和B中的取代基分别独立地选自氘、卤素基团、氰基、碳原子数为6-12的芳基、碳原子数为5-12的杂芳基、碳原子数为1-5的烷基或碳原子3-10的环烷基。
在本申请另一种实施方式中,进一步优选地,所述第一化合物中,所述A和B分别独立地选自取代或未取代的苯基、取代或未取代的萘基、取代或未取代的联苯基、取代或未取代的菲基、取代或未取代的蒽基、取代或未取代的吡啶基、取代或未取代的苯并菲基、取代或未取代的螺二芴基、取代或未取代的吡啶基、取代或未取代的喹啉基、取代或未取代的异喹啉基、取代或未取代的二苯并呋喃基、取代或未取代的咔唑基、取代或未取代的二苯并噻吩基、取代或未取代的芴基、取代或未取代的芘基、取代或未取代的菲咯啉基、式I-1所示的基团或式I-2所示的基团,且A和B中有且仅有一个选自式I-1所示的基团或式I-2所示的基团。
可选地,所述A和B中的取代基各自独立地选自:氘、氟、氰基、甲基、乙基、正丙基、异丙基、叔丁基、苯基、萘基、联苯基、吡啶基、咔唑基、二苯并呋喃基、二苯并噻吩基、环戊烷基或环己烷基。
在本申请的一种实施方式中,所述第一化合物中,所述L、L 1、L 2、L 3和L 4相同或不同,且分别独立地选自单键、碳原子数为6-20的取代或未取代的亚芳基、碳原子数为5-20的取代或未取代的亚杂芳基。
可选地,所述L、L 1、L 2、L 3和L 4中的取代基分别独立地选自氘、卤素基团、氰基、碳原子数为6-12的芳基、碳原子数为1-5的烷基。
在本申请的一种实施方式中,所述第一化合物中,所述L、L 1、L 2、L 3和L 4相同或不同,且分别独立地选自单键、取代或未取代的亚苯基、取代或未取代的亚萘基、取代或未取代的亚联苯基、取代或未取代的亚吡啶基、取代或未取代的亚二苯并呋喃基、取代或未取代的亚二苯并噻吩基、取代或未取代的亚芴基、取代或未取代的亚咔唑基、取代或未取代的亚蒽基;
可选地,所述L、L 1、L 2、L 3和L 4中的取代基各自独立地选自:氘、氰基、氟、甲基、乙基、正丙基、异丙基、叔丁基或苯基。
在本申请另一种实施方式中,所述第一化合物中,所述L、L 1、L 2、L 3和L 4相同或不同,且分别独立地选自单键或者取代或未取代的基团V,未取代的基团V选自如下基团所组成的组:
Figure PCTCN2021112152-appb-000018
其中,
Figure PCTCN2021112152-appb-000019
表示化学键;取代的基团V上具有一个或多个取代基,所述取代基各自独立地选自氘、氰基、氟、甲基、乙基、正丙基、异丙基、叔丁基、苯基;当基团V中的取代基个数大于1时,各取代基相同或不同。
可选地,L、L 1、L 2、L 3和L 4分别独立地选自单键或者如下基团所组成的组:
Figure PCTCN2021112152-appb-000020
Figure PCTCN2021112152-appb-000021
在本申请的一种实施方式中,所述第一化合物中,所述Ar 1和Ar 2各自独立地选自碳原子数为6-25的取代或未取代的芳基、碳原子数为4-20的取代或未取代的杂芳基;
可选地,所述Ar 1中的取代基分别独立地选自氘、卤素基团、氰基、碳原子数为6-12的芳基、碳原子数为5-12的杂芳基、碳原子数为1-5的烷基或碳原子3-10的环烷基;
任选地,所述Ar 1中的任意两个相邻的取代基形成碳原子数为5-13的饱和或不饱和环。举例而言,在Ar 1中,任意两个相邻的取代基形成环戊烷、环己烷、金刚烷或芴环。
可选地,所述Ar 2中的取代基分别独立地选自氘、卤素基团、氰基、碳原子数为6-12的芳基、碳原子数为5-12的杂芳基、碳原子数为1-5的烷基、碳原子数为1-5的卤代烷基、碳原子为3-10的环烷基;
任选地,所述Ar 2中的任意两个相邻的取代基形成碳原子数为5-13的饱和或不饱和环。举例而言,在Ar 2中,任意两个相邻的取代基形成环戊烷、环己烷、金刚烷或芴环。
在本申请一种实施方式中,所述第一化合物中,所述Ar 1和Ar 2各自独立地选自取代或未取代的苯基、取代或未取代的联苯基、取代或未取代的萘基、取代或未取代的二苯并呋喃基,取代或未取代的二苯并噻吩基、取代或未取代的芴基、取代或未取代的N-苯基咔唑基、取代或未取代的咔唑基、取代或未取代的菲基、取代或未取代的蒽基、取代或未取代的三联苯基、取代或未取代的吡啶基、取代或未取代的芘基、取代或未取代的喹啉基、取代或未取代异喹啉基、取代或未取代的菲咯啉基、取代或未取代的苯并菲基、取代或未取代的呋喃基、取代或未取代的噻吩基或取代或未取代的以下基团:
Figure PCTCN2021112152-appb-000022
可选地,所述Ar 1和Ar 2中的取代基分别独立地选自氘、氰基、氟、甲基、乙基、正丙基、异丙基、叔丁基、苯基、萘基、联苯基或咔唑基;
任选地,在Ar 1和Ar 2中,任意两个相邻的取代基形成环戊烷、环己烷、金刚烷或芴环
Figure PCTCN2021112152-appb-000023
在本申请一种实施方式中,所述第一化合物中,所述Ar 1和Ar 2各自独立地选自取代或未取代的基团W 1,未取代的基团W 1选自如下基团组成的组:
Figure PCTCN2021112152-appb-000024
Figure PCTCN2021112152-appb-000025
其中,
Figure PCTCN2021112152-appb-000026
表示化学键;取代的基团W 1上具有一个或多个取代基,所述取代基各自独立地选自氘、氰基、氟、甲基、乙基、正丙基、异丙基、叔丁基、苯基、萘基、联苯基或咔唑基;当基团W 1中的取代基个数大于1时,各取代基相同或不同。
可选地,所述Ar 1选自以下基团组成的组:
Figure PCTCN2021112152-appb-000027
Figure PCTCN2021112152-appb-000028
可选地,所述Ar 2选自以下基团组成的组:
Figure PCTCN2021112152-appb-000029
在一些实施方案中,所述A和B中的任一个选自式I-1所示的基团或式I-2所示的基团,另一个选自以下基团:
Figure PCTCN2021112152-appb-000030
Figure PCTCN2021112152-appb-000031
在本申请一种实施方式中,A为式I-1所示的基团,B选自取代或未取代的苯基、取代或未取代的萘基、取代或未取代的联苯基、取代或未取代的菲基、取代或未取代的蒽基、取代或未取代的吡啶基、取代或未取代的苯并菲基、取代或未取代的螺二芴基、取代或未取代的吡啶基、取代或未取代的喹啉基、取代或未取代的异喹啉基、取代或未取代的二苯并呋喃基、取代或未取代的咔唑基、取代或未取代的二苯并噻吩基、取代或未取代的芴基、取代或未取代的芘基、取代或未取代的菲咯啉基所组成的组。
在本申请一种实施方式中,A为式I-2所示的基团,B选自取代或未取代的苯基、取代或未取代的萘基、取代或未取代的联苯基、取代或未取代的菲基、取代或未取代的蒽基、取代或未取代的吡啶基、取代或未取代的苯并菲基、取代或未取代的螺二芴基、取代或未取代的吡啶基、取代或未取代的喹啉基、取代或未取代的异喹啉基、取代或未取代的二苯并呋喃基、取代或未取代的咔唑基、取代或未取代的二苯并噻吩基、取代或未取代的芴基、取代或未取代的芘基、取代或未取代的菲咯啉基所组成的组。
在本申请一种实施方式中,B为式I-1所示的基团,A选自取代或未取代的苯基、取代或未取代的萘基、取代或未取代的联苯基、取代或未取代的菲基、取代或未取代的蒽基、取代或未取代的吡啶基、取代或未取代的苯并菲基、取代或未取代的螺二芴基、取代或未取代的吡啶基、取代或未取代的喹啉基、取代或未取代的异喹啉基、取代或未取代的二苯并呋喃基、取代或未取代的咔唑基、取代或未取代的二苯并噻吩基、取代或未取代的芴基、取代或未取代的芘基、取代或未取代的菲咯啉基所组成的组。
在本申请一种实施方式中,B为式I-2所示的基团,A选自取代或未取代的苯基、取代或未取代的萘基、取代或未取代的联苯基、取代或未取代的菲基、取代或未取代的蒽基、取代或未取代的吡啶基、取代或未取代的苯并菲基、取代或未取代的螺二芴基、取代或未取代的吡啶基、取代或未取代的喹啉基、取代或未取代的异喹啉基、取代或未取代的二苯并呋喃基、取代或未取代咔唑基、取代或未取代的二苯并噻吩基、取代或未取代的芴基、取代或未取代的芘基、取代或未取代的菲咯啉基所组成的组。
在本申请一种实施方式中,当A选自式I-1所示的基团或I-2所示的基团时,X为O。
可选地,所述第一化合物选自如下化合物所形成的组:
Figure PCTCN2021112152-appb-000032
Figure PCTCN2021112152-appb-000033
Figure PCTCN2021112152-appb-000034
Figure PCTCN2021112152-appb-000035
Figure PCTCN2021112152-appb-000036
Figure PCTCN2021112152-appb-000037
Figure PCTCN2021112152-appb-000038
Figure PCTCN2021112152-appb-000039
Figure PCTCN2021112152-appb-000040
Figure PCTCN2021112152-appb-000041
Figure PCTCN2021112152-appb-000042
Figure PCTCN2021112152-appb-000043
Figure PCTCN2021112152-appb-000044
Figure PCTCN2021112152-appb-000045
Figure PCTCN2021112152-appb-000046
Figure PCTCN2021112152-appb-000047
Figure PCTCN2021112152-appb-000048
Figure PCTCN2021112152-appb-000049
Figure PCTCN2021112152-appb-000050
Figure PCTCN2021112152-appb-000051
Figure PCTCN2021112152-appb-000052
Figure PCTCN2021112152-appb-000053
Figure PCTCN2021112152-appb-000054
