WO2019114764A1 - 一种有机金属配合物,包含其的聚合物、混合物和组合物,及其在电子器件中的应用 - Google Patents

一种有机金属配合物,包含其的聚合物、混合物和组合物,及其在电子器件中的应用 Download PDF

Info

Publication number
WO2019114764A1
WO2019114764A1 PCT/CN2018/120700 CN2018120700W WO2019114764A1 WO 2019114764 A1 WO2019114764 A1 WO 2019114764A1 CN 2018120700 W CN2018120700 W CN 2018120700W WO 2019114764 A1 WO2019114764 A1 WO 2019114764A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
organometallic complex
organic
mmol
atoms
Prior art date
Application number
PCT/CN2018/120700
Other languages
English (en)
French (fr)
Inventor
施超
黄宏
潘君友
Original Assignee
广州华睿光电材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州华睿光电材料有限公司 filed Critical 广州华睿光电材料有限公司
Priority to CN201880069888.0A priority Critical patent/CN111278839B/zh
Priority to US16/772,661 priority patent/US11594690B2/en
Publication of WO2019114764A1 publication Critical patent/WO2019114764A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0033Iridium compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • C09K2211/1033Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom with oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/185Metal complexes of the platinum group, i.e. Os, Ir, Pt, Ru, Rh or Pd
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • This invention relates to the field of electroluminescent materials, and more particularly to an organometallic complex, polymers, mixtures and compositions thereof, and their use in organic electronic devices, particularly in organic phosphorescent light emitting diodes.
  • the invention further relates to an organic electronic device comprising the organometallic complex of the invention, and to the use thereof.
  • OLEDs Organic light-emitting diodes
  • Organic light-emitting diodes using fluorescent materials have high reliability, but their internal electroluminescence quantum under electric field excitation The efficiency is limited to 25%, because the probability ratio of exciton generating single-excited and triple-excited states is 1:3.
  • Professor Thomson of the University of Southern California and Professor Forrest of Princeton University will be three (2- Phenylpyridine) ruthenium Ir(ppy) 3 was doped into N,N-dicarbazole biphenyl (CBP), and a green electrophosphorescent device was successfully prepared, which caused a strong interest in complex phosphorescent materials.
  • CBP N,N-dicarbazole biphenyl
  • the spin-orbit coupling of the molecules is improved, the phosphorescence lifetime is shortened, the intersystem crossings of the molecules are enhanced, and the phosphorescence is smoothly emitted.
  • a complex reaction is mild, and the structure of the complex and the substituent group can be conveniently changed, the emission wavelength is adjusted, and an electrophosphorescent material having excellent properties can be obtained.
  • the internal quantum efficiency of phosphorescent OLEDs has approached 100%.
  • most phosphorescent materials have too broad luminescence spectrum and poor color purity, which is not conducive to high-end display, and the stability of such phosphorescent OLEDs needs to be further improved.
  • Another object of the present invention is to provide an organic electronic device comprising the organometallic complex of the present invention, and uses thereof.
  • Each occurrence of Ar 1 is a heteroaromatic group containing at least one N; each occurrence of Ar 2 , the same or different is an aromatic group or a heteroaromatic group; wherein Ar 1 , Ar 2 may be further substituted by one or more R 1 ;
  • X is O, S, Se, NR 1 , C(R 1 ) 2 or Si(R 1 ) 2 ;
  • M is a transition metal element
  • n represents an integer of 1-3.
  • a high polymer comprising at least one repeating unit comprising a structural unit represented by the general formula (I).
  • a mixture comprising an organometallic complex or polymer as described above, and at least one other organic functional material, said another organic functional material being selected from the group consisting of a hole injecting material (HIM), a cavity Transport material (HTM), electron transport material (ETM), electron injecting material (EIM), electron blocking material (EBM), hole blocking material (HBM), luminescent material (Emitter), host material (Host) and organic dye.
  • HIM hole injecting material
  • HTM cavity Transport material
  • ETM electron transport material
  • EIM electron injecting material
  • EBM electron blocking material
  • HBM hole blocking material
  • Emitter luminescent material
  • host material Hostemitter
  • organic dye organic dye
  • a composition comprising an organometallic complex or polymer or mixture as described above, and at least one organic solvent.
  • An application of an organometallic complex, polymer, mixture or composition according to the above in an organic electronic device is an application of an organometallic complex, polymer, mixture or composition according to the above in an organic electronic device.
  • An organic electronic device comprising at least one organometallic complex, polymer, mixture or composition as described above.
  • organic electronic device as described above, characterized in that the organic electronic device is an organic light emitting diode (OLED), an organic photovoltaic cell (OPV), an organic light emitting cell (OLEEC), an organic field effect transistor (OFET), Organic light-emitting field effect transistors, organic lasers, organic spintronic devices, organic sensors, and Organic Plasmon Emitting Diodes.
  • OLED organic light emitting diode
  • OLED organic photovoltaic cell
  • OLED organic light emitting cell
  • OFET organic field effect transistor
  • Organic light-emitting field effect transistors Organic lasers, organic spintronic devices, organic sensors, and Organic Plasmon Emitting Diodes.
  • the present invention increases the conjugate degree and rigidity of the complex by introducing a fused ring unit containing different main group elements in the phosphorescent metal complex, thereby enhancing the luminous efficiency of the complex and improving the color purity. And adjusting the wavelength of the light emitted by the complex.
  • the present invention provides an organometallic complex and its use in an organic electroluminescent device.
  • the present invention will be further described in detail below in order to make the objects, technical solutions and effects of the present invention more clear and clear. It is understood that the specific embodiments described herein are merely illustrative of the invention and are not intended to limit the invention.
  • the host material In the present invention, the host material, the matrix material, the Host material, and the Matrix material have the same meaning and are interchangeable.
  • metal organic complexes metal organic complexes, metal organic complexes, and organometallic complexes have the same meaning and are interchangeable.
  • the singlet states and the singlet states have the same meaning and are interchangeable.
  • the triplet state and the triplet state have the same meaning and are interchangeable.
  • the polymer that is, the polymer, includes a homopolymer, a copolymer, and a block copolymer.
  • the high polymer also includes a dendrimer.
  • the present invention provides an organometallic complex as shown in the general formula (I):
  • Each occurrence of Ar 1 is a heteroaromatic group containing at least one N; each occurrence of Ar 2 , the same or different is an aromatic group or a heteroaromatic group; wherein Ar 1 , Ar 2 Can be further substituted by one or more R 1 ;
  • X is O, S, Se, NR 1 , C(R 1 ) 2 or Si(R 1 ) 2 ;
  • R 1 and R 2 are the same or different at each occurrence, H, D, a linear alkyl, alkoxy or thioalkoxy group having 1 to 20 C atoms, or having 3 to a branched or cyclic alkyl, alkoxy or thioalkoxy group of 20 C atoms or a silyl group, or a substituted keto group having 1 to 20 C atoms, or An alkoxycarbonyl group having 2 to 20 C atoms, or an aryloxycarbonyl group having 7 to 20 C atoms, a cyano group, a carbamoyl group, a haloformyl group, a formyl group a group, an isocyano group, an isocyanate group, a thiocyanate group or an isothiocyanate group, a hydroxyl group, a nitro group, a CF 3 group, Cl, Br, F, can be crossed a linked group or a substituted or unsubstituted
  • M is a transition metal element
  • n represents an integer of 1-3.
  • X is O or S, and Z is B or N; in a more preferred embodiment, X is O or S, and Z is N; In a most preferred embodiment, X is O and Z is N.
  • R 1 and R 2 are the same or different at each occurrence, H, D, a linear alkyl group having 1 to 10 C atoms, an alkoxy group or a thioalkyl group.
  • the organometallic complex the metal element M may be selected from the group consisting of transition metals such as chromium, molybdenum, tungsten, rhenium, ruthenium, nickel, silver, copper, zinc, palladium, gold, and hungry. Any of ⁇ , ⁇ , ⁇ and platinum.
  • the organometallic complex is selected from the group consisting of ruthenium, copper, palladium, gold, hungry, ruthenium, osmium or platinum.
  • the organometallic complex is characterized in that the metal element M is selected from the group consisting of rhodium or platinum.
  • each occurrence of Ar 1 is a heteroaromatic group comprising at least one N; in a more preferred embodiment, said Ar 1 is each time When present, the same or different are heteroaromatic groups containing at least one N having 6 to 70 ring atoms; in a more preferred embodiment, said Ar 1 is the same or different each time it occurs.
  • each occurrence of Ar 1 is the same or different and contains at least one N a heteroaromatic group having 6 to 50 ring atoms; in a very preferred embodiment, each occurrence of Ar 1 is the same or different, and the number of ring atoms containing at least one N is 6 to 40 heteroaromatic groups.
  • Ar 1 may be further substituted with one or more R 1 .
  • each occurrence of Ar 1 is a heteroaromatic group comprising at least two or three N; wherein at least one of Ar 1 is coordinated to the metal, Ar 1 may be further substituted with one or more R 1 .
  • the organometallic complex is characterized in that said Ar 1 is independently of each other selected from any one of the formulae C1 to C3 when it is present multiple times:
  • the Ar 2 is an aromatic group or a heteroaromatic group having 6 to 70 ring atoms; in a more preferred embodiment, Ar 2 is a ring number of 6 to 60.
  • the number is 6 to 40 aromatic groups or heteroaromatic groups. One or more of the groups may be further substituted by R 1 .
  • An aromatic ring system or an aromatic group refers to a hydrocarbon group containing at least one aromatic ring, including a monocyclic group and a polycyclic ring system.
  • a heteroaromatic or heteroaromatic group refers to a hydrocarbyl group (containing heteroatoms) comprising at least one heteroaromatic ring, including monocyclic groups and polycyclic ring systems.
  • the heteroatoms are preferably selected from the group consisting of Si, N, P, O, S and/or Ge, particularly preferably selected from the group consisting of Si, N, P, O and/or S.
  • These polycyclic rings may have two or more rings in which two carbon atoms are shared by two adjacent rings, a fused ring.
  • aromatic or heteroaromatic ring systems include not only aromatic or heteroaromatic systems, but also multiple aryl or heteroaromatic groups which may also be interrupted by short non-aromatic units ( ⁇ 10%).
  • Non-H atoms preferably less than 5% of non-H atoms, such as C, N or O atoms).
  • systems such as 9,9'-spirobifluorene, 9,9-diarylfluorene, triarylamine, diaryl ether, etc., are also considered to be aromatic ring systems for the purposes of the present invention.
  • examples of the aromatic group are: benzene, naphthalene, anthracene, phenanthrene, perylene, tetracene, anthracene, benzopyrene, triphenylene, anthracene, anthracene, and derivatives thereof.
  • heteroaromatic groups are: furan, benzofuran, thiophene, benzothiophene, pyrrole, pyrazole, triazole, imidazole, oxazole, oxadiazole, thiazole, tetrazole, hydrazine, hydrazine Oxazole, pyrroloimidazole, pyrrolopyrrole, thienopyrrole, thienothiophene, furopyrrol, furanfuran, thienofuran, benzisoxazole, benzisothiazole, benzimidazole, pyridine, pyrazine, Pyridazine, pyrimidine, triazine, quinoline, isoquinoline, o-diazine, quinoxaline, phenanthridine, carbaidine, quinazoline, quinazolinone, and derivatives thereof.
  • the organometallic complex, Ar 2 is preferably: benzene, biphenyl, naphthalene, anthracene, phenanthrene, triphenylene, anthracene, pyridine, pyrimidine, triazine, anthracene, thioindigo, Silicon germanium, carbazole, thiophene, furan, thiazole, triphenylamine, triphenylphosphine oxide, tetraphenyl silicon, snail, spiro silicon germanium and derivatives thereof; one or more groups may be further substituted by R 1 .
  • the organometallic complex, Ar 2 is preferably: benzene, biphenyl, naphthalene, anthracene, phenanthrene, benzophenanthrenequinone, spiro and its derivatives.
  • One or more of the groups may be further substituted by R 1 .
  • Ar 2 when Ar 2 occurs multiple times, it is selected from the same group, and further, when Ar 2 occurs multiple times, it is similarly selected from substituted or unsubstituted. Benzene or naphthalene.
  • the organometallic complex is a monoanionic ligand which, independently of each other, is selected from any one of the following formulae L1 to L15.
  • R 3 to R 72 are selected from the group consisting of -H, -F, -Cl, -Br, -I, -D, -CN, -NO 2 , -CF 3 , B(OR 2 ) 2 , Si(R 2 ) 3 , linear paraffin, alkane ether, containing a carbon atom alkane sulfide, or a branched alkane, or a cycloalkane, containing Alkane ether or alkane thioether hydrogen of a carbon atom, containing Any one of aryl groups of carbon atoms; wherein a broken line indicates a bond directly connected to the metal element M.
  • the organometallic complex is selected from the group consisting of, but not limited to, the following formula:
  • Ar 1 , R 1 , R 2 , M, m, n have the same meanings as defined above, and y represents Integer, z means The integer.
  • organometallic complex examples of the organometallic complex according to the present invention are listed below, but are not limited to the following structures:
  • the organometallic complex according to the invention is a luminescent material having an emission wavelength between 300 and 1000 nm, preferably between 350 and 900 nm, more preferably between 400 and 800 nm.
  • the luminescence referred to herein means photoluminescence or electroluminescence.
  • the organometallic complex according to the present invention has a photo or electroluminescence efficiency of ⁇ 30%, preferably ⁇ 40%, more preferably ⁇ 50%, and most preferably ⁇ 60%. .
  • the metal organic complex according to the present invention may also be a non-luminescent material.
  • the invention still further relates to a high polymer comprising at least one repeating unit comprising a structural unit represented by the general formula (I).
  • the method for synthesizing the high polymer is selected from the group consisting of SUZUKI-, YAMAMOTO-, STILLE-, NIGESHI-, KUMADA-, HECK-, SONOGASHIRA-, HIYAMA-, FUKUYAMA-, HARTWIG-BUCHWALD- and ULLMAN.
  • the polymer according to the invention has a glass transition temperature (Tg) ⁇ 100 ° C, preferably ⁇ 120 ° C, more preferably ⁇ 140 ° C, more preferably ⁇ 160 ° C, optimal. It is ⁇ 180 °C.
  • the polymer according to the present invention preferably has a molecular weight distribution (PDI) in the range of from 1 to 5; more preferably from 1 to 4; more preferably from 1 to 3, still more preferably 1 ⁇ 2 is most preferably 1 to 1.5.
  • PDI molecular weight distribution
  • the weight average molecular weight (Mw) of the high polymer according to the present invention preferably ranges from 10,000 to 1,000,000; more preferably from 50,000 to 500,000; more preferably from 100,000 to 40. More preferably, it is 150,000 to 300,000, and most preferably 200,000 to 250,000.
  • the present invention also provides a mixture comprising at least one of the above-described organometallic complexes or polymers, and at least another organic functional material
  • the at least one other organic functional material may be selected from the group consisting of Hole injection material (HIM), hole transport material (HTM), electron transport material (ETM), electron injecting material (EIM), electron blocking material (EBM), hole blocking material (HBM), luminescent material (Emitter), Host material and organic dyes.
  • HIM Hole injection material
  • HTM hole transport material
  • ETM electron transport material
  • EIM electron injecting material
  • EBM electron blocking material
  • Emitter luminescent material
  • Host material and organic dyes.
  • Various organic functional materials are described in detail in, for example, WO2010135519A1, US20090134784A1, and WO 2011110277A1, the entire disclosure of which is hereby incorporated by reference.
  • the metal organic complex is present in the mixture according to the invention in an amount of from 0.01 to 30% by weight, preferably from 0.5 to 20% by weight, more preferably from 2 to 15% by weight, most preferably from 5 to 15wt%.
  • the mixture according to the invention comprises a metal organic complex or polymer according to the invention and a triplet matrix material.
  • the mixture according to the invention comprises a metal organic complex or polymer according to the invention, a triplet matrix material and another triplet emitter.
  • the mixture according to the invention comprises a metal organic complex or polymer according to the invention and a thermally activated delayed fluorescent luminescent material (TADF).
  • TADF thermally activated delayed fluorescent luminescent material
  • the mixture according to the invention comprises a metal organic complex or polymer according to the invention, a triplet matrix material and a thermally activated delayed fluorescent luminescent material (TADF).
  • TADF thermally activated delayed fluorescent luminescent material
  • triplet matrix material the triplet emitter and the TADF material (but is not limited thereto).
  • Triplet Host Material (Triplet Host):
  • the example of the triplet host material is not particularly limited, and any metal complex or organic compound may be used as the host as long as its triplet energy level is higher than that of the illuminant, particularly the triplet illuminant or the phosphorescent illuminant.
  • metal complexes that can be used as a triplet host include, but are not limited to, the following general structure:
  • M3 is a metal
  • (Y 3 -Y 4 ) is a bidentate ligand, Y 3 and Y 4 are independently selected from C, N, O, P, and S
  • L is an ancillary ligand
  • m3 is an integer, Its value ranges from 1 to the maximum coordination number of the metal; in a preferred embodiment, the metal complex that can be used as the triplet host has the following form:
  • (O-N) is a bidentate ligand in which the metal is coordinated to the O and N atoms, and m3 is an integer having a value from 1 to the maximum coordination number of the metal;
  • M3 can be selected from the group consisting of Ir and Pt.
  • Examples of the organic compound which can be used as the host of the triplet state are selected from compounds containing a cyclic aromatic hydrocarbon group such as benzene, biphenyl, triphenylbenzene, benzindene; compounds containing an aromatic heterocyclic group such as dibenzothiophene, Dibenzofuran, dibenzoselenophene, furan, thiophene, benzofuran, benzothiophene, benzoselenophene, oxazole, dibenzoxazole, carbazole, pyridinium, pyrrole dipyridine, Pyrazole, imidazole, triazole, oxazole, thiazole, oxadiazole, oxatriazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, oxazine, oxazine , oxadiazin
