WO2021082504A1 - 含氮化合物、电子元件和电子装置 - Google Patents

含氮化合物、电子元件和电子装置 Download PDF

Info

Publication number
WO2021082504A1
WO2021082504A1 PCT/CN2020/099783 CN2020099783W WO2021082504A1 WO 2021082504 A1 WO2021082504 A1 WO 2021082504A1 CN 2020099783 W CN2020099783 W CN 2020099783W WO 2021082504 A1 WO2021082504 A1 WO 2021082504A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
nitrogen
containing compound
groups
Prior art date
Application number
PCT/CN2020/099783
Other languages
English (en)
French (fr)
Inventor
马天天
聂齐齐
Original Assignee
陕西莱特光电材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 陕西莱特光电材料股份有限公司 filed Critical 陕西莱特光电材料股份有限公司
Priority to JP2021572911A priority Critical patent/JP7105388B1/ja
Publication of WO2021082504A1 publication Critical patent/WO2021082504A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/54Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to two or three six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/57Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton
    • C07C211/61Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton with at least one of the condensed ring systems formed by three or more rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/86Carbazoles; Hydrogenated carbazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/88Carbazoles; Hydrogenated carbazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/91Dibenzofurans; Hydrogenated dibenzofurans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/50Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D333/76Dibenzothiophenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/12Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/12Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/624Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing six or more rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/05Isotopically modified compounds, e.g. labelled
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/06Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members
    • C07C2603/10Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings
    • C07C2603/12Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings only one five-membered ring
    • C07C2603/18Fluorenes; Hydrogenated fluorenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/22Ortho- or ortho- and peri-condensed systems containing three rings containing only six-membered rings
    • C07C2603/26Phenanthrenes; Hydrogenated phenanthrenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/93Spiro compounds
    • C07C2603/94Spiro compounds containing "free" spiro atoms
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/18Carrier blocking layers
    • H10K50/181Electron blocking layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • This application relates to the technical field of organic materials, in particular to a nitrogen-containing compound, an electronic component and an electronic device.
  • Such electronic components such as organic electroluminescence devices or photoelectric conversion devices, usually include a cathode and an anode disposed oppositely, and a functional layer disposed between the cathode and the anode.
  • the functional layer is composed of multiple organic or inorganic film layers, and generally includes an energy conversion layer, a hole transport layer between the energy conversion layer and the anode, and an electron transport layer between the energy conversion layer and the cathode.
  • the electronic element when it is an organic electroluminescent device, it generally includes an anode, a hole transport layer, an organic light-emitting layer as an energy conversion layer, an electron transport layer, and a cathode that are stacked in sequence.
  • anode When voltage is applied to the cathode and anode, the two electrodes generate an electric field. Under the action of the electric field, the electrons on the cathode side move to the organic light-emitting layer, and the holes on the anode side also move to the organic light-emitting layer. The electrons and holes are combined in the organic light-emitting layer.
  • Excitons the excitons are in an excited state and release energy to the outside, which in turn makes the organic light-emitting layer emit light to the outside.
  • an electron blocking layer may also be provided between the energy conversion layer and the hole transport layer.
  • the hole transport performance of the film layer located between the anode and the energy conversion layer has an important influence on the performance of the electronic component.
  • compounds containing fluorene groups can be used in the hole transport layer.
  • the performance of existing hole transport layer materials containing fluorene groups needs to be further improved.
  • the purpose of this application is to provide a nitrogen-containing compound, electronic component and electronic device to improve the performance of the electronic component and electronic device.
  • a nitrogen-containing compound is provided, and the structure of the nitrogen-containing compound is shown in Formula I:
  • L is selected from a single bond, a substituted or unsubstituted arylene group having 6-20 carbon atoms;
  • Ar 1 and Ar 2 are the same or different, and are independently selected from the following substituted or unsubstituted groups: aryl groups with 6-20 carbon atoms and heteroaryl groups with 1-20 carbon atoms;
  • the substituents of Ar 1 , Ar 2 and L are the same or different, and are each independently selected from: deuterium, nitro, hydroxy, alkyl, cycloalkyl, alkenyl, alkynyl, heterocycloalkyl, and alkoxy , Alkylamino, arylamino, alkylthio, arylsilyl.
  • an electronic component includes an anode and a cathode that are opposed to each other, and a functional layer provided between the anode and the cathode; the functional layer includes an electron barrier
  • the electron blocking layer includes the above-mentioned nitrogen-containing compound.
  • the electronic component is an organic electroluminescence device.
  • the electronic component is a solar cell.
  • an electronic device including the above-mentioned electronic component.
  • an adamantyl structure is introduced at the side of the fluorene to increase the electron density of the fluorene ring and the entire conjugated system of the nitrogen-containing compound through the hyperconjugation effect, thereby enhancing the hole conductivity of the nitrogen-containing compound
  • the luminous efficiency and life of the organic electroluminescent device can be improved, and the conversion efficiency and life of the photoelectric conversion device can be improved, thereby increasing the life and efficiency of the electronic component used for photoelectric conversion or electro-optical conversion.
  • the adamantyl group is introduced between the branches of the triarylamine, which is a near-planar structure, rather than at the end.
  • the bulky steric hindrance of the adamantyl group can finely adjust the bond between the amine and each aryl group. Angle and conjugation degree, so as to obtain the material HOMO value more suitable for the adjacent layer, reduce the operating voltage of the organic electroluminescence device, and increase the open circuit voltage of the photoelectric conversion device.
  • the introduced adamantyl group can also increase the molecular weight of nitrogen-containing compounds and reduce molecular symmetry, increase the glass transition temperature and vapor deposition temperature of nitrogen-containing compounds, and control the crystallinity of nitrogen-containing compounds so that nitrogen compounds can be used for It has better physical and thermal stability during mass production, thereby facilitating the mass production stability of organic electroluminescent devices and photoelectric conversion devices.
  • the 4-position of the fluorene group in the nitrogen-containing compound of the present application is connected to the amine, which greatly increases the steric hindrance of the arylamine structure, and makes the plane of the fluorene and the plane of the arylamine (especially the plane of the triarylamine) different
  • the twist angle between the two increases and the degree of conjugation is reduced; thus, the band width and triplet energy level of the nitrogen-containing compound are increased, making the nitrogen-containing compound particularly suitable for use in the electron blocking layer (also known as the void Hole auxiliary layer, second hole transport layer, etc.).
  • the nitrogen-containing compound is used in the electron blocking layer of an organic electroluminescence device (especially a blue light device) and a photoelectric conversion device, the efficiency and lifespan of the organic electroluminescence device and the photoelectric conversion device are obviously improved.
  • FIG. 1 is a schematic diagram of the structure of an organic electroluminescent device according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of the structure of a photoelectric conversion device according to an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of an electronic device according to an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of an electronic device according to an embodiment of the present application.
  • Electron transport layer 360, electron injection layer; 370, photoelectric conversion layer; 400, electronic device; 500, electronic device.
  • adamantane is a three-dimensional structure, in the compound structure diagram, because of different drawing angles, it will show different planar shapes.
  • the ring structure formed on 9,9-dimethylfluorene is all adamantane.
  • the connection position is also the same. E.g: All have the same structure.
  • L is selected from a single bond, a substituted or unsubstituted arylene group having 6-20 carbon atoms;
  • Ar 1 and Ar 2 are the same or different, and are independently selected from the following substituted or unsubstituted groups: aryl groups with 6-20 carbon atoms and heteroaryl groups with 1-20 carbon atoms;
  • the substituents of Ar 1 , Ar 2 and L are the same or different, and are each independently selected from: deuterium, nitro, hydroxy, alkyl, cycloalkyl, alkenyl, alkynyl, heterocycloalkyl, and alkoxy , Alkylamino, arylamino, alkylthio, arylsilyl.
  • neither Ar 1 nor Ar 2 is a spirobifluorenyl group.
  • the substituents of L, Ar 1 and Ar 2 are each independently selected from deuterium, heteroaryl groups having 3 to 18 carbon atoms, aryl groups having 6 to 18 carbon atoms, and 6-20 halogenated aryl groups, 3-12 trialkylsilyl groups, 8-12 arylsilyl groups, 1-10 alkyl groups, carbon atoms Haloalkyl groups having 1 to 10, alkenyl groups having 2 to 6 carbon atoms, alkynyl groups having 2 to 6 carbon atoms, cycloalkyl groups having 3 to 10 carbon atoms, and 2 to 10 carbon atoms
  • the number of carbon atoms of L, Ar 1 and Ar 2 refers to the number of all carbon atoms.
  • L is selected from a substituted arylene group having 12 carbon atoms, all the carbon atoms of the arylene group and the substituents thereon are 12.
  • each... are independently” and “... are independently” and “... are independently selected from” are interchangeable, and should be understood in a broad sense, which can be either It means that in different groups, the specific options expressed between the same symbols do not affect each other, or it can mean that the specific options expressed between the same symbols do not affect each other in the same group.
  • each q is independently 0, 1, 2 or 3, and each R" is independently selected from hydrogen, deuterium, fluorine, and chlorine", and its meaning is:
  • formula Q-1 represents q substituents R" on the benzene ring , Each R" can be the same or different, and the options of each R" do not affect each other;
  • formula Q-2 means that there are q substituents R" on each benzene ring of biphenyl, and R on two benzene rings The number q of "substituents" may be the same or different, each R" may be the same or different, and the options of each R" do not affect each other.
  • substituted or unsubstituted means that the functional group described after the term may or may not have a substituent (hereinafter, for ease of description, the substituents are collectively referred to as Rc).
  • the "substituted or unsubstituted aryl group” refers to an aryl group having a substituent Rc or an unsubstituted aryl group.
  • the above-mentioned substituents, namely Rc can be, for example, deuterium, halogen groups, cyano groups, heteroaryl groups with 3-20 carbon atoms, aryl groups with 6-20 carbon atoms, and those with 3-12 carbon atoms.
  • Trialkylsilyl group triarylsilyl group with 18-24 carbon atoms, alkyl group with 1-10 carbon atoms, haloalkyl group with 1-10 carbon atoms, alkene with 2-6 carbon atoms Group, alkynyl with 2-6 carbon atoms, cycloalkyl with 3-10 carbon atoms, heterocycloalkyl with 2-10 carbon atoms, cycloalkenyl with 5-10 carbon atoms, Heterocycloalkenyl with 4-10 carbon atoms, alkoxy with 1-10 carbon atoms, alkylamino with 1-10 carbon atoms, alkylthio with 1-10 carbon atoms, carbon Aryloxy with 6-18 atoms, arylthio with 6-18 carbon atoms, phosphoroxy with 6-18 carbon atoms, alkylsulfonyl with 6-18 carbon atoms, carbon atoms A trialkylphosphino group having 3-18 and a trialkylboron group having 3-18 carbon
  • the number of carbon atoms of a substituted or unsubstituted functional group refers to the number of all carbon atoms. For example, if L 1 is a substituted arylene group having 12 carbon atoms, all the carbon atoms of the arylene group and the substituents thereon are 12.
  • hetero means that a functional group includes at least one heteroatom such as B, N, O, S, or P, and the remaining atoms are carbon and hydrogen.
  • the unsubstituted alkyl group may be a "saturated alkyl group" without any double or triple bonds.
  • the unsubstituted alkyl group may be a branched, linear or cyclic alkyl group.
  • the alkyl group having 1 to 10 carbon atoms may include a straight chain alkyl group having 1 to 10 carbon atoms and a branched chain alkyl group having 3 to 10 carbon atoms.
  • the number of carbon atoms may be 1, 2, 3, 4, 5, 6, 7, 8, 9, or 10, for example.
  • alkyl groups having 1-10 carbon atoms include, but are not limited to, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, tert-butyl, n-pentyl, isoamyl Base, neopentyl, n-hexyl, n-heptyl, n-octyl, 2-ethylhexyl, nonyl, decyl, 3,7-dimethyloctyl, etc.
  • the number of carbon atoms of the cycloalkyl group may be 3, 5, 6, 7, 8, 9, 10, for example.
  • Specific examples of cycloalkyl having 3-10 carbon atoms include, but are not limited to, cyclopentyl, cyclohexyl, and adamantyl.
  • alkenyl refers to a hydrocarbon group containing one or more double bonds in a straight or branched hydrocarbon chain. Alkenyl groups can be unsubstituted or substituted. Alkenyl groups may have 1 to 20 carbon atoms, and whenever appearing herein, a numerical range such as “1 to 20" refers to each integer in the given range.
  • “1 to 20 carbon atoms” means that it can contain 1 carbon atom, 2 carbon atoms, 3 carbon atoms, 4 carbon atoms, 5 carbon atoms, 6 carbon atoms, 7 carbon atoms , 8 carbon atoms, 9 carbon atoms, 10 carbon atoms, 11 carbon atoms, 12 carbon atoms, 13 carbon atoms, 14 carbon atoms, 15 carbon atoms, 16 carbon atoms, 17 carbon atoms , 18 carbon atoms, 19 carbon atoms or 20 carbon atoms alkenyl.
  • the alkenyl group may be vinyl, butadiene, or 1,3,5-hexatriene.
  • the halogen group can be, for example, fluorine, chlorine, bromine, or iodine.
  • fluoroalkyl examples include, but are not limited to, trifluoromethyl.
  • an aryl group refers to an optional functional group or substituent derived from an aromatic carbocyclic ring.
  • the aryl group can be a monocyclic aryl group (such as a phenyl group) or a polycyclic aryl group.
  • the aryl group can be a monocyclic aryl group, a condensed ring aryl group, or two or more monocyclic aryl groups conjugated by a carbon-carbon bond. Cyclic aryl groups, monocyclic aryl groups and fused ring aryl groups conjugated through carbon-carbon bonds, and two or more fused ring aryl groups conjugated through carbon-carbon bonds.
  • the fused ring aryl group may include, for example, a bicyclic fused aryl group (for example, a naphthyl group), a tricyclic fused aryl group (for example, a phenanthryl group, a fluorenyl group, an anthryl group), and the like.
  • the aryl group does not contain heteroatoms such as B, N, O, S, P, Se and Si.
  • biphenyl, terphenyl, etc. are aryl groups.
  • aryl groups may include, but are not limited to, phenyl, naphthyl, fluorenyl, anthracenyl, phenanthryl, biphenyl, terphenyl, tetraphenyl, pentaphenyl, benzo[9,10] Phenanthryl, pyrenyl, benzofluoranthene, Base and so on.
  • the arylene group refers to a divalent group formed by further losing one hydrogen atom of an aryl group.
  • a substituted aryl group means that one or more hydrogen atoms in the aryl group are replaced by other groups.
  • at least one hydrogen atom is replaced by a deuterium atom, F, Cl, I, CN, a hydroxyl group, a nitro group, a branched chain alkyl group, a straight chain alkyl group, a cycloalkyl group, an alkoxy group, or other groups.
  • the substituted aryl group with 18 carbon atoms means that the total number of carbon atoms of the aryl group and the substituent on the aryl group is 18.
  • the number of carbon atoms of 9,9-diphenylfluorenyl is 25.
  • the fluorenyl group may be substituted, and the substituted fluorenyl group may be: Can also be
  • a heteroaryl group refers to a monovalent aromatic ring containing at least one heteroatom in the ring or a derivative thereof.
  • the heteroatom may be at least one of B, O, N, P, Si, Se, and S.
  • the heteroaryl group can be a monocyclic heteroaryl group or a polycyclic heteroaryl group.
  • the heteroaryl group can be a single aromatic ring system or multiple aromatic ring systems conjugated through carbon-carbon bonds, and any aromatic
  • the ring system is an aromatic monocyclic ring or an aromatic fused ring.
  • heteroaryl groups may include thienyl, furyl, pyrrolyl, imidazolyl, thiazolyl, oxazolyl, oxadiazolyl, triazolyl, pyridyl, bipyridyl, pyrimidinyl, triazinyl, Acridinyl, pyridazinyl, pyrazinyl, quinolinyl, quinazolinyl, quinoxalinyl, phenoxazinyl, phthalazinyl, pyridopyrimidinyl, pyridopyrazinyl, pyrazinopyrazine Azinyl, isoquinolinyl, indolyl, carbazolyl, benzoxazolyl, benzimidazolyl, benzothiazolyl, benzocarbazolyl, benzothienyl, dibenzothienyl, thiophene Thienyl, benzofur
  • thienyl, furanyl, phenanthrolinyl, etc. are heteroaryl groups of a single aromatic ring system type, and N-arylcarbazolyl and N-heteroarylcarbazolyl are multiple groups conjugated through carbon-carbon bonds.
  • the involved heteroarylene group refers to a divalent group formed by the heteroaryl group further losing one hydrogen atom.
  • the substituted heteroaryl group may be one or more hydrogen atoms in the heteroaryl group, such as deuterium atom, halogen group, -CN, aryl, heteroaryl, trialkylsilyl, alkane Group, cycloalkyl, alkoxy, alkylthio and other groups are substituted.
  • aryl-substituted heteroaryl groups include, but are not limited to, phenyl-substituted dibenzofuranyl, phenyl-substituted dibenzothienyl, phenyl-substituted pyridyl, and the like. It should be understood that the number of carbon atoms of the substituted heteroaryl group refers to the total number of carbon atoms of the heteroaryl group and the substituents on the heteroaryl group.
  • the explanation of the aryl group can be applied to the arylene group, and the explanation of the heteroaryl group also applies to the heteroarylene group.
  • the non-positioned connecting bond refers to the single bond protruding from the ring system It means that one end of the link can be connected to any position in the ring system that the bond penetrates, and the other end is connected to the rest of the compound molecule.
  • the naphthyl group represented by the formula (f) is connected to other positions of the molecule through two non-positional linkages that penetrate the bicyclic ring, and the meaning represented by the formula (f) -1) Any possible connection mode shown in formula (f-10).
  • the phenanthryl group represented by the formula (X') is connected to other positions of the molecule through a non-positional bond extending from the middle of the benzene ring on one side, which represents The meaning of includes any possible connection modes shown in formula (X'-1) to formula (X'-4).
  • the non-positional substituent in this application refers to a substituent connected by a single bond extending from the center of the ring system, which means that the substituent can be connected at any possible position in the ring system.
  • the substituent R'represented by the formula (Y) is connected to the quinoline ring through a non-localized linkage, and the meaning represented by it includes formulas (Y-1) to Any possible connection mode shown in formula (Y-7).
  • an adamantyl structure is introduced at the side of the fluorene, which can increase the electron density of the fluorene ring and the entire conjugated system through the hyperconjugation effect, and can enhance the hole conductivity and electron resistance of the nitrogen-containing compound. Accept the degree.
  • the adamantyl group is introduced between the branches of the triarylamine, which is a nearly planar structure, but not at the end. The large volume steric hindrance of the adamantyl group can finely adjust the bonding angle and the degree of conjugation between the amine and each aryl group, thereby obtaining It is more suitable for the material HOMO value of the adjacent layer.
  • the introduced adamantyl group can increase the molecular weight of nitrogen-containing compounds and reduce molecular symmetry, increase the glass transition temperature and vapor deposition temperature of nitrogen-containing compounds, control the crystallinity of nitrogen-containing compounds, and make the use of nitrogen compounds Better physical and thermal stability during mass production.
  • the 4-position of the fluorene group in the nitrogen-containing compound of the present application is connected to the amine, which greatly increases the steric hindrance of the arylamine structure, and makes the fluorene plane and the arylamine plane (especially the triarylamine plane) twisted
  • the angle is increased, and the degree of conjugation is reduced; thus, the band width and triplet energy level of the nitrogen-containing compound are increased, making the nitrogen-containing compound particularly suitable for use in the electron blocking layer (also known as the hole auxiliary layer) , The second hole transport layer, etc.).
  • the nitrogen-containing compound of the present application enable it to be used in the preparation of organic electroluminescence devices and photoelectric conversion devices, especially suitable for preparing the electron blocking layer of organic electroluminescence devices and photoelectric conversion devices, so as to improve organic electroluminescence.
  • the efficiency and lifespan of the device and the photoelectric conversion device reduce the working voltage of the organic electroluminescence device, increase the open circuit voltage of the photoelectric conversion device, and improve the mass production stability of the photoelectric conversion device and the organic electroluminescence device.
  • the L is selected from a single bond, a substituted or unsubstituted phenylene group, a substituted or unsubstituted naphthylene group, a substituted or unsubstituted biphenylene group, a substituted or unsubstituted terphenylene group, Substituted or unsubstituted dimethylene fluorenyl.
  • the L is selected from substituted or unsubstituted phenanthrylene.
  • L is selected from a single bond or the group consisting of a group represented by chemical formula j-1 to a group represented by chemical formula j-7:
