WO2017118252A1 - 含砜基稠杂环化合物及其应用 - Google Patents

含砜基稠杂环化合物及其应用 Download PDF

Info

Publication number
WO2017118252A1
WO2017118252A1 PCT/CN2016/108593 CN2016108593W WO2017118252A1 WO 2017118252 A1 WO2017118252 A1 WO 2017118252A1 CN 2016108593 W CN2016108593 W CN 2016108593W WO 2017118252 A1 WO2017118252 A1 WO 2017118252A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
sulfone
fused heterocyclic
organic
containing fused
Prior art date
Application number
PCT/CN2016/108593
Other languages
English (en)
French (fr)
Inventor
潘君友
何锐锋
彭沣
杨玮
Original Assignee
广州华睿光电材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州华睿光电材料有限公司 filed Critical 广州华睿光电材料有限公司
Priority to EP16883378.8A priority Critical patent/EP3401317B1/en
Priority to CN201680059849.3A priority patent/CN108137615B/zh
Publication of WO2017118252A1 publication Critical patent/WO2017118252A1/zh
Priority to US16/026,794 priority patent/US20180312522A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/10Spiro-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/12Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains three hetero rings
    • C07D495/14Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/12Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains three hetero rings
    • C07D495/20Spiro-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/10Compounds having one or more C—Si linkages containing nitrogen having a Si-N linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6561Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom containing systems of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring or ring system, with or without other non-condensed hetero rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/12OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising dopants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K99/00Subject matter not provided for in other groups of this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/40Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to the field of organic electroluminescent materials, and in particular to a class of sulfone-containing fused heterocyclic compounds, mixtures comprising the sulfone-containing fused heterocyclic compounds, compositions, and their use in organic electronic devices.
  • Organic semiconductor materials have the characteristics of structural diversity, relatively low manufacturing cost, and superior photoelectric performance, and have great potential in applications such as light-emitting diodes (OLEDs) such as flat panel displays and illumination.
  • OLEDs light-emitting diodes
  • the photovoltaic material containing a sulfone-based fused heterocyclic ring has been widely used in photovoltaic devices due to its good carrier transport performance and photoelectric performance.
  • the currently reported sulfone-containing fused heterocyclic materials still have some limitations in carrier balance and stability.
  • L represents an aromatic ring having 6 to 60 carbon atoms or an aromatic heterocyclic ring having 3 to 60 carbon atoms
  • R 1 , R 2 , R 3 and R each independently represent H, D, F, CN, aralkyl, alkenyl, alkynyl, nitrile, amine, nitro, acyl, alkoxy, carbonyl, sulfone groups. a hydroxyl group, an alkyl group having 1 to 30 carbon atoms, a cycloalkyl group having 3 to 30 carbon atoms, an aromatic hydrocarbon group having 6 to 60 carbon atoms or an aromatic heterocyclic group having 3 to 60 carbon atoms;
  • Ar represents an aromatic ring having 6 to 40 carbon atoms or an aromatic heterocyclic ring having 3 to 40 carbon atoms;
  • n 1, 2, 3, 4, 5 or 6.
  • a high polymer, the repeating unit of the high polymer comprising the sulfone-containing fused heterocyclic structural unit according to any one of claims 1 to 8.
  • the organic functional material is selected from at least one of a hole injecting material, a hole transporting material, an electron transporting material, an electron injecting material, an electron blocking material, a hole blocking material, an illuminant, a host material, and an organic dye.
  • composition comprising the sulfone-containing fused heterocyclic compound according to any one of the above, and at least one organic solvent;
  • the composition comprises the high polymer of any of the above and at least one organic solvent;
  • the composition comprises the mixture of any of the above and at least one organic solvent.
  • An organic electronic device comprising the sulfone-containing fused heterocyclic compound according to any one of the above, the high polymer according to any one of the above, or the mixture according to any one of the above.
  • the above sulfone-containing fused heterocyclic compound is used in an OLED, particularly as a host material in the light-emitting layer, to provide higher quantum efficiency, enhance luminescent stability, and extend device lifetime.
  • the possible reasons are as follows, but are not limited thereto.
  • the sulfone-containing fused heterocyclic compound has good bipolar transmission properties of electrons and holes, can effectively balance carrier transport, and enhance excitons generated by carriers.
  • the efficiency makes the sulfone-containing fused heterocyclic compound have better structural stability, which provides a possibility to improve the photoelectric performance and device stability of the related device.
  • Example 1 is a LUMO electron cloud distribution diagram of a sulfone-containing fused heterocyclic compound prepared in Example 1;
  • Example 2 is a HOMO electron cloud distribution diagram of a sulfone-containing fused heterocyclic compound prepared in Example 1;
  • Example 3 is a LUMO electron cloud distribution diagram of a sulfone-containing fused heterocyclic compound prepared in Example 2;
  • Example 4 is a HOMO electron cloud distribution diagram of a sulfone-containing fused heterocyclic compound prepared in Example 2.
  • composition and printing ink, or ink have the same meaning and are interchangeable.
  • host materials, matrix materials, Host or Matrix materials have the same meaning and are interchangeable.
  • metal organic complexes, metal organic complexes, and organometallic complexes have the same meaning and are interchangeable.
  • the sulfone-containing fused heterocyclic compound of one embodiment has the following formula (1):
  • L represents an aromatic ring having 6 to 60 carbon atoms or an aromatic heterocyclic ring having 3 to 60 carbon atoms.
  • -Z- represents a single bond, it means that one C atom on the benzene ring substituted by R2 and one C atom on the benzene ring substituted by R3 are bonded by a single bond.
  • -Z- may also be absent, meaning that the benzene ring substituted by R2 and the benzene ring substituted by R3 have no bond linkage at the position indicated by -Z-.
  • R1, R2, R3 and R each independently represent H, D, F, CN, aralkyl, alkenyl, alkynyl, nitrile, amine, nitro, acyl, alkoxy, carbonyl, sulfone, hydroxy, An alkyl group having 1 to 30 carbon atoms, a cycloalkyl group having 3 to 30 carbon atoms, an aromatic hydrocarbon group having 6 to 60 carbon atoms or an aromatic heterocyclic group having 3 to 60 carbon atoms.
  • Ar represents an aromatic ring having 6 to 40 carbon atoms or an aromatic heterocyclic ring having 3 to 40 carbon atoms.
  • n 1, 2, 3, 4, 5 or 6.
  • Ar in the formula (1) may be selected from an unsubstituted or substituted aromatic or heteroaromatic ring having 2 to 30 carbon atoms. In some embodiments, Ar may be selected from an unsubstituted or substituted aromatic or heteroaromatic ring having from 2 to 20 carbon atoms. In some embodiments, Ar may be selected from an unsubstituted or substituted aromatic or heteroaromatic ring having from 2 to 15 carbon atoms.
  • the aromatic ring system contains from 5 to 15 carbon atoms, such as from 5 to 10 carbon atoms, in the ring system.
  • the heteroaromatic ring system contains from 2 to 15 carbon atoms, for example from 2 to 10 carbon atoms, and at least one hetero atom in the ring system, provided that the total number of carbon atoms and heteroatoms is at least 4.
  • the heteroatoms can be selected from Si, N, P, O, S, and/or Ge, and in some embodiments, the heteroatoms can be selected from Si, N, P, O, and/or S.
  • An aromatic ring system or aromatic group refers to a hydrocarbon group containing at least one aromatic ring, including a monocyclic group and a polycyclic ring system.
  • a heteroaromatic or heteroaromatic group refers to a hydrocarbyl group (containing heteroatoms) comprising at least one heteroaromatic ring, including monocyclic groups and polycyclic ring systems. These polycyclic rings may have two or more rings in which two carbon atoms are shared by two adjacent rings, a fused ring. At least one of these rings of the polycyclic ring is aromatic or heteroaromatic.
  • aromatic or heteroaromatic ring systems include not only aromatic or heteroaromatic systems, but also multiple aryl or heteroaryl groups may also be interrupted by short non-aromatic units ( ⁇ 10%).
  • Non-H atoms preferably less than 5% of non-H atoms, such as C, N or O atoms). Therefore, systems such as 9,9'-spirobifluorene, 9,9-diarylfluorene, triarylamine, diaryl ether, etc., are equally recognized for the purpose of the invention. It is an aromatic ring system.
  • examples of the aromatic group are: benzene, naphthalene, anthracene, phenanthrene, perylene, tetracene, anthracene, benzofluorene, triphenylene, anthracene, anthracene, and derivatives thereof.
  • heteroaromatic groups are: furan, benzofuran, thiophene, benzothiophene, pyrrole, pyrazole, triazole, imidazole, oxazole, oxadiazole, thiazole, tetrazole, anthracene, anthracene Oxazole, pyrroloimidazole, pyrrolopyrrole, thienopyrrole, thienothiophene, furopyrrol, furanfuran, thienofuran, benzisoxazole, benzisothiazole, benzimidazole, pyridine, pyrazine, Pyridazine, pyrimidine, triazine, quinoline, isoquinoline, o-diazine, quinoxaline, phenanthridine, carbaidine, quinazoline, quinazolinone, and derivatives thereof.
  • Ar in the formula (1) may be selected from one of the following structural groups:
  • R1, R2, R3, R4, R5, R6 may form a monocyclic or polycyclic aliphatic or aromatic group with each other and/or a ring bonded to the group. Ring system.
  • Ar may be selected from one of the following structural groups:
  • the sulfone-containing fused heterocyclic compound described above may be further represented by any one of the following chemical formulae (2) to (7) by the sulfone-containing fused heterocyclic compound represented by the formula (1). :
  • R1, R2, and R3 represented by the formula (1) are each independently represented by an alkyl group having 1 to 18 carbon atoms or a cycloalkyl group having 3 to 18 carbon atoms or a carbon atom.
  • the number is an aromatic group of 6 to 18 or an aromatic hetero group having 3 to 18 carbon atoms.
  • R1, R2, and R3 are each independently represented by an alkyl group having 1 to 10 carbon atoms or a cycloalkyl group having 3 to 10 carbon atoms or an aromatic group having 6 to 15 carbon atoms. Or an aromatic hetero group having 3 to 15 carbon atoms.
  • L in the formula (1) is an aromatic group having 6 to 40 carbon atoms or an aromatic hetero group having 3 to 40 carbon atoms. In certain embodiments, L is an aromatic group having 6 to 30 carbon atoms or an aromatic hetero group having 3 to 30 carbon atoms. In certain embodiments, L is an aromatic group having 6 to 20 carbon atoms or an aromatic hetero group having 3 to 20 carbon atoms.
  • Suitable aromatic hetero groups which may be L include, but are not limited to, benzene, naphthalene, anthracene, phenanthrene, anthracene, pyridine, pyrimidine, triazine, anthracene, sulfonium, silicon germanium, oxazole, thiophene, furan,
  • the groups such as thiazole, triphenylamine, triphenylphosphine oxide, tetraphenyl silicon, snail, and spirosilicone are more preferably a single bond, a benzene, a pyridine, a pyrimidine, a triazine, a carbazole or the like.
  • suitable examples of L are: methyl, benzene, naphthalene, anthracene, phenanthrene, anthracene, pyridine, pyrimidine, triazine, anthracene, thioindigo, silicon germanium, carbazole, thiophene, furan.
  • the groups such as thiazole, triphenylamine, triphenylphosphine oxide, tetraphenyl silicon, snail, and spirosilicone are more preferably a group such as benzene, pyridine, pyrimidine, triazine or carbazole.
  • L may be selected from one of the following structural groups:
  • R represents H, D, F, CN, aralkyl, alkenyl, alkynyl, nitrile, amine, nitro, acyl, alkoxy, carbonyl, sulfone, hydroxy, alkane having 1 to 30 carbon atoms
  • the group has a cycloalkyl group having 3 to 30 carbon atoms, an aromatic hydrocarbon group having 6 to 60 carbon atoms or an aromatic heterocyclic group having 3 to 60 carbon atoms.
  • suitable as Z, X 4 , X 5 , X 6 may be independently selected from N(R), C(R) 2 , Si(R) 2 , O or S.
  • Z can be a single bond.
  • n is an integer of 1 to 6, and further, n is an integer of 1 to 5, and further, n is an integer of 1 to 4, and further n is 1 to 3 The integer, further n is 1 or 2.
  • the sulfone-containing fused heterocyclic compound according to the present invention is selected from one of the following structural formulae:
  • Ar, L, R 1 , R 2 , R 3 and n are as defined above.
  • the above sulfone-containing fused heterocyclic compound has thermal excitation delayed fluorescent TADF characteristics.
  • thermal excitation delayed fluorescent TADF material when the singlet and triplet energy level difference ⁇ E(S 1 -T 1 ) of the organic compound is sufficiently small, The triplet excitons of the organic compound can be converted to singlet excitons by reverse internal conversion, thereby achieving efficient luminescence.
  • TADF materials are obtained by electron donating (Donor) to electron-deficient or acceptor groups, i.e., having a distinct DA structure.
  • the sulfone-containing fused heterocyclic compound according to the present invention has a small ⁇ E (S1-T1), and generally ⁇ E(S1-T1) ⁇ 0.25 eV, preferably ⁇ 0.20 eV, more preferably It is ⁇ 0.15 eV, more preferably ⁇ 0.12 eV, and most preferably ⁇ 0.09 eV.
  • the compound according to the invention wherein the highest occupied orbital (HOMO) and the lowest unoccupied orbital (LUMO) electron cloud distribution are not completely separated, at least partially overlapping, preferably most overlapping.
  • HOMO highest occupied orbital
  • LUMO lowest unoccupied orbital
  • T1 triplet
  • the sulfone-containing fused heterocyclic compound according to the invention can be used as a functional material in electronic devices.
  • Organic functional materials can be classified into hole injection materials (HIM), hole transport materials (HTM), electron transport materials (ETM), and electron injecting materials (EIM).
  • the compound according to the invention can be used as a host material, or an electron transport material, or a hole transport material.
  • the compound according to the invention can be used as a phosphorescent host material.
