WO2016063984A1 - デヒドロゲナーゼ活性の向上したアマドリアーゼ - Google Patents

デヒドロゲナーゼ活性の向上したアマドリアーゼ Download PDF

Info

Publication number
WO2016063984A1
WO2016063984A1 PCT/JP2015/080014 JP2015080014W WO2016063984A1 WO 2016063984 A1 WO2016063984 A1 WO 2016063984A1 JP 2015080014 W JP2015080014 W JP 2015080014W WO 2016063984 A1 WO2016063984 A1 WO 2016063984A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
seq
amadoriase
acid sequence
position corresponding
Prior art date
Application number
PCT/JP2015/080014
Other languages
English (en)
French (fr)
Inventor
陽介 鉞
愛里 小松▲崎▼
敦 一柳
Original Assignee
キッコーマン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キッコーマン株式会社 filed Critical キッコーマン株式会社
Priority to EP20195853.5A priority Critical patent/EP3786291B1/en
Priority to EP15852718.4A priority patent/EP3211079B1/en
Priority to KR1020177009797A priority patent/KR102159807B1/ko
Priority to CN201580057464.9A priority patent/CN107148475A/zh
Priority to JP2016555413A priority patent/JP6980383B2/ja
Priority to US15/521,104 priority patent/US11499143B2/en
Publication of WO2016063984A1 publication Critical patent/WO2016063984A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0012Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
    • C12N9/0026Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on CH-NH groups of donors (1.5)
    • C12N9/0032Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on CH-NH groups of donors (1.5) with oxygen as acceptor (1.5.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/40Apparatus specially designed for the use of free, immobilised, or carrier-bound enzymes, e.g. apparatus containing a fluidised bed of immobilised enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/001Enzyme electrodes
    • C12Q1/004Enzyme electrodes mediator-assisted
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/001Enzyme electrodes
    • C12Q1/005Enzyme electrodes involving specific analytes or enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/26Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase
    • C12Q1/32Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving oxidoreductase involving dehydrogenase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y105/00Oxidoreductases acting on the CH-NH group of donors (1.5)
    • C12Y105/03Oxidoreductases acting on the CH-NH group of donors (1.5) with oxygen as acceptor (1.5.3)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3271Amperometric enzyme electrodes for analytes in body fluids, e.g. glucose in blood
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3271Amperometric enzyme electrodes for analytes in body fluids, e.g. glucose in blood
    • G01N27/3272Test elements therefor, i.e. disposable laminated substrates with electrodes, reagent and channels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/795Porphyrin- or corrin-ring-containing peptides
    • G01N2333/805Haemoglobins; Myoglobins
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/90Enzymes; Proenzymes
    • G01N2333/902Oxidoreductases (1.)
    • G01N2333/906Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.7)
    • G01N2333/9065Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.7) acting on CH-NH groups of donors (1.5)
    • G01N2333/90672Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.7) acting on CH-NH groups of donors (1.5) with oxygen as acceptor (1.5.3) in general

Definitions

  • the present invention relates to an amadoriase with improved dehydrogenase activity, an amadoriase with reduced oxidase activity, an amadoriase with improved dehydrogenase activity and reduced oxidase activity, its gene and recombinant DNA, and a method for producing the amadoriase.
  • the present invention also relates to an amadoriase that can be advantageously used as a diagnostic enzyme for diabetes, as a sensor, and in a kit for measuring a diabetes marker.
  • Glycated proteins are produced by non-enzymatic covalent bond formation between the aldehyde group of aldoses (monosaccharides and derivatives thereof that potentially have aldehyde groups) such as glucose, and Amadori transfer It is.
  • aldehyde group of aldoses monosaccharides and derivatives thereof that potentially have aldehyde groups
  • Amadori transfer It is.
  • the amino group of the protein include an ⁇ -amino group at the amino terminus and an ⁇ -amino group on the side chain of a lysine residue in the protein.
  • Known glycated proteins generated in vivo include glycated hemoglobin in which hemoglobin in blood is glycated, glycated albumin in which albumin is glycated, and the like.
  • HbA1c glycated hemoglobin
  • ⁇ -fructosylvalylhistidine (hereinafter referred to as “ ⁇ FVH”), which is obtained by decomposing HbA1c with a protease or the like and releasing it from its ⁇ -chain amino terminus.
  • ⁇ FV ⁇ -fructosyl valine
  • Amadoriase catalyzes a reaction that oxidizes iminodiacetic acid or a derivative thereof (also referred to as an “Amadori compound”) in the presence of oxygen to produce glyoxylic acid or ⁇ -ketoaldehyde, an amino acid or peptide, and hydrogen peroxide. .
  • Amadoriase has been found from bacteria, yeasts and fungi, and is particularly useful for the measurement of HbA1c.
  • Examples of amadoriase having enzyme activity against ⁇ FVH and / or ⁇ FV include, for example, the genus Coniochaeta, Eupenicillium ( Eupenicillium genus, Pyrenochaeta genus, Arthrinium genus, Curvularia genus, Neocosmospora genus, Cryptococcus genus, Phaeosphaeria genus, Aspergillus genus Emericella, Ulocladium, Penicillium, Fusarium, Achaetomiella, Achaetomium, Thielavia, Chaetomium, Chaetomium Nospora (Gelasinospora), Microascus, Leptosphaeria, Ophiobolus, Pleospora, Coniochaetidium, Pichia,
  • amadoriase may be described by expressions such as ketoamine oxidase, fructosyl amino acid oxidase, fructosyl peptide oxidase, and fructosylamine oxidase depending on the literature.
  • Amadoriase can be used for measurement of a saccharification substrate in a sample by coupling with a peroxidase and using a chromogenic substrate.
  • Conventional amadoriases can transfer electrons to oxygen molecules when oxidizing glycated substrates. This activity is called oxidase activity.
  • an electron acceptor electron mediator
  • an electron acceptor By using an electron acceptor instead of oxygen molecules, measurement can be performed without being affected by oxygen.
  • the present invention includes the following.
  • a modified amadoriase in which the ratio of oxidase activity to dehydrogenase activity (OX / DH) is reduced compared to the amadoriase before modification,
  • OX / DH ratio of oxidase activity to dehydrogenase activity
  • the amino acid sequence of Amadoriase is aligned with the amino acid sequence described in SEQ ID NO: 1, it is selected from the group consisting of positions 280, 267, 269, 54, and 241 in the amino acid sequence shown in SEQ ID NO: 1.
  • amadoriase having one or more amino acids substituted at a position corresponding to the position and having dehydrogenase activity; (ii) In the amadoriase of (i), one or several amino acids are substituted at positions other than the positions corresponding to positions 280, 267, 269, 54, and 241 in the amino acid sequence shown in SEQ ID NO: 1.
  • amadoriase comprising a deleted or added amino acid sequence and having dehydrogenase activity;
  • the full-length amino acid sequence of the amadoriase is SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 6, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 11, SEQ ID NO: 44, SEQ ID NO: 53 or It has 70% or more sequence identity with the amino acid sequence of SEQ ID NO: 67, and positions 10 to 32, 36 to 41, 49 to 52, 54 to 58, 63 to 65, 73 of SEQ ID NO: 1.
  • amino acid sequence in the homology region consisting of the amino acid sequence at positions 423 to 431 and the amino acid sequence in the homology region at the corresponding position of the amadoriase have a sequence identity of 90% or more, and an amadoriase having dehydrogenase activity Or (iv) In the amadoriase of (i), the full-length amino acid sequence of the amadoriase is S
  • the amino acid at the position corresponding to position 280 in the amino acid sequence shown in SEQ ID NO: 1 is a polar amino acid selected from the group consisting of glutamine, serine, threonine, and asparagine, aspartic acid, glutamic acid, lysine, arginine, and histidine.
  • Substituted with a charged amino acid selected from the group consisting of, or an amino acid selected from the group consisting of methionine, proline, phenylalanine, tyrosine, and tryptophan The amino acid at the position corresponding to position 267 in the amino acid sequence shown in SEQ ID NO: 1 is substituted with methionine, leucine, tyrosine, isoleucine, tryptophan, valine or alanine, The amino acid at the position corresponding to position 269 in the amino acid sequence shown in SEQ ID NO: 1 is substituted with methionine, leucine, tyrosine, isoleucine, tryptophan, valine or alanine, The amino acid at the position corresponding to position 54 in the amino acid sequence shown in SEQ ID NO: 1 is substituted with an amino acid selected from the group consisting of asparagine, alanine, glutamine, histidine, glycine or valine, or the amino acid shown in SEQ ID
  • amino acid at the position corresponding to position 280 in the amino acid sequence shown in SEQ ID NO: 1 is substituted with glutamine, serine, histidine, threonine, asparagine, aspartic acid, glutamic acid, lysine, arginine or methionine.
  • the amino acid at the position corresponding to position 267 in the amino acid sequence shown in SEQ ID NO: 1 is substituted with methionine, leucine, tyrosine, isoleucine or tryptophan;
  • the amino acid at the position corresponding to position 269 in the amino acid sequence shown in SEQ ID NO: 1 is substituted with methionine, leucine, tyrosine, isoleucine or tryptophan;
  • the amino acid at the position corresponding to position 54 in the amino acid sequence shown in SEQ ID NO: 1 is substituted with asparagine or alanine, or the amino acid at the position corresponding to position 241 in the amino acid sequence shown in SEQ ID NO: 1 is glutamine, glutamic acid or 2.
  • Amadoriase according to 2 which is substituted with lysine.
  • the amino acid at the position corresponding to position 280 in the amino acid sequence shown in SEQ ID NO: 1 is substituted with glutamine, serine, histidine, threonine, asparagine, aspartic acid, glutamic acid, lysine, arginine or methionine.
  • the amino acid at the position corresponding to position 267 in the amino acid sequence shown in SEQ ID NO: 1 is substituted with methionine, leucine or tyrosine
  • the amino acid at the position corresponding to position 269 in the amino acid sequence shown in SEQ ID NO: 1 is substituted with methionine, leucine or tyrosine
  • the amino acid at the position corresponding to position 54 in the amino acid sequence shown in SEQ ID NO: 1 is substituted with asparagine or alanine
  • the amino acid at the position corresponding to position 241 in the amino acid sequence shown in SEQ ID NO: 1 is glutamine, glutamic acid or The amadoriase according to 3, which is substituted with lysine.
  • the amino acid at the position corresponding to position 280 in the amino acid sequence shown in SEQ ID NO: 1 is substituted with glutamine or serine.
  • the amino acid at the position corresponding to position 267 in the amino acid sequence shown in SEQ ID NO: 1 is substituted with methionine, leucine or tyrosine
  • the amino acid at the position corresponding to position 269 in the amino acid sequence shown in SEQ ID NO: 1 is substituted with methionine, leucine or tyrosine
  • the amino acid at the position corresponding to position 241 in the amino acid sequence shown in SEQ ID NO: 1 is glutamine. 4.
  • the amino acid at the position corresponding to position 280 in the amino acid sequence shown in SEQ ID NO: 1 is substituted with glutamine or histidine.
  • the amino acid at the position corresponding to position 267 in the amino acid sequence shown in SEQ ID NO: 1 is substituted with methionine or leucine, or the amino acid at the position corresponding to position 269 in the amino acid sequence shown in SEQ ID NO: 1 is replaced with methionine or leucine. 4.
  • the amadoriase according to 3 which is substituted.
  • the amino acid at the position corresponding to position 280 in the amino acid sequence shown in SEQ ID NO: 1 is substituted with glutamine.
  • the amino acid at the position corresponding to position 267 in the amino acid sequence shown in SEQ ID NO: 1 is substituted with methionine or leucine, or the amino acid at the position corresponding to position 269 in the amino acid sequence shown in SEQ ID NO: 1 is replaced with methionine or leucine. 4.
  • the amadoriase is a genus Coniochaeta, Eupenicillium, Pyrenochaeta, Arthrinium, Currvularia, Neocosmospora, Cryptococcus, Cryptococcus Genus, Phaeosphaeria, Aspergillus, Emericella, Ulocladium, Penicillium, Fusarium, Achaetomiella, Achaetomiella, Chaetomium A Genus, Thielavia, Chaetomium, Gerasinospora, Microascus, Leptosphaeria, Ophiobolus, Pleioschadium, Coniochecha ), Pichia, Debariomyces (Deba)
  • the amadoriase according to any one of 1 to 8, which is derived from the genus ryomyces, the genus Corynebacterium, the genus Agrobacterium, or the genus Arthrobacter.
  • SEQ ID NO: 1 SEQ ID NO: 3, SEQ ID NO: 4, SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 11, SEQ ID NO: 12, SEQ ID NO: 13 Amadoriase according to any one of 1 to 9, which has the amino acid sequence shown in SEQ ID NO: 44, SEQ ID NO: 53 or SEQ ID NO: 67 and has an amino acid substitution defined in any one of 1 to 7.
  • amino acid sequence of Amadoriase is aligned with the amino acid sequence described in SEQ ID NO: 1, amino acid substitution or deletion is performed at a position corresponding to a position selected from the group consisting of the following in the amino acid sequence shown in SEQ ID NO: 1.
  • Amadoriase according to any one of 1 to 10, which has one or more loss and has dehydrogenase activity, (A) 62nd, 63rd, 102th, 106th, 110th, 113th, 355th, 419th, 68th and 356th, (B) 262, 257, 249, 253, 337, 340, 232, 129, 132, 133, 44, 256, 231 and 81, and (C) carboxyl Deletion of 3 amino acid residues at positions 435, 436 and 437.
  • amino acid sequence of amadoriase is aligned with the amino acid sequence described in SEQ ID NO: 1, one or more amino acids at positions corresponding to positions selected from the group consisting of the following in the amino acid sequence shown in SEQ ID NO: 1
  • Amadoriase according to 11 which is substituted or deleted with an amino acid selected from the group consisting of and having dehydrogenase activity, (A) substitution of an amino acid at a position corresponding to arginine at position 62 with alanine, asparagine or aspartic acid; Substitution of the amino acid at the position corresponding to leucine at position 63 with histidine or alanine, Substitution of amino acid at position corresponding to glutamic acid at position 102 with lysine Substitution of an amino acid at a position corresponding to aspartic acid at position 106 with alanine, lysine or arginine; Substitution of amino acid at position corresponding to glutamine at position 110 with leucine or tyros
  • An enzyme electrode comprising the amadoriase according to any one of 1 to 12.
  • An enzyme sensor having the enzyme electrode according to 14 as a working electrode.
  • an excellent amadoriase that can be used as a diagnostic enzyme for diabetes that is not easily affected by oxygen and can be measured with high sensitivity, and a sensor for measuring diabetes marker, and a gene encoding the same, etc. Can be provided.
  • this amadoriase is used, glycated hemoglobin can be measured more accurately even in the presence of oxygen.
  • FIG. 1-2 is a continuation of FIG. 1-1.
  • FIG. 1-3 is a continuation of FIG. 1-2.
  • 1-4 is a continuation of FIG. 1-3.
  • FIG. 1-5 is a continuation of FIG. It shows oxidase activity and dehydrogenase activity of Amadoriase.
  • FIG. 2 is a schematic diagram for explaining an enzyme reaction, and does not limit properties such as substrate specificity of the enzyme.
  • the amadoriase of the present invention can use glycated protein or glycated peptide as a substrate.
  • the glycated protein in the present invention refers to a non-enzymatically glycated protein.
  • Glycated proteins exist both in vivo and externally. Examples of existing in vivo include glycated hemoglobin and glycated albumin in blood. Among glycated hemoglobins, the ⁇ -chain amino-terminal valine of hemoglobin is glycated. Glycated hemoglobin is particularly referred to as hemoglobin A1c (HbA1c).
  • the glycated peptide in the present invention refers to a non-enzymatically glycated peptide derived from a glycated protein, a peptide that is directly non-enzymatically glycated, a peptide that is generated as a result of degradation of a glycated protein by a protease, A glycated (poly) peptide constituting a glycated protein is included.
  • a glycated peptide may be referred to as a fructosyl peptide.
  • the amino group on the side of the peptide to be glycated includes an ⁇ -amino group at the amino terminus, an ⁇ -amino group on the side chain of a lysine residue inside the peptide, and the glycated peptide in the present invention refers to More specifically, it is an ⁇ -glycated peptide ( ⁇ -fructosyl peptide).
  • the ⁇ -glycated peptide is formed by liberation from a glycated protein in which the N-terminal ⁇ -amino acid is glycated by some means, for example, limited degradation with a protease.
  • the target glycated protein is hemoglobin A1c (HbA1c)
  • the corresponding ⁇ -glycated peptide refers to a glycated peptide cut out from the ⁇ chain of HbA1c in which the N-terminus is glycated.
  • the ⁇ chain of HbA1c composed of 146 amino acids also corresponds to ⁇ -glycated peptide ( ⁇ F146P).