  • M 2 is selected from a single bond or
  • E 1 to E 11 are each independently selected from: hydrogen, heteroaryl groups having 3 to 20 carbon atoms, aryl groups having 6 to 20 carbon atoms, arylsilyl groups having 8 to 12 carbon atoms, C1-C10 alkyl group, C2-C6 alkenyl group, C2-C6 alkynyl group, C3-C10 cycloalkyl group, C2-C2 ⁇ 10 heterocycloalkyl, C 1-10 alkoxy, C 1-10 alkylthio;
  • e r is the number of the substituent Er , r is any integer from 1 to 11; when r is selected from 1, 2, 3, 4, 5 or 6, e r is selected from 1, 2, 3 or 4; when r When r is selected from 7 or 10, e r is selected from 1, 2, 3, 4, 5 or 6; when r is selected from 8 or 9, e r is selected from 1, 2, 3, 4, 5, 6, 7 or 8; When e r is greater than 1, any two E r are the same or different;
  • K 3 is selected from C (E 12 E 13 ); wherein, E 12 and E 13 are each independently selected from: phenyl, alkyl having 1 to 10 carbon atoms, alkenyl having 2 to 6 carbon atoms, The alkynyl group having 2 to 6 carbon atoms, the cycloalkyl group having 3 to 10 carbon atoms, and the heterocycloalkyl group having 2 to 10 carbon atoms.
  • L is selected from a single bond or the group consisting of:
  • L is selected from a single bond or the group consisting of:
  • the L is selected from a single bond, or selected from the group consisting of the following substituents:
  • * means that L is used with Group connection; ** means L is used with Group connection.
  • L is selected from the group consisting of a single bond or the following substituents:
  • * means that L is used with Group connection; ** means L is used with Group connection.
  • Ar 1 and Ar 2 are the same or different, and are independently selected from the group consisting of the following groups:
  • M 1 is selected from a single bond or
  • G 1 to G 5 are each independently selected from N or C(F 1 ), and at least one of G 1 to G 5 is selected from N; when two or more of G 1 to G 5 are selected from C(F 1 ) , Any two F 1 are the same or different;
  • G 6 to G 13 are each independently selected from N or C(F 2 ), and at least one of G 6 to G 13 is selected from N; when two or more of G 6 to G 13 are selected from C(F 2 ) , Any two F 2 are the same or different;
  • G 14 to G 23 are each independently selected from N or C(F 3 ), and at least one of G 14 to G 23 is selected from N; when two or more of G 14 to G 23 are selected from C(F 3 ) , Any two F 3 are the same or different;
  • G 24 to G 33 are each independently selected from N or C(F 4 ), and at least one of G 24 to G 33 is selected from N; when two or more of G 24 to G 33 are selected from C(F 4 ) , Any two F 4 are the same or different;
  • R 1 is selected from: hydrogen, deuterium, arylsilyl group having 8 to 12 carbon atoms, alkyl group having 1 to 10 carbon atoms, alkenyl group having 2 to 6 carbon atoms, and 2 carbon atoms ⁇ 6 alkynyl, carbon 3-10 cycloalkyl, carbon 2-10 heterocycloalkyl, carbon 1-10 alkoxy, carbon 1-10 ⁇ alkylthio;
  • R 2 to R 9 and R 21 are each independently selected from: hydrogen, deuterium, heteroaryl groups having 3 to 10 carbon atoms, arylsilyl groups having 8 to 12 carbon atoms, and 1 to carbon atoms 10 alkyl, carbon 2-6 alkenyl, carbon 2-6 alkynyl, carbon 3-10 cycloalkyl, carbon 2-10 heterocycloalkane A group, an alkoxy group having 1 to 10 carbon atoms, and an alkylthio group having 1 to 10 carbon atoms;
  • R 10 to R 20 and F 1 to F 4 are each independently selected from: hydrogen, deuterium, aryl groups having 6 to 12 carbon atoms, heteroaryl groups having 3 to 10 carbon atoms, and 8 to carbon atoms 12 arylsilyl group, C 1-10 alkyl group, C 2-6 alkenyl group, C 2-6 alkynyl group, C 3-10 ring An alkyl group, a heterocycloalkyl group having 2 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, and an alkylthio group having 1 to 10 carbon atoms;
  • h k is the number of substituents R k , k is any integer from 1 to 21; wherein, when k is selected from 5 or 17, h k is selected from 1, 2 or 3; when k is selected from 2, 7, 8, When 12, 15, 16, 18 or 21, h k is selected from 1, 2, 3 or 4; when k is selected from 1, 3, 4, 6, 9 or 14, h k is selected from 1, 2, 3, 4 or 5; when k is 13, h k is selected from 1, 2, 3, 4, 5 or 6; when k is selected from 10 or 19, h k is selected from 1, 2, 3, 4, 5, 6 Or 7; when k is selected from 20, h k is selected from 1, 2, 3, 4, 5, 6, 7 or 8; when k is 11, h k is selected from 1, 2, 3, 4, 5, 6, 7, 8, or 9; when h k is greater than 1, any two R k are the same or different;
  • K 1 is selected from O, S, Se, N (R 22 ), C (R 23 R 24 ), Si (R 25 R 26 ); wherein, R 22 to R 26 are each independently selected from: phenyl, carbon atom Alkyl group with 1-10, alkenyl group with 2-6 carbon atoms, alkynyl group with 2-6 carbon atoms, cycloalkyl group with 3-10 carbon atoms, 2-10 carbon atoms ⁇ heterocycloalkyl;
  • K 2 is selected from single bond, O, S, Se, N(R 27 ), C(R 28 R 29 ), Si(R 30 R 31 ); wherein, R 27 to R 31 are each independently selected from: phenyl , Alkyl groups with 1 to 10 carbon atoms, alkenyl groups with 2 to 6 carbon atoms, alkynyl groups with 2 to 6 carbon atoms, cycloalkyl groups with 3 to 10 carbon atoms, 2-10 heterocycloalkyl.
  • Ar 1 and Ar 2 are the same or different, and are independently selected from: substituted or unsubstituted aryl groups with 6-20 carbon atoms, substituted or unsubstituted heterocyclic groups with 7-20 carbon atoms Aryl.
  • Ar 1 and Ar 2 are the same or different, and are each independently selected from: unsubstituted aryl groups with 6-20 carbon atoms, substituted aryl groups with 15-20 carbon atoms, and It is an unsubstituted heteroaryl group of 12-18.
  • Ar 1 and Ar 2 are the same or different, and are independently selected from the group consisting of the following groups:
  • Ar 1 and Ar 2 are the same or different, and are independently selected from the group consisting of the following substituents:
  • Ar 1 and Ar 2 are the same or different, and are independently selected from the group consisting of the following groups:
  • the nitrogen-containing compound is selected from the group consisting of the following compounds:
  • This application also provides an electronic component for realizing photoelectric conversion or electro-optical conversion.
  • the electronic component includes an anode and a cathode arranged oppositely, and a functional layer arranged between the anode and the cathode; the functional layer includes the nitrogen-containing compound of the present application.
  • the functional layer includes an electron blocking layer, and the electron blocking layer includes the nitrogen-containing compound provided in the present application.
  • the electron blocking layer can be composed of the nitrogen-containing compound provided in this application, or can be composed of the nitrogen-containing compound provided in this application together with other materials.
  • the electronic component is an organic electroluminescent device.
  • the organic electroluminescent device includes an anode 100 and a cathode 200 arranged opposite to each other, and a functional layer 300 arranged between the anode 100 and the cathode 200; the functional layer 300 includes the nitrogen-containing compound provided in the present application.
  • the functional layer 300 includes an electron blocking layer 322, and the electron blocking layer 322 includes the nitrogen-containing compound provided in the present application.
  • the electron blocking layer 322 may be composed of the nitrogen-containing compound provided in the present application, or may be composed of the nitrogen-containing compound provided in the present application and other materials.
  • the organic electroluminescent device may include an anode 100, a hole transport layer 321, an electron blocking layer 322, an organic electroluminescent layer 330 as an energy conversion layer, and an electron transport layer which are sequentially stacked. 350 and cathode 200.
  • the nitrogen-containing compound provided in the present application can be applied to the electron blocking layer 322 of an organic electroluminescent device, which can effectively improve the luminous efficiency and lifetime of the organic electroluminescent device, and reduce the driving voltage of the organic electroluminescent device.
  • the anode 100 includes the following anode material, which is preferably a material with a large work function (work function) that facilitates injection of holes into the functional layer.
  • anode materials include: metals such as nickel, platinum, vanadium, chromium, copper, zinc, and gold or their alloys; metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO); Combined metals and oxides such as ZnO:Al or SnO 2 :Sb; or conductive polymers such as poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene ] (PEDT), polypyrrole and polyaniline, but not limited thereto. It is preferable to include a transparent electrode containing indium tin oxide (ITO) as an anode.
  • ITO indium tin oxide
  • the hole transport layer 321 may include one or more hole transport materials, and the hole transport materials may be selected from carbazole polymers, carbazole-linked triarylamine compounds or other types of compounds. There are no special restrictions.
  • the hole transport layer 321 is composed of the compound NPB.
  • the organic light-emitting layer 330 may be composed of a single light-emitting material, and may also include a host material and a guest material.
  • the organic light-emitting layer 330 is composed of a host material and a guest material. The holes injected into the organic light-emitting layer 330 and the electrons injected into the organic light-emitting layer 330 can recombine in the organic light-emitting layer 330 to form excitons, and the excitons transfer energy to The host material, the host material transfers energy to the guest material, so that the guest material can emit light.
  • the host material of the organic light-emitting layer 330 can be a metal chelated octyl compound, a bis-styryl derivative, an aromatic amine derivative, a dibenzofuran derivative or other types of materials, which are not special in this application. limits.
  • the host material of the organic light-emitting layer 330 may be ⁇ , ⁇ -ADN.
  • the guest material of the organic light-emitting layer 330 can be a compound with a condensed aryl ring or a derivative thereof, a compound with a heteroaryl ring or a derivative thereof, an aromatic amine derivative or other materials, and this application does not make any special considerations for this. limit.
  • the guest material of the organic light-emitting layer 330 may be BD-1.
  • the electron transport layer 350 can be a single-layer structure or a multi-layer structure, and it can include one or more electron transport materials.
  • the electron transport materials can be selected from benzimidazole derivatives, oxadiazole derivatives, and quinoxalines. Derivatives or other electronic transmission materials, this application does not make any special restrictions.
  • the electron transport layer 340 may be composed of DBimiBphen and LiQ.
  • the cathode 200 includes the following cathode material, which is a material with a small work function that facilitates injection of electrons into the functional layer.
  • cathode materials include: metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin and lead or their alloys; or multilayer materials such as LiF/Al, Liq/ Al, LiO 2 /Al, LiF/Ca, LiF/Al, and BaF 2 /Ca, but not limited thereto. It is preferable to include a metal electrode containing aluminum as a cathode.
  • a hole injection layer 310 may be further provided between the anode 100 and the first hole transport layer 321 to enhance the ability of injecting holes into the first hole transport layer 321.
  • the hole injection layer 310 can be selected from benzidine derivatives, starburst arylamine compounds, phthalocyanine derivatives or other materials, which are not particularly limited in this application.
  • the hole injection layer 310 may be composed of m-MTDATA.
  • an electron injection layer 360 may be further provided between the cathode 200 and the electron transport layer 340 to enhance the ability to inject electrons into the electron transport layer 350.
  • the electron injection layer 360 may include inorganic materials such as alkali metal sulfides and alkali metal halides, or may include complexes of alkali metals and organic substances.
  • the electron injection layer 360 may include LiQ.
  • a hole blocking layer 340 may also be provided between the organic electroluminescent layer 330 and the electron transport layer 350.
  • the electronic component may be a photoelectric conversion device.
  • the photoelectric conversion device may include an anode 100 and a cathode 200 disposed opposite to each other, and a functional layer 300 disposed between the anode 100 and the cathode 200.
  • the functional layer 300 includes the nitrogen-containing compound provided in the present application.
  • the functional layer 300 includes an electron blocking layer 322, and the electron blocking layer 322 includes the nitrogen-containing compound provided in the present application.
  • the electron blocking layer 322 may be composed of the nitrogen-containing compound provided in the present application, or may be composed of the nitrogen-containing compound provided in the present application and other materials.
  • the photoelectric conversion device may include an anode 100, a hole transport layer 321, an electron blocking layer 322, a photoelectric conversion layer 370 as an energy conversion layer, an electron transport layer 350, and a cathode 200 that are sequentially stacked.
  • the nitrogen-containing compound provided in the present application can be applied to the electron blocking layer 322 of a photoelectric conversion device, which can effectively improve the luminous efficiency and lifetime of the photoelectric conversion device, and increase the open circuit voltage of the photoelectric conversion device.
  • a hole injection layer 310 may also be provided between the anode 100 and the hole transport layer 321.
  • an electron injection layer 360 may also be provided between the cathode 200 and the electron transport layer 350.
  • a hole blocking layer 340 may be further provided between the photoelectric conversion layer 370 and the electron transport layer 350.
  • the photoelectric conversion device may be a solar cell, especially an organic thin film solar cell.
  • a solar cell includes an anode 100, a hole transport layer 321, an electron blocking layer 322, a photoelectric conversion layer 370, and an electron transport layer 350 which are sequentially stacked.
  • the embodiments of the present application also provide an electronic device, which includes any one of the electronic components described in the above-mentioned electronic component embodiments. Since the electronic device has any one of the electronic components described in the above-mentioned electronic component embodiments, it has the same beneficial effects, which will not be repeated here in this application.
  • the present application provides an electronic device 400, and the electronic device 200 includes any one of the organic electroluminescent devices described in the foregoing organic electroluminescent device embodiments.
  • the electronic device 400 may be a display device, a lighting device, an optical communication device or other types of electronic devices, such as but not limited to computer screens, mobile phone screens, televisions, electronic paper, emergency lighting, light modules, etc. Since the electronic device 400 has any one of the organic electroluminescent devices described in the above-mentioned organic electroluminescent device embodiments, it has the same beneficial effects, which will not be repeated here in this application.
  • the present application provides an electronic device 500, which includes any one of the photoelectric conversion devices described in the foregoing photoelectric conversion device embodiments.
  • the electronic device 500 may be a solar power generation device, a light detector, a fingerprint identification device, an optical module, a CCD camera, or other types of electronic devices. Since the electronic device 500 has any one of the photoelectric conversion devices described in the foregoing photoelectric conversion device embodiments, it has the same beneficial effects, which will not be repeated here in this application.
  • the magnesium bar (13.54 g, 564 mmol) and ether (100 mL) were placed in a round bottom flask dried under nitrogen protection, and iodine (100 mg) was added. Then, a solution of 2'-bromo-2-chlorobiphenyl (50.00g, 187.0mmol) in ether (200mL) was slowly dropped into the flask. After the addition, the temperature was raised to 35°C and stirred for 3 hours; the reaction solution was reduced At 0°C, slowly drop a solution of adamantanone (22.45g, 149mmol) in ether (200mL) into it.
  • Table 4 Compound number, structure, preparation and characterization data
  • the blue organic electroluminescent device is prepared by the following method
  • the ITO thickness is The ITO substrate (manufactured by Corning) was cut into a size of 40mm (length) ⁇ 40mm (width) ⁇ 0.7mm (thickness), and a photolithography process was used to prepare it into an experimental substrate with cathode lap area, anode and insulating layer patterns , using ultraviolet ozone and O 2 :N 2 plasma for surface treatment to increase the work function of the anode (experimental substrate) and remove scum.
  • M-MTDATA was vacuum-evaporated on the experimental substrate (anode) to form a thickness of Hole injection layer (HIL), and vacuum evaporation of NPB on the hole injection layer to form a thickness of The hole transport layer.
  • HIL Hole injection layer
  • Compound 1 was vapor-deposited on the hole transport layer to form a thickness of The electron blocking layer.
  • the light-emitting layer EML
  • DBimiBphen and LiQ are mixed at a weight ratio of 1:1 and formed by evaporation Thick electron transport layer (ETL), LiQ is vapor-deposited on the electron transport layer to form a thickness of The electron injection layer (EIL) is then mixed with magnesium (Mg) and silver (Ag) at a deposition rate of 1:9, and then vacuum-evaporated on the electron injection layer to form a thickness of The cathode.
  • ETL Thick electron transport layer
  • the vapor deposition thickness on the above cathode is CP-1, thus completing the manufacture of blue organic light-emitting devices.
  • m-MTDATA, NPB, ⁇ , ⁇ -ADN, BD-1, DBimiBphen, LiQ, and CP-1 are as follows:
  • TCTA TCTA instead of Compound 1 in Example 1, according to the same method as Example 1, a blue organic electroluminescent device was prepared.
  • the structure of TCTA is as follows:
  • the driving voltage, current efficiency, color coordinates, and external quantum efficiency of the devices were tested under the condition of 10 mA/cm 2, and the The T95 lifetime of the device was tested under the condition of 20mA/cm 2.
  • the blue organic electroluminescent devices prepared in Examples 1 to 39 have lower driving voltages and higher driving voltages. High luminous efficiency and higher external quantum efficiency, and the life of the device is significantly improved.
  • the driving voltage of the blue organic electroluminescent devices prepared in Examples 1 to 39 is reduced by at least 0.38V, and the luminous efficiency (Cd/ A) Increased by at least 10.9%; external quantum efficiency increased by at least 9.6%; life span increased by at least 33 hours and increased by at least 22%.
  • the nitrogen-containing compound of the present application when used to prepare an organic electroluminescent device, especially when used as an electron blocking layer of an organic electroluminescent device, it can effectively reduce the driving voltage of the electroluminescent device, improve the external quantum efficiency, and Extend the life of organic electroluminescent devices.
  • the nitrogen-containing compound provided in the present application can reduce the operating voltage of the organic electroluminescent device, improve the current efficiency and external quantum efficiency of the organic electroluminescent device, Extend the life of organic electroluminescent devices.
  • the nitrogen-containing compound of the present application can improve the performance of an electronic device that realizes photoelectric conversion or an electronic device that realizes electroluminescence. Therefore, the nitrogen-containing compound of the present application can also be applied to a photoelectric conversion device that realizes photoelectric conversion, such as It can be used in solar cells, especially in the electron blocking layer of photoelectric conversion devices.
  • the compound 1 and compound 2 of the present application have a larger HOMO value than the compound A and compound F of the comparative example, thereby reducing the potential barrier when holes are injected into the main body of the light-emitting layer, and making the hole injection into the light-emitting layer more effective. Smooth, so that when the material is used as an electron transport layer, the efficiency and lifetime of the blue light-emitting device can be improved.
  • an adamantyl structure is introduced at the side of the fluorene, which can increase the electron density of the fluorene ring and the entire conjugated system through the hyperconjugation effect, and can enhance the hole conductivity and electron resistance of the nitrogen-containing compound. At the same time, it can improve the luminous efficiency and life of the organic electroluminescent device, and can improve the conversion efficiency and life of the photoelectric conversion device.
  • the adamantyl group is introduced between the branches of the triarylamine, which is a near-planar structure, rather than at the end.
  • the bulky steric hindrance of the adamantyl group can finely adjust the bonding angle and the degree of conjugation between the amine and each aryl group. Therefore, the HOMO value of the material more suitable for the adjacent layer is obtained, the operating voltage of the organic electroluminescence device is reduced, and the open circuit voltage of the photoelectric conversion device is increased.
  • the introduced adamantyl group can increase the molecular weight of nitrogen-containing compounds and reduce molecular symmetry, increase the glass transition temperature and vapor deposition temperature of nitrogen-containing compounds, control the crystallinity of nitrogen-containing compounds, and make the use of nitrogen compounds It has better physical and thermal stability during mass production, thereby improving the mass production stability of photoelectric conversion devices and organic electroluminescence devices.
  • the 4-position of the fluorene group in the nitrogen-containing compound of the present application is connected to the amine, which greatly increases the steric hindrance of the arylamine structure, and makes the plane of the fluorene and the plane of the arylamine (especially the plane of the triarylamine) different
  • the twist angle between the two increases and the degree of conjugation is reduced; thus, the band width and triplet energy level of the nitrogen-containing compound are increased, making the nitrogen-containing compound particularly suitable for use in the electron blocking layer (also known as the void Hole auxiliary layer, second hole transport layer, etc.).
  • the nitrogen-containing compound is used in the electron blocking layer of an organic electroluminescence device and a photoelectric conversion device, the efficiency and lifespan of the organic electroluminescence device and the photoelectric conversion device are significantly improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Photovoltaic Devices (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

