WO2019128848A1 - 一种有机金属配合物,包含其的聚合物、混合物和组合物,及其在电子器件中的应用 - Google Patents

一种有机金属配合物,包含其的聚合物、混合物和组合物,及其在电子器件中的应用 Download PDF

Info

Publication number
WO2019128848A1
WO2019128848A1 PCT/CN2018/122487 CN2018122487W WO2019128848A1 WO 2019128848 A1 WO2019128848 A1 WO 2019128848A1 CN 2018122487 W CN2018122487 W CN 2018122487W WO 2019128848 A1 WO2019128848 A1 WO 2019128848A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
organic
organometallic complex
ligand
atoms
Prior art date
Application number
PCT/CN2018/122487
Other languages
English (en)
French (fr)
Inventor
潘君友
施超
黄宏
Original Assignee
广州华睿光电材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州华睿光电材料有限公司 filed Critical 广州华睿光电材料有限公司
Priority to CN201880069233.3A priority Critical patent/CN111278842B/zh
Publication of WO2019128848A1 publication Critical patent/WO2019128848A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • This invention relates to the field of electroluminescent materials, and more particularly to an organometallic complex, polymers, mixtures and compositions thereof, and their use in organic electronic devices, particularly in organic phosphorescent light emitting diodes.
  • the invention further relates to an organic electronic device comprising the organometallic complex of the invention, and to the use thereof.
  • OLEDs Organic light-emitting diodes
  • Organic light-emitting diodes using fluorescent materials have high reliability, but their internal electroluminescence quantum under electric field excitation The efficiency is limited to 25%, because the probability ratio of exciton generating single-excited and triple-excited states is 1:3.
  • Professor Thomson of the University of Southern California and Professor Forrest of Princeton University will be three (2- Phenylpyridine) ruthenium Ir(ppy) 3 was doped into N,N-dicarbazole biphenyl (CBP), and a green electrophosphorescent device was successfully prepared, which caused a strong interest in complex phosphorescent materials.
  • CBP N,N-dicarbazole biphenyl
  • the spin-orbit coupling of the molecules is improved, the phosphorescence lifetime is shortened, the intersystem crossings of the molecules are enhanced, and the phosphorescence is smoothly emitted.
  • a complex reaction is mild, and the structure of the complex and the substituent group can be conveniently changed, the emission wavelength is adjusted, and an electrophosphorescent material having excellent properties can be obtained.
  • the internal quantum efficiency of phosphorescent OLEDs has approached 100%.
  • most phosphorescent materials have too broad luminescence spectrum and poor color purity, which is not conducive to high-end display, and the stability of such phosphorescent OLEDs needs to be further improved.
  • a primary object of the present invention is to provide an organometallic complex, comprising the polymers, mixtures and compositions thereof, and their use in organic electronic devices; and to provide a novel high performance phosphorescent metal complex material
  • metal complexes containing anionic ligands of three different valence states provide a larger option for material design, which facilitates solving the problems of excessive luminescence spectrum and poor color purity of existing phosphorescent materials, and improves device performance.
  • Another object of the present invention is to provide an organic electronic device comprising the organometallic complex of the present invention, and uses thereof.
  • L 1 is a monovalent anionic ligand
  • L 2 is a divalent anionic ligand
  • L 3 is a zero-valent neutral ligand
  • M is a transition metal element.
  • the organometallic complex has a structure of the formula (II):
  • Y1 ⁇ Y2 is a bidentate monovalent anion ligand
  • Y3 ⁇ Y4 is a bidentate divalent anion ligand
  • Y5 ⁇ Y6 is a bidentate zero-valent neutral ligand
  • M is preferably selected from any one of ruthenium (Ru), rhodium (Rh), hungry (Os), ruthenium (Re), and iridium (Ir).
  • a high polymer comprising at least one repeating unit comprising a structural unit represented by the general formula (I).
  • a mixture comprising an organometallic complex or polymer as described above, and at least one other organic functional material, said another organic functional material being selected from the group consisting of a hole injecting material (HIM), a cavity Transport material (HTM), electron transport material (ETM), electron injecting material (EIM), electron blocking material (EBM), hole blocking material (HBM), luminescent material (Emitter), host material (Host) and organic dye.
  • HIM hole injecting material
  • HTM cavity Transport material
  • ETM electron transport material
  • EIM electron injecting material
  • EBM electron blocking material
  • HBM hole blocking material
  • Emitter luminescent material
  • host material Hostemitter
  • organic dye organic dye
  • a composition comprising an organometallic complex or polymer or mixture as described above, and at least one organic solvent.
  • An organic electronic device comprising an organometallic complex or polymer or mixture or composition as described above.
  • organic electronic device as described above, wherein the organic electronic device is selected from the group consisting of an organic light emitting diode (OLED), an organic photovoltaic cell (OPV), an organic light emitting cell (OLEEC), an organic field effect transistor (OFET), and an organic light emitting field. Effect tube, organic laser, organic spintronic device, organic sensor and Organic Plasmon Emitting Diode.
  • OLED organic light emitting diode
  • OLED organic photovoltaic cell
  • OLED organic light emitting cell
  • OFET organic field effect transistor
  • Effect tube organic laser, organic spintronic device, organic sensor and Organic Plasmon Emitting Diode.
  • the present invention increases the luminous efficiency of a phosphorescent metal complex by introducing different valence ligands in the phosphorescent metal complex, increases the lifetime of the device, improves the color purity, and adjusts the luminescent wavelength of the complex, thereby providing a high-efficiency phosphorescent device. More choices for phosphorescent materials.
  • Figure 1 is a photoluminescence spectrum of organometallic complexes Ir-5 and Ir-6.
  • the present invention provides an organometallic complex and its use in an organic electroluminescent device.
  • the present invention will be further described in detail below in order to make the objects, technical solutions and effects of the present invention more clear and clear. It is understood that the specific embodiments described herein are merely illustrative of the invention and are not intended to limit the invention.
  • the host material In the present invention, the host material, the matrix material, the Host material, and the Matrix material have the same meaning and are interchangeable.
  • metal organic complexes metal organic complexes, metal organic complexes, and organometallic complexes have the same meaning and are interchangeable.
  • a ligand represented by the following formula is represented by Y1 ⁇ Y2 in the text:
  • the singlet states and the singlet states have the same meaning and are interchangeable.
  • the triplet state and the triplet state have the same meaning and are interchangeable.
  • the polymer that is, the polymer, includes a homopolymer, a copolymer, and a block copolymer.
  • the high polymer also includes a dendrimer.
  • the present invention provides an organometallic complex having the structure represented by the general formula (I):
  • L 1 is a monovalent anionic ligand
  • L 2 is a divalent anionic ligand
  • L 3 is a zero-valent neutral ligand
  • M is a transition metal element.
  • the ligands L 1 , L 2 , L 3 may be selected from a tooth, or a bidentate, or a tridentate ligand.
  • the organometallic complex according to the invention is selected from the group consisting of the following general formula (II):
  • Y1 ⁇ Y2 is a bidentate monovalent anion ligand
  • Y3 ⁇ Y4 is a bidentate divalent anion ligand
  • Y5 ⁇ Y6 is a bidentate zero-valent neutral ligand
  • M is a transition metal element.
  • the metal element M is selected from the group consisting of transition metals ruthenium (Ru), rhodium (Rh), hungry (Os), ruthenium (Re) and ruthenium (Ir). Any of them;
  • the metal element M is selected from the group consisting of Ir.
  • the ligand L 1 or the bidentate monovalent anionic ligand Y1 ⁇ Y2 is selected from any one of the following formulae S1 to S14:
  • R 1 is a substituent which, when present multiple times, is independently selected from D, or F, or Cl, or Br, or I, or CN, or NO 2 , or CF 3 , or B(OR 2 ) 2 , or Si(R 2 ) 3 , or a linear alkane, or an alkane ether, or an alkane sulfide, or a branched alkane, or a cycloalkane, and one or more non-adjacent methylene groups (CH 2 ) in R 1 may Replaced by R 3 ;
  • Each occurrence of R 2 is independently selected from H, D, a linear alkyl group having 1 to 20 C atoms, an alkoxy group having 1 to 20 C atoms, and a thio group having 1 to 20 C atoms.
  • the dotted line indicates the bond directly connected to the metal element M
  • x is Any integer
  • y is Any integer
  • z is Any integer.
  • the ligand L 2 or the bidentate divalent anionic ligand Y3 ⁇ Y4 is selected from any one of the following formulae D1-D9:
  • R 1 , x, y, and z have the same meanings as described above, and the broken line indicates a bond directly connected to the metal element M.
  • the ligand L 3 or the bidentate zero-valent neutral ligand Y5 ⁇ Y6 is selected from any one of the following formulae N1-N8:
  • R 1 , x, y, z have the same meanings as above, and u represents Any integer, the dashed line indicates the bond directly connected to the metal element M.
  • the organometallic complex according to the invention is selected from one of the following formulae:
  • R 1 , x, y, z, u have the meanings as defined above;
  • Y 1 ⁇ Y 2 is a monovalent anionic ligand.
  • organometallic complexes in accordance with the present invention are listed below, but are not limited thereto, and the structural formulas shown may be further substituted arbitrarily:
  • Organic functional materials can be classified into hole injection materials (HIM), hole transport materials (HTM), electron transport materials (ETM), electron injecting materials (EIM), electron blocking materials (EBM), and hole blocking materials (HBM). , Emitter, Host material.
  • HIM hole injection materials
  • HTM hole transport materials
  • ETM electron transport materials
  • EIM electron injecting materials
  • EBM electron blocking materials
  • HBM hole blocking materials
  • the organometallic complexes in accordance with the present invention are functional materials that are non-luminescent materials.
  • the organometallic complex according to the invention is a luminescent material having an emission wavelength between 300 and 1000 nm, preferably between 350 and 900 nm, more preferably between 400 and 800 nm.
  • the luminescence referred to herein means photoluminescence or electroluminescence.
  • the organometallic complex according to the present invention has a photo or electroluminescence efficiency of ⁇ 30%, preferably ⁇ 40%, more preferably ⁇ 50%, and most preferably ⁇ 60%. .
  • the invention still further relates to a high polymer comprising at least one repeating unit comprising a structural unit represented by the general formula (I).
  • the method for synthesizing the high polymer is selected from the group consisting of SUZUKI-, YAMAMOTO-, STILLE-, NIGESHI-, KUMADA-, HECK-, SONOGASHIRA-, HIYAMA-, FUKUYAMA-, HARTWIG-BUCHWALD- and ULLMAN.
  • the high polymer according to the invention has a glass transition temperature (Tg) ⁇ 100 ° C, preferably ⁇ 120 ° C, more preferably ⁇ 140 ° C, more preferably ⁇ 160 ° C, optimal. It is ⁇ 180 °C.
  • the polymer according to the present invention preferably has a molecular weight distribution (PDI) in the range of from 1 to 5; more preferably from 1 to 4; more preferably from 1 to 3, still more preferably 1 ⁇ 2 is most preferably 1 to 1.5.
  • PDI molecular weight distribution
  • the weight average molecular weight (Mw) of the high polymer according to the present invention is preferably in the range of 10,000 to 1,000,000; more preferably 50,000 to 500,000; more preferably 100,000 to 40. More preferably, it is 150,000 to 300,000, and most preferably 200,000 to 250,000.
  • the high polymer according to the present invention is a non-conjugated high polymer.
  • Preferred is a non-conjugated high polymer comprising a repeating unit represented by the formula (I) in a side chain.
  • the invention also provides a mixture comprising at least one of said organometallic complexes or polymers, and at least one other organic functional material, said at least one other organic functional material being selected from the group consisting of Injection material (HIM), hole transport material (HTM), electron transport material (ETM), electron injecting material (EIM), electron blocking material (EBM), hole blocking material (HBM), luminescent material (Emitter), main body Materials (Host) and organic dyes.
  • Injection material HIM
  • HTM hole transport material
  • ETM electron transport material
  • EIM electron injecting material
  • EBM electron blocking material
  • Emitter hole blocking material
  • main body Materials Host
  • organic dyes organic dyes.
  • organic functional materials are described in detail in, for example, WO2010135519A1, US20090134784A1, and WO 2011110277A1, the entire disclosure of which is hereby incorporated by reference.
  • the metal organic complex is present in the mixture according to the invention in an amount of from 0.01 to 30% by weight, preferably from 0.5 to 20% by weight, more preferably from 2 to 15% by weight, most preferably from 5 to 15wt%.
  • the mixture according to the invention comprises a metal organic complex or polymer according to the invention and a triplet host material.
  • the mixture according to the invention comprises a metal organic complex or polymer according to the invention, a triplet matrix material and another triplet emitter.
  • the mixture according to the invention comprises a metal organic complex or polymer according to the invention and a thermally activated delayed fluorescent luminescent material (TADF).
  • TADF thermally activated delayed fluorescent luminescent material
  • the mixture according to the invention comprises a metal organic complex or polymer according to the invention, a triplet matrix material and a thermally activated delayed fluorescent luminescent material (TADF).
  • TADF thermally activated delayed fluorescent luminescent material
  • triplet matrix material the triplet emitter and the TADF material (but is not limited thereto).
  • Triplet Host Material (Triplet Host):
  • the example of the triplet host material is not particularly limited, and any metal complex or organic compound may be used as the host as long as its triplet energy level is higher than that of the illuminant, particularly the triplet illuminant or the phosphorescent illuminant.
  • metal complexes that can be used as a triplet host include, but are not limited to, the following general structure:
  • M3 is a metal; (Y 7 -Y 8 ) is a bidentate ligand, Y 7 and Y 8 are independently selected from C, N, O, P, and S; L is an ancillary ligand; m3 is an integer, Its value ranges from 1 to the maximum coordination number of the metal; in a preferred embodiment, the metal complex that can be used as the triplet host has the following form:
  • (O-N) is a bidentate ligand in which the metal is coordinated to the O and N atoms, and m3 is an integer having a value from 1 to the maximum coordination number of the metal;
  • M3 can be selected from the group consisting of Ir and Pt.
  • Examples of the organic compound which can be used as the host of the triplet state are selected from compounds containing a cyclic aromatic hydrocarbon group such as benzene, biphenyl, triphenylbenzene, benzindene; compounds containing an aromatic heterocyclic group such as dibenzothiophene, Dibenzofuran, dibenzoselenophene, furan, thiophene, benzofuran, benzothiophene, benzoselenophene, oxazole, dibenzoxazole, carbazole, pyridinium, pyrrole dipyridine, Pyrazole, imidazole, triazole, oxazole, thiazole, oxadiazole, oxatriazole, dioxazole, thiadiazole, pyridine, pyridazine, pyrimidine, pyrazine, triazine, oxazine, oxazine , oxadiazin
  • each Ar may be further substituted, and the substituent may be hydrogen, hydrazine, cyano, halogen, alkyl, alkoxy, amino, alkene, alkyne, aralkyl, heteroalkyl, aryl and heteroaryl. base.
  • the triplet host material can be selected from compounds comprising at least one of the following groups:
  • R 2 -R 7 has the same meaning as R 1
  • X 1 -X 9 is selected from CR 1 R 2 or NR 1
  • Y is selected from CR 1 R 2 or NR 1 or O or S
  • n 2 is selected from any of 1-20
  • each of Ar 1 to Ar 3 is independently selected from an aromatic group or a heteroaryl group.
  • R 1, R 2 has the same meaning as described above.
  • triplet host materials examples include:
  • TDF Thermally activated delayed fluorescent luminescent material
  • the thermally activated delayed fluorescent luminescent material is a third generation organic luminescent material developed after organic fluorescent materials and organic phosphorescent materials.
  • Such materials generally have a small singlet-triplet energy level difference ( ⁇ Est), and triplet excitons can be converted into singlet exciton luminescence by anti-intersystem crossing. This can make full use of the singlet excitons and triplet excitons formed under electrical excitation.
  • the quantum efficiency in the device can reach 100%.
  • the material structure is controllable, the property is stable, the price is cheap, no precious metal is needed, and the application prospect in the OLED field is broad.
  • the TADF material needs to have a small singlet-triplet energy level difference, preferably ⁇ Est ⁇ 0.3 eV, and secondarily ⁇ Est ⁇ 0.25 eV, more preferably ⁇ Est ⁇ 0.20 eV, and most preferably ⁇ Est ⁇ 0.1 eV.
  • the TADF material has a relatively small ⁇ Est, and in another preferred embodiment, the TADF has a better fluorescence quantum efficiency.