Figure PCTCN2021112152-appb-000055
Figure PCTCN2021112152-appb-000056
Figure PCTCN2021112152-appb-000057
在本申请中,所述第二化合物可以选自以下结构所示的化合物:
Figure PCTCN2021112152-appb-000058
Figure PCTCN2021112152-appb-000059
在本申请的一种实施方式中,所述第二化合物中,各R 6、R 7、R 8、R 9分别独立地选自氢、氘、卤素基团、氰基、碳原子数为6-18的芳基、碳原子数为5-12的杂芳基、碳原子数为1-5的烷基、碳原子数为1-5的卤代烷基、碳原子数为3-6的环烷基。
具体地,各R 6、R 7、R 8、R 9分别独立地选自氢、苯基、萘基、联苯基、二苯并噻吩基、芴基、菲基、三联苯基。
在本申请的一种实施方式中,所述第二化合物中,各R 6、R 7、R 8和R 9分别独立地选自氢或者如下基团所组成的组:
Figure PCTCN2021112152-appb-000060
在本申请一种具体的实施方式中,各R 6、R 7、R 8、R 9分别独立地选自氢或苯基。
在本申请的一种实施方式中,所述第二化合物中,所述L 5和L 6分别独立地选自单键、碳原子数为6-12的取代或未取代的亚芳基、碳原子数为3-20的取代或未取代的亚杂芳基
可选地,所述第二化合物中,L 5和L 6分别独立地选自单键、碳原子数为6-12的取代或未取代的亚芳基、碳原子数为3-12的取代或未取代的亚杂芳基;
可选地,所述L 5和L 6中的取代基分别独立地选自氘、卤素基团、氰基、碳原子数为1-5的烷基或苯基。
在本申请一种实施方式中,所述第二化合物中,所述L 5和L 6分别独立地选自单键、取代或未取代的亚苯基、取代或取代的亚萘基、取代或未取代的亚联苯基、取代或未取代的亚咔唑基;
具体地,所述L 5和L 6中的取代基各自独立地选自:氘、氟、氰基、甲基、乙基、正丙基、异丙基、叔丁基或苯基。
在本申请一种实施方式中,所述第二化合物中,所述L 5和L 6相同或不同,且分别独立地选自单键或者取代或未取代的基团P,未取代的基团P选自如下基团所组成的组:
Figure PCTCN2021112152-appb-000061
Figure PCTCN2021112152-appb-000062
其中,
Figure PCTCN2021112152-appb-000063
表示化学键;取代的基团P上具有一个或多个取代基,所述取代基各自独立地选自氘、氰基、氟、甲基、乙基、正丙基、异丙基、叔丁基或苯基;当基团P中的取代基个数大于1时,各取代基相同或不同。
可选地,L 5和L 6分别独立地选自单键或者如下基团所组成的组:
Figure PCTCN2021112152-appb-000064
在本申请一种实施方式中,所述第二化合物中,所述Ar 5和Ar 6分别独立地选自碳原子数为6-25的取代或未取代的芳基、碳原子数为5-12的取代或未取代的杂芳基;
可选地,所述Ar 5和Ar 6中的取代基分别独立地选自氘、卤素基团、碳原子数为1-5的烷基、碳原子数为6-12的芳基。
任选地,在Ar 5和Ar 6中,任意两个相邻的取代基形成碳原子数为5-13的饱和或不饱和环。举例而言,在Ar 5和Ar 6中,任意两个相邻的取代基形成芴环。
具体地,所述Ar 5和Ar 6中的取代基各自独立地选自:氘、氟、氰基、卤素基团、甲基、乙基、正丙基、异丙基、叔丁基、苯基、萘基或联苯基。
在本申请一种实施方式中,所述第二化合物中,所述Ar 5和Ar 6分别独立地选自取代或未取代的苯基、取代或未取代的萘基、取代或未取代的联苯基、取代或未取代的三联苯基、取代或未取代的芴基、取代或未取代的菲基、取代或未取代的吡啶基、取代或未取代的二苯并呋喃基、取代或未取代的二苯并噻吩基、取代或未取代的咔唑基、取代或未取代的三亚苯基。
可选地,所述Ar 5和Ar 6分别独立地选自取代或未取代的苯基、取代或未取代的萘基、取代或未取代的联苯基、取代或未取代的三联苯基、取代或未取代的芴基、取代或未取代的菲基、取代或未取代的吡啶基、取代或未取代的二苯并呋喃基、取代或未取代的二苯并噻吩基。
在本申请一种实施方式中,所述第二化合物中,所述Ar 5和Ar 6相同或不同,且分别独立地选自取代或未取代的基团Q,未取代的基团Q选自如下基团所组成的组:
Figure PCTCN2021112152-appb-000065
其中,
Figure PCTCN2021112152-appb-000066
表示化学键;取代的基团Q上具有一个或多个取代基,所述取代基各自独立地选自氘、氰基、氟、甲基、乙基、正丙基、异丙基、叔丁基、苯基、萘基或联苯基;当基团Q中的取代基个数大于1时,各取代基相同或不同。
可选地,Ar 5和Ar 6分别独立地选自如下基团所组成的组:
Figure PCTCN2021112152-appb-000067
Figure PCTCN2021112152-appb-000068
可选地,所述第二化合物选自如下化合物所形成的组:
Figure PCTCN2021112152-appb-000069
Figure PCTCN2021112152-appb-000070
Figure PCTCN2021112152-appb-000071
Figure PCTCN2021112152-appb-000072
Figure PCTCN2021112152-appb-000073
Figure PCTCN2021112152-appb-000074
Figure PCTCN2021112152-appb-000075
Figure PCTCN2021112152-appb-000076
Figure PCTCN2021112152-appb-000077
Figure PCTCN2021112152-appb-000078
Figure PCTCN2021112152-appb-000079
Figure PCTCN2021112152-appb-000080
可选地,所述组合物为所述第一化合物和第二化合物的混合物。例如,可以通过将所述第一化合物和第二化合物通过机械搅拌混合均匀,形成所述混合物。
本申请对所述组合物中两类化合物的相对含量没有特别限定,可根据有机电致发光器件的具体应用进行选择。通常地,以所述组合物的总重量为基准,所述第一化合物的质量百分含量可以为1%~99%,所述第二化合物的质量百分含量可以为1%~99%。例如,所述组合物中,所述第一化合物与第二化合物的质量比可以为1∶99,20∶80,30∶70,40∶60,45∶65,50∶50,55∶45,60∶40,70:30,80:20,99:1等。
在本申请一种实施方式中,所述组合物由第一化合物和第二化合物组成,其中以组合物的总重量为基准,所述第一化合物的质量百分含量为20%~80%,所述第二化合物的质量百分含量为20%~80%。
在一种优选的实施方式中,在所述组合物中,以所述组合物的总重量为基准,所述第一化合物的质量百分含量为30%~60%,所述第二化合物的质量百分含量为40%~70%,这种情况下,所述组合物应用到有机电致发光器件中,可以使器件兼具较高的发光效率和较长的使用寿命,特别适合作为电子显示装置。优选地,以所述组合物的总重量为基准,所述第一化合物的质量百分含量为40%~60%,所述第二化合物的质量百分含量为40%~60%。更优选地,所述第一化合物的质量百分含量为40%~50%,所述第二化合物的质量百分含量为50%~60%。
本申请还提供所述的组合物作为有机电致发光器件的有机电致发光层主体材料的应用。
在本申请一种实施方式中,所述组合物用于绿色磷光有机电致发光器件主体材料。
本申请还提供一种电子元件,用于实现光电转换。该电子元件包括相对设置的阳极和阴极, 以及介于阳极与阴极之间的至少一层功能层,该功能层包含本申请的组合物。
在本申请一种具体实施方式中,所述电子元件为有机电致发光器件。如图1所示,本申请的有机电致发光器件包括阳极100、阴极200、以及介于阳极层与阴极层之间的至少一层功能层300,该功能层300包括空穴注入层310、空穴传输层320、有机电致发光层330、空穴阻挡层340、电子传输层350以及电子注入层360;空穴传输层320包括第一空穴传输层321和第二空穴传输层322;空穴注入层310、空穴传输层320、有机电致发光层330、空穴阻挡层340、电子传输层350以及电子注入层360可以依次形成在阳极100上,有机电致发光层330可以含有本申请第一方面所述的组合物,该组合物包括:第一化合物和第二化合物,第一化合物优选含有化合物1-705中的至少一种,第二化合物优选含有化合物II-1至II-255中的至少一种。
本申请中,第一化合物具有其中电子特征相对较强的双极性特征,而第二化合物具有其中空穴特征相对较强的双极特征,所以第一化合物和第二化合物可以一同用于增加电荷迁移率和稳定性,显著地改善发光效率和寿命特征。
本申请还提供一种电子元件,该电子元件为绿色有机电致发光器件,包括相对设置的阳极和阴极,以及介于阳极与阴极之间的至少一层功能层,该功能层包含本申请组合物。
在本申请一种实施方式中,所述有机电致发光器件的有机电致发光层包含本申请组合物,所述组合物用于有机电致发光器件的有机电致发光层主体部分。
在本申请一种实施方式中,所述有机电致发光层还包含掺杂剂,掺杂剂可以是例如磷光掺杂剂,例如绿色磷光掺杂剂。将少量掺杂剂与主体化合物混合以引起发光,并且所述掺杂剂通常可以是通过多次激发到三重态或超过三重态而发光的物质,例如金属络合物。所述掺杂剂可以是例如无机、有机或有机/无机化合物,并且可以使用其一个或多个种类。
掺杂剂的实例可以是磷光掺杂剂,且磷光掺杂剂的实例可以是包括Ir、Pt、Os、Ti、Zr、Hf、Eu、Tb、Tm、Fe、Co、Ni、Ru、Rh、Pd或其组合的有机金属化合物。例如:磷光掺杂剂可以是Ir(ppy) 3、Ir(pbi) 2(acac)、Ir(nbi) 2(acac)、Ir(fbi) 2(acac)、Ir(tbi) 2(acac)、Ir(pybi) 2(acac)、Ir(3mppy) 3、Ir(npy) 2acac、Ir(mppy) 3、Ir(ppy) 2(acac)、fac-Ir(ppy) 3,但不限于此。