一种如式I所示的含氮化合物、电子元件和电子装置,属于有机材料技术领域。该含氮化合物能够改善电子元件的性能。

Description

含氮化合物、电子元件和电子装置 技术领域
本申请涉及有机材料技术领域,尤其涉及一种含氮化合物、电子元件和电子装置。
背景技术
随着电子技术的发展和材料科学的进步,用于实现电致发光或者光电转化的电子元件的应用范围越来越广泛。该类电子元件,例如有机电致发光器件或者光电转化器件,通常包括相对设置的阴极和阳极,以及设置于阴极和阳极之间的功能层。该功能层由多层有机或者无机膜层组成,且一般包括能量转化层、位于能量转化层与阳极之间的空穴传输层、位于能量转化层与阴极之间的电子传输层。
举例而言,当电子元件为有机电致发光器件时,其一般包括依次层叠设置的阳极、空穴传输层、作为能量转化层的有机发光层、电子传输层和阴极。当阴阳两极施加电压时,两电极产生电场,在电场的作用下,阴极侧的电子向有机发光层移动,阳极侧的空穴也向有机发光层移动,电子和空穴在有机发光层结合形成激子,激子处于激发态向外释放能量,进而使得有机发光层对外发光。为了提高实现电致发光或者光电转化的电子元件的性能,在能量转化层和空穴传输层之间还可以设置有电子阻挡层。
在实现电致发光或者光电转化的电子元件中,位于阳极和能量转化层之间的膜层的空穴传输性能,对电子元件的性能具有重要的影响。如中国专利申请CN201710407382.3和韩国专利申请KR1020180113731等专利文献中的记载,含有芴基团的化合物可以用于空穴传输层。然而,现有的含有芴基团的空穴传输层材料,其性能有待进一步地提高。
发明内容
本申请的目的在于提供一种含氮化合物、电子元件和电子装置,以改善电子元件和电子装置的性能。
为实现上述发明目的,本申请采用如下技术方案:
根据本申请的第一个方面,提供一种含氮化合物,所述含氮化合物的结构如式I所示:
Figure PCTCN2020099783-appb-000001
其中,L选自单键、取代或未取代的碳原子数为6-20的亚芳基;
Ar 1和Ar 2相同或不同,且分别独立地选自以下取代或未取代的基团:碳原子数为6-20的芳基、碳原子数为1-20的杂芳基;
所述Ar 1、Ar 2以及L的取代基相同或不同,分别独立地选自:氘、硝基、羟基、烷基、环烷基、烯基、炔基、杂环烷基、烷氧基、烷氨基、芳氨基、烷硫基、芳基甲硅烷基。
根据本申请的第二个方面,提供一种电子元件,所示电子元件包括相对设置的阳极和阴极,以及设于所述阳极和所述阴极之间的功能层;所述功能层包括电子阻挡层,所述电子阻挡层包含上述的含氮化合物。按照本申请的一种实施方式,所述电子元件为有机电致发光器件。按照本申请的另一种实施方式,所述电子元件为太阳能电池。
根据本申请的第三个方面,提供一种电子装置,所述电子装置包含上述电子元件。
本申请提供的含氮化合物,在芴的侧位引入金刚烷基结构,通过超共轭效应提升芴环以及整个含氮化合物的共轭体系的电子密度,可以增强含氮化合物的空穴传导率以及电子耐受度,同时可以提高有机电致发光器件的发光效率以及寿命、提高光电转化器件的转换效率和寿命,进而提高用于光电转化或者电光转化的电子元件的寿命和效率。而且,在一些实施方式中,金刚烷基引入至原本为近平面结构的三芳基胺的分支之间而非末端处,金刚烷基的大体积空间位阻可以精细调节胺与各个芳基成键键角及共轭程度,从而得到更适合于相邻层的材料HOMO值,降低有机电致发光器件的工作电压、提高光电转化器件的开路电压。不仅如此,引入的金刚烷基还可以增加含氮化合物的分子量并降低分子对称性,可以提高含氮化合物的玻璃化转变温度以及蒸镀温度,控制含氮化合物的结晶性,使得氮化合物用于量产时有更佳的物理和热学稳定性,进而便于有机电致发光器件和光电转化器件的量产稳定性。
尤其是,本申请的含氮化合物中芴基团的4位与胺相连接,大幅度提高了芳胺结构的空间位阻,使得芴的平面与芳胺平面(尤其是三芳基胺平面)之间的扭曲角度增大,降低了共轭程度;由此使得含氮化合物的能带宽度以及三重态能级均得到提高,使得该含氮化合物尤其非常适合用于电子阻挡层(亦称为空穴辅助层、第二空穴传输层等)。该含氮化合物用于有机电致发光器件(特别是蓝光器件)和光电转化器件的电子阻挡层时,对于有机电致发光器件和光电转化器件的效率和寿命有着较为明显的提高。
附图说明
通过参照附图详细描述其示例实施方式,本申请的上述和其它特征及优点将变得更加明显。
图1是本申请实施方式的有机电致发光器件的结构示意图。
图2是本申请实施方式的光电转化器件的结构示意图。
图3是本申请一实施方式的电子装置的结构示意图。
图4是本申请一实施方式的电子装置的结构示意图。
图中主要元件附图标记说明如下:
100、阳极;200、阴极;300、功能层;310、空穴注入层;321、空穴传输层;322、电子阻挡层;330、有机电致发光层;340、空穴阻挡层;350、电子传输层;360、电子注入层;370、光电转化层;400、电子装置;500、电子装置。
具体实施方式
现在将参考附图更全面地描述示例实施例。然而,示例实施例能够以多种形式实施,且不应被理解为限于在此阐述的范例;相反,提供这些实施例使得本申请将更加全面和完整,并将示例实施例的构思全面地传达给本领域的技术人员。所描述的特征、结构或特性可以以任何合适的方 式结合在一个或更多实施例中。在下面的描述中,提供许多具体细节从而给出对本申请的实施例的充分理解。
在图中,为了清晰,可能夸大了区域和层的厚度。在图中相同的附图标记表示相同或类似的结构,因而将省略它们的详细描述。
在本申请中,由于金刚烷是立体结构,在化合物结构图中,因为绘图角度不同,会呈现不同的平面形状,9,9-二甲基芴上所形成的环状结构均为金刚烷,并且连接位置也是相同的。例如:
Figure PCTCN2020099783-appb-000002
均为同一种结构。
本申请提供一种含氮化合物,所述含氮化合物的结构如式I所示:
Figure PCTCN2020099783-appb-000003
其中,L选自单键、取代或未取代的碳原子数为6-20的亚芳基;
Ar 1和Ar 2相同或不同,且分别独立地选自以下取代或未取代的基团:碳原子数为6-20的芳基、碳原子数为1-20的杂芳基;
所述Ar 1、Ar 2以及L的取代基相同或不同,分别独立地选自:氘、硝基、羟基、烷基、环烷基、烯基、炔基、杂环烷基、烷氧基、烷氨基、芳氨基、烷硫基、芳基甲硅烷基。
可选地,所述Ar 1和Ar 2均不为螺二芴基。
可选地,所述L、Ar 1和Ar 2的取代基分别独立地选自氘、碳原子数为3~18的杂芳基、碳原子数为6~18的芳基、碳原子数为6~20的卤代芳基、碳原子数为3~12的三烷基硅基、碳原子数为8~12的芳基甲硅烷基、碳原子数为1~10的烷基、碳原子数为1~10的卤代烷基、碳原子数为2~6的烯基、碳原子数为2~6的炔基、碳原子数为3~10的环烷基、碳原子数为2~10的杂环烷基、碳原子数为5~10的环烯基、碳原子数为4~10的杂环烯基、碳原子数为1~10的烷氧基、碳原子数为1~10的烷硫基、碳原子数为6~18的芳氧基、碳原子数为6~18的芳硫基、碳原子数为6~18的磷氧基。
在本申请中,L、Ar 1和Ar 2的碳原子数,指的是所有碳原子数。举例而言,若L选自取代的碳原子数为12的亚芳基,则亚芳基及其上的取代基的所有碳原子数为12。
在本申请中,所采用的描述方式“各……独立地为”与“……分别独立地为”和“……独立地选自”可以互换,均应做广义理解,其既可以是指在不同基团中,相同符号之间所表达的具体选项之间互相不影响,也可以表示在相同的基团中,相同符号之间所表达的具体选项之间互相不影响。例如,“
Figure PCTCN2020099783-appb-000004
其中,各q独立地为0、1、2或3,各R”独立地选自氢、氘、氟、氯”,其含义是:式Q-1表示苯环上有q个取代基R”,各个R”可以相同也可以 不同,每个R”的选项之间互不影响;式Q-2表示联苯的每一个苯环上有q个取代基R”,两个苯环上的R”取代基的个数q可以相同或不同,各个R”可以相同也可以不同,每个R”的选项之间互不影响。
在本申请中,“取代或未取代的”这样的术语是指,在该术语后面记载的官能团可以具有或不具有取代基(下文为了便于描述,将取代基统称为Rc)。例如,“取代或未取代的芳基”是指具有取代基Rc的芳基或者非取代的芳基。其中上述的取代基即Rc例如可以为氘、卤素基团、氰基、碳原子数为3-20的杂芳基、碳原子数为6-20的芳基、碳原子数为3-12的三烷基硅基、碳原子数为18~24的三芳基硅基、碳原子数为1-10的烷基、碳原子数为1-10的卤代烷基、碳原子数为2-6的烯基、碳原子数为2-6的炔基、碳原子数为3-10的环烷基、碳原子数为2-10的杂环烷基、碳原子数为5-10的环烯基、碳原子数为4-10的杂环烯基、碳原子数为1-10的烷氧基、碳原子数为1-10的烷胺基、碳原子数为1-10的烷硫基、碳原子数为6-18的芳氧基、碳原子数为6-18的芳硫基、碳原子数为6-18的磷氧基、碳原子数为6-18的烷基磺酰基、碳原子数为3-18的三烷基膦基、碳原子数为3-18的三烷基硼基。
在本申请中,取代或未取代的官能团的碳原子数,指的是所有碳原子数。举例而言,若L 1为取代的碳原子数为12的亚芳基,则亚芳基及其上的取代基的所有碳原子数为12。
在本申请中,当没有另外提供具体的定义时,“杂”是指在一个官能团中包括至少1个B、N、O、S或P等杂原子且其余原子为碳和氢。未取代的烷基可以是没有任何双键或三键的“饱和烷基基团”。未取代的烷基可以是支链、直链或环状烷基基团。
在本申请中,碳原子数为1-10的烷基可以包括碳原子数1至10的直链烷基和碳原子数3至10的支链烷基。碳原子数例如可以为1、2、3、4、5、6、7、8、9、10。碳原子数为1-10的烷基的具体实例包括但不限于,甲基、乙基、正丙基、异丙基、正丁基、异丁基、叔丁基、正戊基、异戊基、新戊基、正己基、正庚基、正辛基、2-乙基己基、壬基、癸基、3,7-二甲基辛基等。
在本申请中,环烷基的碳原子数例如可以为3、5、6、7、8、9、10。碳原子数为3-10的环烷基的具体实例包括但不限于,环戊基、环己基、金刚烷基。
在本申请中,“烯基”是指在直链或支链烃链中包含一个或多个双键的烃基。烯基可为未取代的或取代的。烯基可具有1至20个碳原子,每当在本文出现时,诸如“1至20”的数值范围是指给定范围中的各个整数。举例而言,“1至20个碳原子”是指可包含1个碳原子、2个碳原子、3个碳原子、4个碳原子、5个碳原子、6个碳原子、7个碳原子、8个碳原子、9个碳原子、10个碳原子、11个碳原子、12个碳原子、13个碳原子、14个碳原子、15个碳原子、16个碳原子、17个碳原子、18个碳原子、19个碳原子或20个碳原子的烯基。例如,烯基可以为乙烯基、丁二烯、或1,3,5-己三烯。
在本申请中,卤素基团例如可以为氟、氯、溴、碘。
在本申请中,氟代烷基的具体实例包括但不限于三氟甲基。
在本申请中,芳基指的是衍生自芳香碳环的任选官能团或取代基。芳基可以是单环芳基(例如苯基)或多环芳基,换言之,芳基可以是单环芳基、稠环芳基、通过碳碳键共轭连接的两个或者更多个单环芳基、通过碳碳键共轭连接的单环芳基和稠环芳基、通过碳碳键共轭连接的两 个或者更多个稠环芳基。即,除非另有说明,通过碳碳键共轭连接的两个或者更多个芳香基团也可以视为本申请的芳基。其中,稠环芳基例如可以包括双环稠合芳基(例如萘基)、三环稠合芳基(例如菲基、芴基、蒽基)等。芳基中不含有B、N、O、S、P、Se和Si等杂原子。举例而言,在本申请中,联苯基、三联苯基等为芳基。芳基的实例可以包括但不限于,苯基、萘基、芴基、蒽基、菲基、联苯基、三联苯基、四联苯基、五联苯基、苯并[9,10]菲基、芘基、苯并荧蒽基、
Figure PCTCN2020099783-appb-000005
基等。本申请中,涉及的亚芳基是指芳基进一步失去一个氢原子所形成的二价基团。
在本申请中,取代的芳基,指的是芳基中的一个或者多个氢原子被其它基团所取代。例如至少一个氢原子被氘原子、F、Cl、I、CN、羟基、硝基、支链烷基、直链烷基、环烷基、烷氧基或者其他基团取代。可以理解的是,取代的碳原子数为18的芳基,指的是芳基和芳基上的取代基的碳原子总数为18个。举例而言,9,9-二苯基芴基的碳原子数为25。
在本申请中,芴基可以被取代,取代的芴基可以为:
Figure PCTCN2020099783-appb-000006
也可以为
Figure PCTCN2020099783-appb-000007
Figure PCTCN2020099783-appb-000008
在本申请中,杂芳基是指环中包含至少一个杂原子的一价芳香环或其衍生物,杂原子可以是B、O、N、P、Si、Se和S中的至少一种。杂芳基可以是单环杂芳基或多环杂芳基,换言之,杂芳基可以是单个芳香环体系,也可以是通过碳碳键共轭连接的多个芳香环体系,且任一芳香环体系为一个芳香单环或者一个芳香稠环。示例地,杂芳基可以包括噻吩基、呋喃基、吡咯基、咪唑基、噻唑基、噁唑基、噁二唑基、三唑基、吡啶基、联吡啶基、嘧啶基、三嗪基、吖啶基、哒嗪基、吡嗪基、喹啉基、喹唑啉基、喹喔啉基、吩噁嗪基、酞嗪基、吡啶并嘧啶基、吡啶并吡嗪基、吡嗪并吡嗪基、异喹啉基、吲哚基、咔唑基、苯并噁唑基、苯并咪唑基、苯并噻唑基、苯并咔唑基、苯并噻吩基、二苯并噻吩基、噻吩并噻吩基、苯并呋喃基、菲咯啉基、异噁唑基、噻二唑基、苯并噻唑基、吩噻嗪基、硅芴基、二苯并呋喃基以及N-芳基咔唑基(如N-苯基咔唑基)、N-杂芳基咔唑基(如N-吡啶基咔唑基)、N-烷基咔唑基(如N-甲基咔唑基)等,而不限于此。其中,噻吩基、呋喃基、菲咯啉基等为单个芳香环体系类型的杂芳基,N-芳基咔唑基、N-杂芳基咔唑基为通过碳碳键共轭连接的多环体系类型的杂芳基。本申请中,涉及的亚杂芳基是指杂芳基进一步失去一个氢原子所形成的二价基团。
在本申请中,取代的杂芳基可以是杂芳基中的一个或者两个以上氢原子被诸如氘原子、卤素基团、-CN、芳基、杂芳基、三烷基硅基、烷基、环烷基、烷氧基、烷硫基等基团取代。芳基取代的杂芳基的具体实例包括但不限于,苯基取代的二苯并呋喃基、苯基取代的二苯并噻吩基、苯基取代的吡啶基等。应当理解地是,取代的杂芳基的碳原子数,指的是杂芳基和杂芳基上的取代基的碳原子总数。
在本申请中,对芳基的解释可应用于亚芳基,对杂芳基的解释同样应用于亚杂芳基。
本申请中,不定位连接键是指从环体系中伸出的单键
Figure PCTCN2020099783-appb-000009
其表示该连接键的一端可以连接该键所贯穿的环体系中的任意位置,另一端连接化合物分子其余部分。
举例而言,如下式(f)中所示地,式(f)所表示的萘基通过两个贯穿双环的不定位连接键与分子其他位置连接,其所表示的含义,包括如式(f-1)~式(f-10)所示出的任一可能的连接方式。
