WO2020088186A1 - 有机金属配合物、包含其的高聚物、混合物、组合物及有机电子器件 - Google Patents

有机金属配合物、包含其的高聚物、混合物、组合物及有机电子器件 Download PDF

Info

Publication number
WO2020088186A1
WO2020088186A1 PCT/CN2019/109288 CN2019109288W WO2020088186A1 WO 2020088186 A1 WO2020088186 A1 WO 2020088186A1 CN 2019109288 W CN2019109288 W CN 2019109288W WO 2020088186 A1 WO2020088186 A1 WO 2020088186A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
atoms
groups
organic
organometallic complex
Prior art date
Application number
PCT/CN2019/109288
Other languages
English (en)
French (fr)
Inventor
黄宏
施超
潘君友
梁志明
Original Assignee
广州华睿光电材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州华睿光电材料有限公司 filed Critical 广州华睿光电材料有限公司
Priority to CN201980051104.6A priority Critical patent/CN112585144A/zh
Publication of WO2020088186A1 publication Critical patent/WO2020088186A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K99/00Subject matter not provided for in other groups of this subclass
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic System
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic System
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic System
    • C07F5/06Aluminium compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials

Definitions

  • the present invention relates to the field of electroluminescent materials, in particular to a new type of organic ligands and organometallic complexes containing the same, as well as polymers, mixtures and compositions containing the organometallic complexes, and their use in organic electronic devices , Especially in the application of organic phosphorescent light-emitting diodes.
  • the invention also relates to an organic electronic device containing the organometallic complex of the invention and its application.
  • OLEDs Organic light emitting diodes
  • the development of display technology is inseparable from the development of luminescent materials.
  • the development of organic luminescent materials provides a way for colorful and diverse display.
  • the first OLED device came out in 1987. It uses a sandwich-like structure, the light-emitting layer is a small molecule material Alq3, and the external quantum efficiency is only about 1% (Appl. Phys. Lett., 1987, 51 (12), 913).
  • Organic light emitting diodes using fluorescent materials have the characteristics of high reliability, but their internal electroluminescence quantum under the excitation of an electric field The efficiency is limited to 25%, because the excitons produce a singlet excited state and a triplet excited state with a probability ratio of 1: 3.
  • Professor Adachi of Japan discovered the phenomenon of thermally excited delayed fluorescent luminescence.
  • the light-emitting devices including thermally excited delayed fluorescent materials have reached the requirements of phosphorescent light-emitting devices in terms of efficiency, but the device life is still short and still not very good. To meet actual application needs.
  • the red and green light-emitting materials that are currently commercialized due to the introduction of the heavy metal Ir, improve the molecular spin orbit coupling, shorten the phosphorescence lifetime, enhance the intersystem crossing of molecules, enable the phosphorescence to be successfully emitted, and improve the luminous efficiency of the material , Its related performance has basically reached the practical level.
  • the heavy metal Ir is expensive and the synthesis and purification process is relatively complicated, which greatly increases the panel production cost.
  • Complexes containing common metals such as Al, In, etc. due to their better performance and cheaper price, although they have certain applications in OLED luminescent materials, but mainly used in fluorescent luminescent materials, the luminous efficiency of their devices still cannot meet the current display screen Requirements.
  • a main object of the present invention is to provide a new organometallic complex, especially to provide a high-performance phosphorescent metal complex, which is used to solve the existing phosphorescent material is expensive and the color purity is relatively high Problems such as poor, open up a new technical path for improving device performance.
  • Another object of the present invention is to provide polymers, mixtures, compositions and organic electronic devices containing the organometallic complex.
  • Y1 ⁇ Y2 is a bidentate monovalent anionic ligand
  • Y3 ⁇ Y4 is a bidentate bivalent anionic ligand
  • Y5 ⁇ Y6 is a bidentate zero-valent neutral ligand
  • M is selected from metal elements Al, Sc, Y, One of Ga, In, Tl and Er.
  • a high polymer comprising at least one organometallic complex as described above as a repeating unit.
  • a mixture comprising the organometallic complex or polymer as described above, and at least one organic functional material the organic functional material may be selected from a hole injection material (HIM), a hole transport material (HTM), Electron transport materials (ETM), electron injection materials (EIM), electron blocking materials (EBM), hole blocking materials (HBM), luminescent materials (Emitter), host materials (Host) and organic dyes.
  • HIM hole injection material
  • HTM hole transport material
  • ETM Electron transport materials
  • EIM electron injection materials
  • EBM electron blocking materials
  • HBM hole blocking materials
  • Emitter luminescent materials
  • host materials Hos
  • organic dyes organic dyes.
  • a composition comprising an organometallic complex or polymer or mixture as described above, and at least one organic solvent.
  • An organic electronic device comprising the organometallic complex or polymer or mixture as described above.
  • the organic electronic device is selected from an organic light emitting diode (OLED), an organic photovoltaic cell (OPV), an organic light emitting cell (OLEEC), an organic field effect tube (OFET), an organic light emitting field effect tube, an organic laser , Organic spintronic devices, organic sensors and organic plasmon emission diodes (Organic Plasmon Emitting Diode).
  • OLED organic light emitting diode
  • OCV organic photovoltaic cell
  • OFET organic field effect tube
  • organic light emitting field effect tube an organic laser
  • Organic spintronic devices organic sensors and organic plasmon emission diodes (Organic Plasmon Emitting Diode).
  • the metal atoms in all metal complex luminescent materials of the present invention are selected from non-transition metals Al, Sc, Y, Ga, In, Tl, and Er, and by introducing divalent anionic organic ligands, more options are provided for phosphorescent material design .
  • non-transition metals Al, Sc, Y, Ga, In, Tl, and Er
  • divalent anionic organic ligands more options are provided for phosphorescent material design .
  • the cost of metal complexes is greatly reduced.
  • new dianion organic ligands in the organometallic complexes of the present invention the luminous efficiency of phosphorescent metal complexes is improved and increased The life of the device is improved, and more material choices are provided for efficient phosphorescent light-emitting devices.
  • the present invention provides an organometallic complex and its application in an organic electroluminescent device.
  • an organic electroluminescent device In order to make the objectives, technical solutions and effects of the present invention clearer and more specific, the present invention will be described in further detail below. It should be understood that the specific embodiments described herein are only used to explain the present invention and are not intended to limit the present invention.
  • the host material, the matrix material and the Host material have the same meaning and can be interchanged.
  • triplet state and triplet state have the same meaning and can be interchanged.
  • substituted means that the hydrogen atom in the substituent is replaced by the substituent.
  • the "number of ring atoms" means that the structural compound obtained by atom bonding to form a ring (for example, a monocyclic compound, a fused ring compound, a cross-linked compound, a carbocyclic compound, a heterocyclic compound) constitutes the ring itself.
  • the number of atoms in the atom When the ring is substituted with a substituent, the atoms contained in the substituent are not included in the ring-forming atoms.
  • the “number of ring atoms” described below is the same unless otherwise specified.
  • the benzene ring has 6 ring atoms
  • the naphthalene ring has 10 ring atoms
  • the thienyl ring has 5 ring atoms.
  • adjacent groups means that these groups are bonded to the same carbon atom or to adjacent carbon atoms. These definitions apply correspondingly to "adjacent substituents”.
  • the energy level structure of the organic material that is, the triplet energy level T 1 , the highest occupied orbital energy level HOMO, and the lowest unoccupied orbital energy level LUMO play a key role.
  • the following is an introduction to the determination of these energy levels.
  • the HOMO and LUMO energy levels can be measured by the photoelectric effect, such as XPS (X-ray photoelectron spectroscopy) and UPS (ultraviolet photoelectron spectroscopy), or by cyclic voltammetry (hereinafter referred to as CV).
  • XPS X-ray photoelectron spectroscopy
  • UPS ultraviolet photoelectron spectroscopy
  • CV cyclic voltammetry
  • quantum chemistry methods such as density functional theory (hereinafter referred to as DFT) have also become effective methods for calculating molecular orbital energy levels.
  • the triplet energy level E T1 of organic materials can be measured by low-temperature time-resolved luminescence spectroscopy, or by quantum simulation calculations (such as through Time-dependent DFT), such as commercial software Gaussian 09W (Gaussian Inc.), specific simulation methods See WO2011141110 or as described in the examples below.
  • the absolute values of HOMO, LUMO, and E T1 depend on the measurement method or calculation method used. Even for the same method, different evaluation methods, such as the starting point and the peak point on the CV curve, can give different HOMO / LUMO value. Therefore, a reasonable and meaningful comparison should be made with the same measurement method and the same evaluation method.
  • the values of HOMO, LUMO, and E T1 are simulations based on Time-dependent DFT, but do not affect the application of other measurement or calculation methods.
  • the present invention provides an organometallic complex having a structure represented by general formula (1):
  • Y1 ⁇ Y2 is a bidentate monovalent anionic ligand
  • Y3 ⁇ Y4 is a bidentate bivalent anionic ligand
  • Y5 ⁇ Y6 is a bidentate zero-valent neutral ligand
  • M is selected from metal elements Al, Sc, Y, Any one of Ga, In, Tl and Er.
  • M is selected from any one of the metal elements Al, Y, Ga, In and Er.
  • the monovalent anion ligand Y1 ⁇ Y2 in the general formula (1) is selected from any one of the following general formulas (2-1) to (2-4):
  • Q 1 , Q 2 , U 1 , U 2 are independently selected from C or N; and at least one of Q 1 and Q 2 is N;
  • Ar 1 , Ar 2 and Ar 3 are selected from substituted or unsubstituted aromatic groups having 5 to 25 carbon atoms, heteroaromatic groups or non-aromatic ring systems having 3 to 25 carbon atoms, Ar 1 to Ar 3 can be the same or different;
  • L is selected from two bridged groups
  • the dotted line indicates the bond directly connected to the metal element M
  • R 1 and R 2 are independently selected from the group consisting of H, D, a linear alkyl group having 1 to 20 C atoms, an alkoxy group or a thioalkoxy group, or having 3 to 20 C atom branched or cyclic alkyl, alkoxy or thioalkoxy groups are either silyl groups, or substituted keto groups with 1 to 20 C atoms, or have An alkoxycarbonyl group of 2 to 20 C atoms, or an aryloxycarbonyl group having 7 to 20 C atoms, cyano group, carbamoyl group, haloformyl group, formyl group Group, isocyano group, isocyanate group, thiocyanate group or isothiocyanate group, hydroxyl group, nitro group, CF 3 group, Cl, Br, F, crosslinkable
  • the group is either a substituted or unsubstituted aromatic or heteroaromatic ring system having 5 to 40 ring atoms, or an
  • the organometallic complex according to the present invention wherein Ar 1 to Ar 3 in the general formulas (2-1) to (2-4) are selected from substituted or unsubstituted and have 5 to 20 Ring atoms, preferably having 5-15 ring atoms, more preferably 6-15 ring atoms, most preferably 6-10 ring atoms, aromatic or heteroaromatic groups or non-aromatic ring systems, wherein Ar 1 to Ar 3 may be the same or different.
  • the organometallic complex according to the present invention wherein Ar 1 , Ar 2 and Ar 3 in the general formulas (2-1) to (2-4) are selected from fused ring aromatic groups or fused Heterocyclic aromatic groups.
  • Aromatic group refers to a hydrocarbon group containing at least one aromatic ring.
  • Heteroaromatic group refers to an aromatic hydrocarbon group containing at least one heteroatom.
  • the heteroatom is preferably selected from Si, N, P, O, S, and / or Ge, and particularly preferably selected from Si, N, P, O, and / or S.
  • a fused ring aromatic group means that the ring of the aromatic group may have two or more rings, in which two carbon atoms are shared by two adjacent rings, that is, a fused ring.
  • a fused heterocyclic aromatic group refers to a fused ring aromatic hydrocarbon group containing at least one heteroatom.
  • aromatic groups or heteroaromatic groups include not only aromatic ring systems but also non-aromatic ring systems. Therefore, for example, pyridine, thiophene, pyrrole, pyrazole, triazole, imidazole, oxazole, oxadiazole, thiazole, tetrazole, pyrazine, pyridazine, pyrimidine, triazine, carbene and other systems, the same for the purpose of the present invention It is considered to be an aromatic group or a heterocyclic aromatic group.
  • a fused ring aromatic or fused heterocyclic aromatic ring system includes not only a system of aromatic groups or heteroaromatic groups, but also, where multiple aromatic groups or heterocyclic aromatic groups can also be short
  • Non-aromatic unit discontinuities ⁇ 10% of non-H atoms, preferably less than 5% of non-H atoms, such as C, N or O atoms. Therefore, for example, systems such as 9,9'-spirobifluorene, 9,9-diarylfluorene, triarylamine, and diarylether are also considered to be fused ring aromatic ring systems for the purposes of the present invention.
  • fused ring aromatic group examples include naphthalene, anthracene, fluoranthene, phenanthrene, benzophenanthrene, perylene, tetracene, pyrene, benzopyrene, acenaphthene, fluorene, and derivatives thereof.
  • fused heterocyclic aromatic group examples include: benzofuran, benzothiophene, indole, carbazole, pyrroloimidazole, pyrrolopyrrole, thienopyrrole, thienothiophene, furopyrrole, furofuran , Thienofuran, benzisoxazole, benzisothiazole, benzimidazole, quinoline, isoquinoline, o-naphthyridine, quinoxaline, phenanthridine, primary pyridine, quinazoline, quinazolinone , And its derivatives.
  • Ar 1 , Ar 2 and Ar 3 in the general formulas (2-1) to (2-4) are selected from one of the following structural groups:
  • X when X appears multiple times, it can be independently selected from N or CR 1 ; when Y appears multiple times, it can be independently selected from NR 1 , CR 1 R 2 , SiR 1 R 2 , O or S;
  • Ar 1 , Ar 2 and Ar 3 in the general formulas (2-1) to (2-4) are independently selected from one of the following structural groups:
  • H on the ring may be further substituted by R, and when R appears multiple times, it is independently selected from: D, a linear alkyl group having 1 to 20 C atoms, an alkoxy group or a thioalkoxy group, or Branched or cyclic alkyl, alkoxy or thioalkoxy groups of 3 to 20 C atoms or silyl groups, or substituted keto groups having 1 to 20 C atoms , Or an alkoxycarbonyl group having 2 to 20 C atoms, or an aryloxycarbonyl group having 7 to 20 C atoms, cyano group, carbamoyl group, haloformyl group Formyl group, isocyano group, isocyanate group, thiocyanate group or isothiocyanate group, hydroxyl group, nitro group, CF 3 group, Cl, Br, F,
