WO2021174967A1 - 含氮化合物、有机电致发光器件和电子装置 - Google Patents

含氮化合物、有机电致发光器件和电子装置 Download PDF

Info

Publication number
WO2021174967A1
WO2021174967A1 PCT/CN2020/139383 CN2020139383W WO2021174967A1 WO 2021174967 A1 WO2021174967 A1 WO 2021174967A1 CN 2020139383 W CN2020139383 W CN 2020139383W WO 2021174967 A1 WO2021174967 A1 WO 2021174967A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon atoms
substituted
unsubstituted
groups
nitrogen
Prior art date
Application number
PCT/CN2020/139383
Other languages
English (en)
French (fr)
Inventor
刘文强
马天天
韩超
Original Assignee
陕西莱特光电材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 陕西莱特光电材料股份有限公司 filed Critical 陕西莱特光电材料股份有限公司
Publication of WO2021174967A1 publication Critical patent/WO2021174967A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D493/00Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
    • C07D493/02Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
    • C07D493/10Spiro-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/57Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton
    • C07C211/61Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton with at least one of the condensed ring systems formed by three or more rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/96Spiro-condensed ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D491/00Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00
    • C07D491/02Heterocyclic compounds containing in the condensed ring system both one or more rings having oxygen atoms as the only ring hetero atoms and one or more rings having nitrogen atoms as the only ring hetero atoms, not provided for by groups C07D451/00 - C07D459/00, C07D463/00, C07D477/00 or C07D489/00 in which the condensed system contains two hetero rings
    • C07D491/10Spiro-condensed systems
    • C07D491/107Spiro-condensed systems with only one oxygen atom as ring hetero atom in the oxygen-containing ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/10Spiro-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/081Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te
    • C07F7/0812Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te comprising a heterocyclic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/081Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te
    • C07F7/0812Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te comprising a heterocyclic ring
    • C07F7/0816Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te comprising a heterocyclic ring said ring comprising Si as a ring atom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1037Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • C09K2211/1048Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms with oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom

