WO2022160928A1 - 一种含氮化合物及包含其的电子元件和电子装置 - Google Patents

一种含氮化合物及包含其的电子元件和电子装置 Download PDF

Info

Publication number
WO2022160928A1
WO2022160928A1 PCT/CN2021/134891 CN2021134891W WO2022160928A1 WO 2022160928 A1 WO2022160928 A1 WO 2022160928A1 CN 2021134891 W CN2021134891 W CN 2021134891W WO 2022160928 A1 WO2022160928 A1 WO 2022160928A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon atoms
group
substituted
unsubstituted
nitrogen
Prior art date
Application number
PCT/CN2021/134891
Other languages
English (en)
French (fr)
Inventor
杨敏
韩超
南朋
Original Assignee
陕西莱特光电材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 陕西莱特光电材料股份有限公司 filed Critical 陕西莱特光电材料股份有限公司
Publication of WO2022160928A1 publication Critical patent/WO2022160928A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings
    • C07D413/04Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D413/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms
    • C07D413/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and oxygen atoms as the only ring hetero atoms containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/04Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1033Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1037Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1059Heterocyclic compounds characterised by ligands containing three nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom

Definitions

  • the present application relates to the technical field of organic electroluminescence, and in particular, to a nitrogen-containing compound and electronic components and electronic devices containing the same.
  • OLED materials are mainly used in the field of display and lighting.
  • the field of display is mainly concentrated in the field of display and lighting such as TVs, computers, and mobile phones, and the field of display is mainly concentrated on display screens such as TVs, computers, and mobile phones. It has the advantages of low operating voltage, fast reaction speed, flexible folding, high luminous brightness and high efficiency, making OLED materials highly sought after by the industry. Therefore, it is known as the dream technology of human future light source and display technology.
  • OLED materials are divided into fluorescent materials and phosphorescent materials. Due to the spin-orbit coupling effect of heavy metals, the phosphorescent material can utilize 25% of the singlet excitons and 75% of the triplet excitons at the same time, which significantly improves the luminous efficiency.
  • phosphorescent materials face two major problems, concentration quenching and triplet annihilation, and cannot achieve high-level luminescence. In the development process of this boom of industrialization, how to improve device efficiency and prolong life is a crucial issue.
  • the purpose of the present application is to overcome the above-mentioned deficiencies in the prior art, and to provide a nitrogen-containing compound and an electronic component and electronic device containing the same, which can improve the luminous efficiency and prolong the life of the device.
  • a nitrogen-containing compound is provided, and the structural formula of the nitrogen-containing compound is composed of the structures shown in Formula 1 and Formula 2:
  • * represents the connection point connecting Equation 1 and Equation 2, and any two adjacent connection points * in Equation 2 are connected to Equation 1;
  • X is selected from O or S
  • Y is selected from substituted or unsubstituted aryl groups having 6 to 18 carbon atoms
  • X 1 , X 2 and X 3 are the same or different, and are each independently selected from N or CH, and at least one of X 1 , X 2 and X 3 is N;
  • R 1 , R 2 and R 3 are the same or different from each other, and are independently selected from deuterium, halogen group, cyano group, alkyl group having 1 to 5 carbon atoms, and cycloalkyl group having 3 to 10 carbon atoms. , Heterocycloalkyl with 2 to 20 carbon atoms, aryl with 6 to 30 carbon atoms, and heteroaryl with 3 to 30 carbon atoms;
  • R 1 , R 2 , R 3 are represented by Ri, n 1 to n 3 are represented by ni , ni represents the number of Ri, i is a variable, representing 1, 2 and 3, when i is 1 and 3 , n i is selected from 0, 1, 2, 3 or 4; when i is 2, n i is selected from 0, 1 or 2; and when n i is greater than 1, any two n i are the same or different;
  • L, L 1 and L 2 are each independently selected from a single bond, a substituted or unsubstituted arylene group with 6-30 carbon atoms, or a substituted or unsubstituted heteroarylene group with 3-30 carbon atoms ;
  • Ar 1 and Ar 2 are the same or different, and are independently selected from substituted or unsubstituted aryl groups with 6-30 carbon atoms and substituted or unsubstituted heteroaryl groups with 3-30 carbon atoms;
  • the substituent in the Y is selected from deuterium, halogen group, cyano group, aryl group with 6-12 carbon atoms, and alkyl group with 1-5 carbon atoms;
  • the substituents in the L, L 1 and L 2 are the same or different, and are independently selected from deuterium, halogen groups, cyano groups, heteroaryl groups with 3 to 20 carbon atoms, and 6 to 20 carbon atoms.
  • the substituents in Ar 1 and Ar 2 are the same or different, and are independently selected from deuterium, halogen group, cyano group, heteroaryl group with 3 to 20 carbon atoms, and a group with 6 to 20 carbon atoms.
  • the nitrogen-containing compounds provided in the present application include nitrogen heterocyclic structures (pyridine, pyrimidine or triazine), phenanthrene and aryl-substituted nitrogen-containing five-membered rings (thiazole and oxazole) fused.
  • the target compound When the above structure is combined as the host material of the organic light-emitting layer in a specific way, the target compound has a high electron mobility, which helps the electrons and holes in the organic light-emitting layer to reach a balance, and broadens the interaction between electrons and holes in the organic light-emitting layer. Recombination region, improve the luminous efficiency of electroluminescence, reduce the driving voltage of organic electroluminescence and improve the life of the device.
  • the nitrogen-containing compound is more suitable as an electron-type host material in a mixed host of an organic electroluminescence device, and is especially suitable for an electron-type host material in a red light device.
  • the nitrogen-containing compound of the present application is used in the organic light-emitting layer material of an organic electroluminescent device, the electron transport performance of the device will be effectively improved, and the luminous efficiency and service life of the device will be improved.
  • an electronic component comprising an anode, a cathode, and at least one functional layer interposed between the anode and the cathode, the functional layer comprising the above-mentioned nitrogen-containing compound.
  • an electronic device including the above electronic component.
  • FIG. 1 is a schematic structural diagram of an organic electroluminescent device according to an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of an electronic device according to an embodiment of the present application.
  • Example embodiments will now be described more fully with reference to the accompanying drawings.
  • Example embodiments can be embodied in various forms and should not be construed as limited to the examples set forth herein; rather, these embodiments are provided so that this application will be thorough and complete, and will fully convey the concept of example embodiments to those skilled in the art.
  • the described features, structures, or characteristics may be combined in any suitable manner in one or more embodiments. In the following description, numerous specific details are provided in order to give a thorough understanding of the embodiments of the present application.
  • the application provides a nitrogen-containing compound, and the structural formula of the nitrogen-containing compound is composed of the structures shown in formula 1 and formula 2:
  • * represents the connection point between formula 1 and chemical formula 2, and any two adjacent connection points * in formula 2 are connected with formula 1;
  • X is selected from O or S
  • Y is selected from substituted or unsubstituted aryl groups having 6 to 18 carbon atoms
  • X 1 , X 2 and X 3 are the same or different, each independently selected from N or CH, and at least one of X 1 , X 2 and X 3 is N;
  • R 1 , R 2 and R 3 are the same or different from each other, and are independently selected from deuterium, halogen group, cyano group, alkyl group having 1 to 5 carbon atoms, and cycloalkyl group having 3 to 10 carbon atoms. , Heterocycloalkyl with 2 to 20 carbon atoms, aryl with 6 to 30 carbon atoms, and heteroaryl with 3 to 30 carbon atoms;
  • R 1 , R 2 , R 3 are represented by Ri, n 1 to n 3 are represented by ni , ni represents the number of Ri, i is a variable, representing 1, 2 and 3, when i is 1 and 3 , n i is selected from 0, 1, 2, 3 or 4; when i is 2, n i is selected from 0, 1 or 2; and when n i is greater than 1, any two n i are the same or different;
  • L, L 1 and L 2 are each independently selected from a single bond, a substituted or unsubstituted arylene group with 6 to 30 carbon atoms, or a substituted or unsubstituted heteroarylene group with 3 to 30 carbon atoms ;
  • Ar 1 and Ar 2 are the same or different, and are independently selected from substituted or unsubstituted aryl groups with 6-30 carbon atoms and substituted or unsubstituted heteroaryl groups with 3-30 carbon atoms;
  • the substituent in the Y is selected from deuterium, halogen group, cyano group, aryl group with 6-12 carbon atoms, and alkyl group with 1-5 carbon atoms;
  • the substituents in the L, L 1 and L 2 are the same or different, and are independently selected from deuterium, halogen groups, cyano groups, heteroaryl groups with 3 to 20 carbon atoms, and 6 to 20 carbon atoms.
  • the substituents in Ar 1 and Ar 2 are the same or different, and are independently selected from deuterium, halogen group, cyano group, heteroaryl group with 3 to 20 carbon atoms, and a group with 6 to 20 carbon atoms.
  • the nitrogen-containing compound has formula 1-1, formula 1-2, formula 1-3, formula 1-4, formula 1-5, formula 1-6, formula 1-7, formula 1-8, Equation 2-1, Equation 2-2, Equation 2-3, Equation 2-4, Equation 2-5, Equation 2-6, Equation 2-7, Equation 2-8, Equation 3-1, Equation 3-2, Equation 3-3, Equation 3-4, Equation 3-5, Equation 3-6, Equation 3-7, Equation 3-8, Equation 4-1, Equation 4-2, Equation 4-3, Equation 4-4, Equation 4-5, Equation 4-6, Equation 4-7, Equation 4-8, Equation 5-1, Equation 5-2, Equation 5-3, Equation 5-4, Equation 5-5, Equation 5-6,
  • each q is independently 0, 1, 2 or 3
  • each R is independently selected from hydrogen, deuterium, fluorine, chlorine
  • formula Q-1 represents that there are q substituents R" on the benzene ring.
  • each R" can be the same or different, and the options of each R" do not affect each other;
  • formula Q-2 indicates that each benzene ring of biphenyl has q substituents R", and the R" on the two benzene rings The number q of "substituents" can be the same or different, each R" can be the same or different, and the options of each R" do not affect each other.
  • substituted or unsubstituted means that the functional group described after the term may or may not have a substituent (hereinafter, for the convenience of description, the substituents are collectively referred to as Rc).
  • substituted or unsubstituted aryl refers to an aryl group having a substituent Rc or an unsubstituted aryl group.
  • substituents namely Rc
  • Rc can be, for example, deuterium, halogen, cyano, heteroaryl with 3 to 20 carbon atoms, aryl with 6 to 20 carbon atoms, and trioxane with 3 to 12 carbon atoms.
  • Silyl group alkyl group with 1 to 10 carbon atoms, haloalkyl group with 1 to 10 carbon atoms, cycloalkyl group with 3 to 10 carbon atoms, heterocycloalkyl group with 2 to 10 carbon atoms , an alkoxy group having 1 to 10 carbon atoms.