  • TADF luminescent materials can be found in the following patent documents: CN103483332(A), TW201309696(A), TW201309778(A), TW201343874(A), TW201350558(A), US20120217869(A1), WO2013133359(A1), WO2013154064( A1), Adachi, et.al. Adv. Mater., 21, 2009, 4802, Adachi, et. al. Appl. Phys. Lett., 98, 2011, 083302, Adachi, et. al. Appl. Phys. Lett ., 101, 2012, 093306, Adachi, et. al. Chem.
  • TADF luminescent materials are listed in the table below:
  • Triplet emitters are also known as phosphorescent emitters.
  • the triplet emitter is a metal complex of the formula M(L)n, wherein M is a metal atom, and each occurrence of L may be the same or different and is an organic ligand. It is attached to the metal atom M indirectly or coordinately by one or more positions, and n is an integer greater than 1, preferably 1, 2, 3, 4, 5 or 6.
  • these metal complexes are coupled to a polymer by one or more positions, preferably by an organic ligand.
  • the metal atom M is selected from a transition metal element or a lanthanide or a lanthanide element, preferably Ir, Pt, Pd, Au, Rh, Ru, Os, Sm, Eu, Gd, Tb, Dy, Re, Cu or Ag, particularly preferably Os, Ir, Ru, Rh, Re, Pd, Au or Pt.
  • the triplet emitter comprises a chelating ligand, ie a ligand, coordinated to the metal by at least two bonding sites, with particular preference being given to the triplet emitter comprising two or three identical or different pairs Tooth or multidentate ligand.
  • Chelating ligands are beneficial for increasing the stability of metal complexes.
  • Examples of the organic ligand may be selected from a phenylpyridine derivative, a 7,8-benzoquinoline derivative, a 2(2-thienyl)pyridine derivative, a 2(1-naphthyl)pyridine derivative, or a 2 benzene.
  • a quinolinol derivative All of these organic ligands may be substituted, for example by fluorine or trifluoromethyl.
  • the ancillary ligand may preferably be selected from the group consisting of acetone acetate or picric acid.
  • the metal complex that can be used as the triplet emitter has the following form:
  • M is a metal selected from the group consisting of transition metal elements or lanthanides or actinides, particularly preferably Ir, Pt, Au;
  • Ar 1 may be the same or different at each occurrence, and is a cyclic group containing at least one donor atom, that is, an atom having a lone pair of electrons, such as nitrogen or phosphorus, through which a cyclic group is coordinated to a metal.
  • Ar 2 may be the same or different each time it appears, is a cyclic group containing at least one C atom through which a cyclic group is attached to the metal; Ar 1 and Ar 2 are bonded by a covalent bond Together, each may carry one or more substituent groups, which may also be joined together by a substituent group; L' may be the same or different at each occurrence, and is a bidentate chelate auxiliary ligand, preferably Is a monoanionic bidentate chelate ligand; q1 can be 0, 1, 2 or 3, preferably 2 or 3; q2 can be 0, 1, 2 or 3, preferably 1 or 0.
  • triplet emitters Some examples of suitable triplet emitters are listed in the table below:
  • the metal complex according to the invention has a molecular weight of ⁇ 1200 g/mol, preferably ⁇ 1100 g/mol, very preferably ⁇ 1000 g/mol, more preferably ⁇ 950 g/mol, most preferably ⁇ 900 g/mol.
  • Another object of the invention is to provide a material solution for printing OLEDs.
  • the metal complex according to the invention has a molecular weight of ⁇ 800 g/mol, preferably ⁇ 900 g/mol, very preferably ⁇ 1000 g/mol, more preferably ⁇ 1100 g/mol, most preferably ⁇ 1200 g/mol.
  • the metal complex according to the invention has a solubility in toluene of > 2 mg/ml, preferably > 3 mg/ml, more preferably > 4 mg/ml, most preferably > 5 mg/ml at 25 °C.
  • the invention further relates to a composition
  • a composition comprising at least one organometallic complex or polymer or mixture as described above, and at least one organic solvent; said at least one organic solvent being selected from aromatic or heterogeneous An aromatic, ester, aromatic ketone or aromatic ether, an aliphatic ketone or an aliphatic ether, an alicyclic or olefinic compound, or a borate or phosphate compound, or a mixture of two or more solvents.
  • the at least one organic solvent is selected from the group consisting of aromatic or heteroaromatic based solvents.
  • aromatic or heteroaromatic solvents suitable for the present invention are, but are not limited to, p-diisopropylbenzene, pentylbenzene, tetrahydronaphthalene, cyclohexylbenzene, chloronaphthalene, 1,4-dimethylnaphthalene.
  • aromatic ketone solvents suitable for the present invention are, but are not limited to, 1-tetralone, 2-tetralone, 2-(phenyl epoxy) tetralone, 6-(methoxy Tetrendanone, acetophenone, propiophenone, benzophenone, and derivatives thereof, such as 4-methylacetophenone, 3-methylacetophenone, 2-methylacetophenone, 4-methylpropiophenone, 3-methylpropiophenone, 2-methylpropiophenone, and the like.
  • aromatic ether-based solvents suitable for the present invention are, but are not limited to, 3-phenoxytoluene, butoxybenzene, p-anisaldehyde dimethyl acetal, tetrahydro-2-phenoxy-2H -pyran, 1,2-dimethoxy-4-(1-propenyl)benzene, 1,4-benzodioxane, 1,3-dipropylbenzene, 2,5-dimethoxy Toluene, 4-ethyl ether, 1,3-dipropoxybenzene, 1,2,4-trimethoxybenzene, 4-(1-propenyl)-1,2-dimethoxybenzene, 1, 3-dimethoxybenzene, glycidyl phenyl ether, dibenzyl ether, 4-tert-butyl anisole, trans-p-propenyl anisole, 1,2-dimethoxybenzene, 1-methyl Oxynaphthalene, diphenyl ether
  • the at least one organic solvent may be selected from the group consisting of: an aliphatic ketone, for example, 2-fluorenone, 3-fluorenone, 5-fluorenone, 2 - anthrone, 2,5-hexanedione, 2,6,8-trimethyl-4-indanone, anthrone, phorone, isophorone, di-n-pentyl ketone, etc.; or an aliphatic ether
  • the at least one organic solvent may be selected from ester-based solvents: alkyl octanoate, alkyl sebacate, alkyl stearate, benzene. Alkyl formate, alkyl phenylacetate, alkyl cinnamate, alkyl oxalate, alkyl maleate, alkanolide, alkyl oleate, and the like. Particularly preferred are octyl octanoate, diethyl sebacate, diallyl phthalate, isodecyl isononanoate.
  • the solvent may be used singly or as a mixture of two or more organic solvents.
  • a composition according to the present invention comprises at least one organometallic complex or polymer or mixture as described above and at least one organic solvent, and may further comprise another Organic solvents.
  • another organic solvent include, but are not limited to, methanol, ethanol, 2-methoxyethanol, dichloromethane, chloroform, chlorobenzene, o-dichlorobenzene, tetrahydrofuran, anisole, morpholine, Toluene, o-xylene, m-xylene, p-xylene, 1,4 dioxane, acetone, methyl ethyl ketone, 1,2 dichloroethane, 3-phenoxytoluene, 1,1 , 1-trichloroethane, 1,1,2,2-tetrachloroethane, ethyl acetate, butyl acetate, dimethylformamide, dimethylacetamide, dimethyl sulfoxide, tetrahydronaphthal
  • the solvent particularly suitable for the present invention is a solvent having Hansen solubility parameters in the following ranges:
  • ⁇ d (dispersion force) is in the range of 17.0 to 23.2 MPa 1/2 , especially in the range of 18.5 to 21.0 MPa 1/2 ;
  • ⁇ p polar forces in the range of 0.2 ⁇ 12.5MPa 1/2, especially in the 2.0 ⁇ 6.0MPa 1/2;
  • the organic solvent is selected in consideration of its boiling point parameter.
  • the organic solvent has a boiling point of ⁇ 150 ° C; preferably ⁇ 180 ° C; more preferably ⁇ 200 ° C; more preferably ⁇ 250 ° C; optimally ⁇ 275 ° C or ⁇ 300 ° C.
  • the boiling points within these ranges are beneficial for preventing nozzle clogging of the inkjet printhead.
  • the organic solvent can be evaporated from the solvent system to form a film comprising the functional material.
  • the composition according to the invention is a solution.
  • composition according to the invention is a suspension.
  • composition in the examples of the present invention may comprise from 0.01% by weight to 15% by weight of the organometallic complex or polymer or mixture according to the invention, preferably from 0.1% by weight to 10% by weight, more preferably 0.2% by weight. From 5% to 5% by weight, most preferably from 0.25 to 3% by weight.
  • the invention further relates to the use of the composition as a coating or printing ink in the preparation of an organic electronic device, particularly preferably by a printing or coating process.
  • suitable printing or coating techniques include, but are not limited to, inkjet printing, Nozzle Printing, typography, screen printing, dip coating, spin coating, blade coating, roller printing, torsion rolls. Printing, lithography, flexographic printing, rotary printing, spraying, brushing or pad printing, slit-type extrusion coating, etc. Preferred are gravure, inkjet and inkjet printing.
  • the solution or suspension may additionally comprise one or more components such as surface active compounds, lubricants, wetting agents, dispersing agents, hydrophobic agents, binders and the like for adjusting viscosity, film forming properties, adhesion, and the like.
  • solvents and concentrations, viscosity, etc. see Handbook of Print Media: Technologies and Production Methods, edited by Helmut Kipphan. , ISBN 3-540-67326-1.
  • the invention also provides the use of an organometallic complex, polymer, mixture or composition as described above in an organic electronic device, which may be selected from, but not limited to, an organic light emitting diode (OLED) ), organic photovoltaic cells (OPV), organic light-emitting cells (OLEEC), organic field effect transistors (OFETs), organic light-emitting field effect transistors, organic lasers, organic spintronic devices, organic sensors and organic plasmon emitting diodes ( Organic Plasmon Emitting Diode) or the like is particularly preferably an OLED.
  • OLED organic light emitting diode
  • OCV organic photovoltaic cells
  • OFETs organic field effect transistors
  • organic light-emitting field effect transistors organic lasers
  • organic spintronic devices organic spintronic devices
  • organic sensors and organic plasmon emitting diodes Organic Plasmon Emitting Diode
  • Organic Plasmon Emitting Diode Organic Plasmon Emitting Diode
  • the invention further relates to an organic electronic device comprising at least one organometallic complex, polymer or mixture as described above.
  • an organic electronic device comprises at least one cathode, an anode and a functional layer between the cathode and the anode, wherein said functional layer comprises at least one organic mixture as described above.
  • the organic electronic device may be selected from, but not limited to, an organic light emitting diode (OLED), an organic photovoltaic cell (OPV), an organic light emitting cell (OLEEC), an organic field effect transistor (OFET), an organic light emitting field effect transistor, Organic lasers, organic spintronic devices, organic sensors and organic plasmon emitting diodes (Organic Plasmon Emitting Diode), etc., particularly preferred are organic electroluminescent devices such as OLED, OLEEC, organic light-emitting field effect transistors.
  • the electroluminescent device has an emissive layer comprising an organometallic complex or polymer or mixture as described above.
  • a substrate an anode, at least one light-emitting layer, and a cathode are included.
  • the substrate can be opaque or transparent.
  • a transparent substrate can be used to make a transparent light-emitting component. See, for example, Bulovic et al. Nature 1996, 380, p29, and Gu et al, Appl. Phys. Lett. 1996, 68, p2606.
  • the substrate can be rigid or elastic.
  • the substrate can be plastic, metal, semiconductor wafer or glass.
  • the substrate has a smooth surface. Substrates without surface defects are a particularly desirable choice.
  • the substrate is flexible, optionally in the form of a polymer film or plastic, having a glass transition temperature Tg of 150 ° C or higher, preferably more than 200 ° C, more preferably more than 250 ° C, preferably More than 300 ° C. Examples of suitable flexible substrates are poly(ethylene terephthalate) (PET) and polyethylene glycol (2,6-naphthalene) (PEN).
  • PET poly(ethylene terephthalate)
  • PEN polyethylene glycol (2,6-na
  • the anode can comprise a conductive metal or metal oxide, or a conductive polymer.
  • the anode can easily inject holes into a hole injection layer (HIL) or a hole transport layer (HTL) or a light-emitting layer.
  • HIL hole injection layer
  • HTL hole transport layer
  • the work function of the anode and the absolute value of the difference between the HOMO level or the valence band level of the illuminant in the luminescent layer or the p-type semiconductor material as the HIL or HTL or electron blocking layer (EBL) is less than 0.5.
  • the eV is preferably less than 0.3 eV, preferably less than 0.2 eV.
  • anode material examples include, but are not limited to, Al, Cu, Au, Ag, Mg, Fe, Co, Ni, Mn, Pd, Pt, ITO, aluminum-doped zinc oxide (AZO), and the like.
  • suitable anode materials are known and can be readily selected for use by one of ordinary skill in the art.
  • the anode material can be deposited using any suitable technique, such as a suitable physical vapor deposition process, including radio frequency magnetron sputtering, vacuum thermal evaporation, electron beam (e-beam), and the like.
  • the anode is patterned. Patterned ITO conductive substrates are commercially available and can be used to prepare devices in accordance with the present invention.
  • the cathode can include a conductive metal or metal oxide.
  • the cathode can easily inject electrons into the EIL or ETL or directly into the luminescent layer.
  • the work function of the cathode and the LUMO level of the illuminant or the n-type semiconductor material as an electron injection layer (EIL) or electron transport layer (ETL) or hole blocking layer (HBL) in the luminescent layer or
  • EIL electron injection layer
  • ETL electron transport layer
  • HBL hole blocking layer
  • the absolute value of the difference in conduction band energy levels is less than 0.5 eV, preferably less than 0.3 eV, and most preferably less than 0.2 eV.
  • all materials which can be used as cathodes for OLEDs are possible as cathode materials for the devices of the invention.
  • cathode material examples include, but are not limited to, Al, Au, Ag, Ca, Ba, Mg, LiF/Al, MgAg alloy, BaF 2 /Al, Cu, Fe, Co, Ni, Mn, Pd, Pt, ITO, and the like.
  • the cathode material can be deposited using any suitable technique, such as a suitable physical vapor deposition process, including radio frequency magnetron sputtering, vacuum thermal evaporation, electron beam (e-beam), and the like.
  • the OLED may further include other functional layers such as a hole injection layer (HIL), a hole transport layer (HTL), an electron blocking layer (EBL), an electron injection layer (EIL), an electron transport layer (ETL), and a hole blocking layer.
  • HIL hole injection layer
  • HTL hole transport layer
  • EBL electron blocking layer
  • EIL electron injection layer
  • ETL electron transport layer
  • HBL hole blocking layer
  • the light-emitting device has an emission wavelength of between 300 and 1000 nm, preferably between 350 and 900 nm, more preferably between 400 and 800 nm.
  • the invention further relates to the use of an electroluminescent device according to the invention in various electronic devices, including, but not limited to, display devices, illumination devices, light sources, sensors and the like.
  • a dry schlenck bottle was vacuum-filled with nitrogen three times, then bipyrrole (0.034 g, 0.26 mmol) and 5 mL of dry t-butylbenzene were added under a stream of nitrogen, and n-butyllithium (0.52 mmol, 0.208) was added at 0 °C. mL, 2.5 M), stirring for 30 minutes, then adding 1-e (0.15 g, 0.22 mmol) of tert-butylbenzene solution 8 mL under a nitrogen stream, stirring at 160 ° C for 24 hours, cooling to room temperature, steaming off under reduced pressure The butylbenzene was extracted with water and dichloromethane, and the organic layer was evaporated,jjjjjjjj
  • a dry schlenck bottle was vacuum-filled with nitrogen three times, then hydrazine (0.060 g, 0.26 mmol) and 5 mL of dry t-butylbenzene were added under a stream of nitrogen, and n-butyllithium (0.52 mmol, 0.208 mL, 2.5 M), the reaction was stirred for 30 minutes, then 8 mL of 1-e (0.15 g, 0.22 mmol) t-butylbenzene solution was added under a nitrogen stream, and the reaction was stirred at 160 ° C for 24 hours, cooled to room temperature, and evaporated under reduced pressure.
  • tert-Butylbenzene was extracted with water and dichloromethane, and the organic layer was evaporated,jjjjjjj
  • the energy level of the metal organic complex Ir-1-Ir-12 can be obtained by quantum calculation, for example, by TD-DFT (time-dependent density functional theory) by Gaussian 09W (Gaussian Inc.), and the specific simulation method can be found in WO2011141110.
  • TD-DFT time-dependent density functional theory
  • Gaussian 09W Gaussian Inc.
  • the specific simulation method can be found in WO2011141110.
  • the energy structure of the organic molecule is determined by TD-DFT (time-dependent density functional theory).
  • the HOMO and LUMO levels are calculated according to the following calibration formula
  • HOMO(eV) ((HOMO(Gaussian) ⁇ 27.212)-0.9899)/1.1206
  • HOMO(G) and LUMO(G) are direct calculation results of Gaussian 03W, and the unit is Hartree.
  • the results are shown in Table 1:
  • Figure 1 shows the photoluminescence spectra of Ir-5 and Ir-6, wherein the emission peak of Ir-5 is 519 nm, and the emission peak of Ir-6 is 472 and 504 nm. Therefore, Ir-5 and Ir-6 are expected to be used as OLEDs as blue-green light objects.
  • Example 15 Method for preparing OLED device
  • the structure of the OLED device is: ITO/NPD (60 nm)/10% Ir-1 to Ir-12: mCP (45 nm) / TPBi (35 nm) / LiF (1 nm) / Al (150 nm) / cathode
  • conductive glass substrate When used for the first time, it can be cleaned with a variety of solvents, such as chloroform, ketone, isopropanol, and then subjected to ultraviolet ozone plasma treatment:
  • HTL 60nm
  • EML 45nm
  • ETL 35nm
  • cathode Li F / AI (1nm / 150nm) in a high vacuum (1x10 -6 mbar) in the thermal evaporation;
  • the device is encapsulated in a chlorine glove box with UV-curable resin.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明涉及了一种新型有机金属配合物,及其在有机电子器件,特别是在有机磷光发光二极管中的应用。本发明还涉及包含有按照本发明的金属有机配合物的有机电子器件,特别是有机发光二极管,及其在显示及照明技术中的应用。通过器件结构优化,改变金属配合物在基质中的浓度,提高器件性能,实现高效高亮度高稳定的OLED器件,为全彩显示和照明应用提供了较好的材料选项。