Definitions

  • This application relates to the technical field of organic materials, in particular to a nitrogen-containing compound, an organic electroluminescent device using the nitrogen-containing compound, and an electronic device using the organic electroluminescent device.
  • Organic electroluminescent devices also known as organic light-emitting diodes, refer to the phenomenon that organic light-emitting materials are excited by current to emit light under the action of an electric field. It is a process of converting electrical energy into light energy.
  • organic electroluminescent diodes OLED have the advantages of active light emission, large optical path range, low driving voltage, high brightness, high efficiency, low energy consumption, and simple manufacturing process. It is precisely because of these advantages that organic light-emitting materials and devices have become one of the most popular scientific research topics in the scientific and industrial circles.
  • Organic electroluminescence devices generally include an anode, a hole transport layer, an electroluminescence layer as an energy conversion layer, an electron transport layer, and a cathode that are stacked in sequence.
  • the two electrodes When voltage is applied to the cathode and anode, the two electrodes generate an electric field. Under the action of the electric field, the electrons on the cathode side move to the electroluminescent layer, the holes on the anode side also move to the light emitting layer, and the electrons and holes are combined in the electroluminescent layer.
  • Excitons are formed, and the excitons are in an excited state to release energy to the outside, so that the electroluminescent layer emits light to the outside.
  • WO2019013556A1, CN106397398A, KR1020180099564A, etc. disclose light-emitting layer materials that can be prepared in organic electroluminescent devices. However, it is still necessary to continue to develop new materials to further improve the performance of electronic components.
  • the purpose of this application is to provide a nitrogen-containing compound, organic electroluminescent device and electronic device to improve the performance of the organic electroluminescent device and electronic device.
  • a nitrogen-containing compound is provided, and the structure of the nitrogen-containing compound is shown in Chemical Formula 1:
  • X 1 , X 2 , Y 1 , Y 2 are the same or different from each other, and each independently is a single bond, O, S, N (R 3 ), C (R 4 R 5 ), Ge (R 6 R 7 ), Si(R 8 R 9 ), Se, where X 1 and Y 1 cannot be single bonds at the same time, and X 2 and Y 2 cannot be single bonds at the same time;
  • R 3 to R 9 are the same or different from each other, and are each independently hydrogen, deuterium, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, and a substituted or unsubstituted aryl group having 6 to 30 carbon atoms , Substituted or unsubstituted heteroaryl groups with 3-30 carbon atoms, substituted or unsubstituted cycloalkyl groups with 3-10 carbon atoms;
  • R 4 and R 5 connected to the same atom are connected to each other to form a ring, or R 6 and R 7 connected to the same atom are connected to each other to form a ring, or R 8 and R 9 connected to the same atom are connected to each other Connect to form a ring;
  • n is the number of substituents R 2
  • m and n are the same or different, and each independently is 1, 2, 3 or 4;
  • R 1 and R 2 are the same or different from each other, and are each independently hydrogen, deuterium, halogen group, cyano group, substituted or unsubstituted trialkylsilyl group with 3-12 carbon atoms, substituted or unsubstituted Alkyl groups with 1-10 carbon atoms, substituted or unsubstituted aryl groups with 6-30 carbon atoms, substituted or unsubstituted heteroaryl groups with 3-30 carbon atoms, substituted or unsubstituted carbons A cycloalkyl group having 3-10 atoms; or any two adjacent R 1s are connected to each other to form a ring, or any two adjacent R 2s are connected to each other to form a ring;
  • Ar 1 , Ar 2 , Ar 3 and Ar 4 are the same or different from each other, and are each independently a substituted or unsubstituted aryl group having 6-40 carbon atoms, and a substituted or unsubstituted carbon atom number of 3-40 Heteroaryl
  • the substituents in the Ar 1 , Ar 2 , Ar 3 , Ar 4 , R 1 to R 9 are the same or different from each other, and are each independently deuterium, cyano, halogen, or three with 3-20 carbon atoms.
  • Alkylsilyl groups, arylsilyl groups with 6-20 carbon atoms, alkyl groups with 1-5 carbon atoms, aryl groups with 6-20 carbon atoms, and those with 3-20 carbon atoms Heteroaryl groups, cycloalkyl groups having 3-10 carbon atoms, heterocycloalkyl groups having 2-7 carbon atoms, and alkoxy groups having 1-7 carbon atoms.
  • an organic electroluminescent device including an anode and a cathode disposed oppositely, and a functional layer disposed between the anode and the cathode; the functional layer includes the first One aspect of the nitrogen-containing compound.
  • an electronic device including the organic electroluminescent device described in the second aspect of the present application.
  • the core structure of the nitrogen-containing compound of the present application is a new type of fluorene group as the basic unit, through adamantane spiro condensation and polycyclic structure fused to form a large planar conjugated structure; the planar structure has suitable conjugation Range, when combined with triarylamine, it will form a fluorescent organic compound with high quantum yield; and the spiro combination of adamantane enhances the electron-rich characteristics of the conjugated planar structure through the hyperconjugation effect, and further enhances the fluorescence quantum yield At the same time, the large-volume adamantane structure increases the steric hindrance and reduces the fluorescence red shift and quenching caused by the intermolecular stacking. When this material is used as a guest material for the light-emitting layer in an organic electroluminescent device, it will effectively improve the luminous efficiency and lifetime of the device.
  • FIG. 1 is a schematic structural diagram of an organic electroluminescent device according to an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of an electronic device according to an embodiment of the present application.
  • Electron transport layer 360, electron injection layer; 400, electronic device.
  • the first aspect of the application provides a nitrogen-containing compound, and the structure of the nitrogen-containing compound is shown in Chemical Formula 1:
  • X 1 , X 2 , Y 1 , Y 2 are the same or different from each other, and each independently is a single bond, O, S, N (R 3 ), C (R 4 R 5 ), Ge (R 6 R 7 ), Si(R 8 R 9 ), Se, where X 1 and Y 1 cannot be single bonds at the same time, and X 2 and Y 2 cannot be single bonds at the same time;
  • R 3 to R 9 are the same or different from each other, and are each independently hydrogen, deuterium, a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, and a substituted or unsubstituted aryl group having 6 to 30 carbon atoms , Substituted or unsubstituted heteroaryl groups with 3-30 carbon atoms, substituted or unsubstituted cycloalkyl groups with 3-10 carbon atoms;
  • R 4 and R 5 connected to the same atom are connected to each other to form a ring, or R 6 and R 7 connected to the same atom are connected to each other to form a ring, or R 8 and R 9 connected to the same atom are connected to each other Connect to form a ring;
  • n is the number of substituents R 2
  • m and n are the same or different, and each independently is 1, 2, 3 or 4;
  • R 1 and R 2 are the same or different from each other, and are each independently hydrogen, deuterium, halogen group, cyano group, substituted or unsubstituted trialkylsilyl group with 3-12 carbon atoms, substituted or unsubstituted Alkyl groups with 1-10 carbon atoms, substituted or unsubstituted aryl groups with 6-30 carbon atoms, substituted or unsubstituted heteroaryl groups with 3-30 carbon atoms, substituted or unsubstituted carbons A cycloalkyl group having 3-10 atoms; or any two adjacent R 1s are connected to each other to form a ring, or any two adjacent R 2s are connected to each other to form a ring;
  • Ar 1 , Ar 2 , Ar 3 and Ar 4 are the same or different from each other, and are each independently a substituted or unsubstituted aryl group having 6-40 carbon atoms, and a substituted or unsubstituted carbon atom number of 3-40 Heteroaryl
  • the substituents in the Ar 1 , Ar 2 , Ar 3 , Ar 4 , R 1 to R 9 are the same or different from each other, and are each independently deuterium, cyano, halogen, or three with 3-20 carbon atoms.
  • Alkylsilyl groups, arylsilyl groups with 6-20 carbon atoms, alkyl groups with 1-5 carbon atoms, aryl groups with 6-20 carbon atoms, and those with 3-20 carbon atoms Heteroaryl groups, cycloalkyl groups having 3-10 carbon atoms, heterocycloalkyl groups having 2-7 carbon atoms, and alkoxy groups having 1-7 carbon atoms.
  • Ar 1 and Ar 3 are selected from tert-butyl phenyl or unsubstituted phenyl, Ar 2 and Ar 4 are not N-phenylcarbazolyl, biphenyl or dibenzofuran at the same time .
  • the compound represented by Chemical Formula 1 is not the following compound:
  • alkylsilyl refers to alkylsilyl.
  • alkylsilyl groups include, but are not limited to, trimethylsilyl, triethylsilyl, and the like.
  • arylsilyl groups include, but are not limited to, triphenylsilyl groups and the like.
  • a and B "capable of being connected to form a ring" includes that A and B are independent of each other and not connected; it also includes that A and B are connected to each other to form a ring.
  • R 4 and R 5 can be connected to form a ring, including R 4 and R 5 are independent of each other and not connected, and R 4 and R 5 are connected to each other to form a ring;
  • R 6 and R 7 can be connected to form a ring, including R 6 and R 7 are independent of each other and not connected, including the way that R 6 and R 7 are connected to each other to form a ring;
  • R 8 and R 9 can be connected to form a ring, including the way that R 8 and R 9 are independent of each other and are not connected, also including R 8 and R 9 are connected to each other to form a ring.
  • Adjacent Rs are connected to form a ring, which means that the Rs connected to two adjacent carbons can be connected to form a ring too much, for example
  • any two adjacent R 1 are connected to each other to form a ring, or any two adjacent R 2 are connected to each other to form a ring
  • any two adjacent R 1s are connected to each other to connect to them.
  • any two adjacent R 2 are also connected to each other to form a ring with their commonly connected atoms, or any two adjacent R 2 are not connected to each other to form a ring with their commonly connected atoms; any When two adjacent R 1 are not connected to each other to form a ring with their commonly connected atoms, any two adjacent R 2 are also connected to each other to form a ring with their commonly connected atoms, or any two adjacent R 2
  • the atoms that are not connected to each other to form a ring with them are commonly connected.
  • a ring with 3-15 carbon atoms can be formed, or a ring with 3-10 carbon atoms can be formed; the ring can be saturated (such as a five-membered ring, a six-membered ring, adamantane, etc.), or It is unsaturated, such as an aromatic ring.
  • the ring refers to a saturated or unsaturated ring, such as cyclohexane, cyclopentane, 6 to 12 membered aromatic ring or 5 to 12 membered heteroaromatic ring, etc., but not limited thereto .
  • a ring system formed by n atoms is an n-membered ring.
  • phenyl is a 6-membered aryl group.
  • the 6 to 10-membered aromatic ring refers to a benzene ring, an indene ring, a naphthalene ring, and the like.
  • Ar 1 , Ar 2 , Ar 3 , Ar 4 , R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 and R 9 are substituted or unsubstituted carbons
  • the number of atoms refers to the number of all carbon atoms.
  • Ar 1 is Then its number of carbon atoms is 7.
  • hetero means that a functional group includes at least one heteroatom such as B, O, N, P, Si, or S, and the remaining atoms are carbon and hydrogen.
  • the unsubstituted alkyl group may be a "saturated alkyl group" without any double or triple bonds.
  • an aryl group refers to an optional functional group or substituent derived from an aromatic hydrocarbon ring.
  • the aryl group can be a monocyclic aryl group or a polycyclic aryl group.
  • the aryl group can be a monocyclic aryl group, a condensed ring aryl group, two or more monocyclic aryl groups conjugated by a carbon-carbon bond, and A monocyclic aryl group and a condensed ring aryl group conjugated by carbon bonds, and two or more fused ring aryl groups conjugated by a carbon-carbon bond. That is, two or more aromatic groups conjugated through carbon-carbon bonds can also be regarded as aryl groups in the present application.
  • the aryl group does not contain heteroatoms such as B, O, N, P, Si, or S.
  • biphenyl, terphenyl, etc. are aryl groups.
  • aryl groups may include phenyl, naphthyl, fluorenyl, anthracenyl, phenanthryl, biphenyl, terphenyl, tetraphenyl, pentaphenyl, hexaphenyl, benzo[9,10 ]Phenanthryl, pyrenyl, benzofluoranthene, Fluorenyl group, fluorenyl group, 9,9-dimethylfluorenyl group, 9,9 diphenylfluorenyl group, spirobifluorenyl group, etc., but not limited thereto.
  • unsubstituted aryl refers to aryl groups with 6-30 carbon atoms, such as phenyl, naphthyl, pyrenyl, dimethyl fluorenyl, 9,9 diphenyl fluorene Base, spirobifluorenyl, anthracenyl, phenanthryl, Group, azulenyl, acenaphthylene, biphenyl, benzanthracenyl, spirobifluorenyl, perylene, indenyl, etc.
  • the substituted aryl group having 6-30 carbon atoms means that at least one hydrogen atom is replaced by a deuterium atom, F, Cl, I, CN, hydroxyl, nitro, amino and the like.
  • the substituted aryl group refers to the replacement of one or more hydrogen atoms in the aryl group by other groups.
  • at least one hydrogen atom is replaced by a deuterium atom, F, Cl, Br, I, CN, hydroxyl, amino, branched alkyl, linear alkyl, cycloalkyl, alkoxy, alkylamino or other groups, Such as 9,9-dimethyl fluorenyl, 9,9 diphenyl fluorenyl, spirobifluorenyl and so on.
  • substituted aryl group with 20 carbon atoms means that the total number of carbon atoms of the aryl group and the substituent on the aryl group is 20.
  • the number of carbon atoms of 9,9-dimethylfluorenyl is 15.
  • the substituted aryl group may be one or more hydrogen atoms in the aryl group, such as deuterium atom, halogen group, -CN, aryl, heteroaryl, trialkylsilyl, alkyl, Cycloalkyl, alkoxy, alkylthio and other groups are substituted.
  • aryl-substituted aryl groups include, but are not limited to, dibenzofuranyl-substituted phenyl groups, dibenzothiophene-substituted phenyl groups, pyridine-substituted phenyl groups, and the like.
  • the number of carbon atoms of a substituted aryl group refers to the total number of carbon atoms of the aryl group and the substituents on the aryl group.
  • a substituted aryl group with 18 carbon atoms refers to an aryl group and a substituted group.
  • the total number of carbon atoms of the group is 18.
  • the aryl group as a substituent includes, but is not limited to, phenyl, biphenyl, naphthyl, 9,9-dimethylfluorenyl, 9,9-diphenylfluorenyl, spirobifluorenyl , Anthracene, phenanthryl, base.
  • the heteroaryl group may be a heteroaryl group including at least one of B, O, N, P, Si, and S as a heteroatom.
  • the heteroaryl group can be a monocyclic heteroaryl group or a polycyclic heteroaryl group.
  • the heteroaryl group can be a single aromatic ring system or multiple aromatic ring systems conjugated through carbon-carbon bonds, and any aromatic
  • the ring system is an aromatic monocyclic ring or an aromatic fused ring.
  • heteroaryl groups may include thienyl, furyl, pyrrolyl, imidazolyl, thiazolyl, oxazolyl, oxadiazolyl, triazolyl, pyridyl, bipyridyl, pyrimidinyl, triazinyl, Acridinyl, pyridazinyl, pyrazinyl, quinolinyl, quinazolinyl, quinoxalinyl, phenoxazinyl, phthalazinyl, pyridopyrimidinyl, pyridopyrazinyl, pyrazinopyrazine Azinyl, isoquinolinyl, indolyl, carbazolyl, N-arylcarbazolyl, N-heteroarylcarbazolyl, N-alkylcarbazolyl, benzoxazolyl, benzimidazole Group, benzothiazolyl, benzo, be
  • thienyl, furyl, phenanthrolinyl, etc. are heteroaryl groups of a single aromatic ring system
  • N-arylcarbazolyl, N-heteroarylcarbazolyl, phenyl-substituted dibenzofuranyl, Dibenzofuranyl-substituted phenyl groups and the like are heteroaryl groups of multiple aromatic ring systems conjugated through carbon-carbon bonds.