  • the measurement substance (substrate) on which the amadoriase of the present invention acts is HbA1c, more specifically, the ⁇ chain of HbA1c.
  • the measurement substance on which the amadoriase of the present invention acts is an ⁇ -glycated peptide cleaved from the ⁇ chain of HbA1c, such as ⁇ FV to ⁇ F128P, ⁇ FV to ⁇ F64P, ⁇ FV to ⁇ F32P, ⁇ FV to ⁇ F16P, such as ⁇ F6P ( ⁇ -full Ktosyl valyl histidyl leucyl threonyl prolyl glutamic acid).
  • the measurement substance on which the amadoriase of the present invention acts is ⁇ FVH ( ⁇ -fructosyl valylhistidine) or ⁇ FV ( ⁇ -fructosyl valine).
  • Amadoriase is also called ketoamine oxidase, fructosyl amino acid oxidase, fructosyl peptide oxidase, fructosylamine oxidase, etc., and oxidizes iminodiacetic acid or its derivative (Amadori compound) in the presence of oxygen to give glyoxylic acid or An enzyme that catalyzes a reaction that produces ⁇ -ketoaldehyde, an amino acid or peptide, and hydrogen peroxide.
  • Amadoriase is widely distributed in nature and can be obtained by searching for microorganisms and enzymes of animal or plant origin. The microorganism can be obtained from, for example, filamentous fungi, yeast, or bacteria.
  • amadoriase of the present invention has improved dehydrogenase activity produced based on the amadoriase derived from the genus Coniochaeta having the amino acid sequence shown in SEQ ID NO: 1 or the amadoriase derived from Curvularia clavata having the amino acid sequence shown in SEQ ID NO: 6.
  • a variant of amadoriase is also known as a variant of amadoriase.
  • amadoriase of the present invention is a variant of amadoriase with improved dehydrogenase activity produced based on amadoriase derived from Eupenicillium terrenum having the amino acid sequence shown in SEQ ID NO: 3 or SEQ ID NO: 44.
  • amadoriase of the present invention is a variant of amadoriase with improved dehydrogenase activity produced based on amadoriase derived from Phaeosphaeria nodorum having the amino acid sequence shown in SEQ ID NO: 9.
  • amadoriase of the present invention is a variant of amadoriase with improved dehydrogenase activity, produced based on fructosyl amino acid oxidase derived from Aspergillus nidulans having the amino acid sequence shown in SEQ ID NO: 10 or SEQ ID NO: SEQ ID NO: 53 .
  • amadoriase of the present invention is a variant of amadoriase with improved dehydrogenase activity produced based on fructosyl peptide oxidase derived from Emericella nidulans having the amino acid sequence shown in SEQ ID NO: 11 or SEQ ID NO: 67.
  • variants include high sequence identity with SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 6, SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 11, SEQ ID NO: 44, SEQ ID NO: 53 or SEQ ID NO: 67.
  • the amadoriase of the present invention includes, for example, Eupenicillium, Pyrenochaeta, Arthrinium, Curvularia, Neocosmospora, Cryptococcus, Phaeosphaeria, Aspergillus, Emericella, Ulocladium, Penicillium, Fusarium, Achaetomiella, Achaetomiella, , Thielavia genus, Chaetomium genus, Gelasinospora genus, Microascus genus, Leptosphaeria genus, Ophiobolus genus, Pleospora genus, Coniochaetidium genus, Pichia genus, Corynebacterium genus, Agrobacterium genus, Arthrobacter genus, etc. But you can. Among these, those having dehydrogenase activity and / or having high sequence identity with SEQ ID NO: 1 as described above are preferable.
  • Variants (variants) of amadoriase with reduced oxidase activity and improved dehydrogenase activity can be obtained by substituting, adding or deleting at least one amino acid residue in the amino acid sequence of amadoriase . (Substitution that results in improved dehydrogenase activity / reduced oxidase activity)
  • Examples of the amino acid substitution that brings about the improvement of dehydrogenase activity and / or the reduction of oxidase activity include substitution of amino acids at positions corresponding to the following amino acids in the amino acid sequence shown in SEQ ID NO: 1.
  • Substitution of cysteine at position 280 for example, a polar amino acid selected from the group consisting of glutamine, serine, threonine and asparagine, a charged amino acid selected from the group consisting of aspartic acid, glutamic acid, lysine, arginine and histidine, or Substitution with an amino acid selected from the group consisting of methionine, proline, phenylalanine, tyrosine and tryptophan.
  • substitution of phenylalanine at position 267 for example, substitution with a hydrophobic amino acid residue selected from the group consisting of tyrosine, leucine, methionine, tryptophan, isoleucine, valine or alanine.
  • Substitution of phenylalanine at position 269 for example, substitution with a hydrophobic amino acid residue selected from the group consisting of tyrosine, leucine, methionine, tryptophan, isoleucine, valine or alanine.
  • Substitution of aspartic acid at position 54 for example, asparagine, alanine, glutamine, histidine, glycine or valine.
  • Substitution of tyrosine at position 241 such as substitution with glutamine, lysine, glutamic acid, asparagine, aspartic acid, arginine or histidine.
  • glutamine, serine, threonine, and asparagine are sometimes referred to as polar amino acids.
  • aspartic acid, glutamic acid, lysine, arginine, and histidine are sometimes referred to as charged amino acids.
  • Alanine, valine, isoleucine, leucine, methionine, phenylalanine, tyrosine, and tryptophan are sometimes referred to as hydrophobic amino acids.
  • Methionine, phenylalanine, tyrosine, tryptophan, and proline are sometimes referred to as bulky amino acids.
  • the mutant of amadoriase with improved dehydrogenase activity / reduced oxidase activity of the present invention may have at least one amino acid substitution and may have a plurality of amino acid substitutions. For example, it has 1, 2, 3, 4, or 5 of the above amino acid substitutions.
  • a mutant having improved dehydrogenase activity having reduced amino acid substitution corresponding to the following amino acid positions and reduced oxidase activity is preferable.
  • Substitution of cysteine at position 280 for example, substitution with glutamine, serine, histidine, threonine, aspartic acid, glutamic acid, methionine, lysine, arginine, or asparagine.
  • Substitution of phenylalanine at position 267 for example, substitution with tyrosine, leucine or methionine.
  • Substitution of phenylalanine at position 269 for example, substitution with tyrosine, leucine or methionine.
  • Substitution of aspartic acid at position 54 for example, asparagine or alanine.
  • Substitution of tyrosine at position 241 such as substitution with glutamine, lysine or glutamic acid.
  • the Amadoriase mutant of the present invention may have an amino acid substitution in the amino acid sequence shown in SEQ ID NO: 1 that results in the improvement of the dehydrogenase activity and / or the reduction of the oxidase activity.
  • the amadoriase mutant of the present invention may be one or several (eg, 1 to 15, eg, 1 to 10, preferably 1 to 5, more preferably 1 to 3) at positions other than those substituted amino acids. May be deleted, inserted, added and / or substituted.
  • the present invention has amino acid substitution mutations that improve properties other than dehydrogenase activity improvement, such as amino acid substitution mutations, substrate specificity, etc., that lead to the above-described dehydrogenase activity improvement and / or oxidase activity reduction, and SEQ ID NO: 1 70% or more, 71% or more, 72% or more, 73% or more, 74% or more, 75% or more, 76% or more with respect to the amino acid sequence of the portion excluding the amino acid other than the substituted amino acid in 77% or more, 78% or more, 79% or more, 80% or more, 81% or more, 82% or more, 83% or more, 84% or more, 85% or more, 86% or more, 87% or more, 88% or more, 89 % Or more, 90% or more, 91% or more, 92% or more, 93% or more, 94% or more, 95% or more, 96% or more, 97% or more, 98% or more, for example 99% or more It has an amino acid sequence identity
  • the amadoriase having the amino acid sequence shown in SEQ ID NO: 1 is produced by Escherichia coli carrying a recombinant plasmid (deposit number: FERM BP-10593) called pKK223-3-CFP-T7 in International Publication No. 2007/125797. It is an amadoriase derived from the genus Coniochaeta (CFP-T7), and is a modified amadoriase with excellent thermal stability previously found by the applicant. This CFP-T7 is a triple mutant obtained by sequentially introducing artificial mutations at positions 272, 302 and 388 with respect to a natural amadoriase derived from the genus Coniochaeta.
  • the amino acid position represents the position in the amino acid sequence of the amadoriase derived from the genus Coniochaeta shown in SEQ ID NO: 1.
  • the amino acid at the position corresponding to the position in the amino acid sequence to be substituted is substituted.
  • the meaning of “corresponding position” will be described later.
  • A Arginine at position 62
  • Leucine at position 63 (c) Glutamic acid at position 102
  • Aspartic acid at position 106 (e) Glutamine at position 110
  • f Alanine at position 113
  • G lutamic acid at position 102
  • e Aspartic acid at position 106
  • Glutamine at position 110 (f) Alanine at position 113
  • g Alanine at position 355
  • H Alanine at position 419
  • i Aspartic acid at position 68
  • Alanine at position 356 In some cases, the amino acid at the position corresponding to arginine at position 62 may be substituted with alanine, asparagine or aspartic acid.
  • the amino acid at the position corresponding to leucine at position 63 may be substituted with histidine or alanine.
  • the amino acid at the position corresponding to glutamic acid at position 102 may be substituted with lysine.
  • the amino acid at the position corresponding to aspartic acid at position 106 may be substituted with alanine, lysine, or arginine.
  • the amino acid at the position corresponding to glutamine at position 110 may be substituted with leucine or tyrosine.
  • the amino acid at the position corresponding to alanine at position 113 may be substituted with lysine or arginine.
  • the amino acid at the position corresponding to alanine at position 355 may be substituted with serine.
  • the amino acid at the position corresponding to alanine at position 419 may be substituted with lysine.
  • the amino acid at the position corresponding to aspartic acid at position 68 may be substituted with asparagine.
  • the amino acid at a position corresponding to alanine at position 356 may be substituted with threonine.
  • amino acid substitutions that improve the surfactant resistance of amadoriase include amino acid substitutions at positions corresponding to the following amino acids in the amino acid sequence shown in SEQ ID NO: 1.
  • the amino acid at a position corresponding to asparagine at position 262 may be substituted with histidine.
  • the amino acid at the position corresponding to valine at position 257 may be substituted with cysteine, serine, or threonine.
  • the amino acid at the position corresponding to glutamic acid at position 249 may be substituted with lysine or arginine.
  • the amino acid at the position corresponding to glutamic acid at position 253 may be substituted with lysine or arginine.
  • the amino acid at the position corresponding to glutamine at position 337 may be substituted with lysine or arginine.
  • the amino acid at the position corresponding to glutamic acid at position 340 may be substituted with proline.
  • the amino acid at the position corresponding to aspartic acid at position 232 may be substituted with lysine or arginine.
  • the amino acid at the position corresponding to aspartic acid at position 129 may be substituted with lysine or arginine.
  • the amino acid at the position corresponding to aspartic acid at position 132 may be substituted with lysine or arginine.
  • the amino acid at the position corresponding to glutamic acid at position 133 may be substituted with alanine, methionine, lysine, or arginine.
  • the amino acid at the position corresponding to glutamic acid at position 44 may be substituted with proline.
  • the amino acid at the position corresponding to glycine at position 256 may be substituted with lysine or arginine.
  • the amino acid at the position corresponding to glutamic acid at position 231 may be substituted with lysine or arginine.
  • the amino acid at the position corresponding to glutamic acid at position 81 may be substituted with lysine or arginine.
  • the amadoriase of the present invention may further lack three amino acid residues from the carboxyl terminus in addition to the above substitution.
  • the deletion of 3 amino acid residues from the carboxyl terminus may be referred to as a deletion that improves thermal stability.
  • chromosomal DNA or mRNA can be extracted from microbial cells having the ability to produce amadoriase and various cells by a conventional method, for example, the method described in Current Protocols in Molecular Biology (WILEY Interscience, 1989).
  • cDNA can be synthesized using mRNA as a template.
  • a chromosomal DNA or cDNA library can be prepared using the chromosomal DNA or cDNA thus obtained.
  • a suitable probe DNA is synthesized, and using this, a method for selecting the amadoriase gene from a chromosomal DNA or cDNA library, or a suitable primer DNA based on the amino acid sequence.
  • PCR method polymerase chain reaction
  • amadoriase As a preferable example of the gene encoding amadoriase thus obtained, an example of an amadoriase gene derived from the genus Coniochaeta (Japanese Patent Laid-Open No. 2003-235585) and the like can be mentioned.
  • amadoriase genes are linked to various vectors as usual.
  • a recombinant plasmid pKK223-3-CFP Japanese Patent Laid-Open No. 2003-235585
  • a DNA encoding an amadoriase gene derived from Coniochaeta sp. NISL 9330 is inserted into pKK223-3 Vector (manufactured by GE Healthcare).
  • pKK223-3 Vector manufactured by GE Healthcare.
  • the vector that can be used in the present invention is not limited to the above-mentioned plasmid, and any other vector known to those skilled in the art, such as bacteriophage and cosmid, can be used.
  • amadoriase gene mutation treatment The mutation process of the amadoriase gene can be performed by any known method depending on the intended mutant form. That is, a wide range of methods such as a method of contacting and acting an amadoriase gene or a recombinant DNA into which the gene is incorporated and a mutagen drug; an ultraviolet irradiation method; a genetic engineering method; or a method using a protein engineering method Can be used.
  • Examples of the mutagen used in the above mutation treatment include hydroxylamine, N-methyl-N′-nitro-N-nitrosoguanidine, nitrous acid, sulfite, hydrazine, formic acid, 5-bromouracil and the like. Can do.
  • the various conditions for the contact and action are not particularly limited as long as conditions according to the type of drug used can be taken and a desired mutation can actually be induced in the amadoriase gene.
  • a desired mutation can be induced by contact and action at a reaction temperature of 20 to 80 ° C. for 10 minutes or more, preferably 10 to 180 minutes, preferably at a drug concentration of 0.5 to 12M.
  • a reaction temperature 20 to 80 ° C. for 10 minutes or more, preferably 10 to 180 minutes, preferably at a drug concentration of 0.5 to 12M.
  • Even in the case of performing ultraviolet irradiation it can be carried out according to a conventional method as described above (Hyundai Kagaku, p24-30, June 1989 issue).
  • a method generally known as Site-Specific Mutagenesis can be used.
  • Kramer method Nucleic Acids Res., 12, 9441 (1984): Methods Enzymol., 154, 350 (1987): Gene, 37, 73 (1985)
  • Eckstein method Nucleic Acids Res., 13, 8749 ( (1985): Nucleic Acids Res., 13, 8765 (1985): Nucleic Acids Res, 14, 9679 (1986)
  • Kunkel method Proc. Natl. Acid. Sci. USA, 82, 488 (1985).
  • a technique known as a general PCR method polymerase chain reaction
  • a desired modified amadoriase gene can also be directly synthesized by an organic synthesis method or an enzyme synthesis method.
  • the amadoriase gene obtained by the above method can be performed by using, for example, a multicapillary DNA analysis system CEQ2000 (manufactured by Beckman Coulter).
  • CEQ2000 manufactured by Beckman Coulter
  • the amadoriase gene obtained as described above is incorporated into a vector such as a bacteriophage, a cosmid, or a plasmid used for transformation of prokaryotic cells or eukaryotic cells by a conventional method, and a host corresponding to each vector is usually used. Transformation or transduction can be performed by the method.
  • an arbitrary host for example, a microorganism belonging to the genus Escherichia, specifically E. coli K-12 strain, preferably E. coli JM109 strain, E. coli DH5 ⁇ strain (both manufactured by Takara Bio Inc.).
  • E. coli B strain preferably E. coli BL21 strain (manufactured by Nippon Gene), etc.
  • the identity or similarity of amino acid sequences is determined by GENETYX Ver.
  • amino acid positions that are similar in two or more amadoriases can be examined.
  • CLUSTALW can be used to align a plurality of amino acid sequences.
  • Blosum62 is used as an algorithm, and amino acids that are judged to be similar when a plurality of amino acid sequences are aligned may be referred to as similar amino acids.
  • amino acid substitutions may be due to substitutions between such similar amino acids.
  • a position occupied by a region having the same amino acid sequence and a similar amino acid can be examined for a plurality of amino acid sequences. Based on such information, a homology region (conserved region) in an amino acid sequence can be determined.
  • the term “homology region” refers to a region in which, when two or more amadoriases are aligned, the amino acids at corresponding positions of a reference amadoriase and a comparison amadoriase are the same or consist of similar amino acids. It is a region composed of 3 or more, 4 or more, 5 or more, 6 or more, 7 or more, 8 or more, 9 or more, or 10 or more consecutive amino acids. For example, in FIG. 1, an amadoriase having a sequence identity of 74% or more of the full-length amino acid sequence was aligned. Among these, the 10th to 32nd positions are composed of the same or similar amino acids based on Coniochaeta sp.