  • each Ar may be further substituted, and the substituent may be hydrogen, hydrazine, cyano, halogen, alkyl, alkoxy, amino, alkene, alkyne, aralkyl, heteroalkyl, aryl and heteroaryl. base.
  • the triplet host material can be selected from compounds comprising at least one of the following groups:
  • R 2 -R 7 has the same meaning as R 1
  • X 1 -X 9 is selected from CR 1 R 2 or NR 1
  • Y is selected from CR 1 R 2 or NR 1 or O or S
  • n 2 is selected from any of 1-20
  • each of Ar 1 to Ar 3 is independently selected from an aromatic group or a heteroaryl group.
  • R 1, R 2 has the same meaning as described above.
  • triplet host materials examples include:
  • TDF Thermally activated delayed fluorescent luminescent material
  • the thermally activated delayed fluorescent luminescent material is a third generation organic luminescent material developed after organic fluorescent materials and organic phosphorescent materials.
  • Such materials generally have a small singlet-triplet energy level difference ( ⁇ Est), and triplet excitons can be converted into singlet exciton luminescence by anti-intersystem crossing. This can make full use of the singlet excitons and triplet excitons formed under electrical excitation.
  • the quantum efficiency in the device can reach 100%.
  • the material structure is controllable, the property is stable, the price is cheap, no precious metal is needed, and the application prospect in the OLED field is broad.
  • the TADF material needs to have a small singlet-triplet energy level difference, preferably ⁇ Est ⁇ 0.3 eV, and secondarily ⁇ Est ⁇ 0.25 eV, more preferably ⁇ Est ⁇ 0.20 eV, and most preferably ⁇ Est ⁇ 0.1 eV.
  • the TADF material has a relatively small ⁇ Est, and in another preferred embodiment, the TADF has a better fluorescence quantum efficiency.
  • TADF luminescent materials can be found in the following patent documents: CN103483332(A), TW201309696(A), TW201309778(A), TW201343874(A), TW201350558(A), US20120217869(A1), WO2013133359(A1), WO2013154064( A1), Adachi, et.al. Adv. Mater., 21, 2009, 4802, Adachi, et. al. Appl. Phys. Lett., 98, 2011, 083302, Adachi, et. al. Appl. Phys. Lett ., 101, 2012, 093306, Adachi, et. al. Chem.
  • TADF luminescent materials are listed in the table below:
  • Triplet emitters are also known as phosphorescent emitters.
  • the triplet emitter is a metal complex of the formula M(L)n, wherein M is a metal atom, and each occurrence of L may be the same or different and is an organic ligand. It is bonded to the metal atom M by one or more positional bonding or coordination, and n is an integer greater than 1, preferably 1, 2, 3, 4, 5 or 6.
  • these metal complexes are coupled to a polymer by one or more positions, preferably by an organic ligand.
  • the metal atom M is selected from a transition metal element or a lanthanide or a lanthanide element, preferably Ir, Pt, Pd, Au, Rh, Ru, Os, Sm, Eu, Gd, Tb, Dy Re, Cu or Ag, with Os, Ir, Ru, Rh, Re, Pd, Au or Pt being particularly preferred.
  • the triplet emitter comprises a chelating ligand, ie a ligand, coordinated to the metal by at least two bonding sites, with particular preference being given to the triplet emitter comprising two or three identical or different pairs Tooth or multidentate ligand.
  • Chelating ligands are beneficial for increasing the stability of metal complexes.
  • Examples of the organic ligand may be selected from a phenylpyridine derivative, a 7,8-benzoquinoline derivative, a 2(2-thienyl)pyridine derivative, a 2(1-naphthyl)pyridine derivative, or a 2 benzene.
  • a quinolinol derivative All of these organic ligands may be substituted, for example by fluorine or trifluoromethyl.
  • the ancillary ligand may preferably be selected from the group consisting of acetone acetate or picric acid.
  • the metal complex that can be used as the triplet emitter has the following form:
  • M is a metal selected from a transition metal element or a lanthanide or actinide element, particularly preferably Ir, Pt, Au;
  • Ar 1 may be the same or different at each occurrence, and is a cyclic group containing at least one donor atom, that is, an atom having a lone pair of electrons, such as nitrogen or phosphorus, through which a cyclic group is coordinated to a metal.
  • Ar 2 may be the same or different each time it appears, is a cyclic group containing at least one C atom through which a cyclic group is attached to the metal; Ar 1 and Ar 2 are bonded by a covalent bond Together, each may carry one or more substituent groups, which may also be joined together by a substituent group; L' may be the same or different at each occurrence, and is a bidentate chelate auxiliary ligand, preferably Is a monoanionic bidentate chelate ligand; q1 can be 0, 1, 2 or 3, preferably 2 or 3; q2 can be 0, 1, 2 or 3, preferably 1 or 0.
  • triplet emitters Some examples of suitable triplet emitters are listed in the table below:
  • the metal complex according to the invention has a molecular weight of ⁇ 1100 g/mol, preferably ⁇ 1000 g/mol, very preferably ⁇ 950 g/mol, more preferably ⁇ 900 g/mol, most preferably ⁇ 800 g/mol.
  • Another object of the invention is to provide a material solution for printing OLEDs.
  • the metal complex according to the invention has a molecular weight of ⁇ 700 g/mol, preferably ⁇ 800 g/mol, very preferably ⁇ 900 g/mol, more preferably ⁇ 1000 g/mol, most preferably ⁇ 1100 g/mol.
  • the metal complex according to the invention has a solubility in toluene of > 2 mg/ml, preferably > 3 mg/ml, more preferably > 4 mg/ml, most preferably > 5 mg/ml at 25 °C.
  • the invention further relates to a composition or printing ink comprising at least one organometallic complex or polymer or mixture as described above, and at least one organic solvent; said at least one organic solvent being selected from the group consisting of aromatics Or a heteroaromatic, ester, aromatic ketone or aromatic ether, an aliphatic ketone or an aliphatic ether, an alicyclic or olefinic compound, or a borate or phosphate compound, or two or more solvents mixture.
  • the at least one organic solvent is selected from the group consisting of aromatic or heteroaromatic based solvents.
  • aromatic or heteroaromatic solvents suitable for the present invention are, but are not limited to, p-diisopropylbenzene, pentylbenzene, tetrahydronaphthalene, cyclohexylbenzene, chloronaphthalene, 1,4-dimethylnaphthalene.
  • aromatic ketone solvents suitable for the present invention are, but are not limited to, 1-tetralone, 2-tetralone, 2-(phenyl epoxy) tetralone, 6-(methoxy Tetrendanone, acetophenone, propiophenone, benzophenone, and derivatives thereof, such as 4-methylacetophenone, 3-methylacetophenone, 2-methylacetophenone, 4-methylpropiophenone, 3-methylpropiophenone, 2-methylpropiophenone, etc.;
  • aromatic ether-based solvents suitable for the present invention are, but are not limited to, 3-phenoxytoluene, butoxybenzene, p-anisaldehyde dimethyl acetal, tetrahydro-2-phenoxy-2H -pyran, 1,2-dimethoxy-4-(1-propenyl)benzene, 1,4-benzodioxane, 1,3-dipropylbenzene, 2,5-dimethoxy Toluene, 4-ethyl ether, 1,3-dipropoxybenzene, 1,2,4-trimethoxybenzene, 4-(1-propenyl)-1,2-dimethoxybenzene, 1, 3-dimethoxybenzene, glycidyl phenyl ether, dibenzyl ether, 4-tert-butyl anisole, trans-p-propenyl anisole, 1,2-dimethoxybenzene, 1-methyl Oxynaphthalene, diphenyl ether
  • the at least one organic solvent may be selected from the group consisting of: an aliphatic ketone, for example, 2-fluorenone, 3-fluorenone, 5-fluorenone, 2 - anthrone, 2,5-hexanedione, 2,6,8-trimethyl-4-indanone, anthrone, phorone, isophorone, di-n-pentyl ketone, etc.; or an aliphatic ether
  • the at least one organic solvent may be selected from ester-based solvents: alkyl octanoate, alkyl sebacate, alkyl stearate, benzene. Alkyl formate, alkyl phenylacetate, alkyl cinnamate, alkyl oxalate, alkyl maleate, alkanolide, alkyl oleate, and the like. Particularly preferred are octyl octanoate, diethyl sebacate, diallyl phthalate, isodecyl isononanoate.
  • the solvent may be used singly or as a mixture of two or more organic solvents.
  • a composition according to the present invention comprises at least one organometallic complex or polymer or mixture as described above and at least one organic solvent, and may further comprise another Organic solvents.
  • another organic solvent include, but are not limited to, methanol, ethanol, 2-methoxyethanol, dichloromethane, chloroform, chlorobenzene, o-dichlorobenzene, tetrahydrofuran, anisole, morpholine, Toluene, o-xylene, m-xylene, p-xylene, 1,4 dioxane, acetone, methyl ethyl ketone, 1,2 dichloroethane, 3-phenoxytoluene, 1,1 , 1-trichloroethane, 1,1,2,2-tetrachloroethane, ethyl acetate, butyl acetate, dimethylformamide, dimethylacetamide, dimethyl sulfoxide, tetrahydronaphthal
  • the solvent particularly suitable for the present invention is a solvent having Hansen solubility parameters in the following ranges:
  • ⁇ d (dispersion force) is in the range of 17.0 to 23.2 MPa 1/2 , especially in the range of 18.5 to 21.0 MPa 1/2 ;
  • ⁇ p polar forces in the range of 0.2 ⁇ 12.5MPa 1/2, especially in the 2.0 ⁇ 6.0MPa 1/2;
  • the organic solvent is selected in consideration of its boiling point parameter.
  • the organic solvent has a boiling point of ⁇ 150 ° C; preferably ⁇ 180 ° C; more preferably ⁇ 200 ° C; more preferably ⁇ 250 ° C; optimally ⁇ 275 ° C or ⁇ 300 ° C.
  • the boiling points within these ranges are beneficial for preventing nozzle clogging of the inkjet printhead.
  • the organic solvent can be evaporated from the solvent system to form a film comprising the functional material.
  • the composition according to the invention is a solution.
  • composition according to the invention is a suspension.
  • composition in the examples of the present invention may comprise from 0.01 to 20% by weight of the organometallic complex or polymer or mixture according to the invention, preferably from 0.1 to 15% by weight, more preferably from 0.2 to 10% by weight, most Good is 0.25 to 5% by weight.
  • the invention further relates to the use of the composition as a coating or printing ink in the preparation of an organic electronic device, particularly preferably by a printing or coating process.
  • suitable printing or coating techniques include, but are not limited to, inkjet printing, Nozzle Printing, typography, screen printing, dip coating, spin coating, blade coating, roller printing, torsion rolls. Printing, lithography, flexographic printing, rotary printing, spraying, brushing or pad printing, slit-type extrusion coating, etc. Preferred are gravure, inkjet and inkjet printing.
  • the solution or suspension may additionally comprise one or more components such as surface active compounds, lubricants, wetting agents, dispersing agents, hydrophobic agents, binders and the like for adjusting viscosity, film forming properties, adhesion, and the like.
  • the present invention also provides the use of an organometallic complex, polymer, mixture or composition as described above in an organic electronic device, which may be selected from, but not limited to, an organic light emitting diode ( OLED), organic photovoltaic cells (OPV), organic light-emitting cells (OLEEC), organic field effect transistors (OFETs), organic light-emitting field effect transistors, organic lasers, organic spintronic devices, organic sensors and organic plasmon emitting diodes (Organic Plasmon Emitting Diode) or the like is particularly preferably an OLED.
  • OLED organic light emitting diode
  • OLED organic photovoltaic cells
  • OEEC organic light-emitting cells
  • OFETs organic field effect transistors
  • organic light-emitting field effect transistors organic lasers
  • organic spintronic devices organic spintronic devices
  • organic sensors and organic plasmon emitting diodes Organic Plasmon Emitting Diode
  • Organic Plasmon Emitting Diode Organic Plas
  • the invention further relates to an organic electronic device comprising at least one organometallic complex, polymer, mixture or composition as described above.
  • an organic electronic device comprises at least one cathode, an anode and a functional layer between the cathode and the anode, wherein said functional layer comprises at least one organic mixture as described above.
  • the organic electronic device may be selected from, but not limited to, an organic light emitting diode (OLED), an organic photovoltaic cell (OPV), an organic light emitting cell (OLEEC), an organic field effect transistor (OFET), an organic light emitting field effect transistor, and an organic Lasers, organic spintronic devices, organic sensors and organic plasmon emitting diodes (Organic Plasmon Emitting Diode), etc., particularly preferred are organic electroluminescent devices such as OLED, OLEEC, organic light-emitting field effect transistors.
  • the electroluminescent device has an emissive layer comprising an organometallic complex, polymer, mixture or composition as described above, or an organic a metal complex, polymer, mixture or composition and a phosphorescent emitter, or comprising one of said organometallic complexes, polymers, mixtures or compositions and a host material, or comprising a An organometallic complex, polymer, mixture or composition, a phosphorescent emitter and a host material.
  • a substrate an anode, at least one light-emitting layer, and a cathode are included.
  • the substrate can be opaque or transparent.
  • a transparent substrate can be used to make a transparent light-emitting component. See, for example, Bulovic et al. Nature 1996, 380, p29, and Gu et al, Appl. Phys. Lett. 1996, 68, p2606.
  • the substrate can be rigid or elastic.
  • the substrate can be plastic, metal, semiconductor wafer or glass.
  • the substrate has a smooth surface. Substrates without surface defects are a particularly desirable choice.
  • the substrate is flexible, optionally in the form of a polymer film or plastic, having a glass transition temperature Tg of 150 ° C or higher, preferably more than 200 ° C, more preferably more than 250 ° C, preferably More than 300 ° C. Examples of suitable flexible substrates are poly(ethylene terephthalate) (PET) and polyethylene glycol (2,6-naphthalene) (PEN).
  • PET poly(ethylene terephthalate)
  • PEN polyethylene glycol (2,6-na
  • the anode can comprise a conductive metal or metal oxide, or a conductive polymer.
  • the anode can easily inject holes into a hole injection layer (HIL) or a hole transport layer (HTL) or a light-emitting layer.
  • HIL hole injection layer
  • HTL hole transport layer
  • the absolute value of the difference between the work function of the anode and the HOMO level or the valence band level of the illuminant in the luminescent layer or the p-type semiconductor material as the HIL or HTL or electron blocking layer (EBL) is less than 0.5 eV, preferably less than 0.3 eV, and most preferably less than 0.2 eV.
  • anode material examples include, but are not limited to, Al, Cu, Au, Ag, Mg, Fe, Co, Ni, Mn, Pd, Pt, ITO, aluminum-doped zinc oxide (AZO), and the like.
  • suitable anode materials are known and can be readily selected for use by one of ordinary skill in the art.
  • the anode material can be deposited using any suitable technique, such as a suitable physical vapor deposition process, including radio frequency magnetron sputtering, vacuum thermal evaporation, electron beam (e-beam), and the like.
  • the anode is patterned. Patterned ITO conductive substrates are commercially available and can be used to prepare devices in accordance with the present invention.
  • the cathode can include a conductive metal or metal oxide.
  • the cathode can easily inject electrons into the EIL or ETL or directly into the luminescent layer.
  • the work function of the cathode and the LUMO level of the illuminant or the n-type semiconductor material as an electron injection layer (EIL) or electron transport layer (ETL) or hole blocking layer (HBL) in the luminescent layer or
  • EIL electron injection layer
  • ETL electron transport layer
  • HBL hole blocking layer
  • the absolute value of the difference in conduction band energy levels is less than 0.5 eV, preferably less than 0.3 eV, and most preferably less than 0.2 eV.
  • all materials which can be used as cathodes for OLEDs are possible as cathode materials for the devices of the invention.
  • cathode material examples include, but are not limited to, Al, Au, Ag, Ca, Ba, Mg, LiF/Al, MgAg alloy, BaF 2 /Al, Cu, Fe, Co, Ni, Mn, Pd, Pt, ITO, and the like.
  • the cathode material can be deposited using any suitable technique, such as a suitable physical vapor deposition process, including radio frequency magnetron sputtering, vacuum thermal evaporation, electron beam (e-beam), and the like.
  • the OLED may further include other functional layers such as a hole injection layer (HIL), a hole transport layer (HTL), an electron blocking layer (EBL), an electron injection layer (EIL), an electron transport layer (ETL), and a hole blocking layer.
  • HIL hole injection layer
  • HTL hole transport layer
  • EBL electron blocking layer
  • EIL electron injection layer
  • ETL electron transport layer
  • HBL hole blocking layer
  • the light-emitting device has an emission wavelength of between 300 and 1000 nm, preferably between 350 and 900 nm, more preferably between 400 and 800 nm.
  • the invention further relates to the use of an electroluminescent device according to the invention in various electronic devices, including, but not limited to, display devices, illumination devices, light sources, sensors and the like.
  • 2-Bromo-1,3-diphenylether-5-iodobenzene (0.209 g, 0.5 mmol) was placed in a dry Schlenck bottle, and dry m-xylene (5 ml) was added under N2 flow and vacuum-filled with nitrogen three times. The mixture was cooled to -40 ° C for 10 mins, and n-BuLi (0.65 mmol, 0.26 ml (2.5 M)) was slowly added dropwise under a nitrogen stream, and stirred at -40 ° C for 1 h, gradually warmed to room temperature and stirred for 1 h.
  • BBr 3 (0.65 mmol, 0.061 ml) was added dropwise, and reacted at -40 ° C for 30 mins, then transferred to room temperature and stirred for 1 h.
  • N,N-diisopropylethylamine (1.03 mmol, 0.175 ml) was added dropwise, and the mixture was reacted at 0 ° C for 10 mins, then gradually warmed to 120 ° C and stirred for 12 h.
  • the energy level of the metal organic complex Ir-1-Ir-10 can be obtained by quantum calculation, for example, by TD-DFT (time-dependent density functional theory) by Gaussian 03W (Gaussian Inc.), and the specific simulation method can be found in WO2011141110.
  • TD-DFT time-dependent density functional theory
  • Gaussian 03W Gaussian Inc.
  • the specific simulation method can be found in WO2011141110.
  • the HOMO and LUMO levels are calculated according to the following calibration formula, and S
  • HOMO(eV) ((HOMO(G) ⁇ 27.212)-0.9899)/1.1206
  • HOMO(G) and LUMO(G) are direct calculation results of Gaussian 09W, and the unit is eV.
  • ITO/NPD 60 nm
  • Ir-1 - Ir4 mCP (45 nm) / TPBi ( 35nm) / LiF (1nm) / Al (150nm) / cathode
  • conductive glass substrate When used for the first time, it can be cleaned with a variety of solvents, such as chloroform, ketone, isopropanol, and then subjected to ultraviolet ozone plasma treatment:
  • HTL 60nm
  • EML 25nm
  • ETL 65nm
  • hot evaporation in high vacuum (1x10 -6 mbar, mbar);
  • cathode Li F / AI (1nm / 150nm) in a high vacuum (1x10 -6 mbar) in the thermal evaporation;
  • the device is encapsulated in a chlorine glove box with UV-curable resin.
  • JVL current-voltage luminance
  • the maximum external quantum efficiency of OLEDx (corresponding to organic metal with Ir-x) is more than 10%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明涉及了一种如通式(I)所示有机金属配合物,以及包含该有机金属配合物的聚合物、混合物和组合物,及其在电子器件中的应用,特别是在有机发光二极管中的应用。本发明通过提供一种新的高性能磷光发光材料,对器件结构进行优化,使器件达到最佳的性能,实现高效率高亮度高稳定的OLED器件,为全彩显示和照明提供了较好的材料选项。