  • the substituted heteroaryl group may be one or more hydrogen atoms in the heteroaryl group, such as deuterium atom, halogen group, -CN, aryl, heteroaryl, trialkylsilyl, alkane Group, cycloalkyl, alkoxy, alkylthio and other groups are substituted.
  • aryl-substituted heteroaryl groups include, but are not limited to, phenyl-substituted dibenzofuranyl, phenyl-substituted dibenzothienyl, phenyl-substituted pyridyl, and the like. It should be understood that the number of carbon atoms of the substituted heteroaryl group refers to the total number of carbon atoms of the heteroaryl group and the substituents on the heteroaryl group.
  • heteroaryl group as a substituent includes, but is not limited to, pyridyl, pyrimidinyl, carbazolyl, dibenzofuranyl, dibenzothienyl, quinolinyl, quinazolinyl, quinoxaline Base, quinoline, isoquinoline.
  • each q is independently 0, 1, 2 or 3
  • each R independently selected from hydrogen, fluorine, and chlorine in the description
  • formula Q-1 represents that there are q substituents R on the benzene ring ", each R” can be the same or different, and the options of each R" do not affect each other
  • formula Q-2 means that there are q substituents R" on each benzene ring of biphenyl, and the two benzene rings
  • the number q of R" substituents may be the same or different, and each R" may be the same or different, and the options of each R" do not affect each other.
  • the non-positioned link in this application refers to the single bond extending from the ring system It means that one end of the link can be connected to any position in the ring system that the bond penetrates, and the other end is connected to the rest of the compound molecule.
  • the naphthyl group represented by the formula (X) is connected to other positions of the molecule through two non-positioned linkages running through the bicyclic ring. ) ⁇ Any possible connection shown in formula (X-10).
  • the phenanthryl group represented by the formula (X') is connected to other positions of the molecule through a non-positional linkage extending from the middle of the benzene ring on one side. It includes any possible connection modes shown in formula (X'-1) to formula (X'-4).
  • the non-positional substituent in this application refers to a substituent connected by a single bond extending from the center of the ring system, which means that the substituent can be connected at any possible position in the ring system.
  • the substituent R group represented by the formula (Y) is connected to the quinoline ring through a non-localized linkage, and its meaning includes the following formula (Y-1) to Any possible connection mode shown in formula (Y-7).
  • the substituents on the Ar 1 , Ar 2 , Ar 3 , Ar 4 , R 1 to R 9 are the same or different from each other, and each independently is deuterium, cyano, fluorine, and the number of carbon atoms is 3- 18 trialkylsilyl groups, alkyl groups with 1-5 carbon atoms, aryl groups with 6-20 carbon atoms, heteroaryl groups with 3-12 carbon atoms, 3-10 carbon atoms ⁇ cycloalkyl.
  • the substituents in Ar 1 , Ar 2 , Ar 3 and Ar 4 are independently selected from deuterium, fluorine, cyano, methyl, ethyl, isopropyl, tert-butyl, and cyclohexyl.
  • the Ar 1 , Ar 2 , Ar 3 and Ar 4 are each independently a substituted or unsubstituted aryl group with 6-25 carbon atoms, or a substituted or unsubstituted aryl group with 3-25 carbon atoms. Heteroaryl.
  • R 1 and R 2 are the same or different from each other, and are each independently hydrogen, deuterium, fluorine, cyano, trimethylsilyl, methyl, ethyl, isopropyl, tert-butyl, substituted or Unsubstituted aryl groups having 6-12 carbon atoms, and substituted or unsubstituted heteroaryl groups having 3-10 carbon atoms.
  • R 1 and R 2 are the same or different from each other, and are each independently hydrogen, deuterium, fluorine, cyano, trimethylsilyl, methyl, ethyl, isopropyl, tert-butyl, phenyl , Naphthyl, biphenyl, pyridyl, isoquinolyl, quinolyl.
  • the X 1 , X 2 , Y 1 , and Y 2 are the same or different from each other, and each independently is a single bond, O or S, for example
  • n and m are each independently selected from 1.
  • the Ar 1 , Ar 2 , Ar 3 and Ar 4 are each independently a substituted or unsubstituted aryl group with 6-20 carbon atoms, or a substituted or unsubstituted aryl group with 5-20 carbon atoms. Heteroaryl.
  • the substituents in Ar 1 , Ar 2 , Ar 3 , and Ar 4 are the same or different from each other, and are each independently deuterium, cyano, fluorine, or trialkylmethyl with 3-12 carbon atoms.
  • Ar 1 is substituted or unsubstituted Z′ 1
  • Ar 2 is substituted or unsubstituted Z′ 2
  • Ar 3 is substituted or unsubstituted Z′ 3
  • Ar 4 is substituted or unsubstituted Z′ 4; wherein the unsubstituted Z '1, Z' 2, Z '3 and Z' 4 are each independently a group selected from the group consisting of:
  • Z '1, Z' 2, Z '3 and Z' 4 having one or more substituents, Z '1, Z' 2, Z '3 and Z' 4 substituents independently selected from deuterium, Fluorine, cyano, methyl, ethyl, isopropyl, tert-butyl, trimethylsilyl, phenyl, naphthyl, cyclohexane, biphenyl, pyridyl, dibenzofuranyl, two Benzothienyl, phenanthryl, N-phenylcarbazolyl.
  • Ar 1 is substituted or unsubstituted Z 1
  • Ar 2 is substituted or unsubstituted Z 2
  • Ar 3 is substituted or unsubstituted Z 3
  • Ar 4 is unsubstituted Z 4 ; wherein, unsubstituted Z 1 , Z 2 , Z 3 and Z 4 are each independently a group consisting of the following groups:
  • Ar 1 , Ar 2 , Ar 3 and Ar 4 are the same or different from each other, and are each independently selected from the group consisting of the following groups:
  • Ar 1 , Ar 2 , Ar 3 and Ar 4 are the same or different from each other, and are each independently selected from the group consisting of the following groups:
  • the Ar 1 and the Ar 3 are the same, and the Ar 2 and the Ar 4 are the same.
  • the nitrogen-containing compound is selected from the group consisting of the following compounds:
  • a second aspect of the present application provides an organic electroluminescent device, which includes an anode and a cathode disposed oppositely, and a functional layer provided between the anode and the cathode; the functional layer includes the nitrogen-containing compound of the present application.
  • the organic electroluminescent device includes an anode 100 and a cathode 200 disposed oppositely, and a functional layer 300 disposed between the anode 100 and the cathode 200; Nitrogen compounds.
  • the functional layer 300 includes an organic electroluminescent layer 330, and the organic electroluminescent layer 330 includes the nitrogen-containing compound of the present application.
  • the organic electroluminescent layer 330 may be composed of a single luminescent material, or may include a host material and a guest material.
  • the organic electroluminescent layer 330 is composed of a host material and a guest material. The holes injected into the organic electroluminescent layer 330 and the electrons injected into the organic electroluminescent layer 330 can recombine in the organic electroluminescent layer 330 to form an excitation. The exciton transfers energy to the host material, and the host material transfers energy to the guest material, so that the guest material can emit light.
  • the host material of the organic electroluminescent layer 330 can be a metal chelate compound, a bisstyryl derivative, an aromatic amine derivative, a dibenzofuran derivative or other types of materials, and this application does not make any special mentions about this limits.
  • the host material of the organic electroluminescent layer 330 may be ⁇ , ⁇ -ADN.
  • the guest material of the organic electroluminescent layer 330 may be a compound having a condensed aryl ring or a derivative thereof, a compound having a heteroaryl ring or a derivative thereof, an aromatic amine derivative, or other materials.
  • the guest material of the organic electroluminescent layer 330 is the nitrogen-containing compound of the application.
  • the organic electroluminescent device may include an anode 100, a hole transport layer 321, an electron blocking layer 322, an organic electroluminescent layer 330 as an energy conversion layer, and an electron transport layer which are sequentially stacked. 350 and cathode 200.
  • the nitrogen-containing compound provided in the present application can be applied to the organic electroluminescent layer 330 of an organic electroluminescent device, which can effectively improve the luminous efficiency and lifetime of the organic electroluminescent device, and reduce the driving voltage of the organic electroluminescent device.
  • the anode 100 includes the following anode material, which is preferably a material with a large work function (work function) that facilitates injection of holes into the functional layer.
  • anode materials include: metals such as nickel, platinum, vanadium, chromium, copper, zinc, and gold or their alloys; metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO); Combined metals and oxides such as ZnO:Al or SnO 2 :Sb; or conductive polymers such as poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene ] (PEDT), polypyrrole and polyaniline, but not limited thereto. It is preferable to include a transparent electrode containing indium tin oxide (ITO) as an anode.
  • ITO indium tin oxide
  • the hole transport layer 321 may include one or more hole transport materials, and the hole transport materials may be selected from carbazole polymers, carbazole-linked triarylamine compounds or other types of compounds. This does not make special restrictions.
  • the hole transport layer 321 is composed of the compound NPB.
  • the electron blocking layer 322 includes one or more electron blocking materials, and the electron blocking materials may be selected from carbazole polymers or other types of compounds, which are not specifically limited in this application.
  • the electron blocking layer 322 is composed of CBP.
  • the electron transport layer 350 may be a single-layer structure or a multilayer structure, which may include one or more electron-transporting materials, and the electron-transporting materials may be selected from benzimidazole derivatives and oxadiazole derivatives. , Quinoxaline derivatives or other electron transport materials, this application does not make any special restrictions.
  • the electron transport layer 350 may be composed of DBimiBphen and LiQ.
  • the cathode 200 includes the following cathode material, which is a material with a small work function that facilitates injection of electrons into the functional layer.
  • cathode materials include: metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin and lead or their alloys; or multilayer materials such as LiF/Al, Liq/ Al, LiO 2 /Al, LiF/Ca, LiF/Al, and BaF 2 /Ca, but not limited thereto. It is preferable to include a metal electrode containing magnesium and silver as a cathode.
  • a hole injection layer 310 may be further provided between the anode 100 and the hole transport layer 321 to enhance the ability of injecting holes into the hole transport layer 321.
  • the hole injection layer 310 can be selected from benzidine derivatives, starburst arylamine compounds, phthalocyanine derivatives or other materials, which are not particularly limited in this application.
  • the hole injection layer 310 may be composed of m-MTDATA.
  • an electron injection layer 360 may be further provided between the cathode 200 and the electron transport layer 350 to enhance the ability to inject electrons into the electron transport layer 350.
  • the electron injection layer 360 may include inorganic materials such as alkali metal sulfides and alkali metal halides, or may include complexes of alkali metals and organic substances.
  • the electron injection layer 360 may include LiQ.
  • a hole blocking layer 340 may also be provided between the organic electroluminescent layer 330 and the electron transport layer 350.
  • the embodiments of the present application also provide an electronic device, which includes the above-mentioned organic electroluminescent device. Since the electronic device has the above-mentioned organic electroluminescent device, it has the same beneficial effects, and the details are not repeated here in this application.
  • the present application provides an electronic device 400 including the above-mentioned organic electroluminescent device.
  • the electronic device 400 may be a display device, a lighting device, an optical communication device or other types of electronic devices, such as but not limited to computer screens, mobile phone screens, televisions, electronic paper, emergency lighting, light modules, etc. Since the electronic device 400 has the above-mentioned organic electroluminescent device, it has the same beneficial effects, which will not be repeated in this application.
  • X 1 , X 2 , Y 1 , Y 2 are the same or different, and each independently is a single bond, O, S, NR 3 , C(R 4 R 5 ), Ge(R 6 R 7 ), Si( R 8 R 9 ), Se, where X 1 and Y 1 cannot be single bonds at the same time, and X 2 and Y 2 cannot be single bonds at the same time;
  • intermediate 1-4 (10g, 16.01mmol), diphenylamine (5.56g, 32.82mmol), toluene (150mL), three (dibenzylidene acetone) two Palladium (0.146g, 0.16mmol), 2-dicyclohexylphosphorus-2',6'-dimethoxybiphenyl (0.131g, 0.32mmol) and sodium tert-butoxide (2.31g, 24.01mmol) and heated to After stirring at 108°C for 3 hours, it was cooled to room temperature. The reaction solution was washed with water and dried by adding magnesium sulfate.
  • the blue organic electroluminescent device is prepared by the following method
  • the ITO thickness is The ITO substrate (manufactured by Corning) was cut into a size of 40mm (length) ⁇ 40mm (width) ⁇ 0.7mm (thickness).
  • the photolithography process was used to prepare it into an experimental substrate with cathode, anode and insulating layer patterns.
  • Ozone and O 2 :N 2 plasma are used for surface treatment to increase the work function of the anode (experimental substrate) and remove scum.
  • M-MTDATA (4,4',4"-tris(N-3-methylphenyl-N-phenylamino)triphenylamine) was vacuum-evaporated on the experimental substrate (anode) to form a thickness of The hole injection layer (HIL), and the compound NPB is vacuum-evaporated on the hole injection layer to form a thickness of The hole transport layer.
  • HIL hole injection layer
  • CBP is vapor-deposited on the hole transport layer to form a thickness of The electron blocking layer (EBL).
  • EBL electron blocking layer
  • the thickness is formed by vapor deposition with a film thickness ratio of 100:3
  • DBimiBphen (4,7-diphenyl-2,9-bis(4-(1-phenyl-1H-benzo(d)imidazol-2-yl)phenyl)-1,10-phenanthroline)
  • LiQ (8-hydroxyquinoline-lithium) is formed by evaporation with a film thickness ratio of 1:1 Thick electron transport layer (ETL), Yb is vapor-deposited on the electron transport layer to form a thickness of The electron injection layer (EIL), and then magnesium (Mg) and silver (Ag) are vapor-deposited on the electron injection layer with a film thickness ratio of 1:9 to form a thickness of The cathode.
  • the vapor deposition thickness on the above cathode is CP-1 to form an organic cover layer (CPL) to complete the manufacture of organic light-emitting devices.
  • each material used is as follows:
  • Compound A, Compound B, Compound C, and Compound D were used to replace Compound 1 where the light-emitting layer and ⁇ , ⁇ -ADN were co-evaporated in Example 1, and the corresponding blue organic electroluminescent device was prepared according to the method of Example 1.
  • the nitrogen-containing compound of the present invention takes into account both the improvement of device efficiency and lifetime, and the organic electroluminescent device prepared as the dopant material of the organic electroluminescent layer (EML) has a working voltage of at least 3.8% lower than that of Comparative Examples 1-4 , The device efficiency is increased by at least 11.5%, the external quantum efficiency is increased by at least 11.6%, and the lifetime is increased by at least 22%. Both the luminous efficiency and lifetime are well improved, so the nitrogen-containing compound of the present application has the characteristics of improving the luminous efficiency and lifetime of the device.
  • using the present invention as a doped material for the blue light-emitting layer can produce high-efficiency and long-life organic electroluminescent devices with excellent driving voltage, luminous efficiency, external quantum efficiency, and lifetime.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本申请提供了一种含氮化合物、有机电致发光器件和电子装置,属于有机材料技术领域。所述含氮化合物的结构如化学式1所示,其中,X 1、X 2、Y 1、Y 2彼此相同或不同,且各自独立地为单键、O、S、N(R 3)、C(R 4R 5)、Ge(R 6R 7)、Si(R 8R 9)、Se,其中X 1和Y 1不同时为单键,且X 2和Y 2不同时为单键,所述含氮化合物能够改善电子元件的发光效率和寿命。