  • Amadoriase represented by SEQ ID NO: 1, and thus correspond to the homology region.
  • the homology region of amadoriase is from positions 11 to 32, 36 to 41, 50 to 52, 54 to 58, and 84 to 86 based on ConiochaetaConsp.
  • Amadoriase represented by SEQ ID NO: 1. , 88-90, 145-150, 157-168, 202-205, 207-212, 215-225, 236-248, 258-261, 266-268, 270-273 275-287, 347-354, 357-363, 370-383, 385-387, and 405-410.
  • the homology region of amadoriase is positions 11 to 18, 20 to 32, 50 to 52, 54 to 58, 266 to 268, based on Coniochaeta sp.
  • amadoriase variants of the present invention are SEQ ID NO: 1, SEQ ID NO: 3, SEQ ID NO: 6.
  • an amadoriase having the amino acid sequence shown in SEQ ID NO: 9, SEQ ID NO: 10, SEQ ID NO: 11, SEQ ID NO: 44, SEQ ID NO: 53 or SEQ ID NO: 67, for example 60% or more, 70% or more, 71% or more, 72% or more, 73% or more, 74% or more, 75% or more, 76% or more, 77% or more, 78% or more, 79% or more, 80% or more, 81% or more, 82% or more, 83% 84% or more, 85% or more, 86% or more, 87% or more, 88% or more, 89% or more, 90% or more, 91% or more, 92% or more, 93% or more, 94% or more, 95% or more, It has a full-length amino acid sequence identity of 96% or more, 97% or more, 98% or more, for example 99%
  • amino acid sequence in the homology region of the amadoriase mutant of the present invention is 75% or more, for example, 80% or more, 81% or more, 82% or more, 83% or more, 84, and the amino acid sequence of the homology region in SEQ ID NO: 1. % Or more, 85% or more, 86% or more, 87% or more, 88% or more, 89% or more, 90% or more, 91% or more, 92% or more, 93% or more, 94% or more, 95% or more, 96% or more 97% or more, 98% or more, for example 99% or more.
  • the “position corresponding to an amino acid” refers to a position in an amino acid sequence of an amadoriase derived from another species corresponding to an amino acid at a specific position in the amino acid sequence of an amadoriase derived from the genus Coniochaeta shown in SEQ ID NO: 1.
  • amino acid sequences are compared using a known algorithm such as Lippmann-Person method, and the maximum conserved amino acid residue present in the amino acid sequence of each amadoriase is determined. It can be done by giving sex.
  • aligning the amino acid sequences of the amadoriases in this way it is possible to determine the positions of the homologous amino acid residues in the sequence of each amadoriase sequence regardless of insertions or deletions in the amino acid sequences.
  • the homologous position is considered to exist at the same position in the three-dimensional structure, and it can be estimated that the homologous position has a similar effect on the specific function of the target amadoriase.
  • FIGS. 1-1, 1-2, 1-3, 1-4, and 1-5 illustrate the sequences of amadoriases derived from various known species.
  • the amino acid sequence represented by SEQ ID NO: 1 is shown at the top.
  • Each of the various sequences shown in FIG. 1 has 70% or more identity with the sequence of SEQ ID NO: 1, and was aligned using a known algorithm.
  • mutation points in the mutant of the present invention are shown. 1-1, 1-2, 1-3, 1-4, 1-5, the position in the amino acid sequence of the amadoriase derived from another species corresponding to the amino acid at the specific position of the amino acid sequence of the amadoriase derived from the genus Coniochaeta Can know.
  • amadoriase derived from the genus Coniochaeta (SEQ ID NO: 1), amadoriase derived from Eupenicillium terrenum (SEQ ID NO: 3), derived from Pyrenochaeta sp.
  • Amadoriase derived from Arthrinium sp (SEQ ID NO: 1), amadoriase derived from Eupenicillium terrenum (SEQ ID NO: 3), derived from Pyrenochaeta sp.
  • Ketoamine oxidase (SEQ ID NO: 4), Ketoamine oxidase from Arthrinium sp.
  • SEQ ID NO: 5 Ketoamine oxidase from Curvularia clavata (SEQ ID NO: 6), Ketoamine oxidase from Neocosmospora vasinfecta (SEQ ID NO: 7), Cryptococcus fructosyl amino acid oxidase derived from neoformans (SEQ ID NO: 8), fructosyl peptide oxidase derived from Phaeosphaeria nodorum (SEQ ID NO: 9), fructosyl amino acid oxidase derived from Aspergillus nidulans (SEQ ID NO: 10), fructosyl peptide oxidase derived from Emericella nidulans ( SEQ ID NO: 11), fructose derived from Ulocladium sp.
  • amino acid sequences of amino acid oxidase (SEQ ID NO: 12) and fructosyl amino acid oxidase (SEQ ID NO: 13) derived from Penicillium janthinellum are shown.
  • the “position corresponding to the cysteine at position 280 of the amino acid sequence described in SEQ ID NO: 1” refers to the confirmed amino acid sequence of amadoriase and the amino acid sequence of Amadoriase derived from the genus Coniochaeta shown in SEQ ID NO: 1.
  • it means the amino acid corresponding to the cysteine at position 280 of the amadoriase of SEQ ID NO: 1.
  • the amino acid sequence can be identified from FIGS. 1-3 in which the amino acid sequences are aligned by the above-described method of identifying the “corresponding amino acid residue (corresponding amino acid residue)”.
  • the “position corresponding to phenylalanine at position 267 of the amino acid sequence described in SEQ ID NO: 1” means that the confirmed amino acid sequence of amadoriase is compared with the amino acid sequence of the amadoriase derived from the genus Coniochaeta shown in SEQ ID NO: 1. Means the amino acid corresponding to phenylalanine at position 267 of the amadoriase of SEQ ID NO: 1. This can also be identified from FIGS. 1-3 in which the amino acid sequences are aligned by the above method.
  • amadoriase derived from Eupenicillium terrenum is phenylalanine at position 267, the ketoamine oxidase derived from Pyrenochaeta sp. Is phenylalanine at position 265, the ketoamine oxidase from Arthrinium sp.
  • Phenylalanine at position 267 for the ketoamine oxidase derived from Neocosmospora avasinfecta
  • Phenylalanine at position 267 for the fructosyl amino acid oxidase derived from Cryptococcus neoformans
  • Phenylalanine at position 263 for the fructosyl peptide oxidase derived from Phaeosphaeria nodorum
  • phenylalanine at position 267 fructosyl peptidone derived from Emericella nidulans 267
  • Phenylalanine at oxidase is Ulocladium sp.
  • the “position corresponding to phenylalanine at position 269 of the amino acid sequence described in SEQ ID NO: 1” means that the confirmed amino acid sequence of amadoriase is compared with the amino acid sequence of the amadoriase derived from the genus Coniochaeta shown in SEQ ID NO: 1. Means the amino acid corresponding to phenylalanine at position 269 of the amino acid sequence described in SEQ ID NO: 1. This can also be identified from FIGS. 1-3 in which the amino acid sequences are aligned by the above method.
  • the amadoriase derived from Eupenicillium terrenum is phenylalanine at position 269, the ketoamine oxidase from Pyrenochaeta sp. Is phenylalanine at position 267, the ketoamine oxidase from Arthrinium sp. Is 267, the phenylalanine at position 269, and the ketoamine oxidase from Curvularia clavata is 267.
  • Phenylalanine in position Phenylalanine in position 269 for ketoamine oxidase from Neocosmospora vasinfecta
  • Phenylalanine at position 269 for fructosyl amino acid oxidase from Cryptococcus neoformans
  • Phenylalanine at position 265 for Phuctosphaeria nodorum
  • phenylalanine at position 269 fructosyl peptidic acid derived from Emericella nidulans 269 isoleucine at oxidase, Ulocladium sp.
  • the fructosyl amino acid oxidase derived from 267 of phenylalanine
  • the fructosyl amino acid oxidase from Penicillium Janthinellum a position 269 of the phenylalanine.
  • the position corresponding to aspartic acid at position 54 of the amino acid sequence described in SEQ ID NO: 1 means that the confirmed amino acid sequence of amadoriase is compared with the amino acid sequence of Amadoriase derived from the genus Coniochaeta shown in SEQ ID NO: 1 And amino acid corresponding to aspartic acid at position 54 in the amino acid sequence shown in SEQ ID NO: 1. This can also be identified from FIG. 1-1 in which the amino acid sequences are aligned by the above method.
  • the “position corresponding to tyrosine at position 241 of the amino acid sequence described in SEQ ID NO: 1” means that the confirmed amino acid sequence of amadoriase is compared with the amino acid sequence of Amadoriase derived from the genus Coniochaeta shown in SEQ ID NO: 1. Means an amino acid corresponding to tyrosine at position 241 of the amadoriase of SEQ ID NO: 1. This can also be identified from FIGS. 1-3 in which the amino acid sequences are aligned by the above method.
  • Tyrosine at position 241 Tyrosine at position 241, tyrosine at position 241 for ketoamine oxidase from Neocosmospora vasinfecta, tyrosine at position 241 for fructosyl amino acid oxidase from Cryptococcus neoformans, tyrosine at position 237 for fructosyl peptide oxidase from Phaeosphaeria nodorum, fruct from Aspergillus nidulans For tosyl amino acid oxidase, phenylalanine at position 241; for fructosyl peptide oxidase derived from Emericella nidulans, phenylalanine at position 241; derived from Ulocladium sp.
  • the fructosyl amino acid oxidase 239-position tyrosine the fructosyl amino acid oxidase from Penicillium Janthinellum a position 241 of the phenylalanine.
  • the amino acid “position corresponding to arginine at position 62 of the amino acid sequence described in SEQ ID NO: 1” refers to the confirmed amino acid sequence of Amadoriase, the amino acid of Amadoriase derived from the genus Coniochaeta shown in SEQ ID NO: 1.
  • amino acid sequence can be aligned and specified by the above-described method of specifying the “amino acid residue at the corresponding position”.
  • the amino acid at “position corresponding to arginine at position 62 of the amino acid sequence described in SEQ ID NO: 1” is amadoriase derived from Eupenicillium terrenum, ketoamine oxidase derived from Pyrenochaeta sp., Ketoamine oxidase derived from Arthrinium sp., Curvularia clavata Ketoamine oxidase derived from Neocosmospora vasinfecta, fructosyl amino acid oxidase derived from Cryptococcusformneoformans, fructosyl amino acid oxidase derived from Ulocladium sp., Fructosyl amino acid oxidase derived from Penicillium janthinellum, derived from arginine at Phaeosphaeria ⁇ nodorum
  • the fructosyl peptide oxidase serine at position 62, and for the fructosyl
  • the amino acid “position corresponding to leucine at position 63 of the amino acid sequence described in SEQ ID NO: 1” refers to the confirmed amino acid sequence of Amadoriase, the amino acid of Amadoriase derived from the genus Coniochaeta shown in SEQ ID NO: 1 It means the amino acid corresponding to leucine at position 63 of the amadoriase of SEQ ID NO: 1 when compared with the sequence.
  • the amino acid sequence can be aligned and specified by the above-described method of specifying the “amino acid residue at the corresponding position”.
  • the amino acid at “position corresponding to leucine at position 63 of the amino acid sequence described in SEQ ID NO: 1” is amadoriase derived from Eupenicillium terrenum, ketoamine oxidase derived from Pyrenochaeta sp., Ketoamine oxidase derived from Arthrinium sp., Curvularia clavata Ketoamine oxidase derived from Neocosmospora vasinfecta, fructosyl peptide oxidase derived from Phaeosphaeria nodorum, fructosyl amino acid oxidase derived from Ulocladium sp., Fructosyl amino acid oxidase derived from Penicillium janthinellum derived from leucine at position 63, Cryptococcus neoformans In the fructosyl amino acid oxidase, isoleucine at position 63, fructosyl amino acid oxide
  • the amino acid “position corresponding to glutamic acid at position 102 of the amino acid sequence described in SEQ ID NO: 1” refers to the confirmed amino acid sequence of Amadoriase, the amino acid of Amadoriase derived from the genus Coniochaeta shown in SEQ ID NO: 1 When compared with the sequence, it means the amino acid corresponding to glutamic acid at position 102 of the amadoriase of SEQ ID NO: 1.
  • the amino acid sequence can be aligned and specified by the above-described method of specifying the “amino acid residue at the corresponding position”.
  • the amino acid at “position corresponding to glutamic acid at position 102 of the amino acid sequence described in SEQ ID NO: 1” is derived from Eupenicillium terrenum-derived amadoriase, Curvularia clavata-derived ketoamine oxidase, Neocosmospora vasinfecta-derived ketoamine oxidase, Cryptococcus neoformans-derived From fructosyl amino acid oxidase, penicillium janthinellum fructosyl amino acid oxidase, glutamic acid at position 102, ketoamine oxidase from Pyrenochaeta sp., Ketoamine oxidase from Arthrinium sp., Fructosyl peptide oxidase from Phaeosphaeria nodorum, derived from Ulocladium sp.
  • fructosyl amino acid oxidase lysine at position 102, fructosyl peptide oxidase from Emericella ⁇ nidulans, fructosyl amino acid oxy from Aspergillus nidulans It is glutamic acid at position 101 in the dase.
  • the amino acid at “position corresponding to aspartic acid at position 106 of the amino acid sequence shown in SEQ ID NO: 1” refers to the confirmed amino acid sequence of Amadoriase, which is the Amadoriase derived from the genus Coniochaeta shown in SEQ ID NO: 1. When compared with the amino acid sequence, it means an amino acid corresponding to aspartic acid at position 106 of the amadoriase of SEQ ID NO: 1.
  • the amino acid sequence can be aligned and specified by the above-described method of specifying the “amino acid residue at the corresponding position”.
  • the amino acid at “position corresponding to aspartic acid at position 106 in the amino acid sequence described in SEQ ID NO: 1” is an amadoriase derived from Eupenicillium terrenum, a ketoamine oxidase from position 106, a ketoamine oxidase from Pyrenochaeta sp., A keto from Curvularia clavata Amine oxidase, fructosyl peptide oxidase from Phaeosphaeria nodorum, fructosyl amino acid oxidase from Ulocladium sp., Aspartic acid at position 106, alanine at position 106 in ketoamine oxidase from Arthrinium sp., Ketoamine oxidase from Neocosmospora vasinfecta Glycine at position 106, fructosyl amino acid oxidase from Cryptococcus neoformans, fructosyl amino acid oxidase
  • the amino acid at “position corresponding to glutamine at position 110 of the amino acid sequence described in SEQ ID NO: 1” refers to the confirmed amino acid sequence of Amadoriase, the amino acid of Amadoriase derived from the genus Coniochaeta shown in SEQ ID NO: 1 When compared with the sequence, it means the amino acid corresponding to glutamine at position 110 of the amadoriase of SEQ ID NO: 1.
  • the amino acid sequence can be aligned and specified by the above-described method of specifying the “amino acid residue at the corresponding position”.
  • amino acid at “position corresponding to glutamine at position 110 in the amino acid sequence described in SEQ ID NO: 1” is an amadoriase derived from Eupenicillium terrenum, a fructosyl amino acid oxidase derived from Penicillium janthinellum, a lysine at position 110, and a keto from Pyrenochaeta sp.
  • the amino acid “position corresponding to alanine at position 113 of the amino acid sequence described in SEQ ID NO: 1” refers to the confirmed amino acid sequence of Amadoriase, and the amino acid of Amadoriase derived from the genus Coniochaeta shown in SEQ ID NO: 1. It means the amino acid corresponding to alanine at position 113 of the amadoriase of SEQ ID NO: 1 when compared with the sequence.
  • the amino acid sequence can be aligned and specified by the above-described method of specifying the “amino acid residue at the corresponding position”.
  • amino acid at “position corresponding to alanine at position 113 in the amino acid sequence described in SEQ ID NO: 1” is position 113 in the amadoriase derived from Eupenicillium terrenum, ketoamine oxidase derived from Pyrenochaeta .sp., And ketoamine oxidase derived from Arthrinium sp.
  • Threonine ketoamine oxidase from Curvularia clavata, fructosyl amino acid oxidase from Cryptococcus neoformans, fructosyl peptide oxidase from Phaeosphaeria nodorum, fructosyl amino acid oxidase from Ulocladium sp., Alanine at position 113, ketoamine from Neocosmospora vasinfecta Lysine at position 113 for oxidase, fructosyl amino acid oxidase from Aspergillus nidulans, serine at position 112 for fructosyl peptide oxidase from Emericella nidulans, Penicillium janthi In the fructosyl amino acid oxidase derived from nellum, it is aspartic acid at position 113.