可选地,阳极100包括以下阳极材料,其优选地是有助于空穴注入至功能层中的具有大逸出功(功函数,work function)材料。阳极材料具体实例包括:金属如镍、铂、钒、铬、铜、锌和金或它们的合金;金属氧化物如氧化锌、氧化铟、氧化铟锡(ITO)和氧化铟锌(IZO);组合的金属和氧化物如ZnO:Al或SnO 2:Sb;或导电聚合物如聚(3-甲基噻吩)、聚[3,4-(亚乙基-1,2-二氧基)噻吩](PEDT)、聚吡咯和聚苯胺,但不限于此。优选包括包含氧化铟锡(铟锡氧化物,indium tin oxide)(ITO)作为阳极的透明电极。
可选地,空穴传输层320可以包括一种或者多种空穴传输材料,空穴传输材料可以选自咔唑多聚体、咔唑连接三芳胺类化合物或者其他类型的化合物,本申请对此不做特殊的限定。空穴传输层320可以包含第一空穴传输层321和第二空穴传输层322;第一空穴传输层321邻接于第二空穴传输层322,且相对于第二空穴传输层322更靠近阳极。举例而言,在本申请的一种实施方式中,第一空穴传输层321由化合物NPB组成,第二空穴传输层322由化合物PAPB组成。
可选地,有机电致发光层330可以由单一发光材料组成,也可以包括主体材料和客体材料。可选地,有机电致发光层330由主体材料和客体材料组成,注入有机电致发光层330的空穴和电子可以在有机电致发光层330复合而形成激子,激子将能量传递给主体材料,主体材料将能量传递给客体材料,进而使得客体材料能够发光。
在本申请的一种实施方式中,有机电致发光层330的主体材料由本申请所提供的组合物G-X-Y组成。在本申请中,GH-N为电子型主体材料,GH-P为空穴型主体材料。本申请提供的组合物G-X-Y包括第一化合物和第二化合物,第一化合物为GH-N,其具有电子特征相对较强的双极特征,而第二化合物为GH-P,其具有空穴特征相对较强的双极特征,因此,第一化合物和第二化合物可以一起用于增加电荷迁移率和稳定性,从而显著地改良发光效率和寿命特征。具体地,第一化合物包括具有高电子传输特性的含氮六元环,以稳定且有效地传输电子,从而降低驱动电压、提高电流效率并实现器件的长寿命特性;第二化合物具有包含具有高HOMO能量的咔唑或胺的结构, 其有效地注入和输送空穴,从而有助于改善器件特性;包含第一化合物和第二化合物的组合物最终能够实现对器件堆叠内的电子和空穴特性的调节,以实现最佳的平衡。
有机电致发光层330的客体材料可以为具有缩合芳基环的化合物或其衍生物、具有杂芳基环的化合物或其衍生物、芳香族胺衍生物或者其他材料,本申请对此不做特殊的限制。在本申请的一种实施方式中,有机电致发光层330的客体材料可以为Ir(mppy) 3
电子传输层350可以为单层结构,也可以为多层结构,其可以包括一种或者多种电子传输材料,电子传输材料可以选自苯并咪唑衍生物、恶二唑衍生物、喹喔啉衍生物或者其他电子传输材料,本申请对此不做特殊的限定。举例而言,在本申请的一种实施方式中,电子传输层350可以由ET-06和LiQ组成。
可选地,在有机电致发光层330和电子传输层350之间设置空穴阻挡层340。空穴阻挡层可以包括一种或多种空穴阻挡材料,本申请对此不做特殊的限定。
可选地,阴极200包括以下阴极材料,其是有助于电子注入至功能层中的具有小逸出功的材料。阴极材料的具体实例包括:金属如镁、钙、钠、钾、钛、铟、钇、锂、钆、铝、银、锡和铅或它们的合金;或多层材料如LiF/Al,Liq/Al,LiO 2/Al,LiF/Ca,LiF/Al和BaF 2/Ca,但不限于此。优选包括包含银和镁的金属电极作为阴极。
可选地,在阳极100和空穴传输层320之间还可以设置有空穴注入层310,以增强向空穴传输层320注入空穴的能力。空穴注入层310可以选用联苯胺衍生物、星爆状芳基胺类化合物、酞菁衍生物或者其他材料,本申请对此不做特殊的限制。在本申请的一种实施方式中,空穴注入层310可以由F4-TCNQ组成。
可选地,在阴极200和电子传输层350之间还可以设置有电子注入层360,以增强向电子传输层350注入电子的能力。电子注入层360可以包括有碱金属硫化物、碱金属卤化物等无机材料,或者可以包括碱金属与有机物的络合物。在本申请的一种实施方式中,电子注入层360可以包括镱(Yb)。
本申请还提供一种电子装置,该电子装置包括本申请所述的电子元件。
举例而言,如图2所示,本申请提供的电子装置为电子装置400,该电子装置400包括上述有机电致发光器件实施方式所描述的任意一种有机电致发光器件。该电子装置可以为显示装置、照明装置、光通讯装置或者其他类型的电子装置,例如可以包括但不限于电脑屏幕、手机屏幕、电视机、电子纸、应急照明灯、光模块等。由于电子装置400具有上述有机电致发光器件,因此具有相同的有益效果,本申请在此不再赘述。
下面将结合实施例详细描述本申请,但是,以下描述是用于解释本申请,而不是以任意方式限制本申请的范围。
合成实施例
所属领域的专业人员应该认识到,本申请所描述的化学反应可以用来合适地制备许多本申请的其他化合物,且用于制备本申请的化合物的其它方法都被认为是在本申请的范围之内。例如,根据本申请那些非例证的化合物的合成可以成功地被所属领域的技术人员通过修饰方法完成,如适当的保护干扰基团,通过利用其他已知的试剂除了本申请所描述的,或将反应条件做一些常规的修改。另外,本申请所公开的反化合物合成。
第一化合物的制备
制备例1:化合物67的合成
(1)反应物B-1的合成
Figure PCTCN2021112152-appb-000081
向装有机械搅拌、温度计、球形冷凝管的三口瓶中通入氮气(0.100L/min)置换15min,依次 加入2-溴-6-硝基苯酚(50.0g,229.3mmol),苯甲醇(29.76g,275.2mmol),1,1'-双(二苯基膦)二茂铁(3.71g,6.8mmol)和二甲苯(500mL)开启搅拌和加热,待温度上升到125-135℃,回流反应36h,待反应完成后停止搅拌和加热,待温度降到室温时开始处理反应;加入甲苯和水萃取反应溶液,合并有机相,无水硫酸镁干燥有机层,过滤,进行浓缩;使用二氯甲烷/正庚烷体系对粗品进行硅胶柱色谱提纯,得到固体化合物反应物B-1(40.23g,64%)。
(2)中间体sub 1-I-A1的合成
Figure PCTCN2021112152-appb-000082
向装有机械搅拌、温度计、球形冷凝管的三口瓶中通入氮气(0.100L/min)置换15min,加入B-1(50.0g,182.40mmol)、间氯苯硼酸(31.37g,200.64mmol)(A-1)、碳酸钾(55.5g,401.3mmol)、四(三苯基膦)钯(4.2g,3.6mmol)、四丁基溴化铵(1.2g,3.6mmol),并加入甲苯(400mL)、乙醇(200mL)和水(100mL)的混合溶剂。开启搅拌并加热,待温度上升到75-80℃,回流反应8h,反应结束后,冷却至室温。用甲苯和水萃取分离有机相,水洗至中性,使用无水硫酸镁干燥有机相,过滤后将滤液减压蒸馏浓缩;使用二氯甲烷/正庚烷体系对粗品进行硅胶柱色谱提纯,得到固体化合物中间体sub1-I-A1(39.6g,71%)。
(3)中间体sub A-1的合成
Figure PCTCN2021112152-appb-000083
向装有机械搅拌、温度计、球形冷凝管的三口瓶中通入氮气(0.100L/min)置换15min,加入中间体sub 1-I-A1(35.0g,114.5mmol)、吲哚并[2,3-A]咔唑(35.3g,137.6mmol)、Pd 2(dba) 3(2.1g,2.3mmol)、三叔丁基膦(0.92g,4.6mmol)、叔丁醇钠(27.5g,286.2mmol)、二甲苯(500mL)。开启搅拌并加热,待温度上升到135-145℃,回流反应10h,反应结束后,冷却至室温。反应液水洗后分离有机相,使用无水硫酸镁干燥有机相,过滤后将滤液减压蒸馏除去溶剂,使用二氯甲烷/乙醇体系对粗品进行重结晶,得到白色固体中间体sub A-1(45.1g,75%)。
参照中间体sub A-1的合成方法,合成下表1所示的中间体sub A-X,合成如下表1所示的中间体sub A-X(X为2-6、8、10-11或15-18)。其中下表1所示的中间体sub A-2至中间体sub A-6、sub A-8及sub A-10参照中间体sub A-1的第(2)步和第(3)反应合成,将反应物A-X(X为1-5)代替反应物A-1,反应物B-X(X为1-2、4、6)代替反应物B-1,而表1所示的中间体sub A-11、sub A-15至sub A-18参照sub A-1的第(3)步反应,将化反应物B-X(X为7或11-14)代替反应物B-1。
表1
Figure PCTCN2021112152-appb-000084
Figure PCTCN2021112152-appb-000085
(4)化合物67的合成
Figure PCTCN2021112152-appb-000086
向装有机械搅拌、温度计、球形冷凝管的三口瓶中通入氮气(0.100L/min)置换15min,加入中间体sub A-1(20.0g,38.0mmol)、2-氯-4,6-二苯基-1,3,5-三嗪(35.3g,137.6mmol)(反应物C-1)、DMF(200mL),降温至0℃,加入NaH(1.0g,41.8mmol)后体系由白色变成黄色,自然升至室温有固体析出,反应结束。反应液水洗后过滤得到固体产物,用少量乙醇进行淋洗,粗品利用甲苯进行重结晶,得到化合物67(13.2g,46%)。质谱:m/z=757.26[M+H] +
参照化合物67的合成方法,合成下表2所示的化合物,其中,中间体sub A-X(X为1-6、8、10-11或15-18)代替中间体sub A-1,其中反应物C-X(X为1-7、9-10或12-14)代替反应物C-1,合成如下表2所示的化合物。
表2
Figure PCTCN2021112152-appb-000087
Figure PCTCN2021112152-appb-000088
[根据细则26改正09.10.2021] 
Figure WO-DOC-FIGURE-62
制备例21:化合物257的合成
(1)中间体sub 1-I-A11的合成
Figure PCTCN2021112152-appb-000090