Description

含氮化合物、有机电致发光器件和电子装置
相关申请的交叉引用
本申请要求于2020年3月4日递交的申请号为CN202010144517.3的中国专利申请的优先权以及2020年10月21日递交的申请号为CN202011130769.7的中国专利申请的优先权,在此引用上述中国专利申请的内容全文以作为本申请的一部分。
技术领域
本申请涉及有机材料技术领域,尤其涉及一种含氮化合物、使用该含氮化合物的有机电致发光器件和应用该有机电致发光器件的电子装置。
背景技术
有机电致发光器件又称为有机发光二极管,是指有机发光材料在电场作用下,受到电流的激发而发光的现象。它是一种将电能转换为光能的过程。相比于无机发光材料,有机电致发光二极管OLED具有主动发光、光程范围大、驱动电压低、亮度大、效率高、耗能少以及制作工艺简单等优点。正是由于这些优点,有机发光材料与器件已经成为科学界和产业界十分热门的科研课题之一。
有机电致发光器件一般包括依次层叠设置的阳极、空穴传输层、作为能量转化层的电致发光层、电子传输层和阴极。当阴阳两极施加电压时,两电极产生电场,在电场的作用下,阴极侧的电子向电致发光层移动,阳极侧的空穴也向发光层移动,电子和空穴在电致发光层结合形成激子,激子处于激发态向外释放能量,进而使得电致发光层对外发光。
现有技术中,WO2019013556A1、CN106397398A、KR1020180099564A等公开了可以在有机电致发光器件中制备的发光层材料。然而,依然有必要继续研发新型的材料,以进一步提高电子元器件的性能。
所述背景技术部分申请的上述信息仅用于加强对本申请的背景的理解,因此它可以包括不构成对本领域普通技术人员已知的现有技术的信息。
发明内容
本申请的目的在于提供一种含氮化合物、有机电致发光器件和电子装置,以改善有机电致发光器件和电子装置的性能。
为实现上述公开目的,本申请采用如下技术方案:
根据本申请的第一个方面,提供一种含氮化合物,所述含氮化合物的结构如化学式1所示:
Figure PCTCN2020139383-appb-000001
其中,X 1、X 2、Y 1、Y 2彼此相同或不同,且各自独立地为单键、O、S、N(R 3)、C(R 4R 5)、Ge(R 6R 7)、Si(R 8R 9)、Se,其中X 1和Y 1不能同时为单键,且X 2和Y 2不能同时为单键;
R 3至R 9彼此相同或不同,且各自独立地为氢、氘、取代或未取代的碳原子数为1-10的烷基、取代或未取代的碳原子数为6-30的芳基、取代或未取代的碳原子数为3-30的杂芳基、取代或未取代的碳原子数为3-10的环烷基;
或者连接于同一个原子上的R 4和R 5相互连接形成环,或者连接于同一个原子上的R 6和R 7相互连接形成环,或者连接于同一个原子上的R 8和R 9相互连接形成环;
m为取代基R 1的数量,n为取代基R 2的数量,m和n相同或不同,且各自独立地为1、2、3或4;
R 1和R 2彼此相同或不同,且各自独立地为氢、氘、卤素基团、氰基、取代或未取代的碳原子数为3-12的三烷基硅基、取代或未取代的碳原子数为1-10的烷基、取代或未取代的碳原子数为6-30的芳基、取代或未取代的碳原子数为3-30的杂芳基、取代或未取代的碳原子数为3-10的环烷基;或者任意两个相邻的R 1相互连接形成环,或者任意两个相邻的R 2相互连接形成环;
Ar 1、Ar 2、Ar 3和Ar 4彼此相同或不同,且各自独立地为取代或未取代的碳原子数为6-40的芳基、取代或未取代的碳原子数为3-40的杂芳基;
所述Ar 1、Ar 2、Ar 3、Ar 4、R 1至R 9中的各取代基彼此相同或不同,且各自独立地为氘、氰基、卤素、碳原子数为3-20的三烷基甲硅烷基、碳原子数为6-20的芳基甲硅烷基、碳原子数为1-5的烷基、碳原子数为6-20的芳基、碳原子数为3-20的杂芳基、碳原子数为3-10的环烷基、碳原子数为2-7的杂环烷基、碳原子数为1-7的烷氧基。
根据本申请的第二个方面,提供一种有机电致发光器件,包括相对设置的阳极和阴极,以及设于所述阳极和所述阴极之间的功能层;所述功能层包含本申请第一方面所述的含氮化合物。
根据本申请的第三个方面,提供一种电子装置,包括本申请第二方面所述的有机电致发光器件。
本申请的含氮化合物的核心结构为新型的、以芴基团为基础单元的、通过金刚烷螺合以及多环结构稠合而成的大平面共轭结构;该平面结构有着合适的共轭范围,将其和三芳基胺结合时,将形成具有高量子产率的荧光有机物;而金刚烷的螺合通过超共轭效应加强了该共轭平面结构的富电子特性,进一步提升荧光量子产率;与此同时,大体积的金刚烷结构增加了空间位阻,降低了由于分子间的堆叠带来的荧光红移以及淬灭的现象。将本材料用于有机电致发光器件中发光层的客体材料时,将有效提升器件的发光效率以及寿命。
附图说明
通过参照附图详细描述其示例实施方式,本申请的上述和其它特征及优点将变得更加明显。
图1是本申请实施方式的有机电致发光器件的结构示意图。
图2是本申请一实施方式的电子装置的结构示意图。
图中主要元件附图标记说明如下:
100、阳极;200、阴极;300、功能层;310、空穴注入层;321、空穴传输层;322、电子阻挡层;330、有机电致发光层;340、空穴阻挡层;350、电子传输层;360、电子注入层;400、电子装置。
具体实施方式
现在将参考附图更全面地描述示例实施例。然而,示例实施例能够以多种形式实施,且不应被理解为限于在此阐述的范例;相反,提供这些实施例使得本申请将更加全面和完整,并将示例实施 例的构思全面地传达给本领域的技术人员。所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施例中。在下面的描述中,提供许多具体细节从而给出对本申请的实施例的充分理解。
在图中,为了清晰,可能夸大了区域和层的厚度。在图中相同的附图标记表示相同或类似的结构,因而将省略它们的详细描述。
所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多个实施例中。在下面的描述中,提供许多具体细节从而给出对本申请的实施例的充分理解。然而,本领域技术人员将意识到,可以实践本申请的技术方案而没有所述特定细节中的一个或更多个,或者可以采用其它的方法、组元、材料等。在其它情况下,不详细示出或描述公知结构、材料或者操作以避免模糊本申请的主要技术创意。
本申请第一方面提供一种含氮化合物,所述含氮化合物的结构如化学式1所示:
Figure PCTCN2020139383-appb-000002
其中,X 1、X 2、Y 1、Y 2彼此相同或不同,且各自独立地为单键、O、S、N(R 3)、C(R 4R 5)、Ge(R 6R 7)、Si(R 8R 9)、Se,其中X 1和Y 1不能同时为单键,且X 2和Y 2不能同时为单键;
R 3至R 9彼此相同或不同,且各自独立地为氢、氘、取代或未取代的碳原子数为1-10的烷基、取代或未取代的碳原子数为6-30的芳基、取代或未取代的碳原子数为3-30的杂芳基、取代或未取代的碳原子数为3-10的环烷基;
或者连接于同一个原子上的R 4和R 5相互连接形成环,或者连接于同一个原子上的R 6和R 7相互连接形成环,或者连接于同一个原子上的R 8和R 9相互连接形成环;
m为取代基R 1的数量,n为取代基R 2的数量,m和n相同或不同,且各自独立地为1、2、3或4;
R 1和R 2彼此相同或不同,且各自独立地为氢、氘、卤素基团、氰基、取代或未取代的碳原子数为3-12的三烷基硅基、取代或未取代的碳原子数为1-10的烷基、取代或未取代的碳原子数为6-30的芳基、取代或未取代的碳原子数为3-30的杂芳基、取代或未取代的碳原子数为3-10的环烷基;或者任意两个相邻的R 1相互连接形成环,或者任意两个相邻的R 2相互连接形成环;
Ar 1、Ar 2、Ar 3和Ar 4彼此相同或不同,且各自独立地为取代或未取代的碳原子数为6-40的芳基、取代或未取代的碳原子数为3-40的杂芳基;
所述Ar 1、Ar 2、Ar 3、Ar 4、R 1至R 9中的各取代基彼此相同或不同,且各自独立地为氘、氰基、卤素、碳原子数为3-20的三烷基甲硅烷基、碳原子数为6-20的芳基甲硅烷基、碳原子数为1-5的烷基、碳原子数为6-20的芳基、碳原子数为3-20的杂芳基、碳原子数为3-10的环烷基、碳原子数为2-7的杂环烷基、碳原子数为1-7的烷氧基。
在一种实施方式中,Ar 1和Ar 3选自叔丁基苯基或未取代苯基时,Ar 2和Ar 4不同时为N-苯基咔唑基、联苯基或二苯并呋喃。
在一种实施方式中,化学式1所示的化合物不是如下化合物:
Figure PCTCN2020139383-appb-000003
在本申请中,烷基硅基是指烷基甲硅烷基。
在本申请中,烷基甲硅烷基的具体实例包括但不限于,三甲基硅基、三乙基硅基等。
在本申请中,芳基甲硅烷基的具体实例包括但不限于三苯基硅基等。
在本申请中,A与B“能够连接成环”的含义包括A与B相互独立,不连接;也包括A与B相互连接成环。例如,R 4和R 5能够连接成环,包括R 4和R 5相互独立,不连接的方式,也包括R 4和R 5相互连接成环;R 6和R 7能够连接成环,包括R 6和R 7相互独立,不连接的方式,也包括R 6和R 7相互连接成环;R 8和R 9能够连接成环,包括R 8和R 9相互独立,不连接的方式,也包括R 8和R 9相互连接成环。
相邻的R连接成环,是指连接在两个相邻碳上的R能过够连接成环,例如
Figure PCTCN2020139383-appb-000004
Figure PCTCN2020139383-appb-000005
等。
在本申请中,“或者任意两个相邻的R 1相互连接形成环,或者任意两个相邻的R 2相互连接形成环”即任意两个相邻的R 1相互连接以与它们共同连接的原子形成环时,任意两个相邻的R 2也相互连接以与它们共同连接的原子形成环,或者任意两个相邻的R 2不相互连接以与它们共同连接的原子形成环;任意两个相邻的R 1不相互连接以与它们共同连接的原子形成环时,任意两个相邻的R 2也相互连接以与它们共同连接的原子形成环,或者任意两个相邻的R 2不相互连接以与它们共同连接的原子形成环。例如:可以形成碳原子数为3-15的环,还例如形成碳原子数为3-10的环;该环可以是饱和的(例如五元环、六元环、金刚烷等),也可以是不饱和的,例如芳香环。
在本申请中,所述的环指的是饱和或不饱和的环,例如环己烷、环戊烷、6至12元的芳环或5至12元的杂芳环等,但不限于此。
在本申请中,n个原子形成的环体系,即为n元环。例如,苯基为6元芳基。6至10元芳环是指苯环、茚环和萘环等。
在本申请中,Ar 1、Ar 2、Ar 3、Ar 4、R 1、R 2、R 3、R 4、R 5、R 6、R 7、R 8及R 9的取代或未取代的碳原子数,指的是所有的碳原子数。举例而言,例如:Ar 1
Figure PCTCN2020139383-appb-000006
则其碳原子数为7。
在本申请中,当没有另外提供具体的定义时,“杂”是指在一个官能团中包括至少1个B、O、N、P、Si或S等杂原子且其余原子为碳和氢。未取代的烷基可以是没有任何双键或三键的“饱和烷基基团”。
在本申请中,芳基指的是衍生自芳香烃环的任选官能团或取代基。芳基可以是单环芳基或多环芳基,换言之,芳基可以是单环芳基、稠环芳基、通过碳碳键共轭连接的两个或者多个单环芳基、通过碳碳键共轭连接的单环芳基和稠环芳基、通过碳碳键共轭连接的两个或者多个稠环芳基。即,通过碳碳键共轭连接的两个或者多个芳香基团也可以视为本申请的芳基。其中,芳基中不含有B、O、N、P、Si或S等杂原子。举例而言,在本申请中,联苯基、三联苯基等为芳基。芳基的示例可以包括苯基、萘基、芴基、蒽基、菲基、联苯基、三联苯基、四联苯基、五联苯基、六联苯基、苯并[9,10]菲基、芘基、苯并荧蒽基、
Figure PCTCN2020139383-appb-000007
基、芴基、9,9-二甲基芴基、9,9二苯基芴基、螺二芴基等,而不限于此。
在本申请中,未取代的芳基,指的是的碳原子数为6-30的芳基,例如:苯基、萘基、芘基、二甲基芴基、9,9二苯基芴基、螺二芴基、蒽基、菲基、
Figure PCTCN2020139383-appb-000008
基、甘菊环基、苊基、联苯基、苯并蒽基、螺二芴基、苝基、茚基等。取代的碳原子数为6-30的芳基是指至少一个氢原子被氘原子、F、Cl、I、CN、羟基、硝基、氨基等取代。取代的芳基,指的是芳基中的一个或者多个氢原子被其它基团所取代。例如至少一个氢原子被氘原子、F、Cl、Br、I、CN、羟基、氨基、支链烷基、直链烷基、环烷基、烷氧基、烷胺基或者其他基团取代,如9,9-二甲基芴基、9,9二苯基芴基、螺二芴基等。可以理解的是,取代的碳原子数为20的芳基,指的是芳基和芳基上的取代基的碳原子总数为20个。举例而言,9,9-二甲基芴基的碳原子数为15。
在本申请中,取代的芳基可以是芳基中的一个或者两个以上氢原子被诸如氘原子、卤素基团、-CN、芳基、杂芳基、三烷基硅基、烷基、环烷基、烷氧基、烷硫基等基团取代。杂芳基取代的芳基的具体实例包括但不限于,二苯并呋喃基取代的苯基、二苯并噻吩取代的苯基、吡啶取代的苯基等。应当理解地是,取代的芳基的碳原子数,指的是芳基和芳基上的取代基的碳原子总数,例如碳原子数为18的取代的芳基,指的是芳基和取代基的总碳原子数为18。
在本申请中,作为取代基的芳基例如但不限于,苯基、联苯基、萘基、9,9-二甲基芴基、9,9-二苯基芴基、螺二芴基、蒽基、菲基、
Figure PCTCN2020139383-appb-000009
基。
在本申请中,杂芳基可以是包括B、O、N、P、Si和S中的至少一个作为杂原子的杂芳基。杂芳基可以是单环杂芳基或多环杂芳基,换言之,杂芳基可以是单个芳香环体系,也可以是通过碳碳键共轭连接的多个芳香环体系,且任一芳香环体系为一个芳香单环或者一个芳香稠环。示例地,杂芳基可以包括噻吩基、呋喃基、吡咯基、咪唑基、噻唑基、噁唑基、噁二唑基、三唑基、吡啶基、联吡啶基、嘧啶基、三嗪基、吖啶基、哒嗪基、吡嗪基、喹啉基、喹唑啉基、喹喔啉基、吩噁嗪基、酞嗪基、吡啶并嘧啶基、吡啶并吡嗪基、吡嗪并吡嗪基、异喹啉基、吲哚基、咔唑基、N-芳基咔唑基、N-杂芳基咔唑基、N-烷基咔唑基、苯并噁唑基、苯并咪唑基、苯并噻唑基、苯并咔唑基、苯并噻吩基、二苯并噻吩基、噻吩并噻吩基、苯并呋喃基、菲咯啉基、异噁唑基、噻二唑基、苯并噻唑 基、吩噻嗪基、二苯并甲硅烷基、二苯并呋喃基、苯基取代的二苯并呋喃基、二苯并呋喃基取代的苯基等,而不限于此。其中,噻吩基、呋喃基、菲咯啉基等为单个芳香环体系的杂芳基,N-芳基咔唑基、N-杂芳基咔唑基、苯基取代的二苯并呋喃基、二苯并呋喃基取代的苯基等为通过碳碳键共轭连接的多个芳香环体系的杂芳基。