Figure PCTCN2020099783-appb-000010
再举例而言,如下式(X')中所示地,式(X')所表示的菲基通过一个从一侧苯环中间伸出的不定位连接键与分子其他位置连接,其所表示的含义,包括如式(X'-1)~式(X'-4)所示出的任一可能的连接方式。
Figure PCTCN2020099783-appb-000011
本申请中的不定位取代基,指的是通过一个从环体系中央伸出的单键连接的取代基,其表示该取代基可以连接在该环体系中的任何可能位置。例如,如下式(Y)中所示地,式(Y)所表示的取代基R'通过一个不定位连接键与喹啉环连接,其所表示的含义,包括如式(Y-1)~式(Y-7)所示出的任一可能的连接方式。
Figure PCTCN2020099783-appb-000012
本申请提供的含氮化合物,在芴的侧位引入金刚烷基结构,可以通过超共轭效应提升芴环以及整个共轭体系的电子密度,可以增强含氮化合物的空穴传导率以及电子耐受度。金刚烷基引入至原本为近平面结构的三芳基胺的分支之间而非末端处,金刚烷基的大体积空间位阻可以精细调节胺与各个芳基成键键角及共轭程度,从而得到更适合于相邻层的材料HOMO值。不仅如此,引入的金刚烷基可以增加含氮化合物的分子量并降低分子对称性,可以提高含氮化合物的玻璃化转 变温度以及蒸镀温度,控制含氮化合物的结晶性,使得氮化合物的用于量产时有更佳的物理和热学稳定性。本申请的含氮化合物中芴基团的4位与胺相连接,大幅度提高了芳胺结构的空间位阻,使得芴的平面与芳胺平面(尤其是三芳基胺平面)之间的扭曲角度增大,降低了共轭程度;由此使得含氮化合物的能带宽度以及三重态能级均得到提高,使得该含氮化合物尤其非常适合用于电子阻挡层(亦称为空穴辅助层、第二空穴传输层等)。
本申请的含氮化合物的这些特性,使得其能够用于制备有机电致发光器件和光电转化器件,尤其是适合制备有机电致发光器件和光电转化器件的电子阻挡层,以提高有机电致发光器件和光电转化器件的效率和寿命,降低有机电致发光器件的工作电压、提高光电转化器件的开路电压,提高光电转化器件和有机电致发光器件的量产稳定性。
可选地,所述L选自单键、取代或未取代的亚苯基、取代或未取代的亚萘基、取代或未取代的亚联苯基、取代或未取代的亚三联苯基、取代或未取代的亚二甲基芴基。
可选地,所述L选自取代或未取代的亚菲基。
可选地,L选自单键或者选自化学式j-1所示的基团至化学式j-7所示的基团所组成的组:
Figure PCTCN2020099783-appb-000013
其中,M 2选自单键或者
Figure PCTCN2020099783-appb-000014
E 1~E 11各自独立地选自:氢、碳原子数为3~20的杂芳基、碳原子数为6~20的芳基、碳原子数为8~12的芳基甲硅烷基、碳原子数为1~10的烷基、碳原子数为2~6的烯基、碳原子数为2~6的炔基、碳原子数为3~10的环烷基、碳原子数为2~10的杂环烷基、碳原子数为1~10的烷氧基、碳原子数为1~10的烷硫基;
e r为取代基E r的数量,r为1~11的任意整数;当r选自1、2、3、4、5或6时,e r选自1、2、3或者4;当r选自7或10时,e r选自1、2、3、4、5或者6;当r选自8或9时,e r选自1、2、3、4、5、6、7或者8;当e r大于1时,任意两个E r相同或者不相同;
K 3选自C(E 12E 13);其中,E 12、E 13各自独立地选自:苯基、碳原子数为1~10的烷基、碳原子数为2~6的烯基、碳原子数为2~6的炔基、碳原子数为3~10的环烷基、碳原子数为2~10的杂环烷基。
可选地,L选自单键或者如下基团所组成的组:L选自单键或者如下基团所组成的组:
Figure PCTCN2020099783-appb-000015
可选地,所述L选自单键,或者选自如下取代基所组成的组:
Figure PCTCN2020099783-appb-000016
其中,*表示L用于与
Figure PCTCN2020099783-appb-000017
基团连接;**表示L用于与
Figure PCTCN2020099783-appb-000018
基团连接。
可选地,L选自单键或者如下取代基所组成的组:
Figure PCTCN2020099783-appb-000019
其中,*表示L用于与
Figure PCTCN2020099783-appb-000020
基团连接;**表示L用于与
Figure PCTCN2020099783-appb-000021
基团连接。
可选地,Ar 1和Ar 2相同或不同,且分别独立地选自如下基团所组成的组:
Figure PCTCN2020099783-appb-000022
Figure PCTCN2020099783-appb-000023
其中,M 1选自单键或者
Figure PCTCN2020099783-appb-000024
G 1~G 5各自独立地选自N或者C(F 1),且G 1~G 5中至少一个选自N;当G 1~G 5中的两个以上选自C(F 1)时,任意两个F 1相同或者不相同;
G 6~G 13各自独立地选自N或者C(F 2),且G 6~G 13中至少一个选自N;当G 6~G 13中的两个以上选自C(F 2)时,任意两个F 2相同或者不相同;
G 14~G 23各自独立地选自N或者C(F 3),且G 14~G 23中至少一个选自N;当G 14~G 23中的两个以上选自C(F 3)时,任意两个F 3相同或者不相同;
G 24~G 33各自独立地选自N或者C(F 4),且G 24~G 33中至少一个选自N;当G 24~G 33中的两个以上选自C(F 4)时,任意两个F 4相同或者不相同;
R 1选自:氢、氘、碳原子数为8~12的芳基甲硅烷基、碳原子数为1~10的烷基、碳原子数为2~6的烯基、碳原子数为2~6的炔基、碳原子数为3~10的环烷基、碳原子数为2~10的杂环烷基、碳原子数为1~10的烷氧基、碳原子数为1~10的烷硫基;
R 2~R 9、R 21各自独立地选自:氢、氘、碳原子数为3~10的杂芳基、碳原子数为8~12的芳基甲硅烷基、碳原子数为1~10的烷基、碳原子数为2~6的烯基、碳原子数为2~6的炔基、碳原子数为3~10的环烷基、碳原子数为2~10的杂环烷基、碳原子数为1~10的烷氧基、碳原子数为1~10 的烷硫基;
R 10~R 20、F 1~F 4各自独立地选自:氢、氘、碳原子数为6~12的芳基、碳原子数为3~10的杂芳基、碳原子数为8~12的芳基甲硅烷基、碳原子数为1~10的烷基、碳原子数为2~6的烯基、碳原子数为2~6的炔基、碳原子数为3~10的环烷基、碳原子数为2~10的杂环烷基、碳原子数为1~10的烷氧基、碳原子数为1~10的烷硫基;
h k为取代基R k的数量,k为1~21的任意整数;其中,当k选自5或者17时,h k选自1、2或者3;当k选自2、7、8、12、15、16、18或者21时,h k选自1、2、3或者4;当k选自1、3、4、6、9或者14时,h k选自1、2、3、4或者5;当k为13时,h k选自1、2、3、4、5或者6;当k选自10或者19时,h k选自1、2、3、4、5、6或者7;当k选自20时,h k选自1、2、3、4、5、6、7或者8;当k为11时,h k选自1、2、3、4、5、6、7、8或9;当h k大于1时,任意两个R k相同或者不相同;
K 1选自O、S、Se、N(R 22)、C(R 23R 24)、Si(R 25R 26);其中,R 22~R 26各自独立地选自:苯基、碳原子数为1~10的烷基、碳原子数为2~6的烯基、碳原子数为2~6的炔基、碳原子数为3~10的环烷基、碳原子数为2~10的杂环烷基;
K 2选自单键、O、S、Se、N(R 27)、C(R 28R 29)、Si(R 30R 31);其中,R 27~R 31各自独立地选自:苯基、碳原子数为1~10的烷基、碳原子数为2~6的烯基、碳原子数为2~6的炔基、碳原子数为3~10的环烷基、碳原子数为2~10的杂环烷基。
可选地,Ar 1和Ar 2相同或不同,且分别独立地选自:取代或未取代的碳原子数为6-20的芳基、取代或未取代的碳原子数为7-20的杂芳基。
可选地,Ar 1和Ar 2相同或不同,且分别独立地选自:碳原子数为6-20的未取代的芳基、碳原子数为15-20的取代的芳基、碳原子数为12-18的未取代的杂芳基。
可选地,Ar 1和Ar 2相同或不同,且分别独立地选自如下基团所组成的组:
Figure PCTCN2020099783-appb-000025
可选地,Ar 1和Ar 2相同或不同,且分别独立地选自如下取代基所组成的组:
Figure PCTCN2020099783-appb-000026
可选地,Ar 1和Ar 2相同或不同,且分别独立地选自如下基团所组成的组:
Figure PCTCN2020099783-appb-000027
可选地,所述含氮化合物选自如下化合物所组成的组:
Figure PCTCN2020099783-appb-000028
Figure PCTCN2020099783-appb-000029
Figure PCTCN2020099783-appb-000030
Figure PCTCN2020099783-appb-000031
Figure PCTCN2020099783-appb-000032
Figure PCTCN2020099783-appb-000033
Figure PCTCN2020099783-appb-000034
Figure PCTCN2020099783-appb-000035
Figure PCTCN2020099783-appb-000036
Figure PCTCN2020099783-appb-000037
Figure PCTCN2020099783-appb-000038
Figure PCTCN2020099783-appb-000039
Figure PCTCN2020099783-appb-000040
Figure PCTCN2020099783-appb-000041
本申请还提供一种电子元件,用于实现光电转换或者电光转化。所述电子元件包括相对设置的阳极和阴极,以及设于所述阳极和所述阴极之间的功能层;所述功能层包含本申请的含氮化合物。
可选地,功能层包括电子阻挡层,电子阻挡层包含本申请所提供的含氮化合物。其中,电子阻挡层既可以为本申请所提供的含氮化合物组成,也可以由本申请所提供的含氮化合物和其他材料共同组成。
举例而言,电子元件为一种有机电致发光器件。如图1所示,有机电致发光器件包括相对设置的阳极100和阴极200,以及设于阳极100和阴极200之间的功能层300;功能层300包含本申请所提供的含氮化合物。
可选地,功能层300包括电子阻挡层322,电子阻挡层322包含本申请所提供的含氮化合物。其中,电子阻挡层322既可以为本申请所提供的含氮化合物组成,也可以由本申请所提供的含氮化合物和其他材料共同组成。
在本申请的一种实施方式中,有机电致发光器件可以包括依次层叠设置的阳极100、空穴传输层321、电子阻挡层322、作为能量转化层的有机电致发光层330、电子传输层350和阴极200。本申请提供的含氮化合物可以应用于有机电致发光器件的电子阻挡层322,可以有效改善有机电致发光器件的发光效率和寿命,降低有机电致发光器件的驱动电压。
可选地,阳极100包括以下阳极材料,其优选地是有助于空穴注入至功能层中的具有大逸出功(功函数,work function)材料。阳极材料具体实例包括:金属如镍、铂、钒、铬、铜、锌和金或它们的合金;金属氧化物如氧化锌、氧化铟、氧化铟锡(ITO)和氧化铟锌(IZO);组合的金属和氧化物如ZnO:Al或SnO 2:Sb;或导电聚合物如聚(3-甲基噻吩)、聚[3,4-(亚乙基-1,2-二氧基)噻吩](PEDT)、聚吡咯和聚苯胺,但不限于此。优选包括包含氧化铟锡(铟锡氧化物,indium tin oxide)(ITO)作为阳极的透明电极。
可选地,空穴传输层321可以包括一种或者多种空穴传输材料,空穴传输材料可以选自咔唑多聚体、咔唑连接三芳胺类化合物或者其他类型的化合物,本申请对此不做特殊的限定。举例而言,在本申请的一种实施方式中,空穴传输层321由化合物NPB组成。
可选地,有机发光层330可以由单一发光材料组成,也可以包括主体材料和客体材料。可选地,有机发光层330由主体材料和客体材料组成,注入有机发光层330的空穴和注入有机发光层330的电子可以在有机发光层330复合而形成激子,激子将能量传递给主体材料,主体材料将能量传递给客体材料,进而使得客体材料能够发光。
有机发光层330的主体材料可以为金属螯合化类咢辛化合物、双苯乙烯基衍生物、芳香族胺衍生物、二苯并呋喃衍生物或者其他类型的材料,本申请对此不做特殊的限制。在本申请的一种实施方式中,有机发光层330的主体材料可以为α,β-ADN。
有机发光层330的客体材料可以为具有缩合芳基环的化合物或其衍生物、具有杂芳基环的化合物或其衍生物、芳香族胺衍生物或者其他材料,本申请对此不做特殊的限制。在本申请的一种实施方式中,有机发光层330的客体材料可以为BD-1。
电子传输层350可以为单层结构,也可以为多层结构,其可以包括一种或者多种电子传输材料,电子传输材料可以选自苯并咪唑衍生物、噁二唑衍生物、喹喔啉衍生物或者其他电子传输材料,本申请对此不做特殊的限定。举例而言,在本申请的一种实施方式中,电子传输层340可以 由DBimiBphen和LiQ组成。
可选地,阴极200包括以下阴极材料,其是有助于电子注入至功能层中的具有小逸出功的材料。阴极材料的具体实例包括:金属如镁、钙、钠、钾、钛、铟、钇、锂、钆、铝、银、锡和铅或它们的合金;或多层材料如LiF/Al、Liq/Al、LiO 2/Al、LiF/Ca、LiF/Al和BaF 2/Ca,但不限于此。优选包括包含铝的金属电极作为阴极。
可选地,如图1所示,在阳极100和第一空穴传输层321之间还可以设置有空穴注入层310,以增强向第一空穴传输层321注入空穴的能力。空穴注入层310可以选用联苯胺衍生物、星爆状芳基胺类化合物、酞菁衍生物或者其他材料,本申请对此不做特殊的限制。在本申请的一种实施方式中,空穴注入层310可以由m-MTDATA组成。
可选地,如图1所示,在阴极200和电子传输层340之间还可以设置有电子注入层360,以增强向电子传输层350注入电子的能力。电子注入层360可以包括有碱金属硫化物、碱金属卤化物等无机材料,或者可以包括碱金属与有机物的络合物。在本申请的一种实施方式中,电子注入层360可以包括LiQ。
可选地,在有机电致发光层330和电子传输层350之间还可以设置有空穴阻挡层340。