Description

一种有机金属配合物,包含其的聚合物、混合物和组合物,及其在电子器件中的应用
相关申请
本申请要求2017年12月14日申请的,申请号为201711341877.7,名称为“一种有机金属配合物,包含其的聚合物、混合物和组合物,及其在电子器件中的应用”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本发明涉及电致发光材料领域,尤其涉及一种有机金属配合物,包含其的聚合物、混合物和组合物,及其在有机电子器件,特别是在有机磷光发光二极管中的应用。本发明还涉及一种包含本发明的有机金属配合物的有机电子器件,及其应用。
背景技术
由于有机半导体材料在合成上具有多样性、制造成本相对较低和优良的光学与电学性能,有机发光二极管(OLED)在光电器件(例如平板显示器和照明)的应用方面具有很大的潜力。
为了提高有机发光二极管的发光效率,各种基于荧光和磷光的发光材料体系已被开发出来,使用荧光材料的有机发光二极管具有可靠性高的特点,但其在电场激发下其内部电致发光量子效率被限制为25%,这是因为激子产生单重激发态和三重激发态的概率比为1:3。1999年,美国南加州大学的Thomson教授和普林斯顿大学的Forrest教授将三(2-苯基吡啶)合铱Ir(ppy) 3掺杂到N,N-二咔唑联苯(CBP)中,成功制备了绿色电致磷光器件,这引起人们对配合物磷光材料的浓厚兴趣。由于重金属的引入,提高了分子自旋轨道耦合,缩短了磷光寿命,增强了分子的系间窜越,使磷光得以顺利发射。而且这类配合物反应温和,可以方便的改变配合物结构和取代基团,调节发射波长,得到性能优良的电致磷光材料。至今,磷光OLED的内部量子效率已接近100%。然而,大多数磷光材料发光光谱过宽,色纯度较差,不利于高端显示,并且这类磷光OLED的稳定性还需进一步提高。
因此新型的高性能的磷光金属配合物急需开发出来。
发明内容
本发明的一个主要目的在于提供一种有机金属配合物,包含其的聚合物、混合物和组合物,及其在有机电子器件中应用,旨在提供一种新型的高性能的磷光金属配合物,解决现有磷光材料发光光谱过宽,色纯度较差等问题,提高器件性能。本发明的另一个目的在于提供一种包含有本发明的有机金属配合物的有机电子器件,及其应用。
本发明的技术方案如下:
一种有机金属配合物,如通式(I)所示:
Figure PCTCN2018120700-appb-000001
其中:
Ar 1每次出现时,相同或不同的是包含有至少一个N的杂芳香族基团;Ar 2每次出现时,相同或不同的是芳香基团或杂芳香基团;其中Ar 1、Ar 2可进一步被一个或多个R 1取代;
X为O、S、Se、NR 1、C(R 1) 2或者Si(R 1) 2
Z为B、N、P、P=O或者P=S;
R 1、R 2在每一次出现时,相同或不同的是,H,D,具有1至20个C原子的直链烷基、烷氧基或硫代烷氧基基团,或者具有3至20个C原子的支链或环状的烷基、烷氧基或硫代烷氧基基团或者是甲硅烷基基团,或具有1至20个C原子的取代的酮基基团,或具有2至20个C原子的烷氧基羰基基团,或具有7至20个C原子的芳氧基羰基基团,氰基基团(-CN),氨基甲酰基基团(-C(=O)NH 2),卤甲酰基基团(-C(=O)-X其中X代表卤素原子),甲酰基基团(-C(=O)-H),异氰基基团,异氰酸酯基团,硫氰酸酯基团或异硫氰酸酯基团,羟基基团,硝基基团,CF 3基团,Cl,Br,F,可交联的基团或者具有5至40个环原子的取代或未取代的芳族或杂芳族环系,或具有5至40个环原子的芳氧基或杂芳氧基基团,或这些体系的组合,R 2可以进一步与Ar 1形成环系;
Figure PCTCN2018120700-appb-000002
为两齿配体;
M为一种过渡族金属元素;
m表示0-2的整数,n表示1-3的整数。
一种高聚物,包含至少一个含有通式(I)表示的结构单元的重复单元。
一种混合物,包含如上所述的有机金属配合物或高聚物,及至少另一种的有机功能材料,所述另一种的有机功能材料可选自空穴注入材料(HIM),空穴传输材料(HTM),电子传输材料(ETM),电子注入材料(EIM),电子阻挡材料(EBM),空穴阻挡材料(HBM),发光材料(Emitter),主体材料(Host)和有机染料。
一种组合物,包含如上所述的有机金属配合物或高聚物或混合物,及至少一种有机溶剂。
一种根据如上所述的有机金属配合物、高聚物、混合物或组合物在有机电子器件中的应用。
一种有机电子器件,至少包含一种如上所述的有机金属配合物、高聚物、混合物或组合物。
一种如上所述的有机电子器件,其特征在于,所述的有机电子器件为有机发光二极管(OLED)、有机光伏电池(OPV)、有机发光电池(OLEEC)、有机场效应管(OFET)、有机发光场效应管、有机激光器、有机自旋电子器件、有机传感器及有机等离子体激元发射二极管(Organic Plasmon Emitting Diode)。
有益效果:本发明通过在磷光金属配合物中引入含不同的主族元素的稠环单元,以此来增加配合物的共轭度以及刚性,有利于增强配合物的发光效率,提高色纯度,以及调节配合物的发光波长。
具体实施方式
本发明提供一种有机金属配合物及其在有机电致发光器件中的应用,为使本发明的目的、技术方案及效果更加清楚、明确,以下对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
在本发明中,主体材料、基质材料、Host材料和Matrix材料具有相同的含义,可以互换。
在本发明中,金属有机络合物,金属有机配合物,有机金属配合物具有相同的含义,可以互换。
在本发明实施例中,单线态,单重态具有相同的含义,可以互换。
在本发明实施例中,三线态,三重态具有相同的含义,可以互换。
高聚物,即Polymer,包括均聚物(homopolymer),共聚物(copolymer),镶嵌共聚物(block copolymer)。另外在本发明中,高聚物也包括树状物(dendrimer),有关树状物的合成及应用请参见【Dendrimers and Dendrons,Wiley-VCH Verlag GmbH&Co.KGaA,2002,Ed.George R.Newkome,Charles N.Moorefield,Fritz Vogtle.】。
本发明提供一种有机金属配合物,如通式(I)所示:
Figure PCTCN2018120700-appb-000003
其中:
Ar 1每次出现时,相同或不同的是包含有至少一个N的杂芳香基团;Ar 2每次出现时,相同或不同的是芳香基团或杂芳香基团;其中Ar 1、Ar 2可进一步被一个或多个R 1取代;
X为O、S、Se、NR 1、C(R 1) 2或者Si(R 1) 2
Z为B、N、P、P=O或者P=S;
R 1、R 2在每一次出现时,相同或不同的是,H,D,具有1至20个C原子的直链烷基、烷氧基或硫代烷氧基基团,或者具有3至20个C原子的支链或环状的烷基、烷氧基或硫代烷氧基基团或者是甲硅烷基基团,或具有1至20个C原子的取代的酮基基团,或具有2至20个C原子的烷氧基羰基基团,或具有7至20个C原子的芳氧基羰基基团,氰基基团,氨基甲酰基基团,卤甲酰基基团,甲酰基基团,异氰基基团,异氰酸酯基团,硫氰酸酯基团或异硫氰酸酯基团,羟基基团,硝基基团,CF 3基团,Cl,Br,F,可交联的基团或者具有5至40个环原子的取代或未取代的芳族或杂芳族环系,或具有5至40个环原子的芳氧基或杂芳氧基基团,或这些体系的组合,R 2可以进一步与Ar 1形成环系;
Figure PCTCN2018120700-appb-000004
为两齿配体;
M为一种过渡族金属元素;
m表示0-2的整数,n表示1-3的整数。
在一个优选地实施例中,所述的有机金属配合物中,X为O或S,Z为B或N;在一个更优选地实施例中,X为O或S,Z为N;在一个最优选地实施例中,X为O,Z为N。
在一个较优选的实施例中,R 1、R 2在每一次出现时,相同或不同的是,H、D、具有1至10个C原子的直链烷基、烷氧基或硫代烷氧基基团,或者具有3至10个C原子的支链或环状的烷基、烷氧基或硫代烷氧基基团或者是甲硅烷基基团,或具有1至10个C原子的取代的酮基基团,或具有2至10个C原子的烷氧基羰基基团,或具有7至10个C原子的芳氧基羰基基团,氰基基团,氨基甲酰基基团,卤甲酰基基团,甲酰基基团,异氰基基团,异氰酸酯基团,硫氰酸酯基团或异硫氰酸酯基团,羟基基团,硝基基团,CF 3基团,Cl,Br,F,可交联的基团或者具有5至20个环原子的取代或未取代的芳族或杂芳族环系,或具有5至20个环原子的芳氧基或杂芳氧基基团,或这些体系的组合。其中R 2可以进一步与Ar 1形成环系。
在一个优选的实施例中,所述的有机金属配合物,所述的金属元素M可选自过渡金属铬、钼、钨、钌、铑、镍、银、铜、锌、钯、金、饿、铼、铱和铂中的任一个。
在一个较为优选的实施例中,所述的有机金属配合物,所述的金属元素M选自钌、铜、钯、金、饿、铼、铱或铂。
在一个特别优选的实施例中,所述的有机金属配合物,其特征在于,所述的金属元素M选自铱或铂。
在一个优选的实施例中,所述的Ar 1每次出现时,相同或不同的是包含有至少一个N的杂芳香基团;在一个较优选的实施例中,所述的Ar 1每次出现时,相同或不同的是包含有至少一个N的环原子数为6~70的杂芳香基团;在一个更优选的实施例中,所述的Ar 1每次出现时,相同或不同的是包含有至少一个N的环原子数为6~60的杂芳香基团;在一个更更优选 的实施例中,所述的Ar 1每次出现时,相同或不同的是包含有至少一个N的环原子数为6~50的杂芳香基团;在一个非常优选的实施例中,所述的Ar 1每次出现时,相同或不同的是包含有至少一个N的环原子数为6~40的杂芳香基团。其中Ar 1可进一步被一个或多个R 1取代。
在某些实施例中,所述的Ar 1每次出现时,相同或不同的是包含有至少两个或三个N的杂芳香基团;其中Ar 1中至少有一个N与金属配位,Ar 1可进一步被一个或多个R 1取代。
在一个最优选的实施例中,所述的有机金属配合物,其特征在于,所述的Ar 1在多次出现时可相互独立的选自通式C1至C3中的任一个:
Figure PCTCN2018120700-appb-000005
其中y1表示
Figure PCTCN2018120700-appb-000006
的整数,y2表示
Figure PCTCN2018120700-appb-000007
的整数,虚线表示以单键形式进行连接,R 1含义同上。
在一个优选的实施例中,所述的Ar 2为环原子数为6~70的芳香基团或杂芳香基团;在更加优选的实施例中,Ar 2为环原子数为6~60的芳香基团或芳杂基团;在非常优选的实施例中,Ar 2为环原子数为6~50的芳香基团或杂芳香基团;在最为优选的实施例中,Ar 2为环原子数为6~40的芳香基团或杂芳香基团。其中一个或多个基团可进一步被R 1取代。
芳香环系或芳香基团指至少包含一个芳环的烃基,包括单环基团和多环的环系统。杂芳香环系或杂芳香基团指包含至少一个杂芳香环的烃基(含有杂原子),包括单环基团和多环的环系统。杂原子优选选自Si、N、P、O、S和/或Ge,特别优选选自Si、N、P、O和/或S。这些多环的环可以具有两个或多个环,其中两个碳原子被两个相邻的环共用,即稠环。多环的这些环种,至少一个是芳族的或杂芳族的。对于本发明的目的,芳香族或杂芳香族环系不仅包括芳香基或杂芳香基的体系,而且,其中多个芳基或杂芳香基也可以被短的非芳族单元间断(<10%的非H原子,优选小于5%的非H原子,比如C、N或O原子)。因此,比如9,9'-螺二芴,9,9-二芳基芴,三芳胺,二芳基醚等体系,对于该发明目的同样认为是芳香族环系。
具体地,芳香基团的例子有:苯、萘、蒽、菲、二萘嵌苯、并四苯、芘、苯并芘、三亚苯、苊、芴、及其衍生物。
具体地,杂芳香族基团的例子有:呋喃、苯并呋喃、噻吩、苯并噻吩、吡咯、吡唑、三唑、咪唑、噁唑、噁二唑、噻唑、四唑、吲哚、咔唑、吡咯并咪唑、吡咯并吡咯、噻吩并吡咯、噻吩并噻吩、呋喃并吡咯、呋喃并呋喃、噻吩并呋喃、苯并异噁唑、苯并异噻唑、苯并咪唑、吡啶、吡嗪、哒嗪、嘧啶、三嗪、喹啉、异喹啉、邻二氮萘、喹喔啉、菲啶、伯啶、喹唑啉、喹唑啉酮、及其衍生物。
在一个优选的实施方案中,所述的有机金属配合物,Ar 2优选为:苯、联苯、萘、蒽、菲、苯并菲、芘、吡啶、嘧啶、三嗪、芴、硫芴、硅芴、咔唑、噻吩、呋喃、噻唑、三苯胺、三苯基氧磷,四苯基硅、螺芴、螺硅芴及其衍生物;其中一个或多个基团可进一步被R 1取代。
在一个更优选的实施方案中,所述的有机金属配合物,Ar 2优选为:苯、联苯、萘、蒽、菲、苯并菲芴、螺芴及其衍生物。其中一个或多个基团可进一步被R 1取代。
在一个更优选地实施例中,所述的有机金属配合物中,Ar 2多次出现时,选自相同的基团,进一步地,Ar 2多次出现时,相同地选自取代或者未取代的苯或者萘。
在一个优选的实施例中,所述的有机金属配合物,
Figure PCTCN2018120700-appb-000008
为单阴离子配体,在多次出现时可相互独立的选自如下通式L1至L15中的任何一个。
Figure PCTCN2018120700-appb-000009
其中R 3至R 72选自-H,-F,-Cl,-Br,-I,-D,-CN,-NO 2,-CF 3,B(OR 2) 2,Si(R 2) 3,直链烷烃,烷烃醚,含
Figure PCTCN2018120700-appb-000010
个碳原子烷烃硫醚,或支链烷烃,或环烷烃,含有
Figure PCTCN2018120700-appb-000011
个碳原子的烷烃醚或烷烃硫醚基团氢,含有
Figure PCTCN2018120700-appb-000012
个碳原子的芳基中的任一个;其中,虚线表示与金属元素M直接相连的键。
在一个优选的实施例中,所述的有机金属配合物选自但不限于如下通式:
Figure PCTCN2018120700-appb-000013
Figure PCTCN2018120700-appb-000014
Figure PCTCN2018120700-appb-000015
其中Ar 1、R 1、R 2、M、m、n含义同上所述,y表示
Figure PCTCN2018120700-appb-000016
的整数,z表示
Figure PCTCN2018120700-appb-000017
的整数。
以下列出按照本发明的有机金属配合物的例子,但不限于如下结构:
Figure PCTCN2018120700-appb-000018
Figure PCTCN2018120700-appb-000019
Figure PCTCN2018120700-appb-000020
Figure PCTCN2018120700-appb-000021
