WO2022148197A1 - 一种有机化合物以及使用其的电子元件和电子装置 - Google Patents

一种有机化合物以及使用其的电子元件和电子装置 Download PDF

Info

Publication number
WO2022148197A1
WO2022148197A1 PCT/CN2021/135857 CN2021135857W WO2022148197A1 WO 2022148197 A1 WO2022148197 A1 WO 2022148197A1 CN 2021135857 W CN2021135857 W CN 2021135857W WO 2022148197 A1 WO2022148197 A1 WO 2022148197A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
substituted
unsubstituted
substituents
Prior art date
Application number
PCT/CN2021/135857
Other languages
English (en)
French (fr)
Inventor
张孔燕
马天天
张鹤鸣
Original Assignee
陕西莱特光电材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 陕西莱特光电材料股份有限公司 filed Critical 陕西莱特光电材料股份有限公司
Publication of WO2022148197A1 publication Critical patent/WO2022148197A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1033Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the present application relates to the technical field of organic electroluminescence, in particular, to an organic compound and electronic components and electronic devices using the same.
  • organic electroluminescent material As a new generation of display technology, organic electroluminescent material (OLED) has the advantages of ultra-thin, self-luminous, wide viewing angle, fast response, high luminous efficiency, good temperature adaptability, simple production process, low driving voltage, and low energy consumption. It has been widely used in flat panel display, flexible display, solid-state lighting and vehicle display industries.
  • the organic light-emitting phenomenon refers to a phenomenon in which an organic material is used to convert electrical energy into light energy.
  • An organic light-emitting device utilizing an organic light-emitting phenomenon generally has a structure including an anode, a cathode, and an organic material layer therebetween.
  • the organic material layer is usually formed in a multi-layer structure composed of different materials to improve the brightness, efficiency and lifetime of the organic electroluminescent device.
  • the organic material layer can be composed of a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer and an electron injection layer, etc.
  • an organic light-emitting device structure when a voltage is applied between two electrodes, holes and electrons are injected into the organic material layer from the anode and cathode, respectively, excitons are formed when the injected holes meet electrons, and when these excitons return Lights up in the ground state.
  • the main problems are the lifespan and efficiency. With the large area of the display, the driving voltage also increases, the luminous efficiency and power efficiency also need to be improved, and a certain service life must be guaranteed. Therefore, organic materials must solve these efficiency or lifetime problems, and new materials for organic electroluminescence devices with high efficiency, long lifetime and suitable for mass production need to be continuously developed.
  • the purpose of the present application is to provide an organic compound and an electronic component and electronic device using the same.
  • the organic compound can be used in an organic electroluminescent device to improve the performance of the organic electroluminescent device.
  • a first aspect of the present application provides an organic compound, the organic compound has the structure shown in the following formula 1:
  • a 1 and A 2 are independently selected from the structures represented by formula 2 or formula 3; m is 1 or 2;
  • L 1 , L 2 , L 3 , L 4 , L 5 , L 6 , L 7 and L 8 are the same or different, and are each independently selected from a single bond, substituted or unsubstituted with 6 to 30 carbon atoms Arylene, substituted or unsubstituted heteroarylene with 2 to 30 carbon atoms;
  • R 1 and R 2 are the same or different, and are independently selected from deuterium, halogen group, alkyl group with 1 to 10 carbon atoms, cycloalkyl group with 3 to 10 carbon atoms, and 1 carbon atom ⁇ 10 alkoxy groups, aryl groups with 6 to 30 carbon atoms, and heteroaryl groups with 3 to 30 carbon atoms;
  • n 1 represents the number of R 1 , n 1 is 0, 1, 2, 3 or 4;
  • n 2 represents the number of R 2 , n 2 is 0, 1, 2, 3 or 4;
  • n 3 represents the number of R 3 , n 2 is 0, 1, 2 or 3;
  • Ar 3 is selected from substituted or unsubstituted aryl groups with 6-30 carbon atoms, and substituted or unsubstituted heteroaryl groups with 3-30 carbon atoms;
  • Ar 1 and Ar 2 are the same or different, and are independently selected from substituted or unsubstituted aryl groups having 6 to 30 carbon atoms, and substituted or unsubstituted heteroaryl groups having 3 to 30 carbon atoms;
  • Substituents in L 1 , L 2 , L 3 , L 4 , L 5 , L 6 , L 7 , L 8 , Ar 1 , Ar 2 and Ar 3 are the same or different, and are each independently selected from: deuterium, halogen group, cyano group, heteroaryl group with 3-20 carbon atoms, aryl group with 6-20 carbon atoms, alkyl group with 1-10 carbon atoms, haloalkyl group with 1-10 carbon atoms , cycloalkyl group with 3 to 10 carbon atoms, alkoxy group with 1 to 10 carbon atoms, alkylthio group with 1 to 10 carbon atoms, trialkylsilyl group with 3 to 12 carbon atoms ;
  • any two adjacent substituents form carbon atoms A saturated or unsaturated ring with a number of 3 to 15.
  • a second aspect of the present application provides an electronic component, comprising an anode and a cathode disposed opposite to each other, and a functional layer disposed between the anode and the cathode; the functional layer comprises the organic compound described in the first aspect of the present application ;
  • the functional layer includes an organic light-emitting layer
  • the organic light-emitting layer includes a host material and a guest material
  • the host material includes the organic compound
  • a third aspect of the present application provides an electronic device, including the electronic component described in the second aspect of the present application.
  • the organic compound provided by the present application has a structure in which a carbazole group is connected with a benzoxazole and a triazine group. This combination enables the partial structure to have a high dipole moment, thereby increasing the polarity of the organic compound.
  • the benzoxazole series derivative molecules are composed of a benzoheterocyclic rigid skeleton and other functional substituent groups.
  • the benzoheterocyclic rigid skeleton in the derivative molecule is a good light-emitting group, which can produce a remarkable electronic spectrum. Signals, such molecules have excellent thermal resistance, mechanical properties and optoelectronic properties.
  • the compound provided by the present application selects the position of the benzene ring on the benzoxazole to directly connect with different positions of the carbazole, which improves the molecular stability and thus improves the material tolerance.
  • the efficiency and lifetime of the device can be improved, and the operating voltage can be reduced.
  • FIG. 1 is a schematic structural diagram of an organic electroluminescent device according to an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of an electronic device according to an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of an electronic device according to another embodiment of the present application.
  • a first aspect of the present application provides an organic compound, the organic compound has the structure shown in the following formula 1:
  • a 1 and A 2 are independently selected from the structures represented by formula 2 or formula 3; m is 1 or 2;
  • L 1 , L 2 , L 3 , L 4 , L 5 , L 6 , L 7 and L 8 are the same or different, and are each independently selected from a single bond, substituted or unsubstituted with 6 to 30 carbon atoms Arylene, substituted or unsubstituted heteroarylene with 2 to 30 carbon atoms;
  • R 1 and R 2 are the same or different, and are independently selected from deuterium, halogen group, alkyl group with 1 to 10 carbon atoms, cycloalkyl group with 3 to 10 carbon atoms, and 1 carbon atom ⁇ 10 alkoxy groups, aryl groups with 6 to 30 carbon atoms, and heteroaryl groups with 3 to 30 carbon atoms;
  • n 1 represents the number of R 1 , n 1 is 0, 1, 2, 3 or 4;
  • n 2 represents the number of R 2 , n 2 is 0, 1, 2, 3 or 4;
  • n 3 represents the number of R 3 , n 2 is 0, 1, 2 or 3;
  • Ar 3 is selected from substituted or unsubstituted aryl groups with 6-30 carbon atoms, and substituted or unsubstituted heteroaryl groups with 3-30 carbon atoms;
  • Ar 1 and Ar 2 are the same or different, and are independently selected from substituted or unsubstituted aryl groups having 6 to 30 carbon atoms, and substituted or unsubstituted heteroaryl groups having 3 to 30 carbon atoms;
  • Substituents in L 1 , L 2 , L 3 , L 4 , L 5 , L 6 , L 7 , L 8 , Ar 1 , Ar 2 and Ar 3 are the same or different, and are each independently selected from: deuterium, halogen group, cyano group, heteroaryl group with 3-20 carbon atoms, aryl group with 6-20 carbon atoms, alkyl group with 1-10 carbon atoms, haloalkyl group with 1-10 carbon atoms , cycloalkyl group with 3 to 10 carbon atoms, alkoxy group with 1 to 10 carbon atoms, alkylthio group with 1 to 10 carbon atoms, trialkylsilyl group with 3 to 12 carbon atoms ;
  • any two adjacent substituents form carbon atoms A saturated or unsaturated ring with a number of 3 to 15.
  • any two adjacent substituents may include two adjacent substituents on the same atom.
  • Substituents can also include one substituent on two adjacent atoms; wherein, when there are two substituents on the same atom, the two substituents can form saturated or unsaturated with the atom to which they are commonly connected. Ring; when two adjacent atoms each have a substituent, the two substituents can be fused to form a ring.
  • Ar 1 when any two adjacent substituents form a ring, it may be a saturated or unsaturated membered ring with 3-15 carbon atoms, such as: Benzene ring, naphthalene ring, phenanthrene ring, anthracene ring, cyclopentane, cyclohexane, adamantane, etc.
  • n 1 , n 2 and n 3 are each independently selected from zero.
  • each of L 3 , L 4 and A 2 is the same or different.
  • each independently is” and “are independently” and “are independently selected from” can be interchanged, and should be understood in a broad sense, which can be either It means that in different groups, the specific options expressed between the same symbols do not affect each other, and it can also mean that in the same group, the specific options expressed between the same symbols do not affect each other.
  • each q is independently 0, 1, 2 or 3, and each R" is independently selected from hydrogen, deuterium, fluorine, chlorine", and its meaning is:
  • formula Q-1 represents that there are q substituents R" on the benzene ring. , each R" can be the same or different, and the options of each R" do not affect each other;
  • formula Q-2 indicates that each benzene ring of biphenyl has q substituents R", and the R" on the two benzene rings " The number q of substituents can be the same or different, each R" can be the same or different, and the options of each R" do not affect each other.
  • substituted or unsubstituted means that the functional group described after the term may or may not have a substituent (hereinafter, for the convenience of description, the substituents are collectively referred to as Rc).
  • substituted or unsubstituted aryl refers to an aryl group having a substituent Rc or an unsubstituted aryl group.
  • substituent namely Rc
  • Rc can be, for example, deuterium, halogen group, cyano group, heteroaryl group with 3 to 20 carbon atoms, aryl group with 6 to 20 carbon atoms, and aryl group with 1 to 10 carbon atoms.
  • the "substituted" functional group may be substituted by one or more than two substituents in the above Rc; when two substituents Rc are attached to the same atom, the two substituents Rc may exist independently Or connected to each other to form a ring with the atoms; when there are two adjacent substituents Rc on a functional group, the adjacent two substituents Rc can exist independently or be condensed into a ring with the functional group to which they are connected.
  • the number of carbon atoms of a substituted or unsubstituted functional group refers to the number of all carbon atoms. For example, if R1 is selected from a substituted aryl group having 30 carbon atoms, then all of the aryl group and the substituents thereon have 30 carbon atoms.
  • the number of carbon atoms of L 1 , L 2 , L 3 , L 4 , L 5 , L 6 , L 7 , L 8 , R 1 , R 2 , R 3 , Ar 1 , Ar 2 and Ar 3 which refers to all carbon atoms.
  • L 1 is a substituted arylene group with 12 carbon atoms, then all the carbon atoms of the arylene group and the substituents on it are 12.
  • Ar 1 is Then the number of carbon atoms is 7; L 1 is Its carbon number is 12.
  • an aryl group refers to an optional functional group or substituent derived from an aromatic carbocyclic ring.
  • Aryl groups can be monocyclic aryl groups (eg, phenyl) or polycyclic aryl groups, in other words, aryl groups can be monocyclic aryl groups, fused-ring aryl groups, two or more monocyclic aryl groups conjugated through carbon-carbon bonds. Cyclic aryl groups, monocyclic aryl groups and fused-ring aryl groups linked by carbon-carbon bond conjugation, two or more fused-ring aryl groups linked by carbon-carbon bond conjugation.
  • two or more aromatic groups linked by carbon-carbon bond conjugation may also be considered aryl groups in the present application.
  • the fused ring aryl group may include, for example, a bicyclic fused aryl group (eg, naphthyl), a tricyclic fused aryl group (eg, an anthracenyl group), and the like.
  • the aryl group does not contain heteroatoms such as B, N, O, S, P, Se and Si.
  • phenyl and the like are aryl groups.
  • aryl groups may include, but are not limited to, phenyl, naphthyl, anthracenyl, biphenyl, terphenyl, tetraphenyl, pentaphenyl, benzo[9,10]phenanthryl, pyrenyl, Benzofluoranthene, Base et al.
  • the "substituted or unsubstituted aryl group" of the present application may contain 6 to 30 carbon atoms. In some embodiments, the number of carbon atoms in the substituted or unsubstituted aryl group may be 6 to 25.
  • the number of carbon atoms in the substituted or unsubstituted aryl group may be 6-18, and in other embodiments, the number of carbon atoms in the substituted or unsubstituted aryl group may be 6-13.
  • the number of carbon atoms can be 6, 12, 13, 14, 15, 18, 20, 25 or 30.
  • the number of carbon atoms can also be other numbers. No more enumerating.
  • the arylene group referred to refers to a divalent group formed by the further loss of one hydrogen atom from the aryl group.
  • condensed aromatic rings refer to polyaromatic rings formed by two or more aromatic or heteroaromatic rings sharing a ring edge, such as naphthalene, anthracene, and pyrene.
  • the substituted aryl group may be one or more hydrogen atoms in the aryl group replaced by a group such as a deuterium atom, a halogen group, a cyano group, an aryl group, a heteroaryl group, a trialkylsilyl group, an alkyl group, Cycloalkyl, alkoxy, alkylthio and other groups are substituted.
  • a group such as a deuterium atom, a halogen group, a cyano group, an aryl group, a heteroaryl group, a trialkylsilyl group, an alkyl group, Cycloalkyl, alkoxy, alkylthio and other groups are substituted.
  • the number of carbon atoms in a substituted aryl group refers to the total number of carbon atoms in the aryl group and the substituent on the aryl group, for example, a substituted aryl group with a carbon number of 18 refers to the aryl group
  • aryl groups as substituents include, but are not limited to, phenyl, naphthyl, anthracenyl, biphenyl, terphenyl and the like.