向装有机械搅拌、温度计、球形冷凝管的三口瓶中通入氮气(0.100L/min)置换15min,加入2,5-二氯苯并噁唑(35.0g,186.1mmol)(反应物B-15)、2-萘硼酸(32.0,186.1mmol)(反应物A-8)、碳酸钾(64.3g,465.4mmol)、四(三苯基膦)钯(4.3g,3.7mmol)、四丁基溴化铵(1.2g,3.72mmol),并加入甲苯(280mL)、乙醇(70mL)和水(70mL)的混合溶剂。开启搅拌并加热,待温度上升到75-80℃,回流反应15h,反应结束后,冷却至室温。用甲苯和水萃取分离有机相,水洗至中性,使用无水硫酸镁干燥有机相,过滤后将滤液减压蒸馏浓缩;使用二氯甲烷/正庚烷体系对粗品进行硅胶柱色谱提纯,得到固体化合物中间体sub1-I-A11(31.7g,61%)。
参照中间体sub1-I-A11的合成方法,合成下表3所示的中间体,其中反应物B-X代替反应物B-1(X为15、16或17),其中反应物A-X(X为9、10、11或14)代替反应物A-8,合成如下表3所示的中间体sub1-I-AX(X为12、13、14或17)。
表3
Figure PCTCN2021112152-appb-000091
(2)化合物257的合成
参照化合物67的合成方法,合成下表4所示的化合物,其中,中间体sub1-I-AX(X为11、12、13、14或17)代替中间体sub1-I-A1,其中反应物C-X(X为1、2、4或14-18)代替反应物C-1,合成如下表4所示的化合物。
表4
Figure PCTCN2021112152-appb-000092
Figure PCTCN2021112152-appb-000093
制备例31化合物121的合成
(1)中间体sub A-19的合成
Figure PCTCN2021112152-appb-000094
向装有机械搅拌、温度计、球形冷凝管的三口瓶中通入氮气(0.100L/min)置换15min,加入哚并[2,3-A]咔唑(50.0g,195.1mmol)、溴苯(27.5g,175.5mmol)(反应物D-1)、Pd 2(dba) 3(3.5g,3.9mmol)、三叔丁基膦(1.6g,7.8mmol)、叔丁醇钠(41.2g,429.2mmol)、二甲苯(500mL)。开启搅拌并加热,待温度上升到135-145℃,回流反应10h,反应结束后,冷却至室温。加入甲苯和水萃取反应溶液,使用无水硫酸镁干燥有机相,过滤后将滤液减压蒸馏浓缩,使用二氯甲烷/正庚烷体系对粗品进行硅胶柱色谱提纯,得到固体中间体sub A-19(47.3g,73%)。
参照中间体sub A-19的合成方法,合成下表5所示的中间体,其中反应物D-X代替反应物D-1(X为2-6或8),合成如下表5所示的中间体sub A-X(X为20-24或26)。
表5
Figure PCTCN2021112152-appb-000095
Figure PCTCN2021112152-appb-000096
(2)中间体sub B-1的合成
Figure PCTCN2021112152-appb-000097
向装有机械搅拌、温度计、球形冷凝管的三口瓶中通入氮气(0.100L/min)置换15min,依次加入反应物B-1(55.0g,200.6mmol),联硼酸频哪醇酯(76.4g,300.9mmol),1,4二氧六环(600mL),乙酸钾(49.2g,501.6mmol),x-phos(1.9g,4.0mmol),Pd 2(dba) 3(1.8g,2.0mmol),加热至95-105℃回流反应14h,反应结束后,冷却至室温。加入甲苯和水萃取反应溶液,使用无水硫酸镁干燥有机相,过滤后将滤液减压蒸馏浓缩,生成物用乙醇打浆,过滤得到中间体sub 1-I-B1(54.1g,84%)。
Figure PCTCN2021112152-appb-000098
向装有机械搅拌、温度计、球形冷凝管的三口瓶中通入氮气(0.100L/min)置换15min,依次加入中间体sub 1-I-B1(45.5g,141.5mmol),2,4-二氯-6-苯基-1,3,5-三嗪(40.0g,176.9mmol)(反应物C-19),四(三苯基膦)钯(2.0g,1.7mmol),碳酸钾(61.1g,442.3mmol),四丁基溴化铵(1.1g,3.5mmol),四氢呋喃(320mL)和去离子水(80mL);开启搅拌和加热,待温度上升到60-70℃,回流反应10h,反应结束后,冷却至室温。用甲苯和水进行萃取,合并有机相,用无水硫酸镁进行干燥,过滤浓缩,使用二氯甲烷/正庚烷体系对粗品进行硅胶柱色谱提纯,得到固体中间体sub B-1(38.1g,收率56%)。
参照中间体sub B-1的合成方法,合成下表6所示的中间体,其中反应物C-X代替反应物C-19(X为20、22、23或24),合成如下表6所示的中间体sub B-X(X为2、4、5或6)。
表6
Figure PCTCN2021112152-appb-000099
Figure PCTCN2021112152-appb-000100
(3)化合物121的合成
Figure PCTCN2021112152-appb-000101
向装有机械搅拌、温度计、球形冷凝管的三口瓶中通入氮气(0.100L/min)置换15min,加入中间体sub A-19(20.0g,60.2mmol)、中间体sub B-1(27.7g,72.2mmol)、DMF(200mL),降温至0℃,加入NaH(1.6g,66.2mmol)后体系由白色变成黄色,自然升至室温有固体析出,反应结束。反应液水洗后过滤得到固体产物,用少量乙醇进行淋洗,粗品利用甲苯进行重结晶,得到化合物121(23.3g,57%)。质谱:m/z=681.23[M+H] +
参照化合物121的合成方法,合成下表7所示的化合物,其中,中间体sub A-X(X为19、22-24或26)代替中间体sub A-19,中间体sub B-X(X为2或4-6)代替中间体sub B-1,合成如下表7所示的化合物。
表7
Figure PCTCN2021112152-appb-000102
Figure PCTCN2021112152-appb-000103
制备例37化合物667的合成
(1)中间体sub B-7的合成
Figure PCTCN2021112152-appb-000104
向装有机械搅拌、温度计、球形冷凝管的三口瓶中通入氮气(0.100L/min)置换15min,依次加入反应物B-2(30.0g,195.3mmol),联硼酸频哪醇酯(74.4g,293.0mmol),1,4二氧六环(600mL),乙酸钾(38.3g,390.70mmol),x-phos(1.8g,3.9mmol),Pd 2(dba) 3(1.7g,1.9mmol),加热至95-105℃回流反应14h,反应结束后,冷却至室温。加入甲苯和水萃取反应溶液,使用无水硫酸镁干燥有机相,过滤后将滤液减压蒸馏浓缩,生成物用乙醇打浆,过滤得到中间体sub 1-I-B7(29.2g,61%)。
Figure PCTCN2021112152-appb-000105
向装有机械搅拌、温度计、球形冷凝管的三口瓶中通入氮气(0.100L/min)置换15min,依次加入中间体sub 1-I-B7(25.0g,102.0mmol),2,4-二氯-6-苯基-1,3,5-三嗪(23.0g,102.0mmol)(反应物C-13),四(三苯基膦)钯(2.3g,2.0mmol),碳酸钾(28.2g,204.0mmol),四丁基溴化铵(0.6g,2.0mmol),四氢呋喃(100ml)和去离子水(25ml);开启搅拌和加热,待温度上升到60-70℃,回流反应10h,反应结束后,冷却至室温。用甲苯和水进行萃取,合并有机相,用无水硫酸镁进行干燥,过滤浓缩,使用二氯甲烷/正庚烷体系对粗品进行硅胶柱色谱提纯,得到固体中间体sub B-7(17.3g,收率55%)。
参照中间体sub B-7的合成方法,合成下表8所示的中间体,其中反应物C-X(X为20)代替反应物C-19,反应物B-X(X为7或11)代替反应物B-7,合成如下表8所示的中间体sub B-X(X为8或9)。
表8
Figure PCTCN2021112152-appb-000106
Figure PCTCN2021112152-appb-000107
(2)化合物667的合成
参照化合物121的合成方法,合成下表9所示的化合物,其中,中间体sub A-X(X为19-21)代替中间体sub A-19,中间体sub B-X(X为7-8)代替中间体sub B-1,合成如下表9所示的化合物。
表9
Figure PCTCN2021112152-appb-000108
制备例40化合物665的合成
(1)中间体sub A-29的合成
Figure PCTCN2021112152-appb-000109
向装有机械搅拌、温度计、球形冷凝管的三口瓶中通入氮气(0.100L/min)置换15min,依次加入(5-氯-3-联苯)硼酸(45.0g,193.5mmol)(反应物A-5),2-氯苯并噁唑(29.7g,193.5mmol)(反应物A-7),四(三苯基膦)钯(4.4g,3.8mmol),碳酸钾(53.5g,387.1mmol),四丁基溴化铵(1.2g,3.8mmol),四氢呋喃(180mL)和去离子水(45mL);开启搅拌和加热,待温度上升到66℃,回流反应15h,反应结束后,冷却至室温。用甲苯和水进行萃取,合并有机相,用无水硫酸镁进行干燥,过滤浓缩,使用二氯甲烷/正庚烷体系对粗品进行硅胶柱色谱提纯,得到固体中间体sub A-I-29(32.5g,收率55%)。
Figure PCTCN2021112152-appb-000110
向装有机械搅拌、温度计、球形冷凝管的三口瓶中通入氮气(0.100L/min)置换15min,加入中间体sub A-I-29(20.0g,65.4mmol)、吲哚并[2,3-A]咔唑(20.1g,78.5mmol)、Pd 2(dba) 3(0.6g,0.6mmol)、三叔丁基膦(0.3g,1.3mmol)、叔丁醇钠(12.5g,130.8mmol)、二甲苯(200mL)。开启搅拌并加热,待温度上升到140℃,回流反应5h,反应结束后,冷却至室温。反应液水洗后分离有机相,使用无水硫酸镁干燥有机相,过滤后将滤液减压蒸馏除去溶剂,使用二氯甲烷/乙醇体系对粗品进行重结晶,得到白色固体中间体sub A-29(20.9g,61%)。