  • the "substituted" functional group may be substituted by one or more than two substituents in the above Rc; when two substituents Rc are attached to the same atom, the two substituents Rc may exist independently Or connected to each other to form a ring with the atoms; when there are two adjacent substituents Rc on a functional group, the adjacent two substituents Rc can exist independently or be condensed into a ring with the functional group to which they are connected.
  • the number of carbon atoms of a substituted or unsubstituted functional group refers to the number of all carbon atoms. For example, if L is selected from a substituted arylene group having 12 carbon atoms, then all carbon atoms in the arylene group and the substituents thereon are 12. For example: Ar is Then the number of carbon atoms is 7; L is Its carbon number is 12.
  • alkyl may include straight or branched chain alkyl groups.
  • An alkyl group may have 1 to 10 carbon atoms, and in this application, a numerical range such as “1 to 10" refers to each integer in the given range; for example, “1 to 10 carbon atoms” refers to the number of carbon atoms It can be 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 alkyl groups.
  • alkyl groups can be substituted or unsubstituted.
  • the alkyl group is selected from alkyl groups with 1 to 5 carbon atoms, and specific examples include, but are not limited to, methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, sec-butyl , tert-butyl and pentyl.
  • cycloalkyl refers to saturated hydrocarbons containing alicyclic structures, including monocyclic and fused ring structures.
  • Cycloalkyl groups can have 3 to 10 carbon atoms, and a numerical range such as “3 to 10" refers to each integer in the given range; for example, "3 to 10 carbon atoms” means that the number of carbon atoms can be 3, 4, 5, 6, 7, 8, 9 or 10 cycloalkyl groups. Cycloalkyl groups can be small, ordinary rings having 3 to 10 carbon atoms. Additionally, cycloalkyl groups may be substituted or unsubstituted. For example, cyclohexyl. Heterocycloalkyl means that one or more carbon atoms in the cycloalkyl group are replaced by heteroatoms such as B, N, O, S, P, Si or Se.
  • aryl refers to an optional functional group or substituent derived from an aromatic carbocyclic ring.
  • Aryl groups can be monocyclic aryl groups (eg, phenyl) or polycyclic aryl groups, in other words, aryl groups can be monocyclic aryl groups, fused-ring aryl groups, two or more monocyclic aryl groups conjugated through carbon-carbon bonds. Cyclic aryl groups, monocyclic aryl groups and fused-ring aryl groups linked by carbon-carbon bond conjugation, two or more fused-ring aryl groups linked by carbon-carbon bond conjugation. That is, unless otherwise specified, two or more aromatic groups linked by carbon-carbon bond conjugation may also be considered aryl groups in the present application.
  • the fused ring aryl group may include, for example, a bicyclic fused aryl group (eg, naphthyl), a tricyclic fused aryl group (eg, phenanthrenyl, fluorenyl, anthracenyl), and the like.
  • the aryl group does not contain heteroatoms such as B, N, O, S, P, Se and Si.
  • biphenyl, terphenyl, etc. are aryl groups.
  • aryl groups may include, but are not limited to, phenyl, naphthyl, fluorenyl, anthracenyl, phenanthryl, biphenyl, terphenyl, tetraphenyl, pentaphenyl, benzo[9,10] phenanthryl, pyrenyl, benzofluoranthene, Base et al.
  • the "substituted or unsubstituted aryl group" of the present application may contain 6-30 carbon atoms, in some embodiments, the number of carbon atoms in the substituted or unsubstituted aryl group may be 6-20, in some embodiments Among them, the number of carbon atoms in the substituted or unsubstituted aryl group may be 6-18, and in other embodiments, the number of carbon atoms in the substituted or unsubstituted aryl group may be 6-12.
  • the number of carbon atoms of a substituted or unsubstituted aryl group can be 6, 12, 13, 14, 15, 18, 20, 24, 25, 30 , of course, the number of carbon atoms can also be other numbers, which will not be listed here.
  • biphenyl can be understood as a phenyl substituted aryl group, and can also be understood as an unsubstituted aryl group.
  • the arylene group referred to refers to a divalent group formed by the further loss of one hydrogen atom from the aryl group.
  • the substituted aryl group may be one or more hydrogen atoms in the aryl group replaced by a group such as a deuterium atom, a halogen group, a cyano group, an aryl group, a heteroaryl group, a trialkylsilyl group, an alkyl group, Cycloalkyl, heterocycloalkyl, alkoxy and other groups are substituted.
  • a group such as a deuterium atom, a halogen group, a cyano group, an aryl group, a heteroaryl group, a trialkylsilyl group, an alkyl group, Cycloalkyl, heterocycloalkyl, alkoxy and other groups are substituted.
  • the number of carbon atoms in a substituted aryl group refers to the total number of carbon atoms in the aryl group and the substituents on the aryl group, for example, a substituted aryl group with a carbon number of 18 refers to the
  • aryl groups as substituents include, but are not limited to, phenyl, naphthyl, anthracenyl, phenanthryl, dimethylfluorenyl, biphenyl and the like.
  • a heteroaryl group refers to a monovalent aromatic ring or a derivative thereof containing at least one heteroatom in the ring, and the heteroatom may be at least one of B, O, N, P, Si, Se and S.
  • a heteroaryl group can be a monocyclic heteroaryl group or a polycyclic heteroaryl group, in other words, a heteroaryl group can be a single aromatic ring system or multiple aromatic ring systems linked by carbon-carbon bonds, and any aromatic The ring system is an aromatic monocyclic ring or an aromatic fused ring.
  • heteroaryl groups can include thienyl, furyl, pyrrolyl, imidazolyl, thiazolyl, oxazolyl, oxadiazolyl, triazolyl, pyridyl, bipyridyl, pyrimidinyl, triazinyl, acridinyl, pyridazinyl, pyrazinyl, quinolinyl, quinazolinyl, quinoxalinyl, phenoxazinyl, phthalazinyl, pyridopyrimidinyl, pyridopyrazinyl, pyrazinopyrazinyl Azinyl, isoquinolinyl, indolyl, carbazolyl, benzoxazolyl, benzimidazolyl, benzothiazolyl, benzocarbazolyl, benzothienyl, dibenzothienyl, thiophene thieny
  • thienyl, furanyl, phenanthroline, etc. are heteroaryl groups of a single aromatic ring system type
  • N-phenylcarbazolyl and N-pyridylcarbazolyl are polycyclic groups connected by carbon-carbon bond conjugation System type of heteroaryl.
  • the "substituted or unsubstituted heteroaryl" in the present application may contain 3-30 carbon atoms, in some embodiments, the number of carbon atoms in the substituted or unsubstituted heteroaryl may be 3-20, in other
  • the number of carbon atoms in a substituted or unsubstituted heteroaryl group in some embodiments may be 5-12.
  • the number of carbon atoms can be 3, 4, 5, 7, 12, 13, 18, 20, 24, 25 or 30.
  • the number of carbon atoms can also be are other quantities, which will not be listed here.
  • the heteroarylene group referred to refers to a divalent group formed by the further loss of one hydrogen atom from the heteroaryl group.
  • a substituted heteroaryl group may be a heteroaryl group in which one or more than two hydrogen atoms are replaced by, for example, a deuterium atom, a halogen group, a cyano group, an aryl group, a heteroaryl group, a trialkylsilyl group, an alkane group group, cycloalkyl, heterocycloalkyl, alkoxy and other groups.
  • a deuterium atom a halogen group
  • a cyano group an aryl group
  • a heteroaryl group a trialkylsilyl group
  • alkane group group cycloalkyl
  • heterocycloalkyl heterocycloalkyl
  • heteroaryl groups as substituents include, but are not limited to, pyridyl, carbazolyl, dibenzofuranyl, and dibenzothienyl.
  • halogen groups may include fluorine, iodine, bromine, chlorine, and the like.
  • trialkylsilyl group having 3 to 12 carbon atoms include, but are not limited to, trimethylsilyl, triethylsilyl, and the like.
  • a non-positioned connecting bond refers to a single bond extending from the ring system It means that one end of the linking bond can be connected to any position in the ring system through which the bond runs, and the other end is connected to the rest of the compound molecule.
  • the naphthyl group represented by the formula (f) is connected to other positions of the molecule through two non-positioned linkages running through the bicyclic ring. -1) to any possible connection method shown in formula (f-10).
  • the dibenzofuranyl group represented by the formula (X') is connected to other positions of the molecule through a non-positional linkage extending from the middle of one side of the benzene ring,
  • the meaning represented by it includes any possible connection modes shown by formula (X'-1) to formula (X'-4).
  • the Y is selected from substituted or unsubstituted phenyl, substituted or unsubstituted biphenyl, substituted or unsubstituted naphthyl, and substituted or unsubstituted terphenyl;
  • the substituent in the Y is selected from phenyl and naphthyl.
  • the Y is selected from the group consisting of the following groups:
  • the L, L 1 and L 2 are each independently selected from a single bond, a substituted or unsubstituted arylene group having 6 to 15 carbon atoms, or a 5 carbon atom group Substituted or unsubstituted heteroarylene of ⁇ 12.
  • the substituents in L, L 1 and L 2 are selected from deuterium, halogen group, cyano group, phenyl group, and alkyl group with 1-5 carbon atoms.
  • substituents in L, L 1 and L 2 include but are not limited to: deuterium, fluorine, cyano, methyl, ethyl, n-propyl, isopropyl, tert-butyl, phenyl .
  • the L, L 1 and L 2 are each independently selected from a single bond, a substituted or unsubstituted phenylene group, a substituted or unsubstituted naphthylene group, and a substituted or unsubstituted biphenylene group.
  • the L 1 and L 2 are independently selected from a single bond or a phenylene group.
  • the L is selected from the group consisting of a single bond or the following groups:
  • Ar 1 and Ar 2 are independently selected from substituted or unsubstituted aryl groups having 6 to 15 carbon atoms, or substituted or unsubstituted aryl groups having 3 to 20 carbon atoms. Substituted heteroaryl.
  • the substituents in Ar 1 and Ar 2 are independently selected from deuterium, halogen group, cyano group, aryl group with 6-12 carbon atoms, and alkyl group with 1-5 carbon atoms .
  • substituents in Ar 1 and Ar 2 include, but are not limited to: deuterium, fluorine, cyano, methyl, ethyl, n-propyl, isopropyl, tert-butyl, and phenyl.
  • Ar 1 and Ar 2 are independently selected from substituted or unsubstituted phenyl, substituted or unsubstituted biphenyl, substituted or unsubstituted naphthyl, substituted or unsubstituted dibenzo Furyl, substituted or unsubstituted dibenzothienyl, substituted or unsubstituted fluorenyl, substituted or unsubstituted carbazolyl, substituted or unsubstituted N-phenylcarbazolyl.
  • the Ar 1 and Ar 2 are independently selected from the substituted or unsubstituted group W, and the unsubstituted group W is selected from the group consisting of the following groups:
  • the substituted group W has one or more substituents, each of which is independently selected from: deuterium, cyano, fluorine, methyl, ethyl, n-propyl, isopropyl, tertiary Butyl, phenyl; when the number of substituents of group W is greater than 1, the substituents are the same or different.
  • Ar 1 and Ar 2 are independently selected from the group consisting of the following groups:
  • the nitrogen-containing compound is selected from the group consisting of:
  • the present application also provides an electronic component, which includes an anode and a cathode disposed opposite to each other, and at least one functional layer interposed between the anode and the cathode, the functional layer comprising the nitrogen-containing compound of the present application.
  • an organic electroluminescent device is provided.
  • the device structure is shown in FIG. 1 .
  • the organic electroluminescent device of the present application includes an anode 100 , a cathode 200 , and a layer between the anode layer and the cathode layer.