Description

一种有机金属配合物,包含其的聚合物、混合物和组合物,及其在电子器件中的应用
相关申请
本申请要求2017年12月28日申请的,申请号为201711498380.6,名称为“一种有机金属配合物,包含其的聚合物、混合物和组合物,及其在电子器件中的应用”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本发明涉及电致发光材料领域,尤其涉及一种有机金属配合物,包含其的聚合物、混合物和组合物,及其在有机电子器件,特别是在有机磷光发光二极管中的应用。本发明还涉及一种包含本发明的有机金属配合物的有机电子器件,及其应用。
背景技术
由于有机半导体材料在合成上具有多样性、制造成本相对较低和优良的光学与电学性能,有机发光二极管(OLED)在光电器件(例如平板显示器和照明)的应用方面具有很大的潜力。
为了提高有机发光二极管的发光效率,各种基于荧光和磷光的发光材料体系已被开发出来,使用荧光材料的有机发光二极管具有可靠性高的特点,但其在电场激发下其内部电致发光量子效率被限制为25%,这是因为激子产生单重激发态和三重激发态的概率比为1:3。1999年,美国南加州大学的Thomson教授和普林斯顿大学的Forrest教授将三(2-苯基吡啶)合铱Ir(ppy) 3掺杂到N,N-二咔唑联苯(CBP)中,成功制备了绿色电致磷光器件,这引起人们对配合物磷光材料的浓厚兴趣。由于重金属的引入,提高了分子自旋轨道耦合,缩短了磷光寿命,增强了分子的系间窜越,使磷光得以顺利发射。而且这类配合物反应温和,可以方便的改变配合物结构和取代基团,调节发射波长,得到性能优良的电致磷光材料。至今,磷光OLED的内部量子效率已接近100%。然而,大多数磷光材料发光光谱过宽,色纯度较差,不利于高端显示,并且这类磷光OLED的稳定性还需进一步提高。
因此新型的高性能的磷光金属配合物材料急需开发出来。
发明内容
本发明的一个主要目的在于提供一种有机金属配合物,包含其的聚合物、混合物和组合物,及其在有机电子器件中应用;旨在提供一种新型的高性能的磷光金属配合物材料,特别是包含有三种不同价态的阴离子配体的金属配合物,为材料设计提供更大的选项,便于解决现有磷光材料发光光谱过宽,色纯度较差等问题,提高器件性能。本发明的另一个目的在于提供一种包含有本发明的有机金属配合物的有机电子器件,及其应用。
本发明的技术方案如下:
一种有机金属配合物,如通式(I)所示:
M(L 1L 2L 3)  (I)
其中:
L 1为一价阴离子配体,L 2为二价阴离子配体,L 3为零价中性配体;
M为一种过渡族金属元素。
在一些优选的实施例中,所述的有机金属配合物,具有通式(II)所示的结构:
Figure PCTCN2018122487-appb-000001
其中:
Y1^Y2为二齿一价阴离子配体,Y3^Y4为二齿二价阴离子配体,Y5^Y6为二齿零价中性配体;
所述的有机金属配合物,其中M优先选自钌(Ru)、铑(Rh)、饿(Os)、铼(Re)和铱(Ir)中的任一个。
一种高聚物,包含至少一个含有通式(I)表示的结构单元的重复单元。
一种混合物,包含如上所述的有机金属配合物或高聚物,及至少另一种的有机功能材料,所述另一种的有机功能材料可选自空穴注入材料(HIM),空穴传输材料(HTM),电子传输材料(ETM),电子注入材料(EIM),电子阻挡材料(EBM),空穴阻挡材料(HBM),发光材料(Emitter),主体材料(Host)和有机染料。
一种组合物,包含如上所述的有机金属配合物或高聚物或混合物,及至少一种有机溶剂。
一种有机电子器件,包含一种如上所述的有机金属配合物或高聚物或混合物或组合物。
一种如上所述的有机电子器件,所述的有机电子器件选自有机发光二极管(OLED)、有机光伏电池(OPV)、有机发光电池(OLEEC)、有机场效应管(OFET)、有机发光场效应管、有机激光器、有机自旋电子器件、有机传感器及有机等离子体激元发射二极管(Organic Plasmon Emitting Diode)。
有益效果:本发明通过在磷光金属配合物中引入不同价位配体,来增加磷光金属配合物的发光效率,增长器件寿命,提高色纯度,以及调节配合物的发光波长,为高效磷光发光器件提供更多的磷光发光材料选择。
附图说明
图1为有机金属配合物Ir-5和Ir-6的光致发光光谱。
具体实施方式
本发明提供一种有机金属配合物及其在有机电致发光器件中的应用,为使本发明的目的、技术方案及效果更加清楚、明确,以下对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
在本发明中,主体材料、基质材料、Host材料和Matrix材料具有相同的含义,可以互换。
在本发明中,金属有机络合物,金属有机配合物,有机金属配合物具有相同的含义,可以互换。
在本发明中,如下通式所示的配体在文中以Y1^Y2表示:
Figure PCTCN2018122487-appb-000002
在本发明实施例中,单线态,单重态具有相同的含义,可以互换。
在本发明实施例中,三线态,三重态具有相同的含义,可以互换。
高聚物,即Polymer,包括均聚物(homopolymer),共聚物(copolymer),镶嵌共聚物(block copolymer)。另外在本发明中,高聚物也包括树状物(dendrimer),有关树状物的合成及应用请 参见【Dendrimers and Dendrons,Wiley-VCH Verlag GmbH&Co.KGaA,2002,Ed.George R.Newkome,Charles N.Moorefield,Fritz Vogtle.】。
本发明提供一种有机金属配合物,具有通式(I)所示的结构:
M(L 1L 2L 3)     (I)
其中:
L 1为一价阴离子配体,L 2为二价阴离子配体,L 3为零价中性配体;
M为一种过渡族金属元素。
在某些实施例中,所述的配体L 1,L 2,L 3可以选自一齿,或二齿,或三齿配体。
在一个特别优先的实施例中,按照本发明的有机金属配合物选自如下通式(II):
Figure PCTCN2018122487-appb-000003
其中:
Y1^Y2为二齿一价阴离子配体,Y3^Y4为二齿二价阴离子配体,Y5^Y6为二齿零价中性配体;
M为一种过渡族金属元素。
在一个优选的实施例中,按照本发明的有机金属配合物,所述的金属元素M选自过渡金属钌(Ru)、铑(Rh)、饿(Os)、铼(Re)和铱(Ir)中的任一个;
在一个最为优选的实施例中,所述的金属元素M选自Ir。
在一个优选的实施例中,按照本发明的有机金属配合物,所述的配体L 1或二齿一价阴离子配体Y1^Y2选自如下通式S1至S14中任何一个:
Figure PCTCN2018122487-appb-000004
其中:
R 1是取代基,多次出现时,相互独立的选自D,或F,或Cl,或Br,或I,或CN,或NO 2,或CF 3,或B(OR 2) 2,或Si(R 2) 3,或直链烷烃,或烷烃醚,或烷烃硫醚,或支链烷烃,或环烷烃,且R 1中一个或多个非相邻的亚甲基(CH 2)可以被R 3替换;
R 3多次出现时,独立选自R 2C=CR 2,C=C,Si(R 2) 2,Ge(R 2) 2,Sn(R 2) 2,C=O,C=S,C=Se, C=N(R 2),O,S,-COO-,或CONR 2
R 2每次出现时,相互独立选自H、D、具有1至20个C原子的直链烷基、具有1至20个C原子的烷氧基、具有1至20个C原子的硫代烷氧基基团、具有3至20个C原子的支链或环状的烷基、具有3至20个C原子的支链或环状的烷氧基、具有3至20个C原子的支链或环状的硫代烷氧基基团、甲硅烷基基团、具有1至20个C原子的取代的酮基基团、具有2至20个C原子的烷氧基羰基基团、具有7至20个C原子的芳氧基羰基基团、氰基基团、氨基甲酰基基团、卤甲酰基基团、甲酰基基团、异氰基基团、异氰酸酯基团、硫氰酸酯基团、异硫氰酸酯基团、羟基基团、硝基基团、CF 3基团、Cl、Br、F、可交联的基团、具有5至40个环原子的取代或未取代的芳族或杂芳族环系以及具有5至40个环原子的芳氧基或杂芳氧基基团中的一种或多种;
虚线表示与金属元素M直接相连的键;
x为
Figure PCTCN2018122487-appb-000005
的任一整数,y为
Figure PCTCN2018122487-appb-000006
的任一整数,z为
Figure PCTCN2018122487-appb-000007
的任一整数。
在另一个优先的实施例中,按照本发明的有机金属配合物,所述的配体L 2或二齿二价阴离子配体Y3^Y4选自如下通式D1-D9中的任何一个:
Figure PCTCN2018122487-appb-000008
其中R 1、x、y、z含义同上所述,虚线表示与金属元素M直接相连的键。
在另一个优先的实施例中,按照本发明的有机金属配合物,所述的配体L 3或二齿零价中性配体Y5^Y6选自如下通式N1-N8中的任何一个:
Figure PCTCN2018122487-appb-000009
其中R 1、x、y、z含义同上所述,u表示
Figure PCTCN2018122487-appb-000010
的任一整数,虚线表示与金属元素M直接相连的键。
在一个非常优选的实施例中,按照本发明的有机金属配合物,选自以下通式中的一个:
Figure PCTCN2018122487-appb-000011
Figure PCTCN2018122487-appb-000012
Figure PCTCN2018122487-appb-000013
其中,R 1、x、y、z、u含义如上所述;Y1^Y2为一价阴离子配体。
以下列出按照本发明的有机金属配合物的例子,但不限于,所示的结构式可以进一步被任意取代:
Figure PCTCN2018122487-appb-000014
Figure PCTCN2018122487-appb-000015
Figure PCTCN2018122487-appb-000016
Figure PCTCN2018122487-appb-000017
Figure PCTCN2018122487-appb-000018
Figure PCTCN2018122487-appb-000019
Figure PCTCN2018122487-appb-000020
Figure PCTCN2018122487-appb-000021
Figure PCTCN2018122487-appb-000022
Figure PCTCN2018122487-appb-000023
Figure PCTCN2018122487-appb-000024
Figure PCTCN2018122487-appb-000025
Figure PCTCN2018122487-appb-000026
Figure PCTCN2018122487-appb-000027
Figure PCTCN2018122487-appb-000028
按照发明的有机金属配合物,可以作为功能材料用于电子器件中。有机功能材料可分为空穴注入材料(HIM),空穴传输材料(HTM),电子传输材料(ETM),电子注入材料(EIM),电子阻挡材料(EBM),空穴阻挡材料(HBM),发光体(Emitter),主体材料(Host)。
在某些实施例中,按照本发明的有机金属配合物是不发光材料的功能材料。
在一个特别优选的实施例中,按照本发明的有机金属配合物是发光材料,其发光波长在300到1000nm之间,较好是在350到900nm之间,更好是在400到800nm之间。这里指的发光是指光致发光或电致发光。
在某些优选的实施例中,按照本发明的有机金属配合物,其光致或电致发光效率≥30%,较优是≥40%,更优是≥50%,最优是≥60%。
本发明还进一步涉及一种高聚物,包含至少一个含有通式(I)表示的结构单元的重复单元。
在一个优选的实施例中,其中的高聚物的合成方法选自SUZUKI-,YAMAMOTO-,STILLE-,NIGESHI-,KUMADA-,HECK-,SONOGASHIRA-,HIYAMA-,FUKUYAMA-,HARTWIG-BUCHWALD-和ULLMAN。