  • T1 ⁇ 2.2 eV, preferably ⁇ 2.4 eV, more preferably ⁇ 2.6 eV, still more preferably ⁇ 2.65 eV, and most preferably ⁇ 2.7 eV.
  • the triplet level T1 of an organic compound depends on the substructure of the compound having the largest conjugated system. Generally, T1 decreases as the conjugated system increases. In certain embodiments, the substructure shown by the following formula (1a) in the formula (1) has the largest conjugated system.
  • the formula (1a) has no more than 30 ring atoms, preferably no more than 26, more preferably no more than 22, and most preferably no more than 30 substituents. 20.
  • the formula (1a) in the case of removing the substituent, has a T1 ⁇ 2.2 eV, preferably T1 ⁇ 2.4 eV, more preferably T1 ⁇ 2.6 eV, and even more preferably T1 ⁇ 2.65 eV, the optimum is T1 ⁇ 2.75 eV.
  • the sulfone-containing fused heterocyclic compound according to the present invention has a glass transition temperature Tg ⁇ 100 °C. In certain embodiments, Tg > 120 °C. In certain embodiments, Tg > 140 °C. In certain embodiments, Tg > 160 °C. In certain embodiments, Tg > 180 °C. It is indicated that the above sulfone-containing fused heterocyclic compound has good thermal stability and can be used as a phosphorescent host material.
  • a synthesis method involving a sulfone-containing fused heterocyclic compound is also provided.
  • the fused ring having a S group and a carbonyl group may be monobrominated first, and then the carbonyl group on the bromine fused heterocyclic ring may be attacked with a Z group-containing format reagent or a lithium salt, followed by dehydration and ring closure, and bromination.
  • the bromo group is made into a boric acid ester group, and then coupled with an o-nitrohalobenzene, the nitro ring is closed, and then coupled with the L group, and finally S is oxidized to obtain the target compound.
  • the above sulfone-containing fused heterocyclic compound is a small molecule material.
  • small molecule refers to a molecule that is not a polymer, oligomer, dendrimer, or blend. In particular, there are no repeating structures in small molecules.
  • the molecular weight of the small molecule is ⁇ 3000 g/mol, preferably ⁇ 2000 g/mol, preferably ⁇ 1500 g/mol.
  • the polymer that is, the polymer, includes a homopolymer, a copolymer, and a block copolymer. Further in the present invention, the high polymer also includes a dendrimer.
  • a dendrimer For the synthesis and application of the tree, see [Dendrimers and Dendrons, Wiley-VCH Verlag GmbH & Co. KGaA, 2002, Ed. George R. Newkome, Charles N. Moorefield, Fritz Vogtle.].
  • the conjugated polymer is a high polymer, and its backbone backbone is mainly composed of sp2 hybrid orbitals of C atoms.
  • Famous examples are: polyacetylene polyacetylene and poly(phenylene vinylene), the main chain thereof.
  • the C atom on it can also be replaced by other non-C atoms, and when the sp2 hybrid on the main chain is interrupted by some natural defects, it is still considered to be a conjugated polymer.
  • the conjugated high polymer also includes an aryl amine, an aryl phosphine and other heteroarmotics, and an organometallic complexes in the main chain. )Wait.
  • the present invention also relates to a high polymer comprising a repeating unit wherein the repeating unit comprises a structural unit as shown in the formula (1).
  • the high polymer is a non-conjugated high polymer wherein the structural unit as shown in the general formula (1) is on the side chain of the high polymer.
  • the high polymer is a conjugated high polymer.
  • the invention further relates to a mixture comprising at least one sulfone-containing fused heterocyclic compound according to the invention, and At least another organic functional material.
  • the mixture comprises at least one of the polymers of the invention and an organic functional material.
  • Another organic functional material described herein comprising holes (also called holes) injection or transport materials (HIM/HTM), hole blocking materials (HBM), electron injecting or transporting materials (EIM/ETM), electrons Barrier material (EBM), organic matrix material (Host), singlet illuminant (fluorescent illuminant), thermally activated delayed fluorescent luminescent material (TADF), triplet illuminant (phosphorescent illuminant) and luminescent metal organic complex At least one.
  • holes also called holes injection or transport materials
  • HBM hole blocking materials
  • EIM/ETM electron injecting or transporting materials
  • EBM electrons Barrier material
  • organic matrix material Host
  • singlet illuminant fluorescent illuminant
  • TADF thermally activated delayed fluorescent luminescent material
  • triplet illuminant phosphorescent illuminant
  • luminescent metal organic complex At least one.
  • Various organic functional materials are described in detail in, for example, WO2010135519A1, US
  • the organic functional material may be a small molecule or a high polymer material.
  • the sulfone-containing fused heterocyclic compound or polymer in the mixture according to the invention is contained in the mixture in an amount of from 50 to 99.9% by weight, further from 60 to 97% by weight, further 70 to 95% by weight, still further 70 to 90% by weight.
  • the mixture according to the invention comprises a compound or polymer according to the invention and a phosphorescent material.
  • the mixture according to the invention comprises a compound or polymer according to the invention and a TADF material.
  • the mixture according to the invention comprises a compound or polymer according to the invention, a phosphorescent material and a TADF material.
  • the mixture according to the invention comprises a compound or polymer according to the invention, a phosphorescent material and a host material.
  • the mixture according to the invention comprises a compound or polymer according to the invention and a fluorescent luminescent material.
  • the fluorescent luminescent material single-state illuminant
  • phosphorescent luminescent material triplet illuminant
  • TADF material is described in some detail below (but are not limited thereto).
  • Singlet emitters tend to have longer conjugated pi-electron systems.
  • styrylamine and its derivatives disclosed in JP 2913116 B and WO 2001021729 A1
  • indenoindenes and derivatives thereof disclosed in WO 2008/006449 and WO 2007/140847.
  • the singlet emitter can be selected from the group consisting of monostyrylamine, dibasic styrylamine, ternary styrylamine, quaternary styrylamine, styrene phosphine, styrene ether and aromatic amine.
  • a monostyrylamine refers to a compound comprising an unsubstituted or substituted styryl group and at least one amine, preferably an aromatic amine.
  • a dibasic styrylamine refers to a compound comprising two unsubstituted or substituted styryl groups and at least one amine, preferably an aromatic amine.
  • a ternary styrylamine refers to a compound comprising three unsubstituted or substituted styryl groups and at least one amine, preferably an aromatic amine.
  • a quaternary styrylamine refers to a compound that contains four no The substituted or substituted styryl group and at least one amine are preferably aromatic amines.
  • styrene is stilbene, which may be further substituted.
  • the corresponding phosphines and ethers are defined similarly to amines.
  • An arylamine or an aromatic amine refers to a compound comprising three unsubstituted or substituted aromatic ring or heterocyclic systems directly bonded to a nitrogen. At least one of these aromatic or heterocyclic ring systems is preferably selected from the fused ring system and preferably has at least 14 aromatic ring atoms.
  • Preferred examples thereof are aromatic decylamine, aromatic quinone diamine, aromatic decylamine, aromatic quinone diamine, aromatic thiamine and aromatic quinone diamine.
  • An aromatic amide refers to a compound in which a diaryl arylamine group is attached directly to the oxime, preferably at the position of 9.
  • An aromatic quinone diamine refers to a compound in which two diaryl arylamine groups are attached directly to the oxime, preferably at the 9,10 position.
  • the definitions of aromatic decylamine, aromatic quinone diamine, aromatic thiamine and aromatic quinone diamine are similar, wherein the diaryl aryl group is preferably bonded to the 1 or 1,6 position of hydrazine.
  • the singlet illuminant may be selected from the group consisting of an indeno-amine and an indeno-diamine, as disclosed in WO2006/122630, a benzoindolo-amine and a benzoindeno-diamine, such as Disclosed is a dibenzoindolo-amine and a dibenzoindeno-diamine as disclosed in WO 2008/006449, as disclosed in WO 2007/140847.
  • polycyclic aromatic hydrocarbon compounds in particular derivatives of the following compounds: for example, 9,10-bis(2-naphthoquinone), naphthalene, tetraphenyl, xanthene, phenanthrene , ⁇ (such as 2,5,8,11-tetra-t-butyl fluorene), anthracene, phenylene such as (4,4'-bis(9-ethyl-3-carbazolevinyl)-1 , 1 '-biphenyl), indenyl hydrazine, decacycloolefin, hexacene benzene, anthracene, spirobifluorene, aryl hydrazine (such as US20060222886), arylene vinyl (such as US5121029, US5130603), cyclopentane Alkene such as tetraphenylcyclopentadiene, rub
  • TDF Thermally activated delayed fluorescent luminescent material
  • the thermally activated delayed fluorescent luminescent material is a third generation organic luminescent material developed after organic fluorescent materials and organic phosphorescent materials.
  • Such materials generally have a small singlet-triplet energy level difference ( ⁇ E st ), and triplet excitons can be converted into singlet exciton luminescence by inter-system crossing. This can make full use of the singlet excitons and triplet excitons formed under electrical excitation.
  • the quantum efficiency in the device can reach 100%.
  • the TADF material needs to have a small singlet-triplet energy level difference, typically ⁇ E st ⁇ 0.3eV, preferably ⁇ E st ⁇ 0.2eV, more preferably ⁇ E st ⁇ 0.1eV, and most preferably ⁇ E st ⁇ 0.05eV.
  • TADF has better fluorescence quantum efficiency.
  • TADF luminescent materials can be found in the following patent documents: CN103483332(A), TW201309696(A), TW201309778(A), TW201343874(A), TW201350558(A), US20120217869(A1), WO2013133359(A1), WO2013154064( A1), Adachi, et.al. Adv. Mater., 21, 2009, 4802, Adachi, et. al. Appl. Phys. Lett., 98, 2011, 083302, Adachi, et. al. Appl. Phys. Lett ., 101, 2012, 093306, Adachi, et. al. Chem.
  • TADF luminescent materials are listed in the table below:
  • Triplet emitters are also known as phosphorescent emitters.
  • the triplet emitter is a metal complex of the formula M(L) n , wherein M is a metal atom, and each occurrence of L may be the same or different and is an organic ligand. It is bonded to the metal atom M by one or more positional bonding or coordination, and n is an integer greater than 1, preferably 1, 2, 3, 4, 5 or 6.
  • these metal complexes are coupled to a polymer by one or more positions, preferably by an organic ligand.
  • the metal atom M is selected from a transition metal element or a lanthanide or a lanthanide element, preferably Ir, Pt, Pd, Au, Rh, Ru, Os, Sm, Eu, Gd, Tb, Dy Re, Cu or Ag, with Os, Ir, Ru, Rh, Re, Pd or Pt being particularly preferred.
  • the triplet emitter comprises a chelating ligand, ie a ligand, coordinated to the metal by at least two bonding sites, with particular preference being given to the triplet emitter comprising two or three identical or different pairs Tooth or multidentate ligand.
  • Chelating ligands are beneficial for increasing the stability of metal complexes.
  • Examples of the organic ligand may be selected from a phenylpyridine derivative, a 7,8-benzoquinoline derivative, a 2(2-thienyl)pyridine derivative, a 2(1-naphthyl)pyridine derivative, or a 2 benzene.
  • a quinolinol derivative All of these organic ligands may be replaced, For example, it is substituted by fluorine or trifluoromethyl.
  • the ancillary ligand may preferably be selected from the group consisting of acetone acetate or picric acid.
  • the metal complex that can be used as the triplet emitter has the following form:
  • M is a metal selected from transition metal elements or lanthanides or actinides
  • Ar 1 may be the same or different at each occurrence, and is a cyclic group containing at least one donor atom, that is, an atom having a lone pair of electrons, such as nitrogen or phosphorus, through which a cyclic group is coordinated to a metal.
  • Ar 2 may be the same or different each time it appears, is a cyclic group containing at least one C atom through which a cyclic group is attached to the metal; Ar 1 and Ar 2 are bonded by a covalent bond Together, each may carry one or more substituent groups, which may also be joined together by a substituent group; each occurrence of L may be the same or different, and is an ancillary ligand which may be a bidentate chelate ligand Preferred is a monoanionic bidentate chelate ligand; m is 1, 2 or 3, preferably 2 or 3, particularly preferably 3; n is 0, 1, or 2, preferably 0 or 1, Particularly preferred is 0.
  • triplet emitters Some examples of suitable triplet emitters are listed in the table below:
  • Another object of the invention is to provide a material solution for printing OLEDs.
  • the sulfone-containing fused heterocyclic compound according to the present invention has a molecular weight of ⁇ 700 g/mol, a further molecular weight of ⁇ 800 g/mol, a further molecular weight of ⁇ 900 g/mol, and further a molecular weight thereof ⁇ 1000 g/mol, further molecular weight ⁇ 1100 g/mol.
  • the sulfone-containing fused heterocyclic compound according to the present invention has a solubility in toluene of ⁇ 10 mg/ml at 25 ° C, a further solubility of ⁇ 15 mg/ml, and further solubility of ⁇ 20 mg. /ml.
  • the invention further relates to a composition or ink comprising a sulfone-containing fused heterocyclic compound as described above and at least one organic solvent.
  • the composition comprises the above high polymer and at least one organic solvent.
  • the composition comprises the above mixture and at least one organic solvent.
  • the invention further provides a film comprising a compound or polymer according to the invention prepared from a solution.
  • the viscosity and surface tension of the ink are important parameters when used in the printing process. Suitable surface tension parameters for the ink are suitable for the particular substrate and the particular printing method.
  • the ink according to the present invention has a surface tension at an operating temperature or at 25 ° C in the range of from about 19 dyne/cm to 50 dyne/cm. Further, the surface tension is in the range of 22 dyne/cm to 35 dyne/cm. Further, the surface tension is in the range of 25 dyne/cm to 33 dyne/cm.