  • a heteroaryl group refers to a monovalent aromatic ring or a derivative thereof containing at least one heteroatom in the ring, and the heteroatom may be at least one of B, O, N, P, Si, Se and S.
  • a heteroaryl group can be a monocyclic heteroaryl group or a polycyclic heteroaryl group, in other words, a heteroaryl group can be a single aromatic ring system or multiple aromatic ring systems linked by carbon-carbon bonds, and any aromatic The ring system is an aromatic monocyclic ring or an aromatic fused ring.
  • heteroaryl groups can include thienyl, furyl, pyrrolyl, imidazolyl, thiazolyl, oxazolyl, oxadiazolyl, triazolyl, pyridyl, bipyridyl, pyrimidinyl, triazinyl, acridinyl, pyridazinyl, pyrazinyl, quinolinyl, quinazolinyl, quinoxalinyl, phenothiazinyl, phenoxazinyl, phthalazinyl, pyridopyrimidinyl, pyridopyrazinyl , pyrazinopyrazinyl, isoquinolinyl, indolyl, carbazolyl, benzoxazolyl, benzimidazolyl, benzothiazolyl, benzocarbazolyl, benzothienyl, diphenyl thienyl,
  • the "substituted or unsubstituted heteroaryl" in the present application may contain 3-30 carbon atoms, in some embodiments, the number of carbon atoms in the substituted or unsubstituted heteroaryl may be 3-25, in other In some embodiments, the number of carbon atoms in the substituted or unsubstituted heteroaryl group may be 3-20, and in other embodiments, the number of carbon atoms in the substituted or unsubstituted heteroaryl group may be 12-20. For example, the number of carbon atoms can be 3, 4, 5, 7, 12, 13, 18, 20, 24, 25 or 30. Of course, the number of carbon atoms can also be are other quantities, which will not be listed here.
  • a heteroaryl group refers to a monovalent aromatic ring or a derivative thereof containing at least one heteroatom in the ring, which may be at least one of B, O, N, P, Si, Se and S, and has at least one N.
  • the heteroarylene group referred to refers to a divalent group formed by the further loss of one hydrogen atom from the heteroaryl group.
  • a substituted heteroaryl group may be a heteroaryl group in which one or more than two hydrogen atoms are replaced by, for example, a deuterium atom, a halogen group, a cyano group, an aryl group, a heteroaryl group, a trialkylsilyl group, an alkane group group, cycloalkyl, alkoxy, alkylthio and other groups.
  • the number of carbon atoms in a substituted heteroaryl group refers to the total number of carbon atoms in the heteroaryl group and the substituents on the heteroaryl group.
  • heteroaryl groups as substituents include, but are not limited to, pyridyl, dibenzofuranyl, dibenzothienyl, N-phenylcarbazolyl, carbazolyl and the like.
  • the alkyl group having 1 to 10 carbon atoms may be a straight-chain alkyl group or a branched-chain alkyl group.
  • the alkyl group having 1 to 10 carbon atoms may be a straight-chain alkyl group having 1 to 10 carbon atoms, or a branched alkyl group having 3 to 10 carbon atoms.
  • the number of carbon atoms may be, for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10.
  • alkyl group having 1 to 10 carbon atoms include, but are not limited to, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, isopentyl base, neopentyl, cyclopentyl, n-hexyl, heptyl, n-octyl, 2-ethylhexyl, nonyl, decyl, 3,7-dimethyloctyl and the like.
  • the halogen group may be fluorine, chlorine, bromine, iodine.
  • a non-positioned connecting bond refers to a single bond extending from the ring system It means that one end of the linking bond can be connected to any position in the ring system through which the bond runs, and the other end is connected to the rest of the compound molecule.
  • the naphthyl group represented by the formula (f) is connected to other positions of the molecule through two non-positioned linkages running through the bicyclic ring. Any possible connection methods shown in -1) to (f-10).
  • the dibenzofuranyl group represented by the formula (X') is connected to other positions of the molecule through a non-positional linkage extending from the middle of one side of the benzene ring,
  • the meaning represented by it includes any possible connection modes shown by formula (X'-1) to formula (X'-4).
  • a non-positioned substituent in the present application refers to a substituent attached through a single bond extending from the center of the ring system, which means that the substituent may be attached at any possible position in the ring system.
  • the substituent R' represented by the formula (Y) is connected to the quinoline ring through a non-positioning link, and the meanings represented by the formula (Y-1) to Any possible connection mode shown by formula (Y-7).
  • the organic compound provided by the application has the structure shown in any one of the following formulas 4-1 to 4-6:
  • the L 1 , L 2 , L 3 and L 4 in the organic compound provided by the present application are independently selected from single bonds, substituted or unsubstituted with 6-20 carbon atoms.
  • the substituents in L 1 , L 2 , L 3 and L 4 are independently selected from deuterium, halogen group, cyano group, alkyl group with 1 to 5 carbon atoms, 6-12 aryl groups.
  • the substituents in L 1 , L 2 , L 3 and L 4 are each independently selected from deuterium, fluorine, cyano, methyl, ethyl, n-propyl, isopropyl, tert-butyl, phenyl , naphthyl, biphenyl.
  • the L 1 , L 2 , L 3 and L 4 are independently selected from single bond, substituted or unsubstituted phenylene, substituted or unsubstituted naphthylene, substituted or unsubstituted unsubstituted biphenylene, substituted or unsubstituted fluorenylene, substituted or unsubstituted phenanthrene, substituted or unsubstituted pyridylene, substituted or unsubstituted dibenzofuranyl, substituted or unsubstituted Substituted dibenzothienylene, substituted or unsubstituted carbazolylylene, substituted or unsubstituted isoquinolinylene.
  • the are independently selected from a single bond or a substituted or unsubstituted group V 1 ; the unsubstituted group V 1 is selected from the group consisting of the following groups:
  • the substituted group V 1 has one or more substituents, each of which is independently selected from: deuterium, cyano, fluorine, methyl, ethyl, n-propyl, isopropyl, tert-butyl, phenyl, biphenyl; when the number of substituents of group V 1 is greater than 1, each substituent is the same or different.
  • the L 5 and the L 6 are selected from a single bond, a substituted or unsubstituted arylene group with 6-25 carbon atoms, a substituted or unsubstituted arylene group with 12-20 carbon atoms Unsubstituted heteroarylene.
  • the substituents in L 5 and L 6 are independently selected from deuterium, halogen group, cyano group, alkyl group with 1-5 carbon atoms, and alkyl group with 6-12 carbon atoms.
  • Aryl is independently selected from deuterium, halogen group, cyano group, alkyl group with 1-5 carbon atoms, and alkyl group with 6-12 carbon atoms.
  • the substituents in L 5 and L 6 are each independently selected from deuterium, fluorine, cyano, methyl, ethyl, n-propyl, isopropyl, tert-butyl, phenyl, naphthyl, biphenyl base.
  • the L 5 and the L 6 are selected from a single bond, a substituted or unsubstituted phenylene group, a substituted or unsubstituted naphthylene group, a substituted or unsubstituted phenanthrene group, Substituted or unsubstituted anthracylene, substituted or unsubstituted fluorenylene, substituted or unsubstituted spirobifluorenylene, substituted or unsubstituted carbazolylylene, substituted or unsubstituted dibenzofuranyl , substituted or unsubstituted dibenzothienylene.
  • the is selected from a single bond or a substituted or unsubstituted group V 2 ;
  • the unsubstituted group V 2 is selected from the group consisting of the following groups:
  • the substituted group V 2 has one or more substituents, each of which is independently selected from: deuterium, cyano, fluorine, methyl, ethyl, n-propyl, isopropyl, tert-butyl, phenyl; when the number of substituents of group V 2 is greater than 1, the substituents are the same or different.
  • the L 5 and the L 6 are independently selected from the group consisting of a single bond or the following groups:
  • the L 7 and the L 8 are independently selected from a single bond, a substituted or unsubstituted arylene group having 6-20 carbon atoms, and a 5-20 carbon atom group. substituted or unsubstituted heteroarylene.
  • the substituents in the L 7 and L 8 are independently selected from deuterium, halogen group, cyano group, alkyl group with 1-5 carbon atoms, and alkyl group with 6-12 carbon atoms.
  • Aryl is independently selected from deuterium, halogen group, cyano group, alkyl group with 1-5 carbon atoms, and alkyl group with 6-12 carbon atoms.
  • substituents in the L 7 and the L 8 include but are not limited to: deuterium, fluorine, cyano, methyl, ethyl, n-propyl, isopropyl, tert-butyl, phenyl , naphthyl, biphenyl.
  • the L 7 and the L 8 are independently selected from single bond, substituted or unsubstituted phenylene, substituted or unsubstituted naphthylene, substituted or unsubstituted phenylene Biphenyl, substituted or unsubstituted fluorenylene, substituted or unsubstituted phenanthrene, substituted or unsubstituted anthracylene, substituted or unsubstituted pyridylene, substituted or unsubstituted dibenzofuran group, substituted or unsubstituted dibenzothienylene group, substituted or unsubstituted carbazolylylene group.
  • the L 7 and the L 8 are independently selected from a single bond or a substituted or unsubstituted group V 3 , and the unsubstituted group V 3 is selected from the following groups
  • the group consists of:
  • the substituted group V 3 has one or more substituents, and the substituents on the substituted group V 3 are independently selected from deuterium, fluorine, cyano, methyl, ethyl, n-propyl , isopropyl, tert-butyl, phenyl, naphthyl, phenanthrenyl; when the number of substituents of group V 3 is greater than 1, the substituents are the same or different.
  • the L 7 and the L 8 are independently selected from the group consisting of a single bond or the following groups:
  • the Ar 1 and the Ar 2 are each independently selected from an aryl group having 6 to 20 carbon atoms, and a substituted or unsubstituted heteroaryl group having 5 to 20 carbon atoms.
  • the substituents in Ar 1 and Ar 2 are each independently selected from deuterium, halogen group, cyano group, alkyl group with 1-5 carbon atoms, and alkyl group with 5-10 carbon atoms A cycloalkyl group and an aryl group having 6 to 12 carbon atoms.
  • substituents in the Ar 1 and Ar 2 include but are not limited to: deuterium, fluorine, cyano, methyl, ethyl, n-propyl, isopropyl, cyclohexyl, cyclohexyl Pentyl, phenyl, naphthyl, biphenyl.
  • the Ar 1 and the Ar 2 are each independently selected from substituted or unsubstituted phenyl, substituted or unsubstituted naphthyl, substituted or unsubstituted phenanthrenyl, substituted or unsubstituted Substituted fluorenyl, substituted or unsubstituted quinolyl, substituted or unsubstituted dibenzofuranyl, substituted or unsubstituted dibenzothienyl, substituted or unsubstituted carbazolyl, substituted or unsubstituted A group consisting of the following groups:
  • the Ar 1 and the Ar 2 are each independently selected from a substituted or unsubstituted group W 1 , and the unsubstituted group W 1 is selected from the following groups: Group:
  • the substituted group W 1 has one or more substituents, each of which is independently selected from deuterium, fluorine, cyano, methyl, ethyl, n-propyl, tert-butyl, phenyl, Naphthyl, phenanthrene.
  • substituents each of which is independently selected from deuterium, fluorine, cyano, methyl, ethyl, n-propyl, tert-butyl, phenyl, Naphthyl, phenanthrene.
  • the Ar 1 and the Ar 2 can be selected from the group consisting of the following groups:
  • the Ar 3 is selected from a substituted or unsubstituted aryl group with 6-25 carbon atoms, and a substituted or unsubstituted heteroaryl group with 4-20 carbon atoms.
  • the substituent in Ar 3 is selected from deuterium, halogen group, cyano group, alkyl group with 1 to 5 carbon atoms, aryl group with 6 to 12 carbon atoms, and 5 carbon atoms ⁇ 10 cycloalkyl; optionally, any two adjacent substituents form a saturated or unsaturated ring with 5 to 15 carbon atoms.
  • substituents in Ar 3 include but are not limited to: deuterium, fluorine, cyano, methyl, ethyl, n-propyl, isopropyl, tert-butyl, phenyl, naphthyl, bi- Phenyl, cyclohexyl; optionally, any two adjacent substituents form a cyclohexane, cyclopentane, or fluorene ring.
  • the Ar is selected from substituted or unsubstituted phenyl, substituted or unsubstituted naphthyl, substituted or unsubstituted phenanthryl, substituted or unsubstituted triphenylene, substituted or unsubstituted Unsubstituted biphenyl, substituted or unsubstituted terphenyl, substituted or unsubstituted fluorenyl, substituted or substituted spirobifluorenyl, substituted or unsubstituted pyrenyl, substituted or unsubstituted pyridyl, substituted or unsubstituted quinolinyl, substituted or unsubstituted furyl, substituted or unsubstituted thienyl, substituted or unsubstituted dibenzofuranyl, substituted or unsubstituted dibenzothienyl, substituted or unsubstituted The group consisting
  • the Ar 3 is selected from a substituted or unsubstituted group W 2 , and the unsubstituted group W 2 is selected from the group consisting of:
  • the substituted group W 2 has one or more substituents, each of which is independently selected from deuterium, fluorine, cyano, methyl, ethyl, n-propyl, tert-butyl, phenyl, naphthalene group, phenanthrenyl group, cyclohexyl group; when the number of substituent groups of group W 2 is greater than 1, each substituent group is the same or different.
  • Ar is selected from the group consisting of :
  • the organic compound provided by the present application is selected from the group consisting of the following compounds:
  • This application does not specifically limit the synthesis methods of the organic compounds provided, and those skilled in the art can determine a suitable synthesis method according to the organic compounds of this application in combination with the preparation methods provided in the Synthesis Examples section of this application.
  • the Synthesis Examples section of the present application exemplarily provides methods for preparing organic compounds, and the raw materials used can be obtained commercially or by methods well known in the art.
  • Those skilled in the art can obtain all the organic compounds provided by the present application according to these exemplary preparation methods, and all specific preparation methods for preparing the organic compounds are not described in detail here, and those skilled in the art should not be construed as limiting the present application.
  • a second aspect of the present application provides an electronic component, comprising an anode and a cathode disposed opposite to each other, and a functional layer disposed between the anode and the cathode; the functional layer comprises the organic compound described in the first aspect of the present application .
  • the organic compounds provided in the present application can be used to form at least one organic film layer in the functional layer, so as to improve the efficiency characteristics and lifetime characteristics of electronic components.
  • the functional layer includes an organic light-emitting layer, and the organic light-emitting layer includes the organic compound.
  • the organic light-emitting layer includes a host material and a guest material, and further, the host material includes the organic compound of the present application.
  • the electronic component is an organic electroluminescence device, such as a green organic electroluminescence device.