在一个优选的实施例中,按照本发明的高聚物,其玻璃化温度(Tg)≥100℃,优选为≥120℃,更优为≥140℃,更更优为≥160℃,最优为≥180℃。
在一个优选的实施例中,按照本发明的高聚物,其分子量分布(PDI)取值范围优选为1~5;较优选为1~4;更优选为1~3,更更优选为1~2,最优选为1~1.5。
在一个优选的实施例中,按照本发明的高聚物,其重均分子量(Mw)取值范围优选为1万~100万;较优选为5万~50万;更优选为10万~40万,更更优选为15万~30万,最优选为20万~25万。
在某些实施例中,按照本发明的高聚物是一种非共轭高聚物。优选的是一非共轭高聚物,其中在侧链上包含一个如通式(I)所示的重复单元。
本发明还提供一种混合物,包含有至少一种所述的有机金属配合物或高聚物,及至少另一种有机功能材料,所述至少另一种的有机功能材料可选自于空穴注入材料(HIM),空穴传输材料(HTM),电子传输材料(ETM),电子注入材料(EIM),电子阻挡材料(EBM),空穴阻挡材料(HBM),发光材料(Emitter),主体材料(Host)和有机染料。例如在WO2010135519A1,US20090134784A1和WO 2011110277A1中对各种有机功能材料有详细的描述,特此将此3专利文件中的全部内容并入本文作为参考。
在某些实施例中,按照本发明的混合物中,金属有机配合物的含量为0.01至30wt%,较好的是0.5至20wt%,更好的是2至15wt%,最好的是5至15wt%。
在一个优选的实施方案中,按照本发明的混合物包含一种按照本发明的金属有机配合物或高聚物和一种三重态主体材料。
在另一个优选的实施方案中,按照本发明的混合物包含一种按照本发明的金属有机配合物或高聚物,一种三重态基质材料和另一种的三重态发光体。
在另一个优选的实施方案中,按照本发明的混合物包含一种按照本发明的金属有机配合物或高聚物和一种热激活延迟荧光发光材料(TADF)。
在另一个优选的实施方案中,按照本发明的混合物包含一种按照本发明的金属有机配合物或高聚物,一种三重态基质材料和一种热激活延迟荧光发光材料(TADF)。
下面对三重态基质材料,三重态发光体和TADF材料作一些较详细的描述(但不限于此)。
1.三重态主体材料(Triplet Host):
三重态主体材料的例子并不受特别的限制,任何金属络合物或有机化合物都可能被用作为主体,只要其三重态能级比发光体,特别是三重态发光体或磷光发光体更高,可用作三重态主体(Host)的金属络合物的例子包括(但不限于)如下的一般结构:
Figure PCTCN2018122487-appb-000029
M3是一金属;(Y 7-Y 8)是两齿配体,Y 7和Y 8独立地选自C,N,O,P,和S;L是一个辅助配体;m3是一整数,其值从1到此金属的最大配位数;在一个优先的实施方案中,可用作三重态主体的金属络合物有如下形式:
Figure PCTCN2018122487-appb-000030
(O-N)是两齿配体,其中金属与O和N原子配位,m3是一整数,其值从1到此金属的最大配位数;
在某一个实施方案中,M3可选自于Ir和Pt。
可作为三重态主体的有机化合物的例子选自包含有环芳香烃基的化合物,例如苯、联苯、三苯基苯、苯并芴;包含有芳香杂环基的化合物,如二苯并噻吩、二苯并呋喃、二苯并硒吩、呋喃、噻吩、苯并呋喃、苯并噻吩、苯并硒吩、咔唑、二苯并咔唑,吲哚咔唑、吡啶吲哚、吡咯二吡啶、吡唑、咪唑、三唑类、恶唑、噻唑、恶二唑、恶三唑、二恶唑、噻二唑、吡啶、 哒嗪、嘧啶、吡嗪、三嗪类、恶嗪、恶噻嗪、恶二嗪、吲哚、苯并咪唑、吲唑、恶唑、二苯并恶唑、苯异恶唑、苯并噻唑、喹啉、异喹啉、邻二氮杂萘、喹唑啉、喹喔啉、萘、酞、蝶啶、氧杂蒽、吖啶、吩嗪、吩噻嗪、吩恶嗪、苯并呋喃吡啶、呋喃并吡啶、苯并噻吩吡啶、噻吩吡啶、苯并硒吩吡啶和硒吩苯并二吡啶;包含有2至10环结构的基团,它们可以是相同或不同类型的环芳香烃基团或芳香杂环基团,并彼此直接或通过至少一个下述的基团连结在一起,如氧原子、氮原子、硫原子、硅原子、磷原子、硼原子、链结构单元和脂肪环基团。其中,每个Ar可以进一步被取代,取代基可选为氢、氘、氰基、卤素、烷基、烷氧基、氨基、烯、炔、芳烷基、杂烷基、芳基和杂芳基。
在一个优先的实施方案中,三重态主体材料可选于包含至少一个下述基团的化合物:
Figure PCTCN2018122487-appb-000031
R 2-R 7的含义同R 1,X 1~X 9选于CR 1R 2或NR 1,Y选自CR 1R 2或NR 1或O或S,n2选自1-20的任一整数,Ar 1~Ar 3每次出现时,独立选自芳香基或杂芳香基。R 1,R 2的含义同上所述。
在下面的表中列出合适的三重态主体材料的例子但不局限于:
Figure PCTCN2018122487-appb-000032
Figure PCTCN2018122487-appb-000033
2.热激活延迟荧光发光材料(TADF):
传统有机荧光材料只能利用电激发形成的25%单线态激子发光,器件的内量子效率较低(最高为25%)。尽管磷光材料由于重原子中心强的自旋-轨道耦合增强了系间穿越,可以有效利用电激发形成的单线态激子和三线态激子发光,使器件的内量子效率达到100%。但磷光材料昂贵,材料稳定性差,器件效率滚降严重等问题限制了其在OLED中的应用。热激活延迟荧光发光材料是继有机荧光材料和有机磷光材料之后发展的第三代有机发光材料。该类材料一般具有小的单线态-三线态能级差(ΔEst),三线态激子可以通过反系间穿越转变成单线态激子发光。这可以充分利用电激发下形成的单线态激子和三线态激子。器件内量子效率可达到100%。同时材料结构可控,性质稳定,价格便宜无需要贵金属,在OLED领域的应用前景广阔。
TADF材料需要具有较小的单线态-三线态能级差,较好是ΔEst<0.3eV,次好是ΔEst<0.25eV,更好是ΔEst<0.20eV,最好是ΔEst<0.1eV。在一个优选的实施方案中,TADF材料有比较小的ΔEst,在另一个优先的实施方案中,TADF有较好的荧光量子效率。一些TADF发光的材料可在下述专利文件中找到:CN103483332(A),TW201309696(A),TW201309778(A),TW201343874(A),TW201350558(A),US20120217869(A1),WO2013133359(A1),WO2013154064(A1),Adachi,et.al.Adv.Mater.,21,2009,4802,Adachi,et.al.Appl.Phys.Lett.,98,2011,083302,Adachi,et.al.Appl.Phys.Lett.,101,2012,093306,Adachi,et.al.Chem.Commun.,48,2012,11392,Adachi,et.al.Nature Photonics,6,2012,253,Adachi,et.al.Nature,492,2012,234,Adachi,et.al.J.Am.Chem.Soc,134,2012,14706,Adachi,et.al.Angew.Chem.Int.Ed,51,2012,11311,Adachi,et.al.Chem.Commun.,48,2012,9580,Adachi,et.al.Chem.Commun.,48,2013,10385,Adachi,et.al.Adv.Mater.,25,2013,3319,Adachi,et.al.Adv.Mater.,25,2013,3707,Adachi,et.al.Chem.Mater.,25,2013,3038,Adachi,et.al.Chem.Mater.,25,2013,3766,Adachi,et.al.J.Mater.Chem.C.,1,2013,4599,Adachi,et.al.J.Phys.Chem.A.,117,2013,5607,特此将上述列出的专利或文章文件中的全部内容并入本文作为参考。
下面的表中列出一些合适的TADF发光材料的例子:
Figure PCTCN2018122487-appb-000034
Figure PCTCN2018122487-appb-000035
3.三重态发光体(Triplet Emitter)
三重态发光体也称磷光发光体。在一个优先的实施方案中,三重态发光体是有通式M(L)n的金属络合物,其中M是一金属原子,L每次出现时可以是相同或不同,是一有机配体,它通过一个或多个位置间接或配位连接到金属原子M上,n是一个大于1的整数,较好选是1,2,3,4,5或6。可选地,这些金属络合物通过一个或多个位置联接到一个聚合物上,最好是通过有机配体。
在一个优选的实施方案中,金属原子M选自于过渡金属元素或镧系元素或锕系元素,优先选择Ir,Pt,Pd,Au,Rh,Ru,Os,Sm,Eu,Gd,Tb,Dy,Re,Cu或Ag,特别优先选择Os,Ir,Ru,Rh,Re,Pd,Au或Pt。
优先地,三重态发光体包含有螯合配体,即配体,通过至少两个结合点与金属配位,特别优先考虑的是三重态发光体包含有两个或三个相同或不同的双齿或多齿配体。螯合配体有利于提高金属络合物的稳定性。
有机配体的例子可选自苯基吡啶衍生物,7,8-苯并喹啉衍生物,2(2-噻吩基)吡啶衍生物,2(1-萘基)吡啶衍生物,或2苯基喹啉衍生物。所有这些有机配体都可能被取代,例如 被含氟或三氟甲基取代。辅助配体可优先选自乙酸丙酮或苦味酸。
在一个优选的实施方案中,可用作三重态发光体的金属络合物有如下形式:
Figure PCTCN2018122487-appb-000036
其中M是一金属,选自于过渡金属元素或镧系或锕系元素,特别优选的是Ir,Pt,Au;
Ar 1每次出现时可以是相同或不同,是一个环状基团,其中至少包含有一个施主原子,即有一孤对电子的原子,如氮或磷,通过它环状基团与金属配位连接;Ar 2每次出现时可以是相同或不同,是一个环状基团,其中至少包含有一个C原子,通过它环状基团与金属连接;Ar 1和Ar 2由共价键联接在一起,可各自携带一个或多个取代基团,它们也可再通过取代基团联接在一起;L’每次出现时可以是相同或不同,是一个双齿螯合的辅助配体,最好是单阴离子双齿螯合配体;q1可以是0,1,2或3,优先地是2或3;q2可以是0,1,2或3,优先地是1或0。
一些三重态发光体的材料及其应用的例子可在下述专利文件和文献中找到:WO 200070655,WO 200141512,WO 200202714,WO 200215645,EP 1191613,EP 1191612,EP 1191614,WO 2005033244,WO 2005019373,US 2005/0258742,WO 2009146770,WO 2010015307,WO 2010031485,WO 2010054731,WO 2010054728,WO 2010086089,WO 2010099852,WO 2010102709,US 20070087219A1,US 20090061681A1,US 20010053462A1,Baldo,Thompson et al.Nature 403,(2000),750-753,US 20090061681 A1,US 20090061681 A1,Adachi et al.Appl.Phys.Lett.78(2001),1622-1624,J.Kido et al.Appl.Phys.Lett.65(1994),2124,Kido et al.Chem.Lett.657,1990,US 2007/0252517 A1,Johnson et al.,JACS 105,1983,1795,Wrighton,JACS 96,1974,998,Ma et al.,Synth.Metals 94,1998,245,US 6824895,US 7029766,US 6835469,US 6830828,US 20010053462 A1,WO 2007095118 A1,US 2012004407A1,WO 2012007088A1,WO2012007087A1,WO 2012007086A1,US 2008027220A1,WO 2011157339A1,CN 102282150A,WO 2009118087A1,WO 2013107487A1,WO 2013094620A1,WO 2013174471A1,WO 2014031977A1,WO 2014112450A1,WO2014007565A1,WO 2014038456A1,WO 2014024131A1,WO 2014008982A1,WO2014023377A1。特此将上述列出的专利文件和文献中的全部内容并入本文作为参考。