在本申请中,取代的杂芳基可以是杂芳基中的一个或者两个以上氢原子被诸如氘原子、卤素基团、-CN、芳基、杂芳基、三烷基硅基、烷基、环烷基、烷氧基、烷硫基等基团取代。芳基取代的杂芳基的具体实例包括但不限于,苯基取代的二苯并呋喃基、苯基取代的二苯并噻吩基、苯基取代的吡啶基等。应当理解地是,取代的杂芳基的碳原子数,指的是杂芳基和杂芳基上的取代基的碳原子总数。
在本申请中,作为取代基的杂芳基例如但不限于吡啶基、嘧啶基、咔唑基、二苯并呋喃基、二苯并噻吩基、喹啉基、喹唑啉基、喹喔啉基、喹啉、异喹啉。
在本申请中所采用的描述方式“各……独立地为”与“……分别独立地为”和“……独立地选自”可以互换,均应做广义理解,其既可以是指在不同基团中,相同符号之间所表达的具体选项之间互相不影响,也可以表示在相同的基团中,相同符号之间所表达的具体选项之间互相不影响。
举例而言:在“
Figure PCTCN2020139383-appb-000010
其中,各q独立地为0、1、2或3,各R”独立地选自氢、氟、氯”的描述中,其含义是:式Q-1表示苯环上有q个取代基R”,各个R”可以相同也可以不同,每个R”的选项之间互不影响;式Q-2表示联苯的每一个苯环上有q个取代基R”,两个苯环上的R”取代基的个数q可以相同或不同,各个R”可以相同也可以不同,每个R”的选项之间互不影响。
本申请中的不定位连接键,是指从环体系中伸出的单键
Figure PCTCN2020139383-appb-000011
其表示该连接键的一端可以连接该键所贯穿的环体系中的任意位置,另一端连接化合物分子其余部分。例如,下式(X)中所示的,式(X)所表示的萘基通过两个贯穿双环的不定位连接键与分子其他位置连接,其所表示的含义,包括如式(X-1)~式(X-10)所示出的任一可能的连接方式。
Figure PCTCN2020139383-appb-000012
例如,下式(X’)中所示的,式(X’)所表示的菲基通过一个从一侧苯环中间伸出的不定位连接键与分子其他位置连接,其所表示的含义,包括如式(X’-1)~式(X’-4)所示出的任一可能的连接方式。
Figure PCTCN2020139383-appb-000013
本申请中的不定位取代基,指的是通过一个从环体系中央伸出的单键连接的取代基,其表示该取代基可以连接在该环体系中的任何可能位置。例如,下式(Y)中所示的,式(Y)所表示的取代基R基通过一个不定位连接键与喹啉环连接,其所表示的含义,包括如式(Y-1)~式(Y-7)所示出的任一可能的连接方式。
Figure PCTCN2020139383-appb-000014
可选地,所述Ar 1、Ar 2、Ar 3、Ar 4、R 1至R 9上的取代基彼此相同或不同,且各自独立地为氘、氰基、氟、碳原子数为3-18的三烷基甲硅烷基、碳原子数为1-5的烷基、碳原子数为6-20的芳基、碳原子数为3-12的杂芳基、碳原子数为3-10的环烷基。
进一步可选地,所述Ar 1、Ar 2、Ar 3和Ar 4中的取代基分别独立地选自氘、氟、氰基、甲基、乙基、异丙基、叔丁基、环己烷基、三甲基硅基、苯基、联苯基、萘基、菲基、吡啶基、咔唑基、N-苯基咔唑基、二苯并呋喃基、二苯并噻吩基或者9,9-二甲基芴基。
可选地,所述Ar 1、Ar 2、Ar 3和Ar 4各自独立地为取代或未取代的碳原子数为6-25的芳基、取代或未取代的碳原子数为3-25的杂芳基。
可选地,R 1和R 2彼此相同或不同,且各自独立地为氢、氘、氟、氰基、三甲基硅基、甲基、乙基、异丙基、叔丁基、取代或未取代的碳原子数为6-12的芳基、取代或未取代的碳原子数为3-10的杂芳基。
可选地,R 1和R 2彼此相同或不同,且各自独立地为氢、氘、氟、氰基、三甲基硅基、甲基、乙基、异丙基、叔丁基、苯基、萘基、联苯基、吡啶基、异喹啉基、喹啉基。
可选地,所述X 1、X 2、Y 1、Y 2彼此相同或不同,且各自独立地为单键、O或S,例如
Figure PCTCN2020139383-appb-000015
Figure PCTCN2020139383-appb-000016
等。
在本申请一种实施方式中,n,m分别独立地选自1。
可选地,所述Ar 1、Ar 2、Ar 3和Ar 4各自独立地为取代或未取代的碳原子数为6-20的芳基、取代或未取代的碳原子数为5-20的杂芳基。
可选地,所述Ar 1、Ar 2、Ar 3、Ar 4中的取代基彼此相同或不同,且各自独立地为氘、氰基、氟、碳原子数为3-12的三烷基甲硅烷基、碳原子数为1-5的烷基、碳原子数为6-15的芳基、碳原子数为5-12的杂芳基、碳原子数为3-6的环烷基。
可选地,Ar 1为取代或未取代的Z’ 1,Ar 2为取代或未取代的Z’ 2,Ar 3为取代或未取代的Z’ 3,Ar 4为取代或未取代的Z’ 4;其中,未取代的Z’ 1、Z’ 2、Z’ 3和Z' 4各自独立地选自如下基团所组成的组:
Figure PCTCN2020139383-appb-000017
取代的Z’ 1、Z’ 2、Z’ 3和Z’ 4具有一个或两个以上取代基,Z’ 1、Z’ 2、Z’ 3和Z’ 4的取代基独立地选自氘、氟、氰基、甲基、乙基、异丙基、叔丁基、三甲基硅基、苯基、萘基、环己烷基、联苯基、吡啶基、二苯并呋喃基、二苯并噻吩基、菲基、N-苯基咔唑基。
可选地,Ar 1为取代或未取代的Z 1,Ar 2为取代或未取代的Z 2,Ar 3为取代或未取代的Z 3,Ar 4为未取代的Z 4;其中,未取代的Z 1、Z 2、Z 3和Z 4各自独立地为如下基团所组成的组:
Figure PCTCN2020139383-appb-000018
Figure PCTCN2020139383-appb-000019
可选地,所述Ar 1、Ar 2、Ar 3和Ar 4彼此相同或不同,且各自独立地选自如下基团所组成的组:
Figure PCTCN2020139383-appb-000020
可选地,所述Ar 1、Ar 2、Ar 3和Ar 4彼此相同或不同,且各自独立地选自如下基团所组成的组:
Figure PCTCN2020139383-appb-000021
Figure PCTCN2020139383-appb-000022
可选地,所述Ar 1和所述Ar 3相同,所述Ar 2和所述Ar 4相同。
可选地,所述含氮化合物选自如下化合物所组成的组:
Figure PCTCN2020139383-appb-000023
Figure PCTCN2020139383-appb-000024
Figure PCTCN2020139383-appb-000025
Figure PCTCN2020139383-appb-000026
Figure PCTCN2020139383-appb-000027
Figure PCTCN2020139383-appb-000028
本申请第二方面提供一种有机电致发光器件,包括相对设置的阳极和阴极,以及设于所述阳极和所述阴极之间的功能层;所述功能层包含本申请的含氮化合物。
举例而言,如图1所示,有机电致发光器件包括相对设置的阳极100和阴极200,以及设于阳极100和阴极200之间的功能层300;功能层300包含本申请所提供的含氮化合物。
可选地,功能层300包括有机电致发光层330,有机电致发光层330包含本申请的含氮化合物。
可选地,有机电致发光层330可以由单一发光材料组成,也可以包括主体材料和客体材料。可选地,有机电致发光层330由主体材料和客体材料组成,注入有机电致发光层330的空穴和注入有机电致发光层330的电子可以在有机电致发光层330复合而形成激子,激子将能量传递给主体材料,主体材料将能量传递给客体材料,进而使得客体材料能够发光。
有机电致发光层330的主体材料可以为金属螯合物类化合物、双苯乙烯基衍生物、芳香族胺衍生物、二苯并呋喃衍生物或者其他类型的材料,本申请对此不做特殊的限制。在本申请的一种实施方式中,有机电致发光层330的主体材料可以为α,β-ADN。
有机电致发光层330的客体材料可以为具有缩合芳基环的化合物或其衍生物、具有杂芳基环的化合物或其衍生物、芳香族胺衍生物或者其他材料,在本申请实施例中,有机电致发光层 330的客体材料为本申请的含氮化合物。
在本申请的一种实施方式中,有机电致发光器件可以包括依次层叠设置的阳极100、空穴传输层321、电子阻挡层322、作为能量转化层的有机电致发光层330、电子传输层350和阴极200。本申请提供的含氮化合物可以应用于有机电致发光器件的有机电致发光层330,可以有效改善有机电致发光器件的发光效率和寿命,降低有机电致发光器件的驱动电压。
可选地,阳极100包括以下阳极材料,其优选地是有助于空穴注入至功能层中的具有大逸出功(功函数,work function)材料。阳极材料具体实例包括:金属如镍、铂、钒、铬、铜、锌和金或它们的合金;金属氧化物如氧化锌、氧化铟、氧化铟锡(ITO)和氧化铟锌(IZO);组合的金属和氧化物如ZnO:Al或SnO 2:Sb;或导电聚合物如聚(3-甲基噻吩)、聚[3,4-(亚乙基-1,2-二氧基)噻吩](PEDT)、聚吡咯和聚苯胺,但不限于此。优选包括包含氧化铟锡(铟锡氧化物,indium tin oxide)(ITO)作为阳极的透明电极。
可选地,空穴传输层321可以包括一种或者多种空穴传输材料,空穴传输材料可以选自咔唑多聚体、咔唑连接三芳胺类化合物或者其他类型的化合物,本申请对此不做特殊的限定。举例而言,在本申请的一种实施方式中,空穴传输层321由化合物NPB组成。
可选地,电子阻挡层322包括一种或多种电子阻挡材料,电子阻挡材料可以选自咔唑多聚体或者其他类型化合物,本申请对此不特殊的限定。举例而言,在本申请的一些实施方式中,电子阻挡层322由CBP组成。
可选地,电子传输层350可以为单层结构,也可以为多层结构,其可以包括一种或者多种电子传输材料,电子传输材料可以选自苯并咪唑衍生物、噁二唑衍生物、喹喔啉衍生物或者其他电子传输材料,本申请对此不做特殊的限定。举例而言,在本申请的一种实施方式中,电子传输层350可以由DBimiBphen和LiQ组成。
可选地,阴极200包括以下阴极材料,其是有助于电子注入至功能层中的具有小逸出功的材料。阴极材料的具体实例包括:金属如镁、钙、钠、钾、钛、铟、钇、锂、钆、铝、银、锡和铅或它们的合金;或多层材料如LiF/Al、Liq/Al、LiO 2/Al、LiF/Ca、LiF/Al和BaF 2/Ca,但不限于此。优选包括包含镁和银的金属电极作为阴极。
可选地,如图1所示,在阳极100和空穴传输层321之间还可以设置有空穴注入层310,以增强向空穴传输层321注入空穴的能力。空穴注入层310可以选用联苯胺衍生物、星爆状芳基胺类化合物、酞菁衍生物或者其他材料,本申请对此不做特殊的限制。在本申请的一种实施方式中,空穴注入层310可以由m-MTDATA组成。
可选地,如图1所示,在阴极200和电子传输层350之间还可以设置有电子注入层360,以增强向电子传输层350注入电子的能力。电子注入层360可以包括有碱金属硫化物、碱金属卤化物等无机材料,或者可以包括碱金属与有机物的络合物。在本申请的一种实施方式中,电子注入层360可以包括LiQ。
可选地,在有机电致发光层330和电子传输层350之间还可以设置有空穴阻挡层340。
本申请实施方式还提供一种电子装置,该电子装置包括上述有机电致发光器件。由于该电子装置具有上述有机电致发光器件,因此具有相同的有益效果,本申请在此不再赘述。
举例而言,如图2所示,本申请提供一种电子装置400,该电子装置400包括上述有机电致发光器件。该电子装置400可以为显示装置、照明装置、光通讯装置或者其他类型的电子装置,例如可以包括但不限于电脑屏幕、手机屏幕、电视机、电子纸、应急照明灯、光模块等。由于该电子装置400具有上述有机电致发光器件,因此具有相同的有益效果,本申请在此不再赘述。
以下,通过实施例对本申请进一步详细说明。但是,下述实施例仅是本申请的例示,而并非限定本申请。
合成实施例
化合物合成
通过如下合成路线合成化合物
Figure PCTCN2020139383-appb-000029
其中,X 1、X 2、Y 1、Y 2相同或不同,且各自独立地为单键、O、S、NR 3、C(R 4R 5)、Ge(R 6R 7)、Si(R 8R 9)、Se,其中X 1和Y 1不能同时为单键,且X 2和Y 2不能同时为单键;
中间体胺的合成通式如下:
Figure PCTCN2020139383-appb-000030
二苯胺的合成:
Figure PCTCN2020139383-appb-000031
于N 2保护下,在0.25L三口烧瓶中,加入溴苯(10g,0.06369mol)、苯胺(5.93g,0.06369mol)、甲苯(100mL)、三(二亚苄基丙酮)二钯(0.146g,0.16mmol)、2-二环己基磷-2’,6’-二甲氧基联苯(0.131g,0.32mmol)和叔丁醇钠(2.31g,24.01mmol)并加热至108℃,搅拌3h,然后冷却至室温,反应液使用水洗后加入硫酸镁干燥,过滤后将滤液减压除去溶剂。使用甲苯体系对粗品进行重结晶提纯,得到中间体二苯胺(8.12g,收率75%)。质谱:m/z=170.21[M+H] +
参照中间体二苯胺的合成方法,且使用原料1代替溴苯,使用原料2代替苯胺,制备如下中间体。其中,中间体1-中间体25的编号、结构、原料、合成收率、表征数据等展示在表1中:
表1:中间体结构、制备及表征数据
Figure PCTCN2020139383-appb-000032
Figure PCTCN2020139383-appb-000033
Figure PCTCN2020139383-appb-000034
化合物1的合成
Figure PCTCN2020139383-appb-000035
于氮气的保护下,将3-溴-4-碘二苯并[b,d]呋喃(CAS号:2222443-03-8)(80.0g,0.214mol)和二苯并[b,d]呋喃-1-基硼酸(CAS号:162607-19-4)(45.47g,0.214mol)放入1L烧瓶中,并向其中加入在甲苯(500mL)、乙醇(160mL)、水(160mL)、碳酸钾(29.2g,0.428mol)、四(三苯基膦)钯催化剂(1.34g,1.16mmol),然后体系升高反应温度至70-73℃下回流,反应8h检查反应的终止,并再次冷却所得物。使用水和乙酸乙酯溶剂萃取所得物以除去水层,然后用无水硫酸镁处理,过滤并浓缩以获得目标材料。使用乙酸乙酯和正庚烷通过重结晶纯化获得中间体1-1(65g,产率73.3%)。
Figure PCTCN2020139383-appb-000036