  • the organic electroluminescent device may include an anode 100 , a first hole transport layer 321 , a second hole transport layer 322 , an organic light emitting layer 330 serving as an energy conversion layer, and an electron transport layer 340 , which are stacked in sequence. and cathode 200.
  • the anode 100 includes an anode material, which is preferably a material with a large work function that facilitates hole injection into the functional layer.
  • anode materials include: metals such as nickel, platinum, vanadium, chromium, copper, zinc and gold or alloys thereof; metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO) and indium zinc oxide (IZO); Combined metals and oxides such as ZnO:Al or SnO2 :Sb; or conducting polymers such as poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene ](PEDT), polypyrrole and polyaniline, but not limited thereto. It is preferable to include a transparent electrode comprising indium tin oxide (ITO) as an anode.
  • ITO indium tin oxide
  • the first hole transport layer 321 and the second hole transport layer 322 respectively include one or more hole transport materials, and the hole transport materials can be selected from carbazole polymers, carbazole-linked triarylamines compounds or other types of compounds.
  • the hole transport material of the first hole transport layer 321 may be NPB
  • the hole transport material of the second hole transport layer 322 may be NPAPF.
  • the organic light-emitting layer 330 may be composed of a single light-emitting material, or may include a host material and a guest material.
  • the host material of the organic light-emitting layer may contain the organic compound of the present application.
  • the organic light-emitting layer 330 is composed of a host material and a guest material. The holes injected into the organic light-emitting layer 330 and the electrons injected into the organic light-emitting layer 330 can recombine in the organic light-emitting layer 330 to form excitons. The energy is transferred to the host material, and the host material transfers the energy to the guest material, thereby enabling the guest material to emit light.
  • the host material of the organic light-emitting layer 330 can be a metal chelate compound, a bis-styryl derivative, an aromatic amine derivative, a dibenzofuran derivative or other types of materials, which are not specially made in this application. limit.
  • the host material of the organic light-emitting layer 330 may be the organic compound of the present application.
  • the guest material of the organic light-emitting layer 330 may be a compound having a condensed aryl ring or a derivative thereof, a compound having a heteroaryl ring or a derivative thereof, an aromatic amine derivative or other materials, which are not specially made in this application. limit.
  • the organic electroluminescent device is a green light-emitting device
  • the guest material of the organic light-emitting layer 330 is Ir(npy) 2 acac.
  • the electron transport layer 340 may be a single-layer structure or a multi-layer structure, which may include one or more electron transport materials, and the electron transport materials may be selected from, but not limited to, benzimidazole derivatives, oxadiazole derivatives , quinoxaline derivatives or other electron transport materials.
  • the electron transport layer 340 may be composed of ET-1 and LiQ.
  • the cathode 200 may include a cathode material, which is a material with a small work function that facilitates electron injection into the functional layer.
  • cathode materials include, but are not limited to, metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin, and lead or alloys thereof; or multi-layer materials such as LiF/Al , Liq/Al, LiO 2 /Al, LiF/Ca, LiF/Al and BaF 2 /Ca.
  • a metal electrode comprising magnesium and silver is preferably included as the cathode.
  • a hole injection layer 310 may be further disposed between the anode 100 and the first hole transport layer 321 to enhance the capability of injecting holes into the first hole transport layer 321 .
  • the hole injection layer 310 can be selected from benzidine derivatives, starburst arylamine compounds, phthalocyanine derivatives or other materials, which are not specifically limited in this application.
  • the hole injection layer 310 may be composed of HAT-CN.
  • an electron injection layer 350 may also be disposed between the cathode 200 and the electron transport layer 340 to enhance the capability of injecting electrons into the electron transport layer 340 .
  • the electron injection layer 350 may include inorganic materials such as alkali metal sulfide and alkali metal halide, or may include a complex compound of alkali metal and organic matter.
  • the electron injection layer 350 may be composed of metal Yb.
  • the organic electroluminescent device of the present application is optionally a green organic electroluminescent device.
  • a hole blocking layer 341 may also be disposed between the organic light-emitting layer 330 and the electron transport layer 340 .
  • a third aspect of the present application provides an electronic device including the electronic component described in the second aspect of the present application.
  • the electronic device is a first electronic device 400
  • the first electronic device 400 includes the above-mentioned organic electroluminescence device.
  • the first electronic device 400 may be, for example, a display device, a lighting device, an optical communication device, or other types of electronic devices, such as but not limited to computer screens, mobile phone screens, televisions, electronic paper, emergency lighting, light modules, and the like.
  • the electronic device is a second electronic device 500
  • the second electronic device 500 includes the above-mentioned photoelectric conversion device.
  • the second electronic device 500 may be, for example, a solar power generation device, a light detector, a fingerprint identification device, an optical module, a CCD camera, or other types of electronic devices.
  • the compounds of the synthetic methods not mentioned in this application are all raw materials obtained through commercial channels.
  • the analytical detection of the intermediates and compounds in this application uses an ICP-7700 mass spectrometer.
  • the solution was cooled to room temperature, toluene and water were added to extract the reaction solution, the organic phases were combined, the organic layer was dried over anhydrous magnesium sulfate, filtered, and concentrated; the crude product was purified by silica gel column chromatography (dichloromethane/n-heptane). , the solid compound sub1-I-A1 (40.23 g, 64%) was obtained.
  • 9H-carbazol-1-ylboronic acid (20.2 g, 95.7 mmol), sub1-I-A1 (25.0 g, 91.2 mmol), tetrakis(triphenylphosphine)palladium (2.1 g, 1.8 mmol), potassium carbonate ( 31.5g, 228.0mmol), tetrabutylammonium bromide (0.5g, 1.8mmol), toluene (160mL), ethanol (80mL) and deionized water (40mL) were added to the three-necked flask, and the temperature was raised to 76°C under nitrogen protection, Heat under reflux with stirring for 8h.
  • 2,5-Dichlorobenzoxazole (35.0 g, 186.1 mmol), 2-naphthaleneboronic acid (32.0 g, 186.1 mmol), tetrakis(triphenylphosphine)palladium (4.3 g, 3.7 mmol), potassium carbonate ( 64.3g, 465.4mmol), tetrabutylammonium bromide (1.2g, 3.72mmol), toluene (280mL), ethanol (70mL) and deionized water (70mL) were added to the there-necked flask, and the temperature was raised to 76°C under nitrogen protection, Heat under reflux and stir for 15h.
  • the solution was cooled to room temperature, toluene and water were added to extract the reaction solution, the organic phases were combined, the organic layer was dried over anhydrous magnesium sulfate, filtered, and concentrated; the crude product was purified by silica gel column chromatography (dichloromethane/n-heptane). , the solid compound sub1-I-A6 (31.7 g, 61%) was obtained.
  • the solution was cooled to room temperature, toluene and water were added to extract the reaction solution, the organic phases were combined, the organic layer was dried over anhydrous magnesium sulfate, filtered, and concentrated; the crude product was purified by silica gel column chromatography (dichloromethane/n-heptane). , the solid compound intermediate sub A-6 (16.2 g, 65%) was obtained.
  • 2-Bromocarbazole (50.0 g, 203.1 mmol), Sub1-I-A1 61.2 g, 223.4 mmol), Pd2(dba )3 ( 1.8 g, 2.0 mmol), tri-tert-butylphosphine (0.8 g, 4.1 mmol), sodium tert-butoxide (39.0 g, 406.3 mmol) and xylene (500 mL) were added to a three-necked flask, heated to 130° C. under nitrogen protection, heated under reflux and stirred for 7 h.
  • the solution was cooled to room temperature, toluene and water were added to extract the reaction solution, the organic phases were combined, the organic layer was dried over anhydrous magnesium sulfate, filtered, and concentrated; the crude product was purified by silica gel column chromatography (dichloromethane/n-heptane). , the solid compound sub 1-I-A11 (48.3 g, 58%) was obtained.
  • the intermediate sub A-12 ⁇ sub A-16 shown in the following table 5 are synthesized, the difference is that the raw material 6 is used to replace the 2-bromocarbazole, and the raw material 2 is used to replace the sub1 -I-A1.
  • Sub 1-I-A1 (35.0 g, 128.6 mmol), p-chlorophenylboronic acid (20.5 g, 131.1 mmol), tetrakistriphenylphosphine palladium (2.9 g, 2.5 mmol), potassium carbonate (35.5 g, 25.7 mmol) , tetrabutylammonium bromide (0.4g, 1.3mmol), toluene (280mL), ethanol (70mL) and deionized water (70mL) were added to the three-necked flask, heated to 76°C under nitrogen protection, heated under reflux and stirred for 16h.
  • Sub A-II-A25 (20.7 g, 64.6 mmol), 2,7-dibromocarbazole (10.0 g, 30.7 mmol), tetrakistriphenylphosphine palladium (0.3 g, 0.3 mmol), potassium carbonate (8.5 g , 61.5mmol), tetrabutylammonium bromide (0.09g, 0.3mmol), toluene (160mL), ethanol (40mL) and deionized water (40mL) were added to the three-necked flask, heated to 76 °C under nitrogen protection, heated to reflux Stir for 12h.
  • 3-Bromo-6-chlorocarbazole (50.0 g, 178.2 mmol), sub1-IA (53.7 g, 196.0 mmol), Pd 2 (dba) 3 (3.2 g, 3.5 mmol), tri-tert-butylphosphine (1.4 g, 7.1 mmol), sodium tert-butoxide (34.2 g, 356.4 mmol), and xylene (500 mL) were added to the three-necked flask, heated to 140° C. under nitrogen protection, heated under reflux and stirred for 7 h.
  • Sub 1-I-A26 (45.0 g, 94.9 mmol), sub 1-I I-A25 (32.0 g, 99.7 mmol), tetrakistriphenylphosphine palladium (2.1 g, 1.9 mmol), potassium carbonate (26.2 g, 189.9mmol), tetrabutylammonium bromide (0.6g, 1.8mmol), toluene (360mL), ethanol (90mL) and deionized water (90mL) were added to the there-necked flask, heated to 76°C under nitrogen protection, heated under reflux with stirring 15h.
  • the present application also provides an organic electroluminescent device, comprising an anode, a cathode, and an organic layer between the anode and the cathode, the organic layer comprising the above-mentioned organic compound provided in the present application.
  • the organic electroluminescence device of the present application will be described in detail below through device examples. However, the following examples are merely examples of the present application, and do not limit the present application.
  • ITO thickness was The ITO substrate was cut into a size of 40mm (length) ⁇ 40mm (width) ⁇ 0.7mm (thickness), and a photolithography process was used to prepare it into an experimental substrate with cathode, anode and insulating layer patterns.
  • O 2 N 2 plasma is used for surface treatment to increase the work function of the anode, and organic solvent can be used to clean the surface of the ITO substrate to remove impurities and oil stains on the surface of the ITO substrate.
  • the ITO substrate can also be cut into other sizes according to actual needs, and the size of the ITO substrate in this application is not specifically limited.
  • HAT-CN (cas: 105598-27-4) was vacuum evaporated on the experimental substrate (anode) to form a thickness of , and then vacuum-evaporated NPB (cas: 123847-85-8) on the hole injection layer to form a thickness of the first hole transport layer.
  • NPAPF (cas: 916061-87-5) was vacuum evaporated on the first hole transport layer to form a thickness of the second hole transport layer. Then on the second hole transport layer, compound 62: GH-1 (cas: 571102-62-2): Ir(npy) 2 acac (cas: 878393-09-0) at 45%: 45%: 10 % ratio of co-evaporation to form a thickness of green organic light-emitting layer (EML).
  • EML green organic light-emitting layer
  • the thickness of vacuum evaporation on the above-mentioned cathode is CP-1, thus completing the fabrication of organic electroluminescent devices.
  • An organic electroluminescent device was fabricated in the same manner as in Example 1, except that the compound shown in Table 10 was used in place of Compound 62 used in Example 1 when the organic light-emitting layer was formed.
  • An organic electroluminescent device was fabricated in the same manner as in Example 1, except that Compound A, Compound B, Compound C, and Compound D were used instead of Compound 62 used in Example 1 when forming the organic light-emitting layer.
  • the compounds prepared by using the examples 1-32 of the present application are compared with the comparative examples 1-3 using the known compound A, compound B and compound C: the organic electroplating of the examples 1-32
  • the luminous efficiency (Cd/A) of the light-emitting device is 77.8-82.1%
  • the luminous efficiency of Comparative Examples 1-3 is 57.9-64.3%
  • the luminous efficiency of Examples 1-32 is at least 21% higher than that of Comparative Examples 1-3
  • the device life of the organic electroluminescent devices of Examples 1 to 32 is 124 to 134 h
  • the device life of Comparative Examples 1 to 3 is 89 to 95 h.
  • the device life of Examples 1 to 32 is the least. It is increased by 30.5%; the working voltage of the organic electroluminescent devices in Examples 1-32 is 3.91-4.01V, the working voltage in Comparative Examples 1-3 is 4.2-4.33V, and Examples 1-32 are compared with Comparative Example 1 ⁇ 3 The operating voltage is reduced by at least 4.5%.
  • the organic electroluminescent devices of Examples 33 to 34 have a luminous efficiency (Cd/A) of 71.8% ⁇ 72.2%, the luminous efficiency in Comparative Example 4 is 63.9%, the luminous efficiency of Examples 33 to 34 is at least 12.4% higher than that of Comparative Example 4; , the device life in Comparative Example 4 is 93h, and the device life in Examples 33-34 is at least 22.6% higher than that in Comparative Example 4; the operating voltages of the organic electroluminescent devices in Examples 33-34 are 4.07-4.10 V, the operating voltage in Comparative Example 4 is 4.22V, and the operating voltage of Examples 33 to 34 is at least 2.84% lower than that of Comparative Example 4.
  • the compounds provided in this application mainly change the connection position of benzoxazole compared with the compounds A to D of the comparative examples.
  • the compound of the present application selects to connect the benzene ring side of the benzoxazole with the carbazole group, which improves the molecular stability and thus improves the material tolerance.
  • the efficiency and lifetime of the device can be improved, and the operating voltage can be reduced.
  • the organic electroluminescent device prepared by using the compound provided in the present application in the organic light-emitting layer (EML) can achieve higher luminous efficiency, longer lifetime, and lower voltage.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本申请涉及一种有机化合物以及使用其的电子元件和电子装置。该有机化合物具有如下式1所示的结构,式1中,A 1和A 2分别独立地选自式2或式3所示的结构;m为1或2。本申请提供的有机化合物可用于有机电致发光器件中,提高有机电致发光器件的性能。