Figure PCTCN2018120700-appb-000022
Figure PCTCN2018120700-appb-000023
Figure PCTCN2018120700-appb-000024
Figure PCTCN2018120700-appb-000025
Figure PCTCN2018120700-appb-000026
Figure PCTCN2018120700-appb-000027
Figure PCTCN2018120700-appb-000028
Figure PCTCN2018120700-appb-000029
在一个特别优选的实施例中,按照本发明的有机金属配合物是发光材料,其发光波长在300到1000nm之间,较好是在350到900nm之间,更好是在400到800nm之间。这里指的发光是指光致发光或电致发光。
在某些优选的实施例中,按照本发明的有机金属配合物,其光致或电致发光效率≥30%, 较优是≥40%,更优是≥50%,最优是≥60%。
在某些实施例中,按照本发明的金属有机配合物也可以是不发光材料。
本发明还进一步涉及一种高聚物,包含至少一个含有通式(I)表示的结构单元的重复单元。
在一个优选的实施例中,其中的高聚物的合成方法选自SUZUKI-,YAMAMOTO-,STILLE-,NIGESHI-,KUMADA-,HECK-,SONOGASHIRA-,HIYAMA-,FUKUYAMA-,HARTWIG-BUCHWALD-和ULLMAN。
在一个优先的实施例中,按照本发明的高聚物,其玻璃化温度(Tg)≥100℃,优选为≥120℃,更优为≥140℃,更更优为≥160℃,最优为≥180℃。
在一个优先的实施例中,按照本发明的高聚物,其分子量分布(PDI)取值范围优选为1~5;较优选为1~4;更优选为1~3,更更优选为1~2,最优选为1~1.5。
在一个优先的实施例中,按照本发明的高聚物,其重均分子量(Mw)取值范围优选为1万~100万;较优选为5万~50万;更优选为10万~40万,更更优选为15万~30万,最优选为20万~25万。
本发明还提供一种混合物,包含有至少一种以上所述的有机金属配合物或高聚物,及至少另一种有机功能材料,所述至少另一种的有机功能材料可选自于空穴注入材料(HIM),空穴传输材料(HTM),电子传输材料(ETM),电子注入材料(EIM),电子阻挡材料(EBM),空穴阻挡材料(HBM),发光材料(Emitter),主体材料(Host)和有机染料。例如在WO2010135519A1,US20090134784A1和WO 2011110277A1中对各种有机功能材料有详细的描述,特此将此3专利文件中的全部内容并入本文作为参考。
在某些实施例中,按照本发明的混合物中,金属有机配合物的含量为0.01至30wt%,较好的是0.5至20wt%,更好的是2至15wt%,最好的是5至15wt%。
在一个优先的实施方案中,按照本发明的混合物包含一种按照本发明的金属有机配合物或高聚物和一种三重态基质材料。
在另一个优先的实施方案中,按照本发明的混合物包含一种按照本发明的金属有机配合物或高聚物,一种三重态基质材料和另一种的三重态发光体。
在另一个优先的实施方案中,按照本发明的混合物包含一种按照本发明的金属有机配合物或高聚物和一种热激活延迟荧光发光材料(TADF)。
在另一个优先的实施方案中,按照本发明的混合物包含一种按照本发明的金属有机配合物或高聚物,一种三重态基质材料和一种热激活延迟荧光发光材料(TADF)。
下面对三重态基质材料,三重态发光体和TADF材料作一些较详细的描述(但不限于此)。
1.三重态主体材料(Triplet Host):
三重态主体材料的例子并不受特别的限制,任何金属络合物或有机化合物都可能被用作为主体,只要其三重态能级比发光体,特别是三重态发光体或磷光发光体更高,可用作三重态主体(Host)的金属络合物的例子包括(但不限于)如下的一般结构:
Figure PCTCN2018120700-appb-000030
M3是一金属;(Y 3-Y 4)是两齿配体,Y 3和Y 4独立地选自C,N,O,P,和S;L是一个辅助配体;m3是一整数,其值从1到此金属的最大配位数;在一个优先的实施方案中,可用作三重态主体的金属络合物有如下形式:
Figure PCTCN2018120700-appb-000031
(O-N)是两齿配体,其中金属与O和N原子配位,m3是一整数,其值从1到此金属的最大配位数;
在某一个实施方案中,M3可选自于Ir和Pt。
可作为三重态主体的有机化合物的例子选自包含有环芳香烃基的化合物,例如苯、联苯、三苯基苯、苯并芴;包含有芳香杂环基的化合物,如二苯并噻吩、二苯并呋喃、二苯并硒吩、呋喃、噻吩、苯并呋喃、苯并噻吩、苯并硒吩、咔唑、二苯并咔唑,吲哚咔唑、吡啶吲哚、吡咯二吡啶、吡唑、咪唑、三唑类、恶唑、噻唑、恶二唑、恶三唑、二恶唑、噻二唑、吡啶、哒嗪、嘧啶、吡嗪、三嗪类、恶嗪、恶噻嗪、恶二嗪、吲哚、苯并咪唑、吲唑、恶唑、二苯并恶唑、苯异恶唑、苯并噻唑、喹啉、异喹啉、邻二氮杂萘、喹唑啉、喹喔啉、萘、酞、蝶啶、氧杂蒽、吖啶、吩嗪、吩噻嗪、吩恶嗪、苯并呋喃吡啶、呋喃并吡啶、苯并噻吩吡啶、噻吩吡啶、苯并硒吩吡啶和硒吩苯并二吡啶;包含有2至10环结构的基团,它们可以是相同或不同类型的环芳香烃基团或芳香杂环基团,并彼此直接或通过至少一个以下的基团连结在一起,如氧原子、氮原子、硫原子、硅原子、磷原子、硼原子、链结构单元和脂肪环基团。其中,每个Ar可以进一步被取代,取代基可选为氢、氘、氰基、卤素、烷基、烷氧基、氨基、烯、炔、芳烷基、杂烷基、芳基和杂芳基。
在一个优先的实施方案中,三重态主体材料可选自于包含至少一个以下基团的化合物:
Figure PCTCN2018120700-appb-000032
R 2-R 7的含义同R 1,X 1~X 9选于CR 1R 2或NR 1,Y选自CR 1R 2或NR 1或O或S,n2选自1-20的任一整数,Ar 1~Ar 3每次出现时,独立选自芳香基或杂芳香基。R 1,R 2的含义同上所述。
在下面的表中列出合适的三重态主体材料的例子但不局限于:
Figure PCTCN2018120700-appb-000033
2.热激活延迟荧光发光材料(TADF):
传统有机荧光材料只能利用电激发形成的25%单线态激子发光,器件的内量子效率较低(最高为25%)。尽管磷光材料由于重原子中心强的自旋-轨道耦合增强了系间穿越,可以有效利用电激发形成的单线态激子和三线态激子发光,使器件的内量子效率达到100%。但磷光材料昂贵,材料稳定性差,器件效率滚降严重等问题限制了其在OLED中的应用。热激活延迟荧光发光材料是继有机荧光材料和有机磷光材料之后发展的第三代有机发光材料。该类材料一般具有小的单线态-三线态能级差(ΔEst),三线态激子可以通过反系间穿越转变成单线态激子发光。这可以充分利用电激发下形成的单线态激子和三线态激子。器件内量子效率可达到100%。同时材料结构可控,性质稳定,价格便宜无需要贵金属,在OLED领域的应用前景广阔。
TADF材料需要具有较小的单线态-三线态能级差,较好是ΔEst<0.3eV,次好是ΔEst<0.25eV,更好是ΔEst<0.20eV,最好是ΔEst<0.1eV。在一个优先的实施方案中,TADF材料有比较小的ΔEst,在另一个优先的实施方案中,TADF有较好的荧光量子效率。一些TADF发光的材料可在下述专利文件中找到:CN103483332(A),TW201309696(A),TW201309778(A), TW201343874(A),TW201350558(A),US20120217869(A1),WO2013133359(A1),WO2013154064(A1),Adachi,et.al.Adv.Mater.,21,2009,4802,Adachi,et.al.Appl.Phys.Lett.,98,2011,083302,Adachi,et.al.Appl.Phys.Lett.,101,2012,093306,Adachi,et.al.Chem.Commun.,48,2012,11392,Adachi,et.al.Nature Photonics,6,2012,253,Adachi,et.al.Nature,492,2012,234,Adachi,et.al.J.Am.Chem.Soc,134,2012,14706,Adachi,et.al.Angew.Chem.Int.Ed,51,2012,11311,Adachi,et.al.Chem.Commun.,48,2012,9580,Adachi,et.al.Chem.Commun.,48,2013,10385,Adachi,et.al.Adv.Mater.,25,2013,3319,Adachi,et.al.Adv.Mater.,25,2013,3707,Adachi,et.al.Chem.Mater.,25,2013,3038,Adachi,et.al.Chem.Mater.,25,2013,3766,Adachi,et.al.J.Mater.Chem.C.,1,2013,4599,Adachi,et.al.J.Phys.Chem.A.,117,2013,5607,特此将上述列出的专利或文章文件中的全部内容并入本文作为参考。
下面的表中列出一些合适的TADF发光材料的例子:
Figure PCTCN2018120700-appb-000034
Figure PCTCN2018120700-appb-000035
3.三重态发光体(Triplet Emitter)
三重态发光体也称磷光发光体。在一个优先的实施方案中,三重态发光体是有通式M(L)n 的金属络合物,其中M是一金属原子,L每次出现时可以是相同或不同,是一有机配体,它通过一个或多个位置键接或配位连接到金属原子M上,n是一个大于1的整数,较好选是1,2,3,4,5或6。可选地,这些金属络合物通过一个或多个位置联接到一个聚合物上,最好是通过有机配体。
在一个优先的实施方案中,金属原子M选于过渡金属元素或镧系元素或锕系元素,优先选择Ir,Pt,Pd,Au,Rh,Ru,Os,Sm,Eu,Gd,Tb,Dy,Re,Cu或Ag,特别优先选择Os,Ir,Ru,Rh,Re,Pd,Au或Pt。
优先地,三重态发光体包含有螯合配体,即配体,通过至少两个结合点与金属配位,特别优先考虑的是三重态发光体包含有两个或三个相同或不同的双齿或多齿配体。螯合配体有利于提高金属络合物的稳定性。
有机配体的例子可选自苯基吡啶衍生物,7,8-苯并喹啉衍生物,2(2-噻吩基)吡啶衍生物,2(1-萘基)吡啶衍生物,或2苯基喹啉衍生物。所有这些有机配体都可能被取代,例如被含氟或三氟甲基取代。辅助配体可优先选自乙酸丙酮或苦味酸。
在一个优先的实施方案中,可用作三重态发光体的金属络合物有如下形式:
Figure PCTCN2018120700-appb-000036
其中M是一金属,选于过渡金属元素或镧系或锕系元素,特别优先的是Ir,Pt,Au;
Ar 1每次出现时可以是相同或不同,是一个环状基团,其中至少包含有一个施主原子,即有一孤对电子的原子,如氮或磷,通过它环状基团与金属配位连接;Ar 2每次出现时可以是相同或不同,是一个环状基团,其中至少包含有一个C原子,通过它环状基团与金属连接;Ar 1和Ar 2由共价键联接在一起,可各自携带一个或多个取代基团,它们也可再通过取代基团联接在一起;L’每次出现时可以是相同或不同,是一个双齿螯合的辅助配体,最好是单阴离子双齿螯合配体;q1可以是0,1,2或3,优先地是2或3;q2可以是0,1,2或3,优先地是1或0。
一些三重态发光体的材料极其应用的例子可在下述专利文件和文献中找到:WO200070655,WO 200141512,WO 200202714,WO 200215645,EP 1191613,EP 1191612,EP 1191614,WO 2005033244,WO 2005019373,US 2005/0258742,WO 2009146770,WO 2010015307,WO 2010031485,WO 2010054731,WO 2010054728,WO 2010086089,WO 2010099852,WO 2010102709,US 20070087219 A1,US 20090061681 A1,US 20010053462 A1,Baldo,Thompson et al.Nature 403,(2000),750-753,US 20090061681 A1,US 20090061681 A1,Adachi et al.Appl.Phys.Lett.78(2001),1622-1624,J.Kido et al.Appl.Phys.Lett.65(1994),2124,Kido et al.Chem.Lett.657,1990,US 2007/0252517A1,Johnson et al.,JACS 105,1983,1795,Wrighton,JACS 96,1974,998,Ma et al.,Synth.Metals 94,1998,245,US 6824895,US 7029766,US6835469,US 6830828,US 20010053462 A1,WO 2007095118 A1,US 2012004407A1,WO 2012007088A1,WO2012007087A1,WO 2012007086A1,US 2008027220A1,WO 2011157339A1,CN 102282150A,WO 2009118087A1,WO 2013107487A1,WO 2013094620A1,WO 2013174471A1,WO 2014031977A1,WO 2014112450A1,WO 2014007565A1,WO 2014038456A1,WO 2014024131A1,WO 2014008982A1,WO2014023377A1。特此将上述列出的专利文件和文献中的全部内容并入本文作为参考。
在下面的表中列出一些合适的三重态发光体的例子:
Figure PCTCN2018120700-appb-000037
本发明的一个目的是为蒸镀型OLED提供材料解决方案。
在某些实施例中,按照本发明的金属配合物,其分子量≤1100g/mol,优选≤1000g/mol,很优选≤950g/mol,更优选≤900g/mol,最优选≤800g/mol。
本发明的另一个目的是为印刷OLED提供材料解决方案。
在某些实施例中,按照本发明的金属配合物,其分子量≥700g/mol,优选≥800g/mol,很优选≥900g/mol,更优选≥1000g/mol,最优选≥1100g/mol。