  • the amino acid “position corresponding to alanine at position 355 of the amino acid sequence described in SEQ ID NO: 1” refers to the confirmed amino acid sequence of Amadoriase, and the amino acid of Amadoriase derived from the genus Coniochaeta shown in SEQ ID NO: 1 When compared with the sequence, it means the amino acid corresponding to alanine at position 355 of the amadoriase of SEQ ID NO: 1.
  • the amino acid sequence can be aligned and specified by the above-described method of specifying the “amino acid residue at the corresponding position”.
  • the amino acid at “position corresponding to alanine at position 355 of the amino acid sequence described in SEQ ID NO: 1” is an amadoriase derived from Eupenicillium terrenum, a fructosyl amino acid oxidase derived from Cryptococcus neoformans, a fructosyl amino acid oxidase derived from Aspergillus nidulans, Emericella nidulans Fructosyl peptide oxidase derived from Penicillium janthinellum, alanine at position 355 for fructosyl amino acid oxidase derived from Penicillium janthinellum, ketoamine oxidase from Pyrenochaeta sp., Ketoamine oxidase from Curvularia clavata, position 353 for fructosyl amino acid oxidase derived from Ulocladium sp.
  • ketoamine oxidase from Arthrinium sp. Alanine at position 356, ketoamine oxidase from Neocosmospora vasinfecta, serine at position 355, Phaeosphaeria n In fructosyl peptide oxidase derived from odorum, it is alanine at position 351.
  • the amino acid “position corresponding to alanine at position 419 of the amino acid sequence described in SEQ ID NO: 1” refers to the confirmed amino acid sequence of Amadoriase and the amino acid of Amadoriase derived from the genus Coniochaeta shown in SEQ ID NO: 1. It means the amino acid corresponding to alanine at position 419 of the amadoriase of SEQ ID NO: 1 when compared with the sequence.
  • the amino acid sequence can be aligned and specified by the above-described method of specifying the “amino acid residue at the corresponding position”.
  • the amino acid at “position corresponding to alanine at position 419 in the amino acid sequence described in SEQ ID NO: 1” is glycine at position 419 in the amadoriase from Eupenicillium terrenum, ketoamine oxidase from Pyrenochaeta sp., Ketoamine from Curvularia clavata Oxidase, alanine at position 418 for fructosyl amino acid oxidase from Ulocladium sp., Alanine at position 421 for ketoamine oxidase from Arthrinium sp., Ketoamine oxidase from Neocosmospora vasinfecta, fructosyl amino acid oxidase from Cryptococcus neoformans, Emericella nidulans
  • fructosyl peptide oxidase derived from alanine at position 420 in the case of fructosyl peptide oxidase derived from Ph
  • the amino acid at “position corresponding to aspartic acid at position 68 of the amino acid sequence shown in SEQ ID NO: 1” is the determined amino acid sequence of Amadoriase, which is the amino acid sequence of the genus Amadoriase derived from the genus Coniochaeta shown in SEQ ID NO: 1.
  • the amino acid sequence can be aligned and specified by the above-described method of specifying the “amino acid residue at the corresponding position”.
  • amino acid “position corresponding to aspartic acid at position 68 of the amino acid sequence described in SEQ ID NO: 1” is amadoriase derived from Eupenicillium terrenum, ketoamine oxidase derived from Pyrenochaeta sp., Ketoamine oxidase derived from Arthrinium sp., Curvularia kelavamine oxidase from clavata, ketoamine oxidase from Neocosmospora vasinfecta, fructosyl amino acid oxidase from Cryptococcus ⁇ ⁇ ⁇ neformans, fructosyl peptide oxidase from Phaeosphaeriaodornodorum, fructosyl amino acid oxidase from Ulocladium ⁇ sp., fructosyl amino acid from Penicillium janthinellum Aspartate at position 68 for oxidase, fructosyl peptide oxidas
  • the amino acid “position corresponding to alanine at position 356 of the amino acid sequence described in SEQ ID NO: 1” is the confirmed amino acid sequence of Amadoriase, and the amino acid of Amadoriase derived from the genus Coniochaeta shown in SEQ ID NO: 1 It means an amino acid corresponding to alanine at position 356 of the amadoriase of SEQ ID NO: 1 when compared with the sequence.
  • the amino acid sequence can be aligned and specified by the above-described method of specifying the “amino acid residue at the corresponding position”.
  • the amino acid at “position corresponding to alanine at position 356 in the amino acid sequence described in SEQ ID NO: 1” is asparagine at position 356 in the amadoriase derived from Eupenicillium terrenum, alanine at position 354 in the ketoamine oxidase derived from Pyrenochaeta sp., Arthrinium sp.-derived ketoamine oxidase at position 357, Curvularia clavata-derived ketoamine oxidase at position 354, Neocosmospora vasinfecta-derived ketoamine oxidase at position 356, Cryptococcus neoformans-derived fructosyl amino acid oxidase at position 356 Asparagine, Phaeosphaeria nodorum fructosyl peptide oxidase, position 352 alanine, Aspergillus nidulans fructosyl amino acid oxidase position 356, asparagine,
  • position corresponding to glutamic acid at position 44 of the amino acid sequence described in SEQ ID NO: 1 refers to the confirmed amino acid sequence of amadoriase, the amino acid sequence of Amadoriase derived from the genus Coniochaeta shown in SEQ ID NO: 1 Is the amino acid corresponding to glutamic acid at position 44 of the amadoriase of SEQ ID NO: 1.
  • the amino acid sequence can be identified by FIG. 1 in which the amino acid sequences are aligned by the above-described method of identifying the “corresponding amino acid residue”.
  • the “position corresponding to glutamic acid at position 81 of the amino acid sequence described in SEQ ID NO: 1” means that the confirmed amino acid sequence of amadoriase is compared with the amino acid sequence of Amadoriase derived from the genus Coniochaeta shown in SEQ ID NO: 1. Means an amino acid corresponding to glutamic acid at position 81 of the amadoriase of SEQ ID NO: 1. This can also be identified from FIG. 1 in which the amino acid sequences are aligned by the above method.
  • position corresponding to glutamic acid at position 133 of the amino acid sequence described in SEQ ID NO: 1 means that the confirmed amino acid sequence of amadoriase is compared with the amino acid sequence of Amadoriase derived from the genus Coniochaeta shown in SEQ ID NO: 1. Means an amino acid corresponding to glutamic acid at position 133 in the amino acid sequence described in SEQ ID NO: 1. This can also be identified from FIG. 1 in which the amino acid sequences are aligned by the above method.
  • glutamic acid at position 133 for amadoriase from Eupenicillium terrenum glutamic acid at position 133 for ketoamine oxidase from Pyrenochaeta sp., Alanine at position 133 for ketoamine oxidase from Arthrinium sp., 133 for ketoamine oxidase from Curvularia clavata Glutamic acid in position, alanine at position 133 for ketoamine oxidase from Neocosmospora vasinfecta, glutamic acid at position 133 for fructosyl amino acid oxidase from Cryptococcus neoformans, glutamic acid at position 131 for fructosyl peptide oxidase from Phaeosphaeria nodorum, and fructos from Aspergillus nidulans In tosylamino acid oxidase, glutamic acid at position 132, and in fructosyl peptide oxidas
  • position corresponding to glutamic acid at position 253 of the amino acid sequence described in SEQ ID NO: 1 means that the confirmed amino acid sequence of amadoriase is compared with the amino acid sequence of Amadoriase derived from the genus Coniochaeta shown in SEQ ID NO: 1. Means an amino acid corresponding to glutamic acid at position 253 of the amino acid sequence described in SEQ ID NO: 1. This can also be identified from FIG. 1 in which the amino acid sequences are aligned by the above method.
  • amadoriase derived from Eupenicillium terrenum is alanine at position 253, the ketoamine oxidase derived from Pyrenochaeta sp. Is alanine at position 251; the ketoamine oxidase derived from Arthrinium sp.
  • the tosyl amino acid oxidase is alanine at position 253, the fructosyl peptide oxidase from Emericella nidulans is alanine at position 253, and it is a furan from Ulocladium sp.
  • Kutoshiruamino oxidase position 251 glutamic acid the fructosyl amino acid oxidase from Penicill
  • the position corresponding to glycine at position 256 of the amino acid sequence described in SEQ ID NO: 1 means that the confirmed amino acid sequence of amadoriase is compared with the amino acid sequence of the amadoriase derived from the genus Coniochaeta shown in SEQ ID NO: 1. Means an amino acid corresponding to glycine at position 256 of the amadoriase of SEQ ID NO: 1. This can also be identified from FIG. 1 in which the amino acid sequences are aligned by the above method.
  • the position corresponding to valine at position 257 of the amino acid sequence described in SEQ ID NO: 1 means that the confirmed amino acid sequence of amadoriase is compared with the amino acid sequence of Amadoriase derived from the genus Coniochaeta shown in SEQ ID NO: 1. Means the amino acid corresponding to the valine at position 257 of the amadoriase of SEQ ID NO: 1. This can also be identified from FIG. 1 in which the amino acid sequences are aligned by the above method.
  • position corresponding to asparagine at position 262 of the amino acid sequence described in SEQ ID NO: 1 means that the confirmed amino acid sequence of amadoriase is compared with the amino acid sequence of Amadoriase derived from the genus Coniochaeta shown in SEQ ID NO: 1. Means the amino acid corresponding to asparagine at position 262 of the amadoriase of SEQ ID NO: 1. This can also be identified from FIG. 1 in which the amino acid sequences are aligned by the above method.
  • the position corresponding to glutamine at position 337 of the amino acid sequence described in SEQ ID NO: 1 means that the confirmed amino acid sequence of amadoriase is compared with the amino acid sequence of Amadoriase derived from the genus Coniochaeta shown in SEQ ID NO: 1. Means the amino acid corresponding to glutamine at position 337 of the amadoriase of SEQ ID NO: 1. This can also be identified from FIG. 1 in which the amino acid sequences are aligned by the above method.
  • the position corresponding to glutamic acid at position 340 of the amino acid sequence described in SEQ ID NO: 1 means that the determined amino acid sequence of amadoriase is compared with the amino acid sequence of Amadoriase derived from the genus Coniochaeta shown in SEQ ID NO: 1. Means an amino acid corresponding to glutamic acid at position 340 of the amadoriase of SEQ ID NO: 1. This can also be identified from FIG. 1 in which the amino acid sequences are aligned by the above method.
  • the position corresponding to aspartic acid at position 129 of the amino acid sequence described in SEQ ID NO: 1 means that the confirmed amino acid sequence of amadoriase is compared with the amino acid sequence of the amadoriase derived from the genus Coniochaeta shown in SEQ ID NO: 1 And amino acid corresponding to aspartic acid at position 129 of the amadoriase of SEQ ID NO: 1. This can also be identified from FIG. 1 in which the amino acid sequences are aligned by the above method.
  • the position corresponding to aspartic acid at position 132 of the amino acid sequence described in SEQ ID NO: 1 means that the confirmed amino acid sequence of amadoriase is compared with the amino acid sequence of Amadoriase derived from the genus Coniochaeta shown in SEQ ID NO: 1 Further, it means an amino acid corresponding to aspartic acid at position 132 of the amadoriase of SEQ ID NO: 1. This can also be identified from FIG. 1 in which the amino acid sequences are aligned by the above method.
  • the “position corresponding to glutamic acid at position 231 of the amino acid sequence described in SEQ ID NO: 1” means that the confirmed amino acid sequence of amadoriase is compared with the amino acid sequence of Amadoriase derived from the genus Coniochaeta shown in SEQ ID NO: 1. Means the amino acid corresponding to glutamic acid at position 231 of the amadoriase of SEQ ID NO: 1. This can also be identified from FIG. 1 in which the amino acid sequences are aligned by the above method.
  • glutamic acid at position 231 in the amadoriase derived from Eupenicillium terrenum glutamic acid at position 229 in the ketoamine oxidase derived from Pyrenochaeta sp., Glutamic acid at position 231 in the ketoamine oxidase derived from Arthrinium sp., And 229 in the ketoamine oxidase derived from Curvularia clavata Glutamic acid in position
  • glutamic acid at position 231 in ketoamine oxidase from Neocosmospora vasinfecta glutamic acid in position 231 in fructosyl amino acid oxidase from Cryptococcus neoformans, histidine from 227 in fructosyl peptide oxidase from Phaeosphaeria nodorum, histidine derived from Aspergillus nidus Glutamic acid at position 231 for tosyl amino acid oxidase and glutamine at position
  • the position corresponding to aspartic acid at position 232 of the amino acid sequence described in SEQ ID NO: 1 means that the confirmed amino acid sequence of amadoriase is compared with the amino acid sequence of Amadoriase derived from the genus Coniochaeta shown in SEQ ID NO: 1 Further, it means an amino acid corresponding to aspartic acid at position 232 of the amadoriase of SEQ ID NO: 1. This can also be identified from FIG. 1 in which the amino acid sequences are aligned by the above method.
  • position corresponding to glutamic acid at position 249 of the amino acid sequence described in SEQ ID NO: 1 means that the confirmed amino acid sequence of amadoriase is compared with the amino acid sequence of Amadoriase derived from the genus Coniochaeta shown in SEQ ID NO: 1. Means the amino acid corresponding to glutamic acid at position 249 of the amadoriase of SEQ ID NO: 1. This can also be identified from FIG. 1 in which the amino acid sequences are aligned by the above method.
  • lysine at position 249 in Eudricillium terrenum-derived amadoriase lysine at position 247 in ketoamine oxidase from Pyrenochaeta sp., Histidine at position 249 in ketoamine oxidase from Arthrinium sp., And 247 in ketoamine oxidase from Curvularia clavata.
  • Glutamic acid in position glutamic acid at position 249 in ketoamine oxidase from Neocosmospora vasinfecta, glutamic acid in position 249 in fructosyl amino acid oxidase from Cryptococcus neoformans, glutamic acid in position 245 in fructosyl peptide oxidase from Phaeosphaeria nodorum, Tosyl amino acid oxidase is alanine at position 249, fructosyl peptide oxidase from Emericella nidulans is alanine at position 249, fructose from Ulocladium sp.
  • position corresponding to 3 amino acid residues from the carboxyl terminus of Amadoriase described in SEQ ID NO: 1 means that the amino acid sequence of Amadoriase is compared with the amino acid sequence of Amadoriase derived from the genus Coniochaeta shown in SEQ ID NO: 1. In this case, it means 3 amino acid residues from the carboxyl terminus of the amino acid sequence described in SEQ ID NO: 1.
  • amadoriase derived from the genus Coniochaeta the sequence of 3 residues at this position is composed of proline at position 435, lysine at position 436, and leucine at position 437. Can be identified from FIG.
  • the 3 amino acids at the carboxyl end consist of alanine at position 435, histidine at position 436, and leucine at position 437, and in ketoamine oxidase derived from Pyrenochaeta sp., The 3 amino acids at the carboxyl end are alanine at position 438, It consists of lysine at position 439 and leucine at position 440.
  • ketoamine oxidase derived from Arthrinium sp. The 3 amino acids at the carboxyl terminal consist of histidine at position 450, lysine at position 451 and leucine at position 452, and ketoamine derived from Curvularia clavata.
  • the 3 amino acids at the carboxyl end consist of serine at position 438, lysine at position 439, and leucine at position 440.
  • the 3 amino acids at the carboxyl end are at position 435. It consists of alanine, asparagine at position 436, and leucine at position 437.
  • the 3 amino acids at the carboxyl terminus consist of alanine at position 436, lysine at position 437, and methionine at position 438, derived from Emericella nidulans.
  • the 3 amino acids at the carboxyl terminal consist of an alanine at position 436, a lysine at position 437, and a methionine at position 438.
  • the 3 amino acids at the carboxyl terminal are alanine at position 435, lysine at position 436, and leucine at position 437. Consisting of emissions. (Production of Amadoriase of the Present Invention)
  • this strain may be cultured by a normal solid culture method. Adopting and culturing is preferable.
  • Examples of the medium for culturing the above strain include one or more nitrogen sources such as yeast extract, tryptone, peptone, meat extract, corn steep liquor or soybean or wheat bran leachate, sodium chloride, phosphoric acid first Add one or more inorganic salts such as potassium, dibasic potassium phosphate, magnesium sulfate, magnesium chloride, ferric chloride, ferric sulfate or manganese sulfate, and add sugar raw materials, vitamins, etc. as necessary. Used.
  • nitrogen sources such as yeast extract, tryptone, peptone, meat extract, corn steep liquor or soybean or wheat bran leachate, sodium chloride, phosphoric acid
  • inorganic salts such as potassium, dibasic potassium phosphate, magnesium sulfate, magnesium chloride, ferric chloride, ferric sulfate or manganese sulfate, and add sugar raw materials, vitamins, etc. as necessary. Used.
  • the culture can be carried out under any conditions.