  • the ink according to the present invention has a viscosity at an operating temperature or 25 ° C in the range of from about 1 cps to about 100 cps. Further, the viscosity is in the range of 1 cps to 50 cps. Further, the viscosity is in the range of 1.5 cps to 20 cps. Further, the viscosity is in the range of 4.0 cps to 20 cps.
  • the composition so formulated will be suitable for ink jet printing.
  • the viscosity can be adjusted by different methods, such as by selection of a suitable solvent and concentration of the functional material in the ink.
  • the ink containing the compound or polymer according to the present invention can facilitate the adjustment of the printing ink to an appropriate range in accordance with the printing method used.
  • the composition according to the invention comprises a functional material in a weight ratio ranging from 0.3% to 30% by weight, preferably from 0.5% to 20% by weight, more preferably from 0.5% to 15% by weight, even more preferably. It is in the range of 0.5% to 10% by weight, preferably in the range of 1% to 5% by weight.
  • the at least one organic solvent is selected from the group consisting of aromatic or heteroaromatic based solvents, particularly aliphatic chain/ring substituted aromatic solvents, or aromatic ketones, in accordance with the inks of the present invention.
  • Solvent, or aromatic ether solvent is selected from the group consisting of aromatic or heteroaromatic based solvents, particularly aliphatic chain/ring substituted aromatic solvents, or aromatic ketones, in accordance with the inks of the present invention.
  • Solvent, or aromatic ether solvent is selected from the group consisting of aromatic or heteroaromatic based solvents, particularly aliphatic chain/ring substituted aromatic solvents, or aromatic ketones, in accordance with the inks of the present invention.
  • Solvent, or aromatic ether solvent is selected from the group consisting of aromatic or heteroaromatic based solvents, particularly aliphatic chain/ring substituted aromatic solvents, or aromatic ketones, in accordance with the inks of the present invention.
  • Solvent, or aromatic ether solvent is selected from the
  • solvents suitable for the present invention are, but are not limited to, aromatic or heteroaromatic based solvents: p-diisopropylbenzene, pentylbenzene, tetrahydronaphthalene, cyclohexylbenzene, chloronaphthalene, 1,4-dimethyl Naphthalene, 3-isopropylbiphenyl, p-methyl cumene, dipentylbenzene, triphenylbenzene, pentyltoluene, o-xylene, m-xylene, p-xylene, o-diethylbenzene, m-diethyl Benzene, p-diethylbenzene, 1,2,3,4-tetramethylbenzene, 1,2,3,5-tetramethylbenzene, 1,2,4,5-tetramethylbenzene, butylbenzene, dodecylbenzene, two Hexylbenzene, di
  • the at least one solvent may be selected from the group consisting of: an aliphatic ketone, for example, 2-nonanone, 3-fluorenone, 5-nonanone, 2-nonanone, 2, 5 -hexanedione, 2,6,8-trimethyl-4-indolone, phorone, di-n-pentyl ketone, etc.; or an aliphatic ether, for example, pentyl ether, hexyl ether, dioctyl ether, ethylene Dibutyl ether, diethylene glycol diethyl ether, diethylene glycol butyl methyl ether, diethylene glycol dibutyl ether, triethylene glycol dimethyl ether, triethylene glycol ethyl methyl ether, triethylene glycol butyl methyl ether , tripropylene glycol dimethyl ether, tetraethylene glycol dimethyl ether and the like.
  • an aliphatic ketone for example, 2-nonan
  • the printing ink further comprises another organic solvent.
  • another organic solvent include, but are not limited to, methanol, ethanol, 2-methoxyethanol, dichloromethane, chloroform, chlorobenzene, o-dichlorobenzene, tetrahydrofuran, anisole, morpholine , toluene, o-xylene, m-xylene, p-xylene, 1,4 dioxane, acetone, methyl ethyl ketone, 1,2 dichloroethane, 3-phenoxytoluene, 1, 1,1-trichloroethane, 1,1,2,2-tetrachloroethane, ethyl acetate, butyl acetate, dimethylformamide, dimethylacetamide, dimethyl sulfoxide, tetrahydrogen Naphthalene, decalin, hydrazine and/or mixtures thereof.
  • the composition according to the invention is a solution.
  • composition according to the invention is a suspension.
  • the invention further relates to the use of the composition as a printing ink in the preparation of an organic electronic device, particular preference being given to a preparation process by printing or coating.
  • suitable printing or coating techniques include, but are not limited to, inkjet printing, Nozzle Printing, typography, screen printing, dip coating, spin coating, blade coating, roller printing, torsion roller Printing, lithography, flexographic printing, rotary printing, spraying, brushing or pad printing, spray printing (Nozzle printing), slit type extrusion coating, and the like.
  • Preferred are ink jet printing, slit type extrusion coating, jet printing and gravure printing.
  • the solution or suspension may additionally contain one or more components such as surface active compounds, lubricants, wetting agents, dispersing agents, hydrophobic agents, binders and the like for adjusting viscosity, film forming properties, adhesion, and the like.
  • the present invention also provides the use of a sulfone-containing fused heterocyclic compound or polymer as described above in an organic electronic device.
  • the organic electronic device may be selected from, but not limited to, an organic light emitting diode (OLED), an organic photovoltaic cell (OPV), an organic light emitting cell (OLEEC), an organic field effect transistor (OFET), an organic light emitting field effect transistor, and an organic Lasers, organic spintronic devices, organic sensors and organic plasmon emitting diodes (Organic Plasmon Emitting Diode), especially OLEDs.
  • the organic compound is preferably used in the luminescent layer of an OLED device.
  • the invention further relates to an organic electronic device comprising at least one sulfone-containing fused heterocyclic compound, polymer or mixture as described above.
  • an organic electronic device comprises at least one cathode, an anode and a functional layer between the cathode and the anode, wherein said functional layer comprises at least one of the compounds or polymers as described above.
  • the organic electronic device may be selected from, but not limited to, an organic light emitting diode (OLED), an organic photovoltaic cell (OPV), an organic light emitting cell (OLEEC), an organic field effect transistor (OFET), an organic light emitting field effect transistor, and an organic Lasers, organic spintronic devices, organic sensors and organic plasmon emitting diodes (Organic Plasmon Emitting Diode).
  • OLED organic light emitting diode
  • OCV organic photovoltaic cell
  • OFET organic field effect transistor
  • OLED organic light emitting field effect transistor
  • organic Lasers organic spintronic devices, organic sensors and organic plasmon emitting diodes (Organic Plasmon Emitting Diode).
  • the organic electronic device is an electroluminescent device, particularly an OLED, comprising a substrate, an anode, at least one luminescent layer, a cathode, and optionally a hole transport layer.
  • a sulfone-containing fused heterocyclic compound or polymer according to the present invention is included in the hole transport layer.
  • a sulfone-containing fused heterocyclic compound or polymer according to the present invention is contained in the light-emitting layer, and further, a sulfone group according to the present invention is contained in the light-emitting layer.
  • the device structure of the electroluminescent device will be described below, but is not limited thereto.
  • the substrate can be opaque or transparent.
  • a transparent substrate can be used to make a transparent light-emitting component. See, for example, Bulovic et al. Nature 1996, 380, p29, and Gu et al, Appl. Phys. Lett. 1996, 68, p2606.
  • the substrate can be rigid or elastic.
  • the substrate can be plastic, metal, semiconductor wafer or glass.
  • the substrate has a smooth surface. Substrates without surface defects are a particularly desirable choice.
  • the substrate is flexible, optionally in the form of a polymer film or plastic, having a glass transition temperature Tg of 150 ° C or higher, preferably more than 200 ° C, more preferably more than 250 ° C, preferably More than 300 ° C. Examples of suitable flexible substrates are poly(ethylene terephthalate) (PET) and polyethylene glycol (2,6-naphthalene) (PEN).
  • PET poly(ethylene terephthalate)
  • PEN polyethylene glycol (2,6-na
  • the anode can comprise a conductive metal or metal oxide, or a conductive polymer.
  • the anode can easily inject holes into a hole injection layer (HIL) or a hole transport layer (HTL) or a light-emitting layer.
  • HIL hole injection layer
  • HTL hole transport layer
  • the absolute value of the difference between the work function of the anode and the HOMO level or the valence band level of the illuminant in the luminescent layer or the p-type semiconductor material as the HIL or HTL or electron blocking layer (EBL) is less than 0.5 eV, preferably less than 0.3 eV, and most preferably less than 0.2 eV.
  • anode material examples include, but are not limited to, Al, Cu, Au, Ag, Mg, Fe, Co, Ni, Mn, Pd, Pt, ITO, aluminum-doped zinc oxide (AZO), and the like.
  • suitable anode materials are known and can be readily selected for use by one of ordinary skill in the art.
  • the anode material can be deposited using any suitable technique, such as a suitable physical vapor deposition process, including RF magnetron sputtering, Vacuum thermal evaporation, electron beam (e-beam), etc.
  • the anode is patterned. Patterned ITO conductive substrates are commercially available and can be used to prepare devices in accordance with the present invention.
  • the cathode can comprise a conductive metal or metal oxide.
  • the cathode can easily inject electrons into the EIL or ETL or directly into the luminescent layer.
  • the work function of the cathode and the LUMO level of the illuminant or the n-type semiconductor material as an electron injection layer (EIL) or electron transport layer (ETL) or hole blocking layer (HBL) in the luminescent layer or
  • EIL electron injection layer
  • ETL electron transport layer
  • HBL hole blocking layer
  • the absolute value of the difference in conduction band energy levels is less than 0.5 eV, preferably less than 0.3 eV, and most preferably less than 0.2 eV.
  • all materials which can be used as cathodes for OLEDs are possible as cathode materials for the devices of the invention.
  • cathode material examples include, but are not limited to, Al, Au, Ag, Ca, Ba, Mg, LiF/Al, MgAg alloy, BaF2/Al, Cu, Fe, Co, Ni, Mn, Pd, Pt, ITO, and the like.
  • the cathode material can be deposited using any suitable technique, such as a suitable physical vapor deposition process, including radio frequency magnetron sputtering, vacuum thermal evaporation, electron beam (e-beam), and the like.
  • the OLED may further include other functional layers such as a hole injection layer (HIL), a hole transport layer (HTL), an electron blocking layer (EBL), an electron injection layer (EIL), an electron transport layer (ETL), and a hole blocking layer. (HBL).
  • HIL hole injection layer
  • HTL hole transport layer
  • EBL electron blocking layer
  • EIL electron injection layer
  • ETL electron transport layer
  • HBL hole blocking layer
  • the light-emitting layer thereof comprises the sulfone-containing fused heterocyclic compound or polymer of the present invention, and is prepared by a method of vacuum evaporation or solution processing, preferably a solution. The method of processing.
  • the light-emitting device has an emission wavelength of between 300 and 1000 nm, preferably between 350 and 900 nm, more preferably between 400 and 800 nm.
  • the invention further relates to the use of an organic electronic device according to the invention in various electronic devices, including, but not limited to, display devices, illumination devices, light sources, sensors and the like.
  • reaction formula is as follows:
  • reaction formula is as follows:
  • the energy level of the organic material can be obtained by quantum calculation, for example, by TD-DFT (time-dependent density functional theory) by Gaussian 03W (Gaussian Inc.), and the specific simulation method can be found in WO2011141110.
  • TD-DFT time-dependent density functional theory
  • Gaussian 03W Gaussian Inc.
  • the specific simulation method can be found in WO2011141110.
  • the semi-empirical method “Ground State/Semi-empirical/Default Spin/AM1" (Charge 0/Spin Singlet) is used to optimize the molecular geometry, and then the energy structure of the organic molecule is determined by TD-DFT (time-dependent density functional theory) method.
  • TD-SCF/DFT/Default Spin/B3PW91 and the base group "6-31G(d)” (Charge 0/Spin Singlet).
  • the HOMO and LUMO levels are calculated according to the following calibration formula, and S1 and T1 are used directly.
  • HOMO(eV) ((HOMO(G) ⁇ 27.212)-0.9899)/1.1206
  • HOMO(G) and LUMO(G) are direct calculation results of Gaussian 03W, and the unit is Hartree.
  • the results are shown in Table 1:
  • ⁇ E(S 1 -T 1 ) of compound 2-6 0.12 eV
  • ⁇ E (S 1 - T 1 ) of compound 9-7 0.02 eV.
  • the HOMO electron cloud distribution map and the LUMO electron cloud distribution map of the compound 2-6 prepared in Example 1 are shown in Fig. 1 and Fig. 2, respectively.
  • the HOMO electron cloud distribution map and the LUMO electron cloud distribution map of the compound 9-7 prepared in Example 2 are shown in Fig. 3 and Fig. 4, respectively. It can be seen from the figure that the HOMO of the two compounds and the LUMO have sufficient overlap.
  • compounds (2-6) and (9-7) are used as host materials
  • Ir(ppy) 3 is used as a light-emitting material
  • HATCN is used as a hole injecting material
  • NPB and TCTA are used as a hole transporting material
  • B3PYMPM is used as a hole transporting material.
  • the electron transporting material was constructed as an electroluminescent device having a device structure of ITO/HATCN/NPB/TCTA/host material: Ir(ppy) 3 (15%)/B3PYMPM/LiF/Al.
  • HATCN, NPB, TCTA, B3PYMPM, Ir(ppy) 3 , Ref1 are all commercially available, such as Jilin Elound (Jilin OLED Material Tech Co., Ltd, www.jl-oled.com), or The synthesis methods are all prior art, as described in the prior art, and will not be described herein.
  • the preparation process of the OLED device described above will be described in detail below through specific embodiments.
  • the structure of the OLED device (such as Table 2) is: ITO/HATCN/NPB/TCTA/body material: Ir(ppy) 3 /B3PYMPM/LiF/Al
  • the preparation steps are as follows:
  • ITO indium tin oxide
  • a conductive glass substrate cleaning using a variety of solvents (such as one or several of chloroform, acetone or isopropanol) cleaning, and then UV ozone treatment;
  • HATCN 5nm
  • NPB 40nm
  • TCTA 10nm
  • host material 15% Ir (ppy) 3 (15nm)
  • B3PYMPM 40nm
  • LiF 1nm
  • Al 100nm
  • high vacuum (1 ⁇ 10-6 mbar
  • the device is encapsulated in a nitrogen glove box with an ultraviolet curable resin.
  • J-V current-voltage