Description

一种有机化合物以及使用其的电子元件和电子装置
相关申请的交叉引用
本申请要求于2021年1月7日递交的申请号为202110018424.0的中国专利申请的优先权,在此引用上述中国专利申请的内容全文以作为本申请的一部分。
技术领域
本申请涉及有机电致发光技术领域,具体地,涉及一种有机化合物以及使用其的电子元件和电子装置。
背景技术
有机电致发光材料(OLED)作为新一代显示技术,具有超薄、自发光、视角宽、响应快、发光效率高、温度适应性好、生产工艺简单、驱动电压低、能耗低等优点,已广泛应用于平板显示、柔性显示、固态照明和车载显示等行业。
有机发光现象是指使用有机材料将电能转换成光能的现象。利用有机发光现象的有机发光器件通常具有这样的结构,其包括阳极、阴极和其间的有机材料层。有机材料层通常以由不同材料构成的多层结构形成以提高有机电致发光器件的亮度、效率和寿命,有机材料层可由空穴注入层、空穴传输层、发光层、电子传输层和电子注入层等构成。有机发光器件结构中,当在两个电极之间施加电压时,空穴和电子分别从阳极和阴极注入有机材料层,当注入的空穴与电子相遇时形成激子,并且当这些激子返回基态时发光。现有的有机电致发光器件中,最主要的问题为寿命和效率,随着显示器的大面积化,驱动电压也随之提高,发光效率及电力效率也需要提高,并且要保证一定的使用寿命,因此,有机材料必须要解决这些效率或寿命问题,需要不断地开发高效率,长寿命,适于量产的用于有机电致发光器件的新材料。
发明内容
针对现有技术存在的上述问题,本申请的目的在于提供一种有机化合物以及使用其的电子元件和电子装置,该有机化合物可用于有机电致发光器件中,提高有机电致发光器件的性能。
为了实现上述目的,本申请第一方面提供一种有机化合物,所述有机化合物具有如下式1所示的结构:
Figure PCTCN2021135857-appb-000001
其中,
Figure PCTCN2021135857-appb-000002
表示连接键;X为O;
A 1和A 2分别独立地选自式2或式3所示的结构;m为1或2;
L 1、L 2、L 3、L 4、L 5、L 6、L 7和L 8相同或不相同,且各自独立地选自单键、碳原子数为6~30的取代或未取代的亚芳基、碳原子数为2~30的取代或未取代的亚杂芳基;
R 1和R 2相同或不相同,且各自独立地选自氘、卤素基团、碳原子数为1~10的烷基、碳原子数为3~10的环烷基、碳原子数为1~10的烷氧基、碳原子数为6~30的芳基、碳原子数为3~30的杂芳基;
n 1表示R 1的个数,n 1为0、1、2、3或4;
n 2表示R 2的个数,n 2为0、1、2、3或4;
n 3表示R 3的个数,n 2为0、1、2或3;
Ar 3选自碳原子数为6~30的取代或未取代的芳基、碳原子数为3~30的取代或未取代的杂芳基;
Ar 1和Ar 2相同或不相同,且各自独立地选自碳原子数为6~30的取代或未取代的芳基、碳原子数为3~30的取代或未取代的杂芳基;
L 1、L 2、L 3、L 4、L 5、L 6、L 7、L 8、Ar 1、Ar 2和Ar 3中的取代基相同或不同,且各自独立地选自:氘、卤素基团、氰基、碳原子数为3~20的杂芳基、碳原子数为6~20的芳基、碳原子数为1~10的烷基、碳原子数为1~10的卤代烷基、碳原子数为3~10的环烷基、碳原子数为1~10的烷氧基、碳原子数为1~10的烷硫基、碳原子数为3~12的三烷基硅基;
在L 1、L 2、L 3、L 4、L 5、L 6、L 7、L 8、Ar 1、Ar 2和Ar 3中,任选地,任意两个相邻的取代基形成碳原子数为3~15的饱和或不饱和环。
本申请第二方面提供一种电子元件,包括相对设置的阳极和阴极,以及设于所述阳极和所述阴极之间的功能层;所述功能层包含本申请第一方面所述的有机化合物;
优选地,所述功能层包括有机发光层,所述有机发光层包含主体材料和客体材料,所述主体材料包含所述有机化合物。
本申请第三方面提供一种电子装置,包含本申请第二方面所述的电子元件。
本申请提供的有机化合物具有咔唑基团与苯并噁唑和三嗪基团相连所组成的结构。此种组合使得该部分结构具有高的偶极矩,从而使有机化合物的极性提高。苯并噁唑系列衍生物分子是由苯并杂环刚性骨架和其它功能性取代基团共同组成,衍生物分子中的苯并杂环刚性骨架是良好的发光基团,能够产生显著的电子光谱信号,这类分子具有优异的耐热性能、机械性能以及光电性能。
此外,本申请提供的化合物选择苯并噁唑上苯环的位置与咔唑的不同位置直接进行连接,提高了分子稳定性,从而提高了材料耐受能力。将其作为有机发光电致器件的发光主体材料时,可以提升器件的效率和寿命,并能够降低工作电压。
本申请的其他特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本申请的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本申请,但并不构成对本申请的限制。在附图中:
图1是本申请一种实施方式的有机电致发光器件的结构示意图。
图2是本申请一种实施方式的电子装置的结构示意图。
图3是本申请另一种实施方式的电子装置的结构示意图。
附图标记说明
100、阳极;200、阴极;300、功能层;310、空穴注入层;321、第一空穴传输层;322、第二空穴传输层;330、有机发光层;341、空穴阻挡层;340、电子传输层;350、电子注入层;400、第一电子装置;500、第二电子装置。
具体实施方式
以下结合附图对本申请的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本申请,并不用于限制本申请。
本申请第一方面提供一种有机化合物,所述有机化合物具有如下式1所示的结构:
Figure PCTCN2021135857-appb-000003
其中,
Figure PCTCN2021135857-appb-000004
表示连接键;X为O;
A 1和A 2分别独立地选自式2或式3所示的结构;m为1或2;
L 1、L 2、L 3、L 4、L 5、L 6、L 7和L 8相同或不相同,且各自独立地选自单键、碳原子数为6~30的取代或未取代的亚芳基、碳原子数为2~30的取代或未取代的亚杂芳基;
R 1和R 2相同或不相同,且各自独立地选自氘、卤素基团、碳原子数为1~10的烷基、碳原子数为3~10的环烷基、碳原子数为1~10的烷氧基、碳原子数为6~30的芳基、碳原子数为3~30的杂芳基;
n 1表示R 1的个数,n 1为0、1、2、3或4;
n 2表示R 2的个数,n 2为0、1、2、3或4;
n 3表示R 3的个数,n 2为0、1、2或3;
Ar 3选自碳原子数为6~30的取代或未取代的芳基、碳原子数为3~30的取代或未取代的杂芳基;
Ar 1和Ar 2相同或不相同,且各自独立地选自碳原子数为6~30的取代或未取代的芳基、碳原子数为3~30的取代或未取代的杂芳基;
L 1、L 2、L 3、L 4、L 5、L 6、L 7、L 8、Ar 1、Ar 2和Ar 3中的取代基相同或不同,且各自独立地选自:氘、卤素基团、氰基、碳原子数为3~20的杂芳基、碳原子数为6~20的芳基、碳原子数为1~10的烷基、碳原子数为1~10的卤代烷基、碳原子数为3~10的环烷基、碳原子数为1~10的烷氧基、碳原子数为1~10的烷硫基、碳原子数为3~12的三烷基硅基;
在L 1、L 2、L 3、L 4、L 5、L 6、L 7、L 8、Ar 1和Ar 2和Ar 3中,任选地,任意两个相邻的取代基形成碳原子数为3~15的饱和或不饱和环。
在本申请中,“任意两个相邻的取代基形成碳原子数为3~15的饱和或不饱和环”中,“任意两个相邻的取代基”可以包括同一个原子上具有两个取代基,还可以包括两个相邻的原子上分别具有一个取代基;其中,当同一个原子上具有两个取代基时,两个取代基可以与其共同连接的该原子形成饱和或不饱和的环;当两个相邻的原子上分别具有一个取代基时,这两个取代基可以稠合成环。举例而言,当Ar 1有2个或2个以上的取代基时,任意两个相邻的取代基形成环时,可以饱和或不饱和的碳原子数为3-15的元环,例如:苯环、萘环、菲环、蒽环、环戊烷、环己烷、金刚烷等等。
优选地,n 1、n 2和n 3分别独立地选自0。
在一种具体实施方式中,当m大于1时,各L 3、L 4和A 2相同或不同。
在本申请中,所采用的描述方式“各……独立地为”与“……分别独立地为”和“……独立地选自”可以互换,均应做广义理解,其既可以是指在不同基团中,相同符号之间所表达的具体选项之间互相不影响,也可以表示在相同的基团中,相同符号之间所表达的具体选项之间互相不影响。
例如,
Figure PCTCN2021135857-appb-000005
其中,各q独立地为0、1、2或3,各R”独立地选自氢、氘、氟、氯”,其含义是:式Q-1表示苯环上有q个取代基R”,各个R”可以相同也可以不同,每个R”的选项之间互不影响;式Q-2表示联苯的每一个苯环上有q个取代基R”,两个苯环上的R” 取代基的个数q可以相同或不同,各个R”可以相同也可以不同,每个R”的选项之间互不影响。
在本申请中,“取代或未取代的”这样的术语是指,在该术语后面记载的官能团可以具有或不具有取代基(下文为了便于描述,将取代基统称为Rc)。例如,“取代或未取代的芳基”是指具有取代基Rc的芳基或者非取代的芳基。其中上述的取代基即Rc例如可以为氘,卤素基团,氰基,碳原子数为3~20的杂芳基,碳原子数为6~20的芳基,碳原子数为1~10的烷基,碳原子数为1~10的卤代烷基,碳原子数为3~10的环烷基,碳原子数为1~10的烷氧基,碳原子数为1~10的烷硫基,碳原子数为3~12的三烷基硅基。在本申请中,“取代的”官能团可以被上述Rc中的一个或2个以上的取代基取代;当同一个原子上连接有两个取代基Rc时,这两个取代基Rc可以独立地存在或者相互连接以与所述原子形成环;当官能团上存在两个相邻的取代基Rc时,相邻的两个取代基Rc可以独立地存在或者与其所连接的官能团稠合成环。
在本申请中,取代或未取代的官能团的碳原子数,指的是所有碳原子数。举例而言,若R 1选自取代的碳原子数为30的芳基,则芳基及其上的取代基的所有碳原子数为30。
在本申请中,L 1、L 2、L 3、L 4、L 5、L 6、L 7、L 8、R 1、R 2、R 3、Ar 1、Ar 2以及Ar 3的碳原子数,指的是所有碳原子数。举例而言:L 1为取代的碳原子数为12的亚芳基,则亚芳基及其上的取代基的所有碳原子数为12。例如:Ar 1
Figure PCTCN2021135857-appb-000006
则其碳原子数为7;L 1
Figure PCTCN2021135857-appb-000007
其碳原子数为12。
本申请中,芳基指的是衍生自芳香碳环的任选官能团或取代基。芳基可以是单环芳基(例如苯基)或多环芳基,换言之,芳基可以是单环芳基、稠环芳基、通过碳碳键共轭连接的两个或者更多个单环芳基、通过碳碳键共轭连接的单环芳基和稠环芳基、通过碳碳键共轭连接的两个或者更多个稠环芳基。即,除非另有说明,通过碳碳键共轭连接的两个或者更多个芳香基团也可以视为本申请的芳基。其中,稠环芳基例如可以包括双环稠合芳基(例如萘基)、三环稠合芳基(例如蒽基)等。芳基中不含有B、N、O、S、P、Se和Si等杂原子。举例而言,在本申请中,苯基等为芳基。芳基的实例可以包括但不限于,苯基、萘基、蒽基、联苯基、三联苯基、四联苯基、五联苯基、苯并[9,10]菲基、芘基、苯并荧蒽基、
Figure PCTCN2021135857-appb-000008
基等。本申请的“取代或未取代的芳基”可含有6~30个碳原子,在一些实施例中,取代或未取代的芳基中的碳原子数可以是6~25个,在另一些实施例中取代或未取代的芳基中的碳原子数可以是6~18个,在另一些实施例中取代或未取代的芳基中的碳原子数可以是6~13个。举例而言,其碳原子数量可以是6个、12个、13个、14个、15个、18个、20个、25个或30个,当然,碳原子数还可以是其他数量,在此不再一一列举。
在本申请中,涉及的亚芳基是指芳基进一步失去一个氢原子所形成的二价基团。
在本申请中,稠合芳环是指两个或两个以上芳环或杂芳环以共有环边而形成的多芳环,例如萘、蒽、芘。
在本申请中,取代的芳基可以是芳基中的一个或者两个以上氢原子被诸如氘原子、卤素基团、氰基、芳基、杂芳基、三烷基硅基、烷基、环烷基、烷氧基、烷硫基等基团取代。应当理解地是,取代的芳基的碳原子数,指的是芳基和芳基上的取代基的碳原子总数,例如碳原子数为18的取代的芳基,指的是芳基和取代基的总碳原子数为18。
在本申请中,作为取代基的芳基,具体实例包括但不限于:苯基、萘基、蒽基、联苯基、三联苯基等等。
在本申请中,杂芳基是指环中包含至少一个杂原子的一价芳香环或其衍生物,杂原子可以是B、O、N、P、Si、Se和S中的至少一种。杂芳基可以是单环杂芳基或多环杂芳基,换言之,杂芳基可以是单个芳香环体系,也可以是通过碳碳键共轭连接的多个芳香环体系,且任一芳香环体系为一个芳香单环或者一个芳香稠环。示例地,杂芳基可以包括噻吩基、呋喃基、吡咯基、咪唑基、噻唑基、噁唑基、噁二唑基、三唑基、吡啶基、联吡啶基、嘧啶基、三嗪基、吖啶基、哒嗪基、吡 嗪基、喹啉基、喹唑啉基、喹喔啉基、吩噻嗪基、吩噁嗪基、酞嗪基、吡啶并嘧啶基、吡啶并吡嗪基、吡嗪并吡嗪基、异喹啉基、吲哚基、咔唑基、苯并噁唑基、苯并咪唑基、苯并噻唑基、苯并咔唑基、苯并噻吩基、二苯并噻吩基、噻吩并噻吩基、苯并呋喃基、菲咯啉基、异噁唑基、噻二唑基、苯并噻唑基、吩噻嗪基、二苯并呋喃基以及N-芳基咔唑基(如N-苯基咔唑基)、N-杂芳基咔唑基(如N-吡啶基咔唑基)、N-烷基咔唑基(如N-甲基咔唑基)等,而不限于此。本申请的“取代或未取代的杂芳基”可含有3~30个碳原子,在一些实施例中,取代或未取代的杂芳基中的碳原子数可以是3~25个,在另一些实施例中取代或未取代的杂芳基中的碳原子数可以是3~20个,在另一些实施例中取代或未取代的杂芳基中的碳原子数可以是12~20个。举例而言,其碳原子数量可以是3个、4个、5个、7个、12个、13个、18个、20个、24个、25个或30个,当然,碳原子数还可以是其他数量,在此不再一一列举。