  • a crosslinkable group is either a substituted or unsubstituted aromatic or heteroaromatic ring system having 5 to 40 carbon
  • the organometallic complex according to the present invention wherein the two bridging group L in the general formula (2-3) is selected from one of the following structural groups:
  • R 3 -R 6 have the same meaning as R 1 , and the dotted line represents the bond to the general formula bond.
  • the monovalent anion ligand Y1 ⁇ Y2 in the general formula (1) is selected from any one of the following general formulas (2-A-1) to (2-A-22):
  • X when X appears multiple times, it can be independently selected from N or CR 1 ;
  • Y When Y appears multiple times, it can be independently selected from NR 1 , CR 1 R 2 , SiR 1 R 2 , O or S;
  • all X in the general formulae (2-A-1) to (2-A-23) are selected from CR 1 ; in a more preferred embodiment, all X are selected from CR 1 and at least two adjacent R 1s form monocyclic or polycyclic aliphatic, aromatic Family or heteroaromatic ring system. In a more preferred embodiment, all X in the general formulae (2-A-1) to (2-A-23) are selected from CR 1 and Y is selected from CR 1 R 2 . R 1 and R 2 have the same meaning as above.
  • the monovalent anion ligand Y1 ⁇ Y2 in the general formula (1) is selected from any one of the following general formulas (2-B-1) to (2-B-21):
  • the H atom on the ring can be further substituted by R, R has the same meaning as above; the dotted line represents the bond directly connected to the metal element M,
  • the dianion ligand Y3 ⁇ Y4 in the general formula (1) is selected from any one of the following general formulas (3-1)-(3-4):
  • Q 3 , Q 4 , U 3 , U 4 are independently selected from C or N;
  • dianion ligand Y3 ⁇ Y4 in the general formula (1) is selected from any one of the following general formulas (3-A-1) to (3-A-23):
  • the dianion ligand Y3 ⁇ Y4 in the general formula (1) is selected from any one of the following general formulas (3-B-1) to (3-B-31):
  • H atoms in the general formulae (3-B-1) to (3-B-23) may be further substituted.
  • the zero-valent neutral ligand Y5 ⁇ Y6 in the general formula (1) is selected from any one of the following general formulas (4-1)-(4-3):
  • Q 5 and U 5 are independently selected from C or N;
  • Ar 1 , Ar 2 and Ar 3 are as described above, Ar 4 to Ar 8 are selected from substituted or unsubstituted aromatic groups, heteroaromatic groups or non-aromatic ring systems, and the dotted line represents the bond directly connected to the metal element M .
  • the zero-valent neutral ligand Y5 ⁇ Y6 in the general formula (1) is selected from any one of the following general formulas (4-A-1) to (4-A-17):
  • X and Y have the meanings described above.
  • the zero-valent neutral ligand Y5 ⁇ Y6 in the general formula (1) is selected from any one of the following general formulas (4-B-1) to (4-B-19):
  • H atom in the general formulae (4-B-1) to (4-B-19) may be further substituted.
  • the organometallic complex of the present invention is selected from but not limited to the following general formula:
  • organometallic complexes according to the present invention:
  • H in the structural formula may be further substituted arbitrarily.
  • Organic functional materials include, but are not limited to: hole injection materials (HIM), hole transport materials (HTM), electron transport materials (ETM) ,, electron injection materials (EIM), electron blocking materials (EBM), hole blocking Material (HBM), emitter (Emitter) and host material (Host).
  • HIM hole injection materials
  • HTM hole transport materials
  • ETM electron transport materials
  • EIM electron injection materials
  • EBM electron blocking materials
  • HBM hole blocking Material
  • emitter emitter
  • Hos host material
  • the organometallic complex according to the present invention is a non-luminescent functional material.
  • the organometallic complex according to the present invention is a light-emitting material whose emission wavelength is between 300 and 1000 nm, preferably between 350 and 900 nm, and more preferably between 400 and 800 nm.
  • Luminescence here refers to photoluminescence or electroluminescence.
  • the organometallic complex according to the present invention is a near-infrared luminescent material whose emission wavelength is between 1000 and 3000 nm, preferably between 1200 and 2500 nm, and more preferably between 1400 and 2000 nm.
  • the luminescence referred to here refers to photoluminescence or electroluminescence.
  • the organometallic complex of the present invention has a photoluminescence or electroluminescence efficiency of ⁇ 30%, preferably ⁇ 40%, more preferably ⁇ 50%, and most preferably ⁇ 60%.
  • the organometallic complex according to the invention is used as the phosphorescent guest material.
  • T 1 As a phosphorescent guest material, it must have an appropriate triplet energy level, namely T 1 .
  • T 1 ⁇ 0.5eV, preferably, T 1 ⁇ 0.88eV, more preferably, T 1 ⁇ 1.0eV, most preferably, T 1 ⁇ 1.51eV.
  • the organometallic complex according to the present invention has a glass transition temperature T g ⁇ 100 ° C, in a preferred embodiment Tg ⁇ 120 ° C, in a more preferred embodiment Tg ⁇ 140 ° C, In a more preferred embodiment, T g ⁇ 160 ° C, and in a most preferred embodiment, T g ⁇ 180 ° C.
  • the organometallic complex according to the present invention is used as an electron transport material.
  • an electron transport material a suitable energy level structure is required.
  • the organometallic complex according to the present invention has a relatively high LUMO, preferably LUMO ⁇ -3.4 eV, more preferably LUMO ⁇ -3.21 eV, more preferably LUMO ⁇ -2.91 eV.
  • the compound according to the invention has a lower HOMO, preferably HOMO ⁇ -4.0 eV, more preferably HOMO ⁇ -5.0 eV, most preferably HOMO ⁇ -5.18 eV.
  • the organometallic complex according to the present invention as a precursor for forming a metal oxide, needs to form the metal oxide at a higher temperature.
  • the organometallic complex according to the present invention has a higher decomposition temperature in a vacuum or inert gas atmosphere, preferably the decomposition temperature T ⁇ 1000 ° C, more preferably T ⁇ 800 ° C, more preferably T ⁇ 600 ° C.
  • the present invention further relates to a polymer comprising at least one structural unit of the organometallic complex as a repeating unit.
  • the polymer synthesis method is selected from SUZUKI-, YAMAMOTO-, STILLE-, NIGESHI-, KUMADA-, HECK-, SONOGASHIRA-, HIYAMA-, FUKUYAMA-, HARTWIG-BUCHWALD- and ULLMAN.
  • the glass transition temperature of the polymer of the present invention T g ⁇ 100 °C, preferably, T g ⁇ 120 °C, more preferably, T g ⁇ 140 °C, still more preferably, T g ⁇ 160 ° C, most preferably, Tg ⁇ 180 ° C.
  • the molecular weight distribution (PDI) of the polymer according to the present invention preferably ranges from 1 to 5; more preferably from 1 to 4; more preferably from 1 to 3, and even more preferably from 1 to 2, most preferably 1 to 1.5.
  • the weight average molecular weight (Mw) of the polymer according to the present invention preferably ranges from 10,000 to 1 million; more preferably from 50,000 to 500,000; more preferably from 100,000 to 400,000 It is more preferably 150,000 to 300,000, and most preferably 200,000 to 250,000.
  • the polymer according to the present invention is a non-conjugated polymer, preferably, a non-conjugated structure containing a structural unit of the organometallic complex on the side chain as a repeating unit high polymer.
  • the present invention also provides a mixture comprising at least one of the above-mentioned organometallic complexes or polymers, and at least one organic functional material
  • the organic functional material may be selected from: hole injection material (HIM), Hole transport material (HTM), electron transport material (ETM), electron injection material (EIM), electron blocking material (EBM), hole blocking material (HBM), light emitting material (Emitter), host material (Host) and organic dye.
  • HIM hole injection material
  • HTM Hole transport material
  • ETM electron transport material
  • EIM electron injection material
  • EBM electron blocking material
  • Emitter hole blocking material
  • host material Host
  • organic dye organic dye
  • the content of the organometallic complex in the mixture according to the present invention is 0.01 to 30% by weight, preferably 0.5 to 20% by weight, more preferably 2 to 15% by weight, and most preferably 5 to 15% by weight.
  • the mixture according to the invention comprises the organometallic complex or polymer of the invention and a triplet host material.
  • the mixture according to the invention comprises the organometallic complex or polymer of the invention, a triplet host material and a triplet emitter.
  • the mixture according to the invention comprises the organometallic complex or polymer of the invention and a thermally activated delayed fluorescent luminescent material (TADF).
  • TADF thermally activated delayed fluorescent luminescent material
  • the mixture according to the invention comprises the organometallic complex or polymer of the invention, a triplet host material and a thermally activated delayed fluorescent luminescent material (TADF).
  • TADF thermally activated delayed fluorescent luminescent material
  • triplet host material triplet emitter and TADF material (but not limited to this).
  • Triplet host material (TripletHost):
  • triplet host materials are not particularly limited, and any metal complex or organic compound may be used as the host material, as long as its triplet energy level is higher than that of the luminous body, especially the triplet luminous body or phosphorescent luminous body That's it.
  • Host triplet host material
  • M is a metal
  • (Y 3 -Y 4 ) is a bidentate ligand, Y 3 and Y 4 are independently selected from C, N, O, P, and S
  • L is an auxiliary ligand
  • m is an integer, and the value of m is The maximum coordination number from 1 to M; in a preferred embodiment, the metal complex that can be used as a triplet host material has the following structure:
  • (O-N) is a bidentate ligand, the metal is coordinated with O and N atoms; m is an integer, and the value of m ranges from 1 to the maximum coordination number of the metal;
  • M can be selected from Ir and Pt.
  • each Ar may be further substituted, and the substituent may be selected from hydrogen, deuterium, cyano, halogen, alkyl, alkoxy, amino, alkenyl, alkynyl, aralkyl, heteroalkyl, aryl and Heteroaryl.
  • the triplet host material may be selected from compounds containing at least one of the following groups:
  • Ar 1 to Ar 3 are selected from aromatic or heteroaromatic groups, and R can be selected from the following groups: hydrogen, deuterium, halogen atoms (F, Cl, Br, I), cyano, Alkyl, alkoxy, amino, alkenyl, alkynyl, aralkyl, heteroalkyl, aryl, and heteroaryl, n is selected from an integer of 1 to 20.
  • TDF Thermally activated delayed fluorescent luminescent material
  • Such materials generally have a small singlet-triplet energy level difference ( ⁇ Est), and triplet excitons can be converted into singlet excitons to emit light by crossing between anti-systems. This can make full use of the singlet excitons and triplet excitons formed under electrical excitation.
  • the quantum efficiency within the device can reach 100%.
  • the material structure is controllable, the properties are stable, the price is cheap and no precious metals are needed, and the application prospect in the field of OLED is broad.
  • the TADF material needs to have a small singlet-triplet energy level difference ( ⁇ Est).
  • ⁇ Est ⁇ 0.3 eV, more preferably, ⁇ Est ⁇ 0.25 eV, more preferably, ⁇ Est ⁇ 0.20 eV, most preferably, ⁇ Est ⁇ 0.1 eV.
  • the TADF material has a relatively small ⁇ Est, and in another preferred embodiment, TADF has a better fluorescence quantum efficiency.
  • TADF luminescent materials can be found in the following patent documents: CN103483332 (A), TW201309696 (A), TW201309778 (A), TW201343874 (A), TW201350558 (A), US20120217869 (A1), WO2013133359 (A1), WO2013154064 (A1 ), Adachi, et.al.Nature Photonics, 6,2012,253, Adachi, et.al.Nature, 492,2012,234, Adachi, et.al.Adv.Mater., 25,2013,3707, Adachi, et.al.Chem.Mater., 25,2013,3038, Adachi, et.al.Chem.Mater., 25,2013,3766, JYLee, et.al.Adv.Opt.Mater., 2018,1800255.
  • Triplet emitters are also called phosphorescent emitters.
  • the triplet emitter is a metal complex with the general formula M (L) n, where M is a metal atom and L is an organic ligand, which can be the same or different each time it appears, which Multiple positions are bonded or coordinated to the metal atom M, n is an integer between 1 and 6.
  • the triplet luminophore contains a chelating ligand, ie a ligand, which is coordinated to the metal through at least two binding points.
  • the triplet luminophore contains two or three identical or different bidentate or multidentate ligands. Chelating ligands help to improve the stability of metal complexes.
  • the metal complex that can be used as a triplet emitter has the following general formula:
  • the metal atom M is selected from transition metal elements, lanthanides or actinides, preferably selected from Ir, Pt, Pd, Au, Rh, Ru, Os, Re, Cu, Ag, Ni, Co, W or Eu, particularly preferred It is selected from Ir, Au, Pt, W or Os.
  • Ar 1 and Ar 2 are cyclic groups, which can be the same or different each time.
  • Ar 1 contains at least one donor atom, that is, an atom with a lone pair of electrons, such as nitrogen.
  • the cyclic group passes through this atom and the metal Coordinate connection;
  • Ar 2 contains at least one carbon atom through which the cyclic group is connected to the metal;
  • Ar 1 and Ar 2 are linked together by a covalent bond, Ar 1 and Ar 2 can each carry one or more
  • the substituent groups can also be linked together through the substituent groups;
  • L ' may be the same or different each time it appears, L' is an auxiliary ligand for bidentate chelation, most preferably a monoanionic bidentate chelating ligand;
  • q1 may be 0, 1, 2 or 3, preferably 2 or 3;
  • q2 may be 0, 1, 2 or 3, preferably 1 or 0.
  • organic ligands can be selected from phenylpyridine derivatives or 7,8-benzoquinoline derivatives. All of these organic ligands can be substituted, for example by alkyl chains or fluorine or silicon.
  • the auxiliary ligand may preferably be selected from acetone acetate or picric acid.
  • triplet emitter materials and their extremely useful applications can be found in the following patent documents and documents: WO200070655, WO200141512, WO200202714, WO200215645, WO2005033244, WO2005019373, US20050258742, US20070087219, US20070252517, US2008027220, WO2009146770, US20090061681, US20090061681, WO2009118087 , WO2010054731, WO2011157339, WO2012007087, WO201200708, WO2013107487, WO2013094620, WO2013174471, WO2014031977, WO2014112450, WO2014007565, WO2014024131, Baldo et al.
  • An object of the present invention is to provide a material solution for an evaporation type OLED.
  • the molecular weight of the organometallic complex according to the invention is ⁇ 1200 g / mol, preferably ⁇ 1100 g / mol, very preferably ⁇ 1000 g / mol, more preferably ⁇ 950 g / mol, and most preferably ⁇ 900 g / mol.
  • Another object of the invention is to provide a material solution for printed OLEDs.
  • the molecular weight of the organometallic complex according to the invention is ⁇ 800 g / mol, preferably ⁇ 900 g / mol, very preferably ⁇ 1000 g / mol, more preferably ⁇ 1100 g / mol, and most preferably ⁇ 1200 g / mol.
  • the solubility of the organometallic complex according to the invention in toluene at 25 ° C is ⁇ 2 mg / ml, preferably ⁇ 3 mg / ml, more preferably ⁇ 4 mg / ml, and most preferably ⁇ 5 mg / ml.