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electroluminescent Light Sources (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

一种含砜基稠杂环化合物及其应用,该含砜基稠杂环化合物具有如下通式(1):其中,L表示碳原子数为6~60的芳香环或碳原子数为3~60的芳杂环;-Z-表示单键、-N(R)-、-C(R)2-、-Si(R)2-、-O-、-C=N(R)-、-C=C(R)2-、-P(R)-、-P(=O)R-、-S-、-S=O-或-SO2-;Ar表示碳原子数为6~40的芳香环或碳原子数为3~40的芳杂环;n为1、2、3、4、5或6。

Description

含砜基稠杂环化合物及其应用 技术领域:
本发明涉及有机电致发光材料领域,特别是涉及一类含砜基稠杂环化合物,包含该含砜基稠杂环化合物的混合物,组合物、及其在有机电子器件中的应用。
背景技术:
有机半导体材料具有结构多样性、制造成本相对较低、光电性能优越等特性,在发光二极管(OLED)等光电器件(例如平板显示器和照明)方面的应用具有巨大的潜力。
为了提高有机发光二极管的发光性能,推进有机发光二极管大范围产业化进程,各类有机光电性能材料体系已被广泛地开发。但OLED的性能,特别是寿命仍有待提高。例如磷光OLED,其主体材料的稳定性决定器件的寿命。又例如,新一代OLED材料,即热激活延迟荧光发光材料(TADF)具有很高的效率,但寿命较低,主要是由于没有合适的主体材料。再例如,印刷OLED中,急需性能好,同时又具有较好溶解性,成膜性能及热稳定性的材料,特别是主体材料。因此,新型的高性能的主体材料急需被开发出来。
其中,含砜基稠杂环类的光电材料,由于具有良好的载流子传输性能和光电性能,在光电器件中得到了广泛的应用。但目前报道的含砜基稠杂环的材料在载流子平衡和稳定性方面仍存在着一定的局限性。
发明内容:
基于此,有必要提供一种载流子平衡能力较好和稳定性较高的含砜基稠杂环化合物。
一种含砜基稠杂环化合物,具有如下通式(1):
Figure PCTCN2016108593-appb-000001
其中,L表示碳原子数为6~60的芳香环或碳原子数为3~60的芳杂环
-Z-可选地表示单键、-N(R)-、-C(R)2-、-Si(R)2-、-O-、-C=N(R)-、-C=C(R)2-、-P(R)-、-P(=O)R-、-S-、-SO-或-SO2-;
R1、R2、R3及R分别独立表示H、D、F、CN、芳烷基、烯基、炔基、腈基、胺基、硝基、酰基、烷氧基、羰基、砜基、羟基、碳原子数1~30的烷基、碳原子数3~30的环烷基、碳原子数为6~60芳香族烃基或碳原子数为3~60的芳香族杂环基;
Ar表示碳原子数为6~40的芳香环或碳原子数为3~40的芳杂环;
n为1、2、3、4、5或6。
一种高聚物,所述高聚物的重复单元包含了如权利要求1~8中任一项所述的含砜基稠杂环结构单元。
一种混合物,所述混合物包括上述任一项所述的含砜基稠杂环化合物以及有机功能材料,或者,所述混合物包括上述任一项所述的高聚物以及有机功能材料;
所述的有机功能材料选自空穴注入材料,空穴传输材料,电子传输材料,电子注入材料,电子阻挡材料,空穴阻挡材料,发光体,主体材料和有机染料中的至少一种。
一种组合物所述组合物包括上述任一项所述的含砜基稠杂环化合物以及至少一种有机溶剂;
或者,所述组合物包括上述任一项所述的高聚物以及至少一种有机溶剂;
或者,所述组合物包括上述任一项所述的混合物以及至少一种有机溶剂。
一种上述任一项所述含砜基稠杂环化合物或者上述任一项所述的高聚物在电子器件中的应用。
一种有机电子器件,包括上述任一项所述的含砜基稠杂环化合物、上述任一项所述的高聚物或上述任一项所述的混合物。
上述含砜基稠杂环化合物用于OLED中,特别是作为发光层中的主体材料,能提供较高的量子效率,增强发光稳定性和延长器件寿命。其可能的原因如下,但不限于此,该类含砜基稠杂环化合物,具有良好的电子和空穴双极性传输性质,可以有效平衡载流子传输,提高载流子产生激子的效率,使该类含砜基稠杂环化合物具有较好的结构稳定性,这为提高相关器件的光电性能及器件稳定性提供了可能。
附图说明
图1为实施例1中制备得到的含砜基稠杂环化合物的LUMO电子云分布图;
图2为实施例1中制备得到的含砜基稠杂环化合物的HOMO电子云分布图;
图3为实施例2中制备得到的含砜基稠杂环化合物的LUMO电子云分布图;
图4为实施例2中制备得到的含砜基稠杂环化合物的HOMO电子云分布图。
具体实施方式
为使本发明的目的、技术方案及效果更加清楚、明确,以下对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
在本文中,组合物和印刷油墨,或油墨具有相同的含义,它们之间可以互换。在本文中,主体材料,基质材料,Host或Matrix材料具有相同的含义,它们之间可以互换。在本文中,金属有机络合物,金属有机配合物,有机金属配合物具有相同的含义,可以互换。
一实施例的含砜基稠杂环化合物,具有如下通式(1):
Figure PCTCN2016108593-appb-000002
其中,L表示碳原子数为6~60的芳香环或碳原子数为3~60的芳杂环。
-Z-可选地表示单键、-N(R)-、-C(R)2-、-Si(R)2-、-O-、-C=N(R)-、-C=C(R)2-、-P(R)-、-P(=O)R-、-S-、-SO-或-SO2-。
在一个实施例中,当-Z-表示单键时,指R2所取代的苯环的上的一个C原子与R3所取代的苯环的上的一个C原子通过单键连接。
在一个实施例中,-Z-还可以不存在,即指R2所取代的苯环与R3所取代的苯环在-Z-所示的位置没有键的连接。
具体的,-N(R)-、-C(R)2-、-Si(R)2-、-C=N(R)-、-C=C(R)2-、-P(R)-以及-P(=O)R-中括号内的R表示相应的原子或基团上的取代基。
R1、R2、R3、R分别独立表示H、D、F、CN、芳烷基、烯基、炔基、腈基、胺基、硝基、酰基、烷氧基、羰基、砜基、羟基、碳原子数1~30的烷基、碳原子数3~30的环烷基、碳原子数为6~60芳香族烃基或碳原子数为3~60的芳香族杂环基。
Ar表示碳原子数为6~40的芳香环或碳原子数为3~40的芳杂环。
n为1、2、3、4、5或6。
在某些实施例中,通式(1)中的Ar可选于未被取代或是取代的具有2~30个碳原子的芳香族环或杂芳香族环。在一些实施例中,Ar可选于未被取代或是取代的具有2~20个碳原子的芳香族环或杂芳香族环。在一些实施例中,Ar可选于未被取代或是取代的具有2~15个碳原子的芳香族环或杂芳香族环。
在一些实施例中,对于Ar,芳香环系在环系中包含5~15个碳原子,例如5~10个碳原子。杂芳香环系在环系中包含2~15个碳原子,例如2~10个碳原子,和至少一个杂原子,条件是碳原子和杂原子的总数至少为4。杂原子可以选自Si、N、P、O、S和/或Ge,在一些实施例中,杂原子可选自Si、N、P、O和/或S。
芳香环系或芳族基团指至少包含一个芳环的烃基,包括单环基团和多环的环系统。杂芳香环系或杂芳族基团指包含至少一个杂芳环的烃基(含有杂原子),包括单环基团和多环的环系统。这些多环的环可以具有两个或多个环,其中两个碳原子被两个相邻的环共用,即稠环。多环的这些环种,至少一个是芳族的或杂芳族的。对于本发明的目的,芳香族或杂芳香族环系不仅包括芳香基或杂芳香基的体系,而且,其中多个芳基或杂芳基也可以被短的非芳族单元间断(<10%的非H原子,优选小于5%的非H原子,比如C、N或O原子)。因此,比如9,9′-螺二芴,9,9-二芳基芴,三芳胺,二芳基醚等体系,对于该发明目的同样认 为是芳香族环系。
具体地,芳族基团的例子有:苯、萘、蒽、菲、二萘嵌苯、并四苯、芘、苯并芘、三亚苯、苊、芴、及其衍生物。
具体地,杂芳族基团的例子有:呋喃、苯并呋喃、噻吩、苯并噻吩、吡咯、吡唑、三唑、咪唑、噁唑、噁二唑、噻唑、四唑、吲哚、咔唑、吡咯并咪唑、吡咯并吡咯、噻吩并吡咯、噻吩并噻吩、呋喃并吡咯、呋喃并呋喃、噻吩并呋喃、苯并异噁唑、苯并异噻唑、苯并咪唑、吡啶、吡嗪、哒嗪、嘧啶、三嗪、喹啉、异喹啉、邻二氮萘、喹喔啉、菲啶、伯啶、喹唑啉、喹唑啉酮、及其衍生物。
在一些实施方案中,通式(1)中的Ar可选自如下结构基团中的一种:
Figure PCTCN2016108593-appb-000003
Figure PCTCN2016108593-appb-000004
其中,X是CR1或N;
Y选自CR2R3,SiR4R5,NR6或,C(=O),S,或O;
R1,R2,R3,R4,R5,R6分别独立的表示H,或D(氘),或具有1至20个C原子的直链烷基、烷氧基或硫代烷氧基基团,或者具有3至20个C原子的支链或环状的烷基、烷氧基或硫代烷氧基基团或者是甲硅烷基基团,或具有1至20个C原子的取代的酮基基团,具有2至20个C原子的烷氧基羰基基团,具有7至20个C原子的芳氧基羰基基团,氰基基团(-CN),氨基甲酰基基团(-C(=O)NH2),卤甲酰基基团(-C(=O)-A其中A代表卤素原子),甲酰基基团(-C(=O)-H),异氰基基团,异氰酸酯基团,硫氰酸酯基团或异硫氰酸酯基团,羟基基团,硝基基团,CF3基团,Cl,Br,F,可交联的基团或者具有5至40个环原子的取代或未取代的芳族或杂芳族环系,或具有5至40个环原子的芳氧基或杂芳氧基基团。或这些体系的组合,其中一个或多个基团R1,R2,R3,R4,R5,R6可以彼此和/或与所述基团键合的环形成单环或多环的脂族或芳族环系。
进一步的,Ar可选自如下结构基团中的一种:
Figure PCTCN2016108593-appb-000005
具体的,上述的含砜基稠杂环类化合物,由通式(1)所示的含砜基稠杂环类化合物可进一步由下述化学式(2)~(7)中之任一化学式表示:
Figure PCTCN2016108593-appb-000006
具体的,式(2)~(7)中Z、L、R1、R2、R3、R以及Ar的定义可参见通式(1)中的描述。
在另一些实施方案中,通式(1)中所示的R1、R2、R3分别独立表示为碳原子数为1~18的烷基或碳原子数为3~18的环烷基或碳原子数为6~18的芳香基团或碳原子数为3~18的芳杂基团。在某些实施例中,R1、R2、R3分别独立表示为碳原子数为1~10的烷基或碳原子数为3~10的环烷基或碳原子数为6~15的芳香基团或碳原子数为3~15的芳杂基团。
在某些实施例中,通式(1)中的L是为碳原子数为6~40的芳香基团或碳原子数为3~40的芳杂基团。在某些实施例中,L是为碳原子数为6~30的芳香基团或碳原子数为3~30的芳杂基团。在某些实施例中,L是为碳原子数为6~20的芳香基团或碳原子数为3~20的芳杂基团。
合适的可作为L的芳杂基团的例子有,但不限于,苯、萘、蒽、菲、芘、吡啶、嘧啶、三嗪、芴、硫芴、硅芴、咔唑、噻吩、呋喃、噻唑、三苯胺、三苯基氧磷,四苯基硅、螺芴、螺硅芴等基团,更优的为单键、苯、吡啶、嘧啶、三嗪、咔唑等基团。
在其中一个实施方案中,合适的可作为L的例子有:甲基、苯、萘、蒽、菲、芘、吡啶、嘧啶、三嗪、芴、硫芴、硅芴、咔唑、噻吩、呋喃、噻唑、三苯胺、三苯基氧磷,四苯基硅、螺芴、螺硅芴等基团,更优的为苯、吡啶、嘧啶、三嗪、咔唑等基团。
在一个实施例中,通式(I)中,L可选于如下结构基团中的一种:
Figure PCTCN2016108593-appb-000007
其中,X4、X5、X6分别独立表示N(R)、C(R)2、Si(R)2、O、C=N(R)、C=C(R)2、P(R)、P(=O)R、S、S=O、SO2或无,其中X2、X3中至少有一个不是无。R表示H、D、F、CN、芳烷基、烯基、炔基、腈基、胺基、硝基、酰基、烷氧基、羰基、砜基、羟基、碳原子数1~30的烷基、碳原子数3~30的环烷基、碳原子数为6~60芳香族烃基或碳原子数为3~60的芳香族杂环基。
在一个实施方案中,合适的可作为Z、X4、X5、X6可独立的选自N(R)、C(R)2、Si(R)2、O或S。在某些实施例中,Z可以为单键。
在通式(1)中,n为1~6的整数,进一步的,n为1~5的整数,再进一步的,更进一步的n为1~4的整数,更进一步的n为1~3的整数,更进一步的n为1或2。
具体的,按照本发明的含砜基稠杂环化合物选自如下结构式中的一个:
Figure PCTCN2016108593-appb-000008
Figure PCTCN2016108593-appb-000009
其中,Ar、L、R1、R2、R3及n同以上所定义。
在一个实施例中,上述含砜基稠杂环化合物具有热激发延迟荧光TADF特性。按照热激发延迟荧光TADF材料(参见Adachi et al.,Nature,Vol 492,234,(2012))的原理,当有机化合物的单线态和三线态能级差ΔE(S1-T1)足够小时,该有机化合物的三线态激子可以通过反向内部转换到单线态激子,从而实现高效发光。一般来说,TADF材料通过供电子(Donor)与缺电子或吸电子(Acceptor)基团相连而得,即具有明显的D-A结构。即采用供电子(Donor)与缺电子或吸电子(Acceptor)基团相连的方式,从而引起最高占有轨道(HOMO)与最低未占有轨道(LUMO)电子云分布完全分离,缩小有机化合物单重态(S1)与三重态(T1)的能量差ΔE(S1-T1),但这对发光效率及稳定性都有不良的影响。
在一个实施例中,按照本发明的含砜基稠杂环化合物,具有较小的ΔE(S1-T1),一般的ΔE(S1-T1)≤0.25eV,较好是≤0.20eV,更好是≤0.15eV,更更好是≤0.12eV,最好是≤0.09eV。
在另一个实施例中,按照本发明的化合物,其中最高占有轨道(HOMO)与最低未占有轨道(LUMO)电子云分布不完全分离,至少部分重叠,较好是大部分重叠。以上所述HOMO,LUMO的能级及电子云分布,单重态(S1)与三重态(T1)能级可量子化学的模拟获得,具体的方法如下文所述。