参照中间体sub A-I-29的合成方法,合成下表10所示的中间体,其中反应物A-X(12或15)代替反应物A-5,合成如下表10所示的中间体sub A-I-X(X为30或33)。
表10
Figure PCTCN2021112152-appb-000111
(2)化合物665的合成
参照化合物67的合成方法,合成下表11所示的化合物,其中,中间体sub A-X(X为29-30 或33)代替中间体sub A-1,其中反应物C-X(X为1、2或4)代替反应物C-1,合成如下表11所示的化合物。
表11
Figure PCTCN2021112152-appb-000112
部分化合物核磁数据如下表12所示
表12
Figure PCTCN2021112152-appb-000113
制备例44:第二化合物的制备
化合物II-1的合成
(1)中间体c I-1的合成
Figure PCTCN2021112152-appb-000114
向装有机械搅拌、温度计、球形冷凝管的三口瓶中通入氮气(0.100L/min)置换15min,加入3-溴咔唑(50.0g,203.1mmol)(反应物A-1)、4-碘联苯(58.0g,207.2mmol)(反应物B-1)、碘化亚铜(CuI)(7.7g,40.6mmol)、碳酸钾(K 2CO 3)(61.7g,446.9mmol)、18-冠醚-6(5.4g,20.3mmol)、干燥过的DMF(500mL)。开启搅拌并加热,待温度上升到145-155℃,回流反应18h,反应结束后,冷却至室温。萃取反应溶液,使用无水硫酸镁干燥有机相,过滤后将滤液减压蒸馏浓缩,使用二氯甲烷/正庚烷体系对粗品进行硅胶柱色谱提纯,得到固体中间体c I-1(42.8g,53%)。
参照中间体c I-1的合成方法,合成下表13所示的中间体,其中反应物A-X代替反应物A-1(X为1、4或5),反应物B-M代替反应物B-1(M为1-7、9、12-17或20-22),合成如下表13所示的中间体c I-Z(Z为2-7、9或12-22)。
表13
Figure PCTCN2021112152-appb-000115
Figure PCTCN2021112152-appb-000116
Figure PCTCN2021112152-appb-000117
(2)中间体c II-1的合成
Figure PCTCN2021112152-appb-000118
向装有机械搅拌、温度计、恒压滴加漏斗的三口瓶中通氮气(0.100L/min)置换15min,加入中间体c I-1(30.0g,75.3mmol)和四氢呋喃(300mL),液氮降温至-80至-90℃,滴加正丁基锂(5.3g,82.8mmol)的四氢呋喃溶液,滴加完毕后保温搅拌1h,保持-80至-90℃,滴加硼酸三甲酯(9.4g,90.4mmol),滴加完毕后保温1小时后升至室温,搅拌反应24小时;向反应液中加入盐酸的水溶液,搅拌0.5小时,二氯甲烷和水进行分液萃取,有机相使用水洗至中性,加入无水硫酸镁干燥有机相,过滤后将滤液减压蒸馏除去溶剂;使用正庚烷打浆提纯,得到白色固体产物中间体c II-1(15.0g,55%)。
参照中间体c II-1的合成方法,合成下表14所示的中间体,其中中间体c I-Y代替中间体c I-1(Y为2-7、9、12-14或17-20),合成如下表14所示的中间体c II-X(X为2-7、9、12-14或17-20)。
表14
Figure PCTCN2021112152-appb-000119
Figure PCTCN2021112152-appb-000120
Figure PCTCN2021112152-appb-000121
(3)化合物II-1的合成
Figure PCTCN2021112152-appb-000122
向装有机械搅拌、温度计、球形冷凝管的三口瓶中通入氮气(0.100L/min)置换15min,加入中间体c I-1(10.0g,25.1mmol)、中间体c II-1(10.0g,27.6mmol)、碳酸钾(8.6g,62.7mmol)、四(三苯基膦)钯(1.4g,1.2mmol)、四丁基溴化铵(1.6g,5.0mmol),并加入甲苯(100mL)、乙醇(50mL)和水(25mL)的混合溶剂。开启搅拌并加热,待温度上升到75-80℃,回流反应18h,反应结束后,冷却至室温。萃取分离有机相,水洗至中性,使用无水硫酸镁干燥有机相,过滤后将滤液减压蒸馏浓缩;使用二氯甲烷/正庚烷体系对粗品进行硅胶柱色谱提纯,得到固体化合物II-1(9.9g,62%),质谱:m/z=637.26[M+H] +
参照化合物II-1的合成方法,合成下表15所示的化合物,其中,中间体c I-X(X为1-2、4-7、9、14-16或21-22)代替中间体c I-1,中间体c II-X(X为1-4、12-13或17-20)代替中间体c II-1,合成如下表15所示的化合物。
表15
Figure PCTCN2021112152-appb-000123
Figure PCTCN2021112152-appb-000124
Figure PCTCN2021112152-appb-000125
Figure PCTCN2021112152-appb-000126
Figure PCTCN2021112152-appb-000127
有机电致发光器件的制备和性能评估
实施例1
绿色有机电致发光器件
将厚度为
Figure PCTCN2021112152-appb-000128
的阳极100ITO基板切割成40mm(长)×40mm(宽)×0.7mm(厚)的尺寸,采用光刻工序,将其制备成具有阴极200、阳极100以及绝缘层图案的实验基板,利用紫外臭氧以及O 2:N 2等离子进行表面处理,以增加阳极100(实验基板)的功函数,并采用有机溶剂清洗ITO基板表面,以清除ITO基板表面的浮渣及油污。
在实验基板上真空蒸镀化合物F4-TCNQ(结构式见下文)以形成厚度为
Figure PCTCN2021112152-appb-000129
的空穴注入层310(HIL);并在空穴注入层310上方真空蒸镀化合物NPB(结构式见下文),以形成厚度为
Figure PCTCN2021112152-appb-000130
的第一空穴传输层321(HTL1);在第一空穴传输层321(HTL1)上真空蒸镀PAPB,形成厚度为
Figure PCTCN2021112152-appb-000131
的第二空穴传输层322(HTL2)。
在第二空穴传输层上,将组合物GH-1-1和Ir(mppy) 3以100%:10%(蒸镀速率)的比例进行共同蒸镀,形成厚度为
Figure PCTCN2021112152-appb-000132
的绿色有机电致发光层(EML)。
将ET-06和LiQ以1∶1的重量比进行混合并蒸镀形成
Figure PCTCN2021112152-appb-000133
厚的电子传输层350(ETL),接着将Yb蒸镀在电子传输层上,形成厚度为
Figure PCTCN2021112152-appb-000134
的电子注入层360(EIL)。
将镁(Mg)和银(Ag)以1:10的膜厚比真空蒸镀在电子注入层上,形成厚度为
Figure PCTCN2021112152-appb-000135
的阴极200。
此外,在上述阴极200上作为保护层蒸镀一层厚度为
Figure PCTCN2021112152-appb-000136
的CP-05,形成覆盖层(CPL),从而完成有机发光器件的制造。
其中,F4-TCNQ、NPB、PAPB、Ir(mppy) 3、ET-06、LiQ、CP-05、化合物A、化合物B的结构式如下表16所示:
表16
Figure PCTCN2021112152-appb-000137
实施例2-53
除了在形成有机电致发光层时,分别以下表17中所示的GH-X-Y类主体材料组合物替代主体材料组合物GH-1-1以外,利用与实施例1相同的方法制作有机电致发光器件。
比较例1-4
除了在形成有机电致发光层时,以下表17中所示的GH-X-Y类主体材料组合物替代主体材料组合物GH-1-1以外,利用与实施例1相同的方法制作有机电致发光器件。
以上实施例和对比例中,所使用的主体材料组合物GH-X-Y分别是将制备例1~43中的第一化合物和制备例44~64中第二化合物通过混合得到,具体组成如表17所示,其中,质量比是指表格中前列所示化合物与后列所示化合物的质量百分含量的比值。以组合物GH-1-1为例说明,结合表17可知,GH-1-1是由化合物67和化合物II-6按照40:60的质量比混合而成;以主体材料GH-D1-1为例,结合表17可知,GH-D1-1是由化合物A与化合物II-1按照40∶60的质量比混合而成。
对如上制得的有机电致发光器材,在20mA/cm 2的条件下测试了器件的IVL性能,T95器件寿命同样在20mA/cm 2的条件下进行测试,其结果示于表17。
表17绿色有机电致发光器件的性能测试结果
Figure PCTCN2021112152-appb-000138
Figure PCTCN2021112152-appb-000139
Figure PCTCN2021112152-appb-000140
Figure PCTCN2021112152-appb-000141
Figure PCTCN2021112152-appb-000142
根据表17的结果可知,本申请组合物作为有机电致发光层主体材料,与比较例1-4相比,实施例1-53制备的有机电致发光器件的各项性能均有所提高。本申请组合物作为有机电致发光层主体时相比于比较例1-4的有机电致发光层主体组合物,在配比相差不大的情况下,T95寿命至少提高了15.3%,电流效率至少提高了11.2%,功率效率至少提高了14.9%,外量子效率至少提高了11.2%。可见,采用本申请的组合物作为有机电致发光层主体材料的有机电致发光器件显示出更高的发光效率和更长的使用寿命,同时也兼具较低的驱动电压。
由上述数据可知,采用本申请的组合物作为电子元件的有机电致发光层主体材料,该电子元件的发光效率(Cd/A)、外量子效率(EQE)以及寿命(T95)都有显著的提高。特别是,当第一化合物的质量百分含量在40%~60%,第二化合物质量百分含量在40%~60%时,有机电致发光器件具备更优秀的性能。因此,在有机电致发光层中使用本申请的组合物可制备得到高发光效率、长寿命的有机电致发光器件。