  • the functional layer 300 includes a hole injection layer 310, a hole transport layer 320, an organic light-emitting layer 330, a hole blocking layer 340, an electron transport layer 350 and an electron injection layer 360;
  • Layer 320 includes first hole transport layer 321 and second hole transport layer 322;
  • hole injection layer 310, hole transport layer 320, organic light-emitting layer 330, hole blocking layer 340, electron transport layer 350 and electron injection layer 360 may be formed on the anode 100 in sequence, and the organic light-emitting layer 330 may contain the organic compound described in the first aspect of the present application, preferably at least one of compounds 1-376.
  • the anode 100 includes an anode material, which is preferably a material with a large work function that facilitates hole injection into the functional layer.
  • anode materials include: metals such as nickel, platinum, vanadium, chromium, copper, zinc and gold or alloys thereof; metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO) and indium zinc oxide (IZO); Combined metals and oxides such as ZnO:Al or SnO2 :Sb; or conducting polymers such as poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene ](PEDT), polypyrrole and polyaniline, but not limited thereto. It is preferable to include a transparent electrode comprising indium tin oxide (ITO) as an anode.
  • ITO indium tin oxide
  • the hole transport layer 320 may include one or more hole transport materials, and the hole transport materials may be selected from carbazole polymers, carbazole-linked triarylamine compounds or other types of compounds. This does not make special restrictions.
  • the hole transport layer 320 may include a first hole transport layer 321 and a second hole transport layer 322; the first hole transport layer 321 is adjacent to the second hole transport layer 322 and is opposite to the second hole transport layer 322.
  • the hole transport layer 322 is closer to the anode.
  • the first hole transport layer 321 is composed of compound HT-01
  • the second hole transport layer 322 is composed of compound HT-02.
  • the organic light-emitting layer 330 may be composed of a single light-emitting material, or may include a host material and a guest material.
  • the organic light-emitting layer 330 is composed of a host material and a guest material, the holes and electrons injected into the organic light-emitting layer 330 can recombine in the organic light-emitting layer 330 to form excitons, and the excitons transfer energy to the host material, and the host material will The energy is transferred to the guest material, which in turn enables the guest material to emit light.
  • the host material of the organic light-emitting layer 330 is the nitrogen-containing compound provided in the present application.
  • the nitrogen-containing compounds provided in the present application include nitrogen heterocyclic structures (pyridine, pyrimidine or triazine), phenanthrene and aryl-substituted nitrogen-containing five-membered rings (thiazole and oxazole) fused.
  • the fused structure of phenanthrene and nitrogen-containing five-membered ring has a large space volume, this connection method also makes the entire molecular structure have a better three-dimensional configuration, which can make the molecular structure have better rigidity and higher mobility.
  • the T1 energy level of the material is increased, and the crystallinity is lower.
  • the nitrogen-containing compound is more suitable as an electronic host material in a mixed host of an organic electroluminescence device, and is especially suitable for an electronic host material in a red light device.
  • the nitrogen-containing compound of the present application is used in the organic light-emitting layer material of an organic electroluminescent device, the electron transport performance of the device will be effectively improved, and the luminous efficiency and service life of the device will be improved.
  • the guest material of the organic electroluminescent layer 330 may be a compound having a condensed aryl ring or a derivative thereof, a compound having a heteroaryl ring or a derivative thereof, an aromatic amine derivative or other materials, which are not discussed in this application. special restrictions.
  • the guest material of the organic light-emitting layer 330 may be Ir(piq) 2 (acac).
  • the electron transport layer 350 may be a single-layer structure or a multi-layer structure, which may include one or more electron transport materials, and the electron transport materials may be selected from benzimidazole derivatives, oxadiazole derivatives, quinoxaline Derivatives or other electron transport materials, which are not specifically limited in this application.
  • the electron transport layer 350 may be composed of BTB and LiQ.
  • the cathode 200 includes a cathode material, which is a material with a small work function that facilitates electron injection into the functional layer.
  • cathode materials include: metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin and lead or alloys thereof; or multi-layer materials such as LiF/Al, Liq/ Al, LiO 2 /Al, LiF/Ca, LiF/Al and BaF 2 /Ca, but not limited thereto.
  • a metal electrode comprising silver and magnesium is preferably included as the cathode.
  • a hole injection layer 310 may also be disposed between the anode 100 and the hole transport layer 320 to enhance the capability of injecting holes into the hole transport layer 320 .
  • the hole injection layer 310 can be selected from benzidine derivatives, starburst arylamine compounds, phthalocyanine derivatives or other materials, which are not specifically limited in this application.
  • the hole injection layer 310 may be composed of m-MTDATA.
  • an electron injection layer 360 may also be disposed between the cathode 200 and the electron transport layer 350 to enhance the capability of injecting electrons into the electron transport layer 350 .
  • the electron injection layer 360 may include inorganic materials such as alkali metal sulfide and alkali metal halide, or may include a complex compound of alkali metal and organic matter.
  • the electron injection layer 360 may include ytterbium (Yb).
  • the present application also provides an electronic device, which includes the electronic components described in the present application.
  • the electronic device provided by the present application is an electronic device 400
  • the electronic device 400 includes any one of the organic electroluminescent devices described in the above organic electroluminescent device embodiments.
  • the electronic device may be a display device, a lighting device, an optical communication device or other types of electronic devices, such as but not limited to computer screens, mobile phone screens, televisions, electronic paper, emergency lighting, light modules, and the like. Since the electronic device 400 has the above-mentioned organic electroluminescence device, it has the same beneficial effects, and details are not described herein again.
  • the intermediate C-X shown in the following table 1 is synthesized, wherein X is 1-14, using reactant A-1, reactant A-2, reactant A-3, reactant A-4, reactant A-5, reactant A-6 and reactant A-7 replace reactant A-1, reactant B-1, reactant B-2 replace reactant B-1, the prepared intermediate Body C-X is shown in Table 1 below:
  • intermediate D-X shown in the following table 2 is synthesized, wherein X is 1-14, and intermediate C-X is used to replace intermediate C-1, and the obtained intermediate D-X is shown in the following table 2 Show:
  • intermediate E-X shown in the following table 3 is synthesized, wherein X is 1-27, and intermediate D-X is used to replace intermediate D-1, and the obtained intermediate E-X is shown in the following table 3 Show:
  • reaction solution was extracted with dichloromethane and water, the organic phase was dried with anhydrous magnesium sulfate, filtered through a short silica gel column, and the filtrate was distilled under reduced pressure to remove the solvent; the crude product was purified by silica gel column chromatography using a dichloromethane/n-heptane system , to obtain intermediate F-1 (5.0 g, yield 78%).
  • intermediate F-X shown in the following table 4 is synthesized, wherein X is 1-25, and intermediate E-X is used to replace intermediate E-1, and the obtained intermediate F-X is shown in the following table 4 Show:
  • intermediate G-X shown in the following table 5 is synthesized, wherein X is 1-4, intermediate F-2 and intermediate F-6 are used to replace intermediate F-1, and the reaction Material SM-2, reactant SM-3, and reactant SM-4 replaced reactant SM-1, and the obtained intermediate G-X is shown in Table 5 below:
  • the anode 100ITO substrate was cut into a size of 40mm (length) x 40mm (width) x 0.7mm (thickness), and a photolithography process was used to prepare it into an experimental substrate with a cathode 200, an anode 100 and an insulating layer pattern, using ultraviolet ozone And O 2 :N 2 plasma is used for surface treatment to increase the work function of the anode 100 (experimental substrate), and the surface of the ITO substrate is cleaned with an organic solvent to remove scum and oil stains on the surface of the ITO substrate.
  • the compound m-MTDATA (4,4',4"-tris(N-3-methylphenyl-N-phenylamino)triphenylamine) (see below for structural formula) was vacuum evaporated on the experimental substrate to form a thickness of the hole injection layer 310 (HIL); and vacuum evaporation of compound HT-01 above the hole injection layer 310 (HIL) to form a thickness of The first hole transport layer 321 (HTL1).
  • a layer of HT-02 is vacuum evaporated on the first hole transport layer 321 (HTL1) to form a thickness of The second hole transport layer 322 (HTL2).
  • the red organic light-emitting layer 330 EML
  • BTB and LiQ were mixed in a weight ratio of 1:1 and evaporated to form Thick electron transport layer 350 (ETL), then Yb is evaporated on the electron transport layer 350 (ETL) to form a thickness of The electron injection layer 360 (EIL).
  • Magnesium (Mg) and silver (Ag) were vacuum-deposited on the electron injection layer at a film thickness ratio of 1:9 to form a thickness of the cathode 200.
  • a layer thickness of of CP-01 forming a capping layer (CPL), thereby completing the fabrication of the organic light-emitting device.
  • a red organic electroluminescent device was fabricated in the same manner as in Example 1, except that the compounds shown in Table 9 were used instead of Compound 100 in forming the organic light-emitting layer (EML).
  • EML organic light-emitting layer
  • the properties of the organic electroluminescent devices prepared in Examples 1-48 are improved.
  • the driving voltage of the compound used as the organic light-emitting layer is reduced by at least 0.25V
  • the luminous efficiency is increased by at least 10.38%
  • the lifetime is increased by at least 13.79%.
  • the luminous efficiency (Cd/A), external quantum efficiency (EQE) and lifetime (T95) of the electronic device are significantly improved by using the nitrogen-containing compound of the present application as the organic light-emitting layer of the electronic device. Therefore, using the nitrogen-containing compound of the present application in an organic electroluminescent layer can prepare an organic electroluminescent device with high luminous efficiency and long lifetime.
  • the nitrogen-containing compound of the present application has improved voltage, efficiency and lifetime.
  • the fused position of oxazole and phenanthrene is different
  • the fused method of the compound of the present application has higher electron mobility than that of the comparative compound B, which is helpful for the electrons and holes in the organic light-emitting layer to reach the Balance, broaden the recombination area of electrons and holes in the organic light-emitting layer, improve the luminous efficiency of electroluminescence, reduce the driving voltage of organic electroluminescence, and improve the life of the device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本申请属于有机材料技术领域,提供了一种含氮化合物及包含其的电子元件和电子装置,该含氮化合物的结构式由式1和式2所示的结构组成:

Description

一种含氮化合物及包含其的电子元件和电子装置
相关申请的交叉引用
本申请要求于2021年1月28日递交的申请号为202110120037.8的中国专利申请的优先权,在此引用上述中国专利申请的内容全文以作为本申请的一部分。
技术领域
本申请涉及有机电致发光技术领域,具体而言,涉及一种含氮化合物及包含其的电子元件和电子装置。
背景技术
随着全球化的步伐加快,科技知识得到全面交流,更是加快了科技进步的步伐。在这种大环境下,有机平面显示领域飞速前进,有机发光二极管,又称有机电致发光发展迅速,产业化已初具规模。OLED材料主要应用于显示领域和照明领域,其中显示领域中主要集中在电视、电脑、手机等显示领域和照明领域,其中显示领域主要集中在电视、电脑、手机等显示屏幕上。它具有工作电压低、反应速度块、可弯曲折叠、发光亮度和效率高等优点,使得OLED材料备受产业界追捧。因此,被誉为人类未来光源和显示技术的梦幻科技。
在外电场的作用下,单线态激子和三线态激子回到基态的辐射跃迁分别产生荧光和磷光。根据发光原理不同,将OLED材料划分为荧光材料和磷光材料。由于重金属的自旋轨道耦合作用,使得磷光材料可以同时利用25%的单线态激子和75%的三线态激子,使得发光效率显著提高。但是,磷光材料面临浓度淬灭和三线态泯灭主要的两大问题,不能实现高校发光。在这个产业化的热潮的发展过程中,如何提高器件效率和延长寿命是至关重要的课题。
需要说明的是,在上述背景技术部分公开的信息仅用于加强对本申请的背景的理解,因此可以包括不构成对本领域普通技术人员已知的现有技术的信息。
发明内容
本申请的目的在于克服上述现有技术中的不足,提供一种含氮化合物及包含其的电子元件和电子装置,可提高发光效率,延长器件寿命。
为实现上述发明目的,本申请采用如下技术方案:
根据本申请的第一个方面,提供了一种含氮化合物,所述含氮化合物的结构式由式1和式2所示的结构组成:
Figure PCTCN2021134891-appb-000001
其中,*表示式1与式2连接的连接点,式2中任意两个相邻的连接点*与式1连接;
X选自O或S;
Y选自碳原子数为6~18的取代或未取代的芳基;
X 1、X 2和X 3相同或不同,且分别独立地选自N或CH,且X 1、X 2和X 3中的至少一个为N;
R 1、R 2和R 3彼此相同或不同,且分别独立地选自氘、卤素基团、氰基、碳原子数为1~5的烷基、碳原子数为3~10的环烷基、碳原子数为2~20的杂环烷基、碳原子数为6~30的芳基、碳原子数为3~30的杂芳基;
R 1、R 2、R 3以R i表示,n 1~n 3以n i表示,n i表示R i的个数,i为变量,表示1、2和3,当i为1和3时,n i选自0、1、2、3或4;当i为2时,n i选自0、1或2;且当n i大于1时,任意两个n i相同或不同;
L、L 1和L 2分别独立地选自单键、碳原子数为6-30的取代或未取代的亚芳基、或者碳原子数为3-30的取代或未取代的亚杂芳基;
Ar 1和Ar 2相同或不同,且分别独立地选自碳原子数为6~30的取代或未取代的芳基、碳原子数为3~30的取代或未取代的杂芳基;
所述Y中的取代基选自氘、卤素基团、氰基、碳原子数为6~12的芳基、碳原子数为1~5的烷基;
所述L、L 1和L 2中的取代基相同或不同,且分别独立地选自氘、卤素基团、氰基、碳原子数为3~20的杂芳基、碳原子数为6~20的芳基、碳原子数为3~12的三烷基硅基、碳原子数为1~10的烷基、碳原子数为1~10的卤代烷基、碳原子数为3~10的环烷基、碳原子数为2~10的杂环烷基、碳原子数为1~10的烷氧基;
所述Ar 1和Ar 2中的取代基相同或不同,且分别独立地选自氘、卤素基团、氰基、碳原子数为3~20的杂芳基、碳原子数为6~20的芳基、碳原子数为3~12的三烷基硅基、碳原子数为1~10的烷基、碳原子数为1~10的卤代烷基、碳原子数为3~10的环烷基、碳原子数为2~10的杂环烷基、碳原子数为1~10的烷氧基。
本申请提供的含氮化合物,包括氮杂环结构(吡啶、嘧啶或三嗪)、菲与芳基取代的含氮五元环(噻唑和噁唑)稠合的结构。上述结构按照特定方式结合作为有机发光层的主体材料时,目标化合物具有较高的电子迁移率,有助于有机发光层中的电子与空穴达到平衡,拓宽有机发光层中电子和空穴的复合区域,提高电致发光的发光效率,降低有机电致发光的驱动电压以及提高器件的寿命。该含氮化合物更适合作为有机电致发光器件的混合主体中的电子型主体材料,尤其适合用于红光器件的电子型主体材料。将本申请含氮化合物用于有机电致发光器件的有机发光层材料时,将有效提升器件的电子传输性能,改善器件发光效率以及使用寿命。
根据本申请的第二个方面,提供一种电子元件,包括阳极、阴极、以及介于阳极与阴极之间的至少一层功能层,功能层包含上述的含氮化合物。
根据本申请的第三个方面,提供一种电子装置,包括上述的电子元件。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本申请。
附图说明
附图是用来提供对本申请的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本申请,但并不构成对本申请的限制。
在附图中:
图1是本申请一种实施方式的有机电致发光器件的结构示意图。
图2是本申请一种实施方式的电子装置的结构示意图。
附图标记说明
100、阳极;200、阴极;300、功能层;310、空穴注入层;320、空穴传输层;321、第一空穴传输层;322、第二空穴传输层;330、有机发光层;340、空穴阻挡层;350、电子传输层;360、电子注入层;400、电子装置。
具体实施方式
现在将参考附图更全面地描述示例实施例。然而,示例实施例能够以多种形式实施,且不应被理解为限于在此阐述的范例;相反,提供这些实施例使得本申请将更加全面和完整,并将示例实施例的构思全面地传达给本领域的技术人员。所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施例中。在下面的描述中,提供许多具体细节从而给出对本申请的实施例的充分理解。
在图中,为了清晰,可能夸大了区域和层的厚度。在图中相同的附图标记表示相同或类似的结构,因而将省略它们的详细描述。
所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施例中。在下面的描述中,提供许多具体细节从而给出对本申请的实施例的充分理解。然而,本领域技术人员将意识到,可以实践本申请的技术方案而没有所述特定细节中的一个或更多,或者可以采用其它的方法、组元、材料等。在其它情况下,不详细示出或描述公知结构、材料或者操作以避免模糊本申请的主要技术创意。
本申请提供了一种含氮化合物,该含氮化合物的结构式由式1和式2所示的结构组成:
Figure PCTCN2021134891-appb-000002
其中,*表示式1与化学式2连接的连接点,式2中任意两个相邻的连接点*与式1连接;
X选自O或S;
Y选自碳原子数为6~18的取代或未取代的芳基;
X 1、X 2和X 3相同或不同,分别独立地选自N或CH,且X 1、X 2和X 3中的至少一个为N;
R 1、R 2和R 3彼此相同或不同,且分别独立地选自氘、卤素基团、氰基、碳原子数为1~5的烷基、碳原子数为3~10的环烷基、碳原子数为2~20的杂环烷基、碳原子数为6~30的芳基、碳原子数为3~30的杂芳基;
R 1、R 2、R 3以R i表示,n 1~n 3以n i表示,n i表示R i的个数,i为变量,表示1、2和3,当i为1和3时,n i选自0、1、2、3或4;当i为2时,n i选自0、1或2;且当n i大于1时,任意两个n i相同或不同;
L、L 1和L 2分别独立地选自单键、碳原子数为6~30的取代或未取代的亚芳基、或者碳原子数为3~30的取代或未取代的亚杂芳基;
Ar 1和Ar 2相同或不同,且分别独立地选自碳原子数为6~30的取代或未取代的芳基、碳原子数为3~30的取代或未取代的杂芳基;
所述Y中的取代基选自氘、卤素基团、氰基、碳原子数为6~12的芳基、碳原子数为1~5的烷基;
所述L、L 1和L 2中的取代基相同或不同,且分别独立地选自氘、卤素基团、氰基、碳原子数为3~20的杂芳基、碳原子数为6~20的芳基、碳原子数为3~12的三烷基硅基、碳原子数为1~10的烷基、碳原子数为1~10的卤代烷基、碳原子数为3~10的环烷基、碳原子数为2~10的 杂环烷基、碳原子数为1~10的烷氧基;
所述Ar 1和Ar 2中的取代基相同或不同,且分别独立地选自氘、卤素基团、氰基、碳原子数为3~20的杂芳基、碳原子数为6~20的芳基、碳原子数为3~12的三烷基硅基、碳原子数为1~10的烷基、碳原子数为1~10的卤代烷基、碳原子数为3~10的环烷基、碳原子数为2~10的杂环烷基、碳原子数为1~10的烷氧基。
可选地,所述含氮化合物具有式1-1、式1-2、式1-3、式1-4、式1-5、式1-6、式1-7、式1-8、式2-1、式2-2、式2-3、式2-4、式2-5、式2-6、式2-7、式2-8、式3-1、式3-2、式3-3、式3-4、式3-5、式3-6、式3-7、式3-8、式4-1、式4-2、式4-3、式4-4、式4-5、式4-6、式4-7、式4-8、式5-1、式5-2、式5-3、式5-4、式5-5、式5-6、式5-7和式5-8中任何一种所示的结构:
Figure PCTCN2021134891-appb-000003
Figure PCTCN2021134891-appb-000004
Figure PCTCN2021134891-appb-000005
Figure PCTCN2021134891-appb-000006
在本申请中,所采用的描述方式“各自独立地选自”与“分别独立地选自”可以互换,均应做广义理解,其既可以是指在不同基团中,相同符号之间所表达的具体选项之间互相不影响,也可以表示在相同的基团中,相同符号之间所表达的具体选项之间互相不影响。例如,“
Figure PCTCN2021134891-appb-000007
其中,各q独立地为0、1、2或3,各R”独立地选自氢、氘、氟、氯”,其含义是:式Q-1表示苯环上有q个取代基R”,各个R”可以相同也可以不同,每个R”的选项之间互不影响;式Q-2表示联苯的每一个苯环上有q个取代基R”,两个苯环上的R”取代基的个数q可以相同或不同,各个R”可以相同也可以不同,每个R”的选项之间互不影响。
在本申请中,“取代或未取代的”这样的术语是指,在该术语后面记载的官能团可以具有或不具有取代基(下文为了便于描述,将取代基统称为Rc)。例如,“取代或未取代的芳基”是指具有取代基Rc的芳基或者非取代的芳基。其中上述的取代基即Rc例如可以为氘、卤素、氰基、碳原子数为3~20的杂芳基、碳原子数为6~20的芳基、碳原子数为3~12的三烷基硅基、碳原子数为1~10的烷基、碳原子数为1~10的卤代烷基、碳原子数为3~10的环烷基、碳原子数为2~10的杂环烷基、碳原子数为1~10的烷氧基。
在本申请中,“取代的”官能团可以被上述Rc中的一个或2个以上的取代基取代;当同一个原子上连接有两个取代基Rc时,这两个取代基Rc可以独立地存在或者相互连接以与所述原子形成环;当官能团上存在两个相邻的取代基Rc时,相邻的两个取代基Rc可以独立地存在或者与其所连接的官能团稠合成环。
在本申请中,取代或未取代的官能团的碳原子数,指的是所有碳原子数。举例而言,若L选自取代的碳原子数为12的亚芳基,则亚芳基及其上的取代基的所有碳原子数为12。例如:Ar为
Figure PCTCN2021134891-appb-000008
则其碳原子数为7;L为
Figure PCTCN2021134891-appb-000009
其碳原子数为12。
在本申请中,“烷基”可以包括直链烷基或支链烷基。烷基可具有1至10个碳原子,在本申请中,诸如“1至10”的数值范围是指给定范围中的各个整数;例如,“1至10个碳原子”是指碳原子数可以为1、2、3、4、5、6、7、8、9、10个的烷基。此外,烷基可为取代的或未取代的。
优选地,烷基选自碳原子数为1~5的烷基,具体施例包括但不限于,甲基、乙基、丙基、异丙基、正丁基、异丁基、仲丁基、叔丁基和戊基。
在本申请中,环烷基指的是含有脂环结构的饱和烃,包含单环和稠环结构。环烷基可具有3~10个碳原子,诸如“3至10”的数值范围是指给定范围中的各个整数;例如,“3至10个碳原子”是指碳原子数可以为3、4、5、6、7、8、9或10个的环烷基。环烷基可为具有3至10个碳原子的小环、普通环。此外,环烷基可为取代的或未取代的。例如,环己烷基。杂环烷基指得是环烷基中的一个或多个碳原子被B、N、O、S、P、Si或Se等杂原子所代替。
在本申请中,芳基指的是衍生自芳香碳环的任选官能团或取代基。芳基可以是单环芳基(例如苯基)或多环芳基,换言之,芳基可以是单环芳基、稠环芳基、通过碳碳键共轭连接的两个或者更多个单环芳基、通过碳碳键共轭连接的单环芳基和稠环芳基、通过碳碳键共轭连接的两个或者更多个稠环芳基。即,除非另有说明,通过碳碳键共轭连接的两个或者更多个芳香基团也可以视为本申请的芳基。其中,稠环芳基例如可以包括双环稠合芳基(例如萘基)、三环稠合芳基(例如菲基、芴基、蒽基)等。芳基中不含有B、N、O、S、P、Se和Si等杂原子。举例而言,在本申请中,联苯基、三联苯基等为芳基。芳基的实例可以包括但不限于,苯基、萘基、芴基、蒽基、菲基、联苯基、三联苯基、四联苯基、五联苯基、苯并[9,10]菲基、芘基、苯并荧蒽基、
Figure PCTCN2021134891-appb-000010
基等。本申请的“取代或未取代的芳基”可含有6~30个碳原子,在一些实施例中,取代或未取代的芳基中的碳原子数可以是6~20个,在一些实施例中,取代或未取代的芳基中的碳原子数可以是6~18个,在另一些实施例中取代或未取代的芳基中的碳原子数可以是6~12个。举例而言,本申请中,取代或未取代的芳基的碳原子数量可以是6个、12个、13个、14个、15个、18个、20个、24个、25个、30个,当然,碳原子数还可以是其他数量,在此不再一一列举。在本申请中,联苯基可以理解为苯基取代的芳基,也可以理解为未取代的芳基。