  • the culture temperature is 20 to 42 ° C., preferably about 30 ° C. for 4 to 24 hours, more preferably about 30 ° C. for about 8 to 8 hours. It can be carried out for 16 hours by aeration and agitation deep culture, shaking culture, stationary culture or the like.
  • amadoriase After completion of the culture, in order to collect amadoriase from the culture, it can be obtained using a normal enzyme collecting means.
  • the bacterial cells are subjected to ultrasonic disruption treatment, grinding treatment, or the like, or the enzyme is extracted using a lytic enzyme such as lysozyme, or shaken or left in the presence of toluene or the like to lyse the bacteria. This enzyme can be discharged out of the cells. Then, this solution is filtered, centrifuged, etc.
  • nucleic acid is removed with streptomycin sulfate, protamine sulfate, manganese sulfate or the like, and then ammonium sulfate, alcohol, acetone or the like is added thereto. Fractionation and collecting the precipitate to obtain a crude enzyme of amadoriase.
  • an amadoriase purified enzyme preparation further from the above crude amadoriase enzyme, for example, gel filtration method using Sephadex, Superdex, Ultrogel, etc .; adsorption elution method using ion exchanger; electrophoresis using polyacrylamide gel, etc.
  • Method Adsorption elution method using hydroxyapatite; Precipitation method such as sucrose density gradient centrifugation; Affinity chromatography method; Fractionation method using molecular sieve membrane or hollow fiber membrane, etc.
  • the amadoriase included in the kit of the present invention includes the genera Eupenicillium, Pyrenochaeta, Arthrinium, Curvularia, Neocosmospora, Cryptococcus, Phaeosphaeria, Aspergillus, Emericella, Ulocladium, Penicillium, Fusarium, Achaetomiella, Natural amadoriase derived from the genus, Thielavia, Chaetomium, Gelasinospora, Microascus, Leptosphaeria, Ophiobolus, Pleospora, Coniochaetidium, Pichia, Corynebacterium, Agrobacterium, Arthrobacter, etc. possible.
  • Such a mutant corresponds to the amino acid at a position selected from the group consisting of cysteine at position 280, phenylalanine at position 267, phenylalanine at position 269, aspartic acid at position 54, and tyrosine at position 241 in the amino acid sequence shown in SEQ ID NO: 1.
  • cysteine at position 280 phenylalanine at position 267, phenylalanine at position 269, aspartic acid at position 54, and tyrosine at position 241 in the amino acid sequence shown in SEQ ID NO: 1.
  • Have one or more amino acid substitutions at A person skilled in the art can easily examine whether a certain amadoriase or a variant thereof can be used in the kit of the present invention, that is, has a desired dehydrogenase activity, for example, by a test method described below.
  • amadoriase activity in the amadoriase of the present invention is mutated in its amino acid sequence due to genetic modification or the like, resulting in a decrease in oxidase activity and / or an improvement in dehydrogenase activity compared to that before modification. It is characterized by that. Specifically, the ratio of “oxidase activity” to “dehydrogenase activity” is reduced as compared with that before modification.
  • Oxidase activity refers to the activity of transferring electrons to oxygen molecules when oxidizing a substrate.
  • Dehydrogenase activity refers to the activity of passing hydride (H ⁇ ) to an electron acceptor when a substrate is oxidized.
  • the dehydrogenase activity is high.
  • the ratio OX / DH of oxidase activity (OX) and dehydrogenase activity (DH) of amadoriase is low, and the oxidase activity (OX) of amadoriase is low. It is preferably low and has high dehydrogenase activity (DH).
  • the characteristics of amadoriase may be expressed using DH / OX indicating the ratio of dehydrogenase activity to oxidase activity, or the ratio OX / DH of oxidase activity to dehydrogenase activity.
  • the modified amadoriase of the present invention has increased dehydrogenase activity compared to that before modification. In certain embodiments, the modified amadoriase of the present invention has reduced oxidase activity compared to that before modification.
  • the modified amadoriase of the present invention has a lower ratio of dehydrogenase activity to oxidase activity OX / DH ratio (higher DH / OX ratio) than that before modification.
  • the modified amadoriase of the present invention not only has increased dehydrogenase activity compared to that before modification, but also has reduced oxidase activity.
  • DH / OX indicating the ratio of the dehydrogenase activity to the oxidase activity is 1.3 times or more, 2 times or more, 3 times or more before modification (1.0 times).
  • OX / DH indicating the ratio of oxidase activity to dehydrogenase activity in the modified amadoriase of the present invention is less than 90%, less than 80%, less than 75%, less than 50%, 40% compared to that before modification (100%). Preferably, it is reduced to less than%, less than 30%, less than 20%, less than 10%, less than 5%, less than 2%, less than 1%, less than 0.5%, such as less than 0.2%.
  • the ratio of the oxidase activity to the dehydrogenase activity can be measured under any condition using a known method for measuring amadoriase and compared with that before modification. For example, by determining the oxidase activity measured by adding 1 mM of a saccharification substrate such as ⁇ FV at pH 7.0, divided by the dehydrogenase activity measured by adding 1 mM of the saccharification substrate such as ⁇ FV, The ratio of the oxidase activity to the dehydrogenase activity can be calculated and compared with that before and after modification. (High-throughput screening) Amadoriase can be further subjected to high throughput screening to obtain functional amadoriase variants.
  • a library of transformed or transduced strains with a mutagenized amadoriase gene may be generated and used for high-throughput screening based on microtiter plates, or for ultra-high-throughput screening based on droplet-type microfluidics May be provided.
  • Examples include the construction of a combinatorial library of mutant genes encoding variants, followed by phage display (eg Chem. Rev. 105 (11): 4056-72, 2005), yeast display (eg Comb Chem High Throughput Screen. 2008; 11 (2): 127-34), bacterial display (for example, Curr Opin Struct Biol 17: 474-80, 2007) and the like, and a method for screening a large population of mutant amadoriases.
  • a library can be constructed by error-prone PCR.
  • saturation mutagenesis may be used to construct a library by introducing mutations targeting the positions described herein or corresponding positions.
  • the library can be used to transform suitable cells, such as electrically competent EBY-100 cells, to obtain approximately 10 7 mutants. Yeast cells transformed with the library can then be subjected to cell sorting.
  • PDMS Polydimethoxylsiloxane
  • a monodisperse droplet can be formed using a flow focus device.
  • the formed droplets containing the individual variants can be subjected to a suitable sorting device.
  • the presence or absence of dehydrogenase activity can be used. Mutation introduction and selection may be repeated multiple times.
  • Method for measuring amadoriase activity The activity of amadoriase has oxidase activity and dehydrogenase activity, and can be measured by using various methods. As an example, a method for measuring amadoriase activity used in the present invention will be described below.
  • Examples of the method for measuring the oxidase activity of amadoriase in the present invention include a method for measuring the amount of hydrogen peroxide produced by the reaction of the enzyme and a method for measuring the amount of oxygen consumed by the enzyme reaction.
  • a method for measuring the amount of hydrogen peroxide will be described.
  • fructosyl valine is used as a substrate for the measurement of oxidase activity of amadoriase in the present invention unless otherwise specified.
  • the enzyme titer can be defined as 1 U of the amount of enzyme that produces 1 ⁇ mol of hydrogen peroxide per minute when measured using fructosyl valine as a substrate.
  • Glycated amino acids such as fructosyl valine and glycated peptides such as fructosyl valyl histidine can be synthesized and purified based on the method of Sakagami et al. (See JP 2001-95598 A).
  • Reagent 1 POD-4-AA solution 4.0 kU peroxidase (Kikkoman), 100 mg 4-aminoantipyrine (Tokyo Chemical Industry) 0.1M potassium phosphate buffer Dissolve in (pH 7.0) and make up to 1 L.
  • Reagent 2 TOOS solution 500 mg of TOOS (N-ethyl-N- (2-hydroxy-3-sulfopropyl) -m-toluidine sodium, manufactured by Dojin Chemical Co., Ltd.) is dissolved in ion-exchanged water and fixed to 100 ml. Yes.
  • Reagent 3 Substrate solution (30 mM; final concentration 1 mM) Dissolve 83 mg of fructosyl valine in ion-exchanged water and make up a constant volume of 10 ml.
  • the control solution is prepared in the same manner as described above except that 100 ⁇ l of ion exchange water is added instead of 100 ⁇ l of reagent 3.
  • the number of micromoles of hydrogen peroxide produced per minute at 37 ° C. is defined as the activity unit (U) in the enzyme solution, and is calculated according to the following formula.
  • Method for measuring dehydrogenase activity of amadoriase As a method for measuring the dehydrogenase activity of amadoriase in the present invention, an electron mediator other than oxygen is used as an electron acceptor, and the amount of oxidized electron mediator consumed is measured or the amount of formazan dye produced by an enzymatic reaction is measured.
  • the main measurement method is a method of performing the above. As an example, a method for measuring the amount of formazan dye produced is shown below.
  • fructosyl valine is used as a substrate for measurement of dehydrogenase activity of amadoriase in the present invention unless otherwise specified.
  • the enzyme titer is defined as 1 U for the amount of enzyme that produces 1 ⁇ mol of formazan dye per minute when measured using fructosyl valine as a substrate.
  • Reagent 4 WST-3 Solution 700 mg of WST-3 (2- (4-Iodophenyl) -3- (2,4-dinitrophenyl) -5- (2,4-disulfophenyl) -2H-tetrazolium , Monosodium salt (manufactured by Dojin Chemical Co., Ltd.) in ion-exchanged water (pH 7.0) and made up to a volume of 100 mL.
  • Reagent 5 Methoxy PMS (mPMS) solution 50 mg of mPMS (1-Methoxy-5-methylphenazinium methylsulfate, manufactured by Dojindo) is dissolved in ion-exchanged water, and the volume is adjusted to 10 ml. D. Measurement Method Mix 541 ⁇ l of 95 mM potassium phosphate buffer (pH 7.0) with 150 ⁇ l of reagent 4, 9 ⁇ l of reagent 5 and 25 ⁇ l of enzyme solution, and preheat at 37 ° C. for 5 minutes.
  • mPMS Methoxy PMS
  • the control solution is prepared in the same manner as described above except that 25 ⁇ l of ion exchange water is added instead of 25 ⁇ l of reagent 3.
  • the number of micromoles of formazan dye of WST-3 produced per minute at 37 ° C. is defined as the activity unit (U) in the enzyme solution, and is calculated according to the following formula.
  • the present invention provides an HbA1c measurement kit and an HbA1c measurement apparatus comprising the amadoriase of the present invention having improved dehydrogenase activity.
  • the kit or device may optionally include an electronic mediator.
  • the present invention provides an immobilized enzyme electrode comprising the amadoriase of the present invention with improved dehydrogenase activity.
  • the amadoriase of the present invention having improved dehydrogenase activity may be applied, adsorbed, or immobilized on an enzyme electrode.
  • an electron mediator may also be applied, adsorbed, or immobilized on the electrode.
  • a carbon electrode a metal electrode such as platinum, gold, silver, nickel, palladium, or the like can be used.
  • examples of the material include pyrolytic graphite carbon (PG), glassy carbon (GC), carbon paste, and plastic formed carbon (PFC).
  • the measurement system may be a two-electrode system or a three-electrode system.
  • an enzyme can be immobilized on the working electrode.
  • Reference electrodes include standard hydrogen electrode, reversible hydrogen electrode, silver-silver chloride electrode (Ag / AgCl), palladium / hydrogen electrode, saturated calomel electrode, etc. From the viewpoint of stability and reproducibility, Ag / AgCl is used. It is preferable to use it.
  • the enzyme can be immobilized on the electrode by crosslinking, coating with a dialysis membrane, encapsulation in a polymer matrix, use of a photocrosslinkable polymer, use of an electrically conductive polymer, use of an oxidation / reduction polymer, and the like.
  • the enzyme may be fixed in the polymer together with the electron mediator or adsorbed and fixed on the electrode, or these methods may be combined.
  • the amadoriase of the present invention can be applied to various electrochemical measurement methods by using a potentiostat or a galvanostat.
  • Electrochemical measurement methods include various methods such as amperometry, potentiometry, coulometry, and the like.
  • the concentration of the saccharified substrate in the sample can be calculated by measuring the current value generated when the reduced mediator is oxidized by the applied voltage by the amperometry method.
  • the applied voltage depends on the settings of the mediator and the apparatus, but can be, for example, ⁇ 1000 to +1000 mV (vs. Ag / AgCl).
  • Measurement of the concentration of a saccharification substrate can be performed, for example, as follows. Put buffer in constant temperature cell and maintain at constant temperature. As the mediator, potassium ferricyanide, phenazine methosulfate, or the like can be used. An electrode on which the modified amadoriase of the present invention is immobilized is used as a working electrode, and a counter electrode (for example, a platinum electrode) and a reference electrode (for example, an Ag / AgCl electrode) are used. After a constant voltage is applied to the carbon electrode and the current becomes steady, a sample containing a saccharification substrate (for example, ⁇ FVH) is added and the increase in current is measured. The saccharification substrate ( ⁇ FVH) concentration in the sample can be calculated according to a calibration curve prepared with a standard concentration saccharification substrate (eg, ⁇ FVH) solution.
  • a standard concentration saccharification substrate eg, ⁇ FVH
  • the electrode is preferably formed on an insulating substrate.
  • the electrodes be formed on the substrate by a printing technique such as photolithography technique, screen printing, gravure printing, flexographic printing or the like.
  • the material for the insulating substrate include silicon, glass, ceramic, polyvinyl chloride, polyethylene, polypropylene, polyester, and the like, but it is more preferable to use a material having strong resistance to various solvents and chemicals.
  • the present invention provides a sensor comprising the enzyme electrode.
  • the concentration of the Amadori compound in the sample can be determined by measuring the current generated by the enzyme reaction.
  • an enzyme electrode is used as a working electrode, which is used with a counter electrode and a reference electrode.
  • the counter electrode can be, for example, a platinum electrode
  • the reference electrode can be, for example, an Ag / AgCl electrode. Keep the temperature constant and insert the electrode into the buffer containing the mediator. A voltage is applied to the working electrode, and after adding the sample, the change in current is measured.
  • the mediator used in the measurement method, kit, device, and sensor of the present invention can be any one that can receive electrons from the amadoriase of the present invention with improved dehydrogenase activity.
  • mediators include quinones, phenazines, viologens, cytochromes, phenoxazines, phenothiazines, ferricyanides, such as potassium ferricyanide, ferredoxins, ferrocene, osmium complexes, and derivatives thereof.
  • examples thereof include PMS and methoxy PMS, but are not limited thereto.
  • the modified amadoriase of the present invention has improved dehydrogenase activity. In certain embodiments, the modified amadoriase of the present invention has reduced oxidase activity. In certain embodiments, the modified amadoriase of the invention has a reduced oxidase activity / dehydrogenase activity ratio (OX / DH ratio). In one embodiment, the modified amadoriase of the present invention has improved dehydrogenase activity and reduced oxidase activity. Such an enzymatic reaction catalyzed by the modified amadoriase of the present invention is not affected, hardly received, or hardly affected by oxygen.
  • the modified amadoriase of the present invention can be used for the same applications as conventional amadoriases.
  • the amadoriase of the present invention can be used for measuring the concentration of a glycated substrate in a sample, which can be useful, for example, in the diagnosis of diabetes.
  • the amadoriase of this invention can be used as an enzyme electrode. This can be used for various electrochemical measurements.
  • the amadoriase of the present invention can be used as an enzyme sensor.
  • the amadoriase of this invention can be utilized for the measurement kit of a diabetes marker. However, this is merely an example, and the use of the modified amadoriase of the present invention is not limited thereto.
  • Example 1 (About dehydrogenase activity-enhancing mutations) (1) Preparation of recombinant plasmid pKK223-3-CFP-T7 DNA E. coli strain JM109 (pKK223-3-CFP-T7) having a recombinant plasmid containing the CFP-T7 gene (SEQ ID NO: 2) (International Publication 2007) No. 1/25779) to LB-amp medium [1% (W / V) bactotryptone, 0.5% (W / V) peptone, 0.5% (W / V) NaCl, 50 ⁇ g / ml Ampicillin] Inoculated into 2.5 ml and cultured with shaking at 37 ° C. for 20 hours to obtain a culture.
  • the culture was collected by centrifuging at 7,000 rpm for 5 minutes to obtain bacterial cells.
  • the recombinant plasmid pKK223-3-CFP-T7 was extracted from the cells using QIAGEN tip-100 (Qiagen) and purified, and the recombinant plasmid pKK223-3-CFP-T7 DNA2. 5 ⁇ g was obtained.
  • a part of the reaction solution was electrophoresed on a 1.0% agarose gel, and it was confirmed that about 6,000 bp of DNA was specifically amplified.