再举例而言,电子元件可以为一种光电转化器件,如图2所示,该光电转化器件可以包括相对设置的阳极100和阴极200,以及设于阳极100和阴极200之间的功能层300;功能层300包含本申请所提供的含氮化合物。
可选地,功能层300包括电子阻挡层322,电子阻挡层322包含本申请所提供的含氮化合物。其中,电子阻挡层322既可以为本申请所提供的含氮化合物组成,也可以由本申请所提供的含氮化合物和其他材料共同组成。
可选地,如图2所示,光电转化器件可包括依次层叠设置的阳极100、空穴传输层321、电子阻挡层322、作为能量转化层的光电转化层370、电子传输层350和阴极200。本申请提供的含氮化合物可以应用于光电转化器件的电子阻挡层322,可以有效改善光电转化器件的发光效率和寿命,提高光电转化器件的开路电压。
可选地,在阳极100和空穴传输层321之间还可以设置有空穴注入层310。
可选地,在阴极200和电子传输层350之间还可以设置有电子注入层360。
可选地,在光电转化层370和电子传输层350之间还可以设置有空穴阻挡层340。
可选地,光电转化器件可以为太阳能电池,尤其是可以为有机薄膜太阳能电池。举例而言,如图2所示,在本申请的一种实施方式中,太阳能电池包括依次层叠设置的阳极100、空穴传输层321、电子阻挡层322、光电转化层370、电子传输层350和阴极200,其中,电子阻挡层包含有本申请的含氮化合物。
本申请实施方式还提供一种电子装置,该电子装置包括上述电子元件实施方式所描述的任意一种电子元件。由于该电子装置具有上述电子元件实施方式所描述的任意一种电子元件,因此具有相同的有益效果,本申请在此不再赘述。
举例而言,如图3所示,本申请提供一种电子装置400,该电子装置200包括上述有机电致发光器件实施方式所描述的任意一种有机电致发光器件。该电子装置400可以为显示装置、照明装置、光通讯装置或者其他类型的电子装置,例如可以包括但不限于电脑屏幕、手机屏幕、电视机、电子纸、应急照明灯、光模块等。由于该电子装置400具有上述有机电致发光器件实施方式所描述的任意一种有机电致发光器件,因此具有相同的有益效果,本申请在此不再赘述。
再举例而言,如图4所示,本申请提供一种电子装置500,该电子装置500包括上述光电转化器件实施方式所描述的任意一种光电转化器件。该电子装置500可以为太阳能发电设备、光检测器、指纹识别设备、光模块、CCD相机或则其他类型的电子装置。由于该电子装置500具有上述光电转化器件实施方式所描述的任意一种光电转化器件,因此具有相同的有益效果,本申请在此不再赘述。
以下,通过实施例对本申请进一步详细说明。但是,下述实施例仅是本申请的例示,而并非限定本申请。
含氮化合物的合成
化合物1的合成:
Figure PCTCN2020099783-appb-000042
将镁条(13.54g,564mmol)和乙醚(100mL)置于氮气保护下干燥的圆底烧瓶中,加入碘(100mg)。而后将溶有2’-溴-2-氯联苯(50.00g,187.0mmol)的乙醚(200mL)溶液缓慢滴入烧瓶中,滴加完毕后升温至35℃,搅拌3小时;将反应液降至0℃,向其中缓慢滴入溶有金刚烷酮(22.45g,149mmol)的乙醚(200mL)溶液,滴加完毕后升温至35℃,搅拌6小时;将反应液冷却至室温,向其中加入5%盐酸至pH<7,搅拌1小时,加入乙醚(200mL)进行萃取,合并有机相,使用无水硫酸镁进行干燥,过滤,减压除去溶剂;所得粗品使用乙酸乙酯/正庚烷(1:2)为流动相进行硅胶柱色谱提纯,得到白色固体中间体I-A-1(43g,84.9%)。
Figure PCTCN2020099783-appb-000043
将中间体I-A-1(43g,126.9mmol)、三氟乙酸(TFA)(36.93g,380.6mmol)和二氯甲烷(MC)(300mL)加入圆底烧瓶中,氮气保护下搅拌2小时;而后向反应液中加入氢氧化钠水溶液至pH=8,分液,有机相使用无水硫酸镁进行干燥,过滤,减压除去溶剂;所得粗品使用二氯甲烷/正庚烷(1:2)进行硅胶柱色谱提纯,得到白色固体状中间体I-A(39.2g,96.3%)。
Figure PCTCN2020099783-appb-000044
将4-溴联苯(5.0g,21.45mmol),4-氨基联苯(3.70g,21.87mmol),三(二亚苄基丙酮)二钯(0.20g,0.21mmol),2-二环己基膦-2’,4’,6’-三异丙基联苯(0.20g,0.43mmol)以及叔丁醇钠(3.09g,32.18mmol)加入甲苯(80mL)中,氮气保护下加热至108℃,搅拌2h;而后冷却至室温,反应液使用水洗后加入硫酸镁干燥,过滤后将滤液减压除去溶剂;使用二氯甲烷/乙酸乙酯体系对粗品 进行重结晶提纯,得到淡黄色固体中间体II-A(5.61g,81.5%)。
Figure PCTCN2020099783-appb-000045
将中间体I-A(5.6g,17.46mmol)、中间体Ⅱ-A(5.61g,17.46mmol)、三(二亚苄基丙酮)二钯(0.16g,0.17mmol)、2-二环己基膦-2’,6’-二甲氧基联苯(0.14g,0.35mmol)以及叔丁醇钠(2.52g,26.18mmol)加入甲苯(40mL)中,氮气保护下加热至108℃,搅拌3h;而后冷却至室温,反应液使用水洗后加入硫酸镁干燥,过滤后将滤液减压除去溶剂;使用甲苯体系对粗品进行重结晶提纯,得到白色固体化合物1(4.35g,41%)。质谱:m/z=606.3[M+H] +
1H NMR(CDCl 3,400MHz):8.17(d,1H),8.15-8.12(m,2H),7.54(d,4H),7.45(d,4H),7.41-7.35(m,5H),7.28(t,2H),7.24-7.17(m,7H),3.03-2.97(m,4H),2.24(d,2H),2.03(s,2H),1.86-1.80(m,4H),1.69(s,2H)。
参照表1,除了使用原料1代替4-氨基联苯,原料2代替4-溴联苯外,以与实施例1相同的合成方法制备以下化合物:
表1:部分化合物的原料、结构和质谱
Figure PCTCN2020099783-appb-000046
Figure PCTCN2020099783-appb-000047
Figure PCTCN2020099783-appb-000048
Figure PCTCN2020099783-appb-000049
其中,化合物2的核磁数据为:
1H NMR,400MHz(CD 2Cl 2):8.17(d,1H),8.11(t,2H),7.59(d,1H),7.56(d,2H),7.47(d,2H),7.52(d,1H),7.41-7.36(m,5H),7.28(t,2H),7.25-7.18(m,3H),7.15-7.11(m,3H),6.93(d,1H),3.02(d,2H),2.96(d,2H),2.23(d,2H),2.03(s,2H),1.87-1.81(m,4H),1.64(s,2H),1.42(s,3H),1.39(s,3H)
化合物6的核磁数据为:
1H NMR,400MHz(CD 2Cl 2):8.20(d,1H),8.14-8.12(m,2H),7.83(d,1H),7.77(d,1H),7.56(d,2H),7.50(d,2H),7.46(d,1H),7.42-7.34(m,4H),7.29(t,2H),7.25-7.19(m,5H),7.15-7.13(m,2H),3.02(d,2H),2.98-2.95(m,2H),2.23(d,2H),2.03(s,2H),1.86-1.81(m,4H),1.66(s,2H)
化合物182的核磁数据为:
1H NMR(CD 2Cl 2,400MHz):8.16(d,1H),8.09(d,2H),7.58(d,2H),7.49(d,2H),7.46(s,2H),
7.39-7.35(m,3H),7.28(t,2H),7.24-7.21(m,3H),7.15(t,1H),7.07(t,1H),6.83(d,2H),3.03(d,2H),2.95(d,2H),2.22(d,2H),2.03(s,2H),1.87-1.80(m,4H),1.63(s,2H),1.42(s,6H),1.39(s,6H)
化合物7的合成
Figure PCTCN2020099783-appb-000050
将3-溴二苯并噻吩(10.0g,38.0mmol)、4-氨基联苯(6.56g,38.75mmol)、三(二亚苄基丙酮)二钯(0.35g,0.38mmol)、2-二环己基膦-2’,4’,6’-三异丙基联苯(0.36g,0.76mmol)以及叔丁醇钠(5.48g,57.0mmol)加入甲苯(80mL)中,氮气保护下加热至108℃,搅拌5h;而后冷却至 室温,反应液使用水洗后加入硫酸镁干燥,过滤后将滤液减压除去溶剂;使用二氯甲烷/乙酸乙酯体系对粗品进行重结晶提纯,得到为淡黄色固体的中间体II-D(11.5g,收率为86%)。
Figure PCTCN2020099783-appb-000051
将中间体I-A(3.5g,10.9mmol)、中间体II-D(3.83g,10.9mmol)、三(二亚苄基丙酮)二钯(0.20g,0.22mmol)、2-二环己基膦-2’,6’-二甲氧基联苯(0.18g,0.44mmol)以及叔丁醇钠(1.58g,16.4mmol)加入甲苯(30mL)中,氮气保护下加热至108℃,搅拌6h;而后冷却至室温,反应液使用水洗后加入硫酸镁干燥,过滤后将滤液通过二氯甲烷/正庚烷(1/3)为流动相的硅胶柱进行色谱提纯,过柱液减压除去溶剂;使用甲苯体系对粗品进行重结晶提纯,得到为白色固体的化合物7(3.35g,收率为48.3%)。质谱:m/z=636.3[M+H] +
化合物179的合成
Figure PCTCN2020099783-appb-000052
将2-溴-N-苯基咔唑(10.0g,31.0mmol)、2-氨基联苯(5.78g,34.1mmol)、三(二亚苄基丙酮)二钯(0.28g,0.31mmol)、2-二环己基膦-2’,4’,6’-三异丙基联苯(0.30g,0.62mmol)以及叔丁醇钠(4.47g,46.6mmol)加入甲苯(80mL)中,氮气保护下加热至108℃,搅拌4h;而后冷却至室温,反应液使用水洗后加入硫酸镁干燥,过滤后将滤液减压除去溶剂;使用二氯甲烷/正庚烷体系对粗品进行重结晶提纯,得到为橙色固体的中间体II-B(8.65g,收率为67.9%)。
Figure PCTCN2020099783-appb-000053
将中间体I-A(3.5g,10.9mmol)、中间体II-B(4.48g,10.9mmol)、三(二亚苄基丙酮)二钯(0.20g,0.22mmol)、2-二环己基膦-2’,6’-二甲氧基联苯(0.18g,0.44mmol)以及叔丁醇钠(1.57g,16.3mmol)加入甲苯(30mL)中,氮气保护下加热至108℃,搅拌10h;而后冷却至室温,反应液使用水洗后加入硫酸镁干燥,过滤后将滤液通过二氯甲烷/正庚烷(1/5)为流动相的硅胶柱进行色谱提纯,过柱液减压除去溶剂;使用二氯乙烷体系对粗品进行重结晶提纯,得到为白色固体的化合物179(5.42g,收率为71.6%)。质谱:m/z=695.3[M+H] +
化合物144的合成
Figure PCTCN2020099783-appb-000054
将中间体Ⅰ-A(10g,31.0mmol)、对氯苯硼酸(3.23g,20.7mmol)、四(三苯基膦)钯(1.19g,1.03mmol)、碳酸钾(5.71g,41.38mmol)、四丁基氯化铵(0.28g,1.03mmol)、甲苯(80mL)、乙醇(20mL)和去离子水(20mL)加入圆底烧瓶中,氮气保护下升温至78℃,搅拌8小时;将反应液冷却至室温,加入甲苯(100mL)进行萃取,合并有机相,使用无水硫酸镁进行干燥,过滤,减压除去溶剂;所得粗品使用正庚烷为流动相进行硅胶柱色谱提纯,之后用二氯甲烷/乙酸乙酯体系进行重结晶提纯,得到白色固体中间体I-A-2(7.56g,收率为92%)。
Figure PCTCN2020099783-appb-000055
将中间体I-A-2(3g,7.6mmol)、二-(4-联苯基)胺(2.43g,7.6mmol)、三(二亚苄基丙酮)二钯(0.14g,0.15mmol)、2-二环己基膦-2’,6’-二甲氧基联苯(0.12g,0.30mmol)以及叔丁醇钠(1.09g,11.33mmol)加入甲苯(25mL)中,氮气保护下加热至108℃,搅拌2h;而后冷却至室温,反应液使用水洗后加入硫酸镁干燥,过滤后将滤液通过短硅胶柱,减压除去溶剂;使用甲苯体系对粗品进行重结晶提纯,得到白色固体化合物144(2.68g,收率为52%)。质谱:m/z=682.3[M+H] +
参照中间体I-A-2的合成方法,不同之处在于以下表2中第二列的原料3替代对氯苯硼酸,合成下表中第三列所示中间体:
表2 原料及中间体
Figure PCTCN2020099783-appb-000056
Figure PCTCN2020099783-appb-000057
Figure PCTCN2020099783-appb-000058
将中间体I-A(20.4g,63.7mmol)、联硼酸频哪醇酯(19.4g,76.5mmol)、三(二亚苄基丙酮)二钯(0.6g,0.6mmol)、2-二环己基膦-2’,4’,6’-三异丙基联苯(0.6g,1.3mmol)、醋酸钾(12.5g,127.4mmol)和1,4-二氧六环(150mL)加入烧瓶中,氮气保护条件下于100℃回流搅拌16小时;降至室温,向反应液中加入二氯甲烷和水,分液,有机相使用水洗后用无水硫酸镁干燥,减压条件下除去溶剂得到粗品;粗品使用二氯甲烷/正庚烷体系进行硅胶柱色谱提纯,得到白色固体中间体I-A-3(13.3g,51%)。
Figure PCTCN2020099783-appb-000059
将中间体I-A-3(13.3g,32.3mmol)、2-溴7-氯-9,9-二甲基芴(7.1g,35.5mmol)、四(三苯基膦)钯(0.7g,0.6mmol)、碳酸钾(11.1g,80.7mmol)、四丁基溴化铵(2.1g,6.5mmol)加入烧瓶中,并加入甲苯(80mL)、乙醇(20mL)和水(20mL)的混合溶剂,氮气保护下,升温至80℃,保持温度搅拌24小时;冷却至室温,停止搅拌,反应液水洗后分离有机相,使用无水硫酸镁干燥,减压除去溶剂,得到粗品;使用二氯甲烷/正庚烷作为流动相对粗品进行硅胶柱色谱提纯,得到白色固体产物中间体I-G(9.0g,69%)。