Claims (22)

  1. 一种用于有机光电器件的组合物,其特征在于,所述组合物包括第一化合物和第二化合物;
    以组合物的总重量为基准,所述第一化合物的质量百分含量为1%~99%,所述第二化合物的质量百分含量为1%~99%;
    所述第一化合物由式I表示:
    Figure PCTCN2021112152-appb-100001
    其中,
    Figure PCTCN2021112152-appb-100002
    表示化学键,A和B相同或不同,且分别独立地选自碳原子数为6-30的取代或未取代的芳基、碳原子数为3-30的取代或未取代的杂芳基、式I-1所示的基团或式I-2所示的基团,且A和B中至少有一个选自式I-1所示的基团或式I-2所示的基团;
    U 1、U 2和U 3相同或不同,且分别独立地选自N或C(R),且U 1、U 2和U 3中的至少一个为N;
    各R、R 1、R 2、R 3、R 4、R 5分别独立地选自氢、氘、卤素基团、氰基、碳原子数为6-12的芳基、碳原子数为5-12的杂芳基、碳原子数为1-5的烷基、碳原子数为1-5的卤代烷基、碳原子数为3-10的环烷基;
    n 1表示取代基R 1的个数,n 1选自1、2或3,当n 1大于1时,任意两个R 1相同或不同;
    n 2表示取代基R 2的个数,n 2选自1、2、3或4,当n 2大于1时,任意两个R 2相同或不同,任选地,任意两个相邻的R 2形成环;
    n 3表示取代基R 3的个数,n 3选自1、2、3或4,当n 3大于1时,任意两个R 3相同或不同;
    n 4表示取代基R 4的个数,n 4选自1或2,当n 4为2时,任意两个R 4相同或不同;
    n 5表示取代基R 5的个数,n 5选自1、2、3或4,当n 5大于1时,任意两个R 5相同或不同;
    X选自S或O;
    L、L 1、L 2、L 3和L 4相同或不同,且分别独立地选自单键、碳原子数为6-30的取代或未取代的亚芳基、碳原子数为3-30的取代或未取代的亚杂芳基;
    Ar 1和Ar 2相同或不同,且分别独立地选自碳原子数为6-30的取代或未取代的芳基、碳原子数为3-30的取代或未取代的杂芳基;
    所述A、B、L、L 1、L 2、L 3、L 4、Ar 1和Ar 2中的取代基相同或不同,且分别独立地选自氘、卤素基团、氰基、碳原子数为3-20的杂芳基、碳原子数为6-20的芳基、碳原子数为3-12的三烷基硅基、碳原子数为1-10的烷基、碳原子数为1-10的卤代烷基、碳原子数为3-10的环烷基、碳原子数为2-10的杂环烷基或碳原子数为1-10的烷氧基;
    任选地,在Ar 1和Ar 2中,任意两个相邻的取代基形成环;
    所述第二化合物由式II表示;
    Figure PCTCN2021112152-appb-100003
    其中,
    Figure PCTCN2021112152-appb-100004
    表示化学键,
    各R 6、R 7、R 8、R 9分别独立地选自氢、氘、卤素基团、氰基、碳原子数为6-25的芳基、碳原子数为5-25的杂芳基、碳原子数为1-10的烷基、碳原子数为1-10的卤代烷基、碳原子为3-10的环烷基;
    n 6表示取代基R 6的个数,n 6选自1、2、3或4,当n 6大于1时,任意两个R 6相同或不同;
    n 7表示取代基R 7的个数,n 7选自1、2或3,当n 7大于1时,任意两个R 7相同或不同;
    n 8表示取代基R 8的个数,n 8选自1、2或3,当n 8大于1时,任意两个R 8相同或不同;
    n 9表示取代基R 9的个数,n 9选自1、2、3或4,当n 9大于1时,任意两个R 9相同或不同;
    L 5和L 6相同或不同,且分别独立地选自单键、碳原子数为6-30的取代或未取代的亚芳基、碳原子数为3-30的取代或未取代的亚杂芳基;
    Ar 5和Ar 6相同或不同,且分别独立地选自碳原子数为6-30的取代或未取代的芳基、碳原子数为3-30的取代或未取代的杂芳基;
    L 5、L 6、Ar 5和Ar 6中的取代基相同或不同,且分别独立地选自氘、卤素基团、氰基、碳原子数为3-20的杂芳基、碳原子数为6-20的芳基、碳原子数为3-12的三烷基硅基、碳原子数为1-10的烷基、碳原子数为1-10的卤代烷基、碳原子数为3-10的环烷基、碳原子数为2-10的杂环烷基或碳原子数为1-10的烷氧基;
    任选地,在Ar 5和Ar 6中,任意两个相邻的取代基形成环。
  2. 根据权利要求1所述的用于有机光电器件的组合物,其特征在于,所述第一化合物中,所述A和B分别独立地选自碳原子数为6-25的取代或未取代的芳基、碳原子数为5-20的取代或未取代的杂芳基、式I-1所示的基团或式I-2所示的基团,且A和B中有且仅有一个选自式I-1所示的基团或式I-2所示的基团;
    优选地,所述A和B中的取代基分别独立地选自氘、卤素基团、氰基、碳原子数为6-12的芳基、碳原子数为5-12的杂芳基、碳原子数为1-5的烷基或碳原子3-10的环烷基。
  3. 根据权利要求1所述的用于有机光电器件的组合物,其特征在于,所述第一化合物中,所述A和B分别独立地选自取代或未取代的苯基、取代或未取代的萘基、取代或未取代的联苯基、取代或未取代的菲基、取代或未取代的蒽基、取代或未取代的吡啶基、取代或未取代的苯并菲基、取代或未取代的螺二芴基、取代或未取代的吡啶基、取代或未取代的喹啉基、取代或未取代的异喹啉基、取代或未取代的二苯并呋喃基、取代或未取代的咔唑基、取代或未取代的二苯并噻吩基、取代或未取代的芴基、取代或未取代的芘基、取代或未取代的菲咯啉基、式I-1所示的基团或式I-2所示的基团,且A和B中有且仅有一个选自式I-1所示的基团或式I-2所示的基团;
    优选地,所述A和B中的取代基分别独立地选自氘、氟、氰基、甲基、乙基、正丙基、异丙基、叔丁基、苯基、萘基、联苯基、吡啶基、咔唑基、二苯并呋喃基、二苯并噻吩基、环戊烷基或环己烷基。
  4. 根据权利要求1所述的用于有机光电器件的组合物,其特征在于,所述第一化合物中,所述L、L 1、L 2、L 3和L 4相同或不同,且分别独立地选自单键、碳原子数为6-20的取代或未取代的亚芳基、碳原子数为5-20的取代或未取代的亚杂芳基;
    优选地,所述L、L 1、L 2、L 3和L 4中的取代基分别独立地选自氘、卤素基团、氰基、碳原子 数为6-12的芳基或碳原子数为1-5的烷基。
  5. 根据权利要求1所述的用于有机光电器件的组合物,其特征在于,所述第一化合物中,所述L、L 1、L 2、L 3和L 4相同或不同,且分别独立地选自单键、取代或未取代的亚苯基、取代或未取代的亚萘基、取代或未取代的亚联苯基、取代或未取代的亚吡啶基、取代或未取代的亚二苯并呋喃基、取代或未取代的亚二苯并噻吩基、取代或未取代的亚芴基、取代或未取代的亚咔唑基、取代或未取代的亚蒽基;
    优选地,所述L、L 1、L 2、L 3和L 4中的取代基分别独立地选自氘、氰基、氟、甲基、乙基、正丙基、异丙基、叔丁基或苯基。
  6. 根据权利要求1所述的用于有机光电器件的组合物,其特征在于,所述第一化合物中,所述L、L 1、L 2、L 3和L 4相同或不同,且分别独立地选自单键或者取代或未取代的基团V,未取代的基团V选自如下基团所组成的组:
    Figure PCTCN2021112152-appb-100005
    其中,
    Figure PCTCN2021112152-appb-100006
    表示化学键;取代的基团V上具有一个或多个取代基,所述取代基各自独立地选自氘、氰基、氟、甲基、乙基、正丙基、异丙基、叔丁基或苯基;当基团V中的取代基个数大于1时,各取代基相同或不同。
  7. 根据权利要求1所述的用于有机光电器件的组合物,其特征在于,所述第一化合物中,所述Ar 1和Ar 2各自独立地选自碳原子数为6-25的取代或未取代的芳基、碳原子数为4-20的取代或未取代的杂芳基;
    优选地,所述Ar 1中的取代基分别独立地选自氘、卤素基团、氰基、碳原子数为6-12的芳基、碳原子数为5-12的杂芳基、碳原子数为1-5的烷基或碳原子3-10的环烷基;
    任选地,所述Ar 1中的任意两个相邻的取代基形成碳原子数为5-13的饱和或不饱和环;
    优选地,所述Ar 2中的取代基分别独立地选自氘、卤素基团、氰基、碳原子数为6-12的芳基、碳原子数为5-12的杂芳基、碳原子数为1-5的烷基、碳原子数为1-5的卤代烷基或碳原子为3-10的环烷基;
    任选地,所述Ar 2中的任意相邻的两个取代基形成碳原子数为5-13的饱和或不饱和环。
  8. 根据权利要求1所述的用于有机光电器件的组合物,其特征在于,所述第一化合物中,所述Ar 1和Ar 2各自独立地选自取代或未取代的苯基、取代或未取代的联苯基、取代或未取代的萘基、取代或未取代的二苯并呋喃基,取代或未取代的二苯并噻吩基、取代或未取代的芴基、取代或未取代的N-苯基咔唑基、取代或未取代的咔唑基、取代或未取代的菲基、取代或未取代的蒽基、取代或未取代的三联苯基、取代或未取代的吡啶基、取代或未取代的芘基、取代或未取代的喹啉基、取代或未取代异喹啉基、取代或未取代的菲咯啉基、取代或未取代的苯并菲基、取代或未取代的呋喃基、取代或未取代的噻吩基或取代或未取代的以下基团:
    Figure PCTCN2021112152-appb-100007
    优选地,所述Ar 1和Ar 2中的取代基分别独立地选自氘、氰基、氟、甲基、乙基、正丙基、异丙基、叔丁基、苯基、萘基、联苯基或咔唑基。