  • the DNA thus obtained was treated with the restriction enzyme DpnI (NEW ENGLAND, manufactured by BIOLABS) to cleave the remaining template DNA, and then transformed into E. coli JM109 and developed on an LB-amp agar medium.
  • the grown colonies were inoculated into LB-amp medium and cultured with shaking, and plasmid DNA was isolated by the same method as in (1) above.
  • the base sequence of DNA encoding amadoriase in the plasmid was determined using a multicapillary DNA analysis system Applied Biosystems 3130xl genetic analyzer (manufactured by Life Technologies).
  • a recombinant plasmid (pKK223-3-CFP-T7-280S) encoding a modified amadoriase in which the cysteine at position 280 of the amino acid sequence shown in SEQ ID NO: 1 was substituted with serine was obtained.
  • recombinant plasmid pKK223-3-CFP-T7 DNA as a template, except that the synthetic oligonucleotides of SEQ ID NOS: 15 and 19 are used, and the cysteine at position 280 in the amino acid sequence shown in SEQ ID NO: 1 is substituted with methionine.
  • a recombinant plasmid (pKK223-3-CFP-T7-280M) encoding a modified amadoriase was obtained.
  • recombinant plasmid pKK223-3-CFP-T7 DNA as a template, except that synthetic oligonucleotides of SEQ ID NOS: 15 and 20 are used, and cysteine at position 280 of the amino acid sequence shown in SEQ ID NO: 1 is substituted with lysine.
  • a recombinant plasmid (pKK223-3-CFP-T7-280K) encoding the modified amadoriase was obtained.
  • recombinant plasmid pKK223-3-CFP-T7 DNA as a template, except that the synthetic oligonucleotides of SEQ ID NOS: 15 and 22 are used, and the cysteine at position 280 of the amino acid sequence shown in SEQ ID NO: 1 is substituted with valine.
  • a recombinant plasmid (pKK223-3-CFP-T7-280V) encoding a modified amadoriase was obtained.
  • recombinant plasmid pKK223-3-CFP-T7 DNA as a template, except that synthetic oligonucleotides of SEQ ID NOS: 24 and 25 are used, and phenylalanine at position 267 of the amino acid sequence shown in SEQ ID NO: 1 is substituted with tyrosine.
  • a recombinant plasmid (pKK223-3-CFP-T7-267Y) encoding a modified amadoriase was obtained.
  • recombinant plasmid pKK223-3-CFP-T7 DNA as a template, except that the synthetic oligonucleotides of SEQ ID NOS: 26 and 27 are used, and phenylalanine at position 269 in the amino acid sequence shown in SEQ ID NO: 1 is substituted with tyrosine.
  • a recombinant plasmid (pKK223-3-CFP-T7-269Y) encoding a modified amadoriase was obtained.
  • coli JM109 was transformed with the reaction solution, and a recombinant plasmid (pKK223-3-CFP-T7) encoding a modified amadoriase in which phenylalanine at position 267 of the amino acid sequence shown in SEQ ID NO: 1 was replaced with leucine. -267L) was obtained.
  • Escherichia coli JM109 was transformed with the reaction solution, and a recombinant plasmid (pKK223-3-CFP-T7) encoding a modified amadoriase in which phenylalanine at position 267 of the amino acid sequence described in SEQ ID NO: 1 was substituted with methionine. -267M).
  • Escherichia coli JM109 was transformed with the reaction solution, and a recombinant plasmid (pKK223-3-CFP-T7) encoding a modified amadoriase in which phenylalanine at position 269 of the amino acid sequence shown in SEQ ID NO: 1 was substituted with leucine. -269L).
  • Escherichia coli JM109 was transformed with the reaction solution, and a recombinant plasmid (pKK223-3-CFP-T7) encoding a modified amadoriase in which phenylalanine at position 269 of the amino acid sequence described in SEQ ID NO: 1 was substituted with methionine. -269M).
  • CFP-T7 represents amadoriase derived from E. coli JM109 (pKK223-3-CFP-T7) strain.
  • CFP-T7 which is an amadoriase derived from E. coli JM109 (pKK223-3-CFP-T7) strain, was used as the mutagen enzyme. Therefore, in the description of “amino acid mutation” in the table, CFP-T7 Does not include mutation points already introduced.
  • oxidase activity (%) and dehydrogenase activity (%) are shown as percentages when the oxidase activity (U / mL) of the original enzyme CFP-T7 is taken as 100.
  • OX / DH (%) indicates a percentage when the OX / DH ratio of the original enzyme CFP-T7 is 100.
  • the ratio of the oxidase activity to the dehydrogenase activity of CFP-T7, OX / DH was 26.0, which was found to be strongly influenced by oxygen.
  • all mutants except C280V, ie, cysteine at position 280 of CFP-T7 is glutamine, serine, aspartic acid, glutamic acid, methionine, Lysine, arginine, asparagine, histidine, threonine, 267th phenylalanine is tyrosine, leucine, methionine, 269th phenylalanine is tyrosine, leucine, methionine, 54th aspartate is asparagine, alanine, 241th tyrosine In the case of amadoriase mutated to glutamic acid, glutamine and lysine, OX / DH
  • C280Q, C280S, F267Y, F267L, F267M, F269Y, F269L, F269M, and Y241Q have reduced oxidase activity compared to CFP-T7, although the dehydrogenase activity is improved. It has been shown. Therefore, it was shown that each of these mutation points is a mutation point that improves the dehydrogenase activity of amadoriase.
  • the obtained fraction showing amadoriase activity was concentrated with Amicon Ultra-15, 30K NMWL (Millipore). Thereafter, it was applied to HiLoad 26/60 Superdex 200 pg (manufactured by GE Healthcare) equilibrated with 20 mM potassium phosphate buffer (pH 7.0) containing 150 mM NaCl, eluted with the same buffer, and a fraction showing amadoriase activity. The fraction was collected to obtain purified samples of wild type and modified amadoriase. The obtained purified sample was confirmed to be purified to a single band by analysis by SDS-PAGE.
  • SEQ ID NO: 44 is the amino acid sequence of a modified enzyme of Eupenicillium terrenum-derived fructosyl peptide oxidase (EFP-T5). -It can be produced by E. coli harboring EFP-T5 (see International Publication No. 2007/125779). E.
  • Example 1 (1) Preparation of recombinant plasmid pK223-3-CFP-T7 DNA", and pUTE100K'-EFP-T5 was Extracted and purified.
  • SEQ ID NO: 9 is the amino acid sequence of Phaeosphaeria nodorum-derived fructosyl peptide oxidase (PnFX), and E. coli carrying the recombinant plasmid pET22b-PnFX inserted with the gene (SEQ ID NO: 49) encoding the amino acid sequence of SEQ ID NO: 9 It can be produced (see International Publication No. 2013/162035).
  • Example 1 Preparation of recombinant plasmid pK223-3-CFP-T7 DNA", and pET22b-PnFX was extracted and purified.
  • a recombinant plasmid (pET22b-PnFX-276Q) encoding a PnFX gene in which the cysteine at position 276 of the amino acid sequence shown in SEQ ID NO: 9 was replaced with glutamine was obtained.
  • E. coli BL21 (DE3) strain is transformed under the same conditions as in Example 1 to obtain E. coli BL21 (DE3) (pET22b-PnFX-276Q) strain and E. coli BL21 (DE3) (pET22b-PnFX-276S) strain. It was.
  • SEQ ID NO: 53 is an amino acid sequence of Aspergillus nidulans-derived fructosyl amino acid oxidase (AnFX) obtained by substituting serine at position 59 with glycine for imparting fructosyl peptide oxidase activity, and a gene encoding the amino acid sequence of SEQ ID NO: 53 ( It can be produced by Escherichia coli carrying the recombinant plasmid pET22b-AnFX inserted with SEQ ID NO: 54) (see International Publication No. 2012/018094).
  • AnFX Aspergillus nidulans-derived fructosyl amino acid oxidase
  • Example 1 Preparation of recombinant plasmid pK223-3-CFP-T7 DNA", and pET22b-AnFX was extracted and purified.
  • E. coli BL21 (DE3) strain is transformed under the same conditions as in Example 1 to obtain E. coli BL21 (DE3) (pET22b-AnFX-280Q) strain and E. coli BL21 (DE3) (pET22b-AnFX-280S) strain. It was. (Preparation of recombinant plasmid pKK223-3-CcFX DNA)
  • SEQ ID NO: 6 is the amino acid sequence of Curvularia clavata-derived ketoamine oxidase (CcFX) (International Publication No. WO 2004/104203).
  • E. coli strain JM109 carrying pKK223-3-CcFX was cultured according to the method described in "Example 1 (1) Preparation of recombinant plasmid pK223-3-CFP-T7 DNA", and pKK223-3-CcFX was extracted. Purified.
  • cysteine at position 278 in the amino acid sequence described in SEQ ID NO: 6 was substituted with serine using pKK223-3-CcFX as a template and the synthetic oligonucleotides of SEQ ID NO: 59 and 61
  • a recombinant plasmid (pKK223-3-CcFX-278S) encoding the CcFX gene was obtained.
  • PCR reaction and DpnI treatment were performed using pKK223-3-CcFX as a template and the synthetic oligonucleotides of SEQ ID NOs: 62 and 63, and 2 ⁇ l of DpnI-treated DNA was then added.
  • Ligation high 2. manufactured by Toyobo Co., Ltd. was added with 5 ⁇ l and 5 ⁇ U / ⁇ l of T4 polynucleotide kinase (1 ⁇ l).
  • Escherichia coli JM109 was transformed using the reaction solution, and a recombinant plasmid (pKK223-3-CcFX-265L) encoding the CcFX gene in which phenylalanine at position 265 of the amino acid sequence shown in SEQ ID NO: 6 was replaced with leucine was used.
  • a recombinant plasmid pKK223-3-CcFX-265L
  • PCR reaction and DpnI treatment were performed using pKK223-3-CcFX as a template and the synthetic oligonucleotides of SEQ ID NOs: 62 and 64, and then 2 ⁇ l of DpnI-treated DNA was added. Ligation high 2. (manufactured by Toyobo Co., Ltd.) was added with 5 ⁇ l and 5 ⁇ U / ⁇ l of T4 polynucleotide kinase (1 ⁇ l). Thereafter, E.
  • coli JM109 was transformed using the reaction solution, and a recombinant plasmid encoding a CcFX gene in which phenylalanine at position 265 of the amino acid sequence shown in SEQ ID NO: 6 was replaced with methionine (pKK223-3-CcFX-265M) Got.
  • PCR reaction and DpnI treatment were performed using pKK223-3-CcFX as a template and the synthetic oligonucleotides of SEQ ID NOs: 65 and 66, and 2 ⁇ l of DpnI-treated DNA was added.
  • Ligation high 2. manufactured by Toyobo Co., Ltd. was added with 5 ⁇ l and 5 ⁇ U / ⁇ l of T4 polynucleotide kinase (1 ⁇ l).
  • Escherichia coli JM109 was transformed using the reaction solution, and a recombinant plasmid (pKK223-3-CcFX-267L) encoding the CcFX gene in which phenylalanine at position 267 of the amino acid sequence shown in SEQ ID NO: 6 was replaced with leucine was used.
  • a recombinant plasmid pKK223-3-CcFX-267L
  • SEQ ID NO: 67 is the amino acid sequence of Emericella nidulans-derived glycated hexapeptide oxidase (En42FX) (International Publication No. WO2015 / 005258).
  • the gene encoding the amino acid sequence of SEQ ID NO: 67 was obtained by total synthesis of cDNA by total synthesis by PCR of a gene fragment that is a standard method (including the stop codon TAA). Subsequently, in order to express the obtained gene of SEQ ID NO: 69 in E. coli, the following procedure was performed. First, according to the user manual of In-Fusion HD Cloning Kit (Clontech Laboratories, Inc.), a fragment containing the gene of SEQ ID NO: 68 was amplified using the synthetic oligonucleotides of SEQ ID NOs: 69 and 70.
  • a fragment containing pET22b was amplified using the synthetic oligonucleotides of SEQ ID NOs: 71 and 72. Subsequently, a fragment containing the gene of SEQ ID NO: 68 was subcloned into a fragment containing pET22b by In-fusion reaction to obtain a recombinant plasmid pET22b-En42FX, and Escherichia coli JM109 was transformed under the same conditions as described above. Escherichia coli JM109 (pET22b-En42FX) strain was obtained.
  • the recombinant plasmid pET22b-En42FX was used as a template, and synthetic oligonucleotides SEQ ID NOs: 73 and 74, KOD-Plus- (manufactured by Toyobo Co., Ltd.) were used.
  • SEQ ID NOs: 73 and 74 KOD-Plus- (manufactured by Toyobo Co., Ltd.) were used.
  • 2 ⁇ l of DpnI-treated DNA, 5 ⁇ l of Ligation high ver.2 (Toyobo), and 1 ⁇ l of 5 ⁇ U / ⁇ l T4 polynucleotide kinase were added to sterile water.
  • Escherichia coli BL21 (DE3) strain was transformed under the same conditions as in Example 1, and Escherichia coli BL21 (DE3) (pET22b-En42FX-280Q) strain, Escherichia coli BL21 (DE3) (pET22b-En42FX-280S) strain, BL21 (DE3) (pET22b-En42FX-267L) strain, E. coli BL21 (DE3) (pET22b-En42FX-267M) strain, E. coli BL21 (DE3) (pET22b-En42FX-269L) strain, E. coli BL21 (DE3) (pET22b-En42FX -269M) strain.
  • E. coli JM109 strain or E. coli BL21 (DE3) strain carrying the recombinant plasmid obtained by the above procedure was placed in 3 ml of LB-amp medium supplemented with 0.1 mM IPTG at 25 ° C. for 16 hours. Cultured. Thereafter, each bacterial cell was washed with 0.01 M phosphate buffer having a pH of 7.0, sonicated, and centrifuged at 15,000 rpm for 10 minutes to prepare 1.5 ml of each crude enzyme solution.
  • DEP Chip electrode (DEP-EP-PP, round, with carbon dam ring; manufactured by Biodevice Technology Co., Ltd.) on which a carbon working electrode and a silver / silver chloride reference electrode are printed
  • small potentiostat BDT miniSTAT 100 made by a biodevice technology company
  • a voltage of +200 mV (vs.
  • CFP-T7-280Q can quantify ⁇ FVH more accurately than CFP-T7 in the system to which 3.75 mM mPMS was added. Further, from FIGS. 3-2 and 4-2, it was shown that CFP-T7-280Q can quantify ⁇ FVH more accurately than CFP-T7 even in a system added with 7.5 mM mPMS.
  • Ketoamine oxidase SEQ ID NO: 6 Ketoamine oxidase from Curvularia clavata SEQ ID NO: 7 Ketoamine oxidase from Neocosmospora vasinfecta SEQ ID NO: 8 Fructosyl amino acid oxidase from Cryptococcus neoformans SEQ ID NO: 9 Fructosyl peptide oxidase from Phaeosphaeria nodorum SEQ ID NO: 10 Aspergillus nidulans Fructosyl amino acid oxidase SEQ ID NO: 11 derived from Emericella nidulans fructosyl peptide oxidase SEQ ID NO: 12 fructosyl amino acid oxidase derived from Ulocladium sp.