在另一些实施例中,按照本发明的金属配合物,在25℃时,在甲苯中的溶解度≥2mg/ml,优选≥3mg/ml,更优选≥4mg/ml,最优选≥5mg/ml。
本发明还涉及一种组合物或印刷油墨,包含至少一种如上所述的有机金属配合物或高聚物或混合物,及至少一种有机溶剂;所述的至少一种有机溶剂选自芳族或杂芳族、酯、芳族酮或芳族醚、脂肪族酮或脂肪族醚、脂环族或烯烃类化合物,或硼酸酯或磷酸酯类化合物,或两种及两种以上溶剂的混合物。
在一个优选的实施例中,按照本发明的一种组合物,所述的至少一种有机溶剂选自基于芳族或杂芳族的溶剂。
适合本发明的基于芳族或杂芳族溶剂的例子有,但不限制于:对二异丙基苯、戊苯、四氢萘、环己基苯、氯萘、1,4-二甲基萘、3-异丙基联苯、对甲基异丙苯、二戊苯、三戊苯、戊基甲苯、邻二乙苯、间二乙苯、对二乙苯、1,2,3,4-四甲苯、1,2,3,5-四甲苯、1,2,4,5-四甲苯、丁苯、十二烷基苯、二己基苯、二丁基苯、对二异丙基苯、环己基苯、苄基丁基苯、二甲基萘、3-异丙基联苯、对甲基异丙苯、1-甲基萘、1,2,4-三氯苯、4,4-二氟二苯甲烷、1,2-二甲氧基-4-(1-丙烯基)苯、二苯甲烷、2-苯基吡啶、3-苯基吡啶、N-甲基二苯胺、4-异丙基联苯、α,α-二氯二苯甲烷、4-(3-苯基丙基)吡啶、苯甲酸苄酯、1,1-双(3,4-二甲基苯基)乙烷、2-异丙基萘、喹啉、异喹啉、2-呋喃甲酸甲酯、2-呋喃甲酸乙酯等;
适合本发明的基于芳族酮溶剂的例子有,但不限制于:1-四氢萘酮,2-四氢萘酮,2-(苯基环氧)四氢萘酮,6-(甲氧基)四氢萘酮,苯乙酮、苯丙酮、二苯甲酮、及它们的衍生物,如4-甲基苯乙酮、3-甲基苯乙酮、2-甲基苯乙酮、4-甲基苯丙酮、3-甲基苯丙酮、2-甲基苯丙酮等;
适合本发明的基于芳族醚溶剂的例子有,但不限制于:3-苯氧基甲苯、丁氧基苯、对茴香醛二甲基乙缩醛、四氢-2-苯氧基-2H-吡喃、1,2-二甲氧基-4-(1-丙烯基)苯、1,4-苯并二噁烷、1,3-二丙基苯、2,5-二甲氧基甲苯、4-乙基本乙醚、1,3-二丙氧基苯、1,2,4-三甲氧基苯、4-(1-丙烯基)-1,2-二甲氧基苯、1,3-二甲氧基苯、缩水甘油基苯基醚、二苄基醚、4-叔丁基茴香醚、反式-对丙烯基茴香醚、1,2-二甲氧基苯、1-甲氧基萘、二苯醚、2-苯氧基甲醚、2-苯氧基四氢呋喃、乙基-2-萘基醚;
在一些优选的实施例中,按照本发明的组合物,所述的至少一种的有机溶剂可选自:脂肪族酮,例如,2-壬酮、3-壬酮、5-壬酮、2-癸酮、2,5-己二酮、2,6,8-三甲基-4-壬酮、葑酮、佛尔酮、异佛尔酮、二正戊基酮等;或脂肪族醚,例如,戊醚、己醚、二辛醚、乙二醇二丁醚、二乙二醇二乙醚、二乙二醇丁基甲醚、二乙二醇二丁醚、三乙二醇二甲醚、三乙二醇乙基甲醚、三乙二醇丁基甲醚、三丙二醇二甲醚、四乙二醇二甲醚等。
在另一些优选的实施例中,按照本发明的组合物,所述的至少一种的有机溶剂可选自基于酯的溶剂:辛酸烷酯、癸二酸烷酯、硬脂酸烷酯、苯甲酸烷酯、苯乙酸烷酯、肉桂酸烷酯、草酸烷酯、马来酸烷酯、烷内酯、油酸烷酯等。特别优选辛酸辛酯、癸二酸二乙酯、邻苯二甲酸二烯丙酯、异壬酸异壬酯。
所述的溶剂可以是单独使用,也可以是作为两种或多种有机溶剂的混合物使用。
在某些优选的实施例中,按照本发明的一种组合物,包含至少一种如上所述的有机金属配合物或高聚物或混合物及至少一种有机溶剂,还可进一步包含另一种有机溶剂。另一种有机溶剂的例子包括(但不限于):甲醇、乙醇、2-甲氧基乙醇、二氯甲烷、三氯甲烷、氯苯、邻二氯苯、四氢呋喃、苯甲醚、吗啉、甲苯、邻二甲苯、间二甲苯、对二甲苯、1,4二氧杂环己烷、丙酮、甲基乙基酮、1,2二氯乙烷、3-苯氧基甲苯、1,1,1-三氯乙烷、1,1,2,2-四氯乙烷、 醋酸乙酯、醋酸丁酯、二甲基甲酰胺、二甲基乙酰胺、二甲基亚砜、四氢萘、萘烷、茚和/或它们的混合物。
一些优选的实施例中,特别适合本发明的溶剂是汉森(Hansen)溶解度参数在以下范围内的溶剂:
δ d(色散力)在17.0~23.2MPa 1/2的范围,尤其是在18.5~21.0MPa 1/2的范围;
δ p(极性力)在0.2~12.5MPa 1/2的范围,尤其是在2.0~6.0MPa 1/2的范围;
δ h(氢键力)在0.9~14.2MPa 1/2的范围,尤其是在2.0~6.0MPa 1/2的范围。
按照本发明的组合物,其中有机溶剂在选取时需考虑其沸点参数。本发明中,所述的有机溶剂的沸点≥150℃;优选为≥180℃;较优选为≥200℃;更优为≥250℃;最优为≥275℃或≥300℃。这些范围内的沸点对防止喷墨印刷头的喷嘴堵塞是有益的。所述的有机溶剂可从溶剂体系中蒸发,以形成包含功能材料薄膜。
在一个优选的实施方案中,按照本发明的组合物是一溶液。
在另一个优选的实施方案中,按照本发明的组合物是一悬浮液。
本发明实施例中的组合物中可以包括0.01至20wt%的按照本发明的有机金属配合物或高聚物或混合物,较好的是0.1至15wt%,更好的是0.2至10wt%,最好的是0.25至5wt%。
本发明还涉及所述组合物作为涂料或印刷油墨在制备有机电子器件时的用途,特别优选的是通过打印或涂布的制备方法。
其中,适合的打印或涂布技术包括(但不限于)喷墨打印,喷印(Nozzle Printing),活版印刷,丝网印刷,浸涂,旋转涂布,刮刀涂布,辊筒印花,扭转辊印刷,平版印刷,柔版印刷,轮转印刷,喷涂,刷涂或移印,狭缝型挤压式涂布等。首选的是凹版印刷,喷印及喷墨印刷。溶液或悬浮液可以另外包括一个或多个组份例如表面活性化合物,润滑剂,润湿剂,分散剂,疏水剂,粘接剂等,用于调节粘度,成膜性能,提高附着性等。有关打印技术,及其对有关溶液的相关要求,如溶剂及浓度,粘度等,的详细信息请参见Helmut Kipphan主编的《印刷媒体手册:技术和生产方法》(Handbook of Print Media:Technologies and Production Methods),ISBN 3-540-67326-1。
本发明还提供一种如上所述的有机金属配合物、高聚物、混合物或组合物在有机电子器件中的应用,所述的有机电子器件可选自于,但不限于,有机发光二极管(OLED),有机光伏电池(OPV),有机发光电池(OLEEC),有机场效应管(OFET),有机发光场效应管,有机激光器,有机自旋电子器件,有机传感器及有机等离激元发射二极管(Organic Plasmon Emitting Diode)等,特别优选为OLED。本发明实施例中,优选将所述有机金属配合物或高聚物用于OLED器件的发光层。
本发明进一步涉及一种有机电子器件,至少包含一种如上所述的有机金属配合物、高聚物、混合物或组合物。一般地,此种有机电子器件至少包含一个阴极,一个阳极及位于阴极和阳极之间的一个功能层,其中所述的功能层中至少包含一种如上所述的有机混合物。所述的有机电子器件可选于,但不限于,有机发光二极管(OLED),有机光伏电池(OPV),有机发光电池(OLEEC),有机场效应管(OFET),有机发光场效应管,有机激光器,有机自旋电子器件,有机传感器及有机等离激元发射二极管(Organic Plasmon Emitting Diode)等,特别优选的是有机电致发光器件,如OLED,OLEEC,有机发光场效应管。
在某些特别优先的实施例中,所述的电致发光器件,其发光层包含一种如上所述的有机金属配合物、高聚物、混合物或组合物,或包含一种所述的有机金属配合物、高聚物、混合物或组合物和一种磷光发光体,或包含一种所述的有机金属配合物、高聚物、混合物或组合物和一种主体材料,或包含一种所述的有机金属配合物、高聚物、混合物或组合物,一种磷光发光体和一种主体材料。
在以上所述的发光器件,特别是OLED中,包括一基片,一阳极,至少一发光层,一阴极。
基片可以是不透明或透明。一个透明的基板可以用来制造一个透明的发光元器件。例如可参见,Bulovic等Nature 1996,380,p29,和Gu等,Appl.Phys.Lett.1996,68,p2606。基片可 以是刚性的或弹性的。基片可以是塑料,金属,半导体晶片或玻璃。最好是基片有一个平滑的表面。无表面缺陷的基板是特别理想的选择。在一个优选的实施例中,基片是柔性的,可选于聚合物薄膜或塑料,其玻璃化温度Tg为150℃以上,较好是超过200℃,更好是超过250℃,最好是超过300℃。合适的柔性基板的例子有聚(对苯二甲酸乙二醇酯)(PET)和聚乙二醇(2,6-萘)(PEN)。
阳极可包括一导电金属或金属氧化物,或导电聚合物。阳极可以容易地注入空穴到空穴注入层(HIL)或空穴传输层(HTL)或发光层中。在一个的实施例中,阳极的功函数和发光层中的发光体或作为HIL或HTL或电子阻挡层(EBL)的p型半导体材料的HOMO能级或价带能级的差的绝对值小于0.5eV,较好是小于0.3eV,最好是小于0.2eV。阳极材料的例子包括但不限于:Al、Cu、Au、Ag、Mg、Fe、Co、Ni、Mn、Pd、Pt、ITO、铝掺杂氧化锌(AZO)等。其他合适的阳极材料是已知的,本领域普通技术人员可容易地选择使用。阳极材料可以使用任何合适的技术沉积,如一合适的物理气相沉积法,包括射频磁控溅射,真空热蒸发,电子束(e-beam)等。在某些实施例中,阳极是图案结构化的。图案化的ITO导电基板可在市场上买到,并且可以用来制备根据本发明的器件。
阴极可包括一导电金属或金属氧化物。阴极可以容易地注入电子到EIL或ETL或直接到发光层中。在一个的实施例中,阴极的功函数和发光层中发光体或作为电子注入层(EIL)或电子传输层(ETL)或空穴阻挡层(HBL)的n型半导体材料的LUMO能级或导带能级的差的绝对值小于0.5eV,较好是小于0.3eV,最好是小于0.2eV。原则上,所有可用作OLED的阴极的材料都可能作为本发明器件的阴极材料。阴极材料的例子包括但不限于:Al、Au、Ag、Ca、Ba、Mg、LiF/Al、MgAg合金、BaF 2/Al、Cu、Fe、Co、Ni、Mn、Pd、Pt、ITO等。阴极材料可以使用任何合适的技术沉积,如一合适的物理气相沉积法,包括射频磁控溅射,真空热蒸发,电子束(e-beam)等。
OLED还可以包含其他功能层,如空穴注入层(HIL)、空穴传输层(HTL)、电子阻挡层(EBL)、电子注入层(EIL)、电子传输层(ETL)、空穴阻挡层(HBL)。适合用于这些功能层中的材料在上面及在WO2010135519A1、US20090134784A1和WO2011110277A1中有详细的描述,特此将此3篇专利文件中的全部内容并入本文作为参考。
按照本发明的发光器件,其发光波长在300到1000nm之间,较好的是在350到900nm之间,更好的是在400到800nm之间。
本发明还涉及按照本发明的电致发光器件在各种电子设备中的应用,包含,但不限于,显示设备,照明设备,光源,传感器等等。
下面将结合优选实施例对本发明进行了说明,但本发明并不局限于下述实施例,应当理解,所附权利要求概括了本发明的范围在本发明构思的引导下本领域的技术人员应意识到,对本发明的各实施例所进行的一定的改变,都将被本发明的权利要求书的精神和范围所覆盖。
1.化合物的合成
Figure PCTCN2018120700-appb-000038
配体L-1/L-2/L-3合成路线图:
Figure PCTCN2018120700-appb-000039
化合物1-a的合成:
在一个干燥的双口瓶里放置2-碘苯甲醚(1.98g,8.46mmol),2,6-二氟-4-溴苯胺(0.774g,3.72mmol),碳酸钾(2.15g,15.6mmol),铜粉(0.782g,12.3mmol),然后加入10mL干燥的邻二氯苯,180℃下搅拌反应96小时,冷却到室温,抽滤,滤饼用二氯甲烷洗,收集滤液,加入水和二氯甲烷萃取,浓缩掉二氯甲烷,然后减压蒸馏出去领二氯苯,加入大量的二氯甲烷过硅胶(三遍),浓缩有机相,然后加入大量石油醚析出白色固体1.25g,产率80%。
化合物1-b的合成:
在一个干燥的schlenck里放置1-a(2.09g,5mmol),抽真空充氮气循环三次,然后再氮气流下加入100mL干燥的二氯甲烷,在-78℃下搅拌20分钟,然后加入三溴化硼(1mL,10.6mmol),缓慢升到室温,继续搅拌反应3小时,慢慢加入水,用二氯甲烷萃取,干燥,浓缩得到白色固体1.56g,产率80%。
化合物1-c的合成:
在一个干燥的双口瓶里放置1-b(2.02g,5mmol),碳酸钾(2.07g,5mmol),抽真空充氮气循环三次,然后再氮气流下加入60mL干燥的DMF,在100℃下搅拌反应12小时,冷却到室温,加水析出大量固体,抽滤,干燥得到白色固体1.4g,产率80%。
化合物1-d的合成:
在一个干燥的双口瓶里放置1-c(0.35g,1mmol),频那醇联硼酯(0.38g,1.5mmol),Pd(dppf) 2Cl 2(0.022g,0.03mmol),醋酸钾(1g,10mmol),抽真空充氮气循环三次,然后再氮气流下加入15mL干燥的二氧六环,在110℃下回流反应24小时,浓缩出去二氧六环,加水用二氯甲烷萃取,浓缩,用二氯甲烷:石油醚=1:4过柱得到浅绿色固体0.27g,产率70%。
化合物L-1的合成:
在一个干燥的双口瓶里放置1-d(0.48g,1.2mmol),2-溴吡啶(0.16g,1mmol),四-(三苯基膦)-钯(0.0115g,0.01mmol),碳酸钾(0.55g,4mmol),抽真空充氮气循环三次,然后再氮气流下加入2mL水和4mL二氧六环的混合溶液,在100℃下搅拌反应24小时,冷却到室温,旋掉二氧六环,加入水和二氯甲烷萃取,浓缩有机相,用二氯甲烷:石油醚=2:1过柱,得到浅黄色固体0.245g,产率为70%。
化合物L-2的合成:
在一个干燥的双口瓶里放置1-d(0.48g,1.2mmol),2-溴喹啉(0.21g,1mmol),四-(三苯基膦)-钯(0.0115g,0.01mmol),碳酸钾(0.55g,4mmol),抽真空充氮气循环三次,然后再氮气流下加入2mL水和4mL二氧六环的混合溶液,在100℃下搅拌反应24小时,冷却到室温,旋掉二氧六环,加入水和二氯甲烷萃取,浓缩有机相,用二氯甲烷:石油醚=2:1过柱,得到浅黄色固体0.22g,产率为60%。
化合物L-3的合成:
在一个干燥的双口瓶里放置1-d(0.48g,1.2mmol),2-溴吡嗪(0.21g,1mmol),四-(三苯基膦)-钯(0.0115g,0.01mmol),碳酸钾(0.55g,4mmol),抽真空充氮气循环三次,然后再氮气流下加入2mL水和4mL二氧六环的混合溶液,在100℃下搅拌反应24小时,冷却到室温,旋掉二氧六环,加入水和二氯甲烷萃取,浓缩有机相,用二氯甲烷:石油醚=2:1过 柱,得到浅黄色固体0.28g,产率为65%。
实施例1:合成化合物Ir-1:
Figure PCTCN2018120700-appb-000040
铱氯桥Ir-Cl-1的合成:
在一个干燥的双口瓶里放置L-1(0.85g,2.43mmol),三氯化铱(0.348g,1mmol),抽真空充氮气循环三次,然后再氮气流下加入18mL乙二醇单乙醚和6mL水的混合溶液,在110℃下搅拌反应24小时,冷却到室温,加入水析出沉淀,抽滤干燥,得到红褐色固体0.55g,产率为60%。
配合物Ir-1的合成:
在一个干燥的双口瓶里放置Ir-Cl-1(0.185g,0.1mmol),乙酰丙酮(0.076mL,0.74mmol),碳酸钠(0.05g,0.47mmol),抽真空充氮气循环三次,然后在氮气流下加入10mL乙二醇单乙醚,室温搅拌反应24小时,冷却到室温,减压蒸去乙二醇单乙醚,加入水和二氯甲烷萃取,浓缩有机相,用乙酸乙酯:石油醚=1:3过柱,得到黄色固体0.059g,产率为30%。
实例2:合成化合物Ir-2:
Figure PCTCN2018120700-appb-000041
在一个干燥的双口瓶里放置Ir-1(0.099g,0.1mmol)和L-1(0.035g,0.1mmol),抽真空充氮气循环三次,然后在氮气流下加入10mL丙三醇,170℃搅拌反应24小时,冷却到室温,加入大量水和少量盐酸,用二氯甲烷萃取,浓缩有机相,用乙酸乙酯:石油醚=1:5过柱,得到黄色固体0.059g,产率为30%。
实例3:合成化合物Ir-3:
Figure PCTCN2018120700-appb-000042
铱配合物中间体Ir-OTF的合成:
在一个干燥的单口瓶里放置Ir-Cl(2g,1.87mmol),然后加入200mL二氯甲烷和10mL甲醇的混合溶液将其溶解,再往混合液中加入三氟甲磺酸银(1g,3.92mmol),然后室温搅拌反应8小时,抽滤,将滤液旋干,得到黄色固体,产率90%。
配合物Ir-3的合成:
在一个干燥的双口瓶里放置Ir-OTF(0.26g,0.4mmol),L-1(0.4g,1.16mmol),抽真空充氮气循环三次,然后加入30mL乙醇,搅拌回流反应24小时,冷却到室温,抽滤,干燥,得到黄色粗品,然后用二氯甲烷:石油醚=1:1过柱得到纯品,产率70%。
实例4:合成化合物Ir-4:
Figure PCTCN2018120700-appb-000043
在一个干燥的双口瓶里放置Ir-Cl-1(0.185g,0.1mmol),2-吡啶苯并咪唑(0.039g,0.2mmol),碳酸钾(0.028g,0.2mmol),抽真空充氮气循环三次,然后在氮气流下加入10mL二氯甲烷和10mL甲醇的混合溶液,室温搅拌反应24小时,浓缩,用甲醇:二氯甲烷=1:10过柱,得到黄色固体,产率为30%。
实例5:合成化合物Ir-5:
Figure PCTCN2018120700-appb-000044
铱氯桥Ir-Cl-2的合成:
在一个干燥的双口瓶里放置L-2(0.97g,2.43mmol),三氯化铱(0.348g,1mmol),抽真空充氮气循环三次,然后再氮气流下加入18mL乙二醇单乙醚和6mL水的混合溶液,在110℃下搅拌反应24小时,冷却到室温,加入水析出沉淀,抽滤干燥,得到红褐色固体0.71g,产率为60%。
配合物Ir-5的合成:
在一个干燥的双口瓶里放置Ir-Cl-2(0.225g,0.1mmol),乙酰丙酮(0.076mL,0.74mmol),碳酸钠(0.05g,0.47mmol),抽真空充氮气循环三次,然后在氮气流下加入10mL乙二醇单乙醚,室温搅拌反应24小时,冷却到室温,减压蒸去乙二醇单乙醚,加入水和二氯甲烷萃取,浓缩有机相,用乙酸乙酯:石油醚=1:3过柱,得到黄色固体0.053g,产率为20%。
实施例6:合成化合物Ir-6:
Figure PCTCN2018120700-appb-000045
铱氯桥Ir-Cl-3的合成:
在一个干燥的双口瓶里放置L-3(0.85g,2.43mmol),三氯化铱(0.348g,1mmol),抽真空充氮气循环三次,然后再氮气流下加入18mL乙二醇单乙醚和6mL水的混合溶液,在110℃下搅拌反应24小时,冷却到室温,加入水析出沉淀,抽滤干燥,得到红褐色固体0.55g,产率为60%。
配合物Ir-6的合成:
在一个干燥的双口瓶里放置Ir-Cl-3(0.185g,0.1mmol),乙酰丙酮(0.076mL,0.74mmol),碳酸钠(0.05g,0.47mmol),抽真空充氮气循环三次,然后在氮气流下加入10mL乙二醇单乙醚,室温搅拌反应24小时,冷却到室温,减压蒸去乙二醇单乙醚,加入水和二氯甲烷萃取,浓缩有机相,用乙酸乙酯:石油醚=1:3过柱,得到黄色固体0.059g,产率为30%。
配体L-4合成路线图:
Figure PCTCN2018120700-appb-000046
化合物2-a的合成:
在一个干燥的双口瓶里放置2-碘3-萘甲醚(2.39g,8.46mmol),2,6-二氟-4-溴苯胺(0.774g,3.72mmol),碳酸钾(2.15g,15.6mmol),铜粉(0.782g,12.3mmol),然后加入10mL干燥的邻二氯苯,180℃下搅拌反应96小时,冷却到室温,抽滤,滤饼用二氯甲烷洗,收集滤液,加入水和二氯甲烷萃取,浓缩掉二氯甲烷,然后减压蒸馏出去领二氯苯,加入大量的二氯甲烷过硅胶(三遍),浓缩有机相,然后加入大量石油醚析出白色固体1.54g,产率80%。
化合物2-b的合成:
在一个干燥的schlenck里放置2-a(2.60g,5mmol),抽真空充氮气循环三次,然后再氮气流下加入100mL干燥的二氯甲烷,在-78℃下搅拌20分钟,然后加入三溴化硼(1mL,10.6mmol),缓慢升到室温,继续搅拌反应3小时,慢慢加入水,用二氯甲烷萃取,干燥,浓缩得到白色固体1.96g,产率80%。
化合物2-c的合成:
在一个干燥的双口瓶里放置2-b(2.45g,5mmol),碳酸钾(2.07g,5mmol),抽真空充氮气循环三次,然后再氮气流下加入60mL干燥的DMF,在100℃下搅拌反应12小时,冷却到室温,加水析出大量固体,抽滤,干燥得到白色固体1.8g,产率80%。
化合物2-d的合成:
在一个干燥的双口瓶里放置2-c(0.45g,1mmol),频那醇联硼酯(0.38g,1.5mmol),Pd(dppf) 2Cl 2(0.022g,0.03mmol),醋酸钾(1g,10mmol),抽真空充氮气循环三次,然后再氮气流下加入15mL干燥的二氧六环,在110℃下回流反应24小时,浓缩出去二氧六环,加水用二氯甲烷萃取,浓缩,用二氯甲烷:石油醚=1:4过柱得到浅绿色固体0.35g,产率70%。
化合物L-4的合成:
在一个干燥的双口瓶里放置2-d(0.59g,1.2mmol),2-溴吡啶(0.16g,1mmol),四-(三苯基膦)-钯(0.0115g,0.01mmol),碳酸钾(0.55g,4mmol),抽真空充氮气循环三次,然后再氮气流下加入2mL水和4mL二氧六环的混合溶液,在100℃下搅拌反应24小时,冷却到室温,旋掉二氧六环,加入水和二氯甲烷萃取,浓缩有机相,用二氯甲烷:石油醚=2:1过柱,得到浅黄色固体0.38g,产率为70%。
实施例7:合成化合物Ir-7:
Figure PCTCN2018120700-appb-000047
铱氯桥Ir-Cl-4的合成:
在一个干燥的双口瓶里放置L-4(1.09g,2.43mmol),三氯化铱(0.348g,1mmol),抽真空充氮气循环三次,然后再氮气流下加入18mL乙二醇单乙醚和6mL水的混合溶液,在110℃下搅拌反应24小时,冷却到室温,加入水析出沉淀,抽滤干燥,得到红褐色固体1.35g,产率为60%。
配合物Ir-7的合成:
在一个干燥的双口瓶里放置Ir-Cl-4(0.22g,0.1mmol),乙酰丙酮(0.076mL,0.74mmol),碳酸钠(0.05g,0.47mmol),抽真空充氮气循环三次,然后在氮气流下加入10mL乙二醇单乙醚,室温搅拌反应24小时,冷却到室温,减压蒸去乙二醇单乙醚,加入水和二氯甲烷萃取,浓缩有机相,用乙酸乙酯:石油醚=1:3过柱,得到黄色固体0.035g,产率为30%。
Figure PCTCN2018120700-appb-000048
化合物3-a的合成:
在一个干燥的双口瓶中(100ml)放置2-溴-1,3-二氟-5-碘苯(0.319g,1mmol)、苯酚(0.376g,4mmol)、K 2CO 3(0.552g,4mmol),抽真空充氮气循环三次,在氮气流下加入N-甲基吡咯烷酮溶剂(10ml),逐步加热至135℃搅拌24h。冷却至室温,加大量的水析出固体,抽滤并干燥滤饼得浅粉色固体,石油醚和二氯重结晶得白色固体产物420mg。产率90%.
化合物3-b的合成:
在一个干燥的双口瓶中(100ml)放置2-溴-1,3-二苯醚-5碘苯(0.94g,2mmol)、抽真空充氮气循环三次,在氮气流下加入Pd(PPh3)4(0.23g,0.2mmol)、干燥的甲苯(50ml)、2-三正丁基甲锡烷基吡啶(0.64ml,0.74g,2mmol),氮气流下升温至120℃,搅拌24小时。冷却至室温,减压蒸馏除去甲苯,加入二氯甲烷和水萃取,浓缩有机相,CH2Cl2:PE=1:1过柱纯化,得淡黄色固体600mg,产率为71%。
化合物L-5的合成:
在一个干燥的Schlenck瓶中放置2-溴-1,3-二苯醚-5碘苯(0.209g,0.5mmol),N2流下加入干燥的间二甲苯(5ml),抽真空充氮气循环三次,转至-40℃冷却搅拌10mins,在氮气流下缓慢逐滴滴加n-BuLi(0.65mmol,0.26ml(2.5M)),-40℃下搅拌1h,逐渐升温至室温搅拌反应1h。然后冷却至-40℃,滴加BBr 3(0.65mmol,0.061ml),-40℃反应30mins后转移至室温搅拌1h。冰浴冷却至0℃10mins后,滴加N,N-二异丙基乙胺(1.03mmol,0.175ml),0℃反应10mins后,逐渐升温至120℃搅拌12h。冷却至室温,加入醋酸钠去离子水溶液进行猝灭,加去离子水和二氯甲烷萃取,浓缩有机相,并减压除去间二甲苯,加入石油醚析出固体,抽滤并干燥得黄色固体160mg,产率为90%。
实施例8:合成化合物Ir-8:
Figure PCTCN2018120700-appb-000049
铱氯桥Ir-Cl-5的合成:
在一个干燥的双口瓶里放置L-5(0.85g,2.43mmol),三氯化铱(0.348g,1mmol),抽真空充氮气循环三次,然后再氮气流下加入18mL乙二醇单乙醚和6mL水的混合溶液,在110℃下搅拌反应24小时,冷却到室温,加入水析出沉淀,抽滤干燥,得到红褐色固体0.55g,产率为60%。
配合物Ir-8的合成:
在一个干燥的双口瓶里放置Ir-Cl-5(0.185g,0.1mmol),乙酰丙酮(0.076mL,0.74mmol),碳酸钠(0.05g,0.47mmol),抽真空充氮气循环三次,然后在氮气流下加入10mL乙二醇单乙醚,室温搅拌反应24小时,冷却到室温,减压蒸去乙二醇单乙醚,加入水和二氯甲烷萃取,浓缩有机相,用乙酸乙酯:石油醚=1:3过柱,得到黄色固体0.059g,产率为30%。
实例9:合成化合物Ir-9:
Figure PCTCN2018120700-appb-000050
在一个干燥的双口瓶里放置Ir-8(0.099g,0.1mmol)和L-5(0.035g,0.1mmol),抽真空充氮气循环三次,然后在氮气流下加入10mL丙三醇,170℃搅拌反应24小时,冷却到室温,加入大量水和少量盐酸,用二氯甲烷萃取,浓缩有机相,用乙酸乙酯:石油醚=1:5过柱,得到黄色固体0.059g,产率为30%。
实例10:合成化合物Ir-10:
Figure PCTCN2018120700-appb-000051
配合物Ir-10的合成:
在一个干燥的双口瓶里放置Ir-OTF(0.26g,0.4mmol),L-5(0.4g,1.16mmol),抽真空充氮气循环三次,然后加入30mL乙醇,搅拌回流反应24小时,冷却到室温,抽滤,干燥,得到黄色粗品,然后用二氯甲烷:石油醚=1:1过柱得到纯品,产率70%。
1.化合物的能级结构
金属有机配合物Ir-1-Ir-10的能级可通过量子计算得到,比如利用TD-DFT(含时密度泛函理论)通过Gaussian03W(Gaussian Inc.),具体的模拟方法可参见WO2011141110。首先用半经验方法“Ground State/Hartree-Fock/Default Spin/LanL2MB”(Charge 0/Spin Singlet)来优化分子几何结构,然后有机分子的能量结构由TD-DFT(含时密度泛函理论)方法算得“TD-SCF/DFT/Default Spin/B3PW91/gen geom=connectivity pseudo=lanl2”(Charge 0/Spin Singlet)。HOMO和LUMO能级按照下面的校准公式计算,S1和T1直接使用。
HOMO(eV)=((HOMO(G)×27.212)-0.9899)/1.1206
LUMO(eV)=((LUMO(G)×27.212)-2.0041)/1.385
其中HOMO(G)和LUMO(G)是Gaussian 09W的直接计算结果,单位为eV。结果如表一所示,其中ΔHOMO=HOMO-(HOMO-1):
表一
Figure PCTCN2018120700-appb-000052
Figure PCTCN2018120700-appb-000053
3.OLED器件的制备方法
下面通过具体实施例来详细说明采用上述有机金属配合物的OLED器件的制备过程,该OLED器件的结构为:ITO/NPD(60nm)/15%Ir-1~Ir4:mCP(45nm)/TPBi(35nm)/LiF(1nm)/Al(150nm)/阴极
a、导电玻璃基片的清洗:首次使用时,可用多种溶剂进行清洗,例如氯仿、酮、异丙醇进行清洗,然后进行紫外臭氧等离子处理:
b、HTL(60nm),EML(25nm),ETL(65nm):在高真空(1x10 -6毫巴,mbar)中热蒸镀而成;
c、阴极:Li F/AI(1nm/150nm)在高真空(1x10 -6毫巴)中热蒸镀而成;
d、封装:器件在氯气手套箱中用紫外线硬化树脂封装。
各OLED器件的电流电压亮度(JVL)特性通过表征设备来表征,同时记录重要的参数如效率及外部量子效率。
经检测,OLEDx(对应有机金属配合Ir-x)的最大外部量子效率达都到10%以上。
进一步的优化,如器件结构的优化,HTM,ETM及主体材料的组合优化,将进一步提高器件的性能,特别是效率,驱动电压及寿命。
应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (14)