  9. 根据权利要求1所述的用于有机光电器件的组合物,其特征在于,所述第一化合物中,所述Ar 1和Ar 2各自独立地选自取代或未取代的基团W 1,未取代的基团W 1选自如下基团组成的组:
    Figure PCTCN2021112152-appb-100008
    其中,
    Figure PCTCN2021112152-appb-100009
    表示化学键;取代的基团W 1上具有一个或多个取代基,所述取代基各自独立地选自氘、氰基、氟、甲基、乙基、正丙基、异丙基、叔丁基、苯基、萘基、联苯基或咔唑基;当基团W 1中的取代基个数大于1时,各取代基相同或不同。
  10. 根据权利要求1所述的用于有机光电器件的组合物,其特征在于,所述第一化合物中,各R、R 1、R 2、R 3、R 4、R 5分别独立地选自氢、氘、氟、氰基、甲基、乙基、正丙基、异丙基、叔丁基、苯基、吡啶基、三氟甲基或联苯基;或者,任意两个相邻的R 2形成苯环、萘环或菲环。
  11. 根据权利要求1所述的用于有机光电器件的组合物,其中,所述第一化合物选自如下化合物所形成的组:
    Figure PCTCN2021112152-appb-100010
    Figure PCTCN2021112152-appb-100011
    Figure PCTCN2021112152-appb-100012
    Figure PCTCN2021112152-appb-100013
    Figure PCTCN2021112152-appb-100014
    Figure PCTCN2021112152-appb-100015
    Figure PCTCN2021112152-appb-100016
    Figure PCTCN2021112152-appb-100017
    Figure PCTCN2021112152-appb-100018
    Figure PCTCN2021112152-appb-100019
    Figure PCTCN2021112152-appb-100020
    Figure PCTCN2021112152-appb-100021
    Figure PCTCN2021112152-appb-100022
    Figure PCTCN2021112152-appb-100023
    Figure PCTCN2021112152-appb-100024
    Figure PCTCN2021112152-appb-100025
    Figure PCTCN2021112152-appb-100026
    Figure PCTCN2021112152-appb-100027
    Figure PCTCN2021112152-appb-100028
    Figure PCTCN2021112152-appb-100029
    Figure PCTCN2021112152-appb-100030
    Figure PCTCN2021112152-appb-100031
    Figure PCTCN2021112152-appb-100032
    Figure PCTCN2021112152-appb-100033
    Figure PCTCN2021112152-appb-100034
    Figure PCTCN2021112152-appb-100035
  12. 根据权利要求1所述的用于有机光电器件的组合物,其特征在于,所述第二化合物中,各R 6、R 7、R 8、R 9分别独立地选自氢、氘、卤素基团、氰基、碳原子数为6-18的芳基、碳原子数为5-12的杂芳基、碳原子数为1-5的烷基、碳原子数为1-5的卤代烷基、碳原子为3-6的环烷基;
    优选地,各R 6、R 7、R 8、R 9分别独立地选自氢、苯基、萘基、联苯基、二苯并噻吩基、芴基、菲基、三联苯基;
    进一步优选地,各R 6、R 7、R 8、R 9分别独立地选自氢或苯基。
  13. 根据权利要求1所述的用于有机光电器件的组合物,其特征在于,所述第二化合物中,所述L 5和L 6分别独立地选自单键、碳原子数为6-12的取代或未取代的亚芳基、碳原子数为3-20的取代或未取代的亚杂芳基;
    优选地,所述L 5和L 6分别独立地选自单键、碳原子数为6-12的取代或未取代的亚芳基、碳原子数为3-12的取代或未取代的亚杂芳基;
    优选地,所述L 5和L 6中的取代基分别独立地选自氘、卤素基团、氰基、碳原子数为1-5的烷 基、苯基。
  14. 根据权利要求1所述的用于有机光电器件的组合物,其特征在于,所述第二化合物中,所述L 5和L 6分别独立地选自单键、取代或未取代的亚苯基、取代或取代的亚萘基、取代或未取代的亚联苯基、取代或未取代的亚咔唑基;
    优选地,所述L 5和L 6中的取代基分别独立地选自氘、氟、氰基、甲基、乙基、正丙基、异丙基、叔丁基或苯基。
  15. 根据权利要求1所述的用于有机光电器件的组合物,其特征在于,所述第二化合物中,所述Ar 5和Ar 6分别独立地选自碳原子数为6-25的取代或未取代的芳基、碳原子数为5-12的取代或未取代的杂芳基;
    优选地,所述Ar 5和Ar 6中的取代基分别独立地选自氘、卤素基团、碳原子数为1-5的烷基、碳原子数为6-12的芳基;
    优选地,在Ar 5和Ar 6中,任意两个相邻的取代基形成碳原子数为5-13的饱和或不饱和环。
  16. 根据权利要求1所述的用于有机光电器件的组合物,其特征在于,所述第二化合物中,所述Ar 5和Ar 6分别独立地选自取代或未取代的苯基、取代或未取代的萘基、取代或未取代的联苯基、取代或未取代的三联苯基、取代或未取代的芴基、取代或未取代的菲基、取代或未取代的吡啶基、取代或未取代的二苯并呋喃基、取代或未取代的二苯并噻吩基、取代或未取代的咔唑基、取代或未取代的三亚苯基;
    优选地,所述Ar 5和Ar 6分别独立地选自取代或未取代的苯基、取代或未取代的萘基、取代或未取代的联苯基、取代或未取代的三联苯基、取代或未取代的芴基、取代或未取代的菲基、取代或未取代的吡啶基、取代或未取代的二苯并呋喃基、取代或未取代的二苯并噻吩基;
    优选地,所述Ar 5和Ar 6中的取代基分别独立地选自氘、氟、氰基、卤素基团、甲基、乙基、正丙基、异丙基、叔丁基、苯基、萘基、联苯基;
    任选地,在Ar 5和Ar 6中,任意两个相邻的取代基形成碳原子数为5-13的饱和或不饱和环。
  17. 根据权利要求1所述的用于有机光电器件的组合物,其特征在于,所述第二化合物中,所述Ar 5和Ar 6分别独立地选自取代或未取代的芴基、取代或未取代的菲基、取代或未取代的吡啶基。
  18. 根据权利要求1所述的用于有机光电器件的组合物,其中,所述第二化合物选自如下化合物所形成的组:
    Figure PCTCN2021112152-appb-100036
    Figure PCTCN2021112152-appb-100037
    Figure PCTCN2021112152-appb-100038
    Figure PCTCN2021112152-appb-100039
    Figure PCTCN2021112152-appb-100040
    Figure PCTCN2021112152-appb-100041
    Figure PCTCN2021112152-appb-100042
    Figure PCTCN2021112152-appb-100043
    Figure PCTCN2021112152-appb-100044
    Figure PCTCN2021112152-appb-100045
    Figure PCTCN2021112152-appb-100046
    Figure PCTCN2021112152-appb-100047
    Figure PCTCN2021112152-appb-100048
  19. 根据权利要求1所述的用于有机光电器件的组合物,所述组合物由第一化合物和第二化合物组成,其中以组合物的总重量为基准,所述第一化合物的质量百分含量为20%~80%,所述第二化合物的质量百分含量为20%~80%;
    优选地,所述第一化合物的质量百分含量为40%~60%,所述第二化合物的质量百分含量为40%~60%。
  20. 一种电子元件,其特征在于,所述电子元件包括阳极、阴极、以及介于阳极与阴极之间的至少一层功能层,所述功能层包含权利要求1-19中任意一项所述的组合物;
    优选地,所述功能层包括有机电致发光层,所述有机电致发光层包括所述组合物。
  21. 根据权利要求20所述的电子元件,其特征在于,所述电子元件为有机电致发光器件;
    优选地,所述有机电致发光器件为绿色有机电致发光器件。
  22. 一种电子装置,其特征在于,包括权利要求20或21所述的电子元件。
PCT/CN2021/112152 2021-04-13 2021-08-11 一种组合物及包含其的电子元件和电子装置 WO2022217791A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/011,723 US20230200233A1 (en) 2021-04-13 2021-08-11 Composition, electronic compoment and electronic device containing the composition