  • the present invention also relates to a composition
  • a composition comprising at least one organic metal complex or polymer or mixture as described above, and at least one organic solvent; the at least one organic solvent is selected from aromatic or heteroaromatic, Esters, aromatic ketones or aromatic ethers, aliphatic ketones or aliphatic ethers, alicyclic or olefin compounds, or boric acid esters or phosphate compounds or mixtures of two or more solvents.
  • the organic solvent in the composition according to the invention is selected from aromatic or heteroaromatic based solvents.
  • Non-limiting examples of aromatic or heteroaromatic solvents suitable for the present invention are: p-diisopropylbenzene, pentylbenzene, tetrahydronaphthalene, cyclohexylbenzene, chloronaphthalene, 1,4-dimethylnaphthalene, 3 -Isopropyl biphenyl, p-methyl cumene, dipentylbenzene, tripentylbenzene, pentyltoluene, o-diethylbenzene, m-diethylbenzene, p-diethylbenzene, 1,2,3,4-tetra Toluene, 1,2,3,5-tetratoluene, 1,2,4,5-tetratoluene, butylbenzene, dodecylbenzene, dihexylbenzene, dibutylbenzene, p-diisopropylbenzene, cycl
  • Non-limiting examples of aromatic ketone-based solvents suitable for the present invention are: 1-tetralone, 2-tetralone, 2- (phenylepoxy) tetralone, 6- (methoxy) Tetralin, acetophenone, acetophenone, benzophenone, and their derivatives, such as 4-methylacetophenone, 3-methylacetophenone, 2-methylacetophenone, 4-methyl Phenyl acetone, 3-methyl phenyl acetone, 2-methyl phenyl acetone, etc.
  • Non-limiting examples of aromatic ether-based solvents suitable for the present invention are: 3-phenoxytoluene, butoxybenzene, p-anisaldehyde dimethyl acetal, tetrahydro-2-phenoxy-2H-pyridine Furan, 1,2-dimethoxy-4- (1-propenyl) benzene, 1,4-benzodioxane, 1,3-dipropylbenzene, 2,5-dimethoxytoluene, 4-ethylbenzyl ether, 1,3-dipropoxybenzene, 1,2,4-trimethoxybenzene, 4- (1-propenyl) -1,2-dimethoxybenzene, 1,3- Dimethoxybenzene, glycidyl phenyl ether, dibenzyl ether, 4-tert-butyl anisole, trans-p-propenyl anisole, 1,2-dimethoxybenzene, 1-methoxy Naphthalene, diphenyl
  • the organic solvent of the composition according to the present invention may be selected from: aliphatic ketones, for example, 2-nonanone, 3-nonanone, 5-nonanone, 2-decanone, 2,5 -Hexanedione, 2,6,8-trimethyl-4-nonanone, fenone, phorone, isophorone, di-n-amyl ketone, etc .; or aliphatic ethers, for example, pentyl ether, hexane Ether, dioctyl ether, ethylene glycol dibutyl ether, diethylene glycol diethyl ether, diethylene glycol butyl methyl ether, diethylene glycol dibutyl ether, triethylene glycol dimethyl ether, triethylene glycol ethyl methyl ether Ether, triethylene glycol butyl methyl ether, tripropylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, etc.
  • aliphatic ketones
  • the organic solvent of the composition according to the present invention may be selected from ester-based solvents: alkyl octoate, alkyl sebacate, alkyl stearate, alkyl benzoate, alkyl phenylacetate Ester, alkyl cinnamate, alkyl oxalate, alkyl maleate, alkanolide, alkyl oleate, etc. Particularly preferred is octyl octoate, diethyl sebacate, diallyl phthalate, and isononyl isononanoate.
  • the solvent may be used alone or as a mixture of two or more organic solvents.
  • the composition according to the invention comprises at least one organometallic complex or polymer or mixture as described above and at least one organic solvent, and may further comprise another organic solvent.
  • another organic solvent include (but are not limited to): methanol, ethanol, 2-methoxyethanol, methylene chloride, chloroform, chlorobenzene, o-dichlorobenzene, tetrahydrofuran, anisole, morpholine, Toluene, o-xylene, m-xylene, p-xylene, 1,4 dioxane, acetone, methyl ethyl ketone, 1,2 dichloroethane, 3-phenoxytoluene, 1,1 , 1-trichloroethane, 1,1,2,2-tetrachloroethane, ethyl acetate, butyl acetate, dimethylformamide, dimethylacetamide, dimethylsulfoxide, tetrahydronaphthalene
  • the solvent that is particularly suitable for the present invention is a solvent whose Hansen solubility parameter is within the following range:
  • ⁇ d (dispersion force) is in the range of 17.0 ⁇ 23.2MPa 1/2 , especially in the range of 18.5 ⁇ 21.0MPa 1/2 ;
  • ⁇ p polar forces in the range of 0.2 ⁇ 12.5MPa 1/2, especially in the 2.0 ⁇ 6.0MPa 1/2;
  • the organic solvent of the composition according to the present invention needs to consider its boiling point parameter when selecting.
  • the boiling point of the organic solvent is ⁇ 150 ° C, preferably ⁇ 180 ° C, more preferably ⁇ 200 ° C, more preferably ⁇ 250 ° C, and most preferably ⁇ 275 ° C or ⁇ 300 ° C.
  • the boiling point in these ranges is beneficial to prevent nozzle clogging of the inkjet print head.
  • the organic solvent may be evaporated from the solvent system to form a thin film containing functional materials.
  • the composition according to the invention is a solution.
  • composition according to the invention is a suspension.
  • composition in the embodiment of the present invention may include 0.01 to 10 wt%, preferably 0.1 to 15 wt%, more preferably 0.2 to 5 wt%, and most preferably 0.25 to 3 wt% of the organometallic complex or polymer or mixture of the present invention.
  • the invention also relates to the use of the composition as a coating or printing ink in the preparation of organic electronic devices, especially by printing or coating.
  • suitable printing or coating technologies include (but are not limited to): inkjet printing, jet printing (Nozzle Printing), letterpress printing, screen printing, dip coating, spin coating, doctor blade coating, roller printing, twisting Roll printing, offset printing, flexographic printing, rotary printing, spraying, brushing or pad printing, slit-type extrusion coating, etc.
  • the first choice is gravure printing, jet printing and inkjet printing.
  • the solution or suspension may additionally include one or more components, such as surface-active compounds, lubricants, wetting agents, dispersing agents, hydrophobic agents, adhesives, etc., used to adjust viscosity and film-forming properties, improve adhesion, etc. .
  • surface-active compounds such as surface-active compounds, lubricants, wetting agents, dispersing agents, hydrophobic agents, adhesives, etc.
  • the present invention also provides the application of the organic metal complexes, polymers, mixtures or compositions as described above in organic electronic devices, which can be selected from (but not limited to): organic light emitting diodes (OLED), Organic photovoltaic cell (OPV), organic light emitting cell (OLEEC), organic field effect tube (OFET), organic light emitting field effect tube, organic laser, organic spintronic device, organic sensor and organic plasmon emitting diode (Organic Plasmon Emitting Diode), etc., particularly preferably OLED.
  • OLED organic light emitting diodes
  • OOV Organic photovoltaic cell
  • OFET organic field effect tube
  • organic light emitting field effect tube organic laser
  • organic spintronic device organic spintronic device
  • organic sensor and organic plasmon emitting diode Organic Plasmon Emitting Diode
  • OLED organic Plasmon Emitting Diode
  • the invention further relates to an organic electronic device comprising at least the organometallic complex, polymer or mixture as described above.
  • an organic electronic device includes at least a cathode, an anode, and a functional layer between the cathode and the anode, wherein the functional layer includes at least one organic metal complex as described above.
  • the organic electronic device may be selected from (but not limited to): organic light emitting diode (OLED), organic photovoltaic cell (OPV), organic light emitting cell (OLEEC), organic field effect tube (OFET), organic light emitting field effect tube, organic Lasers, organic spintronic devices, organic sensors and organic plasmon emitting diodes (Organic Plasmon Emitting Diode), etc., are particularly preferably organic electroluminescent devices, such as OLED, OLEEC, organic light emitting field effect tubes.
  • the light-emitting layer of the organic electroluminescent device comprises the organometallic complex or polymer or mixture as described above.
  • the light-emitting device described above especially the OLED, includes a substrate, an anode, at least one light-emitting layer and a cathode.
  • the substrate may be opaque or transparent.
  • the transparent substrate can be used to manufacture transparent light-emitting components.
  • the substrate may be rigid or elastic.
  • the substrate may be plastic, metal, semiconductor wafer or glass.
  • the substrate has a smooth surface. Substrates without surface defects are particularly ideal choices.
  • the substrate is flexible and can be selected from polymer films or plastics, and its glass transition temperature T g is above 150 ° C, preferably above 200 ° C, more preferably above 250 ° C, and most preferably above 300 ° C .
  • suitable flexible substrates are poly (ethylene terephthalate) (PET) and polyethylene glycol (2,6-naphthalene) (PEN).
  • the anode may include a conductive metal or metal oxide or a conductive polymer.
  • the anode can easily inject holes into the hole injection layer (HIL) or the hole transport layer (HTL) or the light emitting layer.
  • the absolute value of the difference between the work function of the anode and the HOMO energy level or valence band energy level of the luminous body in the light emitting layer or the p-type semiconductor material as HIL or HTL or electron blocking layer (EBL) is less than 0.5 eV, preferably less than 0.3 eV, most preferably less than 0.2 eV.
  • anode materials include, but are not limited to: Al, Cu, Au, Ag, Mg, Fe, Co, Ni, Mn, Pd, Pt, ITO, aluminum-doped zinc oxide (AZO), and the like.
  • suitable anode materials are known and can be easily selected and used by those of ordinary skill in the art.
  • the anode material can be deposited using any suitable technique, such as a suitable physical vapor deposition method, including radio frequency magnetron sputtering, vacuum thermal evaporation, e-beam, etc.
  • the anode is patterned. Patterned ITO conductive substrates are commercially available and can be used to prepare the organic electronic devices of the present invention.
  • the cathode may include a conductive metal or metal oxide.
  • the cathode can easily inject electrons into EIL or ETL or directly into the light emitting layer.
  • the absolute value of the difference in conduction band energy level is less than 0.5 eV, preferably less than 0.3 eV, and most preferably less than 0.2 eV.
  • all materials that can be used as the cathode of the OLED can be used as the cathode material of the device of the present invention.
  • cathode materials include but are not limited to: Al, Au, Ag, Ca, Ba, Mg, LiF / Al, Mg / Ag alloy, BaF 2 / Al, Cu, Fe, Co, Ni, Mn, Pd, Pt, ITO Wait.
  • the cathode material can be deposited using any suitable technique, such as a suitable physical vapor deposition method, including radio frequency magnetron sputtering, vacuum thermal evaporation, e-beam, etc.
  • OLED can also contain other functional layers, such as hole injection layer (HIL), hole transport layer (HTL), electron blocking layer (EBL), electron injection layer (EIL), electron transport layer (ETL), hole blocking layer (HBL).
  • HIL hole injection layer
  • HTL hole transport layer
  • EBL electron blocking layer
  • EIL electron injection layer
  • ETL electron transport layer
  • HBL hole blocking layer
  • the light emitting device has a light emission wavelength between 300 and 1200 nm, preferably between 350 and 1000 nm, and more preferably between 400 and 900 nm.
  • the invention also relates to the application of the electroluminescent device according to the invention in various electronic equipment.
  • electronic devices include but are not limited to display devices, lighting devices, light sources, sensors, and so on.
  • the synthesis of the complex M-259 is similar to that of the complex M-256.
  • the ligand is changed from biphenyl to 1,8-dihydroxynaphthalene to obtain a dark black solid with a yield of 34%.
  • MS (ASAP) 485.1.
  • the synthesis of the complex M-260 is similar to that of the complex M-86.
  • the ligand changes from benzoindole to 1,8-dihydroxynaphthalene, giving a dark red solid with a yield of 24%.
  • MS (ASAP) 440.4.
  • complex M-376 The synthesis of complex M-376 is similar to that of complex M-1.
  • the ligand changes from benzoindole to 2-phenylpyrrole, giving a dark black solid with a yield of 26.4%.
  • MS (ASAP) 478.5.
  • the energy levels of the organometallic complexes M-1 ⁇ M-245 can be obtained by quantum calculations, such as TD-DFT (time-dependent density functional theory) by Gaussian09W (Gaussian Inc.), the specific simulation method can be found in WO2011141110 .
  • the HOMO and LUMO energy levels are calculated according to the following calibration formula, and S 1 and T 1 are used directly.
  • HOMO (eV) ((HOMO (Gaussian) ⁇ 27.212) -0.9899) /1.1206
  • HOMO (G) and LUMO (G) are the direct calculation results of Gaussian 09W, and the unit is Hartree. The results are shown in Table 1:
  • the structure of the OLED device is: ITO / MoO3 (10nm) / NPB (60nm) / 10% metal complex (M-1): m-MTDATA (45nm) / Alq3 (35nm) / LiF (1nm) / Al (150nm)
  • conductive glass substrate when it is used for the first time, it can be cleaned with a variety of solvents, such as chloroform, ketone, isopropanol, and then ultraviolet ozone plasma treatment;
  • HIL 10nm
  • HTL 60nm
  • EML 45nm
  • ETL 35nm
  • HIL material is selected from MoO3
  • HTL The material is selected from NPB
  • the EML material is selected from the organometallic complex M-1: m-MTDATA
  • the ETL material is selected from Alq3.
  • Cathode Li F / AI (1nm / 150nm) is thermally vapor deposited in high vacuum (1x10 -6 mbar);
  • Encapsulation The device is encapsulated with ultraviolet curing resin in a chlorine glove box.
  • the preparation method was the same as in Example 16, except that the complex M-1 was replaced with the compound shown in Table 1.
  • the devices with complex M-1 and M-259 as the luminous body have high efficiency
  • the device with complex M-259 as the luminescent material has an external quantum efficiency (EQE) of 4.5%.
  • Example 32 Light emitting device using metal complex as electron transport material
  • the metal organic complex described in the present invention can be used as an electron transport material, and the structure of the OLED device is: ITO / NPD (60nm) / 10% Ir (PPy) 3 : CBP (45nm) / metal complex (M-1 ) (35nm) / LiF (1nm) / Al (150nm)
  • conductive glass substrate when it is used for the first time, it can be cleaned with a variety of solvents, such as chloroform, ketone, isopropanol, and then ultraviolet ozone plasma treatment;
  • HTL 60nm
  • EML 45nm
  • ETL 35nm
  • hot vapor deposition in high vacuum 1x10-6 mbar, mbar
  • HTL material is selected from NPD
  • EML material is selected from Ir (PPy) 3 : CBP
  • ETL materials are selected from metal complexes (M-1).
  • Cathode Li F / AI (1nm / 150nm) is thermally vapor deposited in high vacuum (1x10 -6 mbar);
  • Encapsulation The device is encapsulated with ultraviolet curing resin in a chlorine glove box.
  • the preparation method was the same as in Example 32, except that the complex M-1 was replaced with the compound shown in Table 1.
  • the device results obtained are generally higher than those using Alq3 as the electron transport material.
  • the light-emitting devices with the complexes M-246 and M-259 as the electronic materials have the highest efficiency, especially the complex M-259 as the electron transport
  • the luminous efficiency of the light-emitting device of the material is 2.5 times that of the device with Alq3 as the electronic light-emitting material.
  • the performance of the device will be further improved, especially the efficiency, driving voltage and life.