按照发明的含砜基稠杂环化合物,可以作为功能材料用于电子器件中。有机功能材料可分为空穴注入材料(HIM),空穴传输材料(HTM),电子传输材料(ETM),电子注入材料(EIM), 电子阻挡材料(EBM),空穴阻挡材料(HBM),发光体(Emitter),主体材料(Host)和有机染料。具体的,按照发明的化合物可作为主体材料,或电子传输材料,或空穴传输材料。进一步的,按照发明的化合物可作为磷光主体材料。
一般的,作为磷光主体材料必须有适当的三线态能级,即T1。在某些实施例中,按照发明的化合物,其T1≥2.2eV,较好是≥2.4eV,更好是≥2.6eV,更更好≥2.65eV,最好是≥2.7eV。
通常,有机化合物的三线态能级T1取决于化合物中具有最大共轭体系的分结构。一般地,T1随共轭体系的增大而递减。在某些实施方案中,化学式(1)中如下通式(1a)所示的分结构,具有最大的共轭体系。
Figure PCTCN2016108593-appb-000010
在某些实施例中,通式(1a)在去除取代基的情况下,其环原子数不超过30个,较好为不超过26个,更好为不超过22个,最好为不超过20个。
在另一些优先的实施例中,通式(1a)在去除取代基的情况下,其T1≥2.2eV,较优是T1≥2.4eV,更优是T1≥2.6eV,更更优是T1≥2.65eV,最优是T1≥2.75eV。
一般的,按照本发明的含砜基稠杂环化合物,其玻璃化温度Tg≥100℃。在某些实施例中,Tg≥120℃。在某些实施例中,Tg≥140℃。在某些实施例中,Tg≥160℃。在某些实施例中,Tg≥180℃。说明上述含砜基稠杂环化合物具有好的热稳定性,可作为磷光主体材料。
此外,还提供了涉及含砜基稠杂环化合物的合成方法。一般地,可以对带S和羰基的稠杂环先进行单溴化,再用含Z基团的格式试剂或锂盐进攻带溴稠杂环上的羰基,然后进行脱水关环,把溴化上的溴基做成硼酸脂基,再跟含邻硝基卤苯进行偶联,硝基关环,再跟L基团进行偶联,最后再对S进行氧化,就可以目标化合物。
下面是含砜基稠杂环化合物的非限制性的具体例子。
Figure PCTCN2016108593-appb-000011
Figure PCTCN2016108593-appb-000012
Figure PCTCN2016108593-appb-000013
Figure PCTCN2016108593-appb-000014
Figure PCTCN2016108593-appb-000015
Figure PCTCN2016108593-appb-000016
Figure PCTCN2016108593-appb-000017
Figure PCTCN2016108593-appb-000018
Figure PCTCN2016108593-appb-000019
Figure PCTCN2016108593-appb-000020
Figure PCTCN2016108593-appb-000021
在一个实施例中,上述含砜基稠杂环化合物是一种小分子材料。
本文中所定义的术语“小分子”是指不是聚合物,低聚物,树枝状聚合物,或共混物的分子。特别是,小分子中没有重复结构。小分子的分子量≤3000克/摩尔,较好是≤2000克/摩尔,最好是≤1500克/摩尔。
高聚物,即Polymer,包括均聚物(homopolymer),共聚物(copolymer),镶嵌共聚物(block copolymer)。另外在本发明中,高聚物也包括树状物(dendrimer),有关树状物的合成及应用请参见[Dendrimers and Dendrons,Wiley-VCH Verlag GmbH & Co.KGaA,2002,Ed.George R.Newkome,Charles N.Moorefield,Fritz Vogtle.]。
共轭高聚物(conjugated polymer)是一高聚物,它的主链backbone主要是由C原子的sp2杂化轨道构成,著名的例子有:聚乙炔polyacetylene和poly(phenylene vinylene),其主链上的C原子的也可以被其他非C原子取代,而且当主链上的sp2杂化被一些自然的缺陷打断时,仍然被认为是共轭高聚物。另外在本发明中共轭高聚物也包括主链上包含有芳基胺(aryl amine)、芳基磷化氢(aryl phosphine)及其他杂环芳烃(heteroarmotics)、有机金属络合物(organometallic complexes)等。
具体的,本发明还涉及一种高聚物,包含一个重复单元,其中重复单元包含一个如通式(1)所示的结构单元。在某些实施例中,所述的高聚物是非共轭高聚物,其中如通式(1)所示的结构单元在高聚物的侧链上。在另一个实施例中,所述的高聚物是共轭高聚物。
本发明进一步涉及一种混合物,包含至少一种按照本发明的含砜基稠杂环化合物,及 至少另一种的有机功能材料。或者,混合物包括至少一种本发明的高聚物以及有机功能材料。
这里所述另一种的有机功能材料,包含空穴(也称电洞)注入或传输材料(HIM/HTM),空穴阻挡材料(HBM),电子注入或传输材料(EIM/ETM),电子阻挡材料(EBM),有机基质材料(Host),单重态发光体(荧光发光体),热激活延迟荧光发光材料(TADF),三重态发光体(磷光发光体)以及发光金属有机配合物的至少一种。例如在WO2010135519A1,US20090134784A1和WO 2011110277A1中对各种有机功能材料有详细的描述,特此将此3专利文件中的全部内容并入本文作为参考。
有机功能材料可以是小分子或高聚物材料。
在一某些实施例中,按照本发明的混合物中,含砜基稠杂环化合物或者高聚物在混合物中的含量为50至99.9wt%,进一步的为60至97wt%,更进一步的为70至95wt%,再进一步的为70至90wt%。
在一个实施方案中,按照本发明的混合物包含一种按照本发明的化合物或高聚物和一种磷光发光材料。
在另一个实施方案中,按照本发明的混合物包含一种按照本发明的化合物或高聚物和一种TADF材料。
在另一个实施方案中,按照本发明的混合物包含一种按照本发明的化配合物或高聚物,一种磷光发光材料和一种TADF材料。
在另一个实施方案中,按照本发明的混合物包含一种按照本发明的化配合物或高聚物,一种磷光发光材料和一种主体材料。
在某些实施方案中,按照本发明的混合物包含一种按照本发明的化合物或高聚物和一种荧光发光材料。
下面对荧光发光材料(单重态发光体),磷光发光材料(三重态发光体)和TADF材料作一些较详细的描述(但不限于此)。
1.单重态发光体(Singlet Emitter)
单重态发光体往往有较长的共轭π电子系统。迄今,已有许多例子,例如在JP2913116B和WO2001021729A1中公开的苯乙烯胺及其衍生物,和在WO2008/006449和WO2007/140847中公开的茚并芴及其衍生物。
在一个优先的实施方案中,单重态发光体可选自一元苯乙烯胺,二元苯乙烯胺,三元苯乙烯胺,四元苯乙烯胺,苯乙烯膦,苯乙烯醚和芳胺。
一个一元苯乙烯胺是指一化合物,它包含一个无取代或取代的苯乙烯基组和至少一个胺,最好是芳香胺。一个二元苯乙烯胺是指一化合物,它包含二个无取代或取代的苯乙烯基组和至少一个胺,最好是芳香胺。一个三元苯乙烯胺是指一化合物,它包含三个无取代或取代的苯乙烯基组和至少一个胺,最好是芳香胺。一个四元苯乙烯胺是指一化合物,它包含四个无 取代或取代的苯乙烯基组和至少一个胺,最好是芳香胺。具体的,苯乙烯是二苯乙烯,其可能会进一步被取代。相应的膦类和醚类的定义与胺类相似。芳基胺或芳香胺是指一种化合物,包含三个直接联接氮的无取代或取代的芳香环或杂环系统。这些芳香族或杂环的环系统中至少有一个优先选于稠环系统,并最好有至少14个芳香环原子。其中优选的例子有芳香蒽胺,芳香蒽二胺,芳香芘胺,芳香芘二胺,芳香屈胺和芳香屈二胺。一个芳香蒽胺是指一化合物,其中一个二元芳基胺基团直接联到蒽上,最好是在9的位置上。一个芳香蒽二胺是指一化合物,其中二个二元芳基胺基团直接联到蒽上,最好是在9,10的位置上。芳香芘胺,芳香芘二胺,芳香屈胺和芳香屈二胺的定义类似,其中二元芳基胺基团最好联到芘的1或1,6位置上.
基于乙烯胺及芳胺的单重态发光体的例子,可在下述专利文件中找到:WO2006/000388,WO2006/058737,WO2006/000389,WO2007/065549,WO2007/115610,US7250532 B2,DE 102005058557 A1,CN1583691 A,JP08053397 A,US6251531 B1,US 2006/210830 A,EP1957606 A1和US2008/0113101 A1特此上述列出的专利文件中的全部内容并入本文作为参考。
基于均二苯乙烯极其衍生物的单重态发光体的例子有US5121029。
进一步的,单重态发光体可选于茚并芴-胺和茚并芴-二胺,如WO2006/122630所公开的,苯并茚并芴-胺和苯并茚并芴-二胺,如WO2008/006449所公开的,二苯并茚并芴-胺和二苯并茚并芴-二胺,如WO2007/140847所公开的。
其他可用作单重态发光体的材料有多环芳烃化合物,特别是如下化合物的衍生物:蒽如9,10-二(2-萘并蒽),萘,四苯,氧杂蒽,菲,芘(如2,5,8,11-四-t-丁基苝),茚并芘,苯撑如(4,4’-双(9-乙基-3-咔唑乙烯基)-1,1’-联苯),二茚并芘,十环烯,六苯并苯,芴,螺二芴,芳基芘(如US20060222886),亚芳香基乙烯(如US5121029,US5130603),环戊二烯如四苯基环戊二烯,红荧烯,香豆素,若丹明,喹吖啶酮,吡喃如4(二氰基亚甲基)-6-(4-对二甲氨基苯乙烯基-2-甲基)-4H-吡喃(DCM),噻喃,双(吖嗪基)亚胺硼化合物(US 2007/0092753 A1),双(吖嗪基)亚甲基化合物,carbostyryl化合物,噁嗪酮,苯并恶唑,苯并噻唑,苯并咪唑及吡咯并吡咯二酮。一些单重态发光体的材料可在下述专利文件中找到:US 20070252517 A1,US 4769292,US 6020078,US 2007/0252517 A1,US 2007/0252517 A1。特此将上述列出的专利文件中的全部内容并入本文作为参考。
在下面的表中列出一些合适的单重态发光体的例子:
Figure PCTCN2016108593-appb-000022
2.热激活延迟荧光发光材料(TADF):
传统有机荧光材料只能利用电激发形成的25%单线态激子发光,器件的内量子效率较低(最高为25%)。尽管磷光材料由于重原子中心强的自旋-轨道耦合增强了系间穿越,可以有效利用电激发形成的单线态激子和三线态激子发光,使器件的内量子效率达到100%。但磷光材料昂贵,材料稳定性差,器件效率滚降严重等问题限制了其在OLED中的应用。热激活延迟荧光发光材料是继有机荧光材料和有机磷光材料之后发展的第三代有机发光材料。该类材料一般具有小的单线态-三线态能级差(ΔEst),三线态激子可以通过反系间穿越转变成单线态激子发光。这可以充分利用电激发下形成的单线态激子和三线态激子。器件内量子效率可达到100%。
TADF材料需要具有较小的单线态-三线态能级差,一般是ΔEst<0.3eV,较好是ΔEst<0.2eV,更好是ΔEst<0.1eV,最好是ΔEst<0.05eV。在一个优先的实施方案中,TADF有较好的荧光量子效率。一些TADF发光的材料可在下述专利文件中找到:CN103483332(A),TW201309696(A),TW201309778(A),TW201343874(A),TW201350558(A),US20120217869(A1),WO2013133359(A1),WO2013154064(A1),Adachi,et.al.Adv.Mater.,21,2009,4802,Adachi,et.al.Appl.Phys.Lett.,98,2011,083302,Adachi,et.al.Appl.Phys.Lett.,101,2012,093306,Adachi,et.al.Chem.Commun.,48,2012,11392,Adachi,et.al.Nature Photonics,6,2012,253,Adachi,et.al.Nature,492,2012,234,Adachi,et.al.J.Am.Chem.Soc,134,2012,14706,Adachi,et.al.Angew.Chem.Int.Ed,51,2012,11311,Adachi,et.al.Chem.Commun.,48,2012,9580,Adachi,et.al.Chem.Commun.,48,2013,10385,Adachi,et.al.Adv. Mater.,25,2013,3319,Adachi,et.al.Adv.Mater.,25,2013,3707,Adachi,et.al.Chem.Mater.,25,2013,3038,Adachi,et.al.Chem.Mater.,25,2013,3766,Adachi,et.al.J.Mater.Chem.C.,1,2013,4599,Adachi,et.al.J.Phys.Chem.A.,117,2013,5607,特此将上述列出的专利或文章文件中的全部内容并入本文作为参考。
在下面的表中列出一些合适的TADF发光材料的例子:
Figure PCTCN2016108593-appb-000023
Figure PCTCN2016108593-appb-000024
3、三重态发光体(Triplet Emitter)