在本申请中,杂芳基是指环中包含至少一个杂原子的一价芳香环或其衍生物,杂原子可以是B、O、N、P、Si、Se和S中的至少一种,且至少具有一个N。
本申请中,涉及的亚杂芳基是指杂芳基进一步失去一个氢原子所形成的二价基团。
在本申请中,取代的杂芳基可以是杂芳基中的一个或者两个以上氢原子被诸如氘原子、卤素基团、氰基、芳基、杂芳基、三烷基硅基、烷基、环烷基、烷氧基、烷硫基等基团取代。应当理解地是,取代的杂芳基的碳原子数,指的是杂芳基和杂芳基上的取代基的碳原子总数。
在本申请中,作为取代基的杂芳基,具体实例包括但不限于:吡啶基、二苯并呋喃基、二苯并噻吩基、N-苯基咔唑基、咔唑基等等。
在本申请中,碳原子数为1~10的烷基可以为直链烷基或支链烷基。具体而言,碳原子数为1~10的烷基可以为碳原子数为1至10的直链烷基,或碳原子数为3至10的支链烷基。碳原子数例如可以为1、2、3、4、5、6、7、8、9、10。碳原子数为1~10的烷基的具体实例包括但不限于,甲基、乙基、正丙基、异丙基、正丁基、异丁基、叔丁基、正戊基、异戊基、新戊基、环戊基、正己基、庚基、正辛基、2-乙基己基、壬基、癸基、3,7-二甲基辛基等。
在本申请中,卤素基团可以为氟、氯、溴、碘。
本申请中,不定位连接键是指从环体系中伸出的单键
Figure PCTCN2021135857-appb-000009
其表示该连接键的一端可以连接该键所贯穿的环体系中的任意位置,另一端连接化合物分子其余部分。
举例而言,如下式(f)中所示地,式(f)所表示的萘基通过两个贯穿双环的不定位连接键与分子其他位置连接,其所表示的含义,包括如式(f-1)~(f-10)所示出的任一可能的连接方式。
Figure PCTCN2021135857-appb-000010
再举例而言,如下式(X')中所示地,式(X')所表示的二苯并呋喃基通过一个从一侧苯环中间伸出的不定位连接键与分子其他位置连接,其所表示的含义,包括如式(X'-1)~式(X'-4)所示出的任一可能的连接方式。
Figure PCTCN2021135857-appb-000011
本申请中的不定位取代基,指的是通过一个从环体系中央伸出的单键连接的取代基,其表示该取代基可以连接在该环体系中的任何可能位置。例如,如下式(Y)中所示地,式(Y)所表示的取代基R'通过一个不定位连接键与喹啉环连接,其所表示的含义,包括如式(Y-1)~式(Y-7)所示出的任一可能的连接方式。
Figure PCTCN2021135857-appb-000012
在一种具体实施方式中,本申请提供的有机化合物具有下式4-1至4-6中任意一项所示的结构:
Figure PCTCN2021135857-appb-000013
Figure PCTCN2021135857-appb-000014
在本申请一种实施方式中,本申请提供的有机化合物中所述L 1、L 2、L 3和L 4分别独立地选自单键、碳原子数为6~20的取代或未取代的亚芳基、碳原子数为5~20的取代或未取代的亚杂芳基。
可选地,所述L 1、L 2、L 3和L 4中的取代基分别独立地选自氘、卤素基团、氰基、碳原子数为1~5的烷基、碳原子数为6~12的芳基。
具体地,L 1、L 2、L 3和L 4中的取代基分别独立地选自氘、氟、氰基、甲基、乙基、正丙基、异丙基、叔丁基、苯基、萘基、联苯基。
在本申请一种实施方式中,所述L 1、L 2、L 3和L 4分别独立地选自单键、取代或未取代的亚苯基、取代或未取代的亚萘基、取代或未取代的亚联苯基、取代或未取代的亚芴基、取代或未取代的亚菲基、取代或未取代的亚吡啶基、取代或未取代的亚二苯并呋喃基、取代或未取代的亚二苯并噻吩基、取代或未取代的亚咔唑基、取代或未取代的亚异喹啉基。
在本申请另一种实施方式中,所述
Figure PCTCN2021135857-appb-000015
分别独立地选自单键或者取代或未取代的基团V 1;所述未取代的基团V 1选自以下基团组成的组:
Figure PCTCN2021135857-appb-000016
;或者上述任意两个基团通过单键连接所形成的基团;
其中,
Figure PCTCN2021135857-appb-000017
表示化学键;取代的基团V 1上具有一个或多个的取代基,所述取代基各自独立地选自:氘、氰基、氟、甲基、乙基、正丙基、异丙基、叔丁基、苯基、联苯基;当基团V 1的取代基个数大于1时,各取代基相同或不同。
可选地,
Figure PCTCN2021135857-appb-000018
分别独立地选自单键或以下基团组成的组:
Figure PCTCN2021135857-appb-000019
Figure PCTCN2021135857-appb-000020
在本申请一种实施方式中,所述L 5和所述L 6选自单键、碳原子数为6~25的取代或未取代的亚芳基、碳原子数为12~20的取代或未取代的亚杂芳基。
可选地,所述L 5和所述L 6中的取代基分别独立地选自氘、卤素基团、氰基、碳原子数为1~5的烷基、碳原子数为6~12的芳基。
具体地,L 5和L 6中的取代基分别独立地选自氘、氟、氰基、甲基、乙基、正丙基、异丙基、叔丁基、苯基、萘基、联苯基。
在本申请一种实施方式中,所述L 5和所述L 6选自单键、取代或未取代的亚苯基、取代或未取代的亚萘基、取代或未取代的亚菲基、取代或未取代的亚蒽基、取代或未取代的亚芴基、取代或未取代的亚螺二芴基、取代或未取代的亚咔唑基、取代或未取代的亚二苯并呋喃基、取代或未取代的亚二苯并噻吩基。
在本申请另一种实施方案中,所述
Figure PCTCN2021135857-appb-000021
选自单键或者取代或未取代的基团V 2;所述未取代的基团V 2选自以下基团组成的组:
Figure PCTCN2021135857-appb-000022
;或者上述任意两个基团通过单键连接所形成的基团;
其中,
Figure PCTCN2021135857-appb-000023
表示化学键;取代的基团V 2上具有一个或多个的取代基,所述取代基各自独立地选自:氘、氰基、氟、甲基、乙基、正丙基、异丙基、叔丁基、苯基;当基团V 2的取代基个数大于1时,各取代基相同或不同。
可选地,所述L 5和所述L 6分别独立地选自单键或以下基团组成的组:
Figure PCTCN2021135857-appb-000024
在本申请一种实施方式中,所述L 7和所述L 8分别独立地选自单键、碳原子数为6~20的取代或未取代的亚芳基、碳原子数为5~20的取代或未取代的亚杂芳基。
可选地,所述L 7和所述L 8中的取代基分别独立地选自氘、卤素基团、氰基、碳原子数为1~5的烷基、碳原子数为6~12的芳基。
具体地,所述L 7和所述L 8中的取代基具体实例包括但不限于:氘、氟、氰基、甲基、乙基、正丙基、异丙基、叔丁基、苯基、萘基、联苯基。
在本申请一种实施方式中,所述L 7和所述L 8分别独立地选自单键、取代或未取代的亚苯基、取代或未取代的亚萘基、取代或未取代的亚联苯基、取代或未取代的亚芴基、取代或未取代的亚菲基、取代或未取代的亚蒽基、取代或未取代的亚吡啶基、取代或未取代的亚二苯并呋喃基、取代或未取代的亚二苯并噻吩基、取代或未取代的亚咔唑基。
在本申请另一种实施方式中,所述L 7和所述L 8分别独立地选自单键或者取代或未取代的基团V 3,所述未取代的基团V 3选自如下基团所组成的组:
Figure PCTCN2021135857-appb-000025
其中,
Figure PCTCN2021135857-appb-000026
表示化学键;取代的基团V 3上具有一个或两个以上的取代基,取代的基团V 3上的取代基独立地选自氘、氟、氰基、甲基、乙基、正丙基、异丙基、叔丁基、苯基、萘基、菲基;当基团V 3的取代基个数大于1时,各取代基相同或不同。
可选地,所述L 7和所述L 8分别独立地选自单键或以下基团组成的组:
Figure PCTCN2021135857-appb-000027
在本申请一种实施方式中,所述Ar 1和所述Ar 2各自独立地选自碳原子数为6~20的芳基、取代或未取代的碳原子为5~20的杂芳基。
可选地,所述Ar 1和所述Ar 2中的取代基各自独立地选自氘、卤素基团、氰基、碳原子数为1~5的烷基、碳原子数为5~10的环烷基、碳原子数为6~12的芳基。
具体地,所述Ar 1和所述Ar 2中的取代基具体实例包括但不限于:氘、氟、氰基、甲基、乙基、正丙基、异丙基、环己烷基、环戊烷基、苯基、萘基、联苯基。
在本申请一种实施方式中,所述Ar 1和所述Ar 2各自独立地选自取代或未取代的苯基、取代或未取代的萘基、取代或未取代的菲基、取代或未取代的芴基、取代或未取代的喹啉基、取代或未取代的二苯并呋喃基、取代或未取代的二苯并噻吩基、取代或未取代的咔唑基、取代或未取代的以下基团组成的组:
Figure PCTCN2021135857-appb-000028
在本申请另一种实施方式中,所述Ar 1和所述Ar 2各自独立地选自取代或未取代的基团W 1,所述未取代的基团W 1选自以下基团组成的组:
Figure PCTCN2021135857-appb-000029
其中,
Figure PCTCN2021135857-appb-000030
表示化学键;取代的基团W 1上具有一个或两个以上取代基,取代基各自独立地选自氘、氟、氰基、甲基、乙基、正丙基、叔丁基、苯基、萘基、菲基。当基团W 1的取代基个数大于1时,各取代基相同或不同。
可选地,所述Ar 1和所述Ar 2可以选自如下基团组成的组:
Figure PCTCN2021135857-appb-000031
在一种实施方式中,所述Ar 3选自碳原子数6~25的取代或未取代的芳基、碳原子数4~20的取代或未取代的杂芳基。
可选地,所述Ar 3中的取代基选自氘、卤素基团、氰基、碳原子数为1~5的烷基、碳原子数为6~12的芳基、碳原子数为5~10的环烷基;任选地,任意两个相邻的取代基形成碳原子数为5~15的饱和或不饱和环。
具体地,所述Ar 3中的取代基具体实例包括但不限于:氘、氟、氰基、甲基、乙基、正丙基、异丙基、叔丁基、苯基、萘基、联苯基、环己烷基;任选地,任意两个相邻的取代基形成环己烷、环戊烷或芴环。
在本申请一种实施方式中,所述Ar 3选自取代或未取代的苯基、取代或未取代的萘基、取代或 未取代的菲基、取代或未取代的三亚苯基、取代或未取代的联苯基、取代或未取代的三联苯基、取代或未取代的芴基、取代或其取代的螺二芴基、取代或未取代的芘基、取代或未取代的吡啶基、取代或未取代的喹啉基、取代或未取代的呋喃基、取代或未取代的噻吩基、取代或未取代的二苯并呋喃基、取代或未取代的二苯并噻吩基、取代或未取代的咔唑基、取代或未取代的N-苯基咔唑基或取代或取代的以下基团组成的组:
Figure PCTCN2021135857-appb-000032
在一种优选实施方式中,所述Ar 3选自取代或未取代的基团W 2,所述未取代的基团W 2选自如下基团所组成的组:
Figure PCTCN2021135857-appb-000033
其中,取代的基团W 2上具有一个或两个以上取代基,取代基各自独立地选自氘、氟、氰基、甲基、乙基、正丙基、叔丁基、苯基、萘基、菲基、环己烷基;当基团W 2的取代基个数大于1时,各取代基相同或不同。
可选地,Ar 3选自以下基团组成的组:
Figure PCTCN2021135857-appb-000034
Figure PCTCN2021135857-appb-000035
在本申请一种实施方式中,本申请提供的有机化合物选自以下化合物组成的组:
Figure PCTCN2021135857-appb-000036
Figure PCTCN2021135857-appb-000037
Figure PCTCN2021135857-appb-000038
Figure PCTCN2021135857-appb-000039
Figure PCTCN2021135857-appb-000040
Figure PCTCN2021135857-appb-000041
Figure PCTCN2021135857-appb-000042
Figure PCTCN2021135857-appb-000043
Figure PCTCN2021135857-appb-000044
Figure PCTCN2021135857-appb-000045
Figure PCTCN2021135857-appb-000046
Figure PCTCN2021135857-appb-000047
Figure PCTCN2021135857-appb-000048
Figure PCTCN2021135857-appb-000049
Figure PCTCN2021135857-appb-000050
Figure PCTCN2021135857-appb-000051
Figure PCTCN2021135857-appb-000052
Figure PCTCN2021135857-appb-000053
Figure PCTCN2021135857-appb-000054
Figure PCTCN2021135857-appb-000055
本申请对提供的有机化合物的合成方法没有特别限定,本领域技术人员可以根据本申请的有机化合物结合本申请合成例部分提供的制备方法确定合适的合成方法。换言之,本申请的合成例部分示例性地提供了有机化合物的制备方法,所采用的原料可通过商购获得或本领域熟知的方法获得。本领域技术人员可以根据这些示例性的制备方法得到本申请提供的所有有机化合物,在此 不再详述制备该有机化合物的所有具体制备方法,本领域技术人员不应理解为对本申请的限制。