Abstract

公开了一种有机金属配合物,及其在有机电子器件,特别是在有机磷光发光二极管中的应用。还涉及包含有有机金属配合物的有机电子器件,特别是有机发光二极管,及其在显示及照明技术中的应用。通过器件结构优化,改变金属配合物在基质中的浓度,提高器件性能,实现高效高亮度高稳定的OLED器件,为全彩显示和照明应用提供了较好的材料选项。

Description

有机金属配合物、包含其的高聚物、混合物、组合物及有机电子器件
本申请要求于2018年11月02日提交中国专利局、申请号为201811300169.3发明名称为“一种有机金属配合物及其在电子器件中的应用”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及电致发光材料领域,尤其涉及一种新型有机配体和包含其的有机金属配合物,及包含所述有机金属配合物的高聚物、混合物和组合物,及其在有机电子器件,特别是在有机磷光发光二极管中的应用。本发明还涉及一种包含本发明的有机金属配合物的有机电子器件及其应用。
背景技术
有机发光二极管(OLED)在光电器件的应用方面具有很大的潜力。经过三十几年的发展,取得了长足的进步,目前已广泛应用于电视、手机显示器中,但目前能用于商业化面板生产的有机发光材料仍然不多,主要表现在器件效率不高、寿命不长等方面。
显示技术的发展与发光材料的发展是分不开的,有机发光材料的发展为多彩、多样形态显示提供了途径。第一个OLED器件于1987年问世,其采用类似三明治结构,发光层为小分子材料Alq3,外量子效率只有约1%(Appl.Phys.Lett.,1987,51(12),913)。1998年美国南加州大学的Thomson教授和普林斯顿大学的Forrest教授将三(2-苯基吡啶)合铱Ir(ppy) 3掺杂到N,N-二咔唑联苯(CBP)中,成功制备了绿色电致磷光器件,将OLED器件内量子效率及外量子效率分别提高到23%与4%(Nature.,1998,395,151),这引起人们对配合物磷光材料的浓厚兴趣。
为了提高有机发光二极管的发光效率,各种基于荧光和磷光的发光材料体系已被开发出来,使用荧光材料的有机发光二极管具有可靠性高的特点,但其在电场激发下其内部电致发光量子效率被限制为25%,这是因为激子产生单重激发态和三重激发态的概率比为1:3。日本Adachi教授发现了热激发延迟荧光发光现象,经过近几年的发展,包括热激发延迟荧光材料的发光器件在效率方面已达到磷光发光器件的要求,但器件寿命仍然较短,仍不能很好地满足实际应用需求。
目前商业化的红、绿光发光材料,由于重金属Ir的引入,提高了分子自旋轨道耦合,缩短了磷光寿命,增强了分子的系间窜越,使磷光得以顺利发射,提高了材料发光效率,其相关性能基本上达到了实用化水平。但由于重金属Ir价格昂贵,且合成纯化工艺较为复杂,大大增加了面板生产成本。含有常见金属如Al、In等的配合物由于其较好的性能以及价格便宜,虽在OLED发光材料上有一定的应用,但主要应用于荧光发光材料,其器件发光效率仍不能满足目前显示屏的要求。
因此新型的高性能的磷光金属配合物材料急需开发出来。
发明内容
鉴于上述现有技术的不足,本发明的一个主要目的在于提供一种新型有机金属配合物,特别是提供一种高性能的磷光金属配合物,用于解决现有磷光材料价格昂贵、色纯度较差等问题,为提高器件性能开辟新的技术路径。本发明的另一个目的在于提供包含该有机金属配合物的高聚物、混合物、组合物及有机电子器件。
本发明的技术方案如下:
一种有机金属配合物,具有通式(1)所示的结构:
Figure PCTCN2019109288-appb-000001
其中:Y1^Y2为二齿一价阴离子配体;Y3^Y4为二齿二价阴离子配体;Y5^Y6为二齿零价中性配体;M选自金属元素Al、Sc、Y、Ga、In、Tl和Er中的一个。
一种高聚物,包含至少一个如上所述的有机金属配合物作为重复单元。
一种混合物,包含如上所述的有机金属配合物或高聚物,及至少一种有机功能材料,所述有机功能材料可选自空穴注入材料(HIM)、空穴传输材料(HTM)、电子传输材料(ETM)、电子注入材料(EIM)、电子阻挡材料(EBM)、空穴阻挡材料(HBM)、发光材料(Emitter)、主体材料(Host)和有机染料。
一种组合物,包含如上所述的有机金属配合物或高聚物或混合物,及至少一种有机溶剂。
一种有机电子器件,包含如上所述的有机金属配合物或高聚物或混合物。
在一个实施例中,所述有机电子器件选自有机发光二极管(OLED)、有机光伏电池(OPV)、有机发光电池(OLEEC)、有机场效应管(OFET)、有机发光场效应管、有机激光器,有机自旋电子器件、有机传感器及有机等离子体激元发射二极管(Organic Plasmon Emitting Diode)。有益效果:
本发明所有金属配合物发光材料中的金属原子选自非过渡金属Al、Sc、Y、Ga、In、Tl和Er,同时通过引入二价阴离子有机配体,为磷光材料设计提供更多的选项。通过引入常见的非过渡金属,大大降低了金属配合物的成本,同时通过在本发明的有机金属配合物中引入新型的二价阴离子有机配体,提高了磷光金属配合物的发光效率,并增加了器件寿命,为高效磷光发光器件提供更多的材料选择。
具体实施方式
本发明提供一种有机金属配合物及其在有机电致发光器件中的应用,为使本发明的目的、技术方案及效果更加清楚、明确,以下对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。
在本发明中,主体材料、基质材料和Host材料具有相同的含义,可以互换。
在本发明中,单线态和单重态具有相同的含义,可以互换。
在本发明中,三线态和三重态具有相同的含义,可以互换。
在本发明中,“取代”表示被取代基中的氢原子被取代基所取代。
在本发明中,“环原子数”表示原子键合成环状而得到的结构化合物(例如,单环化合物、稠环化合物、交联化合物、碳环化合物、杂环化合物)的构成该环自身的原子之中的原子数。该环被取代基所取代时,取代基所包含的原子不包括在成环原子内。关于以下所述的“环原子数”,在没有特别说明的条件下也是同样的。例如,苯环的环原子数为6,萘环的环原子数为10,噻吩基的环原子数为5。
在本发明中,“相邻基团”是指这些基团键合至同一碳原子或键合至相邻的碳原子上。这些定义相应地适用于“相邻取代基”。
在本发明中,有机材料的能级结构,即,三线态能级T 1、最高占有轨道能级HOMO、最低未占有轨道能级LUMO起着关键的作用。以下对这些能级的确定做一介绍。
HOMO和LUMO能级可以通过光电效应进行测量,例如XPS(X射线光电子光谱法)和 UPS(紫外光电子能谱),或通过循环伏安法(以下简称CV)进行测量。最近,量子化学方法,例如密度泛函理论(以下简称DFT),也成为行之有效的计算分子轨道能级的方法。
有机材料的三线态能级E T1可通过低温时间分辨发光光谱来测量,或通过量子模拟计算(如通过Time-dependent DFT)得到,如通过商业软件Gaussian 09W(Gaussian Inc.),具体的模拟方法可参见WO2011141110或如下在实施例中所述。
应该注意,HOMO、LUMO、E T1的绝对值取决于所用的测量方法或计算方法,甚至对于相同的方法,不同评价的方法,例如在CV曲线上起始点和峰点可给出不同的HOMO/LUMO值。因此,合理有意义的比较应该用相同的测量方法和相同的评价方法进行。在本发明实施例的描述中,HOMO、LUMO、E T1的值是基于Time-dependent DFT的模拟,但不影响其他测量或计算方法的应用。
本发明提供一种有机金属配合物,具有通式(1)所示的结构:
Figure PCTCN2019109288-appb-000002
其中:Y1^Y2为二齿一价阴离子配体;Y3^Y4为二齿二价阴离子配体;Y5^Y6为二齿零价中性配体;M选自金属元素Al、Sc、Y、Ga、In、Tl和Er中的任一个。
在一个优选的实施例中,M选自金属元素Al、Y、Ga、In和Er中的任一个。
根据本发明所述的有机金属配合物,通式(1)中的一价阴离子配体Y1^Y2选自如下通式(2-1)~(2-4)中任何一个:
Figure PCTCN2019109288-appb-000003
其中:
Q 1、Q 2、U 1、U 2独立选自C或N;且Q 1和Q 2至少一个为N;
T选自CR 1R 2、NR 1、O、S、Se、S=O、C=O、P=OR 1、P(R 1) 3、C=C(R 1R 2);
Ar 1、Ar 2、Ar 3选自取代或未取代的具有5-25个碳原子的芳香基团、杂芳香基团或者具有3-25个碳原子的非芳香族环系,Ar 1~Ar 3可以相同,也可以不同;
L选自二桥联基;
虚线表示与金属元素M直接相连的键;
R 1、R 2每次出现时,各自独立地选自:H,D,具有1至20个C原子的直链烷基、烷氧基或硫代烷氧基基团,或者具有3至20个C原子的支链或环状的烷基、烷氧基或硫代烷氧基基团或者是甲硅烷基基团,或具有1至20个C原子的取代的酮基基团,或具有2至20个C原子的烷氧基羰基基团,或具有7至20个C原子的芳氧基羰基基团,氰基基团,氨基甲酰基基团,卤甲酰基基团,甲酰基基团,异氰基基团,异氰酸酯基团,硫氰酸酯基团或异硫氰酸酯基团,羟基基团,硝基基团,CF 3基团,Cl,Br,F,可交联的基团或者具有5至40个环原子的取代或未取代的芳族或杂芳族环系,或具有5至40个环原子的芳氧基或杂芳氧基基团,或这些体系的组合,其中相邻两个或多个基团R 1、R 2可以任选的彼此形成单环或多环的脂族、芳族或杂 芳族环系。
在一个优选的实施例中,根据本发明的有机金属配合物,其中通式(2-1)~(2-4)中的Ar 1~Ar 3选自取代或未取代的具有5-20个环原子,优选具有5-15个环原子,更优选具有6-15个环原子,最优选具有6-10个环原子的芳香族基团或杂芳香族基团或非芳香环系,其中Ar 1~Ar 3可以相同,也可以不同。
在一个更优选实施例中,根据本发明的有机金属配合物,其中通式(2-1)~(2-4)中的Ar 1、Ar 2、Ar 3选自稠环芳香基团或稠杂环芳香基团。
芳香基团指至少包含一个芳环的烃基。杂芳香基团指包含至少一个杂原子的芳香烃基。杂原子优选选自Si、N、P、O、S和/或Ge,特别优选选自Si、N、P、O和/或S。稠环芳香基团指芳香基团的环可以具有两个或多个环,其中两个碳原子被两个相邻的环共用,即稠环。稠杂环芳香基团指包含至少一个杂原子的稠环芳香烃基。对于本发明的目的,芳香基团或杂芳香基团不仅包括芳香环的体系,而且包含非芳香族的环系。因此,例如吡啶、噻吩、吡咯、吡唑、三唑、咪唑、噁唑、噁二唑、噻唑、四唑、吡嗪、哒嗪、嘧啶、三嗪、卡宾等体系,对于本发明的目的同样认为是芳香基团或杂环芳香基团。对于本发明的目的,稠环芳香族或稠杂环芳香族环系不仅包括芳香基团或杂芳香基团的体系,而且,其中多个芳香基团或杂环芳香基团也可以被短的非芳族单元间断(<10%的非H原子,优选小于5%的非H原子,例如C、N或O原子)。因此,例如9,9'-螺二芴、9,9-二芳基芴、三芳胺、二芳基醚等体系,对于本发明的目的同样认为是稠环芳香族环系。
具体地,稠环芳香基团的例子有:萘、蒽、荧蒽、菲、苯并菲、二萘嵌苯、并四苯、芘、苯并芘、苊、芴、及其衍生物。
具体地,稠杂环芳香基团的例子有:苯并呋喃、苯并噻吩、吲哚、咔唑、吡咯并咪唑、吡咯并吡咯、噻吩并吡咯、噻吩并噻吩、呋喃并吡咯、呋喃并呋喃、噻吩并呋喃、苯并异噁唑、苯并异噻唑、苯并咪唑、喹啉、异喹啉、邻二氮萘、喹喔啉、菲啶、伯啶、喹唑啉、喹唑啉酮、及其衍生物。
在一个优选的实施例中,通式(2-1)~(2-4)中的Ar 1、Ar 2及Ar 3选自如下结构基团中的一种:
Figure PCTCN2019109288-appb-000004
其中:X在多次出现时,可相互独立地选自N或CR 1;Y在多次出现时,可相互独立的选自NR 1、CR 1R 2、SiR 1R 2、O或S;
在某些更优选的实施例中,通式(2-1)~(2-4)中的Ar 1、Ar 2及Ar 3相互独立地选自如下结构基团中的一种:
Figure PCTCN2019109288-appb-000005
Figure PCTCN2019109288-appb-000006
其中环上的H可以进一步被R取代,R多次出现时,独立选自:D,具有1至20个C原子的直链烷基、烷氧基或硫代烷氧基基团,或者具有3至20个C原子的支链或环状的烷基、烷氧基或硫代烷氧基基团或者是甲硅烷基基团,或具有1至20个C原子的取代的酮基基团,或具有2至20个C原子的烷氧基羰基基团,或具有7至20个C原子的芳氧基羰基基团,氰基基团,氨基甲酰基基团,卤甲酰基基团,甲酰基基团,异氰基基团,异氰酸酯基团,硫氰酸酯基团或异硫氰酸酯基团,羟基基团,硝基基团,CF 3基团,Cl,Br,F,可交联的基团或者具有5至40个碳原子的取代或未取代的芳族或杂芳族环系,或具有5至40个碳原子的芳氧基或杂芳氧基基团,或这些体系的组合,其中相邻两个或多个基团R 3可以任选的彼此形成单环或多环的脂族、芳族或杂芳族环系。
在一个优选的实施例中,根据本发明所述的有机金属配合物,其中通式(2-3)中的二桥联基L选自如下结构基团中的一种:
Figure PCTCN2019109288-appb-000007
其中:R 3-R 6的含义同R 1,虚线表示与通式键连的键。
进一步地,通式(1)中一价阴离子配体Y1^Y2选自如下通式(2-A-1)至(2-A-22)中任何一个:
Figure PCTCN2019109288-appb-000008
其中:X在多次出现时,可相互独立的选自N或CR 1
Y在多次出现时,可相互独立的选自NR 1、CR 1R 2、SiR 1R 2、O或者S;
L,T,R 1、R 2含义如上所述。
在一个优选的实施例中,根据本发明的有机金属配合物,通式(2-A-1)至(2-A-23)中所有X均选自CR 1;在一个更优选的实施例中,通式(2-A-1)至(2-A-23)中所有X均选自CR 1,且至少有两个相邻的R 1彼此形成单环或多环的脂族、芳族或杂芳族环系。在一个更优选的实施例中,通式(2-A-1)至(2-A-23)中所有X均选自CR 1,Y均选自CR 1R 2。其中R 1与R 2含义同上。
具体地,通式(1)中一价阴离子配体Y1^Y2选自如下通式(2-B-1)至(2-B-21)中任何一个:
Figure PCTCN2019109288-appb-000009
其中:环上的H原子可以进一步被R进一步取代,R含义同上;虚线表示与金属元素M直接相连的键,
根据本发明所述的有机金属配合物,通式(1)中二价阴离子配体Y3^Y4选自如下通式(3-1)-(3-4)中的任何一个:
Figure PCTCN2019109288-appb-000010
其中:Q 3、Q 4、U 3、U 4独立选自C或N;
L、T、Ar 1、Ar 2及Ar 3含义如上所述;虚线表示与金属元素M直接相连的键。
进一步地,通式(1)中二价阴离子配体Y3^Y4选自如下通式(3-A-1)至(3-A-23)中的任何一个:
Figure PCTCN2019109288-appb-000011
其中:X、Y、L、T的含义如上所述。
具体地,通式(1)中二价阴离子配体Y3^Y4选自如下通式(3-B-1)至(3-B-31)中的任何一个:
Figure PCTCN2019109288-appb-000012
其中通式(3-B-1)至(3-B-23)上的H原子可以进一步被取代。
根据本发明所述的有机金属配合物,通式(1)中零价中性配体Y5^Y6选自如下通式(4-1)-(4-3)中的任何一个:
Figure PCTCN2019109288-appb-000013
其中:Q 5、U 5独立选自C或N;
Ar 1、Ar 2及Ar 3含义如上所述,Ar 4~Ar 8选自取代或未取代的芳香基团、杂芳香基团或非芳香族环系,虚线表示与金属元素M直接相连的键。
进一步地,通式(1)中零价中性配体Y5^Y6选自如下通式(4-A-1)~(4-A-17)中的任何一个:
Figure PCTCN2019109288-appb-000014
其中:X、Y含义如上所述。
具体地,通式(1)中零价中性配体Y5^Y6选自如下通式(4-B-1)~(4-B-19)中的任何一个:
Figure PCTCN2019109288-appb-000015
Figure PCTCN2019109288-appb-000016
其中通式(4-B-1)~(4-B-19)上的H原子可以进一步被取代。
在一个优选的实施例中,本发明的有机金属配合物选自但不限于以下通式:
Figure PCTCN2019109288-appb-000017
Figure PCTCN2019109288-appb-000018
M、X、Y、L、T、R 1的含义如上所述。
以下列出根据本发明的有机金属配合物的非限制性例子:
Figure PCTCN2019109288-appb-000019
Figure PCTCN2019109288-appb-000020
Figure PCTCN2019109288-appb-000021
Figure PCTCN2019109288-appb-000022
Figure PCTCN2019109288-appb-000023
Figure PCTCN2019109288-appb-000024
Figure PCTCN2019109288-appb-000025
Figure PCTCN2019109288-appb-000026
Figure PCTCN2019109288-appb-000027
Figure PCTCN2019109288-appb-000028
Figure PCTCN2019109288-appb-000029
Figure PCTCN2019109288-appb-000030
Figure PCTCN2019109288-appb-000031
Figure PCTCN2019109288-appb-000032
Figure PCTCN2019109288-appb-000033
Figure PCTCN2019109288-appb-000034
其中结构式中的H可以进一步被任意取代。
根据发明的有机金属配合物可以作为有机功能材料用于有机电子器件中。有机功能材料包括,但不限于:空穴注入材料(HIM),空穴传输材料(HTM),电子传输材料(ETM),,电子注入材料(EIM),电子阻挡材料(EBM),空穴阻挡材料(HBM),发光体(Emitter)以及主体材料(Host)。
在某些实施例中,根据本发明的有机金属配合物是不发光的功能材料。
在一个特别优选的实施例中,根据本发明的有机金属配合物是发光材料,其发光波长在300到1000nm之间,优选在350到900nm之间,更优选在400到800nm之间。这里的发光是指光致发光或电致发光。
在一个特别优选的实施例中,根据本发明的有机金属配合物是近红外发光材料,其发光波长在1000到3000nm之间,优选在1200到2500nm之间,更优选在1400到2000nm之间。这里指的发光是指光致发光或电致发光。
在某些优选的实施例中,本发明的有机金属配合物的光致或电致发光效率≥30%,优选≥40%,更优选≥50%,最优选≥60%。
在一个特别优选的实施例中,根据本发明的有机金属配合物作为磷光客体材料。