在下面的表中列出一些合适的三重态发光体的例子:
Figure PCTCN2018122487-appb-000037
Figure PCTCN2018122487-appb-000038
本发明的一个目的是为蒸镀型OLED提供材料解决方案。
在某些实施例中,按照本发明的金属配合物,其分子量≤1200g/mol,优选≤1100g/mol,很优选≤1000g/mol,更优选≤950g/mol,最优选≤900g/mol。
本发明的另一个目的是为印刷OLED提供材料解决方案。
在某些实施例中,按照本发明的金属配合物,其分子量≥800g/mol,优选≥900g/mol,很优选≥1000g/mol,更优选≥1100g/mol,最优选≥1200g/mol。
在另一些实施例中,按照本发明的金属配合物,在25℃时,在甲苯中的溶解度≥2mg/ml,优选≥3mg/ml,更优选≥4mg/ml,最优选≥5mg/ml。
本发明还涉及一种组合物,包含至少一种如上所述的有机金属配合物或高聚物或混合物,及至少一种有机溶剂;所述的至少一种的有机溶剂选自芳族或杂芳族、酯、芳族酮或芳族醚、脂肪族酮或脂肪族醚、脂环族或烯烃类化合物,或硼酸酯或磷酸酯类化合物,或两种及两种以上溶剂的混合物。
在一个优选的实施例中,按照本发明的一种组合物,所述的至少的一种有机溶剂选自基于芳族或杂芳族的溶剂。
适合本发明的基于芳族或杂芳族溶剂的例子有,但不限制于:对二异丙基苯、戊苯、四氢萘、环己基苯、氯萘、1,4-二甲基萘、3-异丙基联苯、对甲基异丙苯、二戊苯、三戊苯、戊基甲苯、邻二乙苯、间二乙苯、对二乙苯、1,2,3,4-四甲苯、1,2,3,5-四甲苯、1,2,4,5-四甲苯、丁苯、十二烷基苯、二己基苯、二丁基苯、对二异丙基苯、环己基苯、苄基丁基苯、二甲基 萘、3-异丙基联苯、对甲基异丙苯、1-甲基萘、1,2,4-三氯苯、4,4-二氟二苯甲烷、1,2-二甲氧基-4-(1-丙烯基)苯、二苯甲烷、2-苯基吡啶、3-苯基吡啶、N-甲基二苯胺、4-异丙基联苯、α,α-二氯二苯甲烷、4-(3-苯基丙基)吡啶、苯甲酸苄酯、1,1-双(3,4-二甲基苯基)乙烷、2-异丙基萘、喹啉、异喹啉、2-呋喃甲酸甲酯、2-呋喃甲酸乙酯等;
适合本发明的基于芳族酮溶剂的例子有,但不限制于:1-四氢萘酮,2-四氢萘酮,2-(苯基环氧)四氢萘酮,6-(甲氧基)四氢萘酮,苯乙酮、苯丙酮、二苯甲酮、及它们的衍生物,如4-甲基苯乙酮、3-甲基苯乙酮、2-甲基苯乙酮、4-甲基苯丙酮、3-甲基苯丙酮、2-甲基苯丙酮等。
适合本发明的基于芳族醚溶剂的例子有,但不限制于:3-苯氧基甲苯、丁氧基苯、对茴香醛二甲基乙缩醛、四氢-2-苯氧基-2H-吡喃、1,2-二甲氧基-4-(1-丙烯基)苯、1,4-苯并二噁烷、1,3-二丙基苯、2,5-二甲氧基甲苯、4-乙基本乙醚、1,3-二丙氧基苯、1,2,4-三甲氧基苯、4-(1-丙烯基)-1,2-二甲氧基苯、1,3-二甲氧基苯、缩水甘油基苯基醚、二苄基醚、4-叔丁基茴香醚、反式-对丙烯基茴香醚、1,2-二甲氧基苯、1-甲氧基萘、二苯醚、2-苯氧基甲醚、2-苯氧基四氢呋喃、乙基-2-萘基醚。
在一些优选的实施例中,按照本发明的组合物,所述的至少一种的有机溶剂可选自:脂肪族酮,例如,2-壬酮、3-壬酮、5-壬酮、2-癸酮、2,5-己二酮、2,6,8-三甲基-4-壬酮、葑酮、佛尔酮、异佛尔酮、二正戊基酮等;或脂肪族醚,例如,戊醚、己醚、二辛醚、乙二醇二丁醚、二乙二醇二乙醚、二乙二醇丁基甲醚、二乙二醇二丁醚、三乙二醇二甲醚、三乙二醇乙基甲醚、三乙二醇丁基甲醚、三丙二醇二甲醚、四乙二醇二甲醚等。
在另一些优选的实施例中,按照本发明的组合物,所述的至少一种的有机溶剂可选自基于酯的溶剂:辛酸烷酯、癸二酸烷酯、硬脂酸烷酯、苯甲酸烷酯、苯乙酸烷酯、肉桂酸烷酯、草酸烷酯、马来酸烷酯、烷内酯、油酸烷酯等。特别优选辛酸辛酯、癸二酸二乙酯、邻苯二甲酸二烯丙酯、异壬酸异壬酯。
所述的溶剂可以是单独使用,也可以是作为两种或多种有机溶剂的混合物使用。
在某些优选的实施例中,按照本发明的一种组合物,包含至少一种如上所述的有机金属配合物或高聚物或混合物及至少一种有机溶剂,还可进一步包含另一种有机溶剂。另一种有机溶剂的例子包括(但不限于):甲醇、乙醇、2-甲氧基乙醇、二氯甲烷、三氯甲烷、氯苯、邻二氯苯、四氢呋喃、苯甲醚、吗啉、甲苯、邻二甲苯、间二甲苯、对二甲苯、1,4二氧杂环己烷、丙酮、甲基乙基酮、1,2二氯乙烷、3-苯氧基甲苯、1,1,1-三氯乙烷、1,1,2,2-四氯乙烷、醋酸乙酯、醋酸丁酯、二甲基甲酰胺、二甲基乙酰胺、二甲基亚砜、四氢萘、萘烷、茚和/或它们的混合物。
一些优选的实施例中,特别适合本发明的溶剂是汉森(Hansen)溶解度参数在以下范围内的溶剂:
δ d(色散力)在17.0~23.2MPa 1/2的范围,尤其是在18.5~21.0MPa 1/2的范围;
δ p(极性力)在0.2~12.5MPa 1/2的范围,尤其是在2.0~6.0MPa 1/2的范围;
δ h(氢键力)在0.9~14.2MPa 1/2的范围,尤其是在2.0~6.0MPa 1/2的范围。
按照本发明的组合物,其中有机溶剂在选取时需考虑其沸点参数。本发明中,所述的有机溶剂的沸点≥150℃;优选为≥180℃;较优选为≥200℃;更优为≥250℃;最优为≥275℃或≥300℃。这些范围内的沸点对防止喷墨印刷头的喷嘴堵塞是有益的。所述的有机溶剂可从溶剂体系中蒸发,以形成包含功能材料薄膜。
在一个优选的实施方案中,按照本发明的组合物是一溶液。
在另一个优选的实施方案中,按照本发明的组合物是一悬浮液。
本发明实施例中的组合物中可以包括0.01wt%至15wt%的按照本发明的有机金属配合物或高聚物或混合物,较好的是0.1wt%至10wt%,更好的是0.2wt%至5wt%,最好的是0.25至3wt%。
本发明还涉及所述组合物作为涂料或印刷油墨在制备有机电子器件时的用途,特别优选的是通过打印或涂布的制备方法。
其中,适合的打印或涂布技术包括(但不限于)喷墨打印,喷印(Nozzle Printing),活版印刷,丝网印刷,浸涂,旋转涂布,刮刀涂布,辊筒印花,扭转辊印刷,平版印刷,柔版印刷,轮转印刷,喷涂,刷涂或移印,狭缝型挤压式涂布等。首选的是凹版印刷,喷印及喷墨印刷。溶液或悬浮液可以另外包括一个或多个组份例如表面活性化合物,润滑剂,润湿剂,分散剂,疏水剂,粘接剂等,用于调节粘度,成膜性能,提高附着性等。有关打印技术,及其对有关溶液的相关要求,如溶剂及浓度,粘度等的详细信息请参见Helmut Kipphan主编的《印刷媒体手册:技术和生产方法》(Handbook of Print Media:Technologies and Production Methods),ISBN 3-540-67326-1。
本发明还提供一种如上所述的有机金属配合物、高聚物、混合物或组合物在有机电子器件中的应用,所述的有机电子器件可选于,但不限于,有机发光二极管(OLED),有机光伏电池(OPV),有机发光电池(OLEEC),有机场效应管(OFET),有机发光场效应管,有机激光器,有机自旋电子器件,有机传感器及有机等离激元发射二极管(Organic Plasmon Emitting Diode)等,特别优选为OLED。本发明实施例中,优选将所述有机金属配合物或高聚物用于OLED器件的发光层。
本发明进一步涉及一种有机电子器件,至少包含一种如上所述的有机金属配合物、高聚物或混合物。一般地,此种有机电子器件至少包含一个阴极,一个阳极及位于阴极和阳极之间的一个功能层,其中所述的功能层中至少包含一种如上所述的有机混合物。所述的有机电子器件可选自于,但不限于,有机发光二极管(OLED),有机光伏电池(OPV),有机发光电池(OLEEC),有机场效应管(OFET),有机发光场效应管,有机激光器,有机自旋电子器件,有机传感器及有机等离激元发射二极管(Organic Plasmon Emitting Diode)等,特别优选的是有机电致发光器件,如OLED,OLEEC,有机发光场效应管。
在某些特别优选的实施例中,所述的电致发光器件,其发光层包含一种如上所述的有机金属配合物或高聚物或混合物。
在以上所述的发光器件,特别是OLED中,包括一基片,一阳极,至少一发光层,一阴极。
基片可以是不透明或透明。一个透明的基板可以用来制造一个透明的发光元器件。例如可参见,Bulovic等Nature 1996,380,p29,和Gu等,Appl.Phys.Lett.1996,68,p2606。基片可以是刚性的或弹性的。基片可以是塑料,金属,半导体晶片或玻璃。最好是基片有一个平滑的表面。无表面缺陷的基板是特别理想的选择。在一个优选的实施例中,基片是柔性的,可选于聚合物薄膜或塑料,其玻璃化温度Tg为150℃以上,较好是超过200℃,更好是超过250℃,最好是超过300℃。合适的柔性基板的例子有聚(对苯二甲酸乙二醇酯)(PET)和聚乙二醇(2,6-萘)(PEN)。
阳极可包括一导电金属或金属氧化物,或导电聚合物。阳极可以容易地注入空穴到空穴注入层(HIL)或空穴传输层(HTL)或发光层中。在一个实施例中,阳极的功函数和发光层中的发光体或作为HIL或HTL或电子阻挡层(EBL)的p型半导体材料的HOMO能级或价带能级的差的绝对值小于0.5eV,较好是小于0.3eV,最好是小于0.2eV。阳极材料的例子包括但不限于:Al、Cu、Au、Ag、Mg、Fe、Co、Ni、Mn、Pd、Pt、ITO、铝掺杂氧化锌(AZO)等。其他合适的阳极材料是已知的,本领域普通技术人员可容易地选择使用。阳极材料可以使用任何合适的技术沉积,如一合适的物理气相沉积法,包括射频磁控溅射,真空热蒸发,电子束(e-beam)等。在某些实施例中,阳极是图案结构化的。图案化的ITO导电基板可在市场上买到,并且可以用来制备根据本发明的器件。
阴极可包括一导电金属或金属氧化物。阴极可以容易地注入电子到EIL或ETL或直接到发光层中。在一个的实施例中,阴极的功函数和发光层中发光体或作为电子注入层(EIL)或电子传输层(ETL)或空穴阻挡层(HBL)的n型半导体材料的LUMO能级或导带能级的差的绝对值小于0.5eV,较好是小于0.3eV,最好是小于0.2eV。原则上,所有可用作OLED的阴极的材料都可能作为本发明器件的阴极材料。阴极材料的例子包括但不限于:Al、Au、Ag、Ca、Ba、Mg、LiF/Al、MgAg合金、BaF 2/Al、Cu、Fe、Co、Ni、Mn、Pd、Pt、ITO等。阴极材 料可以使用任何合适的技术沉积,如一合适的物理气相沉积法,包括射频磁控溅射,真空热蒸发,电子束(e-beam)等。
OLED还可以包含其他功能层,如空穴注入层(HIL)、空穴传输层(HTL)、电子阻挡层(EBL)、电子注入层(EIL)、电子传输层(ETL)、空穴阻挡层(HBL)。适合用于这些功能层中的材料在上面及在WO2010135519A1、US20090134784A1和WO2011110277A1中有详细的描述,特此将此3篇专利文件中的全部内容并入本文作为参考。
按照本发明的发光器件,其发光波长在300到1000nm之间,较好的是在350到900nm之间,更好的是在400到800nm之间。
本发明还涉及按照本发明的电致发光器件在各种电子设备中的应用,包含,但不限于,显示设备,照明设备,光源,传感器等等。
下面将结合优选实施例对本发明进行了说明,但本发明并不局限于下述实施例,应当理解,所附权利要求概括了本发明的范围在本发明构思的引导下本领域的技术人员应意识到,对本发明的各实施例所进行的一定的改变,都将被本发明的权利要求书的精神和范围所覆盖。
金属有机配合物及其合成
Figure PCTCN2018122487-appb-000039
实施例1:金属有机配合物Ir-1的合成
Figure PCTCN2018122487-appb-000040