参照中间体I-G的合成方法,不同之处在于以下表3中第二列的原料41替代2-溴7-氯-9,9-二甲基芴,合成下表中第三列所示中间体:
表3 原料及中间体
Figure PCTCN2020099783-appb-000060
Figure PCTCN2020099783-appb-000061
Figure PCTCN2020099783-appb-000062
将中间体I-J(30g,112.05mmol)、苯硼酸(22.50g,112.05mmol)、四(三苯基膦)钯(6.47g,5.60mmol)、碳酸钾(46.39g,336.7mmol)、四丁基氯化铵(1.56g,5.60mmol)、甲苯(240mL)、乙醇(120mL)和去离子水(60mL)加入三口烧瓶中,氮气保护下升温至78℃,搅拌8小时;将反应液冷却至室温,加入甲苯(150mL)进行萃取,合并有机相,有机相用无水硫酸镁进行干燥,过滤得到滤液,将滤液减压浓缩得到粗品;所得粗品使用正庚烷为流动相进行硅胶柱色谱提纯,之后用二氯甲烷/乙酸乙酯体系(1:3)进行重结晶提纯,得到中间体I-J-1(34.8g,收率80%)。
参照化合物1的合成方法,以下表4中第三列所示中间体代替中间体I-A,与中间体Ⅱ-A制备表4中第列所示的化合物,具体的化合物编号、结构、原料、最后一步的合成收率、表征数据等展示在表4中。
表4:化合物编号、结构、制备及表征数据
Figure PCTCN2020099783-appb-000063
Figure PCTCN2020099783-appb-000064
化合物276的合成
除了4’-氯联苯4-硼酸代替对氯苯硼酸外,用与实施例144相同的合成方法制备化合物276,质谱:m/z=758.4[M+H] +
Figure PCTCN2020099783-appb-000065
化合物180的合成
Figure PCTCN2020099783-appb-000066
将3-溴二苯并噻吩(10.0g,38.0mmol)、2-氨基联苯(7.07g,41.8mmol)、三(二亚苄基丙酮)二钯(0.35g,0.38mmol)、2-二环己基膦-2’,4’,6’-三异丙基联苯(0.36g,0.76mmol)以及叔丁醇钠(5.48g,57.0mmol)加入甲苯(80mL)中,氮气保护下加热至108℃,搅拌1.5h;而后冷却至室温,反应液使用水洗后加入硫酸镁干燥,过滤后将滤液通过短硅胶柱,减压除去溶剂;使用二氯甲烷/乙酸乙酯体系对粗品进行重结晶提纯,得到白色固体中间体II-F(11.5g,收率为86%)。
Figure PCTCN2020099783-appb-000067
将中间体I-A-2(3.0g,7.6mmol)、中间体II-F(2.63g,7.6mmol)、三(二亚苄基丙酮)二钯(0.14g,0.15mmol)、2-二环己基膦-2’,6’-二甲氧基联苯(0.12g,0.30mmol)以及叔丁醇钠(1.09g,11.33mmol)加入甲苯(25mL)中,氮气保护下加热至108℃,搅拌3h;而后冷却至室温,反应液使用水洗后加入硫酸镁干燥,过滤后将滤液通过短硅胶柱,减压除去溶剂;使用甲苯体系对粗品进行重结晶提纯,得到白色固体化合物180(2.17g,收率为40%)。质谱:m/z=712.3[M+H] +
化合物181的合成:
Figure PCTCN2020099783-appb-000068
将中间体I-A-2(2.03g,3.91mmol)、4'-氯联苯-4-硼酸(1.05g,3.91mmol)、四(三苯基膦)钯(0.09g,0.13mmol)、碳酸钾(1.74g,12.6mmol)、四丁基氯化铵(0.13g,0.31mmol)、甲苯(25mL)、乙醇(6mL)和去离子水(6mL)加入圆底烧瓶中,氮气保护下升温至78℃,搅拌19小时;将反应液冷却至室温,加入甲苯(30mL)进行萃取,合并有机相,使用无水硫酸镁进行干燥,过滤,减压除去溶剂;所得粗品使用正庚烷为流动相进行硅胶柱色谱提纯,之后用二氯甲烷/乙酸乙酯体系进行重结晶提纯,得到白色固体中间体I-A-4(0.79g,收率为37%)。
Figure PCTCN2020099783-appb-000069
将中间体I-A-4(0.79g,1.44mmol)、2-苯胺(0.24g,1.44mmol)、三(二亚苄基丙酮)二钯(0.01g,0.01mmol)、2-二环己基膦-2’,6’-二甲氧基联苯(0.02g,0.02mmol)以及叔丁醇钠(0.47g,6.6mmol)加入甲苯(10mL)中,氮气保护下加热至108℃,搅拌4h;而后冷却至室温,反应液使用水洗后加入硫酸镁干燥,过滤后将滤液减压除去溶剂;使用二氯甲烷/正庚烷体系对粗品进行重结晶提纯,得到化合物181(0.57g,收率为58.2%)。质谱:m/z=682.4[M+H] +
化合物157的合成:
Figure PCTCN2020099783-appb-000070
将溴苯(10.0g,38.0mmol)、4-氨基联苯(7.07g,41.8mmol)、三(二亚苄基丙酮)二钯(0.35g,0.38mmol)、2-二环己基膦-2',4',6'-三异丙基联苯(0.36g,0.76mmol)以及叔丁醇钠(5.48g,57.0mmol)加入甲苯(80mL)中,氮气保护下加热至108℃,搅拌2h;而后冷却至室温,反应液使用水洗后加入硫酸镁干燥,过滤后将滤液减压除去溶剂;使用二氯甲烷/乙酸乙酯体系对粗品进行重结晶提纯,得到淡黄色固体中间体II-C(8.0g,86%)。
Figure PCTCN2020099783-appb-000071
将中间体I-A-2(3.50g,10.9mmol)、中间体Ⅱ-C(3.51g,10.9mmol)、三(二亚苄基丙酮)二钯(0.20g,0.22mmol)、2-二环己基膦-2’,6’-二甲氧基联苯(0.18g,0.44mmol)以及叔丁醇钠(1.58g,16.4mmol)加入甲苯(30mL)中,氮气保护下加热至108℃,搅拌2h;而后冷却至室温,反应液使用水洗后加入硫酸镁干燥,过滤后将滤液减压除去溶剂;使用甲苯体系对粗品进行重结晶提纯,得到白色固体化合物157(4.35g,65.87%)。质谱:m/z=606.3[M+H] +
用与化合物157相同的合成方法,除了使用原料3代替4-氨基联苯,原料4代替溴苯外,制备表5所示的化合物
表5:部分化合物的原料、结构和质谱
Figure PCTCN2020099783-appb-000072
有机电致发光器件的制备和评估
实施例1
通过如下方法制备蓝色有机电致发光器件
将ITO厚度为
Figure PCTCN2020099783-appb-000073
的ITO基板(康宁制造)切割成40mm(长)×40mm(宽)×0.7mm(厚)的尺寸,采用光刻工序,将其制备成具有阴极搭接区、阳极以及绝缘层图案的实验基板,利用紫外臭氧以及O 2:N 2等离子进行表面处理,以增加阳极(实验基板)的功函数的和清除浮渣。
在实验基板(阳极)上真空蒸镀m-MTDATA以形成厚度为
Figure PCTCN2020099783-appb-000074
的空穴注入层(HIL),并且在空穴注入层上真空蒸镀NPB,以形成厚度为
Figure PCTCN2020099783-appb-000075
的空穴传输层。
在空穴传输层上蒸镀化合物1,形成厚度为
Figure PCTCN2020099783-appb-000076
的电子阻挡层。
将α,β-ADN作为主体,按照膜厚比100:3同时掺杂BD-1,形成厚度为
Figure PCTCN2020099783-appb-000077
的发光层(EML)。
将DBimiBphen和LiQ以1:1的重量比进行混合并蒸镀形成
Figure PCTCN2020099783-appb-000078
厚的电子传输层(ETL),将LiQ蒸镀在电子传输层上以形成厚度为
Figure PCTCN2020099783-appb-000079
的电子注入层(EIL),然后将镁(Mg)和银(Ag)以1:9的蒸镀速率混合,真空蒸镀在电子注入层上,形成厚度为
Figure PCTCN2020099783-appb-000080
的阴极。
在上述阴极上蒸镀厚度为
Figure PCTCN2020099783-appb-000081
的CP-1,从而完成蓝色有机发光器件的制造。
其中,m-MTDATA、NPB、α,β-ADN、BD-1、DBimiBphen、LiQ、CP-1的结构如下:
Figure PCTCN2020099783-appb-000082
实施例2-实施例39
利用表6中所列出的电子阻挡层材料替代实施例1中的化合物1,按照与实施例1相同的方法,制备相应的蓝色有机电致发光器件。
比较例1
利用TCTA替代实施例1中的化合物1,按照与实施例1相同的方法,制备蓝色有机电致发光器件。其中,TCTA的结构如下:
Figure PCTCN2020099783-appb-000083
比较例2
利用化合物A替代实施例1中的化合物1,按照与实施例1相同的方法,制备蓝色有机电致发光器件。
Figure PCTCN2020099783-appb-000084
比较例3
利用化合物B替代实施例1中的化合物1,按照与实施例1相同的方法,制备蓝色有机电致发光器件。
其中,化合物B的结构如下:
Figure PCTCN2020099783-appb-000085
比较例4
利用化合物C替代实施例1中的化合物1,按照与实施例1相同的方法,制备蓝色有机电致发光器件。
其中,化合物C的结构如下:
Figure PCTCN2020099783-appb-000086
比较例5
利用化合物D替代实施例1中的化合物1,按照与实施例1相同的方法,制备蓝色有机电致发光器件。
其中,化合物D的结构如下:
Figure PCTCN2020099783-appb-000087
比较例6
利用化合物E替代实施例1中的化合物1,按照与实施例1相同的方法,制备蓝色有机电致发光器件。
其中,化合物E的结构如下:
Figure PCTCN2020099783-appb-000088
对比例7
利用化合物F替代化合物1,按照相同的方法,制备相应的蓝色有机电致发光器件。
Figure PCTCN2020099783-appb-000089
对比例8
利用化合物G替代化合物1,按照相同的方法,制备相应的蓝色有机电致发光器件。
Figure PCTCN2020099783-appb-000090
对比例9
利用化合物H替代化合物1,按照相同的方法,制备相应的蓝色有机电致发光器件。
Figure PCTCN2020099783-appb-000091
对实施例1~39和对比例1~9制备所得的蓝色有机电致发光器件,在10mA/cm 2的条件下测试了器件的驱动电压、电流效率、色坐标、外量子效率,并在20mA/cm 2的条件下测试了器件的T95 寿命。
表6:蓝色有机电致发光器件的性能测试结果
Figure PCTCN2020099783-appb-000092
Figure PCTCN2020099783-appb-000093
根据上述表6的结果可知,相较于比较例1~9所制备的蓝色有机电致发光器件,实施例1~39所制备的蓝色有机电致发光器件具有更低的驱动电压、更高的发光效率和更高的外量子效率,且器件的寿命显著提升。其中,相较于比较例1~9所制备的蓝色有机电致发光器件,实施例1~39所制备的蓝色有机电致发光器件的驱动电压至少降低了0.38V,发光效率(Cd/A)至少提高了10.9%;外量子效率至少提高9.6%;寿命至少延长33小时,至少提高22%。
因此,本申请的含氮化合物用于制备有机电致发光器件时,尤其是用作有机电致发光器件的电子阻挡层时,可以有效的降低电致发光器件的驱动电压、提升外量子效率并延长有机电致发光器件的寿命。
根据各个器件的评估结果可以确定,本申请提供的含氮化合物用于有机电致发光器件时,能够降低有机电致发光器件的工作电压、提高有机电致发光器件的电流效率和外量子效率、延长有机电致发光器件的寿命。这表明,本申请的含氮化合物能够改善实现光电转化的电子器件或者实现电致发光的电子器件的性能,因此,本申请的含氮化合物还可以应用于实现光电转化的光电转化器件中,例如可以应用于太阳能电池中,尤其是应用于光电转化器件的电子阻挡层中。
表7:部分化合物的能级计算值
化合物 HOMO LUMO T1(第一三线态能级)
化合物1 -4.98 -0.94 3.19
化合物2 -4.84 -0.94 3.13
化合物A -4.76 -1.08 2.86
化合物F -4.74 -0.93 2.90
从表7可知,本申请化合物1和化合物2相比比较例化合物A和化合物F具有更大的HOMO 值,从而降低了空穴注入发光层主体时的势垒,使得空穴注入发光层更为顺畅,从而该材料作为电子传输层时,可以提高蓝色发光器件的效率和寿命。
本申请提供的含氮化合物,在芴的侧位引入金刚烷基结构,可以通过超共轭效应提升芴环以及整个共轭体系的电子密度,可以增强含氮化合物的空穴传导率以及电子耐受度,同时提高有机电致发光器件的发光效率以及寿命,以及可以提升光电转化器件的转换效率和寿命。而且,金刚烷基引入至原本为近平面结构的三芳基胺的分支之间而非末端处,金刚烷基的大体积空间位阻可以精细调节胺与各个芳基成键键角及共轭程度,从而得到更适合于相邻层的材料HOMO值,降低有机电致发光器件的工作电压、提高光电转化器件的开路电压。
不仅如此,引入的金刚烷基可以增加含氮化合物的分子量并降低分子对称性,可以提高含氮化合物的玻璃化转变温度以及蒸镀温度,控制含氮化合物的结晶性,使得氮化合物的用于量产时有更佳的物理和热学稳定性,进而提高光电转化器件和有机电致发光器件的量产稳定性。
尤其是,本申请的含氮化合物中芴基团的4位与胺相连接,大幅度提高了芳胺结构的空间位阻,使得芴的平面与芳胺平面(尤其是三芳基胺平面)之间的扭曲角度增大,降低了共轭程度;由此使得含氮化合物的能带宽度以及三重态能级均得到提高,使得该含氮化合物尤其非常适合用于电子阻挡层(亦称为空穴辅助层、第二空穴传输层等)。该含氮化合物用于有机电致发光器件和光电转化器件的电子阻挡层时,有机电致发光器件和光电转化器件的效率和寿命有着较为明显的提高。
应可理解的是,本申请不将其应用限制到本说明书提出的部件的详细结构和布置方式。本申请能够具有其他实施方式,并且能够以多种方式实现并且执行。前述变形形式和修改形式落在本申请的范围内。应可理解的是,本说明书公开和限定的本申请延伸到文中和/或附图中提到或明显的两个或两个以上单独特征的所有可替代组合。所有这些不同的组合构成本申请的多个可替代方面。本说明书所述的实施方式说明了已知用于实现本申请的最佳方式,并且将使本领域技术人员能够利用本申请。