作为磷光客体材料必须有适当的三线态能级,即T 1。在某些实施例中,根据本发明的化合物的T 1≥0.5eV,优选地,T 1≥0.88eV,更优选地,T 1≥1.0eV,最优选地,T 1≥1.51eV。
功能材料需要好的热稳定性。一般地,根据本发明的有机金属配合物的玻璃化温度T g≥100℃,在一个优选的实施例中,T g≥120℃,在一个较为优选的实施例中,T g≥140℃,在一个更为优选的实施例中,T g≥160℃,在一个最为优选的实施例中,T g≥180℃。
在某一些优选的实施例中,根据本发明所述的有机金属配合物作为电子传输材料。作为电子传输材料,需要有合适的能级结构。优选地,根据本发明的有机金属配合物具有较高的LUMO,优选LUMO≥-3.4eV,较优选LUMO≥-3.21eV,更优选LUMO≥-2.91eV。
在另一个优选的实施例中,根据本发明的化合物具有较低的HOMO,优选HOMO≤-4.0eV,较优选HOMO≤-5.0eV,最优选HOMO≤-5.18eV。
在某一些优选的实施例中,根据本发明所述的有机金属配合物作为形成金属氧化物的前驱体,需要在较高的温度下形成金属氧化物。优选地,根据本发明的有机金属配合物在真空或者惰性气体氛围中具有较高的分解温度,优选分解温度T≥1000℃,较优选T≥800℃,更优选T≥600℃。
本发明还进一步涉及一种高聚物,包含至少一个所述有机金属配合物的结构单元作为重复单元。
在一个优选的实施例中,高聚物的合成方法选自SUZUKI-、YAMAMOTO-、STILLE-、 NIGESHI-、KUMADA-、HECK-、SONOGASHIRA-、HIYAMA-、FUKUYAMA-、HARTWIG-BUCHWALD-和ULLMAN。
在一个优选的实施例中,根据本发明的高聚物的玻璃化温度T g≥100℃,优选地,T g≥120℃,更优选地,T g≥140℃,更更优选地,T g≥160℃,最优选地,T g≥180℃。
在一个优选的实施例中,根据本发明的高聚物的分子量分布(PDI)取值范围优选为1~5;较优选为1~4;更优选为1~3,更更优选为1~2,最优选为1~1.5。
在一个优选的实施例中,根据本发明的高聚物的重均分子量(Mw)取值范围优选为1万~100万;较优选为5万~50万;更优选为10万~40万,更更优选为15万~30万,最优选为20万~25万。
在某些实施例中,根据本发明的高聚物是一种非共轭高聚物,优选地,是在侧链上包含一个所述有机金属配合物的结构单元作为重复单元的非共轭高聚物。
本发明还提供一种混合物,包含有至少一种以上所述有机金属配合物或高聚物,及至少一种有机功能材料,所述有机功能材料可选自:空穴注入材料(HIM)、空穴传输材料(HTM)、电子传输材料(ETM)、电子注入材料(EIM)、电子阻挡材料(EBM)、空穴阻挡材料(HBM)、发光材料(Emitter)、主体材料(Host)和有机染料。例如在WO2010135519A1、US20090134784A1和WO 2011110277A1中对各种有机功能材料有详细的描述,特此将此3篇专利文件中的全部内容并入本文作为参考。
在某些实施例中,根据本发明的混合物中的有机金属配合物的含量为0.01至30wt%,优选为0.5至20wt%,更优选为2至15wt%,最优选为5至15wt%。
在一个优选的实施例中,根据本发明的混合物包含本发明的有机金属配合物或高聚物以及三重态主体材料。
在另一个优选实施例中,根据本发明的混合物包含本发明的有机金属配合物或高聚物、三重态主体材料和三重态发光体。
在另一个优选实施例中,根据本发明的混合物包含本发明的有机金属配合物或高聚物以及热激活延迟荧光发光材料(TADF)。
在另一个优选实施例中,根据本发明的混合物包含本发明的有机金属配合物或高聚物、三重态主体材料和热激活延迟荧光发光材料(TADF)。
下面对三重态主体材料、三重态发光体和TADF材料作一些较详细的描述(但不限于此)。
1.三重态主体材料(Triplet Host):
三重态主体材料的例子并不受特别的限制,任何金属配合物或有机化合物都可能被用作为主体材料,只要其三重态能级比发光体,特别是三重态发光体或磷光发光体更高即可。
可用作三重态主体材料(Host)的金属配合物的例子包括(但不限于)如下的一般结构:
Figure PCTCN2019109288-appb-000035
M为金属;(Y 3-Y 4)为两齿配体,Y 3和Y 4独立地选自C、N、O、P和S;L为辅助配体;m为整数,m的值从1到M的最大配位数;在一个优选实施例中,可用作三重态主体材料的金属配合物具有如下结构:
Figure PCTCN2019109288-appb-000036
其中,(O-N)为两齿配体,金属与O和N原子配位;m为整数,m的值从1到金属的最大配位数;
在某一个实施例中,M可选自Ir和Pt。
可作为三重态主体材料的有机化合物的例子选自:包含有环芳香烃基的化合物,例如苯、联苯、三苯基苯、苯并芴;包含有芳香杂环基的化合物,如二苯并噻吩、二苯并呋喃、二苯并 硒吩、呋喃、噻吩、苯并呋喃、苯并噻吩、苯并硒吩、咔唑、二苯并咔唑,吲哚咔唑、吡啶吲哚、吡咯二吡啶、吡唑、咪唑、三唑类、恶唑、噻唑、恶二唑、恶三唑、二恶唑、噻二唑、吡啶、哒嗪、嘧啶、吡嗪、三嗪类、恶嗪、恶噻嗪、恶二嗪、吲哚、苯并咪唑、吲唑、恶唑、二苯并恶唑、苯异恶唑、苯并噻唑、喹啉、异喹啉、邻二氮杂萘、喹唑啉、喹喔啉、萘、酞、蝶啶、氧杂蒽、吖啶、吩嗪、吩噻嗪、吩恶嗪、苯并呋喃吡啶、呋喃并吡啶、苯并噻吩吡啶、噻吩吡啶、苯并硒吩吡啶和硒吩苯并二吡啶;包含有2至10环结构的基团,它们可以是相同或不同类型的环芳香烃基团或芳香杂环基团,并彼此直接或通过至少一个以下的基团连结在一起,如氧原子、氮原子、硫原子、硅原子、磷原子、硼原子、链结构单元和脂肪环基团。其中,每个Ar可以进一步被取代,取代基可选为氢、氘、氰基、卤素、烷基、烷氧基、氨基、烯基、炔基、芳烷基、杂烷基、芳基和杂芳基。
在一个优选实施例中,三重态主体材料可选自包含至少一个以下基团的化合物:
Figure PCTCN2019109288-appb-000037
其中:X、Y含义同上,Ar 1~Ar 3选自芳香基或杂芳香基,R可选自如下的基团:氢、氘、卤原子(F、Cl、Br、I)、氰基、烷基、烷氧基、氨基、烯基、炔基、芳烷基、杂烷基、芳基和杂芳基,n选自1到20的整数。
在下面的表中列出了合适的三重态主体材料的非限制性例子:
Figure PCTCN2019109288-appb-000038
Figure PCTCN2019109288-appb-000039
2.热激活延迟荧光发光材料(TADF):
传统有机荧光材料只能利用电激发形成的25%单线态激子发光,器件的内量子效率较低(最高为25%)。尽管磷光材料由于重原子中心强的自旋-轨道耦合增强了系间穿越,可以有效利用电激发形成的单线态激子和三线态激子发光,使器件的内量子效率达到100%。但磷光材料昂贵,材料稳定性差,器件效率滚降严重等问题限制了其在OLED中的应用。热激活延迟荧光发光材料是继有机荧光材料和有机磷光材料之后发展的第三代有机发光材料。该类材料一般具有小的单线态-三线态能级差(ΔEst),三线态激子可以通过反系间穿越转变成单线态激子发光。这可以充分利用电激发下形成的单线态激子和三线态激子。器件内量子效率可达到100%。同时材料结构可控,性质稳定,价格便宜无需贵金属,在OLED领域的应用前景广阔。
TADF材料需要具有较小的单线态-三线态能级差(ΔEst)。优选地,ΔEst≤0.3eV,较优选地,ΔEst≤0.25eV,更优选地,ΔEst≤0.20eV,最优选地,ΔEst≤0.1eV。在一个优选实施例中,TADF材料有比较小的ΔEst,在另一个优选实施例中,TADF有较好的荧光量子效率。一些TADF发光材料可在下述专利文件中找到:CN103483332(A),TW201309696(A),TW201309778(A),TW201343874(A),TW201350558(A),US20120217869(A1),WO2013133359(A1),WO2013154064(A1),Adachi,et.al.Nature Photonics,6,2012,253,Adachi,et.al.Nature,492,2012,234,Adachi,et.al.Adv.Mater.,25,2013,3707,Adachi,et.al.Chem.Mater.,25,2013,3038,Adachi,et.al.Chem.Mater.,25,2013,3766,J.Y.Lee,et.al.Adv.Opt.Mater.,2018,1800255.T.Yasuda,Adv.Funct.Mater.2018,1802031,C.F.Chen,et.al.Angew.Chem.Int.Ed.,2018,57(11):2889.特此将上述列出的专利或文献中的全部内容并入本文作为参考。
下面的表中列出一些合适的TADF发光材料的例子:
Figure PCTCN2019109288-appb-000040
Figure PCTCN2019109288-appb-000041
3.三重态发光体(Triplet Emitter)
三重态发光体也称磷光发光体。在一个优选实施例中,三重态发光体是具有通式M(L)n的金属配合物,其中M为金属原子,L为有机配体,每次出现时可以相同或不同,其通过一个或多个位置键接或配位连接到金属原子M上,n为1至6之间的整数。优选地,三重态发光体包含有螯合配体,即配体,配体通过至少两个结合点与金属配位。特别优选地,三重态发光体包含有两个或三个相同或不同的双齿或多齿配体。螯合配体有利于提高金属络合物的稳定性。在一个优选实施例中,可用作三重态发光体的金属配合物有如下通式:
Figure PCTCN2019109288-appb-000042
金属原子M选自过渡金属元素、镧系元素或锕系元素,优选选自Ir、Pt、Pd、Au、Rh、Ru、Os、Re、Cu、Ag、Ni、Co、W或Eu,特别优选选自Ir、Au、Pt、W或Os。
Ar 1、Ar 2为环状基团,每次出现时可以相同或不同,其中Ar 1至少包含有一个施主原子,即有一孤对电子的原子,如氮,环状基团通过该原子与金属配位连接;Ar 2至少包含有一个碳原子,环状基团通过该碳原子与金属连接;Ar 1和Ar 2由共价键联接在一起,Ar 1和Ar 2可各自携带一个或多个取代基团,也可再通过取代基团联接在一起;L’每次出现时可以相同或不同,L’为双齿螯合的辅助配体,最优选为单阴离子双齿螯合配体;q1可以为0、1、2或3,优选为2或3;q2可以为0、1、2或3,优选为1或0。有机配体的例子可选自苯基吡啶衍生物或7,8-苯并喹啉衍生物。所有这些有机配体都可以被取代,例如被烷基鏈或含氟或硅取代。辅助配体可优选选自乙酸丙酮或苦味酸。
一些三重态发光体的材料极其应用的例子可在下述专利文件和文献中找到:WO200070655,WO200141512,WO200202714,WO200215645,WO2005033244,WO2005019373,US20050258742,US20070087219,US20070252517,US2008027220,WO2009146770,US20090061681,US20090061681,WO2009118087,WO2010015307,WO2010054731,WO2011157339,WO2012007087,WO201200708,WO2013107487,WO2013094620,WO2013174471,WO 2014031977,WO 2014112450,WO2014007565,WO 2014024131,Baldo et al.Nature(2000),750,Adachi et al.Appl.Phys.Lett.(2001),1622,Kido et al.Appl.Phys.Lett.(1994),2124,Wrighton et al.J.Am.Chem.Soc.(1974),998,Ma et al.Synth.Metals(1998),245。特此将上述列出的专利文件和文献中的全部内容并入本文作为参考。在下面的表中列出一些合适的三重态发光体的例子:
Figure PCTCN2019109288-appb-000043
Figure PCTCN2019109288-appb-000044
本发明的一个目的是为蒸镀型OLED提供材料解决方案。
在某些实施例中,根据本发明的有机金属配合物的分子量≤1200g/mol,优选≤1100g/mol,很优选≤1000g/mol,更优选≤950g/mol,最优选≤900g/mol。
本发明的另一个目的是为印刷OLED提供材料解决方案。
在某些实施例中,根据本发明的有机金属配合物的分子量≥800g/mol,优选≥900g/mol,很优选≥1000g/mol,更优选≥1100g/mol,最优选≥1200g/mol。
在另一些实施例中,根据本发明的有机金属配合物在25℃下在甲苯中的溶解度≥2mg/ml,优选≥3mg/ml,更优选≥4mg/ml,最优选≥5mg/ml。
本发明还涉及一种组合物,包含至少一种如上所述有机金属配合物或高聚物或混合物,及至少一种有机溶剂;所述至少一种有机溶剂选自芳族或杂芳族、酯、芳族酮或芳族醚、脂肪族酮或脂肪族醚、脂环族或烯烃类化合物、或硼酸酯或磷酸酯类化合物或两种及两种以上溶剂的混合物。
在一个优选的实施例中,根据本发明的组合物中的有机溶剂选自基于芳族或杂芳族的溶剂。
适合本发明的基于芳族或杂芳族溶剂的非限制性例子有:对二异丙基苯、戊苯、四氢萘、环己基苯、氯萘、1,4-二甲基萘、3-异丙基联苯、对甲基异丙苯、二戊苯、三戊苯、戊基甲苯、邻二乙苯、间二乙苯、对二乙苯、1,2,3,4-四甲苯、1,2,3,5-四甲苯、1,2,4,5-四甲苯、丁苯、十二烷基苯、二己基苯、二丁基苯、对二异丙基苯、环己基苯、苄基丁基苯、二甲基萘、3-异丙基联苯、对甲基异丙苯、1-甲基萘、1,2,4-三氯苯、4,4-二氟二苯甲烷、1,2-二甲氧基-4-(1-丙烯基)苯、二苯甲烷、2-苯基吡啶、3-苯基吡啶、N-甲基二苯胺、4-异丙基联苯、α,α-二氯二苯甲烷、4-(3-苯基丙基)吡啶、苯甲酸苄酯、1,1-双(3,4-二甲基苯基)乙烷、2-异丙基萘、喹啉、异喹啉、2-呋喃甲酸甲酯、2-呋喃甲酸乙酯等。
适合本发明的基于芳族酮溶剂的非限制性例子有:1-四氢萘酮、2-四氢萘酮、2-(苯基环氧)四氢萘酮、6-(甲氧基)四氢萘酮、苯乙酮、苯丙酮、二苯甲酮、及其衍生物,如4-甲基苯乙酮、3-甲基苯乙酮、2-甲基苯乙酮、4-甲基苯丙酮、3-甲基苯丙酮、2-甲基苯丙酮等。
适合本发明的基于芳族醚溶剂的非限制性例子有:3-苯氧基甲苯、丁氧基苯、对茴香醛二甲基乙缩醛、四氢-2-苯氧基-2H-吡喃、1,2-二甲氧基-4-(1-丙烯基)苯、1,4-苯并二噁烷、1,3-二丙基苯、2,5-二甲氧基甲苯、4-乙基本乙醚、1,3-二丙氧基苯、1,2,4-三甲氧基苯、4-(1-丙烯基)-1,2-二甲氧基苯、1,3-二甲氧基苯、缩水甘油基苯基醚、二苄基醚、4-叔丁基茴香醚、反式-对丙烯基茴香醚、1,2-二甲氧基苯、1-甲氧基萘、二苯醚、2-苯氧基甲醚、2-苯氧基四氢呋喃、乙基-2-萘基醚。
在一些优选的实施例中,根据本发明的组合物的有机溶剂可选自:脂肪族酮,例如,2-壬酮、3-壬酮、5-壬酮、2-癸酮、2,5-己二酮、2,6,8-三甲基-4-壬酮、葑酮、佛尔酮、异佛尔酮、二正戊基酮等;或脂肪族醚,例如,戊醚、己醚、二辛醚、乙二醇二丁醚、二乙二醇二乙醚、二乙二醇丁基甲醚、二乙二醇二丁醚、三乙二醇二甲醚、三乙二醇乙基甲醚、三乙二醇丁基甲醚、三丙二醇二甲醚、四乙二醇二甲醚等。
在另一些优选的实施例中,根据本发明的组合物的有机溶剂可选自基于酯的溶剂:辛酸烷酯、癸二酸烷酯、硬脂酸烷酯、苯甲酸烷酯、苯乙酸烷酯、肉桂酸烷酯、草酸烷酯、马来酸烷酯、烷内酯、油酸烷酯等。特别优选辛酸辛酯、癸二酸二乙酯、邻苯二甲酸二烯丙酯、异壬酸异壬酯。
所述溶剂可以是单独使用,也可以是作为两种或多种有机溶剂的混合物使用。
在某些优选的实施例中,根据本发明的组合物包含至少一种如上所述的有机金属配合物或高聚物或混合物及至少一种有机溶剂,还可进一步包含另一种有机溶剂。另一种有机溶剂的例子包括(但不限于):甲醇、乙醇、2-甲氧基乙醇、二氯甲烷、三氯甲烷、氯苯、邻二氯苯、四氢呋喃、苯甲醚、吗啉、甲苯、邻二甲苯、间二甲苯、对二甲苯、1,4二氧杂环己烷、丙酮、甲基乙基酮、1,2二氯乙烷、3-苯氧基甲苯、1,1,1-三氯乙烷、1,1,2,2-四氯乙烷、醋酸乙酯、醋酸丁酯、二甲基甲酰胺、二甲基乙酰胺、二甲基亚砜、四氢萘、萘烷、茚和/或其混合物。
一些优选的实施例中,特别适合本发明的溶剂是汉森(Hansen)溶解度参数在以下范围内的溶剂:
δ d(色散力)在17.0~23.2MPa 1/2的范围,尤其是在18.5~21.0MPa 1/2的范围;
δ p(极性力)在0.2~12.5MPa 1/2的范围,尤其是在2.0~6.0MPa 1/2的范围;
δ h(氢键力)在0.9~14.2MPa 1/2的范围,尤其是在2.0~6.0MPa 1/2的范围。
根据本发明的组合物的有机溶剂在选取时需考虑其沸点参数。本发明中,所述有机溶剂的沸点≥150℃,优选≥180℃,较优选≥200℃,更优选≥250℃,最优为≥275℃或≥300℃。这些范围内的沸点对防止喷墨印刷头的喷嘴堵塞是有益的。所述有机溶剂可从溶剂体系中蒸发,以形成包含功能材料的薄膜。
在一个优选的实施例中,根据本发明的组合物为溶液。
在另一个优选的实施例中,根据本发明的组合物为悬浮液。
本发明实施例中的组合物可以包括0.01至10wt%,优选0.1至15wt%,更优选0.2至5wt%,最优选0.25至3wt%的本发明的有机金属配合物或高聚物或混合物。
本发明还涉及所述组合物作为涂料或印刷油墨在制备有机电子器件时的用途,特别是通过打印或涂布的方式。
其中,适合的打印或涂布技术包括(但不限于):喷墨打印、喷印(Nozzle Printing)、活版印刷、丝网印刷、浸涂、旋转涂布、刮刀涂布、辊筒印花、扭转辊印刷、平版印刷、柔版印刷、轮转印刷、喷涂、刷涂或移印、狭缝型挤压式涂布等。首选的是凹版印刷、喷印及喷墨印刷。溶液或悬浮液可以另外包括一个或多个组分,例如表面活性化合物、润滑剂、润湿剂、分散剂、疏水剂、粘接剂等,用于调节粘度以及成膜性能,提高附着性等。有关打印技术及其对有关溶液的相关要求,如溶剂及浓度、粘度等详细信息,请参见Helmut Kipphan主编的《印刷媒体手册:技术和生产方法》(Handbook of Print Media:Technologies and Production Methods),ISBN 3-540-67326-1。
本发明还提供如上所述的有机金属配合物、高聚物、混合物或组合物在有机电子器件中的 应用,所述有机电子器件可选自(但不限于):有机发光二极管(OLED)、有机光伏电池(OPV)、有机发光电池(OLEEC)、有机场效应管(OFET)、有机发光场效应管、有机激光器、有机自旋电子器件、有机传感器及有机等离激元发射二极管(Organic Plasmon Emitting Diode)等,特别优选为OLED。在本发明实施例中,优选将所述有机金属配合物或高聚物用于OLED器件的发光层。