本申请第二方面提供一种电子元件,包括相对设置的阳极和阴极,以及设于所述阳极和所述阴极之间的功能层;所述功能层包含本申请第一方面所述的有机化合物。
本申请所提供的有机化合物可以用于形成功能层中的至少一个有机膜层,以改善电子元件的效率特性和寿命特性。
在一种具体实施方式中,所述功能层包括有机发光层,所述有机发光层包括所述有机化合物。一种实施方式,所述有机发光层包含主体材料和客体材料,进一步地,所述主体材料包含本申请的有机化合物。
按照本申请的一种实施方式中,电子元件为有机电致发光器件,例如为绿色有机电致发光器件。如图1所示,有机电致发光器件可以包括依次层叠设置的阳极100、第一空穴传输层321、第二空穴传输层322、作为能量转化层的有机发光层330、电子传输层340和阴极200。
可选地,阳极100包括以下阳极材料,其优选地是有助于空穴注入至功能层中的具有大逸出功(功函数,work function)材料。阳极材料具体实例包括:金属如镍、铂、钒、铬、铜、锌和金或它们的合金;金属氧化物如氧化锌、氧化铟、氧化铟锡(ITO)和氧化铟锌(IZO);组合的金属和氧化物如ZnO:Al或SnO 2:Sb;或导电聚合物如聚(3-甲基噻吩)、聚[3,4-(亚乙基-1,2-二氧基)噻吩](PEDT)、聚吡咯和聚苯胺,但不限于此。优选包括包含氧化铟锡(铟锡氧化物,indium tin oxide)(ITO)作为阳极的透明电极。
可选地,第一空穴传输层321和第二空穴传输层322分别包括一种或者多种空穴传输材料,空穴传输材料可以选自咔唑多聚体、咔唑连接三芳胺类化合物或者其他类型的化合物。在本申请的一种实施方式中,第一空穴传输层321的空穴传输材料可以为NPB,第二空穴传输层322的空穴传输材料可以为NPAPF。
可选地,有机发光层330可以由单一发光材料组成,也可以包括主体材料和客体材料。有机发光层的主体材料可以含有本申请的有机化合物。在本申请一些实施方式中,有机发光层330由主体材料和客体材料组成,注入有机发光层330的空穴和注入有机发光层330的电子可以在有机发光层330复合而形成激子,激子将能量传递给主体材料,主体材料将能量传递给客体材料,进而使得客体材料能够发光。
有机发光层330的主体材料可以为金属螯合物类化合物、双苯乙烯基基衍生物、芳香族胺衍生物、二苯并呋喃衍生物或者其他类型的材料,本申请对此不做特殊的限制。在本申请的一种实施方式中,有机发光层330的主体材料可以为本申请的有机化合物。
有机发光层330的客体材料可以为具有缩合芳基环的化合物或其衍生物、具有杂芳基环的化合物或其衍生物、芳香族胺衍生物或者其他材料,本申请对此不做特殊的限制。在本申请一些实施方式中,所述有机电致发光器件为绿光器件,有机发光层330的客体材料为Ir(npy) 2acac。
电子传输层340可以为单层结构,也可以为多层结构,其可以包括一种或者多种电子传输材料,电子传输材料可以选自但不限于,苯并咪唑衍生物、恶二唑衍生物、喹喔啉衍生物或者其他电子传输材料。在本申请的一种示例性实施方式中,电子传输层340可以由ET-1和LiQ组成。
本申请中,阴极200可以包括阴极材料,其是有助于电子注入至功能层中的具有小逸出功的材料。阴极材料的具体实例包括但不限于,金属如镁、钙、钠、钾、钛、铟、钇、锂、钆、铝、银、锡和铅或它们的合金;或多层材料如LiF/Al、Liq/Al、LiO 2/Al、LiF/Ca、LiF/Al和BaF 2/Ca。优选包括包含镁和银的金属电极作为阴极。
可选地,如图1所示,在阳极100和第一空穴传输层321之间还可以设置有空穴注入层310,以增强向第一空穴传输层321注入空穴的能力。空穴注入层310可以选用联苯胺衍生物、星爆状芳基胺类化合物、酞菁衍生物或者其他材料,本申请对此不做特殊的限制。在本申请的一种实施方式中,空穴注入层310可以由HAT-CN组成。
可选地,如图1所示,在阴极200和电子传输层340之间还可以设置有电子注入层350,以增强向电子传输层340注入电子的能力。电子注入层350可以包括有碱金属硫化物、碱金属卤化物等无机材料,或者可以包括碱金属与有机物的络合物。在本申请一种实施方式中,电子注入层350可以由金属Yb组成。
本申请的有机电致发光器件可选地为绿色有机电致发光器件。
可选地,在有机发光层330和电子传输层340之间还可以设置有空穴阻挡层341。
本申请第三方面提供一种电子装置包含本申请第二方面所述的电子元件。
按照一种实施方式,如图2所示,所述电子装置为第一电子装置400,该第一电子装置400包括上述有机电致发光器件。第一电子装置400例如可以为显示装置、照明装置、光通讯装置或者其他类型的电子装置,例如可以包括但不限于电脑屏幕、手机屏幕、电视机、电子纸、应急照明灯、光模块等。
按照另一种实施方式,如图3所示,所述电子装置为第二电子装置500,第二电子装置500包括上述光电转化器件。第二电子装置500例如可以为太阳能发电设备、光检测器、指纹识别设备、光模块、CCD相机或则其他类型的电子装置。
本申请中未提到的合成方法的化合物的都是通过商业途径获得的原料产品。
本申请中的中间体和化合物的分析检测使用ICP-7700质谱仪。
下面结合合成实施例来具体说明本申请的有机化合物的合成方法。
使用以下方法合成本申请中化合物。
<1、sub1-I-A1的合成>
<反应式1>
Figure PCTCN2021135857-appb-000056
在三口圆底烧瓶加入2-溴-6-硝基苯酚(50.0g,229.3mmol)、苯甲醇(29.76g,275.2mmol)、1,1'-双(二苯基膦)二茂铁(3.71g,6.8mmol)和二甲苯(500mL),氮气保护下升温至130℃,加热回流搅拌36h。反应结束后,溶液冷却至室温,加入甲苯和水萃取反应溶液,合并有机相,无水硫酸镁干燥有机层,过滤,进行浓缩;粗品利用硅胶柱色谱(二氯甲烷/正庚烷)进行提纯,得到固体化合物sub1-I-A1(40.23g,64%)。
制备例1、化合物的制备
Figure PCTCN2021135857-appb-000057
将9H-咔唑-1-基硼酸(20.2g,95.7mmol)、sub1-I-A1(25.0g,91.2mmol)、四(三苯基膦)钯(2.1g,1.8mmol)、碳酸钾(31.5g,228.0mmol)、四丁基溴化铵(0.5g,1.8mmol)、甲苯(160mL)、乙醇(80mL) 和去离子水(40mL)加入三口烧瓶中,氮气保护下升温至76℃,加热回流搅拌8h。反应结束后,溶液冷却至室温,加入甲苯萃取反应溶液,合并有机相,无水硫酸镁干燥有机层,过滤,进行浓缩;粗品利用硅胶柱色谱(二氯甲烷/正庚烷)进行提纯,得到固体化合物中间体sub A-1(22.0g,67%)。
将中间体sub A-1(20.0g,55.5mmol)、sub B-1(2-氯-4,6-二苯基-1,3,5-三嗪)(17.8g,66.6mmol)、DMF(200mL)加入三口烧瓶中,氮气保护下降温至0℃,加入NaH(1.4g,61.0mmol)后体系由白色变成黄色,自然升至室温反应结束,将所得反应溶液体系中加入水,过滤得到固体产物,用少量乙醇进行淋洗,粗品利用甲苯进行重结晶,得到化合物62(24.62g,75%)。质谱:m/z=592.21[M+H] +
参照sub A-1的合成方法,合成下表1中所示的中间体sub A-2~sub A-5,不同之处在于使用原料1代替9H-咔唑-1-基硼酸,使用原料2代替sub1-I-A1。
表1
Figure PCTCN2021135857-appb-000058
参照化合物62的合成方法,合成下表2中所示的化合物,不同之处在于使用中间体sub A-2~sub A-5代替sub A-1,使用原料3代替2-氯-4,6-二苯基-1,3,5-三嗪。
表2
Figure PCTCN2021135857-appb-000059
Figure PCTCN2021135857-appb-000060
Figure PCTCN2021135857-appb-000061
<2、中间体sub A-6的合成>
Figure PCTCN2021135857-appb-000062
将2,5-二氯苯并噁唑(35.0g,186.1mmol)、2-萘硼酸(32.0g,186.1mmol)、四(三苯基膦)钯(4.3g,3.7mmol)、碳酸钾(64.3g,465.4mmol)、四丁基溴化铵(1.2g,3.72mmol)、甲苯(280mL)、乙醇(70mL)和去离子水(70mL)加入三口烧瓶中,氮气保护下升温至76℃,加热回流搅拌15h。反应结束后,溶液冷却至室温,加入甲苯和水萃取反应溶液,合并有机相,无水硫酸镁干燥有机层,过滤,进 行浓缩;粗品利用硅胶柱色谱(二氯甲烷/正庚烷)进行提纯,得到固体化合物sub1-I-A6(31.7g,61%)。
将sub1-I-A6(30.0g,107.2mmol)、联硼酸频哪醇酯(40.8g,160.8mmol)、Pd 2(dba) 3(0.9g,1.0mmol)、x-phos(1.0g,2.1mmol)和KOAc(21.0g,214.5mmol)混合,并向其中加入1,4-二氧六环(300mL)在100℃温度条件下回流反应13h。当反应结束时,使用CH 2Cl 2和水进行提取。使用MgSO 4干燥和浓缩有机层,对得到的化合物用乙醇打浆2次,获得化合物sub1-II-A6(27.5g,68%)。
将sub A-II-A6(23.0g,62.1mmol)、2-溴咔唑(15.0g,60.9mmol)、四三苯基膦钯(1.4g,1.2mmol)、碳酸钾(21.0g,152.3mmol)、四丁基溴化铵(0.2g,0.6mmol)、甲苯(120mL)、乙醇(30mL)和去离子水(30mL)加入三口烧瓶中,氮气保护下升温至76℃,加热回流搅拌10h。反应结束后,溶液冷却至室温,加入甲苯和水萃取反应溶液,合并有机相,无水硫酸镁干燥有机层,过滤,进行浓缩;粗品利用硅胶柱色谱(二氯甲烷/正庚烷)进行提纯,得到固体化合物中间体sub A-6(16.2g,65%)。
参照中间体sub A-6的合成方法,合成下表3中所示的中间体sub A-7~sub A-10,不同之处在于使用原料4代替2,5-二氯苯并噁唑,使用原料5代替2-萘硼酸,使用原料6代替2-溴咔唑。
表3
Figure PCTCN2021135857-appb-000063
参照化合物62的合成方法,合成下表4中所示的化合物,不同之处在于使用中间体sub A-6~sub A-10代替sub A-1,使用原料3代替2-氯-4,6-二苯基-1,3,5-三嗪。
表4
Figure PCTCN2021135857-appb-000064
制备例15、化合物355的制备
Figure PCTCN2021135857-appb-000065
将2-溴咔唑(50.0g,203.1mmol)、Sub1-I-A1 61.2g,223.4mmol)、Pd 2(dba) 3(1.8g,2.0mmol)、三叔丁基膦(0.8g,4.1mmol)、叔丁醇钠(39.0g,406.3mmol)和二甲苯(500mL)加入三口烧瓶中,氮气保护下升温至130℃,加热回流搅拌7h。反应结束后,溶液冷却至室温,加入甲苯和水萃取反应溶液,合并有机相,无水硫酸镁干燥有机层,过滤,进行浓缩;粗品利用硅胶柱色谱(二氯甲烷/正庚烷)进行提纯,得到固体化合物sub 1-I-A11(48.3g,58%)。
将sub 1-I-A11(30.0g,68.2mmol)、联硼酸频哪醇酯(26.0g,102.4mmol)、Pd 2(dba) 3(0.6g,0.7mmol)、x-phos(0.6g,1.3mmol)和KOAc(13.4g,136.5mmol)混合,并向其中加入1,4-二氧六环(300mL)在100℃温度条件下回流反应14h。当反应结束时,使用CH 2Cl 2和水进行提取。利用MgSO 4来干燥和浓缩有机层,对所得的化合物用乙醇打浆2次,获得化合物sub A-11(20.2g,66%)。
将sub A-11(18.5g,38.1mmol)、2-氯-4,6-二苯基-1,3,5-三嗪(10.0g,37.3mmol)、四三苯基膦钯(0.8g,0.7mmol)、碳酸钾(10.3g,74.7mmol)、四丁基溴化铵(0.1g,0.4mmol)、甲苯(100mL)、乙醇(20mL)和去离子水(20mL)加入三口烧瓶中,氮气保护下升温至76℃,加热回流搅拌10h。反应结束后,溶液冷却至室温,加入甲苯和水萃取反应溶液,合并有机相,无水MgSO 4干燥有机层,过滤,进行浓缩;粗品利用硅胶柱色谱(二氯甲烷/正庚烷)进行提纯,得到固体化合物355(15.9g,72%)。
参照中间体sub A-11的合成方法,合成下表5中所示的中间体sub A-12~sub A-16,不同之处在于使用原料6代替2-溴咔唑,使用原料2代替sub1-I-A1。
表5
Figure PCTCN2021135857-appb-000066
Figure PCTCN2021135857-appb-000067
参照制备例15的合成方法,合成下表6中所示的化合物,不同之处在于使用中间体sub A-12~sub A-16代替sub A-11,使用原料3代替2-氯-4,6-二苯基-1,3,5-三嗪。
表6
Figure PCTCN2021135857-appb-000068
Figure PCTCN2021135857-appb-000069
Figure PCTCN2021135857-appb-000070
制备例24、化合物406的制备
Figure PCTCN2021135857-appb-000071