Claims (18)

  1. 一种含氮化合物,其特征在于,所述含氮化合物的结构如式I所示:
    Figure PCTCN2020099783-appb-100001
    其中,L选自单键、取代或未取代的碳原子数为6-20的亚芳基;
    Ar 1和Ar 2相同或不同,且分别独立地选自以下取代或未取代的基团:碳原子数为6-20的芳基、碳原子数为1-20的杂芳基;
    所述Ar 1、Ar 2以及L的取代基相同或不同,分别独立地选自:氘、硝基、羟基、烷基、环烷基、烯基、炔基、杂环烷基、烷氧基、烷氨基、芳氨基、烷硫基、芳基甲硅烷基。
  2. 根据权利要求1所述的含氮化合物,其特征在于,所述L选自单键、取代或未取代的亚苯基、取代或未取代的亚萘基、取代或未取代的亚联苯基、取代或未取代的亚三联苯基、取代或未取代的亚二甲基芴基。
  3. 根据权利要求1所述的含氮化合物,其特征在于,所述L选自取代或未取代的亚菲基。
  4. 根据权利要求1所述的含氮化合物,其特征在于,所述L选自单键或者选自化学式j-1所示的基团至化学式j-7所示的基团所组成的组:
    Figure PCTCN2020099783-appb-100002
    其中,M 2选自单键或者
    Figure PCTCN2020099783-appb-100003
    E 1~E 11各自独立地选自:氢、碳原子数为3~20的杂芳基、碳原子数为6~20的芳基、碳原子数为8~12的芳基甲硅烷基、碳原子数为1~10的烷基、碳原子数为2~6的烯基、碳原子数为2~6的炔基、碳原子数为3~10的环烷基、碳原子数为2~10的杂环烷基、碳原子数为1~10的烷氧基、 碳原子数为1~10的烷硫基;
    e r为取代基E r的数量,r为1~11的任意整数;当r选自1、2、3、4、5或6时,e r选自1、2、3或者4;当r选自7或10时,e r选自1、2、3、4、5或者6;当r选自8或9时,e r选自1、2、3、4、5、6、7或者8;当e r大于1时,任意两个E r相同或者不相同;
    K 3选自C(E 12E 13);其中,E 12、E 13各自独立地选自:苯基、碳原子数为1~10的烷基、碳原子数为2~6的烯基、碳原子数为2~6的炔基、碳原子数为3~10的环烷基、碳原子数为2~10的杂环烷基。
  5. 根据权利要求1所述的含氮化合物,其特征在于,所述L选自单键或者如下基团所组成的组:
    Figure PCTCN2020099783-appb-100004
  6. 根据权利要求1所述的含氮化合物,其特征在于,所述L选自单键,或者选自如下取代基所组成的组:
    Figure PCTCN2020099783-appb-100005
    其中,*表示L用于与
    Figure PCTCN2020099783-appb-100006
    基团连接;**表示L用于与
    Figure PCTCN2020099783-appb-100007
    基团连接。
  7. 根据权利要求1所述的含氮化合物,其特征在于,所述L选自单键,或者选自如下基团所组成的组:
    Figure PCTCN2020099783-appb-100008
    Figure PCTCN2020099783-appb-100009
    其中,*表示L用于与
    Figure PCTCN2020099783-appb-100010
    基团连接;**表示L用于与
    Figure PCTCN2020099783-appb-100011
    基团连接。
  8. 根据权利要求1所述的含氮化合物,其特征在于,Ar 1和Ar 2分别独立地选自如下基团所组成的组:
    Figure PCTCN2020099783-appb-100012
    其中,M 1选自单键或者
    Figure PCTCN2020099783-appb-100013
    G 1~G 5各自独立地选自N或者C(F 1),且G 1~G 5中至少一个选自N;当G 1~G 5中的两个以上选自C(F 1)时,任意两个F 1相同或者不相同;
    G 6~G 13各自独立地选自N或者C(F 2),且G 6~G 13中至少一个选自N;当G 6~G 13中的两个以上选自C(F 2)时,任意两个F 2相同或者不相同;
    G 14~G 23各自独立地选自N或者C(F 3),且G 14~G 23中至少一个选自N;当G 14~G 23中的两个以上选自C(F 3)时,任意两个F 3相同或者不相同;
    G 24~G 33各自独立地选自N或者C(F 4),且G 24~G 33中至少一个选自N;当G 24~G 33中的两个以上选自C(F 4)时,任意两个F 4相同或者不相同;
    R 1选自:氢、氘、碳原子数为8~12的芳基甲硅烷基、碳原子数为1~10的烷基、碳原子数为2~6的烯基、碳原子数为2~6的炔基、碳原子数为3~10的环烷基、碳原子数为2~10的杂环烷基、碳原子数为1~10的烷氧基、碳原子数为1~10的烷硫基;
    R 2~R 9、R 21各自独立地选自:氢、氘、碳原子数为3~10的杂芳基、碳原子数为8~12的芳基甲硅烷基、碳原子数为1~10的烷基、碳原子数为2~6的烯基、碳原子数为2~6的炔基、碳原子数为3~10的环烷基、碳原子数为2~10的杂环烷基、碳原子数为1~10的烷氧基、碳原子数为1~10的烷硫基;
    R 10~R 20、F 1~F 4各自独立地选自:氢、氘、碳原子数为6~12的芳基、碳原子数为3~10的杂芳基、碳原子数为8~12的芳基甲硅烷基、碳原子数为1~10的烷基、碳原子数为2~6的烯基、碳原子数为2~6的炔基、碳原子数为3~10的环烷基、碳原子数为2~10的杂环烷基、碳原子数为1~10的烷氧基、碳原子数为1~10的烷硫基;
    h k为取代基R k的数量,k为1~21的任意整数;其中,当k选自5或者17时,h k选自1、2或者3;当k选自2、7、8、12、15、16、18或者21时,h k选自1、2、3或者4;当k选自1、3、4、6、9或者14时,h k选自1、2、3、4或者5;当k为13时,h k选自1、2、3、4、5或者6;当k选自10或者19时,h k选自1、2、3、4、5、6或者7;当k选自20时,h k选自1、2、3、4、5、6、7或者8;当k为11时,h k选自1、2、3、4、5、6、7、8或9;当h k大于1时,任意两个R k相同或者不相同;
    K 1选自O、S、Se、N(R 22)、C(R 23R 24)、Si(R 25R 26);其中,R 22~R 26各自独立地选自:苯基、碳原子数为1~10的烷基、碳原子数为2~6的烯基、碳原子数为2~6的炔基、碳原子数为3~10的环烷基、碳原子数为2~10的杂环烷基;
    K 2选自单键、O、S、Se、N(R 27)、C(R 28R 29)、Si(R 30R 31);其中,R 27~R 31各自独立地选自:苯基、碳原子数为1~10的烷基、碳原子数为2~6的烯基、碳原子数为2~6的炔基、碳原子数为3~10的环烷基、碳原子数为2~10的杂环烷基。
  9. 根据权利要求1所述的含氮化合物,其特征在于,Ar 1和Ar 2相同或不同,且分别独立地选自:取代或未取代的碳原子数为6-20的芳基、取代或未取代的碳原子数为7-20的杂芳基。
  10. 根据权利要求1所述的含氮化合物,其特征在于,所述Ar 1和Ar 2相同或不同,且分别独立地选自:碳原子数为6-20的未取代的芳基、碳原子数为15-20的取代的芳基、碳原子数为12-18的未取代的杂芳基。
  11. 根据权利要求1所述的含氮化合物,其特征在于,Ar 1和Ar 2相同或不同,且分别独立地选自如下基团所组成的组:
    Figure PCTCN2020099783-appb-100014
  12. 根据权利要求1所述的含氮化合物,其特征在于,Ar 1和Ar 2相同或不同,且分别独立地选自如下取代基所组成的组:
    Figure PCTCN2020099783-appb-100015
  13. 根据权利要求1所述的含氮化合物,其特征在于,Ar 1和Ar 2相同或不同,且分别独立地选自如下取代基所组成的组:
    Figure PCTCN2020099783-appb-100016
  14. 根据权利要求1所述的含氮化合物,其特征在于,所述含氮化合物选自如下化合物所组成的组:
    Figure PCTCN2020099783-appb-100017
    Figure PCTCN2020099783-appb-100018
    Figure PCTCN2020099783-appb-100019
    Figure PCTCN2020099783-appb-100020
    Figure PCTCN2020099783-appb-100021
    Figure PCTCN2020099783-appb-100022
    Figure PCTCN2020099783-appb-100023
    Figure PCTCN2020099783-appb-100024
    Figure PCTCN2020099783-appb-100025
    Figure PCTCN2020099783-appb-100026
    Figure PCTCN2020099783-appb-100027
    Figure PCTCN2020099783-appb-100028
    Figure PCTCN2020099783-appb-100029
    Figure PCTCN2020099783-appb-100030
  15. 一种电子元件,其特征在于,包括相对设置的阳极和阴极,以及设于所述阳极和所述阴极之间的功能层;
    所述功能层包含权利要求1~14中任一项所述的含氮化合物。
  16. 根据权利要求15所述的电子元件,其特征在于,所述功能层包括电子阻挡层,所述电子阻挡层包括权利要求1~14中任一项所述的含氮化合物。
  17. 根据权利要求15或16所述的电子元件,其特征在于,所述电子元件为有机电致发光器件或太阳能电池。
  18. 一种电子装置,其特征在于,包括权利要求15~17中任一项所述的电子元件。
PCT/CN2020/099783 2019-10-31 2020-07-01 含氮化合物、电子元件和电子装置 WO2021082504A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021572911A JP7105388B1 (ja) 2019-10-31 2020-07-01 窒素含有化合物、電子部品及び電子装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201911054970 2019-10-31
CN201911054970.9 2019-10-31
CN201911121665.7 2019-11-15
CN201911121665.7A CN111138297B (zh) 2019-10-31 2019-11-15 含氮化合物、电子元件和电子装置