本申请中,涉及的亚芳基是指芳基进一步失去一个氢原子所形成的二价基团。
在本申请中,取代的芳基可以是芳基中的一个或者两个以上氢原子被诸如氘原子、卤素基团、氰基、芳基、杂芳基、三烷基硅基、烷基、环烷基、杂环烷基、烷氧基等基团取代。应当理解地是,取代的芳基的碳原子数,指的是芳基和芳基上的取代基的碳原子总数,例如碳原子数为18的取代的芳基,指的是芳基及其取代基的总碳原子数为18。
在本申请中,作为取代基的芳基,具体实例包括但不限于:苯基、萘基、蒽基、菲基、二甲基芴基、联苯基等等。
在本申请中,杂芳基是指环中包含至少一个杂原子的一价芳香环或其衍生物,杂原子可以是B、O、N、P、Si、Se和S中的至少一种。杂芳基可以是单环杂芳基或多环杂芳基,换言之,杂芳基可以是单个芳香环体系,也可以是通过碳碳键共轭连接的多个芳香环体系,且任一芳香环体系为一个芳香单环或者一个芳香稠环。示例地,杂芳基可以包括噻吩基、呋喃基、吡咯基、咪唑基、噻唑基、噁唑基、噁二唑基、三唑基、吡啶基、联吡啶基、嘧啶基、三嗪基、吖啶基、哒嗪基、吡嗪基、喹啉基、喹唑啉基、喹喔啉基、吩噁嗪基、酞嗪基、吡啶并嘧啶基、吡啶并吡嗪基、吡嗪并吡嗪基、异喹啉基、吲哚基、咔唑基、苯并噁唑基、苯并咪唑基、苯并噻唑基、苯并咔唑基、苯并噻吩基、二苯并噻吩基、噻吩并噻吩基、苯并呋喃基、菲咯啉基、异噁唑基、噻二唑基、苯并噻唑基、吩噻嗪基、硅芴基、二苯并呋喃基以及N-苯基咔唑基(如N-苯基咔唑基)、N-杂芳基咔唑基(如N-吡啶基咔唑基)、N-烷基咔唑基(如N-甲基咔唑基)等,而不限于此。其中,噻吩基、呋喃基、菲咯啉基等为单个芳香环体系类型的杂芳基,N-苯基咔唑基、N-吡啶基咔唑基为通过碳碳键共轭连接的多环体系类型的杂芳基。本申请的“取代或未取代的杂芳基”可含有3~30个碳原子,在一些实施例中,取代或未取代的杂芳基中的碳原子数可以是3~20个,在另一些实施例中取代或未取代的杂芳基中的碳原子数可以是5~12个。举例而言,其碳原子数量可以是3个、4个、5个、7个、12个、13个、18个、20个、24个、25个或30个,当然,碳原子数还可以是其他数量,在此不再一一列举。
本申请中,涉及的亚杂芳基是指杂芳基进一步失去一个氢原子所形成的二价基团。
在本申请中,取代的杂芳基可以是杂芳基中的一个或者两个以上氢原子被诸如氘原子、卤素基团、氰基、芳基、杂芳基、三烷基硅基、烷基、环烷基、杂环烷基、烷氧基等基团取代。应当理解地是,取代的杂芳基的碳原子数,指的是杂芳基和杂芳基上的取代基的碳原子总数。
在本申请中,作为取代基的杂芳基,具体实例包括但不限于:吡啶基、咔唑基、二苯并呋喃基、二苯并噻吩基。
在本申请中,卤素基团可以包括氟、碘、溴、氯等。
在本申请中,碳原子数为3~12的三烷基硅基的具体实例包括但不限于,三甲基硅基、三乙基硅基等。
本申请中,不定位连接键是指从环体系中伸出的单键
Figure PCTCN2021134891-appb-000011
其表示该连接键的一端可以连接该键所贯穿的环体系中的任意位置,另一端连接化合物分子其余部分。
举例而言,如下式(f)中所示地,式(f)所表示的萘基通过两个贯穿双环的不定位连接键与分子其他位置连接,其所表示的含义,包括如式(f-1)~式(f-10)所示出的任一可能的连接方式。
Figure PCTCN2021134891-appb-000012
再举例而言,如下式(X')中所示地,式(X')所表示的二苯并呋喃基通过一个从一侧苯环中间伸出的不定位连接键与分子其他位置连接,其所表示的含义,包括如式(X'-1)~式(X'-4)所示出的任一可能的连接方式。
Figure PCTCN2021134891-appb-000013
下文中对于不定位连接或不定位取代的含义与此处相同,后续将不再进行赘述。
在本申请的一种实施方式中,所述Y选自取代或未取代的苯基、取代或未取代的联苯基、取代或未取代的萘基、取代或未取代的三联苯基;
可选地,所述Y中的取代基选自苯基、萘基。
在本申请的一种实施方式中,所述Y选自如下基团所组成的组:
Figure PCTCN2021134891-appb-000014
在本申请的一种实施方式中,所述L、L 1和L 2各自独立地选自单键、碳原子数为6~15的取代或未取代的亚芳基、或者碳原子数为5~12的取代或未取代的亚杂芳基。
可选地,所述L、L 1和L 2中的取代基选自氘、卤素基团、氰基、苯基、碳原子数为1~5的烷基。
具体地,所述L、L 1和L 2中的取代基具体实例包括但不限于:氘、氟、氰基、甲基、乙基、正丙基、异丙基、叔丁基、苯基。
可选地,所述L、L 1和L 2各自独立地选自单键、取代或未取代的亚苯基、取代或未取代的 亚萘基、取代或未取代的亚联苯基。
进一步可选地,所述L 1和L 2分别独立地选自单键或亚苯基。
在本申请另一种实施方式中,所述L选自单键或者如下基团所组成的组:
Figure PCTCN2021134891-appb-000015
在本申请的一种实施方式中,所述Ar 1和Ar 2分别独立地选自碳原子数为6~15的取代或未取代的芳基、或者碳原子数为3~20的取代或未取代的杂芳基。
可选地,所述Ar 1和Ar 2中的取代基分别独立地选自氘、卤素基团、氰基、碳原子数为6~12的芳基、碳原子数为1~5的烷基。
具体地,所述Ar 1和Ar 2中的取代基具体实例包括但不限于:氘、氟、氰基、甲基、乙基、正丙基、异丙基、叔丁基、苯基。
进一步可选地,所述Ar 1和Ar 2分别独立地选自取代或未取代的苯基、取代或未取代的联苯基、取代或未取代的萘基、取代或未取代的二苯并呋喃基、取代或未取代的二苯并噻吩基、取代或未取代的芴基、取代或未取代的咔唑基、取代或未取代的N-苯基咔唑基。
在本申请另一种实施方式中,所述Ar 1和Ar 2分别独立地选自取代或未取代的基团W,未取代的基团W选自如下基团所组成的组:
Figure PCTCN2021134891-appb-000016
其中,
Figure PCTCN2021134891-appb-000017
表示化学键;取代的基团W上具有一个或多个的取代基,所述取代基各自独立地选自:氘、氰基、氟、甲基、乙基、正丙基、异丙基、叔丁基、苯基;当基团W的取代基个数大于1时,各取代基相同或不同。
可选地,Ar 1和Ar 2分别独立地选自如下基团所组成的组:
Figure PCTCN2021134891-appb-000018
Figure PCTCN2021134891-appb-000019
可选地,含氮化合物选自如下化合物组成的组:
Figure PCTCN2021134891-appb-000020
Figure PCTCN2021134891-appb-000021
Figure PCTCN2021134891-appb-000022
Figure PCTCN2021134891-appb-000023
Figure PCTCN2021134891-appb-000024
Figure PCTCN2021134891-appb-000025
Figure PCTCN2021134891-appb-000026
Figure PCTCN2021134891-appb-000027
Figure PCTCN2021134891-appb-000028
Figure PCTCN2021134891-appb-000029
Figure PCTCN2021134891-appb-000030
Figure PCTCN2021134891-appb-000031
Figure PCTCN2021134891-appb-000032
Figure PCTCN2021134891-appb-000033
Figure PCTCN2021134891-appb-000034
Figure PCTCN2021134891-appb-000035
Figure PCTCN2021134891-appb-000036
Figure PCTCN2021134891-appb-000037
本申请还提供一种电子元件,该电子元件包括相对设置的阳极和阴极,以及介于阳极与阴极之间的至少一层功能层,该功能层包含本申请的含氮化合物。
在本申请一种实施方式中,提供一种有机电致发光器件,器件结构如图1所示,本申请的有机电致发光器件包括阳极100、阴极200、以及介于阳极层与阴极层之间的至少一层功能层300,该功能层300包括空穴注入层310、空穴传输层320、有机发光层330、空穴阻挡层340、电子传输层350以及电子注入层360;空穴传输层320包括第一空穴传输层321和第二空穴传输层322;空穴注入层310、空穴传输层320、有机发光层330、空穴阻挡层340、电子传输层350以及电子注入层360可以依次形成在阳极100上,有机发光层330可以含有本申请第一方面所述的有机化合物,优选含有化合物1~376中的至少一种。
可选地,阳极100包括以下阳极材料,其优选地是有助于空穴注入至功能层中的具有大逸出功(功函数,work function)材料。阳极材料具体实例包括:金属如镍、铂、钒、铬、铜、锌和金或它们的合金;金属氧化物如氧化锌、氧化铟、氧化铟锡(ITO)和氧化铟锌(IZO);组合的金属和氧化物如ZnO:Al或SnO 2:Sb;或导电聚合物如聚(3-甲基噻吩)、聚[3,4-(亚乙基-1,2-二氧基)噻吩](PEDT)、聚吡咯和聚苯胺,但不限于此。优选包括包含氧化铟锡(铟锡氧化物,indium tin oxide)(ITO)作为阳极的透明电极。
可选地,空穴传输层320可以包括一种或者多种空穴传输材料,空穴传输材料可以选自咔 唑多聚体、咔唑连接三芳胺类化合物或者其他类型的化合物,本申请对此不做特殊的限定。举例而言,空穴传输层320可以包含第一空穴传输层321和第二空穴传输层322;第一空穴传输层321邻接于第二空穴传输层322,且相对于第二空穴传输层322更靠近阳极。举例而言,在本申请的一种实施方式中,第一空穴传输层321由化合物HT-01组成,第二空穴传输层322由化合物HT-02组成。
可选地,有机发光层330可以由单一发光材料组成,也可以包括主体材料和客体材料。可选地,有机发光层330由主体材料和客体材料组成,注入有机发光层330的空穴和电子可以在有机发光层330复合而形成激子,激子将能量传递给主体材料,主体材料将能量传递给客体材料,进而使得客体材料能够发光。
有机发光层330的主体材料为本申请所提供的含氮化合物。本申请提供的含氮化合物,包括氮杂环结构(吡啶、嘧啶或三嗪)、菲与芳基取代的含氮五元环(噻唑和噁唑)稠合的结构。上述结构互相结合的含氮化合物共同作为有机发光层的主体材料时,由于其较大的电子云密度,使发光层的空穴迁移率得以提升,有助于有机发光层中的电子与空穴达到平衡,提高电致发光的发光效率以及降低有机电致发光的驱动压力。由于菲与含氮五元环的稠合结构具有较大的空间体积,这种连接方式同时使得整个分子结构具有较好的立体构型,可以使分子结构具有更好的刚性,更高迁移率的同时提升材料T1能级,并有较低的结晶性。该含氮化合物更适合作为有机电致发光器件的混合主体中的电子型主体材料,尤其适合用于红光器件的电子性主体材料。将本申请含氮化合物用于有机电致发光器件的有机发光层材料时,将有效提升器件的电子传输性能,改善器件发光效率以及使用寿命。
有机电致发光层330的客体材料可以为具有缩合芳基环的化合物或其衍生物、具有杂芳基环的化合物或其衍生物、芳香族胺衍生物或者其他材料,本申请对此不做特殊的限制。在本申请的一种实施方式中,有机发光层330的客体材料可以为Ir(piq) 2(acac)。
电子传输层350可以为单层结构,也可以为多层结构,其可以包括一种或者多种电子传输材料,电子传输材料可以选自苯并咪唑衍生物、噁二唑衍生物、喹喔啉衍生物或者其他电子传输材料,本申请对此不做特殊的限定。举例而言,在本申请的一种实施方式中,电子传输层350可以由BTB和LiQ组成。
可选地,阴极200包括以下阴极材料,其是有助于电子注入至功能层中的具有小逸出功的材料。阴极材料的具体实例包括:金属如镁、钙、钠、钾、钛、铟、钇、锂、钆、铝、银、锡和铅或它们的合金;或多层材料如LiF/Al,Liq/Al,LiO 2/Al,LiF/Ca,LiF/Al和BaF 2/Ca,但不限于此。优选包括包含银和镁的金属电极作为阴极。
可选地,在阳极100和空穴传输层320之间还可以设置有空穴注入层310,以增强向空穴传输层320注入空穴的能力。空穴注入层310可以选用联苯胺衍生物、星爆状芳基胺类化合物、酞菁衍生物或者其他材料,本申请对此不做特殊的限制。在本申请的一种实施方式中,空穴注入层310可以由m-MTDATA组成。
可选地,在阴极200和电子传输层350之间还可以设置有电子注入层360,以增强向电子传输层350注入电子的能力。电子注入层360可以包括有碱金属硫化物、碱金属卤化物等无机材料,或者可以包括碱金属与有机物的络合物。在本申请的一种实施方式中,电子注入层360可以包括镱(Yb)。
本申请还提供一种电子装置,该电子装置包括本申请所述的电子元件。
举例而言,如图2所示,本申请提供的电子装置为电子装置400,该电子装置400包括上述有机电致发光器件实施方式所描述的任意一种有机电致发光器件。该电子装置可以为显示装置、照明装置、光通讯装置或者其他类型的电子装置,例如可以包括但不限于电脑屏幕、手机屏幕、电视机、电子纸、应急照明灯、光模块等。由于电子装置400具有上述有机电致发光器件,因此具有相同的有益效果,本申请在此不再赘述。
下面将结合实施例详细描述本申请,但是,以下描述是用于解释本申请,而不是以任意方式限制本申请的范围。
合成实施例
所属领域的专业人员应该认识到,本申请所描述的化学反应可以用来合适地制备许多本申请的其他化合物,且用于制备本申请的化合物的其它方法都被认为是在本申请的范围之内。例如,根据本申请那些非例证的化合物的合成可以成功地被所属领域的技术人员通过修饰方法完成,如适当的保护干扰基团,通过利用其他已知的试剂除了本申请所描述的,或将反应条件做一些常规的修改。另外,本申请所公开的反化合物合成。