将镁条(3.82g,0.157mol)和乙醚(100mL)置于氮气保护下干燥的圆底烧瓶中,加入碘(100mg)。然后将溶有中间体1-1(50.00g,0.121mol)的乙醚(200mL)溶液缓慢滴入烧瓶中,滴加完毕后升温至35℃,搅拌3小时。将反应液降至0℃,向其中缓慢滴入溶有金刚烷酮(21.8g,0.145mmol)的乙醚(200mL)溶液,滴加完毕后升温至35℃,搅拌6小时,将反应液冷却至室温,向其中加入5%盐酸至pH<7,搅拌1小时,加入乙醚(200mL)进行萃取,合并有机相,使用无水硫酸镁进行干燥,过滤,减压除去溶剂;所得粗品使用乙酸乙酯/正庚烷(1:2)为流动相进行硅胶柱色谱提纯,得到白色固体中间体1-2(43g,收率73.4%)。
Figure PCTCN2020139383-appb-000037
将中间体1-2(43g,88.8mmol)、三氟乙酸(30.42g,266.4mmol)和二氯甲烷(MC,300mL)加入圆底烧瓶中,氮气保护下搅拌2小时,然后向反应液中加入氢氧化钠水溶液至pH=8,分液,有机相使用无水硫酸镁进行干燥,过滤,减压除去溶剂;所得粗品使用二氯甲烷/正庚烷(1:2)进行硅胶柱色谱提纯,得到白色固体状中间体1-3(36.88g,收率89%)。
Figure PCTCN2020139383-appb-000038
在0.5L烧瓶中,将中间体1-3(36g,77.16mmol)引入二氯甲烷(300mL)中,将所得物搅拌,然后向其中缓慢滴加稀释在二氯甲烷(50mL)中的溴(18.49g,231.48mmol),并在室温下将所得物搅拌60小时。之后,将产生的固体过滤,然后用二氯甲烷和己烷洗涤。将固体用甲苯和N-甲基吡咯烷酮重结晶以获得中间体1-4(19.71g,产率56.1%)。
Figure PCTCN2020139383-appb-000039
于氮气的保护下,在0.25L三口烧瓶中,加入中间体1-4(10g,16.01mmol)、二苯胺(5.56g,32.82mmol)、甲苯(150mL)、三(二亚苄基丙酮)二钯(0.146g,0.16mmol)、2-二环己基磷-2’,6’-二甲氧基联苯(0.131g,0.32mmol)以及叔丁醇钠(2.31g,24.01mmol)并加热至108℃,搅拌3h,然后冷却至室温,反应液使用水洗后加入硫酸镁干燥,过滤后将滤液减压除去溶剂;使用甲苯体系对粗品进行重结晶提纯,得到白色固体化合物1(8.07g,收率63%)。质谱:m/z=800.84[M+H]+。
化合物28的合成
Figure PCTCN2020139383-appb-000040
将2-溴-1-碘-二苯并[b,d]呋喃(CAS号:2303958-26-9)(80.0g,0.214mol)和二苯并[b,d]呋喃-1-基硼酸(45.47g,0.214mol)放入1L烧瓶中,并向其中加入在甲苯(500mL)、乙醇(160mL)、水(160mL)、碳酸钾(29.2g,0.428mol),然后在升高反应器的温度直至回流的同时向其中引入四(三苯基膦)钯催化剂(1.34g,1.16mmol)。在回流之后,检查反应的终止,并再次冷却所得物。将所得物使用水和乙酸乙酯溶剂萃取以除去水层,将所得物用无水硫酸镁处理,然后过滤并浓缩以获得目标材料。使用乙酸乙酯和正庚烷通过重结晶纯化获得中间体2-1(65g,产率73.3%)。
Figure PCTCN2020139383-appb-000041
将镁条(3.82g,0.157mol)和乙醚(100mL)置于氮气保护下干燥的圆底烧瓶中,加入碘(100mg)。然后将溶有中间体2-1(50.00g,0.121mol)的乙醚(200mL)溶液缓慢滴入烧瓶中,滴加完毕后升温至35℃,搅拌3小时;将反应液降至0℃,向其中缓慢滴入溶有金刚烷酮(21.8g,0.145mmol)的乙醚(200mL)溶液,滴加完毕后升温至35℃,搅拌6小时;将反应液冷却至室温,向其中加入5%盐酸至pH<7,搅拌1小时,加入乙醚(200mL)进行萃取,合并有机相,使用无水硫酸镁进行干燥,过滤,减压除去溶剂;所得粗品使用乙酸乙酯/正庚烷(1:3)为流动相进行硅胶柱色谱提纯,得到白色固体中间体2-2(43g,收率73.4%)。
Figure PCTCN2020139383-appb-000042
将中间体2-2(43g,88.8mmol)、三氟乙酸(30.42g,266.4mmol)和二氯甲烷(300mL)加入圆底烧瓶中,氮气保护下搅拌2小时;然后向反应液中加入氢氧化钠水溶液至pH=8,分液,有机相使用无水硫酸镁进行干燥,过滤,减压除去溶剂;所得粗品使用二氯甲烷/正庚烷(1:3)进行硅胶柱色谱提纯,得到白色固体状中间体2-3(36.88g,收率89%)。
Figure PCTCN2020139383-appb-000043
在0.5L烧瓶中,将中间体2-3(36g,77.16mmol)引入二氯甲烷(300mL)中,将所得物搅拌,然后向其中缓慢滴加稀释在二氯甲烷(50mL)中的溴(18.49g,231.48mmol),并在室温下将所得物搅拌60小时。之后,将产生的固体过滤,然后用二氯甲烷和己烷洗涤。将固体用甲苯和N-甲基吡咯烷酮重结晶以获得中间体2-4(19.71g,产率56.1%)。
Figure PCTCN2020139383-appb-000044
于氮气的保护下,在0.25L三口烧瓶中,加入中间体2-4(10g,16.01mmol)、中间体24(11.03g, 32.02mmol)、甲苯(300mL)、三(二亚苄基丙酮)二钯(0.146g,0.16mmol)、2-二环己基磷-2’,6’-二甲氧基联苯(0.131g,0.32mmol)以及叔丁醇钠(2.31g,24.01mmol)加热至108℃,搅拌3h。然后冷却至室温,反应液使用水洗后加入硫酸镁干燥,过滤后将滤液减压除去溶剂;使用甲苯体系对粗品进行重结晶提纯,得到白色固体化合物28(9.06g,收率51.41%)。质谱:m/z=1152.91[M+H]+。
化合物29的合成
Figure PCTCN2020139383-appb-000045
将3-溴-4-碘-二苯并[b,d]呋喃(CAS号:2222443-03-8)(80.0g,0.214mol)和二苯并[b,d]呋喃-4-基硼酸(CAS号:100124-06-9)(45.47g,0.214mol)放入1L烧瓶中,并向其中加入在甲苯(500mL)、乙醇(160mL)、水(160mL)、碳酸钾(29.2g,0.428mol),然后在升高反应器的温度直至回流的同时向其中引入四(三苯基膦)钯催化剂(1.34g,1.16mmol)。在回流之后,检查反应的终止,并再次冷却所得物。将所得物使用水和乙酸乙酯溶剂萃取以除去水层,将所得物用无水硫酸镁处理,然后过滤并浓缩以获得目标材料。使用乙酸乙酯和正庚烷通过重结晶纯化获得中间体3-1(67.2g,产率75.1%)。
Figure PCTCN2020139383-appb-000046
将镁条(3.82g,0.157mol)和乙醚(100mL)置于氮气保护下干燥的圆底烧瓶中,加入碘(100mg)。然后将溶有中间体3-1(50.00g,0.121mol)的乙醚(200mL)溶液缓慢滴入烧瓶中,滴加完毕后升温至35℃,搅拌3小时;将反应液降至0℃,向其中缓慢滴入溶有金刚烷酮(21.8g,0.145mmol)的乙醚(200mL)溶液,滴加完毕后升温至35℃,搅拌6小时。将反应液冷却至室温,向其中加入5%盐酸至pH<7,搅拌1小时,加入乙醚(200mL)进行萃取,合并有机相,使用无水硫酸镁进行干燥,过滤,减压除去溶剂;所得粗品使用乙酸乙酯/正庚烷(1:2)为流动相进行硅胶柱色谱提纯,得到白色固体中间体3-2(42g,收率72.8%)。
Figure PCTCN2020139383-appb-000047
将中间体3-2(43g,88.8mmol)、三氟乙酸(30.42g,266.4mmol)和二氯甲烷(300mL)加入圆底烧瓶中,氮气保护下搅拌2小时;然后向反应液中加入氢氧化钠水溶液至pH=8,分液,有机相使用无水硫酸镁进行干燥,过滤,减压除去溶剂;所得粗品使用二氯甲烷/正庚烷(1:2)进行硅胶柱色谱提纯,得到白色固体状中间体3-3(35.44g,收率86.8%)。
Figure PCTCN2020139383-appb-000048
在0.5L烧瓶中,将中间体3-3(36g,77.16mmol)引入二氯甲烷(300mL)中,将所得物搅拌,然后向其中缓慢滴加稀释在二氯甲烷(50mL)中的溴(18.49g,231.48mmol),并在室温下将所得物搅拌60小时。之后,将产生的固体过滤,然后用二氯甲烷和己烷洗涤。将固体用甲苯和N-甲基吡咯烷酮重结晶以获得中间体3-4(19.71g,产率56.1%)。
Figure PCTCN2020139383-appb-000049
N 2保护下在0.25L三口烧瓶中,加入中间体3-4(10g,16.01mmol)、中间体25(10.26g,32.02mmol)、甲苯(300mL)、三(二亚苄基丙酮)二钯(0.146g,0.16mmol)、2-二环己基磷-2’,6’-二甲氧基联苯(0.131g,0.32mmol)以及叔丁醇钠(2.31g,24.01mmol)加热至108℃,搅拌3h,然后冷却至室温,反应液使用水洗后加入硫酸镁干燥,过滤后将滤液减压除去溶剂。使用甲苯体系对粗品进行重结晶提纯,得到白色固体化合物29(7.54g,收率48%)。质谱:m/z=980.93[M+H] +
参照化合物1及以上几个化合物的合成方法,且使用原料3代替二苯胺,使用原料4代替3-溴,4-碘二苯并[b,d]呋喃,使用原料5代替二苯并[b,d]呋喃-1-基硼酸制备如下化合物。其中,化合物2-化合物18、化合物35、36的编号、结构、原料、最后一步的合成收率、表征数据等展示在表2中:
表2:化合物结构、制备及表征数据
Figure PCTCN2020139383-appb-000050
Figure PCTCN2020139383-appb-000051
Figure PCTCN2020139383-appb-000052
化合物1的核磁数据:
1H NMR(400MH Z,CDCl 3)δ:8.01(d,2H),7.58(d,2H),7.53-7.48(m,4H),7.37-7.22(m,16H),7.15-7.09(m,6H),2.91(d,2H),2.61(d,2H),2.16(s,1H),1.90(s,3H),1.77(d,2H),1.69(d,2H),1.60(s,2H).
化合物14的核磁数据:
1H NMR(400MH Z,CDCl 3)δ:8.16(m,2H),8.05-7.95(m,4H),7.86-7.55(m,8H),7.50-7.23(m,12H),7.15-7.00(m,8H),2.91(d,2H),2.61(d,2H),2.16(s,1H),1.90(s,3H),1.77(d,2H),1.69(d,2H),1.60(s,2H).
有机电致发光器件的制作及评估
实施例1:
通过如下方法制备蓝色有机电致发光器件
将ITO厚度为
Figure PCTCN2020139383-appb-000053
的ITO基板(康宁制造)切割成40mm(长)×40mm(宽)×0.7mm(厚)的尺寸,采用光刻工序,将其制备成具有阴极、阳极以及绝缘层图案的实验基板,利用紫外臭氧以及O 2:N 2等离子进行表面处理,以增加阳极(实验基板)的功函数的和清除浮渣。
在实验基板(阳极)上真空蒸镀m-MTDATA(4,4',4”-三(N-3-甲基苯基-N-苯基氨基)三苯胺)以形成厚度为
Figure PCTCN2020139383-appb-000054
的空穴注入层(HIL),并且在空穴注入层上真空蒸镀化合物NPB,以形成厚度为
Figure PCTCN2020139383-appb-000055
的空穴传输层。
在空穴传输层上蒸镀CBP,形成厚度为
Figure PCTCN2020139383-appb-000056
的电子阻挡层(EBL)。
将α,β-ADN作为主体材料,同时掺杂化合物1作为客体材料,以100:3的膜厚比蒸镀形成了厚度为
Figure PCTCN2020139383-appb-000057
的有机电致发光层(EML)。
将DBimiBphen(4,7-二苯基-2,9-双(4-(1-苯基-1H-苯并[d]咪唑-2-基)苯基)-1,10-菲咯啉)和LiQ(8-羟基喹啉-锂)以1:1的膜厚比蒸镀形成了
Figure PCTCN2020139383-appb-000058
厚的电子传输层(ETL),将Yb蒸镀在电子传输层上以形成厚度为
Figure PCTCN2020139383-appb-000059
的电子注入层(EIL),然后将镁(Mg)和银(Ag)以1:9的膜厚比蒸镀在电子注入层上,形成厚度为
Figure PCTCN2020139383-appb-000060
的阴极。
此外,在上述阴极上蒸镀厚度为
Figure PCTCN2020139383-appb-000061
的CP-1,形成有机覆盖层(CPL),从而完成有机发光器件的制造。
其中,在制备蓝色有机电致发光器件时,所使用的各个材料的结构如下:
Figure PCTCN2020139383-appb-000062
实施例2~22
用化合物2-18、化合物28、29、35、36替代实施例1中发光层与α,β-ADN共蒸镀的化合物1,按照实施例1的方法制备相应的蓝色有机电致发光器件。
对比例1~对比例4
用化合物A、化合物B、化合物C、化合物D替代实施例1中发光层与α,β-ADN共蒸镀的化合物1,按照实施例1的方法制备相应的蓝色有机电致发光器件。
其中,化合物A、化合物B、化合物C、化合物D的结构式如下:
Figure PCTCN2020139383-appb-000063
对实施例2-22和对比例1-4制备所得的蓝色有机电致发光器件进行性能测试,其中IVL(电流、电压、亮度)数据对比是在10mA/cm 2下的测试结果,寿命是20mA/cm 2电流密度下的测试结果,具体结果如表3所示。
表3 蓝色有机电致发光器件的性能测试结果
Figure PCTCN2020139383-appb-000064
根据上述表1的结果可知,采用化合物1-18,化合物28、29、35、36作为有机电致发光层(EML)的掺杂材料的实施例1-22与使用化合物A-D的对比例1、对比例2、对比例3、对比例4相比,发光效率和器件寿命均有很高提升。
综合比较,本发明的含氮化合物兼顾提高器件效率及寿命,作为有机电致发光层(EML)的掺杂材料制备的有机电致发光器件相对于对比例1-4,工作电压至少降低3.8%,器件效率至少提高11.5%,外量子效率提高至少11.6%,寿命至少提升22%。发光效率和寿命均有良好的改善,因此本申请的含氮化合物具有提高器件发光效率和寿命的特点。
可见,将本发明物做蓝色发光层掺杂材料,可制造出驱动电压、发光效率、外量子效率、寿命等特性优异的高效率、长寿命的有机电致发光器件。