三重态发光体也称磷光发光体。在一个优先的实施方案中,三重态发光体是有通式M(L)n的金属络合物,其中M是一金属原子,L每次出现时可以是相同或不同,是一有机配体,它通过一个或多个位置键接或配位连接到金属原子M上,n是一个大于1的整数,较好选是1,2,3,4,5或6。可选地,这些金属络合物通过一个或多个位置联接到一个聚合物上,最好是通过有机配体。
在一个优先的实施方案中,金属原子M选于过渡金属元素或镧系元素或锕系元素,优先选择Ir,Pt,Pd,Au,Rh,Ru,Os,Sm,Eu,Gd,Tb,Dy,Re,Cu或Ag,特别优先选择Os,Ir,Ru,Rh,Re,Pd或Pt。
优先地,三重态发光体包含有螯合配体,即配体,通过至少两个结合点与金属配位,特别优先考虑的是三重态发光体包含有两个或三个相同或不同的双齿或多齿配体。螯合配体有利于提高金属络合物的稳定性。
有机配体的例子可选自苯基吡啶衍生物,7,8-苯并喹啉衍生物,2(2-噻吩基)吡啶衍生物,2(1-萘基)吡啶衍生物,或2苯基喹啉衍生物。所有这些有机配体都可能被取代, 例如被含氟或三氟甲基取代。辅助配体可优先选自乙酸丙酮或苦味酸。
在一个优先的实施方案中,可用作三重态发光体的金属络合物有如下形式:
Figure PCTCN2016108593-appb-000025
其中M是一金属,选于过渡金属元素或镧系元素或锕系元素;
Ar1每次出现时可以是相同或不同,是一个环状基团,其中至少包含有一个施主原子,即有一孤对电子的原子,如氮或磷,通过它环状基团与金属配位连接;Ar2每次出现时可以是相同或不同,是一个环状基团,其中至少包含有一个C原子,通过它环状基团与金属连接;Ar1和Ar2由共价键联接在一起,可各自携带一个或多个取代基团,它们也可再通过取代基团联接在一起;L每次出现时可以是相同或不同,是一个辅助配体,可以为双齿螯合配体,最好是单阴离子双齿螯合配体;m是1,2或3,优先地是2或3,特别优先地是3;n是0,1,或2,优先地是0或1,特别优先地是0。
一些三重态发光体的材料极其应用的例子可在下述专利文件和文献中找到:WO 200070655,WO 200141512,WO 200202714,WO 200215645,EP 1191613,EP 1191612,EP 1191614,WO 2005033244,WO 2005019373,US 2005/0258742,WO 2009146770,WO 2010015307,WO 2010031485,WO 2010054731,WO 2010054728,WO 2010086089,WO 2010099852,WO 2010102709,US 20070087219 A1,US 20090061681 A1,US 20010053462 A1,Baldo,Thompson et al.Nature 403,(2000),750-753,US 20090061681 A1,US 20090061681 A1,Adachi et al.Appl.Phys.Lett.78(2001),1622-1624,J.Kido et al.Appl.Phys.Lett.65(1994),2124,Kido et al.Chem.Lett.657,1990,US 2007/0252517 A1,Johnson et al.,JACS 105,1983,1795,Wrighton,JACS 96,1974,998,Ma et al.,Synth.Metals 94,1998,245,US 6824895,US 7029766,US 6835469,US 6830828,US 20010053462 A1,WO 2007095118 A1,US 2012004407A1,WO 2012007088A1,WO2012007087A1,WO 2012007086A1,US 2008027220A1,WO 2011157339A1,CN 102282150A,WO 2009118087A1。特此将上述列出的专利文件和文献中的全部内容并入本文作为参考。
在下面的表中列出一些合适的三重态发光体的例子:
Figure PCTCN2016108593-appb-000026
Figure PCTCN2016108593-appb-000027
Figure PCTCN2016108593-appb-000028
本发明的另一个目的是为印刷OLED提供材料解决方案。
在某些实施例中,按照本发明的含砜基稠杂环化合物,其分子量≥700g/mol,进一步的分子量≥800g/mol,更进一步的其分子量≥900g/mol,更进一步的其分子量≥1000g/mol,再进一步的其分子量≥1100g/mol。
在另一些实施例中,按照本发明的含砜基稠杂环化合物,在25℃时,在甲苯中的溶解度≥10mg/ml,进一步的其溶解度≥15mg/ml,更进一步的其溶解度≥20mg/ml。
本发明进一步涉及一种组合物或油墨,组合物包括上述含砜基稠杂环化合物以及至少一种有机溶剂。或者,该组合物包括上述高聚物以及至少一种有机溶剂。再或者,组合物包括上述混合物以及至少一种有机溶剂。本发明进一步提供一种从溶液中制备包含有按照本发明的化合物或高聚物的薄膜。
用于印刷工艺时,油墨的粘度,表面张力是重要的参数。合适的油墨的表面张力参数适合于特定的基板和特定的印刷方法。
在一个的实施例中,按照本发明的油墨在工作温度或在25℃下的表面张力约在19dyne/cm到50dyne/cm范围。进一步的,表面张力是在22dyne/cm到35dyne/cm范围。进一步的,表面张力是在25dyne/cm到33dyne/cm范围。
在另一个的实施例中按照本发明的油墨在工作温度或25℃下的粘度约在1cps到100cps范围。进一步的,粘度是在1cps到50cps范。进一步的,粘度是在1.5cps到20cps范围。进一步的,粘度是在4.0cps到20cps范围。如此配制的组合物将适合于喷墨印刷。
粘度可以通过不同的方法调节,如通过合适的溶剂选取和油墨中功能材料的浓度。按照本发明的包含有所述地化合物或高聚物的油墨可方便人们将印刷油墨按照所用的印刷方法在适当的范围调节。一般地,按照本发明的组合物包含的功能材料的重量比为0.3%~30wt%范围,较好的为0.5%~20wt%范围,更好的为0.5%~15wt%范围,更更好的为0.5%~10wt%范围,最好的为1%~5wt%范围。
在一些实施例中,按照本发明的油墨,所述的至少一种的有机溶剂选自基于芳族或杂芳族的溶剂,特别是脂肪族链/环取代的芳族溶剂、或芳族酮溶剂,或芳族醚溶剂。
适合本发明的溶剂的例子有,但不限于:基于芳族或杂芳族的溶剂:对二异丙基苯、戊苯、四氢萘、环己基苯、氯萘、1,4-二甲基萘、3-异丙基联苯、对甲基异丙苯、二戊苯、三戊苯、戊基甲苯、邻二甲苯、间二甲苯、对二甲苯、邻二乙苯、间二乙苯、对二乙苯、1,2,3,4-四甲苯、1,2,3,5-四甲苯、1,2,4,5-四甲苯、丁苯、十二烷基苯、二己基苯、二丁基苯、对二异丙基苯、1-甲氧基萘、环己基苯、二甲基萘、3-异丙基联苯、对甲基异丙苯、1-甲基萘、1,2,4-三氯苯、1,3-二丙氧基苯、4,4-二氟二苯甲烷、1,2-二甲氧基-4-(1-丙烯基)苯、二苯甲烷、2-苯基吡啶、3-苯基吡啶、N-甲基二苯胺、4-异丙基联苯、α,α-二氯二苯甲烷、4-(3-苯基丙基)吡啶、苯甲酸苄酯、1,1-双(3,4-二甲基苯基)乙烷、2-异丙基萘、二苄醚等;基于酮的溶剂:1-四氢萘酮,2-四氢萘酮,2-(苯基环氧)四氢萘酮,6-(甲氧基)四氢萘酮,苯乙 酮、苯丙酮、二苯甲酮、及它们的衍生物,如4-甲基苯乙酮、3-甲基苯乙酮、2-甲基苯乙酮、4-甲基苯丙酮、3-甲基苯丙酮、2-甲基苯丙酮,异佛尔酮、2,6,8-三甲基-4-壬酮、葑酮、2-壬酮、3-壬酮、5-壬酮、2-癸酮、2,5-己二酮、佛尔酮、二正戊基酮;芳族醚溶剂:3-苯氧基甲苯、丁氧基苯、苄基丁基苯、对茴香醛二甲基乙缩醛、四氢-2-苯氧基-2H-吡喃、1,2-二甲氧基-4-(1-丙烯基)苯、1,4-苯并二噁烷、1,3-二丙基苯、2,5-二甲氧基甲苯、4-乙基本乙醚、1,2,4-三甲氧基苯、4-(1-丙烯基)-1,2-二甲氧基苯、1,3-二甲氧基苯、缩水甘油基苯基醚、二苄基醚、4-叔丁基茴香醚、反式-对丙烯基茴香醚、1,2-二甲氧基苯、1-甲氧基萘、二苯醚、2-苯氧基甲醚、2-苯氧基四氢呋喃、乙基-2-萘基醚、戊醚c己醚、二辛醚、乙二醇二丁醚、二乙二醇二乙醚、二乙二醇丁基甲醚、二乙二醇二丁醚、三乙二醇二甲醚、三乙二醇乙基甲醚、三乙二醇丁基甲醚、三丙二醇二甲醚、四乙二醇二甲醚;酯溶剂:辛酸烷酯、癸二酸烷酯、硬脂酸烷酯、苯甲酸烷酯、苯乙酸烷酯、肉桂酸烷酯、草酸烷酯、马来酸烷酯、烷内酯、油酸烷酯等。
进一步,按照本发明的油墨,所述的至少一种的有溶剂可选自:脂肪族酮,例如,2-壬酮、3-壬酮、5-壬酮、2-癸酮、2,5-己二酮、2,6,8-三甲基-4-壬酮、佛尔酮、二正戊基酮等;或脂肪族醚,例如,戊醚、己醚、二辛醚、乙二醇二丁醚、二乙二醇二乙醚、二乙二醇丁基甲醚、二乙二醇二丁醚、三乙二醇二甲醚、三乙二醇乙基甲醚、三乙二醇丁基甲醚、三丙二醇二甲醚、四乙二醇二甲醚等。
在另一些实施例中,所述的印刷油墨进一步包含有另一种有机溶剂。另一种有机溶剂的例子,包含(但不限于):甲醇、乙醇、2-甲氧基乙醇、二氯甲烷、三氯甲烷、氯苯、邻二氯苯、四氢呋喃、苯甲醚、吗啉、甲苯、邻二甲苯、间二甲苯、对二甲苯、1,4二氧杂环己烷、丙酮、甲基乙基酮、1,2二氯乙烷、3-苯氧基甲苯、1,1,1-三氯乙烷、1,1,2,2-四氯乙烷、醋酸乙酯、醋酸丁酯、二甲基甲酰胺、二甲基乙酰胺、二甲基亚砜、四氢萘、萘烷、茚和/或它们的混合物。
在一个实施方案中,按照本发明的组合物是一溶液。
在另一个实施方案中,按照本发明的组合物是一悬浮液。
本发明还涉及所述组合物作为印刷油墨在制备有机电子器件时的用途,特别优选的是通过打印或涂布的制备方法。
其中,适合的打印或涂布技术包含(但不限于)喷墨打印,喷印(Nozzle Printing),活版印刷,丝网印刷,浸涂,旋转涂布,刮刀涂布,辊筒印花,扭转辊印刷,平版印刷,柔版印刷,轮转印刷,喷涂,刷涂或移印,喷印刷(Nozzle printing),狭缝型挤压式涂布等。首选的是喷墨印刷,狭缝型挤压式涂布,喷印刷及凹版印刷。溶液或悬浮液可以另外包含一个或多个组份例如表面活性化合物,润滑剂,润湿剂,分散剂,疏水剂,粘接剂等,用于调节粘度,成膜性能,提高附着性等。有关打印技术,及其对有关溶液的相关要求,如溶剂及浓度,粘度等,的详细信息请参见Helmut Kipphan主编的《印刷媒体手册:技术和生产 方法》(Handbook of Print Media:Technologies and Production Methods),ISBN 3-540-67326-1。
基于上述含砜基稠杂环化合物,本发明还提供一种如上所述含砜基稠杂环化合物或高聚物在有机电子器件的应用。所述的有机电子器件可选于,但不限于,有机发光二极管(OLED),有机光伏电池(OPV),有机发光电池(OLEEC),有机场效应管(OFET),有机发光场效应管,有机激光器,有机自旋电子器件,有机传感器及有机等离激元发射二极管(Organic Plasmon Emitting Diode)等,特别是OLED。本发明实施例中,优选地将所述的有机化合物用于OLED器件的发光层中。
本发明进一步涉及一种有机电子器件,至少包含一种如上所述的含砜基稠杂环化合物、高聚物或混合物。一般的,此种有机电子器件至少包含一个阴极,一个阳极及位于阴极和阳极之间的一个功能层,其中所述的功能层中至少包含一种如上所述的化合物或高聚物。所述的有机电子器件可选于,但不限于,有机发光二极管(OLED),有机光伏电池(OPV),有机发光电池(OLEEC),有机场效应管(OFET),有机发光场效应管,有机激光器,有机自旋电子器件,有机传感器及有机等离激元发射二极管(Organic Plasmon Emitting Diode)。
在一个较为实施例中,所述的有机电子器件是电致发光器件,特别是OLED,其中包含一基片,一阳极,至少一发光层,一阴极,选择性的还可包含一空穴传输层。在某些实施例中,在所述的空穴传输层中包含一按照本发明的含砜基稠杂环化合物或高聚物。在一个实施方案中,在所述的发光层中包含一按照本发明的含砜基稠杂环化合物或高聚物,进一步的,在所述的发光层中包含一按照本发明的含砜基稠杂环化合物或高聚物,及至少一种发光材料,发光材料可选于荧光发光体,磷光发光体,TADF材料或发光量子点。
下面对电致发光器件的器件结构做一描述,但不限于。
基片可以是不透明或透明。一个透明的基板可以用来制造一个透明的发光元器件。例如可参见,Bulovic等Nature 1996,380,p29,和Gu等,Appl.Phys.Lett.1996,68,p2606。基片可以是刚性的或弹性的。基片可以是塑料,金属,半导体晶片或玻璃。最好是基片有一个平滑的表面。无表面缺陷的基板是特别理想的选择。在一个优选的实施例中,基片是柔性的,可选于聚合物薄膜或塑料,其玻璃化温度Tg为150℃以上,较好是超过200℃,更好是超过250℃,最好是超过300℃。合适的柔性基板的例子有聚(对苯二甲酸乙二醇酯)(PET)和聚乙二醇(2,6-萘)(PEN)。
阳极可包含一导电金属或金属氧化物,或导电聚合物。阳极可以容易地注入空穴到空穴注入层(HIL)或空穴传输层(HTL)或发光层中。在一个的实施例中,阳极的功函数和发光层中的发光体或作为HIL或HTL或电子阻挡层(EBL)的p型半导体材料的HOMO能级或价带能级的差的绝对值小于0.5eV,较好是小于0.3eV,最好是小于0.2eV。阳极材料的例子包含但不限于:Al、Cu、Au、Ag、Mg、Fe、Co、Ni、Mn、Pd、Pt、ITO、铝掺杂氧化锌(AZO)等。其他合适的阳极材料是已知的,本领域普通技术人员可容易地选择使用。阳极材料可以使用任何合适的技术沉积,如一合适的物理气相沉积法,包含射频磁控溅射, 真空热蒸发,电子束(e-beam)等。在某些实施例中,阳极是图案结构化的。图案化的ITO导电基板可在市场上买到,并且可以用来制备根据本发明的器件。