(1)中间体C-1的合成
Figure PCTCN2021134891-appb-000038
向装有机械搅拌、温度计、球形冷凝管的三口瓶中通入氮气(0.100L/min)置换15min,加入反应物A-1(5.0g,18.2mmol)、反应物B-1(3.37g,18.2mmol)、四(三苯基膦)钯(1.05g,0.91mmol)、碳酸钾(7.56g,54.7mmol)、四丁基溴化铵(0.25g,0.91mmol),并加入甲苯(40mL)、乙醇(20mL)和去离子水(10mL)的混合溶剂。开启搅拌,将反应液升温至75-85℃反应12h,反应结束后,冷却至室温。向反应液中加入甲苯(100mL)进行萃取,合并有机相,使用无水硫酸镁干燥有机相,过滤后将滤液减压蒸馏除去溶剂;使用正庚烷为淋洗液对粗品进行硅胶柱色谱提纯后使用二氯甲烷/乙酸乙酯体系(体积比1:5)进行重结晶,得到中间体C-1(4.56g,收率75%)。
参照中间体C-1的合成方法,合成下表1所示的中间体C-X,其中,X为1-14,采用反应物A-1、反应物A-2、反应物A-3、反应物A-4、反应物A-5、反应物A-6和反应物A-7代替反应物A-1,反应物B-1、反应物B-2代替反应物B-1,制得的中间体C-X如下表1所示:
表1
Figure PCTCN2021134891-appb-000039
Figure PCTCN2021134891-appb-000040
Figure PCTCN2021134891-appb-000041
(2)中间体D-1的合成
Figure PCTCN2021134891-appb-000042
向装有机械搅拌、温度计、恒压滴加漏斗的三口瓶中通氮气(0.100L/min)置换15min,依次加入甲氧基甲基三苯基氯化磷(5.9g,17.2mmol)、四氢呋喃(50mL),将体系温度降至-10至-15℃,将叔丁醇钾(2.18g,19.5mmol)分批次加入瓶中,控制体系温度-10至-5℃,保温2h后,称取中间体C-1(5.0g,15.0mmol)使用15倍四氢呋喃溶解后使用恒压滴液漏斗滴加至体系中,约1h滴完,期间控制体系温度-5℃左右,再保温反应2h,反应结束后,升温至室温。加入甲苯(100mL)进行萃取,合并有机相,使用无水硫酸镁干燥有机相,过滤后将滤液减压蒸馏除去溶剂;使用甲苯为淋洗液对粗品进行硅胶柱色谱提纯,得到中间体D-1(3.79g,收率70%)。
参照中间体D-1的合成方法,合成下表2所示的中间体D-X,其中,X为1-14,采用中间体C-X代替中间体C-1,制得的中间体D-X如下表2所示:
表2
Figure PCTCN2021134891-appb-000043
Figure PCTCN2021134891-appb-000044
Figure PCTCN2021134891-appb-000045
(3)中间体E-1的合成
Figure PCTCN2021134891-appb-000046
向装有机械搅拌、温度计、球形冷凝管的三口瓶中通入氮气(0.100L/min)置换15min,依次分别加入中间体D-1(5.0g,13.8mmol)、伊顿试剂(0.99g,4.14mmol)和氯苯(50mL),升温,回流搅拌反应1h,反应结束后,冷却至室温。向体系中加入二氯甲烷(100mL),搅拌后加入水(100mL)和碳酸氢钠(5.0g),充分搅拌后静置分液,有机相水洗至中性,使用二氯甲烷(100mL)萃取,合并有机相,加入无水硫酸镁干燥有机相,过滤后将滤液减压蒸馏除去溶剂;使用甲苯为淋洗液对粗品进行硅胶柱色谱提纯,得到中间体E-1(2.96g,收率35%)。
参照中间体E-1的合成方法,合成下表3所示的中间体E-X,其中,X为1-27,采用中间体D-X代替中间体D-1,制得的中间体E-X如下表3所示:
表3
Figure PCTCN2021134891-appb-000047
Figure PCTCN2021134891-appb-000048
Figure PCTCN2021134891-appb-000049
Figure PCTCN2021134891-appb-000050
(4)中间体F-1的合成
Figure PCTCN2021134891-appb-000051
向装有机械搅拌、温度计、球形冷凝管的三口瓶中通入氮气(0.100L/min)置换15min,加入中间体E-1(5.0g,15.2mmol)、联硼酸频哪醇酯(3.9g,15.2mmol)、三(二亚苄基丙酮)二钯(0.14g,0.15mmol)、2-二环己基磷-2’,4’,6’-三异丙基联苯(0.14g,0.30mmol),醋酸钾(4.5g,45.5mmol)和1,4-二氧六环(50mL),升温至105-115℃,回流搅拌反应5h,反应结束后,冷却至室温。利用二氯甲烷和水萃取反应溶液,使用无水硫酸镁干燥有机相,过滤后通过短硅胶柱,将滤液减压蒸馏除去溶剂;使用二氯甲烷/正庚烷体系对粗品进行硅胶柱色谱提纯,得到中间体F-1(5.0g,收率为78%)。
参照中间体F-1的合成方法,合成下表4所示的中间体F-X,其中,X为1-25,采用中间体E-X代替中间体E-1,制得的中间体F-X如下表4所示:
表4
Figure PCTCN2021134891-appb-000052
Figure PCTCN2021134891-appb-000053
Figure PCTCN2021134891-appb-000054
Figure PCTCN2021134891-appb-000055
Figure PCTCN2021134891-appb-000056
Figure PCTCN2021134891-appb-000057
(5)中间体G-1的合成
Figure PCTCN2021134891-appb-000058
向装有机械搅拌、温度计、球形冷凝管的三口瓶中通入氮气(0.100L/min)置换15min,加入中间体F-1(5.0g,11.9mmol)、反应物SM-1(2.4g,11.9mmol)、四(三苯基膦)钯(0.68g,0.6mmol)、碳酸钾(4.9g,35.6mmol)、四丁基溴化铵(0.16g,0.59mmol),并加入甲苯(40mL)、乙醇(20mL)和去离子水(10mL)的混合溶剂。开启搅拌,升温至75-85℃反应12h,反应结束后,冷却至室温。加入甲苯(100mL)进行萃取,合并有机相,使用无水硫酸镁干燥有机相,过滤后将滤液减压蒸馏除去溶剂;使用正庚烷为流动相对粗品进行硅胶柱色谱提纯,再使用二氯甲烷/乙酸乙酯体系进行重结晶,得到中间体G-1(3.8g,收率78%)。
参照中间体G-1的合成方法,合成下表5所示的中间体G-X,其中,X为1-4,采用中间体F-2、中间体F-6代替中间体F-1,采用反应物SM-2、反应物SM-3、反应物SM-4代替反应物SM-1,制得的中间体G-X如下表5所示:
表5
Figure PCTCN2021134891-appb-000059
Figure PCTCN2021134891-appb-000060
(6)化合物100的合成
Figure PCTCN2021134891-appb-000061
向装有机械搅拌、温度计、球形冷凝管的三口瓶中通入氮气(0.100L/min)置换15min,加入中间体F-1(5.0g,11.9mmol)、反应H-1(3.18g,11.9mmol)、四(三苯基膦)钯(0.68g,0.59mmol)、碳酸钾(4.92g,35.6mmol)、四丁基溴化铵(0.16g,0.59mmol),并加入甲苯(40mL)、乙醇(20mL)和去离子水(10mL)的混合溶剂。开启搅拌,升温至75-85℃反应12h,反应结束后,冷却至室温。加入甲苯(100mL)进行萃取,合并有机相,使用无水硫酸镁干燥有机相,过滤后将滤液减压蒸馏除去溶剂;使用正庚烷为流动相对粗品进行硅胶柱色谱提纯,再使用二氯甲烷/乙酸乙酯体系进行重结晶,得到化合物100(4.81g,收率77%),质谱:m/z=527.2[M+H] +
参照化合物100的合成方法,合成下表6所示的化合物X,采用中间体F-X或中间体G-X代替中间体F-1、采用反应物H-X代替反应物H-1,制得的化合物X如下表6所示:
表6
Figure PCTCN2021134891-appb-000062
Figure PCTCN2021134891-appb-000063
Figure PCTCN2021134891-appb-000064
Figure PCTCN2021134891-appb-000065
Figure PCTCN2021134891-appb-000066
Figure PCTCN2021134891-appb-000067
Figure PCTCN2021134891-appb-000068
Figure PCTCN2021134891-appb-000069
Figure PCTCN2021134891-appb-000070
Figure PCTCN2021134891-appb-000071
部分化合物核磁数据如下表7所示
表7
Figure PCTCN2021134891-appb-000072
Figure PCTCN2021134891-appb-000073
有机电致发光器件的制备和性能评估
实施例1
红色有机电致发光器件
将厚度为
Figure PCTCN2021134891-appb-000074
的阳极100ITO基板切割成40mm(长)×40mm(宽)×0.7mm(厚)的尺寸,采用光刻工序,将其制备成具有阴极200、阳极100以及绝缘层图案的实验基板,利用紫外臭氧以及O 2:N 2等离子进行表面处理,以增加阳极100(实验基板)的功函数,并采用有机溶剂清洗ITO基板表面,以清除ITO基板表面的浮渣及油污。
在实验基板上真空蒸镀化合物m-MTDATA(4,4',4”-三(N-3-甲基苯基-N-苯基氨基)三苯胺)(结构式见下文)以形成厚度为
Figure PCTCN2021134891-appb-000075
的空穴注入层310(HIL);并在空穴注入层310(HIL)上方真空蒸镀化合物HT-01,以形成厚度为
Figure PCTCN2021134891-appb-000076
的第一空穴传输层321(HTL1)。在第一空穴传输层321(HTL1)真空蒸镀一层HT-02,形成厚度为
Figure PCTCN2021134891-appb-000077
的第二空穴传输层322(HTL2)。
在第二空穴传输层322(HTL2)上,将化合物100与Ir(piq) 2(acac)以95%:5%的搀杂比例进行共同蒸镀,形成厚度为
Figure PCTCN2021134891-appb-000078
的红光有机发光层330(EML)。
将BTB和LiQ以1:1的重量比进行混合并蒸镀形成
Figure PCTCN2021134891-appb-000079
厚的电子传输层350(ETL),接着将Yb蒸镀在电子传输层350(ETL)上,形成厚度为
Figure PCTCN2021134891-appb-000080
的电子注入层360(EIL)。
将镁(Mg)和银(Ag)以1:9的膜厚比真空蒸镀在电子注入层上,形成厚度为
Figure PCTCN2021134891-appb-000081
的阴极200。
此外,在上述阴极200上作为保护层蒸镀一层厚度为
Figure PCTCN2021134891-appb-000082
的CP-01,形成覆盖层(CPL),从而完成有机发光器件的制造。
实施例2-34
除了在形成有机发光层(EML)时,采用表9中所示的化合物替代化合物100以外,采用与实施例1相同的方法制作红色有机电致发光器件。
对比例1
利用化合物A替代化合物100,采用与实施例1相同的方法制作红色有机电致发光器件。
对比例2
利用化合物B替代化合物100,采用与实施例1相同的方法制作红色有机电致发光器件。
其中,m-MTDATA、HT-01、HT-02、Ir(piq) 2(acac)、BTB、LiQ、CP-01、化合物A、化合物B的结构式如下表8所示:
表8
Figure PCTCN2021134891-appb-000083
Figure PCTCN2021134891-appb-000084
对如上制得的有机电致发光器材,在20mA/cm 2的条件下分析了器材的性能,其结果示于表9。
表9 红色有机电致发光器件的性能测试结果
Figure PCTCN2021134891-appb-000085
Figure PCTCN2021134891-appb-000086
根据表9的结果可知,在化合物作为有机发光层的OLED器件中,与对比例相比,实施例1-48制备的有机电致发光器件的各项性能均有所提高。其中,作为有机发光层的化合物与对比例1和对比例2相比,驱动电压至少降低0.25V,发光效率至少提高了10.38%,寿命至少提高了13.79%。由上述数据可知,采用本申请的含氮化合物作为电子元件的有机发光层,该电子元件的发光效率(Cd/A)、外量子效率(EQE)以及寿命(T95)都有显著的提高。因此,在有机电致发光层中使用本申请的含氮化合物可制备得到高发光效率、长寿命的有机电致发光器件。
本申请的含氮化合物相比于对比例化合物B,电压、效率、寿命均有所改善。虽然区别仅仅是噁唑与菲稠和位置不同,但是本申请化合物的稠和方式相比于对比例化合物B,具有较高的电子迁移率,有助于有机发光层中的电子与空穴达到平衡,拓宽有机发光层中电子和空穴的复合区域,提高电致发光的发光效率,降低有机电致发光的驱动电压以及提高器件的寿命。
应可理解的是,本申请不将其应用限制到本说明书提出的部件的详细结构和布置方式。本申请能够具有其他实施方式,并且能够以多种方式实现并且执行。前述变形形式和修改形式落在本申请的范围内。应可理解的是,本说明书公开和限定的本申请延伸到文中和/或附图中提到或明显的两个或两个以上单独特征的所有可替代组合。所有这些不同的组合构成本申请的多个可替代方面。本说明书所述的实施方式说明了己知用于实现本申请的最佳方式,并且将使本领域技术人员能够利用本申请。