Claims (16)

  1. 一种含氮化合物,其中,所述含氮化合物的结构如化学式1所示:
    Figure PCTCN2020139383-appb-100001
    其中,X 1、X 2、Y 1、Y 2彼此相同或不同,且各自独立地为单键、O、S、N(R 3)、C(R 4R 5)、Ge(R 6R 7)、Si(R 8R 9)、Se,其中X 1和Y 1不能同时为单键,且X 2和Y 2不能同时为单键;
    R 3至R 9彼此相同或不同,且各自独立地为氢、氘、取代或未取代的碳原子数为1-10的烷基、取代或未取代的碳原子数为6-30的芳基、取代或未取代的碳原子数为3-30的杂芳基、取代或未取代的碳原子数为3-10的环烷基;
    或者连接于同一个原子上的R 4和R 5相互连接形成环,或者连接于同一个原子上的R 6和R 7相互连接形成环,或者连接于同一个原子上的R 8和R 9相互连接形成环;
    m为取代基R 1的数量,n为取代基R 2的数量,m和n相同或不同,且各自独立地为1、2、3或4;
    R 1和R 2彼此相同或不同,且各自独立地为氢、氘、卤素基团、氰基、取代或未取代的碳原子数为3-12的三烷基硅基、取代或未取代的碳原子数为1-10的烷基、取代或未取代的碳原子数为6-30的芳基、取代或未取代的碳原子数为3-30的杂芳基、取代或未取代的碳原子数为3-10的环烷基;或者任意两个相邻的R 1相互连接形成环,或者任意两个相邻的R 2相互连接形成环;
    Ar 1、Ar 2、Ar 3和Ar 4彼此相同或不同,且各自独立地为取代或未取代的碳原子数为6-40的芳基、取代或未取代的碳原子数为3-40的杂芳基;
    所述Ar 1、Ar 2、Ar 3、Ar 4、R 1至R 9中的各取代基彼此相同或不同,且各自独立地为氘、氰基、卤素、碳原子数为3-20的三烷基甲硅烷基、碳原子数为6-20的芳基甲硅烷基、碳原子数为1-5的烷基、碳原子数为6-20的芳基、碳原子数为3-20的杂芳基、碳原子数为3-10的环烷基、碳原子数为2-7的杂环烷基、碳原子数为1-7的烷氧基。
  2. 根据权利要求1所述的含氮化合物,其中,所述Ar 1、Ar 2、Ar 3、Ar 4、R 1至R 9中的取代基彼此相同或不同,且各自独立地为氘、氰基、氟、碳原子数为3-18的三烷基甲硅烷基、碳原子数为1-5的烷基、碳原子数为6-20的芳基、碳原子数为3-12的杂芳基、碳原子数为3-10的环烷基。
  3. 根据权利要求1或2所述的含氮化合物,其中,R 1和R 2彼此相同或不同,且各自独立地为氢、氘、氟、氰基、三甲基硅基、甲基、乙基、异丙基、叔丁基、取代或未取代的碳原子数为6-12的芳基、取代或未取代的碳原子数为3-10的杂芳基。
  4. 根据权利要求1-3中任意一项所述的含氮化合物,其中,所述含氮化合物的结构选自:
    Figure PCTCN2020139383-appb-100002
    Figure PCTCN2020139383-appb-100003
  5. 根据权利要求1-4中任意一项所述的含氮化合物,其中,所述Ar 1、Ar 2、Ar 3和Ar 4各自独立地为取代或未取代的碳原子数为6-20的芳基、取代或未取代的碳原子数为5-20的杂芳基。
  6. 根据权利要求1-5中任意一项所述的含氮化合物,其中,所述Ar 1、Ar 2、Ar 3、Ar 4中的取代基彼此相同或不同,且各自独立地为氘、氰基、氟、碳原子数为3-12的三烷基甲硅烷基、碳原子数为1-5的烷基、碳原子数为6-15的芳基、碳原子数为5-12的杂芳基、碳原子数为3-6的环烷基。
  7. 根据权利要求1-6中任意一项所述的含氮化合物,其中,Ar 1为取代或未取代的Z’ 1,Ar 2为取代或未取代的Z’ 2,Ar 3为取代或未取代的Z’ 3,Ar 4为取代或未取代的Z’ 4;其中,未取代的Z’ 1、Z’ 2、Z’ 3和Z' 4各自独立地选自如下基团所组成的组:
    Figure PCTCN2020139383-appb-100004
    取代的Z’ 1、Z’ 2、Z’ 3和Z’ 4具有一个或两个以上取代基,Z’ 1、Z’ 2、Z’ 3和Z’ 4的取代基独立地选自氘、氟、氰基、甲基、乙基、异丙基、叔丁基、三甲基硅基、苯基、萘基、环己烷基、联苯基、吡啶基、二苯并呋喃基、二苯并噻吩基、菲基、N-苯基咔唑基。
  8. 根据权利要求1-7中任意一项所述的含氮化合物,其中,Ar 1为取代或未取代的Z 1,Ar 2为取代或未取代的Z 2,Ar 3为取代或未取代的Z 3,Ar 4为未取代的Z 4;其中,未取代的Z 1、Z 2、Z 3和Z 4各自独立地为如下基团所组成的组:
    Figure PCTCN2020139383-appb-100005
    Figure PCTCN2020139383-appb-100006
  9. 根据权利要求1-8中任意一项所述的含氮化合物,其中,所述Ar 1、Ar 2、Ar 3和Ar 4彼此相同或不同,且各自独立地选自如下基团所组成的组:
    Figure PCTCN2020139383-appb-100007
  10. 根据权利要求1-9中任意一项所述的含氮化合物,其中,所述Ar 1、Ar 2、Ar 3和Ar 4彼此相同或不同,且各自独立地选自如下基团所组成的组:
    Figure PCTCN2020139383-appb-100008
    Figure PCTCN2020139383-appb-100009
  11. 根据权利要求1-10中任意一项所述的含氮化合物,其中,所述Ar 1和所述Ar 3相同,所述Ar 2和所述Ar 4相同。
  12. 根据权利要求1-11中任意一项所述的含氮化合物,其中,所述含氮化合物选自如下化合物所组成的组:
    Figure PCTCN2020139383-appb-100010
    Figure PCTCN2020139383-appb-100011
    Figure PCTCN2020139383-appb-100012
    Figure PCTCN2020139383-appb-100013
    Figure PCTCN2020139383-appb-100014
    Figure PCTCN2020139383-appb-100015
  13. 一种有机电致发光器件,其中,包括相对设置的阳极和阴极,以及设于所述阳极和所述阴极之间的功能层;
    所述功能层包含权利要求1-12任一项所述的含氮化合物。
  14. 根据权利要求13所述的有机电致发光器件,其中,所述功能层包括有机电致发光层,所述有机电致发光层包含所述的含氮化合物。
  15. 根据权利要求14所述的有机电致发光器件,其中,所述有机电致发光层包含客体材料,所述客体材料含有所述的含氮化合物。
  16. 一种电子装置,其中,包括权利要求13-15任一项所述的有机电致发光器件。
PCT/CN2020/139383 2020-03-04 2020-12-25 含氮化合物、有机电致发光器件和电子装置 WO2021174967A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010144517.3 2020-03-04
CN202010144517 2020-03-04
CN202011130769.7 2020-10-21
CN202011130769.7A CN112209944B (zh) 2020-03-04 2020-10-21 含氮化合物、有机电致发光器件和电子装置