本发明进一步涉及一种有机电子器件,至少包含如上所述的有机金属配合物、高聚物或混合物。一般地,此种有机电子器件至少包括阴极、阳极及位于阴极和阳极之间的功能层,其中所述功能层至少包含一种如上所述的有机金属配合物。所述有机电子器件可选自(但不限于):有机发光二极管(OLED)、有机光伏电池(OPV)、有机发光电池(OLEEC)、有机场效应管(OFET)、有机发光场效应管、有机激光器、有机自旋电子器件、有机传感器及有机等离激元发射二极管(Organic Plasmon Emitting Diode)等,特别优选为有机电致发光器件,如OLED、OLEEC、有机发光场效应管。
在某些特别优选的实施例中,所述有机电致发光器件的发光层包含如上所述的有机金属配合物或高聚物或混合物。
以上所述的发光器件,特别是OLED,包括基片、阳极、至少一发光层及阴极。
基片可以是不透明的或透明的。透明的基片可以用来制造透明的发光元器件。例如可参见Bulovic等Nature 1996,380,p29,和Gu等,Appl.Phys.Lett.1996,68,p2606。基片可以是刚性的或弹性的。基片可以是塑料、金属、半导体晶片或玻璃。最好是基片有一个平滑的表面。无表面缺陷的基片是特别理想的选择。在一个优选的实施例中,基片是柔性的,可选自聚合物薄膜或塑料,其玻璃化温度T g为150℃以上,优选超过200℃,更优选超过250℃,最优选超过300℃。合适的柔性基片的例子有聚(对苯二甲酸乙二醇酯)(PET)和聚乙二醇(2,6-萘)(PEN)。
阳极可包括导电金属或金属氧化物或导电聚合物。阳极可以容易地注入空穴到空穴注入层(HIL)或空穴传输层(HTL)或发光层中。在一个的实施例中,阳极的功函数和发光层中的发光体或作为HIL或HTL或电子阻挡层(EBL)的p型半导体材料的HOMO能级或价带能级的差的绝对值小于0.5eV,优选小于0.3eV,最优选小于0.2eV。阳极材料的例子包括但不限于:Al、Cu、Au、Ag、Mg、Fe、Co、Ni、Mn、Pd、Pt、ITO、铝掺杂氧化锌(AZO)等。其他合适的阳极材料是已知的,本领域普通技术人员可容易地选择使用。阳极材料可以使用任何合适的技术沉积,如合适的物理气相沉积法,包括射频磁控溅射、真空热蒸发、电子束(e-beam)等。在某些实施例中,阳极是图案结构化的。图案化的ITO导电基片可在市场上买到,并且可以用来制备本发明的有机电子器件。
阴极可包括导电金属或金属氧化物。阴极可以容易地注入电子到EIL或ETL或直接到发光层中。在一个的实施例中,阴极的功函数和发光层中的发光体或作为电子注入层(EIL)或电子传输层(ETL)或空穴阻挡层(HBL)的n型半导体材料的LUMO能级或导带能级的差的绝对值小于0.5eV,优选小于0.3eV,最优选小于0.2eV。原则上,所有可用作OLED的阴极的材料都可作为本发明器件的阴极材料。阴极材料的例子包括但不限于:Al、Au、Ag、Ca、Ba、Mg、LiF/Al、Mg/Ag合金、BaF 2/Al、Cu、Fe、Co、Ni、Mn、Pd、Pt、ITO等。阴极材料可以使用任何合适的技术沉积,如合适的物理气相沉积法,包括射频磁控溅射、真空热蒸发、电子束(e-beam)等。
OLED还可以包含其他功能层,例如空穴注入层(HIL)、空穴传输层(HTL)、电子阻挡层(EBL)、电子注入层(EIL)、电子传输层(ETL)、空穴阻挡层(HBL)。适合用于这些功能层的材料在上面及在WO2010135519A1、US20090134784A1和WO2011110277A1中有详细的描述,特此将此3篇专利文件中的全部内容并入本文作为参考。
根据本发明的发光器件的发光波长在300到1200nm之间,优选在350到1000nm之间,更优选在400到900nm之间。
本发明还涉及根据本发明的电致发光器件在各种电子设备中的应用。其中,电子设备包括但不限于显示设备、照明设备、光源及传感器等等。
下面将结合优选实施例对本发明进行说明,应当理解,本发明并不局限于下述实施例,本发明的范围由所附权利要求限定。本领域技术人员应意识到,在本发明构思的引导下对本发明 的各实施例所进行的一定改变都将被本发明的权利要求书的精神和范围所覆盖。
具体实施例:
以下有机金属配合物的合成:
Figure PCTCN2019109288-appb-000045
实施例1:有机金属配合物M-1的合成
Figure PCTCN2019109288-appb-000046
化合物1-a的合成:
将2-苯基吡啶(0.098g,0.63mmol)、联吡啶(0.098g,0.63mmol)、三氯化铝(0.083g,0.63mmol)置于干燥的schlenck瓶中,抽真空充氮气循环三次,然后在氮气流下加入20mL乙二醇单乙醚,搅拌回流12小时,冷却到室温,抽滤,滤饼用石油醚洗,干燥得到黄色固体0.20g,产率78%。
配合物M-1的合成:
将化合物1-a(0.040g,0.1mmol)、苯并吲哚(0.02g,0.12mmol)、碳酸钾(0.016g,0.12mmol)置于干燥的双口瓶中,抽真空充氮气循环三次,然后在氮气流下加入10mL乙二醇单乙醚,在120℃下搅拌反应24小时,冷却到室温,减压蒸去乙二醇单乙醚,加入水和二氯甲烷萃取,浓缩有机相,用二氯甲烷:石油醚=1:4过柱,得到深红色固体0.02g,产率为40%。MS(ASAP)=502.2。
实施例2:有机金属配合物M-86的合成
Figure PCTCN2019109288-appb-000047
化合物1-b的合成:
将联吡啶(0.098g,0.63mmol)、乙酰丙酮(0.063g,0.63mmol)、三氯化铝(0.083g,0.63mmol)置于干燥的schlenck瓶中,抽真空充氮气循环三次,然后在氮气流下加入20mL乙二醇单乙醚, 搅拌回流12小时,冷却到室温,抽滤,滤饼用石油醚洗,干燥得到黄色固体0.222g,产率80%。
配合物M-86的合成:
将化合物1-b(0.052g,0.1mmol)、苯并吲哚(0.02g,0.12mmol),碳酸钾(0.016g,0.12mmol)置于干燥的双口瓶中,抽真空充氮气循环三次,然后在氮气流下加入10mL乙二醇单乙醚,在120℃下搅拌反应24小时,冷却到室温,减压蒸去乙二醇单乙醚,加入水和二氯甲烷萃取,浓缩有机相,用二氯甲烷:石油醚=1:3过柱,得到深红色固体0.011g,产率为25%。MS(ASAP)=447.2。
实施例3:有机金属配合物M-87的合成
Figure PCTCN2019109288-appb-000048
配合物M-87的合成:
配合物M-87的合成与配合物M-86的合成工艺相似,配体由苯并吲哚变为吡咯并吲哚,得到深红色固体,产率为28%。MS(ASAP)=436.1。
实施例4:配合物M-246的合成:
Figure PCTCN2019109288-appb-000049
配合物M-86的合成:
配合物M-246的合成与配合物M-1的合成工艺相似,配体由苯并吲哚变为联苯,得到深黑色固体,产率为25%。MS(ASAP)=489.2。
实施例5:有机金属配合物M-256的合成
Figure PCTCN2019109288-appb-000050
化合物1-c的合成:
将联-2-吡啶(0.098g,0.63mmol)、8-羟基喹啉(0.091g,0.63mmol)、三氯化铝(0.083g,0.63mmol)置于干燥的schlenck瓶中,抽真空充氮气循环三次,然后在氮气流下加入20mL乙二醇单乙醚,搅拌回流12小时,冷却到室温,抽滤,滤饼用石油醚洗,干燥得到黄色固体0.21g,产率84%。
配合物M-256的合成:
将化合物1-c(0.040g,0.1mmol)、联二苯(0.018g,0.12mmol),碳酸钾(0.016g,0.12mmol)置于干燥的双口瓶中,抽真空充氮气循环三次,然后在氮气流下加入10mL乙二醇单乙醚,在120℃下搅拌反应24小时,冷却到室温,减压蒸去乙二醇单乙醚,加入水和二氯甲烷萃取,浓缩有机相,用二氯甲烷:石油醚=2:3过柱,得到深红色固体0.013g,产率为25%。MS(ASAP)=479.2。
实施例6:有机金属配合物M-259的合成
Figure PCTCN2019109288-appb-000051
配合物M-259的合成:
配合物M-259的合成与配合物M-256的合成工艺相似,配体由联苯变为1,8-二羟基萘,得到深黑色固体,产率为34%。MS(ASAP)=485.1。
实施例7:有机金属配合物M-260的合成
Figure PCTCN2019109288-appb-000052
配合物M-260的合成:
配合物M-260的合成与配合物M-86的合成工艺相似,配体由苯并吲哚变为1,8-二羟基萘,得到深红色固体,产率为24%。MS(ASAP)=440.4。
实施例8:有机金属配合物M-376的合成
Figure PCTCN2019109288-appb-000053
配合物M-376的合成:
配合物M-376的合成与配合物M-1的合成工艺相似,配体由苯并吲哚变为2-苯基吡咯,得到深黑色固体,产率为26.4%。MS(ASAP)=478.5。
实施例9:有机金属配合物M-379的合成
Figure PCTCN2019109288-appb-000054
配合物M-379的合成:
配合物M-379的合成与配合物M-1的合成工艺相似,配体由苯并吲哚变为2-邻位碳硼烷吡咯,得到深黑色固体,产率为24.5%。MS(ASAP)=546.3。
实施例10:配合物M-411的合成:
Figure PCTCN2019109288-appb-000055
化合物1-d的合成:
将联-2-吡啶(0.098g,0.63mmol)、苯并[d]噻唑-2-硫酚(0.105g,0.63mmol)、三氯化铝(0.083g,0.63mmol)置于干燥的schlenck瓶中,抽真空充氮气循环三次,然后在氮气流下加入20mL乙二醇单乙醚,搅拌回流12小时,冷却到室温,抽滤,滤饼用石油醚洗,干燥得到黄色固体0.20g,产率74%。
配合物M-411的合成:
将化合物1-d(0.042g,0.1mmol)、2-苯基吡咯(0.017g,0.12mmol)、碳酸钾(0.016g,0.12mmol) 置于干燥的双口瓶中,抽真空充氮气循环三次,然后在氮气流下加入10mL乙二醇单乙醚,在120℃下搅拌反应24小时,冷却到室温,减压蒸去乙二醇单乙醚,加入水和二氯甲烷萃取,浓缩有机相,用二氯甲烷:石油醚=1:3过柱,得到深红色固体0.011g,产率为24%。MS(ASAP)=490.2。
实施例11:有机金属配合物M-280的合成
Figure PCTCN2019109288-appb-000056
化合物2-a的合成:
将联-2-吡啶(0.098g,0.63mmol)、乙酰丙酮(0.063g,0.63mmol)、三氯化钇(0.122g,0.63mmol)置于干燥的schlenck瓶中,抽真空充氮气循环三次,然后在氮气流下加入20mL乙二醇单乙醚,搅拌回流12小时,冷却到室温,抽滤,滤饼用石油醚洗,干燥得到黄色固体0.20g,产率75%。
配合物M-280的合成:
将化合物2-a(0.041g,0.1mmol)、1,8-二羟基萘(0.019g,0.12mmol)、碳酸钾(0.016g,0.12mmol)置于干燥的双口瓶中,抽真空充氮气循环三次,然后在氮气流下加入10mL乙二醇单乙醚,在120℃下搅拌反应24小时,冷却到室温,减压蒸去乙二醇单乙醚,加入水和二氯甲烷萃取,浓缩有机相,用二氯甲烷:石油醚=2:3过柱,得到深红色固体0.012g,产率为24%。MS(ASAP)=502.2。
实施例12:有机金属配合物M-309的合成
Figure PCTCN2019109288-appb-000057
化合物3-a的合成:
将联-2-吡啶(0.098g,0.63mmol)、8-羟基喹啉(0.091g,0.63mmol)、三氯化铒(0.17g,0.63mmol)置于干燥的schlenck瓶中,抽真空充氮气循环三次,然后在氮气流下加入20mL乙二醇单乙醚,搅拌回流12小时,冷却到室温,抽滤,滤饼用石油醚洗,干燥得到黄色固体0.26g,产率77%。
配合物M-309的合成:
将化合物3-a(0.054g,0.1mmol)、1,8-二羟基萘(0.019g,0.12mmol)、碳酸钾(0.016g,0.12mmol)置于干燥的双口瓶中,抽真空充氮气循环三次,然后在氮气流下加入10mL乙二醇单乙醚,在120℃下搅拌反应24小时,冷却到室温,减压蒸去乙二醇单乙醚,加入水和二氯甲烷萃取,浓缩有机相,用二氯甲烷:石油醚=1:3过柱,得到深红色固体0.017g,产率为28%。MS(ASAP)=624.2。
实施例13:有机金属配合物M-353的合成
Figure PCTCN2019109288-appb-000058
化合物4-a的合成:
将联吡啶(0.098g,0.63mmol)、乙酰丙酮(0.063g,0.63mmol)、三氯化铟(0.14g,0.63mmol)置于干燥的schlenck瓶中,抽真空充氮气循环三次,然后在氮气流下加入20mL乙二醇单乙醚,搅拌回流12小时,冷却到室温,抽滤,滤饼用石油醚洗,干燥得到黄色固体0.233g,产率84%。
配合物M-353的合成:
将化合物4-a(0.044g,0.1mmol)、二联苯(0.018g,0.12mmol)、碳酸钾(0.016g,0.12mmol)置于干燥的双口瓶中,抽真空充氮气循环三次,然后在氮气流下加入10mL乙二醇单乙醚,在120℃下搅拌反应24小时,冷却到室温,减压蒸去乙二醇单乙醚,加入水和二氯甲烷萃取,浓缩有机相,用二氯甲烷:石油醚=1:3过柱,得到深红色固体0.015g,产率为29%。MS(ASAP)=522.2。
实施例14:配合物M-384的合成:
Figure PCTCN2019109288-appb-000059
配合物M-384的合成:
配合物M-384的合成与配合物M-1的合成工艺相似,其中化合物5-a的合成与化合物1-a的合成类似,其中的AlCl 3更换成ScCl 3,最终得到深黑色固体M-384,产率为25%。MS(ASAP)=564.3。
实施例15:配合物M-401的合成:
Figure PCTCN2019109288-appb-000060
配合物M-401的合成:
配合物M-401的合成与配合物M-1的合成工艺相似,其中化合物6-a的合成与化合物1-a的合成类似,其中的AlCl 3更换成InCl 3,最终得到深红色固体M-401,产率为27%。MS(ASAP)=566.3。
金属配合的能级结构
有机金属配合物M-1~M-245的能级可通过量子计算得到,比如利用TD-DFT(含时密度泛函理论)通过Gaussian09W(Gaussian Inc.)计算得到,具体的模拟方法可参见WO2011141110。首先用半经验方法“Ground State/Hartree-Fock/Default Spin/LanL2MB”(Charge 0/Spin Singlet)来优化分子几何结构,然后有机分子的能量结构由TD-DFT(含时密度泛函理论)方法算得“TD-SCF/DFT/Default Spin/B3PW91/gen geom=connectivity pseudo=lanl2”(Charge 0/Spin Singlet)。HOMO和LUMO能级按照下面的校准公式计算,S 1和T 1直接使用。
HOMO(eV)=((HOMO(Gaussian)×27.212)-0.9899)/1.1206
LUMO(eV)=((LUMO(Gaussian)×27.212)-2.0041)/1.385
其中HOMO(G)和LUMO(G)是Gaussian 09W的直接计算结果,单位为Hartree。结果如表一所示:
表一
材料 HOMO[eV] LUMO[eV] S 1[eV] T 1[eV]
M-1 -4.52 -3.29 0.97 0.96
M-86 -4.48 -3.28 0.94 0.93
M-87 -3.88 -3.21 0.38 0.37
M-246 -5.08 -3.16 1.79 1.76
M-256 -5.18 -3.15 1.92 1.90
M-259 -4.37 -3.27 0.90 0.88
M-260 -4.20 -3.26 0.72 0.69
M-376 -4.33 -3.22 0.87 0.85
M-379 -5.16 -3.44 1.51 1.51
M-411 -4.87 -3.57 1.01 0.99
M-280 -4.31 -3.38 0.73 0.66
M-309 -4.58 -3.43 0.84 0.82
M-353 -5.10 -3.16 1.78 1.63
M-384 -5.34 -3.56 1.56 1.56
M-401 -4.47 -2.91 1.50 1.50
实施例16:OLED器件的制备方法
OLED器件的结构为:ITO/MoO3(10nm)/NPB(60nm)/10%金属配合物(M-1):m-MTDATA(45nm)/Alq3(35nm)/LiF(1nm)/Al(150nm)
a、导电玻璃基片的清洗:首次使用时,可用多种溶剂进行清洗,例如使用氯仿、酮、异丙醇进行清洗,然后进行紫外臭氧等离子处理;
b、HIL(10nm),HTL(60nm),EML(45nm),ETL(35nm):在高真空(1x10 -6毫巴,mbar)中热蒸镀而成;;其中HIL材料选自MoO3,HTL材料选自NPB,EML材料选择有机金属配合物M-1:m-MTDATA,ETL材料选自Alq3。
c、阴极:Li F/AI(1nm/150nm)在高真空(1x10 -6毫巴)中热蒸镀而成;
d、封装:器件在氯气手套箱中用紫外线硬化树脂封装。
实施例17~实施例31
制备方法与实施例16相同,只将配合物M-1替换为表1所示的化合物。
在电压驱动下,所有的OLEDs都发红外光。其中以配合物M-1和M-259作为发光体的器件效率较高,以配合物M-259为发光材料的器件发光外量子效率(EQE)达到4.5%。
实施例32:以金属配合物作为电子传输材料的发光器件
以本发明所述的金属有机配合物可以作为电子传输材料,其OLED器件的结构为:ITO/NPD(60nm)/10%Ir(PPy) 3:CBP(45nm)/金属配合物(M-1)(35nm)/LiF(1nm)/Al(150nm)
a、导电玻璃基片的清洗:首次使用时,可用多种溶剂进行清洗,例如使用氯仿、酮、异丙醇进行清洗,然后进行紫外臭氧等离子处理;
b、HTL(60nm),EML(45nm),ETL(35nm):在高真空(1x10 -6毫巴,mbar)中热蒸镀而成;其中HTL材料选自NPD,EML材料选择Ir(PPy) 3:CBP,ETL材料选自金属配合物(M-1)。
c、阴极:Li F/AI(1nm/150nm)在高真空(1x10 -6毫巴)中热蒸镀而成;
d、封装:器件在氯气手套箱中用紫外线硬化树脂封装。
实施例33~实施例47
制备方法与实施例32相同,只将配合物M-1替换为表1所示的化合物。
所得到的器件结果相较以Alq3作为电子传输材料的器件普遍较高,其中以配合物M-246与M-259作为电子材料的发光器件效率最高,特别是以配合物M-259作为电子传输材料的发光器件的发光效率是以Alq3作为电子发光材料的器件的2.5倍。
通过进一步的优化,如器件结构的优化以及HTM、ETM及主体材料的组合优化,将进一步提高器件的性能,特别是效率、驱动电压及寿命。
应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (16)