化合物1-a的合成:
在一个干燥的双口瓶里放置1,5-环辛二烯氯化铱二聚体(0.44g,0.655mmol),联苯烯(0.2g,1.31mmol),抽真空充氮气循环三次,然后加入5mL干燥的二氯甲烷,90℃下搅拌反应2小时,冷却到室温,抽滤,滤饼用二氯甲烷洗,得到黄色固体0.54g,产率80%。
化合物1-b的合成:
在一个干燥的schlenck瓶里放置1-a(0.103g,0.1mmol),联吡啶(0.032g,0.2mmol),三氟甲磺酸银(0.057g,0.22mmol),抽真空充氮气循环三次,然后再氮气流下加入25mL干燥的二氯甲烷,室温下搅拌2小时,抽滤,滤液浓缩至1mL,然后加入大量的石油醚析出固体,抽滤,干燥得到黄色固体0.06g,产率80%。
配合物Ir-1的合成:
在一个干燥的双口瓶里放置1-b(0.079g,0.1mmol),2-苯基吡啶(0.019g,0.12mmol),抽真空充氮气循环三次,然后在氮气流下加入10mL乙二醇单乙醚,120℃搅拌反应24小时,冷却到室温,减压蒸去乙二醇单乙醚,加入水和二氯甲烷萃取,浓缩有机相,用乙酸乙酯:石油醚=1:3过柱,得到黄色固体0.019g,产率为30%。
实施例2:金属有机配合物Ir-2的合成
Figure PCTCN2018122487-appb-000041
配合物Ir-2的合成:
在一个干燥的双口瓶里放置1-b(0.079g,0.1mmol),乙酰丙酮(0.012g,0.12mmol),碳酸钾(0.013g,0.1mmol),抽真空充氮气循环三次,然后在氮气流下加入10mL乙二醇单乙醚,120℃搅拌反应24小时,冷却到室温,减压蒸去乙二醇单乙醚,加入水和二氯甲烷萃取,浓缩有机相,用乙酸乙酯:石油醚=1:3过柱,得到黄色固体0.018g,产率为30%。
实施例3:金属有机配合物Ir-3的合成
Figure PCTCN2018122487-appb-000042
化合物1-c的合成:
在一个干燥的schlenck瓶里放置1-a(0.103g,0.1mmol),1,10-邻菲啰啉(0.036g,0.2mmol),三氟甲磺酸银(0.057g,0.22mmol),抽真空充氮气循环三次,然后再氮气流下加入25mL干燥的二氯甲烷,室温下搅拌2小时,抽滤,滤液浓缩至1mL,然后加入大量的石油醚析出固体,抽滤,干燥得到黄色固体0.062g,产率80%。
配合物Ir-3的合成:
在一个干燥的双口瓶里放置1-c(0.078g,0.1mmol),2-苯基吡啶(0.019g,0.12mmol),抽真空充氮气循环三次,然后在氮气流下加入10mL乙二醇单乙醚,120℃搅拌反应24小时,冷却到室温,减压蒸去乙二醇单乙醚,加入水和二氯甲烷萃取,浓缩有机相,用乙酸乙酯:石油醚=1:3过柱,得到黄色固体0.023g,产率为30%。
实施例4:金属有机配合物Ir-4的合成
Figure PCTCN2018122487-appb-000043
配合物Ir-4的合成:
在一个干燥的双口瓶里放置1-c(0.081g,0.1mmol),乙酰丙酮(0.012g,0.12mmol),碳酸钾(0.013g,0.1mmol),抽真空充氮气循环三次,然后在氮气流下加入10mL乙二醇单乙醚,120℃搅拌反应24小时,冷却到室温,减压蒸去乙二醇单乙醚,加入水和二氯甲烷萃取,浓缩有机相,用乙酸乙酯:石油醚=1:3过柱,得到黄色固体0.021g,产率为30%。
实施例5:金属有机配合物Ir-5的合成
Figure PCTCN2018122487-appb-000044
化合物1-d的合成:
在一个干燥的schlenck瓶里放置1-a(0.103g,0.1mmol),1,10-邻菲啰啉(0.102g,0.2mmol),三氟甲磺酸银(0.057g,0.22mmol),抽真空充氮气循环三次,然后再氮气流下加入25mL干燥的二氯甲烷,室温下搅拌2小时,抽滤,滤液浓缩至1mL,然后加入大量的石油醚析出固体,抽滤,干燥得到黄色固体0.091g,产率80%。
配合物Ir-5的合成:
在一个干燥的双口瓶里放置1-d(0.114g,0.1mmol),2-苯基吡啶(0.019g,0.12mmol),抽真空充氮气循环三次,然后在氮气流下加入10mL乙二醇单乙醚,120℃搅拌反应24小时,冷却到室温,减压蒸去乙二醇单乙醚,加入水和二氯甲烷萃取,浓缩有机相,用乙酸乙酯:石油醚=1:3过柱,得到黄色固体0.028g,产率为30%。
实施例6:金属有机配合物Ir-6的合成
Figure PCTCN2018122487-appb-000045
在一个干燥的双口瓶里放置1-d(0.114g,0.1mmol),乙酰丙酮(0.012g,0.12mmol), 抽真空充氮气循环三次,然后在氮气流下加入10mL乙二醇单乙醚,120℃搅拌反应24小时,冷却到室温,减压蒸去乙二醇单乙醚,加入水和二氯甲烷萃取,浓缩有机相,用乙酸乙酯:石油醚=1:3过柱,得到黄色固体0.028g,产率为30%。
实施例7:金属有机配合物Ir-7的合成
Figure PCTCN2018122487-appb-000046
在一个干燥的双口瓶里放置1-b(0.079g,0.1mmol),2-羧酸吡啶(0.015g,0.12mmol),碳酸钾(0.013g,0.1mmol),抽真空充氮气循环三次,然后在氮气流下加入10mL乙二醇单乙醚,120℃搅拌反应24小时,冷却到室温,减压蒸去乙二醇单乙醚,加入水和二氯甲烷萃取,浓缩有机相,用乙酸乙酯:石油醚=1:3过柱,得到黄色固体0.022g,产率为35%。
实施例8:金属有机配合物Ir-8的合成
Figure PCTCN2018122487-appb-000047
化合物1-e的合成:
在一个干燥的schlenck瓶里放置2-苯基吡啶(0.098g,0.63mmol),4,4’-二叔丁基联吡啶(0.168g,0.63mmol),三氯化铱(0.222g,0.63mmol),抽真空充氮气循环三次,然后再氮气流下加入20mL乙二醇单乙醚,搅拌回流12小时,冷却到室温,抽滤,滤饼用石油醚洗,干燥得到黄色固体0.345g,产率80%。
配合物Ir-8的合成:
将一个干燥的schlenck瓶抽真空充氮气循环三次,然后在氮气流下加入联吡咯(0.034g,0.26mmol)和5mL干燥的叔丁基苯,在0℃下加入正丁基锂(0.52mmol,0.208mL,2.5M),搅拌反应30分钟,然后在氮气流下加入1-e(0.15g,0.22mmol)的叔丁基苯溶液8mL,160℃搅拌反应24小时,冷却到室温,减压蒸去叔丁基苯,加入水和二氯甲烷萃取,浓缩有机相,用乙酸乙酯:石油醚=1:3过柱,得到黄色固体0.032g,产率为20%。
实施例9:金属有机配合物Ir-9的合成
Figure PCTCN2018122487-appb-000048
配合物Ir-9的合成:
在一个干燥的双口瓶里放置1-e(0.068g,0.1mmol),2-吡咯羧酸(0.013g,0.12mmol),碳酸钾(0.016g,0.12mmol),抽真空充氮气循环三次,然后在氮气流下加入10mL乙二醇单乙醚,120℃搅拌反应24小时,冷却到室温,减压蒸去乙二醇单乙醚,加入水和二氯甲烷 萃取,浓缩有机相,用乙酸乙酯:石油醚=1:3过柱,得到黄色固体0.021g,产率为30%。
实施例10:金属有机配合物Ir-10的合成
Figure PCTCN2018122487-appb-000049
配合物Ir-10的合成:
在一个干燥的双口瓶里放置1-e(0.068g,0.1mmol),2-邻碳硼烷吡啶(0.026g,0.12mmol),碳酸钾(0.016g,0.12mmol),抽真空充氮气循环三次,然后在氮气流下加入10mL乙二醇单乙醚,120℃搅拌反应24小时,冷却到室温,减压蒸去乙二醇单乙醚,加入水和二氯甲烷萃取,浓缩有机相,用乙酸乙酯:石油醚=1:3过柱,得到黄色固体0.025g,产率为30%。
实施例11:金属有机配合物Ir-11的合成
Figure PCTCN2018122487-appb-000050
配合物Ir-11的合成:
将一个干燥的schlenck瓶抽真空充氮气循环三次,然后在氮气流下加入联吲哚(0.060g,0.26mmol)和5mL干燥的叔丁基苯,在0℃下加入正丁基锂(0.52mmol,0.208mL,2.5M),搅拌反应30分钟,然后在氮气流下加入1-e(0.15g,0.22mmol)的叔丁基苯溶液8mL,160℃搅拌反应24小时,冷却到室温,减压蒸去叔丁基苯,加入水和二氯甲烷萃取,浓缩有机相,用乙酸乙酯:石油醚=1:3过柱,得到黄色固体0.037g,产率为20%。
实施例12:金属有机配合物Ir-12的合成
Figure PCTCN2018122487-appb-000051
在一个干燥的双口瓶里放置1-b(0.079g,0.1mmol),2-吡啶苯并咪唑(0.023g,0.12mmol),碳酸钾(0.013g,0.1mmol),抽真空充氮气循环三次,然后在氮气流下加入10mL乙二醇单乙醚,120℃搅拌反应24小时,冷却到室温,减压蒸去乙二醇单乙醚,加入水和二氯甲烷萃取,浓缩有机相,用乙酸乙酯:石油醚=1:3过柱,得到黄色固体0.024g,产率为35%。
实施例13:金属配合的能级结构
金属有机配合物Ir-1-Ir-12的能级可通过量子计算得到,比如利用TD-DFT(含时密度泛函理论)通过Gaussian09W(Gaussian Inc.),具体的模拟方法可参见WO2011141110。首先用半经验方法“Ground State/Hartree-Fock/Default Spin/LanL2MB”(Ch arge 0/Spin Singlet)来优化分子几何结构,然后有机分子的能量结构由TD-DFT(含时密度泛函理论)方法算得“TD-SCF/DFT/Default Spin/B3PW91/gen geom=connectivity pseudo=lanl2”(Charge 0/Spin  Singlet)。HOMO和LUMO能级按照下面的校准公式计算,S 1和T 1直接使用。
HOMO(eV)=((HOMO(Gaussian)×27.212)-0.9899)/1.1206
LUMO(eV)=((LUMO(Gaussian)×27.212)-2.0041)/1.385
其中HOMO(G)和LUMO(G)是Gaussian 03W的直接计算结果,单位为Hartree。结果如表一所示:
表一
材料 HOMO[eV] LUMO[eV]
Ir-1 -5.02 -3.04
Ir-2 -5.08 -3.09
Ir-3 -5.05 -3.06
Ir-4 -5.12 -3.11
Ir-5 -5.23 -3.25
Ir-6 -5.18 -3.21
Ir-7 -5.15 -3.18
Ir-8 -5.17 -3.16
Ir-9 -5.21 -3.41
Ir-10 -5.41 -3.62
Ir-11 -5.43 -3.59
Ir-12 -5.12 -3.08
实施例14:Ir-5和Ir-6的光致发光光谱
图1显示Ir-5和Ir-6的光致发光光谱,其中Ir-5的发射峰为519nm,Ir-6的发射峰为472和504nm。因此Ir-5和Ir-6可望作为蓝绿光客体用于OLED。
实施例15:OLED器件的制备方法
OLED器件的结构为:ITO/NPD(60nm)/10%Ir-1~Ir-12:mCP(45nm)/TPBi(35nm)/LiF(1nm)/Al(150nm)/阴极
a、导电玻璃基片的清洗:首次使用时,可用多种溶剂进行清洗,例如氯仿、酮、异丙醇进行清洗,然后进行紫外臭氧等离子处理:
b、HTL(60nm),EML(45nm),ETL(35nm):在高真空(1x10 -6毫巴,mbar)中热蒸镀而成;
c、阴极:Li F/AI(1nm/150nm)在高真空(1x10 -6毫巴)中热蒸镀而成;
d、封装:器件在氯气手套箱中用紫外线硬化树脂封装。
在电压驱动下,所有的OLEDs都发红光。
进一步的优化,如器件结构的优化,HTM,ETM及主体材料的组合优化,将进一步提高器件的性能,特别是效率,驱动电压及寿命。
应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (12)