Publications (1)

Publication Number Publication Date
WO2021082504A1 true WO2021082504A1 (zh) 2021-05-06

Family

ID=70517092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/099783 WO2021082504A1 (zh) 2019-10-31 2020-07-01 含氮化合物、电子元件和电子装置

Country Status (5)

Country Link
US (1) US11098022B2 (zh)
EP (1) EP3826080B1 (zh)
JP (1) JP7105388B1 (zh)
CN (1) CN111138297B (zh)
WO (1) WO2021082504A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111138297B (zh) * 2019-10-31 2021-01-08 陕西莱特光电材料股份有限公司 含氮化合物、电子元件和电子装置
CN112759582B (zh) * 2020-06-05 2023-04-18 陕西莱特光电材料股份有限公司 一种含氮化合物以及使用其的电子元件和电子装置
CN113173858B (zh) 2021-04-21 2022-03-11 陕西莱特迈思光电材料有限公司 含氮化合物、电子元件和电子装置
CN117126132A (zh) * 2021-06-24 2023-11-28 陕西莱特光电材料股份有限公司 有机化合物、电子元件和电子装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107459466A (zh) * 2016-06-02 2017-12-12 株式会社Lg化学 化合物及包含它的有机电子元件
CN110128279A (zh) * 2019-06-14 2019-08-16 陕西莱特光电材料股份有限公司 有机电致发光材料及包含该材料的有机电致发光器件
CN110183333A (zh) * 2019-06-19 2019-08-30 陕西莱特光电材料股份有限公司 一种有机电致发光材料及包含该材料的有机电致发光器件
WO2020050623A1 (ko) * 2018-09-04 2020-03-12 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기발광 소자
KR20200037732A (ko) * 2018-10-01 2020-04-09 머티어리얼사이언스 주식회사 유기 화합물 및 이를 포함하는 유기전계발광소자
CN111138297A (zh) * 2019-10-31 2020-05-12 陕西莱特光电材料股份有限公司 含氮化合物、电子元件和电子装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011155169A1 (ja) * 2010-06-07 2011-12-15 保土谷化学工業株式会社 アクリダン環構造を有する化合物および有機エレクトロルミネッセンス素子
KR102148643B1 (ko) * 2013-09-26 2020-08-28 롬엔드하스전자재료코리아유한회사 신규한 유기 전계 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
TW201542500A (zh) * 2013-12-26 2015-11-16 羅門哈斯電子材料韓國公司 有機電場發光化合物及包含該化合物之有機電場發光裝置
KR102587380B1 (ko) * 2015-12-10 2023-10-12 솔루스첨단소재 주식회사 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
KR102587381B1 (ko) * 2015-12-21 2023-10-12 솔루스첨단소재 주식회사 유기 화합물 및 이를 포함하는 유기 전계 발광 소자
KR102295572B1 (ko) 2017-04-07 2021-08-30 코웨이 주식회사 안마볼과 독립적으로 구동되는 별도의 발열체를 구비하는 안마의자용 발열 조립체
KR102654237B1 (ko) * 2017-09-25 2024-04-03 머티어리얼사이언스 주식회사 유기 화합물 및 이를 포함하는 유기전계발광 소자
CN108083969B (zh) * 2017-12-21 2020-10-09 湖南大学 螺茚化合物及其制备和应用
KR102230983B1 (ko) * 2018-04-10 2021-03-23 주식회사 엘지화학 다환 화합물 및 이를 포함하는 유기 발광 소자
CN109535011B (zh) * 2018-12-24 2021-11-16 陕西莱特迈思光电材料有限公司 有机电致发光材料及包含其的有机电致发光器件
CN110240546B (zh) * 2019-06-24 2020-04-17 陕西莱特光电材料股份有限公司 一种含金刚烷基的三苯胺类衍生物的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107459466A (zh) * 2016-06-02 2017-12-12 株式会社Lg化学 化合物及包含它的有机电子元件
WO2020050623A1 (ko) * 2018-09-04 2020-03-12 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기발광 소자
KR20200037732A (ko) * 2018-10-01 2020-04-09 머티어리얼사이언스 주식회사 유기 화합물 및 이를 포함하는 유기전계발광소자
CN110128279A (zh) * 2019-06-14 2019-08-16 陕西莱特光电材料股份有限公司 有机电致发光材料及包含该材料的有机电致发光器件
CN110183333A (zh) * 2019-06-19 2019-08-30 陕西莱特光电材料股份有限公司 一种有机电致发光材料及包含该材料的有机电致发光器件
CN111138297A (zh) * 2019-10-31 2020-05-12 陕西莱特光电材料股份有限公司 含氮化合物、电子元件和电子装置

Also Published As

Publication number Publication date
EP3826080B1 (en) 2022-05-11
CN111138297B (zh) 2021-01-08
US11098022B2 (en) 2021-08-24
JP7105388B1 (ja) 2022-07-22
JP2022532949A (ja) 2022-07-20
CN111138297A (zh) 2020-05-12
EP3826080A1 (en) 2021-05-26
US20210130313A1 (en) 2021-05-06

Similar Documents

Publication Publication Date Title
WO2021135207A1 (zh) 含氮化合物、电子元件和电子装置
CN113024566B (zh) 一种含氮化合物及包含其的电子元件和电子装置
WO2021057550A1 (zh) 有机化合物和电子装置
WO2021213109A1 (zh) 一种芳胺化合物、使用其的电子元件及电子装置
KR102171533B1 (ko) 조성물, 유기 광전자 소자 및 표시 장치
WO2021218588A1 (zh) 一种含氮化合物以及使用其的电子元件和电子装置
WO2022206396A1 (zh) 主体材料组合物和有机电致发光器件及电子装置
WO2021082504A1 (zh) 含氮化合物、电子元件和电子装置
CN106929005B (zh) 用于有机光电子器件的组合物、包含其的有机光电子器件及显示设备
WO2022088865A1 (zh) 含氮化合物、电子元件和电子装置
WO2022213905A1 (zh) 有机化合物以及使用其的电子元件和电子装置
WO2021082714A1 (zh) 含氮化合物、电子元件和电子装置
WO2022089093A1 (zh) 含氮化合物、电子元件和电子装置
WO2024087586A1 (zh) 有机化合物及包含其的电子元件和电子装置
CN113285038A (zh) 一种有机电致发光器件及电子装置
WO2022068292A1 (zh) 一种有机化合物以及使用其的电子元件和电子装置
WO2021136064A1 (zh) 含氮化合物、有机电致发光器件以及电子装置
WO2023202198A1 (zh) 有机材料、电子元件和电子装置
WO2024007511A1 (zh) 芳胺化合物及有机电致发光器件和电子装置
WO2023134228A1 (zh) 含氮化合物及包含其的有机电致发光器件和电子装置
CN113421980B (zh) 有机电致发光器件及包含其的电子装置
CN113764604B (zh) 一种组合物及包含其的电子元件和电子装置
WO2021082958A1 (zh) 含氮化合物、电子元件和电子装置
CN113380954A (zh) 有机电致发光器件及电子装置
WO2022148197A1 (zh) 一种有机化合物以及使用其的电子元件和电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20882945

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021572911

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20882945

Country of ref document: EP

Kind code of ref document: A1