Claims (11)

  1. 一种含氮化合物,其特征在于,所述含氮化合物的结构式由式1和式2所示的结构组成:
    Figure PCTCN2021134891-appb-100001
    其中,*表示式1与式2连接的连接点,式2中任意两个相邻的连接点*与式1连接;
    X选自O或S;
    Y选自碳原子数为6~18的取代或未取代的芳基;
    X 1、X 2和X 3相同或不同,且分别独立地选自N或CH,且X 1、X 2和X 3中的至少一个为N;
    R 1、R 2和R 3彼此相同或不同,且分别独立地选自氘、卤素基团、氰基、碳原子数为1~5的烷基、碳原子数为3~10的环烷基、碳原子数为2~20的杂环烷基、碳原子数为6~30的芳基、碳原子数为3~30的杂芳基;
    R 1、R 2、R 3以R i表示,n 1~n 3以n i表示,n i表示R i的个数,i为变量,表示1、2和3,当i为1和3时,n i选自0、1、2、3或4;当i为2时,n i选自0、1或2;且当n i大于1时,任意两个n i相同或不同;
    L、L 1和L 2分别独立地选自单键、碳原子数为6~30的取代或未取代的亚芳基、或者碳原子数为3~30的取代或未取代的亚杂芳基;
    Ar 1和Ar 2相同或不同,且分别独立地选自碳原子数为6~30的取代或未取代的芳基、碳原子数为3~30的取代或未取代的杂芳基;
    所述Y中的取代基选自氘、卤素基团、氰基、碳原子数为6~12的芳基、碳原子数为1~5的烷基;
    所述L、L 1和L 2中的取代基相同或不同,且分别独立地选自氘、卤素基团、氰基、碳原子数为3~20的杂芳基、碳原子数为6~20的芳基、碳原子数为3~12的三烷基硅基、碳原子数为1~10的烷基、碳原子数为1~10的卤代烷基、碳原子数为3~10的环烷基、碳原子数为2~10的杂环烷基、碳原子数为1~10的烷氧基;
    所述Ar 1和Ar 2中的取代基相同或不同,且分别独立地选自氘、卤素基团、氰基、碳原子数为3~20的杂芳基、碳原子数为6~20的芳基、碳原子数为3~12的三烷基硅基、碳原子数为1~10的烷基、碳原子数为1~10的卤代烷基、碳原子数为3~10的环烷基、碳原子数为2~10的杂环烷基、碳原子数为1~10的烷氧基。
  2. 根据权利要求1所述的含氮化合物,其特征在于,所述Y选自取代或未取代的苯基、取代或未取代的联苯基、取代或未取代的萘基、取代或未取代的三联苯基;
    优选地,所述Y中的取代基选自苯基、萘基。
  3. 根据权利要求1所述的含氮化合物,其特征在于,所述L、L 1和L 2各自独立地选自单键、碳原子数为6~15的取代或未取代的亚芳基、或者碳原子数为5~12的取代或未取代的亚杂芳基;
    优选地,所述L、L 1和L 2中的取代基选自氘、卤素基团、氰基、苯基、碳原子数为1~5的烷基。
  4. 根据权利要求1所述的含氮化合物,其特征在于,所述L、L 1和L 2各自独立地选自单键、取代或未取代的亚苯基、取代或未取代的亚萘基、取代或未取代的亚联苯基;
    优选地,所述L、L 1和L 2中的取代基选自氘、氟、氰基、甲基、乙基、正丙基、异丙基、叔丁基、苯基。
  5. 根据权利要求1所述的含氮化合物,其特征在于,所述Ar 1和Ar 2分别独立地选自碳原子数为6~15的取代或未取代的芳基、或者碳原子数为3~20的取代或未取代的杂芳基;
    优选地,所述Ar 1和Ar 2中的取代基分别独立地选自氘、卤素基团、氰基、碳原子数为6~12的芳基、碳原子数为1~5的烷基。
  6. 根据权利要求1所述的含氮化合物,其特征在于,所述Ar 1和Ar 2分别独立地选自取代或未取代的苯基、取代或未取代的联苯基、取代或未取代的萘基、取代或未取代的二苯并呋喃基、取代或未取代的二苯并噻吩基、取代或未取代的芴基、取代或未取代的咔唑基、取代或未取代的N-苯基咔唑基;
    优选地,所述Ar 1和Ar 2中的取代基选自氘、氟、氰基、甲基、乙基、正丙基、异丙基、叔丁基、苯基。
  7. 根据权利要求1所述的含氮化合物,其特征在于,所述Ar 1和Ar 2分别独立地选自取代或未取代的基团W,未取代的基团W选自如下基团所组成的组:
    Figure PCTCN2021134891-appb-100002
    其中,
    Figure PCTCN2021134891-appb-100003
    表示化学键;取代的基团W上具有一个或多个的取代基,所述取代基各自独立地选自:氘、氰基、氟、甲基、乙基、正丙基、异丙基、叔丁基、苯基;当基团W的取代基个数大于1时,各取代基相同或不同。
  8. 根据权利要求1所述的含氮化合物,其特征在于,所述含氮化合物选自如下化合物所形成的组:
    Figure PCTCN2021134891-appb-100004
    Figure PCTCN2021134891-appb-100005
    Figure PCTCN2021134891-appb-100006
    Figure PCTCN2021134891-appb-100007
    Figure PCTCN2021134891-appb-100008
    Figure PCTCN2021134891-appb-100009
    Figure PCTCN2021134891-appb-100010
    Figure PCTCN2021134891-appb-100011
    Figure PCTCN2021134891-appb-100012
    Figure PCTCN2021134891-appb-100013
    Figure PCTCN2021134891-appb-100014
    Figure PCTCN2021134891-appb-100015
    Figure PCTCN2021134891-appb-100016
    Figure PCTCN2021134891-appb-100017
    Figure PCTCN2021134891-appb-100018
    Figure PCTCN2021134891-appb-100019
    Figure PCTCN2021134891-appb-100020
    Figure PCTCN2021134891-appb-100021
  9. 一种电子元件,其特征在于,所述电子元件包括阳极、阴极、以及介于阳极与阴极之间的至少一层功能层,所述功能层包含权利要求1~8中任意一项所述的含氮化合物;
    优选地,所述功能层包括有机发光层,所述有机发光层包括所述含氮化合物。
  10. 根据权利要求9所述的电子元件,其特征在于,所述电子元件为有机电致发光器件;
    优选地,所述有机电致发光器件为红色有机电致发光器件。
  11. 一种电子装置,其特征在于,包括权利要求9或10所述的电子元件。
PCT/CN2021/134891 2021-01-28 2021-12-01 一种含氮化合物及包含其的电子元件和电子装置 WO2022160928A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110120037.8A CN114075185B (zh) 2021-01-28 2021-01-28 一种含氮化合物及包含其的电子元件和电子装置
CN202110120037.8 2021-01-28