  1. 一种有机金属配合物,具有通式(I)所示的结构:
    M(L 1L 2L 3)        (I)
    其中:
    L 1为一价阴离子配体,L 2为二价阴离子配体,L 3为零价中性配体;
    M为一种过渡族金属元素。
  2. 根据权利要求1所述的有机金属配合物,其特征在于,具有通式(II)所示的结构:
    Figure PCTCN2018122487-appb-100001
    其中:
    Y1^Y2为二齿一价阴离子配体,Y3^Y4为二齿二价阴离子配体,Y5^Y6为二齿零价中性配体;
    M为一种过渡族金属元素。
  3. 根据权利要求1-2中任一项所述的有机金属配合物,其特征在于,所述的金属元素M选自过渡金属钌(Ru)、铑(Rh)、饿(Os)、铼(Re)和铱(Ir)中的任一个。
  4. 根据权利要求1-3中任一项所述的有机金属配合物,其特征在于,配体L 1或Y1^Y2选自如下S1至S14中任何一个:
    Figure PCTCN2018122487-appb-100002
    其中:
    R 1是取代基,多次出现时,相互独立的选自D,或F,或Cl,或Br,或I,或CN,或NO 2,或CF 3,或B(OR 2) 2,或Si(R 2) 3,或直链烷烃,或烷烃醚,或烷烃硫醚,或支链烷烃,或环烷烃,且R 1中一个或多个非相邻的亚甲基(CH 2)可以被R 3替换;
    R 3多次出现时,独立选自R 2C=CR 2,C=C,Si(R 2) 2,Ge(R 2) 2,Sn(R 2) 2,C=O,C=S,C=Se,C=N(R 2),O,S,-COO-,或CONR 2
    R 2每次出现时,相互独立选自H、D、具有1至20个C原子的直链烷基、具有1至20个C原子的烷氧基、具有1至20个C原子的硫代烷氧基基团、具有3至20个C原子的支链 或环状的烷基、具有3至20个C原子的支链或环状的烷氧基、具有3至20个C原子的支链或环状的硫代烷氧基基团、甲硅烷基基团、具有1至20个C原子的取代的酮基基团、具有2至20个C原子的烷氧基羰基基团、具有7至20个C原子的芳氧基羰基基团、氰基基团、氨基甲酰基基团、卤甲酰基基团、甲酰基基团、异氰基基团、异氰酸酯基团、硫氰酸酯基团、异硫氰酸酯基团、羟基基团、硝基基团、CF 3基团、Cl、Br、F、可交联的基团、具有5至40个环原子的取代或未取代的芳族或杂芳族环系以及具有5至40个环原子的芳氧基或杂芳氧基基团中的一种或多种;
    虚线表示与金属元素M直接相连的键;
    x为
    Figure PCTCN2018122487-appb-100003
    的任一整数,y为
    Figure PCTCN2018122487-appb-100004
    的任一整数,z为
    Figure PCTCN2018122487-appb-100005
    的任一整数。
  5. 根据权利要求1-4中任一项所述的有机金属配合物,其特征在于,配体L 2或Y3^Y4选自如下通式D1-D9中的任何一个:
    Figure PCTCN2018122487-appb-100006
    其中R 1、x、y、z含义同权利要求4,虚线表示与金属元素M直接相连的键。
  6. 根据权利要求1-5中任一项所述的有机金属配合物,其特征在于,配体L 3或Y5^Y6选自如下通式N1-N8中的任何一个:
    Figure PCTCN2018122487-appb-100007
    其中R 1、x、y、z含义同权利要求4,u表示
    Figure PCTCN2018122487-appb-100008
    的任一整数,虚线表示与金属元素M直接相连的键。
  7. 根据权利要求1-6中任一项所述的有机金属配合物,其特征在于,选自以下通式中的 一个:
    Figure PCTCN2018122487-appb-100009
    Figure PCTCN2018122487-appb-100010
    Figure PCTCN2018122487-appb-100011
    其中,R 1、x、y、z、u含义同权利要求6;Y1^Y2为两齿一价阴离子配体。
  8. 一种高聚物,包含至少一个含有通式(I)表示的结构单元的重复单元。
  9. 一种混合物,包含一种如权利要求1至7中任一项所述的有机金属配合物或如权利要求8所述的高聚物,及至少另一种的有机功能材料,所述另一种的有机功能材料选自空穴注入材料(HIM),空穴传输材料(HTM),电子传输材料(ETM),电子注入材料(EIM),电子阻挡材料(EBM),空穴阻挡材料(HBM),发光材料(Emitter),主体材料(Host)和有机染料。
  10. 一种组合物,包含一种如权利要求1-7中任一项所述的有机金属配合物或如权利要求8所述的高聚物或如权利要求9所述的混合物,及至少一种有机溶剂。
  11. 一种有机电子器件,包含一种如权利要求1至7任一项所述的有机金属配合物或如权利要求8所述的高聚物或如权利要求9所述的混合物。
  12. 根据权利要求11所述的有机电子器件,其特征在于,所述的有机电子器件为电致发光器件,包含一发光层,所述发光层材料选自一种如权利要求1至7任一项所述的有机金属配合物或如权利要求8所述的高聚物或如权利要求9所述的混合物。
PCT/CN2018/122487 2017-12-28 2018-12-20 一种有机金属配合物,包含其的聚合物、混合物和组合物,及其在电子器件中的应用 WO2019128848A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880069233.3A CN111278842B (zh) 2017-12-28 2018-12-20 一种有机金属配合物,包含其的聚合物、混合物和组合物,及其在电子器件中的应用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711498380.6 2017-12-28
CN201711498380 2017-12-28