阴极可包含一导电金属或金属氧化物。阴极可以容易地注入电子到EIL或ETL或直接到发光层中。在一个的实施例中,阴极的功函数和发光层中发光体或作为电子注入层(EIL)或电子传输层(ETL)或空穴阻挡层(HBL)的n型半导体材料的LUMO能级或导带能级的差的绝对值小于0.5eV,较好是小于0.3eV,最好是小于0.2eV。原则上,所有可用作OLED的阴极的材料都可能作为本发明器件的阴极材料。阴极材料的例子包含但不限于:Al、Au、Ag、Ca、Ba、Mg、LiF/Al、MgAg合金、BaF2/Al、Cu、Fe、Co、Ni、Mn、Pd、Pt、ITO等。阴极材料可以使用任何合适的技术沉积,如一合适的物理气相沉积法,包含射频磁控溅射,真空热蒸发,电子束(e-beam)等。
OLED还可以包含其他功能层,如空穴注入层(HIL)、空穴传输层(HTL)、电子阻挡层(EBL)、电子注入层(EIL)、电子传输层(ETL)、空穴阻挡层(HBL)。适合用于这些功能层中的材料便于在相关的专利或文献中得到。
在一个实施例中,按照本发明的有机发光器件中,其发光层包含本发明的含砜基稠杂环化合物或高聚物,并且通过真空蒸镀或溶液加工的方法制备而成,优选溶液加工的方法。
按照本发明的发光器件,其发光波长在300到1000nm之间,较好的是在350到900nm之间,更好的是在400到800nm之间。
本发明还涉及按照本发明的有机电子器件在各种电子设备中的应用,包含,但不限于,显示设备,照明设备,光源,传感器等等。
下面将结合优选实施例对本发明进行了说明,但本发明并不局限于下述实施例,应当理解,所附权利要求概括了本发明的范围在本发明构思的引导下本领域的技术人员应意识到,对本发明的各实施例所进行的一定的改变,都将被本发明的权利要求书的精神和范围所覆盖。
具体实施例
1、含砜基稠杂环化合物的制备
实施例1
化合物(2-6)的合成,结构式如下:
Figure PCTCN2016108593-appb-000029
1)将(21.2g,100mmol)的化合物(2-6-1)、(0.64g,4mmol)三氯化铁和氯仿400mL 加入1000mL的三口瓶中,搅拌,常温下缓慢滴加(16g,100mmol)液溴的氯仿溶液,加毕,加热到60℃搅拌反应12小时,结束反应,用亚硫酸氢钠水溶液淬灭反应,抽滤,滤渣用1,4-二氧六环重结晶,产率50%。反应式如下:
Figure PCTCN2016108593-appb-000030
2)氮气环境下,将(11.6g,40mmol)的化合物(2-6-2)和无水THF 400mL加入1000mL的三口瓶中,搅拌,缓慢加入预先制备好的(60mmol)格式试剂(2-6-3)的THF溶液,加毕,加热到60℃搅拌反应12小时,缓慢滴加入100mL去离子水,继续反应1个小时,结束反应,将反应液旋转蒸发掉大部分溶剂,用二氯甲烷溶解水洗3遍,收集有机液拌硅胶过柱进行纯化,产率60%。反应式如下:
Figure PCTCN2016108593-appb-000031
3)将(8.9g,20mmol)的化合物(2-6-4)、40mL的乙酸和20mL氢溴酸加入100mL两口瓶中,加热110℃搅拌反应12小时,结束反应,将反应液倒入300mL去离子水中,抽滤,收集滤渣后用乙醇重结晶,产率85%。反应式如下:
Figure PCTCN2016108593-appb-000032
4)将(4.26g,10mmol)的化合物(2-6-5)、(3.05g,12mmol)的联硼酸频那醇酯,(0.05mmol)Pd(dppf)Cl2、(20mmol)醋酸钾和60mL 1,4-二氧六环加入100mL两口瓶中,加热110℃搅拌反应12个小时,结束反应,将反应液加入到400mL水中,抽滤,收集滤渣拌硅胶过柱进行纯化,产率85%。反应式如下:
Figure PCTCN2016108593-appb-000033
5)氮气环境下,将(2.84g,6mmol)的化合物(2-6-6)、(1.21g,6mmol)的化合物(2-6-7)、(1.6g,15mmol)碳酸钠、(0.48g,1.5mmol)四丁基溴化铵,(0.52g,0.45mmol)四(三苯基膦)钯,60mL 1,4-二氧六环和10mL水加入150mL两口瓶中,加热90℃搅拌反应12个小时,结束反应,将反应液加入到300mL水中,用二氯甲烷萃取溶解水洗3遍,收集有机液拌硅胶过柱进行纯化,产率85%。反应式如下:
Figure PCTCN2016108593-appb-000034
6)氮气环境下,将(1.9g,4mmol)的化合物(2-6-8)和(2.0g,20mmol)的三乙基磷加入100mL两口瓶中,加热190℃搅拌反应12小时,结束反应,将反应液减压蒸馏掉大部分溶剂,用二氯甲烷溶解水洗3遍,收集有机液拌硅胶过柱进行纯化,产率60%。反应式如下:
Figure PCTCN2016108593-appb-000035
7)氮气环境下,将(0.87g,2mmol)的化合物(2-6-10)(0.93g,3mmol)的化合物(2-6-11),(0.013g,0.2mmol)铜粉,(0.55g,4mmol)碳酸钾和(0.053g,0.1mmol)18-冠醚-6和(20mL)邻二氯苯加入到100mL的两口瓶中,加热150℃搅拌反应24个小时,结束反应,将反应液减压蒸馏掉大部分溶剂,用二氯甲烷溶解水洗3遍,收集有机液拌硅胶过柱进行纯化,产率90%。反应式如下:
Figure PCTCN2016108593-appb-000036
8)将(0.33g,0.5mmol)的化合物(2-6-12),15mL醋酸和2mL双氧水加入到100mL的两口瓶中,加热搅拌110℃搅拌反应6个小时,结束反应,将反应液倒至100mL的去离子水中,抽滤,滤渣用THF/乙醇溶液重结晶进行纯化,产率90%。反应式如下:
Figure PCTCN2016108593-appb-000037
实施例2
化合物(9-7)的合成,结构式如下:
Figure PCTCN2016108593-appb-000038
1)氮气环境下,将(11.05g,50mmol)的化合物(9-7-1)和无水THF 200mL加入500mL的三口瓶中,搅拌,缓慢加入预先制备好的(75mmol)格式试剂(9-7-2)的THF溶液,加毕,加热到60℃搅拌反应12小时,缓慢滴加入100mL去离子水,继续反应1个小时,结束反应,将反应液旋转蒸发掉大部分溶剂,用二氯甲烷溶解水洗3遍,收集有机液拌硅胶过柱进行纯化,产率60%。反应式如下:
Figure PCTCN2016108593-appb-000039
2)将(7.3g,20mmol)的化合物(9-7-3)、30mL的乙酸和15mL氢溴酸加入100mL两口瓶中,加热110℃搅拌反应12小时,结束反应,将反应液倒入300mL去离子水中,抽滤,收集滤渣后用乙醇重结晶,产率85%。反应式如下:
Figure PCTCN2016108593-appb-000040
3)氮气环境下,将(5.2g,15mmol)的化合物(9-7-4),150mL无水THF加入到300mL的三口瓶中,搅拌,降温到-78℃,缓慢滴加(15mmol)正丁基锂,搅拌反应1.5小时,缓慢滴加(2.67g,15mmol)NBS的THF溶液,让反应自然升温,反应12小时后结束反应,往反应液加入水淬灭反应,将反应液减压蒸馏掉大部分溶剂,用二氯甲烷溶解水洗3遍,收集有机液,旋干后用二氯甲烷/乙醇混合溶液重结晶,产率80%。反应式如下:
Figure PCTCN2016108593-appb-000041
4)将(4.26g,10mmol)的化合物(9-7-5)、(3.05g,12mmol)的联硼酸频那醇酯,(0.05mmol)Pd(dppf)Cl2、(20mmol)醋酸钾和60mL1,4-二氧六环加入100mL两口瓶中,加热110℃搅拌反应12个小时,结束反应,将反应液加入到400mL水中,抽滤,收集滤渣拌硅胶过柱进行纯化,产率80%。反应式如下:
Figure PCTCN2016108593-appb-000042
5)氮气环境下,将(2.84g,6mmol)的化合物(9-7-6)、(1.21g,6mmol)的化合物(9-7-7)、(1.6g,15mmol)碳酸钠、(0.48g,1.5mmol)四丁基溴化铵,(0.52g,0.45mmol)四(三苯基膦)钯,60mL 1,4-二氧六环和10mL水加入150mL两口瓶中,加热90℃搅拌反应12个小时,结束反应,将反应液加入到300mL水中,用二氯甲烷萃取溶解水洗3遍,收集有机液拌硅胶过柱进行纯化,产率90%。反应式如下:
Figure PCTCN2016108593-appb-000043
6)氮气环境下,将(1.9g,4mmol)的化合物(9-7-8)和(2.0g,20mmol)的三乙基磷 加入100mL两口瓶中,加热190℃搅拌反应12小时,结束反应,将反应液减压蒸馏掉大部分溶剂,用二氯甲烷溶解水洗3遍,收集有机液拌硅胶过柱进行纯化,产率85%。反应式如下:
Figure PCTCN2016108593-appb-000044
7)氮气环境下,将(0.87g,2mmol)的化合物(9-7-10)(0.66g,2mmol)的化合物(9-7-11),(0.013g,0.2mmol)铜粉,(0.55g,4mmol)碳酸钾和(0.053g,0.1mmol)18-冠醚-6和(20mL)邻二氯苯加入到100mL的两口瓶中,加热150℃搅拌反应24个小时,结束反应,将反应液减压蒸馏掉大部分溶剂,用二氯甲烷溶解水洗3遍,收集有机液拌硅胶过柱进行纯化,产率60%。
Figure PCTCN2016108593-appb-000045
8)将(0.47g,0.5mmol)的化合物(9-7-12),15mL醋酸和5mL加入到50mL的两口瓶中,加热搅拌110℃搅拌反应6个小时,结束反应,将反应液倒至100mL的去离子水中,抽滤,滤渣用THF/乙醇溶液重结晶进行纯化,产率90%。
Figure PCTCN2016108593-appb-000046
2、有机化合物的能量结构
有机材料的能级可通过量子计算得到,比如利用TD-DFT(含时密度泛函理论)通过Gaussian03W(Gaussian Inc.),具体的模拟方法可参见WO2011141110。首先用半经验方法“Ground State/Semi-empirical/Default Spin/AM1”(Charge 0/Spin Singlet)来优化分子几何结构,然后有机分子的能量结构由TD-DFT(含时密度泛函理论)方法算得“TD-SCF/DFT/Default Spin/B3PW91”与基组“6-31G(d)”(Charge 0/Spin Singlet)。HOMO和LUMO能级按照下面的校准公式计算,S1和T1直接使用。
HOMO(eV)=((HOMO(G)×27.212)-0.9899)/1.1206
LUMO(eV)=((LUMO(G)×27.212)-2.0041)/1.385
其中HOMO(G)和LUMO(G)是Gaussian 03W的直接计算结果,单位为Hartree。结果如表1所示:
表1:有机化合物的能量结构
Figure PCTCN2016108593-appb-000047
化合物2-6的ΔE(S1-T1)=0.12eV,化合物9-7的ΔE(S1-T1)=0.02eV。实施例1中制备得到的化合物2-6的HOMO电子云分布图和LUMO电子云分布图分别如图1和图2所示。实施例2中制备得到的化合物9-7的HOMO电子云分布图和LUMO电子云分布图分别如图3和图4所示。从图中可以看出两个化合物的HOMO,LUMO都有充分的重叠。
3、OLED器件的制备及表征
在本实施例中,用化合物(2-6)和(9-7)作为主体材料,Ir(ppy)3作为发光材料,HATCN作为空穴注入材料,NPB和TCTA作为空穴传输材料,B3PYMPM作为电子传输材料,构造成器件结构为ITO/HATCN/NPB/TCTA/主体材料:Ir(ppy)3(15%)/B3PYMPM/LiF/Al的电致发光器件。
Figure PCTCN2016108593-appb-000048
上述材料HATCN、NPB、TCTA、B3PYMPM、Ir(ppy)3、Ref1均是可商业购得,如吉林奥莱德(Jilin OLED Material Tech Co.,Ltd,www.jl-oled.com),或其合成方法均为现有技术,详见现有技术中的参考文献,在此不再赘述。
下面通过具体实施例来详细说明采用上述的OLED器件的制备过程,OLED器件(如表2)的结构为:ITO/HATCN/NPB/TCTA/主体材料:Ir(ppy)3/B3PYMPM/LiF/Al,制备步骤如下:
a、ITO(铟锡氧化物)导电玻璃基片的清洗:使用各种溶剂(例如氯仿、丙酮或异丙醇中的一种或几种)清洗,然后进行紫外臭氧处理;
b、HATCN(5nm),NPB(40nm),TCTA(10nm),主体材料:15%Ir(ppy)3(15nm),B3PYMPM(40nm),LiF(1nm),Al(100nm)在高真空(1×10-6毫巴)中热蒸镀而成;
c、封装:器件在氮气手套箱中用紫外线硬化树脂封装。
表2:OLED器件
OLED器件 主体材料
OLED1 (2-6)
OLED2 (9-7)
OLED3 Ref1
各OLED器件的电流电压(J-V)特性通过表征设备来表征,同时记录重要的参数如效率,寿命及外部量子效率。经检测,OLED1和OLED2的发光效率是RefOELD1的3倍以上,寿命是2倍。可见,采用本发明的有机化合物制备的OLED器件,其寿命得到大大提高。