Publications (1)

Publication Number Publication Date
WO2021174967A1 true WO2021174967A1 (zh) 2021-09-10

Family

ID=74056292

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/139383 WO2021174967A1 (zh) 2020-03-04 2020-12-25 含氮化合物、有机电致发光器件和电子装置

Country Status (2)

Country Link
CN (1) CN112209944B (zh)
WO (1) WO2021174967A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114516829A (zh) * 2022-02-16 2022-05-20 闽都创新实验室 一种二苯乙烯衍生物,其制备及应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109369660A (zh) * 2018-10-29 2019-02-22 吉林奥来德光电材料股份有限公司 有机发光材料及其制法和含该材料的有机电致发光器件
CN110128279A (zh) * 2019-06-14 2019-08-16 陕西莱特光电材料股份有限公司 有机电致发光材料及包含该材料的有机电致发光器件
CN110467536A (zh) * 2019-06-14 2019-11-19 陕西莱特光电材料股份有限公司 含氮化合物、有机电致发光器件和光电转化器件
CN110615759A (zh) * 2019-09-25 2019-12-27 陕西莱特光电材料股份有限公司 化合物、光电转化器件及电子装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7943543B1 (en) * 2006-09-29 2011-05-17 Uop Llc Ionic liquid-solid-polymer mixed matrix membranes for gas separations
CN107189436B (zh) * 2017-07-20 2019-12-27 中国科学院长春应用化学研究所 一种聚酰亚胺纳米泡沫及其制备方法
KR102252884B1 (ko) * 2018-08-29 2021-05-17 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기발광 소자
WO2020045924A1 (ko) * 2018-08-29 2020-03-05 주식회사 엘지화학 신규한 화합물 및 이를 이용한 유기발광 소자

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109369660A (zh) * 2018-10-29 2019-02-22 吉林奥来德光电材料股份有限公司 有机发光材料及其制法和含该材料的有机电致发光器件
CN110128279A (zh) * 2019-06-14 2019-08-16 陕西莱特光电材料股份有限公司 有机电致发光材料及包含该材料的有机电致发光器件
CN110467536A (zh) * 2019-06-14 2019-11-19 陕西莱特光电材料股份有限公司 含氮化合物、有机电致发光器件和光电转化器件
CN110615759A (zh) * 2019-09-25 2019-12-27 陕西莱特光电材料股份有限公司 化合物、光电转化器件及电子装置

Also Published As

Publication number Publication date
CN112209944B (zh) 2022-01-28
CN112209944A (zh) 2021-01-12

Similar Documents

Publication Publication Date Title
WO2021135207A1 (zh) 含氮化合物、电子元件和电子装置
WO2021213109A1 (zh) 一种芳胺化合物、使用其的电子元件及电子装置
EP4155298A1 (en) Organic electroluminescent material, electronic element, and electronic apparatus
WO2022083598A1 (zh) 一种含氮化合物以及使用其的电子元件和电子装置
WO2022088865A1 (zh) 含氮化合物、电子元件和电子装置
WO2021135183A1 (zh) 有机化合物、有机电致发光器件和电子装置
WO2022213905A1 (zh) 有机化合物以及使用其的电子元件和电子装置
CN114133332B (zh) 有机化合物、电子元件及电子装置
JP2008156316A (ja) 有機発光素子用材料及びこれを用いた有機発光素子
CN114456174B (zh) 含氮化合物及包含其的电子元件和电子装置
WO2023045729A1 (zh) 含氮化合物及电子元件和电子装置
WO2021136197A1 (zh) 含氮化合物、电子元件和电子装置
JP2022532949A (ja) 窒素含有化合物、電子部品及び電子装置
CN113173858A (zh) 含氮化合物、电子元件和电子装置
TWI637038B (zh) 二咔唑衍生物及有機電致發光元件
WO2022100194A1 (zh) 含氮化合物、有机电致发光器件和电子装置
CN114144402B9 (zh) 化合物及包含其的有机发光器件
WO2023202198A1 (zh) 有机材料、电子元件和电子装置
WO2021174967A1 (zh) 含氮化合物、有机电致发光器件和电子装置
CN115490655B (zh) 有机化合物、有机电致发光器件及电子装置
CN114335399B (zh) 有机电致发光器件及包括其的电子装置
CN114075166B (zh) 一种有机化合物以及使用其的电子元件和电子装置
CN115521214B (zh) 有机化合物及包含其的电子元件和电子装置
WO2023087557A1 (zh) 有机电致发光器件及电子装置
WO2024131005A1 (zh) 有机化合物、有机电致发光器件和电子装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20923554

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20923554

Country of ref document: EP

Kind code of ref document: A1