  1. 一种有机金属配合物,如通式(I)所示:
    Figure PCTCN2018120700-appb-100001
    其中:
    Ar 1每次出现时,相同或不同的是包含有至少一个N的杂芳香基团;Ar 2每次出现时,相同或不同的是芳香基团或杂芳香基团;其中Ar 1、Ar 2可进一步被一个或多个R 1取代;
    X为O、S、Se、NR 1、C(R 1) 2或者Si(R 1) 2
    Z为B、N、P、P=O或者P=S;
    R 1、R 2在每一次出现时,相同或不同的是,H,D,具有1至20个C原子的直链烷基、烷氧基或硫代烷氧基基团,或者具有3至20个C原子的支链或环状的烷基、烷氧基或硫代烷氧基基团或者是甲硅烷基基团,或具有1至20个C原子的取代的酮基基团,或具有2至20个C原子的烷氧基羰基基团,或具有7至20个C原子的芳氧基羰基基团,氰基基团(-CN),氨基甲酰基基团(-C(=O)NH 2),卤甲酰基基团(-C(=O)-X其中X代表卤素原子),甲酰基基团(-C(=O)-H),异氰基基团,异氰酸酯基团,硫氰酸酯基团或异硫氰酸酯基团,羟基基团,硝基基团,CF 3基团,Cl,Br,F,可交联的基团或者具有5至40个环原子的取代或未取代的芳族或杂芳族环系,或具有5至40个环原子的芳氧基或杂芳氧基基团,或这些体系的组合;R 2可以进一步与Ar 1形成环系;
    Figure PCTCN2018120700-appb-100002
    为两齿配体;
    M为一种过渡族金属元素;m表示0-2的整数,n表示1-3的整数。
  2. 根据权利要求1所述的有机金属配合物,其特征在于,X为O或S;Z为B或N。
  3. 根据权利要求1-2任一项所述的有机金属配合物,其特征在于,所述的金属元素M选自过渡金属铬、钼、钨、钌、铑、镍、银、铜、锌、钯、金、饿、铼、铱和铂中的任一个。
  4. 根据权利要求3所述的有机金属配合物,其特征在于,所述的金属元素M选自铱或铂。
  5. 根据权利要求1-4中任一项所述的有机金属配合物,其特征在于,所述的Ar 1在多次出现时相互独立的选自通式C1至C3中的任一个:
    Figure PCTCN2018120700-appb-100003
    其中y1表示
    Figure PCTCN2018120700-appb-100004
    的整数,y2表示
    Figure PCTCN2018120700-appb-100005
    的整数,虚线表示以单键形式进行连接,R 1含义同权利要求1。
  6. 根据权利要求1-5中任一项所述的有机金属配合物,其特征在于,所述的Ar 2在多次出现时相互独立的选自苯、联苯、萘、蒽、菲、苯并菲、芘、吡啶、嘧啶、三嗪、芴、硫芴、硅芴、咔唑、噻吩、呋喃、噻唑、三苯胺、三苯基氧磷、四苯基硅、螺芴、螺硅芴及其衍生物。
  7. 根据权利要求1-6中任一项所述的有机金属配合物,其特征在于,所述的Ar 2在多次出现时,相同地选自取代或未取代的苯或者萘。
  8. 根据权利要求1-7中任一项所述的有机金属配合物,其特征在于,
    Figure PCTCN2018120700-appb-100006
    为单阴离子配体,在多次出现时相互独立的选自如下通式L1至L15中的任何一个:
    Figure PCTCN2018120700-appb-100007
    其中R 3至R 72选自-H,-F,-Cl,-Br,-I,-D,-CN,-NO 2,-CF 3,B(OR 2) 2,Si(R 2) 3,直链烷烃,烷烃醚,含
    Figure PCTCN2018120700-appb-100008
    个碳原子烷烃硫醚,或支链烷烃,或环烷烃,含有
    Figure PCTCN2018120700-appb-100009
    个碳原子的烷烃醚或烷烃硫醚基团氢,含有
    Figure PCTCN2018120700-appb-100010
    个碳原子的芳基中的任一个;其中,虚线表示与金属元素M直接相连的键。
  9. 根据权利要求1-8所述的有机金属配合物,其特征在于,该有机金属配合物选自以下项通式:
    Figure PCTCN2018120700-appb-100011
    Figure PCTCN2018120700-appb-100012
    Figure PCTCN2018120700-appb-100013
    其中Ar 1、R 1、R 2、M、m、n含义同权利要求1;y表示
    Figure PCTCN2018120700-appb-100014
    的整数,z表示
    Figure PCTCN2018120700-appb-100015
    的整数。
  10. 一种高聚物,其特征在于,包含至少一个含有通式(I)表示的结构单元的重复单元。
  11. 一种混合物,其特征在于,包含至少一种如权利要求1-9中任一项所述的有机金属配合物或如权利要求10所述的高聚物,及至少另一种的有机功能材料,所述另一种的有机功能材料选自空穴注入材料,空穴传输材料,电子传输材料,电子注入材料,电子阻挡材料,空穴阻挡材料,发光材料,主体材料和有机染料。
  12. 一种组合物,其特征在于,包含至少一种如权利要求1-9中任一项所述的有机金属配合物或如权利要求10所述的高聚物或如权利要求11所述的混合物,及至少一种有机溶剂。
  13. 一种有机电子器件,其特征在于,至少包含一种如权利要求1至9任一项所述的有机金属配合物或如权利要求10所述的高聚物或如权利要求11所述的混合物。
  14. 根据权利要求13所述的有机电子器件,其特征在于,包含一发光层,其中发光层材料至少包含一种如权利要求1至9任一项所述的有机金属配合物或如权利要求10所述的高聚物或如权利要求11所述的混合物。
PCT/CN2018/120700 2017-12-14 2018-12-12 一种有机金属配合物,包含其的聚合物、混合物和组合物,及其在电子器件中的应用 WO2019114764A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201880069888.0A CN111278839B (zh) 2017-12-14 2018-12-12 一种有机金属配合物、高聚物、混合物、组合物及有机电子器件
US16/772,661 US11594690B2 (en) 2017-12-14 2018-12-12 Organometallic complex, and polymer, mixture and formulation comprising same, and use thereof in electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711341877 2017-12-14
CN201711341877.7 2017-12-14