Claims (18)

  1. 一种含砜基稠杂环化合物,具有如下通式(1):
    Figure PCTCN2016108593-appb-100001
    其中,L表示碳原子数为6~60的芳香环或碳原子数为3~60的芳杂环;
    -Z-可选地表示单键、-N(R)-、-C(R)2-、-Si(R)2-、-O-、-C=N(R)-、-C=C(R)2-、-P(R)-、-P(=O)R-、-S-、-SO-或-SO2-;
    R1、R2、R3及R分别独立表示H、D、F、CN、芳烷基、烯基、炔基、腈基、胺基、硝基、酰基、烷氧基、羰基、砜基、羟基、碳原子数1~30的烷基、碳原子数3~30的环烷基、碳原子数为6~60芳香族烃基或碳原子数为3~60的芳香族杂环基;
    Ar表示碳原子数为6~40的芳香环或碳原子数为3~40的芳杂环;
    n为1、2、3、4、5或6。
  2. 根据权利要求1所述的含砜基稠杂环化合物,其中通式(1)中的Ar选自如下结构基团中的一种:
    Figure PCTCN2016108593-appb-100002
    其中,
    X是CR1或N;
    Y选自CR2R3,SiR4R5,NR6或,C(=O),S,或O;
    R1,R2,R3,R4,R5,R6分别独立的表示H,或D,或具有1至20个C原子的直链烷基、烷氧基或硫代烷氧基基团,或具有3至20个C原子的支链或环状的烷基、烷氧基或硫代烷氧基基团或者是甲硅烷基基团,或具有1至20个C原子的取代的酮基基团,或具有2至20个C原子的烷氧基羰基基团,或具有7至20个C原子的芳氧基羰基基团,氰基基团,氨基甲酰基基团,卤甲酰基基团,甲酰基基团,异氰基基团,异氰酸酯基团,硫氰酸酯基团或异硫氰酸酯基团,羟基基团,硝基基团,CF3基团,Cl,Br,F,可交联的基团或者具有5至40个环原子的取代或未取代的芳族或杂芳族环系,或具有5至40个环原子的芳氧基或杂芳氧基基团。
  3. 根据权利要求1所述的含砜基稠杂环化合物,其特征在于,通式(1)中的Ar选自如下结构基团中的一种:
    Figure PCTCN2016108593-appb-100003
  4. 根据权利要求1所述的含砜基稠杂环化合物,其特征在于,通式(1)中的L选自如下结构基团中的一种:
    Figure PCTCN2016108593-appb-100004
    其中,X1、X2、X3分别独立表示N(R)、C(R)2、Si(R)2、O、C=N(R)、C=C(R)2、P(R)、P(=O)R、S、S=O、SO2或无,其中X2、X3中至少有一个不是无;R表示H、D、F、CN、芳烷基、烯基、炔基、腈基、胺基、硝基、酰基、烷氧基、羰基、砜基、羟基、碳原子数1~30的烷基、碳原子数3~30的环烷基、碳原子数为6~60芳香族烃基或碳原子数为3~60的芳香族杂环基。
  5. 根据权利要求1所述的含砜基稠杂环化合物,其特征在于,所述含砜基稠杂环化合物由如下述式(2)~式(7)中之任一化学式表示:
    Figure PCTCN2016108593-appb-100005
    Figure PCTCN2016108593-appb-100006
  6. 根据权利1~5中任一项所述的含砜基稠杂环化合物,其特征在于,所述含砜基稠杂环化合物的三线态能级T1≥2.2eV。
  7. 根据权利要求1~5中任一项所述的含砜基稠杂环化合物,其特征在于,所述含砜基稠杂环化合物的玻璃化温度Tg≥100℃。
  8. 根据权利要求1~5中任一项所述的含砜基稠杂环化合物,其特征在于,所述含砜基稠杂环化合物的单线态和三线态能级差ΔE(S1-T1)≤0.25eV。
  9. 一种高聚物,其特征在于,所述高聚物的重复单元包含了如权利要求1~8中任一项所述的含砜基稠杂环结构单元。
  10. 根据权利要求9所述的高聚物,其特征在于,所述高聚物为非共轭高聚物,如权利要求1~8中任一项所述的含砜基稠杂环结构单元位于所述高聚物的侧链上。
  11. 根据权利要求9所述的高聚物,其特征在于,所述高聚物为共轭高聚物。
  12. 一种混合物,其特征在于,所述混合物包括如权利要求1~8中任一项所述的含砜基稠杂环化合物以及有机功能材料,或者,所述混合物包括如权利要求9~11中任一项所述的高聚物以及有机功能材料;
    所述的有机功能材料选自空穴注入材料,空穴传输材料,电子传输材料,电子注入材料,电子阻挡材料,空穴阻挡材料,发光体,主体材料和有机染料中的至少一种。
  13. 根据权利要求12所述的混合物,其特征在于,如权利要求1~8中任一项所述的含砜基稠杂环化合物或者如权利要求9~11中任一项所述的高聚物在所述混合物中的含量为50wt%~99.9wt%。
  14. 一种组合物,其特征在于,所述组合物包括如权利要求1~8中任一项所述的含砜基稠杂环化合物以及至少一种有机溶剂;
    或者,所述组合物包括如权利要求9~11中任一项所述的高聚物以及至少一种有机溶剂;
    或者,所述组合物包括如权利要求12~13中任一项所述的混合物以及至少一种有机溶剂。
  15. 一种如权利要求1~8中任一项所述含砜基稠杂环化合物或者如权利要求9~11中任一项所述的高聚物在电子器件中的应用。
  16. 一种有机电子器件,其特征在于,包括如权利要求1~8中任一项所述的含砜基稠杂环化合物、如权利要求9~11中任一项所述的高聚物或如权利要求12~13中任一项所述的混合物。
  17. 根据权利要求16所述的有机电子器件,其特征在于,所述有机电子器件选自有机发光二极管、有机光伏电池、有机发光电池、有机场效应管、有机发光场效应管、有机传感器及有机等离激元发射二极中的至少一种。
  18. 根据权利要求16所述的有机电子器件,其特征在于,所述有机电子器件为电致发光器件,所述电致发光器件的发光层包括至少一种如权利要求1~8所述的含砜基稠杂环化合物以及一种发光材料;
    或者,所述的发光层包括至少一种如权利要求9~11中任一项所述的高聚物以及一种发光材料;
    或者,所述的发光层包括至少一种如权利要求12~13中任一项所述的混合物以及一种发光材料;
    所述的发光材料选自荧光发光体,磷光发光体,TADF材料或发光量子点。
PCT/CN2016/108593 2016-01-07 2016-12-05 含砜基稠杂环化合物及其应用 WO2017118252A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16883378.8A EP3401317B1 (en) 2016-01-07 2016-12-05 Sulfone-containing fused heterocyclic compounds and applications thereof
CN201680059849.3A CN108137615B (zh) 2016-01-07 2016-12-05 含砜基稠杂环化合物及其应用
US16/026,794 US20180312522A1 (en) 2016-01-07 2018-07-03 Sulfone-containing fused heterocyclic compound and application thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610013130.8 2016-01-07
CN201610013130 2016-01-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/026,794 Continuation US20180312522A1 (en) 2016-01-07 2018-07-03 Sulfone-containing fused heterocyclic compound and application thereof

Publications (1)

Publication Number Publication Date
WO2017118252A1 true WO2017118252A1 (zh) 2017-07-13

Family

ID=59273319

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/108593 WO2017118252A1 (zh) 2016-01-07 2016-12-05 含砜基稠杂环化合物及其应用

Country Status (4)

Country Link
US (1) US20180312522A1 (zh)
EP (1) EP3401317B1 (zh)
CN (1) CN108137615B (zh)
WO (1) WO2017118252A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113121571A (zh) * 2021-03-25 2021-07-16 陕西莱特迈思光电材料有限公司 一种有机化合物及包含其的电子元件和电子装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018113784A1 (zh) 2016-12-22 2018-06-28 广州华睿光电材料有限公司 有机功能化合物、混合物、组合物、有机功能薄膜及其制备方法和有机电子器件
CN109790136B (zh) 2016-12-22 2024-01-12 广州华睿光电材料有限公司 含呋喃交联基团的聚合物及其应用
CN111558396B (zh) * 2020-05-12 2023-02-17 山东师范大学 一种富电子四苯乙烯基催化剂及其制备方法与应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103718316A (zh) * 2011-07-29 2014-04-09 默克专利有限公司 用于电子器件的化合物
WO2016021989A1 (en) * 2014-08-08 2016-02-11 Rohm And Haas Electronic Materials Korea Ltd. Organic electroluminescent compounds and organic electroluminescent devices comprising the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101759482B1 (ko) * 2010-04-09 2017-07-20 에스에프씨 주식회사 이형고리 화합물 및 이를 포함하는 유기전계발광소자
CN103183683B (zh) * 2013-01-25 2015-07-01 深圳市华星光电技术有限公司 含砜基的化合物、采用含砜基的化合物的有机电致发光器件及其制备方法
CN104804182B (zh) * 2015-04-09 2019-05-21 郑州轻工业学院 磺化聚芳醚砜及其制法和其在制备电致动器中的应用
CN105154067A (zh) * 2015-09-01 2015-12-16 华南理工大学 一种基于螺式双硫杂蒽的小分子发光材料及制备与应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103718316A (zh) * 2011-07-29 2014-04-09 默克专利有限公司 用于电子器件的化合物
WO2016021989A1 (en) * 2014-08-08 2016-02-11 Rohm And Haas Electronic Materials Korea Ltd. Organic electroluminescent compounds and organic electroluminescent devices comprising the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3401317A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113121571A (zh) * 2021-03-25 2021-07-16 陕西莱特迈思光电材料有限公司 一种有机化合物及包含其的电子元件和电子装置

Also Published As

Publication number Publication date
EP3401317A1 (en) 2018-11-14
EP3401317A4 (en) 2019-08-14
CN108137615A (zh) 2018-06-08
CN108137615B (zh) 2021-01-19
EP3401317B1 (en) 2022-05-04
US20180312522A1 (en) 2018-11-01

Similar Documents

Publication Publication Date Title
CN108137618B (zh) D-a型化合物及其应用
CN111278795B (zh) 有机混合物及其在有机电子器件中的应用
WO2017092495A1 (zh) 热激发延迟荧光材料、高聚物、混合物、组合物以及有机电子器件
WO2018095394A1 (zh) 有机混合物、组合物及有机电子器件和应用
US10968243B2 (en) Organometallic complex and application thereof in electronic devices
WO2018103749A1 (zh) 三嗪类稠环衍生物及其在有机电子器件中的应用
WO2018095390A1 (zh) 有机化合物及其应用、有机混合物、有机电子器件
EP3547385B1 (en) Organic mixture, composition, and organic electronic component
EP3246326A1 (en) Compound, mixture comprising the same, composition and organic electronic device
CN109705107B (zh) 稠环有机化合物、包含其的混合物及有机电子器件
WO2017118238A1 (zh) 氘代三芳胺衍生物及其在电子器件中的应用
CN109970660B (zh) 含稠杂环的螺芴类有机化合物及其应用
WO2017118237A1 (zh) 并吡咯衍生物及其在有机电子器件的应用
WO2017118137A1 (zh) 咔唑衍生物、高聚物、混合物、组合物、有机电子器件及其应用
WO2019120263A1 (zh) 有机混合物及其在有机电子器件中的应用
CN111848590B (zh) 化合物、高聚物、混合物、组合物及有机电子器件
WO2017118252A1 (zh) 含砜基稠杂环化合物及其应用
WO2019105326A1 (zh) 有机混合物、包含其的组合物、有机电子器件及应用
WO2018095384A1 (zh) 氘代稠环化合物、高聚物、混合物、组合物以及有机电子器件
WO2018095393A1 (zh) 有机化合物、有机混合物、有机电子器件
WO2019128762A1 (zh) 含酰胺键基团的聚合物、混合物、组合物及其应用
WO2019128599A1 (zh) 含氮杂环化合物、高聚物、混合物、组合物及其用途
WO2017092481A1 (zh) 金属有机配合物、高聚物、混合物、组合物以及有机电子器件
WO2018099432A1 (zh) 稠环化合物及制备方法和应用
WO2018103746A1 (zh) 咔唑苯类稠环衍生物、聚合物、混合物、组合物、有机电子器件及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16883378

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016883378

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016883378

Country of ref document: EP

Effective date: 20180807