Abstract

 酸素濃度の影響を受けにくいアマドリアーゼ、及びそれを用いたHbA1cの測定方法および測定試薬キットを提供する。 コニオカエタ(Coniochaeta)属等由来のアマドリアーゼの280位、267位、269位、54位及び241位よりなる群から選択される位置に対応する位置で1つまたはそれ以上のアミノ酸残基を置換することにより得られるアマドリアーゼ並びにこれを用いたHbA1cの測定方法、測定試薬キット及びセンサー。 本発明の改変アマドリアーゼはオキシダーゼ活性が低減しデヒドロゲナーゼ活性が向上しており、電子メディエーターの利用が可能となり、酸素濃度の影響を低減させ、高感度でHbA1cを測定できる。

Description

デヒドロゲナーゼ活性の向上したアマドリアーゼ
 本発明は、デヒドロゲナーゼ活性が向上したアマドリアーゼ、オキシダーゼ活性が低減されたアマドリアーゼ、デヒドロゲナーゼ活性が向上しオキシダーゼ活性が低減されたアマドリアーゼ、その遺伝子および組換え体DNAならびに該アマドリアーゼの製造法に関する。また本発明は、糖尿病の診断用酵素として、センサーとして、また、糖尿病マーカーの測定キットに有利に利用され得るアマドリアーゼに関する。
 糖化タンパク質は、グルコースなどのアルドース(アルデヒド基を潜在的に有する単糖およびその誘導体)のアルデヒド基と、タンパク質のアミノ基が非酵素的に共有結合を形成し、アマドリ転移することにより生成したものである。タンパク質のアミノ基としてはアミノ末端のαアミノ基、タンパク質中のリジン残基側鎖のεアミノ基が挙げられる。生体内で生じる糖化タンパク質としては血液中のヘモグロビンが糖化された糖化ヘモグロビン、アルブミンが糖化された糖化アルブミンなどが知られている。
 これら生体内で生じる糖化タンパク質の中でも、糖尿病の臨床診断分野において、糖尿病患者の診断や症状管理のための重要な血糖コントロールマーカーとして、糖化ヘモグロビン(HbA1c)が注目されている。血液中のHbA1c濃度は過去の一定期間の平均血糖値を反映しており、その測定値は糖尿病の症状の診断や管理において重要な指標となっている。
 このHbA1cを迅速かつ簡便に測定する方法として、アマドリアーゼを用いる酵素的方法、すなわち、HbA1cをプロテアーゼ等で分解し、そのβ鎖アミノ末端より遊離させたα-フルクトシルバリルヒスチジン(以降「αFVH」と表す。)もしくはα-フルクトシルバリン(以降「αFV」と表す。)を定量する方法が提案されている(例えば、特許文献1~7参照。)。実際には、HbA1cからαFVを切り出す方法では、夾雑物等による影響が大きく、正確な測定値が得られないという課題があり、より正確な測定値を得る目的から、特に現在ではαFVHを測る方法が主流となっている。
 アマドリアーゼは、酸素の存在下で、イミノ2酢酸もしくはその誘導体(「アマドリ化合物」ともいう)を酸化して、グリオキシル酸またはα-ケトアルデヒド、アミノ酸またはペプチドおよび過酸化水素を生成する反応を触媒する。
 アマドリアーゼは、細菌、酵母、真菌から見出されているが、特にHbA1cの測定に有用である、αFVHおよび/またはαFVに対する酵素活性を有するアマドリアーゼとしては、例えば、コニオカエタ(Coniochaeta)属、ユーペニシリウム(Eupenicillium)属、ピレノケータ(Pyrenochaeta)属、アルスリニウム(Arthrinium)属、カーブラリア(Curvularia)属、ネオコスモスポラ(Neocosmospora)属、クリプトコッカス(Cryptococcus)属、フェオスフェリア(Phaeosphaeria)属、アスペルギルス(Aspergillus)属、エメリセラ(Emericella)属、ウロクラディウム(Ulocladium)属、ペニシリウム(Penicillium)属、フザリウム(Fusarium)属、アカエトミエラ(Achaetomiella)属、アカエトミウム(Achaetomium)属、シエラビア(Thielavia)属、カエトミウム(Chaetomium)属、ゲラシノスポラ(Gelasinospora)属、ミクロアスカス(Microascus)属、レプトスフェリア(Leptosphaeria)属、オフィオボラス(Ophiobolus)属、プレオスポラ(Pleospora)属、コニオケチジウム(Coniochaetidium)属、ピチア(Pichia)属、コリネバクテリウム(Corynebacterium)属、アグロバクテリウム(Agrobacterium)属、アルスロバクター(Arthrobacter)属由来のアマドリアーゼが報告されている(例えば、特許文献1、6~15、非特許文献1~11参照。)。なお、上記報告例の中で、アマドリアーゼは、文献によってはケトアミンオキシダーゼやフルクトシルアミノ酸オキシダーゼ、フルクトシルペプチドオキシダーゼ、フルクトシルアミンオキシダーゼ等の表現で記載されている場合もある。
 アマドリアーゼはペルオキシダーゼと共役させ、発色基質を利用することにより、試料中の糖化基質の測定に利用することができる。従来のアマドリアーゼは糖化基質を酸化する際に、酸素分子に電子を伝達することができる。この活性をオキシダーゼ活性という。酵素のオキシダーゼ活性を低減しデヒドロゲナーゼ活性を増大させると、酸素分子の代わりに電子アクセプター(電子メディエーター)を電子アクセプターとして使用することができる。酸素分子の代わりに電子アクセプターを使用することで、酸素の影響を受けることなく測定を行うことできる。
 公知の文献中にアマドリアーゼのデヒドロゲナーゼ活性の向上に関する開示がみられる:例えば、Phaeosphaeria nodorum由来フルクトシルアミノ酸オキシダーゼの56位のアスパラギンをアラニンに置換することにより、デヒドロゲナーゼ活性におけるαFVに対するVmax/Kが2.3倍向上することが示されている(特許文献16参照)。しかしながら、開示されている変異体はオキシダーゼ活性におけるαFVに対するVmax/Kも野生型と比較して1.2倍向上しているため、酸素の影響を依然として受けてしまうと考えられる。
国際公開第2004/104203号 国際公開第2005/49857号 特開2001-95598号公報 特公平05-33997号公報 特開平11-127895号公報 国際公開第97/13872号 特開2011-229526号公報 特開2003-235585号公報 特開2004-275013号公報 特開2004-275063号公報 特開2010-35469号公報 特開2010-57474号公報 国際公開第2010/41715号 国際公開第2010/41419号 国際公開第2011/15325号 特表2013-500729号公報
Biochem. Biophys. Res. Commun. 311, 104-11, 2003 Biotechnol. Bioeng. 106, 358-66, 2010 J. Biosci. Bioeng. 102, 241-3, 2006 Eur. J. Biochem. 242, 499-505, 1996 Arch.Microbiol.178,344-50,2002 Mar.Biotechnol.6,625-32,2004 Biosci. Biotechnol. Biochem.59, 487-91,1995 Appl. Microbiol. Biotechnol. 74, 813-819, 2007 Biosci. Biotechnol. Biochem. 66, 1256-61, 2002 Biosci. Biotechnol. Biochem. 66, 2323-29, 2002 Biotechnol. Letters 27, 27-32,2005
 本発明は、オキシダーゼ活性が低下し、デヒドロゲナーゼ活性が増大したアマドリアーゼを提供することを目的とする。また本発明は、活性が溶存酸素レベルの影響をほとんど受けないアマドリアーゼを提供することを目的とする。
 酵素のオキシダーゼ活性の低下およびデヒドロゲナーゼ活性を付与するための情報はほとんど開示されていない現状の中で、本発明者らは、鋭意研究を重ねた結果、Coniochaeta属由来のアマドリアーゼに対して、特定のアミノ酸残基の置換を導入することにより、上記課題を解決し得ることを見出し、本発明を完成させた。
 すなわち、本発明は、以下を包含する。
[1] デヒドロゲナーゼ活性に対するオキシダーゼ活性の割合(OX/DH)が、改変前のアマドリアーゼと比較して低減している改変アマドリアーゼであって、
(i) アマドリアーゼのアミノ酸配列を、配列番号1記載のアミノ酸配列とアライメントしたときに、配列番号1に示すアミノ酸配列における280位、267位、269位、54位及び241位からなる群より選択される位置に対応する位置の1以上のアミノ酸が置換されており、かつデヒドロゲナーゼ活性を有するアマドリアーゼ、
(ii) 前記(i)のアマドリアーゼにおいて、配列番号1に示すアミノ酸配列における280位、267位、269位、54位及び241位に対応する位置以外の位置における1又は数個のアミノ酸が置換、欠失又は付加されたアミノ酸配列からなり、かつデヒドロゲナーゼ活性を有するアマドリアーゼ、
(iii) 前記(i)のアマドリアーゼにおいて、当該アマドリアーゼの全長アミノ酸配列が配列番号1、配列番号3、配列番号6、配列番号9、配列番号10、配列番号11、配列番号44、配列番号53又は配列番号67のアミノ酸配列と70%以上の配列同一性を有し、配列番号1の第10位~32位、36~41位、49~52位、54~58位、63~65位、73~75位、84~86位、88~90位、120~122位、145~150位、156~162位、164~170位、180~182位、202~205位、207~211位、214~224位、227~230位、236~241位、243~248位、258~261位、266~268位、270~273位、275~287位、295~297位、306~308位、310~316位、324~329位、332~334位、341~344位、346~355位、357~363位、370~383位、385~387位、389~394位、405~410位及び423~431位のアミノ酸配列からなる相同性領域におけるアミノ酸配列と当該アマドリアーゼの対応する位置の相同性領域におけるアミノ酸配列とが90%以上の配列同一性を有し、かつデヒドロゲナーゼ活性を有するアマドリアーゼ、或いは
(iv) 前記(i)のアマドリアーゼにおいて、当該アマドリアーゼの全長アミノ酸配列が配列番号1、配列番号3、配列番号6、配列番号9、配列番号10、配列番号11、配列番号44、配列番号53又は配列番号67のアミノ酸配列と80%以上の配列同一性を有し、かつデヒドロゲナーゼ活性を有するアマドリアーゼ。  
[2] 配列番号1に示すアミノ酸配列における280位に対応する位置のアミノ酸が、グルタミン、セリン、トレオニン及びアスパラギンからなる群より選択される極性アミノ酸、アスパラギン酸、グルタミン酸、リシン、アルギニン、及びヒスチジンからなる群より選択される荷電アミノ酸、又はメチオニン、プロリン、フェニルアラニン、チロシン、及びトリプトファンからなる群より選択されるアミノ酸に置換されている、
 配列番号1に示すアミノ酸配列における267位に対応する位置のアミノ酸が、メチオニン、ロイシン、チロシン、イソロイシン、トリプトファン、バリン又はアラニンに置換されている、
 配列番号1に示すアミノ酸配列における269位に対応する位置のアミノ酸が、メチオニン、ロイシン、チロシン、イソロイシン、トリプトファン、バリン又はアラニンに置換されている、
 配列番号1に示すアミノ酸配列における54位に対応する位置のアミノ酸が、アスパラギン、アラニン、グルタミン、ヒスチジン、グリシン又はバリンからなる群より選択されるアミノ酸に置換されている、或いは
 配列番号1に示すアミノ酸配列における241位に対応する位置のアミノ酸が、グルタミン、リシン、グルタミン酸、アスパラギン、アルギニン、アスパラギン酸又はヒスチジンからなる群より選択されるアミノ酸に置換されている、1に記載のアマドリアーゼ。    
[3] 配列番号1に示すアミノ酸配列における280位に対応する位置のアミノ酸が、グルタミン、セリン、ヒスチジン、トレオニン、アスパラギン、アスパラギン酸、グルタミン酸、リシン、アルギニン又はメチオニンに置換されている、
 配列番号1に示すアミノ酸配列における267位に対応する位置のアミノ酸が、メチオニン、ロイシン、チロシン、イソロイシン又はトリプトファンに置換されている、
 配列番号1に示すアミノ酸配列における269位に対応する位置のアミノ酸が、メチオニン、ロイシン、チロシン、イソロイシン又はトリプトファンに置換されている、
 配列番号1に示すアミノ酸配列における54位に対応する位置のアミノ酸が、アスパラギン又はアラニンに置換されている、或いは
 配列番号1に示すアミノ酸配列における241位に対応する位置のアミノ酸が、グルタミン、グルタミン酸又はリシンに置換されている、2に記載のアマドリアーゼ。  
[4] 配列番号1に示すアミノ酸配列における280位に対応する位置のアミノ酸が、グルタミン、セリン、ヒスチジン、トレオニン、アスパラギン、アスパラギン酸、グルタミン酸、リシン、アルギニン又はメチオニンに置換されている、
 配列番号1に示すアミノ酸配列における267位に対応する位置のアミノ酸が、メチオニン、ロイシン又はチロシンに置換されている、
 配列番号1に示すアミノ酸配列における269位に対応する位置のアミノ酸が、メチオニン、ロイシン又はチロシンに置換されている、
 配列番号1に示すアミノ酸配列における54位に対応する位置のアミノ酸が、アスパラギン又はアラニンに置換されている、或いは
 配列番号1に示すアミノ酸配列における241位に対応する位置のアミノ酸が、グルタミン、グルタミン酸又はリシンに置換されている、3に記載のアマドリアーゼ。  
[5] 配列番号1に示すアミノ酸配列における280位に対応する位置のアミノ酸が、グルタミン、又はセリンに置換されている、
 配列番号1に示すアミノ酸配列における267位に対応する位置のアミノ酸が、メチオニン、ロイシン又はチロシンに置換されている、
 配列番号1に示すアミノ酸配列における269位に対応する位置のアミノ酸が、メチオニン、ロイシン又はチロシンに置換されている、或いは
 配列番号1に示すアミノ酸配列における241位に対応する位置のアミノ酸が、グルタミンに置換されている、3に記載のアマドリアーゼ。  
[6] 配列番号1に示すアミノ酸配列における280位に対応する位置のアミノ酸が、グルタミン又はヒスチジンに置換されている、
 配列番号1に示すアミノ酸配列における267位に対応する位置のアミノ酸が、メチオニン又はロイシンに置換されている、或いは
 配列番号1に示すアミノ酸配列における269位に対応する位置のアミノ酸が、メチオニン又はロイシンに置換されている、3に記載のアマドリアーゼ。  
[7] 配列番号1に示すアミノ酸配列における280位に対応する位置のアミノ酸が、グルタミンに置換されている、
 配列番号1に示すアミノ酸配列における267位に対応する位置のアミノ酸が、メチオニン又はロイシンに置換されている、或いは
 配列番号1に示すアミノ酸配列における269位に対応する位置のアミノ酸が、メチオニン又はロイシンに置換されている、3に記載のアマドリアーゼ。  
[8] デヒドロゲナーゼ活性に対するオキシダーゼ活性の割合(OX/DH)が、改変前のアマドリアーゼ(100%)と比較して80%未満に低減されている、1~7のいずれかに記載のアマドリアーゼ。  
[9] 前記アマドリアーゼが、コニオカエタ(Coniochaeta)属、ユーペニシリウム(Eupenicillium)属、ピレノケータ(Pyrenochaeta)属、アルスリニウム(Arthrinium)属、カーブラリア(Curvularia)属、ネオコスモスポラ(Neocosmospora)属、クリプトコッカス(Cryptococcus)属、フェオスフェリア(Phaeosphaeria)属、アスペルギルス(Aspergillus)属、エメリセラ(Emericella)属、ウロクラディウム(Ulocladium)属、ペニシリウム(Penicillium)属、フザリウム(Fusarium)属、アカエトミエラ(Achaetomiella)属、アカエトミウム(Achaetomium)属、シエラビア(Thielavia)属、カエトミウム(Chaetomium)属、ゲラシノスポラ(Gelasinospora)属、ミクロアスカス(Microascus)属、レプトスフェリア(Leptosphaeria)属、オフィオボラス(Ophiobolus)属、プレオスポラ(Pleospora)属、コニオケチジウム(Coniochaetidium)属、ピチア(Pichia)属、デバリオマイセス(Debaryomyces)属、コリネバクテリウム(Corynebacterium)属、アグロバクテリウム(Agrobacterium)属、又はアルスロバクター(Arthrobacter)属由来である、1~8のいずれかに記載のアマドリアーゼ。  
[10] 配列番号1、配列番号3、配列番号4、配列番号5、配列番号6、配列番号7、配列番号8、配列番号9、配列番号10、配列番号11、配列番号12、配列番号13、配列番号44、配列番号53又は配列番号67に示すアミノ酸配列を有し、1~7のいずれかに規定したアミノ酸置換を有する、1~9のいずれかに記載のアマドリアーゼ。  
[11] さらに、アマドリアーゼのアミノ酸配列を、配列番号1記載のアミノ酸配列とアライメントしたときに、配列番号1に示すアミノ酸配列における以下からなる群より選択される位置に対応する位置にアミノ酸置換又は欠失を1以上有し、かつデヒドロゲナーゼ活性を有する、1~10のいずれかに記載のアマドリアーゼ、