  1. 一种有机金属配合物,具有通式(1)所示的结构:
    Figure PCTCN2019109288-appb-100001
    其中:Y1^Y2为二齿一价阴离子配体;Y3^Y4为二齿二价阴离子配体;Y5^Y6为二齿零价中性配体;M选自金属元素Al、Sc、Y、Ga、In、Tl或Er中任一个。
  2. 根据权利要求1中所述的有机金属配合物,其特征在于,一价阴离子配体Y1^Y2选自如下通式(2-1)~(2-4)中任何一个:
    Figure PCTCN2019109288-appb-100002
    其中:
    Q 1、Q 2、U 1、U 2独立选自C或N;且Q 1与Q 2中至少一个为N;
    T选自CR 1R 2、NR 1、O、S、Se、S=O、C=O、P=OR 1、P(R 1) 3、C=C(R 1R 2);
    Ar 1、Ar 2及Ar 3选自取代或未取代的具有5-25个碳原子的芳香基团、杂芳香基团或者具有3-25个碳原子的非芳香族环系,Ar 1~Ar 3可以相同,也可以不同;
    L为二桥联基;
    虚线表示与金属元素M直接相连的键;
    R 1、R 2每次出现时,各自独立地选自:H,D,具有1至20个C原子的直链烷基、烷氧基或硫代烷氧基基团,或者具有3至20个C原子的支链或环状的烷基、烷氧基或硫代烷氧基基团或者是甲硅烷基基团,或具有1至20个C原子的取代的酮基基团,或具有2至20个C原子的烷氧基羰基基团,或具有7至20个C原子的芳氧基羰基基团,氰基基团,氨基甲酰基基团,卤甲酰基基团,甲酰基基团,异氰基基团,异氰酸酯基团,硫氰酸酯基团或异硫氰酸酯基团,羟基基团,硝基基团,CF 3基团,Cl,Br,F,可交联的基团或者具有5至40个环原子的取代或未取代的芳族或杂芳族环系,或具有5至40个环原子的芳氧基或杂芳氧基基团,或这些体系的组合,其中相邻两个或多个基团R 1、R 2可以任选的彼此形成单环或多环的脂族、芳族或杂芳族环系。
  3. 根据权利要求2所述的有机金属配合物,其中通式(2-3)中的所述二桥联基L选自如下结构基团中的一种:
    Figure PCTCN2019109288-appb-100003
    Figure PCTCN2019109288-appb-100004
    其中:R 3-R 6的含义同R 1,虚线表示与通式键连的键。
  4. 根据权利要求2或3所述的有机金属配合物,其中,一价阴离子配体Y1^Y2选自如下通式(2-A-1)至(2-A-22)中任何一个:
    Figure PCTCN2019109288-appb-100005
    其中:X在多次出现时,可相互独立的选自N或CR 1
    Y在多次出现时,可相互独立的选自NR 1、CR 1R 2、SiR 1R 2、O或者S。
  5. 根据权利要求2-4中任一项所述的有机金属配合物,其中,一价阴离子配体Y1^Y2选自如下通式(2-B-1)至(2-B-21)中任何一个:
    Figure PCTCN2019109288-appb-100006
    其中:环上的H原子可以进一步被R取代,R每次出现时,独立选自D,具有1至20个C原子的直链烷基、烷氧基或硫代烷氧基基团,或者具有3至20个C原子的支链或环状的烷基、烷氧基或硫代烷氧基基团或者是甲硅烷基基团,或具有1至20个C原子的取代的酮基基团,或具有2至20个C原子的烷氧基羰基基团,或具有7至20个C原子的芳氧基羰基基团,氰基基团,氨基甲酰基基团,卤甲酰基基团,甲酰基基团,异氰基基团,异氰酸酯基团,硫氰酸酯基团或异硫氰酸酯基团,羟基基团,硝基基团,CF 3基团,Cl,Br,F,可交联的基团或者具有5至40个环原子的取代或未取代的芳族或杂芳族环系,或具有5至40个环原子的芳氧基或杂芳氧基基团,或这些体系的组合,其中相邻两个R 7可以任选的彼此形成单环或多环的脂族、芳族或杂芳族环系。
  6. 根据权利要求1所述的有机金属配合物,其中,二价阴离子配体Y3^Y4选自如下通式(3-1)-(3-4)中的任何一个:
    Figure PCTCN2019109288-appb-100007
    其中:Q 3、Q 4、U 3、U 4独立选自C或N;
    T选自CR 1R 2、NR 1、O、S、Se、S=O、C=O、P=OR 1、P(R 1) 3、C=C(R 1R 2);
    Ar 1、Ar 2及Ar 3选自取代或未取代的具有5-25个碳原子的芳香基团、杂芳香基团或者具有3-25个碳原子的非芳香族环系,Ar 1~Ar 3可以相同,也可以不同;
    L为二桥联基;
    虚线表示与金属元素M直接相连的键;
    R 1、R 2每次出现时,各自独立地选自:H,D,具有1至20个C原子的直链烷基、烷氧基或硫代烷氧基基团,或者具有3至20个C原子的支链或环状的烷基、烷氧基或硫代烷氧基基团或者是甲硅烷基基团,或具有1至20个C原子的取代的酮基基团,或具有2至20个C原子的烷氧基羰基基团,或具有7至20个C原子的芳氧基羰基基团,氰基基团,氨基甲酰基基团, 卤甲酰基基团,甲酰基基团,异氰基基团,异氰酸酯基团,硫氰酸酯基团或异硫氰酸酯基团,羟基基团,硝基基团,CF 3基团,Cl,Br,F,可交联的基团或者具有5至40个环原子的取代或未取代的芳族或杂芳族环系,或具有5至40个环原子的芳氧基或杂芳氧基基团,或这些体系的组合,其中相邻两个或多个基团R 1、R 2可以任选的彼此形成单环或多环的脂族、芳族或杂芳族环系。
  7. 根据权利要求6所述的有机金属配合物,其中,二价阴离子配体Y3^Y4选自如下通式(3-A-1)至(3-A-23)中的任何一个:
    Figure PCTCN2019109288-appb-100008
    其中:X在多次出现时,可相互独立的选自N或CR 1
    Y在多次出现时,可相互独立的选自NR 1、CR 1R 2、SiR 1R 2、O或者S。
  8. 根据权利要求6或7所述的有机金属配合物,其中,二价阴离子配体Y3^Y4选自如下通式(3-B-1)至(3-B-31)中的任何一个:
    Figure PCTCN2019109288-appb-100009
    Figure PCTCN2019109288-appb-100010
    其中:环上的H原子可以进一步被取代;虚线表示与金属元素M直接相连的键。
  9. 根据权利要求1所述的有机金属配合物,其中,零价中性配体Y5^Y6选自如下通式(4-1)-(4-3)中的任何一个:
    Figure PCTCN2019109288-appb-100011
    其中:Q 5、U 5独立选自C或N;
    Ar 1、Ar 2及Ar 3选自取代或未取代的具有5-25个碳原子的芳香基团、杂芳香基团或者具有3-25个碳原子的非芳香族环系,Ar 1~Ar 3可以相同,也可以不同;
    Ar 4~Ar 8选自取代或未取代的芳香基团、杂芳香基团或非芳香族环系;
    虚线表示与金属元素M直接相连的键。
  10. 根据权利要求9所述的有机金属配合物,其中,零价中性配体Y5^Y6选自如下通式(4-A-1)~(4-A-17)中的任何一个:
    Figure PCTCN2019109288-appb-100012
    其中:X在多次出现时,可相互独立的选自N或CR 1
    Y在多次出现时,可相互独立的选自NR 1、CR 1R 2、SiR 1R 2、O或者S;
    R 1、R 2每次出现时,各自独立地选自:H,D,具有1至20个C原子的直链烷基、烷氧基 或硫代烷氧基基团,或者具有3至20个C原子的支链或环状的烷基、烷氧基或硫代烷氧基基团或者是甲硅烷基基团,或具有1至20个C原子的取代的酮基基团,或具有2至20个C原子的烷氧基羰基基团,或具有7至20个C原子的芳氧基羰基基团,氰基基团,氨基甲酰基基团,卤甲酰基基团,甲酰基基团,异氰基基团,异氰酸酯基团,硫氰酸酯基团或异硫氰酸酯基团,羟基基团,硝基基团,CF 3基团,Cl,Br,F,可交联的基团或者具有5至40个环原子的取代或未取代的芳族或杂芳族环系,或具有5至40个环原子的芳氧基或杂芳氧基基团,或这些体系的组合,其中相邻两个或多个基团R 1、R 2可以任选的彼此形成单环或多环的脂族、芳族或杂芳族环系。
  11. 根据权利要求9或10所述的有机金属配合物,其中,零价中性配体Y5^Y6选自如下通式(4-B-1)~(4-B-19)中的任何一个:
    Figure PCTCN2019109288-appb-100013
    其中:环上的H原子可以进一步被取代;虚线表示与金属元素M直接相连的键。
  12. 一种高聚物,包含至少一个根据权利要求1-11中任一项所述的有机金属配合物的结构单元作为重复单元。
  13. 一种混合物,包含如权利要求1至11中任一项所述的有机金属配合物或如权利要求12所述的高聚物,及至少一种有机功能材料,所述有机功能材料选自空穴注入材料、空穴传输材料、电子传输材料、电子注入材料、电子阻挡材料、空穴阻挡材料、发光材料、主体材料和有机染料。
  14. 一种组合物,包含如权利要求1-11中任一项所述的有机金属配合物或如权利要求12所述的高聚物或如权利要求13所述的混合物,及至少一种有机溶剂。
  15. 一种有机电子器件,包含如权利要求1至11任一项所述的有机金属配合物或如权利要求12所述的高聚物或如权利要求13所述的混合物。
  16. 根据权利要求15所述的有机电子器件,其特征在于,所述有机电子器件选自有机发光二极管、有机光伏电池、有机发光电池、有机场效应管、有机发光场效应管、有机激光器、有机自旋电子器件、有机传感器及有机等离激元发射二极管。
PCT/CN2019/109288 2018-11-02 2019-09-30 有机金属配合物、包含其的高聚物、混合物、组合物及有机电子器件 WO2020088186A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980051104.6A CN112585144A (zh) 2018-11-02 2019-09-30 有机金属配合物、包含其的高聚物、混合物、组合物及有机电子器件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811300169 2018-11-02
CN201811300169.3 2018-11-02