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110397589.3 2021-04-13
CN202110397589 2021-04-13
CN202110657299.8 2021-06-11
CN202110657299.8A CN113764604B (zh) 2021-04-13 2021-06-11 一种组合物及包含其的电子元件和电子装置

Publications (1)

Publication Number Publication Date
WO2022217791A1 true WO2022217791A1 (zh) 2022-10-20

Family

ID=78787447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/112152 WO2022217791A1 (zh) 2021-04-13 2021-08-11 一种组合物及包含其的电子元件和电子装置

Country Status (3)

Country Link
US (1) US20230200233A1 (zh)
CN (1) CN113764604B (zh)
WO (1) WO2022217791A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113764604B (zh) * 2021-04-13 2022-06-03 陕西莱特光电材料股份有限公司 一种组合物及包含其的电子元件和电子装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140326984A1 (en) * 2011-12-29 2014-11-06 Cheil Industries Inc. Compound for organic optoelectronic element, organic light-emitting element comprising same, and display device comprising the organic light-emitting element
CN104603232A (zh) * 2012-09-07 2015-05-06 罗门哈斯电子材料韩国有限公司 基质化合物和掺杂剂化合物的新颖组合及包含该组合的有机电致发光器件
WO2017078403A1 (en) * 2015-11-03 2017-05-11 Rohm And Haas Electronic Materials Korea Ltd. A plurality of host materials and organic electroluminescent device comprising the same
CN113764604A (zh) * 2021-04-13 2021-12-07 陕西莱特光电材料股份有限公司 一种组合物及包含其的电子元件和电子装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100721565B1 (ko) * 2004-11-17 2007-05-23 삼성에스디아이 주식회사 저분자 유기 전계 발광 소자 및 그의 제조 방법
JP5595082B2 (ja) * 2010-03-29 2014-09-24 キヤノン株式会社 新規なベンズオキサゾリルカルバゾール化合物およびそれを有する有機発光素子
KR102338908B1 (ko) * 2015-03-03 2021-12-14 삼성디스플레이 주식회사 유기 발광 소자
EP3279961B1 (en) * 2015-03-30 2023-07-19 NIPPON STEEL Chemical & Material Co., Ltd. Organic electroluminescent element
CN107382992A (zh) * 2017-08-09 2017-11-24 上海道亦化工科技有限公司 一种咔唑类有机电致发光化合物及其有机电致发光器件
US20190221750A1 (en) * 2018-01-12 2019-07-18 Samsung Electronics Co., Ltd. Condensed cyclic compound, composition including the same, and organic light-emitting device including the condensed cyclic compound
KR102231624B1 (ko) * 2018-09-04 2021-03-24 주식회사 엘지화학 유기 발광 소자
CN111848492B (zh) * 2020-03-25 2021-05-18 陕西莱特光电材料股份有限公司 一种有机化合物和使用其的器件、电子装置
KR20220161305A (ko) * 2020-03-31 2022-12-06 닛테츠 케미컬 앤드 머티리얼 가부시키가이샤 유기 전계 발광 소자
CN111848588B (zh) * 2020-07-17 2021-11-16 陕西莱特光电材料股份有限公司 一种有机化合物以及使用其的电子元件和电子装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140326984A1 (en) * 2011-12-29 2014-11-06 Cheil Industries Inc. Compound for organic optoelectronic element, organic light-emitting element comprising same, and display device comprising the organic light-emitting element
CN104603232A (zh) * 2012-09-07 2015-05-06 罗门哈斯电子材料韩国有限公司 基质化合物和掺杂剂化合物的新颖组合及包含该组合的有机电致发光器件
WO2017078403A1 (en) * 2015-11-03 2017-05-11 Rohm And Haas Electronic Materials Korea Ltd. A plurality of host materials and organic electroluminescent device comprising the same
CN113764604A (zh) * 2021-04-13 2021-12-07 陕西莱特光电材料股份有限公司 一种组合物及包含其的电子元件和电子装置

Also Published As

Publication number Publication date
CN113764604A (zh) 2021-12-07
US20230200233A1 (en) 2023-06-22
CN113764604B (zh) 2022-06-03

Similar Documents

Publication Publication Date Title
WO2022160661A1 (zh) 一种含氮化合物及包含其的电子元件和电子装置
WO2022083598A1 (zh) 一种含氮化合物以及使用其的电子元件和电子装置
WO2022206493A1 (zh) 有机化合物及包含其的电子元件和电子装置
WO2022213905A1 (zh) 有机化合物以及使用其的电子元件和电子装置
CN114133332B (zh) 有机化合物、电子元件及电子装置
WO2021233311A1 (zh) 有机化合物以及使用其的电子元件和电子装置
CN117384166A (zh) 含氮化合物及包含其的有机电致发光器件和电子装置
WO2022160928A1 (zh) 一种含氮化合物及包含其的电子元件和电子装置
WO2021082504A1 (zh) 含氮化合物、电子元件和电子装置
CN113233987B (zh) 一种含氮化合物及包含其的电子元件和电子装置
WO2023045729A1 (zh) 含氮化合物及电子元件和电子装置
WO2022100194A1 (zh) 含氮化合物、有机电致发光器件和电子装置
CN113214280B (zh) 有机化合物及包含其的电子器件和电子装置
WO2023231531A1 (zh) 含氮化合物、有机电致发光器件和电子装置
WO2022217791A1 (zh) 一种组合物及包含其的电子元件和电子装置
WO2023202198A1 (zh) 有机材料、电子元件和电子装置
WO2023216669A1 (zh) 有机化合物、有机电致发光器件和电子装置
WO2024007511A1 (zh) 芳胺化合物及有机电致发光器件和电子装置
WO2023134228A1 (zh) 含氮化合物及包含其的有机电致发光器件和电子装置
CN114335399B (zh) 有机电致发光器件及包括其的电子装置
CN113421980B (zh) 有机电致发光器件及包含其的电子装置
WO2024131005A1 (zh) 有机化合物、有机电致发光器件和电子装置
WO2024041079A1 (zh) 有机化合物、有机电致发光器件和电子装置
WO2022148197A1 (zh) 一种有机化合物以及使用其的电子元件和电子装置
CN115490603B (zh) 有机化合物及包含其的电子元件和电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21936663

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21936663

Country of ref document: EP

Kind code of ref document: A1