Publications (1)

Publication Number Publication Date
WO2022160928A1 true WO2022160928A1 (zh) 2022-08-04

Family

ID=80282957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/134891 WO2022160928A1 (zh) 2021-01-28 2021-12-01 一种含氮化合物及包含其的电子元件和电子装置

Country Status (2)

Country Link
CN (1) CN114075185B (zh)
WO (1) WO2022160928A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116120303A (zh) * 2023-02-08 2023-05-16 京东方科技集团股份有限公司 一种化合物、发光器件、显示装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114075185B (zh) * 2021-01-28 2023-09-22 陕西莱特光电材料股份有限公司 一种含氮化合物及包含其的电子元件和电子装置
WO2023204668A1 (ko) * 2022-04-22 2023-10-26 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기 발광 소자
CN115745964A (zh) * 2022-10-31 2023-03-07 上海天马微电子有限公司 一种有机化合物及其应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140094408A (ko) * 2013-01-22 2014-07-30 덕산하이메탈(주) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
CN108409721A (zh) * 2018-02-07 2018-08-17 瑞声科技(南京)有限公司 一种有机发光材料及有机发光二极管器件
CN110878088A (zh) * 2018-09-06 2020-03-13 北京鼎材科技有限公司 一种化合物及其应用
CN112939890A (zh) * 2021-02-04 2021-06-11 吉林奥来德光电材料股份有限公司 一种杂环有机光电材料及其制备方法和有机电致发光器件
KR20210139184A (ko) * 2020-05-13 2021-11-22 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기발광 소자
CN114075185A (zh) * 2021-01-28 2022-02-22 陕西莱特光电材料股份有限公司 一种含氮化合物及包含其的电子元件和电子装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5600891B2 (ja) * 2009-05-15 2014-10-08 コニカミノルタ株式会社 有機エレクトロルミネッセンス素子、表示装置および照明装置
KR102112786B1 (ko) * 2015-08-19 2020-05-20 롬엔드하스전자재료코리아유한회사 유기 전계 발광 화합물 및 이를 포함하는 유기 전계 발광 소자
KR20170051198A (ko) * 2015-10-30 2017-05-11 롬엔드하스전자재료코리아유한회사 전자 버퍼 재료, 전자 전달 재료, 및 이를 포함하는 유기 전계 발광 소자
CN109643766B (zh) * 2016-09-13 2022-02-11 罗门哈斯电子材料韩国有限公司 包含电子缓冲层和电子传输层的有机电致发光装置
KR102455656B1 (ko) * 2016-09-22 2022-10-19 롬엔드하스전자재료코리아유한회사 전자 버퍼층 및 전자 전달층을 포함하는 유기 전계 발광 소자
KR20180035554A (ko) * 2016-09-29 2018-04-06 롬엔드하스전자재료코리아유한회사 전자 전달층 및 전자 버퍼층을 포함하는 유기 전계 발광 소자
KR102547298B1 (ko) * 2017-02-27 2023-06-26 롬엔드하스전자재료코리아유한회사 복수 종의 호스트 재료 및 이를 포함하는 유기 전계 발광 소자

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140094408A (ko) * 2013-01-22 2014-07-30 덕산하이메탈(주) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
CN108409721A (zh) * 2018-02-07 2018-08-17 瑞声科技(南京)有限公司 一种有机发光材料及有机发光二极管器件
CN110878088A (zh) * 2018-09-06 2020-03-13 北京鼎材科技有限公司 一种化合物及其应用
KR20210139184A (ko) * 2020-05-13 2021-11-22 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기발광 소자
CN114075185A (zh) * 2021-01-28 2022-02-22 陕西莱特光电材料股份有限公司 一种含氮化合物及包含其的电子元件和电子装置
CN112939890A (zh) * 2021-02-04 2021-06-11 吉林奥来德光电材料股份有限公司 一种杂环有机光电材料及其制备方法和有机电致发光器件

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116120303A (zh) * 2023-02-08 2023-05-16 京东方科技集团股份有限公司 一种化合物、发光器件、显示装置

Also Published As

Publication number Publication date
CN114075185B (zh) 2023-09-22
CN114075185A (zh) 2022-02-22

Similar Documents

Publication Publication Date Title
CN113024566B (zh) 一种含氮化合物及包含其的电子元件和电子装置
WO2022160928A1 (zh) 一种含氮化合物及包含其的电子元件和电子装置
CN114105992B (zh) 含氮化合物及包含其的有机电致发光器件和电子装置
WO2021228111A1 (zh) 有机化合物以及使用其的电子元件和电子装置
CN113233987B (zh) 一种含氮化合物及包含其的电子元件和电子装置
WO2021233311A1 (zh) 有机化合物以及使用其的电子元件和电子装置
WO2022170831A1 (zh) 有机电致发光材料、电子元件和电子装置
CN113173858B (zh) 含氮化合物、电子元件和电子装置
CN113582997B (zh) 含氮化合物及电子元件和电子装置
CN112538048B (zh) 一种有机化合物及包含其的电子元件和电子装置
CN113285038A (zh) 一种有机电致发光器件及电子装置
WO2022100194A1 (zh) 含氮化合物、有机电致发光器件和电子装置
CN113214280B (zh) 有机化合物及包含其的电子器件和电子装置
WO2022134613A1 (zh) 一种含氮化合物及包含其的电子元件和电子装置
WO2021136064A1 (zh) 含氮化合物、有机电致发光器件以及电子装置
WO2022206389A1 (zh) 含氮化合物及包含其的电子元件和电子装置
WO2022217791A1 (zh) 一种组合物及包含其的电子元件和电子装置
CN113380954B (zh) 有机电致发光器件及电子装置
CN114149443B (zh) 含氮化合物、电子元件和电子装置
CN113121571B (zh) 一种有机化合物及包含其的电子元件和电子装置
CN113354661B (zh) 一种有机化合物及包含其的电子元件和电子装置
CN114335399B (zh) 有机电致发光器件及包括其的电子装置
CN113972332B (zh) 有机电致发光器件及包括其的电子装置
CN114621253B (zh) 含氮化合物以及使用其的电子元件和电子装置
CN114539262B (zh) 有机化合物及包含其的电子元件和电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21922518

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21922518

Country of ref document: EP

Kind code of ref document: A1