将sub 1-I-A1(35.0g,128.6mmol)、对氯苯硼酸(20.5g,131.1mmol)、四三苯基膦钯(2.9g,2.5mmol)、碳酸钾(35.5g,25.7mmol)、四丁基溴化铵(0.4g,1.3mmol)、甲苯(280mL)、乙醇(70mL)和去离子水(70mL)加入三口烧瓶中,氮气保护下升温至76℃,加热回流搅拌16h。反应结束后,溶液冷却至室温,加入甲苯和水萃取反应溶液,合并有机相,无水硫酸镁干燥有机层,过滤,进行浓缩;粗品利用硅胶柱色谱进行提纯,得到固体化合物sub 1-I-A17(27.5g,70%)。
将sub 1-I-A17(25.0g,81.7mmol)、联硼酸频哪醇酯(31.1g,122.6mmol)、Pd 2(dba) 3(0.7g,0.8mmol)、x-phos(0.7g,1.6mmol)和KOAc(16.0g,163.5mmol)混合,并向其中加入1,4-二氧六环(250mL)在100℃温度条件下回流反应14h。当反应结束时,使用CH 2Cl 2和水进行提取。利用MgSO 4来干燥和浓缩有机层,对所得的化合物用乙醇打浆2次,获得化合物sub A-II-A17(23.0g,65%)。
将sub A-II-A17(21.4g,53.8mmol)、2-溴咔唑(13.0g,52.8mmol)、四三苯基膦钯(0.6g,0.5mmol)、碳酸钾(14.6g,105.6mmol)、四丁基溴化铵(0.3g,1.0mmol)、甲苯(160mL)、乙醇(40mL)和去离子水(40mL)加入三口烧瓶中,氮气保护下升温至76℃,加热回流搅拌8h。反应结束后,溶液冷却至室温,加入甲苯和水萃取反应溶液,合并有机相,无水硫酸镁干燥有机层,过滤,进行浓缩;粗品利用硅胶柱色谱进行提纯,得到固体中间体sub A-17(15.6g,68%)。
将中间体sub A-17(10.0g,22.9mmol)、2-氯-4,6-二苯基-1,3,5-三嗪(7.3g,27.5mmol)和DMF(100mL)加入三口烧瓶中,氮气保护下降温至0℃,加入NaH(0.6g,25.2mmol)后体系由白色变成黄色,自然升至室温反应结束,将所得反应溶液体系中加入水,过滤得到固体产物,用少量乙醇进行淋洗,粗品利用甲苯进行重结晶,得到化合物406(12.2g,80%)。质谱:m/z=592.21[M+H] +
参照sub A-17的合成方法,制备中间体sub A-18~sub A-24,不同之处在于使用以下原料2替代制备sub 1-I-A1,使用原料7替代对氯苯硼酸,使用原料6代替2-溴咔唑。
表7
Figure PCTCN2021135857-appb-000072
Figure PCTCN2021135857-appb-000073
Figure PCTCN2021135857-appb-000074
参照制备例24的合成方法,合成下表8中所示的化合物,不同之处在于使用中间体sub A-18~sub A-24代替sub A-17,使用原料3代替2-氯-4,6-二苯基-1,3,5-三嗪。
表8
Figure PCTCN2021135857-appb-000075
Figure PCTCN2021135857-appb-000076
Figure PCTCN2021135857-appb-000077
制备例33、化合物461的制备
Figure PCTCN2021135857-appb-000078
将sub1-I-A(30.0g,109.4mmol),联硼酸频哪醇酯(41.6g,164.1mmol)、Pd 2(dba) 3(1.0g,1.1mmol)、x-phos(1.0g,2.1mmol),KOAc(21.2g,218.8mmol),加入1,4-二氧六环(250mL)在100℃温度条件下回流反应14h。当反应结束时,使用CH 2Cl 2和水进行提取。利用MgSO 4来干燥和浓缩有机层,对所生成的化合物用乙醇打浆2次,获得化合物sub A-II-A25(21.7g,62%)。
将sub A-II-A25(20.7g,64.6mmol)、2,7-二溴咔唑(10.0g,30.7mmol)、四三苯基膦钯(0.3g,0.3mmol)、碳酸钾(8.5g,61.5mmol)、四丁基溴化铵(0.09g,0.3mmol)、甲苯(160mL)、乙醇(40mL)和去离子水(40mL)加入三口烧瓶中,氮气保护下升温至76℃,加热回流搅拌12h。反应结束后,溶液冷却至室温,加入甲苯和水萃取反应溶液,合并有机相,无水硫酸镁干燥有机层,过滤,进行浓缩;粗品利用硅胶柱色谱进行提纯,得到固体中间体sub A-25(10.8g,64%)。
将中间体sub A-25(10.0g,18.0mmol)、2-氯-4,6-二苯基-1,3,5-三嗪(5.3g,19.8mmol)、DMF(100mL)加入三口烧瓶中,氮气保护下降温至0℃,加入NaH(0.5g,21.6mmol)后体系由白色变成黄色,自然升至室温反应结束,将所得反应溶液体系中加入水,过滤得到固体产物,用少量乙醇进行淋洗,粗品利用甲苯进行重结晶,得到化合物461(10.6g,71%)。
质谱:m/z=785.26[M+H] +
制备例34、化合物495的制备
Figure PCTCN2021135857-appb-000079
将3-溴-6-氯咔唑(50.0g,178.2mmol)、sub1-I-A(53.7g,196.0mmol)、Pd 2(dba) 3(3.2g,3.5mmol)、三叔丁基膦(1.4g,7.1mmol)、叔丁醇钠(34.2g,356.4mmol)、二甲苯(500mL)加入三口烧瓶中,氮气保护下升温至140℃,加热回流搅拌7h。反应结束后,溶液冷却至室温,加入甲苯和水萃取反应溶液,合并有机相,无水硫酸镁干燥有机层,过滤,进行浓缩;粗品利用硅胶柱色谱(二氯甲烷/正庚烷)进行提纯,得到固体中间体sub 1-I-A26(46.4g,55%)。
将sub 1-I-A26(45.0g,94.9mmol)、sub 1-I I-A25(32.0g,99.7mmol)、四三苯基膦钯(2.1g,1.9mmol)、碳酸钾(26.2g,189.9mmol)、四丁基溴化铵(0.6g,1.8mmol)、甲苯(360mL)、乙醇(90mL)和去离子水(90mL)加入三口烧瓶中,氮气保护下升温至76℃,加热回流搅拌15h。反应结束后,溶液冷却至室温,加入甲苯和水萃取反应溶液,合并有机相,无水MgSO 4干燥有机层,过滤,进行浓缩;粗品利用硅胶柱色谱(二氯甲烷/正庚烷)进行提纯,得到固体sub 1-II-A26(37.9g,68%)。
将sub 1-II-A26(35.0g,59.5mmol)、联硼酸频哪醇酯(22.6g,89.2mmol)、Pd 2(dba) 3(0.5g,0.6mmol)、x-phos(0.5g,1.2mmol)、KOAc(11.6g,119.0mmol),加入1,4-二氧六环(350mL)在100℃温度条件下回流反应15h。当反应结束时,使用CH2Cl2和水进行提取。利用MgSO 4来干燥和浓缩有机层,对所生成的化合物用乙醇打浆2次,获得化合物sub 1-III-A26(29.9g,74%)。
将sub 1-III-A26(24.1g,35.6mmol)、2-(4-联苯基)-4-氯-6-苯基-1,3,5三嗪(12.0g,34.9mmol)、四三苯基膦钯(0.8g,0.7mmol)、碳酸钾(9.6g,69.8mmol)、四丁基溴化铵(0.2g,0.6mmol)、甲苯(200mL)、乙醇(50mL)和去离子水(50mL)加入三口烧瓶中,氮气保护下升温至76℃,加热回流搅拌14h。反应结束后,溶液冷却至室温,加入甲苯和水萃取反应溶液,合并有机相,无水MgSO 4干燥有机层,过滤,进行浓缩;粗品利用硅胶柱色谱(二氯甲烷/正庚烷)进行提纯,得到固体化合物495(18.9g,63%)。
上述制备例中部分化合物核磁数据如下表9所示。
表9
Figure PCTCN2021135857-appb-000080
本申请还提供了一种有机电致发光器件,包括阳极、阴极以及介于阳极和阴极之间的有机层,有机层包括本申请提供的上述有机化合物。下面通过器件实施例对本申请的有机电致发光器件进行详细说明。但是,下述实施例仅是本申请的示例,而非限定本申请。
器件实施例
实施例1:绿色有机电致发光器件
通过以下过程制备阳极:将ITO厚度为
Figure PCTCN2021135857-appb-000081
的ITO基板切割成40mm(长)×40mm(宽)×0.7mm(厚)的尺寸,采用光刻工序,将其制备成具有阴极、阳极以及绝缘层图案的实验基板,并可利用紫外臭氧以及O 2:N 2等离子进行表面处理,以增加阳极的功函数,并可采用有机溶剂清洗ITO基板表面,以清除ITO基板表面的杂质及油污。需要说明的是,ITO基板还可以根据实际需要切割成其他尺寸,在此不对本申请中ITO基板的尺寸做特殊限定。
在实验基板(阳极)上真空蒸镀HAT-CN(cas:105598-27-4)以形成厚度为
Figure PCTCN2021135857-appb-000082
的空穴注入层(HIL),然后在空穴注入层上真空蒸镀NPB(cas:123847-85-8),以形成厚度为
Figure PCTCN2021135857-appb-000083
的第一空穴传输层。
在第一空穴传输层上真空蒸镀NPAPF(cas:916061-87-5),形成厚度为
Figure PCTCN2021135857-appb-000084
的第二空穴传输层。接着在第二空穴传输层上,将化合物62:GH-1(cas:571102-62-2):Ir(npy) 2acac(cas:878393-09-0)以45%:45%:10%的比例进行共同蒸镀,形成厚度为
Figure PCTCN2021135857-appb-000085
的绿色有机发光层(EML)。
然后将化合物ET-1(cas:1197176-03-6)和LiQ以1:1的重量比进行混合并蒸镀形成
Figure PCTCN2021135857-appb-000086
厚的电子传输层(ETL),将Yb蒸镀在电子传输层上以形成厚度为
Figure PCTCN2021135857-appb-000087
的电子注入层(EIL),然后将镁(Mg)和银(Ag)以1:9的蒸镀速率混合,真空蒸镀在电子注入层上,形成厚度为
Figure PCTCN2021135857-appb-000088
的阴极。
此外,在上述阴极上真空蒸镀厚度为
Figure PCTCN2021135857-appb-000089
的CP-1,从而完成有机电致发光器件的制造。
实施例2~实施例34
除了在形成有机发光层时,以表10中所示的化合物替代实施例1中使用的化合物62以外,采用与实施例1相同的方法制作有机电致发光器件。
比较例1~比较例4
除了在形成有机发光层时,分别以化合物A、化合物B、化合物C、化合物D替代实施例1中使用的化合物62之外,采用与实施例1相同的方法制作有机电致发光器件。
其中,在制备有机电致发光器件时,比较例与实施例所使用的各材料的结构如下所示:
Figure PCTCN2021135857-appb-000090
Figure PCTCN2021135857-appb-000091
其中上述实施例及比较例制得的器件的IVL数据是在10mA/cm 2下的测试结果,寿命是20mA/cm 2电流密度下的测试结果,其结果示于下表:
表10实施例1~34和比较例1~4的器件性能
Figure PCTCN2021135857-appb-000092
Figure PCTCN2021135857-appb-000093
Figure PCTCN2021135857-appb-000094
根据上表测试结果可知,使用本申请实施例1~32制备的化合物,与使用已公知的化合物A、化合物B、化合物C的比较例1~3相比:实施例1~32的有机电致发光器件的发光效率(Cd/A)为77.8~82.1%,比较例1~3中发光效率为57.9~64.3%,实施例1~32相比于比较例1~3发光效率至少提高了21%;实施例1~32的有机电致发光器件的器件寿命为124~134h,比较例1~3中的器件寿命为89~95h,实施例1~32相比于比较例1~3器件寿命最少提高了30.5%;实施例1~32的有机电致发光器件的工作电压3.91~4.01V,比较例1~3中的工作电压为4.2~4.33V,实施例1~32相比于比较例1~3工作电压最少降低了4.5%。
同时,使用本申请实施例33~34制备的化合物,与使用已知的化合物D的比较例4相比,实施例33~34的有机电致发光器件的发光效率(Cd/A)为71.8%~72.2%,比较例4中的发光效率为63.9%,实施例33~34相比于比较例4发光效率最少提高了12.4%;实施例33~34的有机电致发光器件寿命为114~119h,比较例4中的器件寿命为93h,实施例33~34相比于比较例4中的器件寿命最少提高了22.6%;实施例33~34中的有机电致发光器件的工作电压4.07~4.10V,比较例4中的工作电压为4.22V,实施例33~34相比于比较例4工作电压最少降低了2.84%。
根据上表测试可知,本申请提供的化合物相比于比较例化合物A~D,主要改变了苯并噁唑的连接位置。本申请化合物选择将苯并恶唑的苯环侧与咔唑基团连接,提高了分子稳定性,从而提高了材料耐受能力。将其作为有机发光电致器件的发光主体材料时,可以提升器件的效率和寿命,并能够降低工作电压。
综上所述,在有机发光层(EML)中使用本申请提供的化合物制备的有机电致发光器件可实现较高的发光效率,以及较长的寿命,电压亦有所降低。
以上结合附图详细描述了本申请的优选实施方式,但是,本申请并不限于上述实施方式中的具体细节,在本申请的技术构思范围内,可以对本申请的技术方案进行多种简单变型,这些简单变型均属于本申请的保护范围。另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。
此外,本申请的各种不同的实施方式之间也可以进行任意组合,只要其不违背本申请的思想,其同样应当视为本申请所公开的内容。