Publications (1)

Publication Number Publication Date
WO2019128848A1 true WO2019128848A1 (zh) 2019-07-04

Family

ID=67066551

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/122487 WO2019128848A1 (zh) 2017-12-28 2018-12-20 一种有机金属配合物,包含其的聚合物、混合物和组合物,及其在电子器件中的应用

Country Status (2)

Country Link
CN (1) CN111278842B (zh)
WO (1) WO2019128848A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020088186A1 (zh) * 2018-11-02 2020-05-07 广州华睿光电材料有限公司 有机金属配合物、包含其的高聚物、混合物、组合物及有机电子器件
WO2020088187A1 (zh) * 2018-11-02 2020-05-07 广州华睿光电材料有限公司 有机金属配合物、包含其的高聚物、混合物、组合物及有机电子器件
CN113336800A (zh) * 2021-06-03 2021-09-03 广西民族大学 金属有机配合物及其制备方法和应用
CN113354689A (zh) * 2021-06-15 2021-09-07 江苏科技大学 一种含联苯衍生物配位的中性铱配合物及其制备方法和应用
WO2023087843A1 (zh) * 2021-11-22 2023-05-25 江苏科技大学 一种含氮硫四元环配位的中性铱配合物及其制备方法和应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201527484A (zh) * 2014-01-15 2015-07-16 Nat Univ Tsing Hua 含雙唑類配基的銥金屬錯合物

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004040005A1 (de) * 2004-08-18 2006-02-23 Basf Ag In Polymermatrices eingebettete Übergangsmetallcarbenkomplexe zur Verwendung in OLEDs
JP2007031680A (ja) * 2005-07-29 2007-02-08 Showa Denko Kk 高分子発光材料、および該高分子発光材料を用いた有機エレクトロルミネッセンス素子
EP2205615B1 (de) * 2007-10-17 2012-04-18 Basf Se Übergangsmetallkomplexe mit verbrückten carbenliganden und deren verwendung in oleds

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201527484A (zh) * 2014-01-15 2015-07-16 Nat Univ Tsing Hua 含雙唑類配基的銥金屬錯合物

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020088186A1 (zh) * 2018-11-02 2020-05-07 广州华睿光电材料有限公司 有机金属配合物、包含其的高聚物、混合物、组合物及有机电子器件
WO2020088187A1 (zh) * 2018-11-02 2020-05-07 广州华睿光电材料有限公司 有机金属配合物、包含其的高聚物、混合物、组合物及有机电子器件
CN112533930A (zh) * 2018-11-02 2021-03-19 广州华睿光电材料有限公司 有机金属配合物、包含其的高聚物、混合物、组合物及有机电子器件
CN112585144A (zh) * 2018-11-02 2021-03-30 广州华睿光电材料有限公司 有机金属配合物、包含其的高聚物、混合物、组合物及有机电子器件
CN112533930B (zh) * 2018-11-02 2024-02-13 广州华睿光电材料有限公司 有机金属配合物、包含其的高聚物、混合物、组合物及有机电子器件
CN113336800A (zh) * 2021-06-03 2021-09-03 广西民族大学 金属有机配合物及其制备方法和应用
CN113336800B (zh) * 2021-06-03 2023-06-20 广西民族大学 金属有机配合物及其制备方法和应用
CN113354689A (zh) * 2021-06-15 2021-09-07 江苏科技大学 一种含联苯衍生物配位的中性铱配合物及其制备方法和应用
CN113354689B (zh) * 2021-06-15 2022-09-23 江苏科技大学 一种含联苯衍生物配位的中性铱配合物及其制备方法和应用
WO2022262300A1 (zh) * 2021-06-15 2022-12-22 江苏科技大学 一种含联苯衍生物配位的中性铱配合物及其制备方法和应用
WO2023087843A1 (zh) * 2021-11-22 2023-05-25 江苏科技大学 一种含氮硫四元环配位的中性铱配合物及其制备方法和应用

Also Published As

Publication number Publication date
CN111278842B (zh) 2023-06-06
CN111278842A (zh) 2020-06-12

Similar Documents

Publication Publication Date Title
CN109608504B (zh) 有机金属配合物、聚合物、混合物、组合物和有机电子器件
CN108137618B (zh) D-a型化合物及其应用
CN108137634B (zh) 一种金属有机配合物及其在电子器件中的应用
WO2019128848A1 (zh) 一种有机金属配合物,包含其的聚合物、混合物和组合物,及其在电子器件中的应用
CN110746409A (zh) 有机化合物、混合物、组合物及电子器件和应用
WO2019114668A1 (zh) 一种过渡金属配合物材料及其在电子器件的应用
WO2017118238A1 (zh) 氘代三芳胺衍生物及其在电子器件中的应用
CN109970660B (zh) 含稠杂环的螺芴类有机化合物及其应用
CN111247658B (zh) 过渡金属配合物、聚合物、混合物、组合物及其应用
CN110981895A (zh) 过渡金属配合物、聚合物、混合物、组合物及有机电子器件
WO2017118137A1 (zh) 咔唑衍生物、高聚物、混合物、组合物、有机电子器件及其应用
WO2018095389A1 (zh) 含氮稠杂环的化合物及其应用
CN109792001B (zh) 有机化合物、有机混合物、有机电子器件
CN108137615B (zh) 含砜基稠杂环化合物及其应用
WO2018108110A1 (zh) 金属有机配合物及其应用、混合物、有机电子器件
WO2019128599A1 (zh) 含氮杂环化合物、高聚物、混合物、组合物及其用途
WO2017092481A1 (zh) 金属有机配合物、高聚物、混合物、组合物以及有机电子器件
CN111278839B (zh) 一种有机金属配合物、高聚物、混合物、组合物及有机电子器件
CN109790194B (zh) 金属有机配合物、高聚物、组合物及有机电子器件
CN113024607B (zh) 过渡金属配合物、聚合物、混合物、组合物及有机电子器件
CN110759949B (zh) 有机金属配合物及其应用
WO2020088186A1 (zh) 有机金属配合物、包含其的高聚物、混合物、组合物及有机电子器件
WO2017118155A1 (zh) 一种有机光电材料及其用途
CN112979712A (zh) 过渡金属配合物、聚合物、混合物、组合物及有机电子器件
CN113004336A (zh) 过渡金属配合物、聚合物、混合物、组合物及有机电子器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18894089

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18894089

Country of ref document: EP

Kind code of ref document: A1