Publications (1)

Publication Number Publication Date
WO2020088186A1 true WO2020088186A1 (zh) 2020-05-07

Family

ID=70463456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/109288 WO2020088186A1 (zh) 2018-11-02 2019-09-30 有机金属配合物、包含其的高聚物、混合物、组合物及有机电子器件

Country Status (2)

Country Link
CN (1) CN112585144A (zh)
WO (1) WO2020088186A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113354689A (zh) * 2021-06-15 2021-09-07 江苏科技大学 一种含联苯衍生物配位的中性铱配合物及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101896493A (zh) * 2007-10-17 2010-11-24 巴斯夫欧洲公司 具有桥连碳烯配体的过渡金属配合物及其在oled中的用途
TW201527484A (zh) * 2014-01-15 2015-07-16 Nat Univ Tsing Hua 含雙唑類配基的銥金屬錯合物
CN109608504A (zh) * 2017-12-28 2019-04-12 广州华睿光电材料有限公司 有机金属配合物、聚合物、混合物、组合物和有机电子器件
WO2019128848A1 (zh) * 2017-12-28 2019-07-04 广州华睿光电材料有限公司 一种有机金属配合物,包含其的聚合物、混合物和组合物,及其在电子器件中的应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101896493A (zh) * 2007-10-17 2010-11-24 巴斯夫欧洲公司 具有桥连碳烯配体的过渡金属配合物及其在oled中的用途
TW201527484A (zh) * 2014-01-15 2015-07-16 Nat Univ Tsing Hua 含雙唑類配基的銥金屬錯合物
CN109608504A (zh) * 2017-12-28 2019-04-12 广州华睿光电材料有限公司 有机金属配合物、聚合物、混合物、组合物和有机电子器件
WO2019128848A1 (zh) * 2017-12-28 2019-07-04 广州华睿光电材料有限公司 一种有机金属配合物,包含其的聚合物、混合物和组合物,及其在电子器件中的应用

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113354689A (zh) * 2021-06-15 2021-09-07 江苏科技大学 一种含联苯衍生物配位的中性铱配合物及其制备方法和应用
CN113354689B (zh) * 2021-06-15 2022-09-23 江苏科技大学 一种含联苯衍生物配位的中性铱配合物及其制备方法和应用
WO2022262300A1 (zh) * 2021-06-15 2022-12-22 江苏科技大学 一种含联苯衍生物配位的中性铱配合物及其制备方法和应用

Also Published As

Publication number Publication date
CN112585144A (zh) 2021-03-30

Similar Documents

Publication Publication Date Title
CN111278838B (zh) 含硼杂环化合物、高聚物、混合物、组合物及其用途
WO2019105327A1 (zh) 有机复合薄膜及其在有机电子器件中的应用
CN109638171B (zh) 有机混合物、高聚物、组合物及其用途
CN111278842B (zh) 一种有机金属配合物,包含其的聚合物、混合物和组合物,及其在电子器件中的应用
WO2019114668A1 (zh) 一种过渡金属配合物材料及其在电子器件的应用
CN110759930B (zh) 螺环化合物及其用途
CN110981895B (zh) 过渡金属配合物、聚合物、混合物、组合物及有机电子器件
WO2017092545A1 (zh) 一种金属有机配合物及其在电子器件中的应用
CN110759925A (zh) 含氮稠环有机化合物及其应用
CN110759919B (zh) 芘醌类有机化合物及其应用
WO2017118238A1 (zh) 氘代三芳胺衍生物及其在电子器件中的应用
CN109705100B (zh) 含萘咔唑类有机光化合物、混合物、组合物及其用途
CN110746442A (zh) 含咪唑螺环的化合物及其应用
CN110746405A (zh) 一种含吡咯基团的化合物及其在有机电子器件中的应用
WO2019114608A1 (zh) 过渡金属配合物、聚合物、混合物、组合物及其应用
WO2018108110A1 (zh) 金属有机配合物及其应用、混合物、有机电子器件
CN110845525B (zh) 萘并咔唑类化合物及其应用
CN111278839B (zh) 一种有机金属配合物、高聚物、混合物、组合物及有机电子器件
CN110669048A (zh) 基于含氮稠环的有机化合物及其应用
WO2020088186A1 (zh) 有机金属配合物、包含其的高聚物、混合物、组合物及有机电子器件
WO2019128599A1 (zh) 含氮杂环化合物、高聚物、混合物、组合物及其用途
CN110759949B (zh) 有机金属配合物及其应用
CN113045606B (zh) 过渡金属配合物、聚合物、混合物、组合物及有机电子器件
CN113024607B (zh) 过渡金属配合物、聚合物、混合物、组合物及有机电子器件
CN112979712B (zh) 过渡金属配合物、聚合物、混合物、组合物及有机电子器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19880011

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19880011

Country of ref document: EP

Kind code of ref document: A1