Claims (15)

  1. 一种有机化合物,其特征在于,所述有机化合物具有如下式1所示的结构:
    Figure PCTCN2021135857-appb-100001
    其中,
    Figure PCTCN2021135857-appb-100002
    表示连接键;X为O;
    A 1和A 2分别独立地选自式2或式3所示的结构;m为1或2;
    L 1、L 2、L 3、L 4、L 5、L 6、L 7和L 8相同或不相同,且各自独立地选自单键、碳原子数为6~30的取代或未取代的亚芳基、碳原子数为2~30的取代或未取代的亚杂芳基;
    R 1和R 2相同或不相同,且各自独立地选自氘、卤素基团、碳原子数为1~10的烷基、碳原子数为3~10的环烷基、碳原子数为1~10的烷氧基、碳原子数为6~30的芳基、碳原子数为3~30的杂芳基;
    n 1表示R 1的个数,n 1为0、1、2、3或4;
    n 2表示R 2的个数,n 2为0、1、2、3或4;
    n 3表示R 3的个数,n 2为0、1、2或3;
    Ar 3选自碳原子数为6~30的取代或未取代的芳基、碳原子数为3~30的取代或未取代的杂芳基;
    Ar 1和Ar 2相同或不相同,且各自独立地选自碳原子数为6~30的取代或未取代的芳基、碳原子数为3~30的取代或未取代的杂芳基;
    L 1、L 2、L 3、L 4、L 5、L 6、L 7、L 8、Ar 1、Ar 2和Ar 3中的取代基相同或不同,且各自独立地选自:氘、卤素基团、氰基、碳原子数为3~20的杂芳基、碳原子数为6~20的芳基、碳原子数为1~10的烷基、碳原子数为1~10的卤代烷基、碳原子数为3~10的环烷基、碳原子数为1~10的烷氧基、碳原子数为1~10的烷硫基、碳原子数为3~12的三烷基硅基;
    在L 1、L 2、L 3、L 4、L 5、L 6、L 7、L 8、Ar 1、Ar 2和Ar 3中,任选地,任意两个相邻的取代基形成碳原子数为3~15的饱和或不饱和环。
  2. 根据权利要求1所述的有机化合物,其特征在于,所述L 1、L 2、L 3和L 4分别独立地选自单键、碳原子数为6~20的取代或未取代的亚芳基、碳原子数为5~20的取代或未取代的亚杂芳基;
    优选地,所述L 1、L 2、L 3和L 4中的取代基分别独立地选自氘、卤素基团、氰基、碳原子数为1~5的烷基、碳原子数为6~12的芳基。
  3. 根据权利要求1所述的有机化合物,其特征在于,所述
    Figure PCTCN2021135857-appb-100003
    分别独立地选自单键或者取代或未取代的基团V 1;所述未取代的基团V 1选自以下基团组成的组:
    Figure PCTCN2021135857-appb-100004
    ;或者上述任意两个基团通过单键连接所形成的基团;
    其中,
    Figure PCTCN2021135857-appb-100005
    表示化学键;取代的基团V 1上具有一个或多个的取代基,所述取代基各自独立地选自:氘、氰基、氟、甲基、乙基、正丙基、异丙基、叔丁基、苯基、联苯基;当基团V 1的取代基个数大于1时,各取代基相同或不同。
  4. 根据权利要求1所述的有机化合物,其特征在于,所述L 5和所述L 6分别独立地选自单键、碳原子数为6~25的取代或未取代的亚芳基、碳原子数为12~20的取代或未取代的亚杂芳基;
    优选地,所述L 5和所述L 6中的取代基分别独立地选自氘、卤素基团、氰基、碳原子数为1~5的烷基、碳原子数为6~12的芳基。
  5. 根据权利要求1所述的有机化合物,其特征在于,所述
    Figure PCTCN2021135857-appb-100006
    选自单键或者取代或未取代的基团V 2;所述未取代的基团V 2选自以下基团组成的组:
    Figure PCTCN2021135857-appb-100007
    其中,
    Figure PCTCN2021135857-appb-100008
    表示化学键;取代的基团V 2上具有一个或多个的取代基,所述取代基各自独立地选自:氘、氰基、氟、甲基、乙基、正丙基、异丙基、叔丁基、苯基;当基团V 2的取代基个数大于1时,各取代基相同或不同。
  6. 根据权利要求1所述的有机化合物,其特征在于,所述L 7和L 8分别独立地选自单键、碳原子数为6~20的取代或未取代的亚芳基、碳原子数为5~20的取代或未取代的亚杂芳基;
    优选地,所述L 7和L 8中的取代基分别独立地选自氘、卤素基团、氰基、碳原子数为1~5的烷基、碳原子数为6~12的芳基。
  7. 根据权利要求1所述的有机化合物,其特征在于,所述L 7和所述L 8分别独立地选自单键或者取代或未取代的基团V 3,所述未取代的基团V 3选自如下基团所组成的组:
    Figure PCTCN2021135857-appb-100009
    其中,
    Figure PCTCN2021135857-appb-100010
    表示化学键;取代的基团V 3上具有一个或两个以上的取代基,取代的基团V 3上的取代基独立地选自氘、氟、氰基、甲基、乙基、正丙基、异丙基、叔丁基、苯基、萘基、菲基;当基团V 3的取代基个数大于1时,各取代基相同或不同。
  8. 根据权利要求1所述的有机化合物,其特征在于,所述Ar 1和所述Ar 2各自独立地选自碳原子数为6~20的芳基、取代或未取代的碳原子为5~20的杂芳基;
    优选地,所述Ar 1和所述Ar 2中的取代基各自独立地选自氘、卤素基团、氰基、碳原子数为1~5 的烷基、碳原子数为5~10的环烷基、碳原子数为6~12的芳基。
  9. 根据权利要求1所述的有机化合物,其特征在于,所述Ar 1和所述Ar 2各自独立地选自取代或未取代的基团W 1,所述未取代的基团W 1选自以下基团组成的组:
    Figure PCTCN2021135857-appb-100011
    其中,
    Figure PCTCN2021135857-appb-100012
    表示化学键;取代的基团W 1上具有一个或两个以上取代基,取代基各自独立地选自氘、氟、氰基、甲基、乙基、正丙基、叔丁基、苯基、萘基、菲基;当基团W 1的取代基个数大于1时,各取代基相同或不同。
  10. 根据权利要求1所述的有机化合物,其特征在于,所述Ar 3选自碳原子数6~25的取代或未取代的芳基、碳原子数4~20的取代或未取代的杂芳基;
    优选地,所述Ar 3中的取代基选自氘、卤素基团、氰基、碳原子数为1~5的烷基、碳原子数为6~12的芳基、碳原子数为5~10的环烷基;任选地,任意两个相邻的取代基形成碳原子数为5~15的饱和或不饱和环。
  11. 根据权利要求1所述的有机化合物,其特征在于,所述Ar 3选自取代或未取代的基团W 2,所述未取代的基团W 2选自如下基团所组成的组:
    Figure PCTCN2021135857-appb-100013
    其中,取代的基团W 2上具有一个或两个以上取代基,取代基各自独立地选自氘、氟、氰基、甲基、乙基、正丙基、叔丁基、苯基、萘基、菲基、芴基、联苯基、环己烷基;当基团W 2的取代基个数大于1时,各取代基相同或不同。
  12. 根据权利要求1所述的有机化合物,其特征在于,所述化合物选自以下化合物所组成的组:
    Figure PCTCN2021135857-appb-100014
    Figure PCTCN2021135857-appb-100015
    Figure PCTCN2021135857-appb-100016
    Figure PCTCN2021135857-appb-100017
    Figure PCTCN2021135857-appb-100018
    Figure PCTCN2021135857-appb-100019
    Figure PCTCN2021135857-appb-100020
    Figure PCTCN2021135857-appb-100021
    Figure PCTCN2021135857-appb-100022
    Figure PCTCN2021135857-appb-100023
    Figure PCTCN2021135857-appb-100024
    Figure PCTCN2021135857-appb-100025
    Figure PCTCN2021135857-appb-100026
    Figure PCTCN2021135857-appb-100027
    Figure PCTCN2021135857-appb-100028
    Figure PCTCN2021135857-appb-100029
    Figure PCTCN2021135857-appb-100030
    Figure PCTCN2021135857-appb-100031
    Figure PCTCN2021135857-appb-100032
    Figure PCTCN2021135857-appb-100033
  13. 一种电子元件,其特征在于,包括相对设置的阳极和阴极,以及设于所述阳极和所述阴极之间的功能层,所述功能层包含权利要求1~12任一项所述的有机化合物;
    优选地,所述功能层包括有机发光层,所述有机发光层包含主体材料和客体材料,所述主体材料包含所述有机化合物。
  14. 根据权利要求13所述的电子元件,其中,所述电子元件为有机电致发光器件;
    优选地,所述有机电致发光器件为绿色有机电致发光器件。
  15. 一种电子装置,其特征在于,包括权利要求13或14所述的电子元件。
PCT/CN2021/135857 2021-01-07 2021-12-06 一种有机化合物以及使用其的电子元件和电子装置 WO2022148197A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110018424.0A CN114736198B (zh) 2021-01-07 2021-01-07 一种有机化合物以及使用其的电子元件和电子装置
CN202110018424.0 2021-01-07

Publications (1)

Publication Number Publication Date
WO2022148197A1 true WO2022148197A1 (zh) 2022-07-14

Family

ID=82274043

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/135857 WO2022148197A1 (zh) 2021-01-07 2021-12-06 一种有机化合物以及使用其的电子元件和电子装置

Country Status (2)

Country Link
CN (1) CN114736198B (zh)
WO (1) WO2022148197A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111777602A (zh) * 2020-08-11 2020-10-16 长春海谱润斯科技有限公司 一种含有咔唑的化合物及其有机电致发光器件
CN111892587A (zh) * 2020-09-09 2020-11-06 长春海谱润斯科技有限公司 一种杂环有机化合物及其有机发光器件
CN112010840A (zh) * 2019-05-29 2020-12-01 株式会社P&H Tech 有机电致发光化合物和包含其的有机电致发光装置
CN112105615A (zh) * 2018-07-05 2020-12-18 株式会社Lg化学 多环化合物和包含其的有机发光器件
CN112851649A (zh) * 2019-11-28 2021-05-28 南京高光半导体材料有限公司 一种含有多元杂环结构的有机电致发光化合物及有机电致发光器件和应用
CN113372313A (zh) * 2021-07-02 2021-09-10 长春海谱润斯科技股份有限公司 一种三芳胺化合物及其有机电致发光器件

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112105615A (zh) * 2018-07-05 2020-12-18 株式会社Lg化学 多环化合物和包含其的有机发光器件
CN112010840A (zh) * 2019-05-29 2020-12-01 株式会社P&H Tech 有机电致发光化合物和包含其的有机电致发光装置
CN112851649A (zh) * 2019-11-28 2021-05-28 南京高光半导体材料有限公司 一种含有多元杂环结构的有机电致发光化合物及有机电致发光器件和应用
CN111777602A (zh) * 2020-08-11 2020-10-16 长春海谱润斯科技有限公司 一种含有咔唑的化合物及其有机电致发光器件
CN111892587A (zh) * 2020-09-09 2020-11-06 长春海谱润斯科技有限公司 一种杂环有机化合物及其有机发光器件
CN113372313A (zh) * 2021-07-02 2021-09-10 长春海谱润斯科技股份有限公司 一种三芳胺化合物及其有机电致发光器件

Also Published As

Publication number Publication date
CN114736198A (zh) 2022-07-12
CN114736198B (zh) 2023-11-03

Similar Documents

Publication Publication Date Title
WO2022160661A1 (zh) 一种含氮化合物及包含其的电子元件和电子装置
WO2021218588A1 (zh) 一种含氮化合物以及使用其的电子元件和电子装置
CN113773207B (zh) 有机化合物及包含其的电子元件和电子装置
WO2021228111A1 (zh) 有机化合物以及使用其的电子元件和电子装置
WO2022213905A1 (zh) 有机化合物以及使用其的电子元件和电子装置
WO2022088865A1 (zh) 含氮化合物、电子元件和电子装置
CN115028540A (zh) 有机电致发光材料、电子元件及电子装置
WO2021082504A1 (zh) 含氮化合物、电子元件和电子装置
CN113480540B (zh) 一种有机化合物以及使用其的电子元件和电子装置
WO2024055658A1 (zh) 含氮化合物和电子元件及电子装置
WO2024087586A1 (zh) 有机化合物及包含其的电子元件和电子装置
CN113121408A (zh) 含氮化合物、电子元件和电子装置
WO2022206389A1 (zh) 含氮化合物及包含其的电子元件和电子装置
WO2022068292A1 (zh) 一种有机化合物以及使用其的电子元件和电子装置
WO2022100194A1 (zh) 含氮化合物、有机电致发光器件和电子装置
CN114075117A (zh) 一种有机化合物以及使用其的电子元件和电子装置
WO2024037073A1 (zh) 含氮化合物、电子元件和电子装置
WO2023202198A1 (zh) 有机材料、电子元件和电子装置
WO2024007511A1 (zh) 芳胺化合物及有机电致发光器件和电子装置
WO2023134228A1 (zh) 含氮化合物及包含其的有机电致发光器件和电子装置
CN113421980B (zh) 有机电致发光器件及包含其的电子装置
WO2022217791A1 (zh) 一种组合物及包含其的电子元件和电子装置
CN114075171B (zh) 一种有机化合物以及使用其的有机电致发光器件和电子装置
CN115010607A (zh) 有机化合物、电子元件和电子装置
CN114335399A (zh) 有机电致发光器件及包括其的电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21917238

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21917238

Country of ref document: EP

Kind code of ref document: A1