Publications (1)

Publication Number Publication Date
WO2019114764A1 true WO2019114764A1 (zh) 2019-06-20

Family

ID=66819573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/120700 WO2019114764A1 (zh) 2017-12-14 2018-12-12 一种有机金属配合物,包含其的聚合物、混合物和组合物,及其在电子器件中的应用

Country Status (3)

Country Link
US (1) US11594690B2 (zh)
CN (1) CN111278839B (zh)
WO (1) WO2019114764A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11871653B2 (en) 2019-02-22 2024-01-09 Universal Display Corporation Organic electroluminescent materials and devices

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022078429A1 (zh) * 2020-10-14 2022-04-21 浙江光昊光电科技有限公司 一种发光器件以及其在显示中的应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105555792A (zh) * 2013-09-17 2016-05-04 默克专利有限公司 用于oled的多环苯基吡啶铱络合物及其衍生物
WO2016091217A1 (zh) * 2014-12-11 2016-06-16 广州华睿光电材料有限公司 一种有机金属配合物、包含其的聚合物、混合物、组合物、有机电子器件及应用
WO2017092545A1 (zh) * 2015-12-04 2017-06-08 广州华睿光电材料有限公司 一种金属有机配合物及其在电子器件中的应用

Family Cites Families (56)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6830828B2 (en) 1998-09-14 2004-12-14 The Trustees Of Princeton University Organometallic complexes as phosphorescent emitters in organic LEDs
EP1729327B2 (en) 1999-05-13 2022-08-10 The Trustees Of Princeton University Use of a phosphorescent iridium compound as emissive molecule in an organic light emitting device
EP3379591A1 (en) 1999-12-01 2018-09-26 The Trustees of Princeton University Complexes of form l2mx
JP4048521B2 (ja) 2000-05-02 2008-02-20 富士フイルム株式会社 発光素子
US20020121638A1 (en) 2000-06-30 2002-09-05 Vladimir Grushin Electroluminescent iridium compounds with fluorinated phenylpyridines, phenylpyrimidines, and phenylquinolines and devices made with such compounds
WO2002015645A1 (en) 2000-08-11 2002-02-21 The Trustees Of Princeton University Organometallic compounds and emission-shifting organic electrophosphorescence
JP4154140B2 (ja) 2000-09-26 2008-09-24 キヤノン株式会社 金属配位化合物
JP4154139B2 (ja) 2000-09-26 2008-09-24 キヤノン株式会社 発光素子
JP4154138B2 (ja) 2000-09-26 2008-09-24 キヤノン株式会社 発光素子、表示装置及び金属配位化合物
US6835469B2 (en) 2001-10-17 2004-12-28 The University Of Southern California Phosphorescent compounds and devices comprising the same
DE10338550A1 (de) 2003-08-19 2005-03-31 Basf Ag Übergangsmetallkomplexe mit Carbenliganden als Emitter für organische Licht-emittierende Dioden (OLEDs)
DE10345572A1 (de) 2003-09-29 2005-05-19 Covion Organic Semiconductors Gmbh Metallkomplexe
US7029766B2 (en) 2003-12-05 2006-04-18 Eastman Kodak Company Organic element for electroluminescent devices
US6824895B1 (en) 2003-12-05 2004-11-30 Eastman Kodak Company Electroluminescent device containing organometallic compound with tridentate ligand
US7598388B2 (en) 2004-05-18 2009-10-06 The University Of Southern California Carbene containing metal complexes as OLEDs
US7588839B2 (en) 2005-10-19 2009-09-15 Eastman Kodak Company Electroluminescent device
TWI391396B (zh) 2006-02-10 2013-04-01 Universal Display Corp 環化金屬之咪唑并〔1,2-f〕啡啶及二咪唑〔1,2-a:1’,2’-c〕喹唑啉配位體的金屬錯合物、與其等電子及苯基化類似物
JP5079809B2 (ja) 2006-08-28 2012-11-21 メルク・シャープ・アンド・ドーム・コーポレーション (3−アルキル−5−ピペリジン−1−イル−3,3a−ジヒドロ−ピラゾロ[1,5−a]ピリミジン−7−イル)−アミノ誘導体および中間体の合成のための方法および合成のための中間体
US7645142B2 (en) 2007-09-05 2010-01-12 Vivant Medical, Inc. Electrical receptacle assembly
US8221905B2 (en) 2007-12-28 2012-07-17 Universal Display Corporation Carbazole-containing materials in phosphorescent light emitting diodes
DE102008015526B4 (de) 2008-03-25 2021-11-11 Merck Patent Gmbh Metallkomplexe
DE102008027005A1 (de) 2008-06-05 2009-12-10 Merck Patent Gmbh Organische elektronische Vorrichtung enthaltend Metallkomplexe
DE102008036247A1 (de) 2008-08-04 2010-02-11 Merck Patent Gmbh Elektronische Vorrichtungen enthaltend Metallkomplexe
DE102008048336A1 (de) 2008-09-22 2010-03-25 Merck Patent Gmbh Einkernige neutrale Kupfer(I)-Komplexe und deren Verwendung zur Herstellung von optoelektronischen Bauelementen
DE102008057051B4 (de) 2008-11-13 2021-06-17 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
DE102008057050B4 (de) 2008-11-13 2021-06-02 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
DE102009007038A1 (de) 2009-02-02 2010-08-05 Merck Patent Gmbh Metallkomplexe
DE102009011223A1 (de) 2009-03-02 2010-09-23 Merck Patent Gmbh Metallkomplexe
DE102009013041A1 (de) 2009-03-13 2010-09-16 Merck Patent Gmbh Materialien für organische Elektrolumineszenzvorrichtungen
US8586203B2 (en) 2009-05-20 2013-11-19 Universal Display Corporation Metal complexes with boron-nitrogen heterocycle containing ligands
JP6246468B2 (ja) 2010-03-11 2017-12-13 メルク パテント ゲーエムベーハー 治療および化粧品におけるファイバー
WO2011141110A2 (de) 2010-05-12 2011-11-17 Merck Patent Gmbh Photostabilisatoren
CN101851501B (zh) * 2010-05-27 2012-12-19 深圳丹邦投资集团有限公司 一类新型电致磷光材料及其合成方法
DE112011102008B4 (de) 2010-06-15 2022-04-21 Merck Patent Gmbh Metallkomplexe
DE102010027316A1 (de) 2010-07-16 2012-01-19 Merck Patent Gmbh Metallkomplexe
DE102010027319A1 (de) 2010-07-16 2012-01-19 Merck Patent Gmbh Metallkomplexe
DE102010027317A1 (de) 2010-07-16 2012-01-19 Merck Patent Gmbh Metallkomplexe
US9783734B2 (en) 2011-02-28 2017-10-10 Kyulux, Inc. Delayed fluorescence material and organic electroluminescence device
CN103650195B (zh) 2011-07-15 2016-12-07 九州有机光材股份有限公司 有机电致发光元件及其所使用的化合物
KR20140058550A (ko) 2011-07-15 2014-05-14 고쿠리쓰다이가쿠호진 규슈다이가쿠 지연 형광 재료 및 그것을 사용한 유기 일렉트로 루미네선스 소자
TWI523845B (zh) 2011-12-23 2016-03-01 半導體能源研究所股份有限公司 有機金屬錯合物,發光元件,發光裝置,電子裝置及照明裝置
CN106986858B (zh) 2012-01-16 2019-08-27 默克专利有限公司 有机金属络合物
JP6095643B2 (ja) 2012-03-09 2017-03-15 株式会社Kyulux 発光材料および有機発光素子
JP2014135466A (ja) 2012-04-09 2014-07-24 Kyushu Univ 有機発光素子ならびにそれに用いる発光材料および化合物
WO2013161437A1 (ja) 2012-04-25 2013-10-31 国立大学法人九州大学 発光材料および有機発光素子
JP5594750B2 (ja) 2012-05-17 2014-09-24 国立大学法人九州大学 化合物、発光材料および有機発光素子
US9879177B2 (en) 2012-05-24 2018-01-30 Merck Patent Gmbh Metal complexes comprising condensed heteroaromatic rings
KR101344787B1 (ko) 2012-07-04 2013-12-26 제일모직주식회사 유기광전자소자용 화합물, 이를 포함하는 유기발광소자 및 상기 유기발광소자를 포함하는 표시장치
US9837622B2 (en) 2012-07-13 2017-12-05 Merck Patent Gmbh Metal complexes
EP2882763B1 (de) 2012-08-07 2018-08-22 Merck Patent GmbH Metallkomplexe
EP2882766B1 (en) 2012-08-09 2019-11-27 UDC Ireland Limited Transition metal complexes with carbene ligands and use thereof in oleds
US9711741B2 (en) 2012-08-24 2017-07-18 Arizona Board Of Regents On Behalf Of Arizona State University Metal compounds and methods and uses thereof
EP2894686B1 (en) 2012-09-04 2018-01-03 Konica Minolta, Inc. Organic electroluminescent element, lighting device and display device
JP6071569B2 (ja) 2013-01-17 2017-02-01 キヤノン株式会社 有機発光素子
CN103483332B (zh) 2013-09-11 2016-08-10 中山大学 具有热激活延迟荧光和聚集诱导发光性能的压致发光材料及其合成方法和应用
KR102218122B1 (ko) * 2013-09-11 2021-02-19 메르크 파텐트 게엠베하 금속 착물

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105555792A (zh) * 2013-09-17 2016-05-04 默克专利有限公司 用于oled的多环苯基吡啶铱络合物及其衍生物
WO2016091217A1 (zh) * 2014-12-11 2016-06-16 广州华睿光电材料有限公司 一种有机金属配合物、包含其的聚合物、混合物、组合物、有机电子器件及应用
WO2017092545A1 (zh) * 2015-12-04 2017-06-08 广州华睿光电材料有限公司 一种金属有机配合物及其在电子器件中的应用

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11871653B2 (en) 2019-02-22 2024-01-09 Universal Display Corporation Organic electroluminescent materials and devices

Also Published As

Publication number Publication date
CN111278839B (zh) 2023-10-17
CN111278839A (zh) 2020-06-12
US11594690B2 (en) 2023-02-28
US20210083204A1 (en) 2021-03-18

Similar Documents

Publication Publication Date Title
WO2019128633A1 (zh) 含硼杂环化合物、高聚物、混合物、组合物及其用途
CN108137634B (zh) 一种金属有机配合物及其在电子器件中的应用
EP3547385B1 (en) Organic mixture, composition, and organic electronic component
CN110759930B (zh) 螺环化合物及其用途
WO2019114668A1 (zh) 一种过渡金属配合物材料及其在电子器件的应用
WO2017118238A1 (zh) 氘代三芳胺衍生物及其在电子器件中的应用
CN111278842B (zh) 一种有机金属配合物,包含其的聚合物、混合物和组合物,及其在电子器件中的应用
WO2017118137A1 (zh) 咔唑衍生物、高聚物、混合物、组合物、有机电子器件及其应用
WO2019114608A1 (zh) 过渡金属配合物、聚合物、混合物、组合物及其应用
CN109659448B (zh) 有机混合物、组合物及有机电子器件
WO2018095393A1 (zh) 有机化合物、有机混合物、有机电子器件
CN109705018B (zh) 有机化合物、有机混合物、组合物及有机电子器件
WO2017118252A1 (zh) 含砜基稠杂环化合物及其应用
WO2017118262A1 (zh) 有机化合物及其应用
WO2019128762A1 (zh) 含酰胺键基团的聚合物、混合物、组合物及其应用
WO2019128599A1 (zh) 含氮杂环化合物、高聚物、混合物、组合物及其用途
CN111278839B (zh) 一种有机金属配合物、高聚物、混合物、组合物及有机电子器件
WO2017092481A1 (zh) 金属有机配合物、高聚物、混合物、组合物以及有机电子器件
CN110698475A (zh) 稠环有机化合物及其应用
CN113024607B (zh) 过渡金属配合物、聚合物、混合物、组合物及有机电子器件
WO2017118155A1 (zh) 一种有机光电材料及其用途
WO2020088186A1 (zh) 有机金属配合物、包含其的高聚物、混合物、组合物及有机电子器件
CN110759949A (zh) 有机金属配合物及其应用
WO2018108107A1 (zh) 共轭聚合物及其在有机电子器件的应用
WO2018099431A1 (zh) 芘类有机化合物及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18888553

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18888553

Country of ref document: EP

Kind code of ref document: A1