(A)62位、63位、102位、106位、110位、113位、355位、419位、68位及び356位、
(B)262位、257位、249位、253位、337位、340位、232位、129位、132位、133位、44位、256位、231位及び81位、並びに
(C)カルボキシル末端の435位、436位及び437位の3アミノ酸残基の欠失。    
[12] さらに、アマドリアーゼのアミノ酸配列を、配列番号1記載のアミノ酸配列とアライメントしたときに、配列番号1に示すアミノ酸配列における以下からなる群より選択される位置に対応する位置のアミノ酸の1以上が、以下からなる群より選択されるアミノ酸に置換されており又は欠失しており、かつデヒドロゲナーゼ活性を有する、11に記載のアマドリアーゼ、
(A)62位のアルギニンに対応する位置のアミノ酸の、アラニン、アスパラギン又はアスパラギン酸への置換、
63位のロイシンに対応する位置のアミノ酸の、ヒスチジン又はアラニンへの置換、
102位のグルタミン酸に対応する位置のアミノ酸の、リジンへの置換 
106位のアスパラギン酸に対応する位置のアミノ酸の、アラニン、リジン、又はアルギニンへの置換、
110位のグルタミンに対応する位置のアミノ酸のロイシン又はチロシンへの置換、
113位のアラニンに対応する位置のアミノ酸のリジン又はアルギニンへの置換、
355位のアラニンに対応する位置のアミノ酸のセリンへの置換、
419位のアラニンに対応する位置のアミノ酸のリジンへの置換、
68位のアスパラギン酸に対応する位置のアミノ酸のアスパラギンへの置換、
356位のアラニンに対応する位置のアミノ酸のトレオニンへの置換、
(B)262位のアスパラギンに対応する位置のアミノ酸のヒスチジンへの置換、
257位のバリンに対応する位置のアミノ酸のシステイン、セリン、トレオニンへの置換、
249位のグルタミン酸に対応する位置のアミノ酸のリジン、アルギニンへの置換、
253位のグルタミン酸に対応する位置のアミノ酸のリジン、アルギニンへの置換、
337位のグルタミンに対応する位置のアミノ酸のリジン、アルギニンへの置換、
340位のグルタミン酸に対応する位置のアミノ酸のプロリンへの置換、
232位のアスパラギン酸に対応する位置のアミノ酸のリジン、アルギニンへの置換、
129位のアスパラギン酸に対応する位置のアミノ酸のリジン、アルギニンへの置換、
132位のアスパラギン酸に対応する位置のアミノ酸のリジン、アルギニンへの置換、
133位のグルタミン酸に対応する位置のアミノ酸のアラニン、メチオニン、リジン、アルギニンへの置換、
44位のグルタミン酸に対応する位置のアミノ酸のプロリンへの置換、
256位のグリシンに対応する位置のアミノ酸のリジン、アルギニンへの置換、
231位のグルタミン酸に対応する位置のアミノ酸のリジン、アルギニンへの置換、
81位のグルタミン酸に対応する位置のアミノ酸のリジン、アルギニンへの置換、並びに
(C)435位のプロリン、436位のリジン及び437位のロイシンに対応する位置のカルボキシル末端3アミノ酸の欠失。  
[13] 1~12のいずれかに記載のアマドリアーゼを含むHbA1c測定試薬キット。   
[14] 1~12のいずれかに記載のアマドリアーゼを含む酵素電極。  
[15] 14に記載の酵素電極を作用電極として有する酵素センサー。  
[16] 1~12のいずれかに記載のアマドリアーゼ又は14に記載の酵素電極若しくは15に記載の酵素センサー及び電子メディエーターを用いる、HbA1cの測定方法。    
 本明細書は本願の優先権の基礎となる日本国特許出願番号2014-217405号の開示内容を包含する。
 本発明によれば、酸素の影響を受けにくく、さらに高感度測定が可能な糖尿病の診断用酵素として、また、糖尿病マーカー測定用センサーに用いることができる優れたアマドリアーゼ、およびそれをコードする遺伝子等を提供することができる。このアマドリアーゼを用いると、酸素存在下でもより正確に糖化ヘモグロビンの測定を行うことができる。
各種公知のアマドリアーゼのアミノ酸配列における同一性及び類似アミノ酸を例示する図である。Co、Et、Py、Ar、Cc、Nvのほか、Cn、Pn、An、En、Ul及びPjをアライメントした。 図1-2は、図1-1の続きである。 図1-3は、図1-2の続きである。 図1-4は、図1-3の続きである。 図1-5は、図1-4の続きである。 アマドリアーゼのオキシダーゼ活性とデヒドロゲナーゼ活性を示す。図2は酵素反応を説明するための模式図であって、酵素の基質特異性等の特性を限定するものではない。 CFP―T7アマドリアーゼを用いたαFVHの電気化学的測定結果を示す。 図3-1の続きである。 CFP-T7―280Qアマドリアーゼを用いたαFVHの電気化学的測定結果を示す。 図4-1の続きである。
 以下、本発明を詳細に説明する。
 本発明のアマドリアーゼは糖化タンパク質や糖化ペプチドを基質としうる。
(糖化タンパク質、ヘモグロビンA1c)
 本発明における糖化タンパク質とは、非酵素的に糖化されたタンパク質を指す。糖化タンパク質は生体内、外を問わず存在し、生体内に存在する例としては、血液中の糖化ヘモグロビン、糖化アルブミンなどがあり、糖化ヘモグロビンの中でもヘモグロビンのβ鎖アミノ末端のバリンが糖化された糖化ヘモグロビンを特にヘモグロビンA1c(HbA1c)と言う。生体外に存在する例としては、タンパク質やペプチドと糖が共存する液状調味料などの飲食品や輸液などがある。
(糖化ペプチド、フルクトシルペプチド)
 本発明における糖化ペプチドとは、糖化タンパク質由来の非酵素的に糖化されたペプチドを指し、ペプチドが直接非酵素的に糖化されたものや、プロテアーゼ等により糖化タンパク質が分解された結果生じたものや糖化タンパク質を構成する(ポリ)ペプチドが糖化されたものが含まれる。糖化ペプチドをフルクトシルペプチドと表記することもある。糖化タンパク質において、糖化を受けるペプチド側のアミノ基としては、アミノ末端のα-アミノ基、ペプチド内部のリジン残基側鎖のε-アミノ基などが挙げられるが、本発明における糖化ペプチドとは、より具体的には、α-糖化ペプチド(α-フルクトシルペプチド)である。α-糖化ペプチドは、N末端のα-アミノ酸が糖化された糖化タンパク質から何らかの手段、例えば、プロテアーゼによる限定分解などにより遊離させて形成される。例えば、対象の糖化タンパク質がヘモグロビンA1c(HbA1c)である場合、該当するα-糖化ペプチドは、N末端が糖化されているHbA1cのβ鎖から切り出される糖化されたペプチドを指す。146残基のアミノ酸により構成されているHbA1cのβ鎖もまたα-糖化ペプチドに該当する(αF146P)。
 ある実施形態において本発明のアマドリアーゼが作用する測定物質(基質)は、HbA1c、より具体的にはHbA1cのβ鎖である。別の実施形態において本発明のアマドリアーゼが作用する測定物質はHbA1cのβ鎖から切り出されるα-糖化ペプチド、例えばαFV~αF128P、αFV~αF64P、αFV~αF32P、αFV~αF16P、例えばαF6P(α-フルクトシルバリルヒスチジルロイシルスレオニルプロリルグルタミン酸)である。別の実施形態において本発明のアマドリアーゼが作用する測定物質はαFVH(α-フルクトシルバリルヒスチジン)又はαFV(α-フルクトシルバリン)である。
(アマドリアーゼ)
 アマドリアーゼは、ケトアミンオキシダーゼ、フルクトシルアミノ酸オキシダーゼ、フルクトシルペプチドオキシダーゼ、フルクトシルアミンオキシダーゼ等とも称され、酸素の存在下で、イミノ2酢酸またはその誘導体(アマドリ化合物)を酸化して、グリオキシル酸またはα-ケトアルデヒド、アミノ酸またはペプチドおよび過酸化水素を生成する反応を触媒する酵素のことをいう。アマドリアーゼは、自然界に広く分布しており、微生物や、動物または植物起源の酵素を探索することにより、得ることができる。微生物においては、例えば、糸状菌、酵母または細菌等から得ることができる。
 本発明のアマドリアーゼの一態様は、配列番号1に示されるアミノ酸配列を有するConiochaeta属由来のアマドリアーゼまたは配列番号6に示されるアミノ酸配列を有するCurvularia clavata由来のアマドリアーゼに基づき作製された、デヒドロゲナーゼ活性が向上したアマドリアーゼの変異体である。
 本発明のアマドリアーゼの一態様は、配列番号3または配列番号44に示されるアミノ酸配列を有するEupenicillium terrenum由来のアマドリアーゼに基づき作製された、デヒドロゲナーゼ活性が向上したアマドリアーゼの変異体である。
 本発明のアマドリアーゼの一態様は、配列番号9に示されるアミノ酸配列を有するPhaeosphaeria nodorum由来のアマドリアーゼに基づき作製された、デヒドロゲナーゼ活性が向上したアマドリアーゼの変異体である。
 本発明のアマドリアーゼの一態様は、配列番号10又は配列番号配列番号53に示されるアミノ酸配列を有するAspergillus nidulans由来のフルクトシルアミノ酸オキシダーゼに基づき作製された、デヒドロゲナーゼ活性が向上したアマドリアーゼの変異体である。
 本発明のアマドリアーゼの一態様は、配列番号11または配列番号67に示されるアミノ酸配列を有するEmericella nidulans由来のフルクトシルペプチドオキシダーゼに基づき作製された、デヒドロゲナーゼ活性が向上したアマドリアーゼの変異体である。
 このような変異体の例としては、配列番号1、配列番号3、配列番号6、配列番号9、配列番号10、配列番号11、配列番号44、配列番号53又は配列番号67と高い配列同一性(例えば、70%以上、71%以上、72%以上、73%以上、74%以上、75%以上、76%以上、77%以上、78%以上、79%以上、80%以上、81%以上、82%以上、83%以上、84%以上、85%以上、86%以上、87%以上、88%以上、89%以上、90%以上、91%以上、92%以上、93%以上、94%以上、95%以上、96%以上、97%以上、98%以上、例えば99%以上)を有するアミノ酸配列を有するアマドリアーゼおよび配列番号1、配列番号3、配列番号6、配列番号9、配列番号10、配列番号11、配列番号44、配列番号53又は配列番号67のアミノ酸配列において、1から数個のアミノ酸が改変もしくは変異、または、欠失、置換、付加および/または挿入されたアミノ酸配列を有するアマドリアーゼを挙げることができる。
 なお、本発明のアマドリアーゼは例えば、Eupenicillium属、Pyrenochaeta属、Arthrinium属、Curvularia属、Neocosmospora属、Cryptococcus属、Phaeosphaeria属、Aspergillus属、Emericella属、Ulocladium属、Penicillium属、Fusarium属、Achaetomiella属、Achaetomium属、Thielavia属、Chaetomium属、Gelasinospora属、Microascus属、Leptosphaeria属、Ophiobolus属、Pleospora属、Coniochaetidium属、Pichia属、Corynebacterium属、Agrobacterium属、Arthrobacter属などの生物種に由来するアマドリアーゼに基づき作製されたものでもよい。これらの中でもデヒドロゲナーゼ活性を有し、かつ/又はアミノ酸配列が上記のように配列番号1と高い配列同一性を有するものが好ましい。
 オキシダーゼ活性が低減し、デヒドロゲナーゼ活性が向上したアマドリアーゼの変異体(改変体)は、アマドリアーゼのアミノ酸配列において少なくとも1つのアミノ酸残基を置換する、または付加する、または欠失させることによって得ることができる。
(デヒドロゲナーゼ活性の向上/オキシダーゼ活性の低減をもたらす置換)
 デヒドロゲナーゼ活性の向上及び/又はオキシダーゼ活性の低減をもたらすアミノ酸の置換として、配列番号1に示すアミノ酸配列における以下の位置のアミノ酸に対応する位置のアミノ酸の置換が挙げられる。 
(1)280位のシステインの置換、例えば、グルタミン、セリン、トレオニン及びアスパラギンからなる群より選択される極性アミノ酸、アスパラギン酸、グルタミン酸、リシン、アルギニン及びヒスチジンからなる群より選択される荷電アミノ酸、又はメチオニン、プロリン、フェニルアラニン、チロシン及びトリプトファンからなる群より選択されるアミノ酸への置換。 
(2)267位のフェニルアラニンの置換、例えばチロシン、ロイシン、メチオニン、トリプトファン、イソロイシン、バリン又はアラニンからなる群より選択される疎水性アミノ酸残基への置換。 
(3)269位のフェニルアラニンの置換、例えばチロシン、ロイシン、メチオニン、トリプトファン、イソロイシン、バリン又はアラニンからなる群より選択される疎水性アミノ酸残基への置換。 
(4)54位のアスパラギン酸の置換、例えばアスパラギン、アラニン、グルタミン、ヒスチジン、グリシン又はバリンへの置換。 
(5)241位のチロシンの置換、例えばグルタミン、リシン、グルタミン酸、アスパラギン、アスパラギン酸、アルギニン又はヒスチジンへの置換。
 本明細書では便宜上、グルタミン、セリン、トレオニン及びアスパラギンを極性アミノ酸ということがある。またアスパラギン酸、グルタミン酸、リシン、アルギニン、及びヒスチジンを荷電アミノ酸ということがある。またアラニン、バリン、イソロイシン、ロイシン、メチオニン、フェニルアラニン、チロシン、トリプトファンを疎水性アミノ酸ということがある。またメチオニン、フェニルアラニン、チロシン、トリプトファン、プロリンを嵩高いアミノ酸ということがある。
 本発明のデヒドロゲナーゼ活性が向上/オキシダーゼ活性が低減したアマドリアーゼの変異体は、上記アミノ酸置換を少なくとも1つ有していればよく、複数のアミノ酸置換を有していてもよい。例えば、上記アミノ酸置換の1、2、3、4、又は5を有している。
 その中でも、以下のアミノ酸の位置に対応するアミノ酸の置換を有しているデヒドロゲナーゼ活性が向上し、かつ、オキシダーゼ活性が低減した変異体が好ましい。 
(1)280位のシステインの置換、例えば、グルタミン、セリン、ヒスチジン、トレオニン、アスパラギン酸、グルタミン酸、メチオニン、リシン、アルギニン、又はアスパラギンへの置換。 
(2)267位のフェニルアラニンの置換、例えばチロシン、ロイシン又はメチオニンへの置換。 
(3)269位のフェニルアラニンの置換、例えばチロシン、ロイシン又はメチオニンへの置換。 
(4)54位のアスパラギン酸の置換、例えばアスパラギン、アラニンへの置換。 
(5)241位のチロシンの置換、例えばグルタミン、リシン、又はグルタミン酸への置換。
 本発明のアマドリアーゼ変異体は、配列番号1に示すアミノ酸配列において、上記のデヒドロゲナーゼ活性の向上及び/又はオキシダーゼ活性の低減をもたらすアミノ酸の置換を有し得る。さらに、本発明のアマドリアーゼ変異体は、それらの置換アミノ酸以外の位置で、さらに1または数個(例えば1~15個、例えば1~10個、好ましくは1~5個、さらに好ましくは1~3個、特に好ましくは1個)のアミノ酸が欠失、挿入、付加および/または置換されていてもよい。さらに本発明は、上記のデヒドロゲナーゼ活性の向上及び/又はオキシダーゼ活性の低減をもたらすアミノ酸の置換変異、基質特異性等、デヒドロゲナーゼ活性向上以外の性質を向上させるアミノ酸の置換変異を有し、配列番号1に示すアミノ酸配列における前記置換したアミノ酸以外のアミノ酸を除いた部分のアミノ酸配列に対して、70%以上、71%以上、72%以上、73%以上、74%以上、75%以上、76%以上、77%以上、78%以上、79%以上、80%以上、81%以上、82%以上、83%以上、84%以上、85%以上、86%以上、87%以上、88%以上、89%以上、90%以上、91%以上、92%以上、93%以上、94%以上、95%以上、96%以上、97%以上、98%以上、例えば99%以上のアミノ酸配列同一性を有し、アマドリアーゼ活性を有し、デヒドロゲナーゼ活性が改変されたアマドリアーゼ変異体を包含する。
 なお、配列番号1に示されるアミノ酸配列を有するアマドリアーゼは、国際公開2007/125779号においてpKK223-3-CFP-T7と称する組換え体プラスミド(寄託番号:FERM BP-10593)を保持する大腸菌が生産するConiochaeta属由来のアマドリアーゼ(CFP-T7)であり、先に出願人が見出した熱安定性の優れた改変型アマドリアーゼである。このCFP-T7は、天然型のConiochaeta属由来のアマドリアーゼに対し、272位、302位および388位に人為的な変異を順次導入することにより獲得した3重変異体である。
 上記のアミノ酸置換において、アミノ酸の位置は配列番号1に示されるConiochaeta属由来のアマドリアーゼのアミノ酸配列における位置を表しているが、他の生物種由来のアマドリアーゼのアミノ酸配列においては、配列番号1に示されるアミノ酸配列における位置に対応する位置のアミノ酸が置換されている。「対応する位置」の意味については後述する。
(さらなる置換)
(アマドリアーゼの基質特異性を変化させるアミノ酸置換について)
 本発明者らは、アマドリアーゼのアミノ酸残基を置換することによりその基質特異性を変化させることができることを以前に報告した(例えば国際公開2013/162035号を参照のこと。参照によりその全内容を本明細書に組み入れる)。本発明のアマドリアーゼは、場合により、さらにこのようなアミノ酸置換を有してもよい。
 アマドリアーゼの基質特異性を変化させるアミノ酸の置換として、配列番号1に示すアミノ酸配列における以下の位置のアミノ酸に対応する位置のアミノ酸の置換が挙げられる。 
(a)62位のアルギニン
(b)63位のロイシン
(c)102位のグルタミン酸
(d)106位のアスパラギン酸
(e)110位のグルタミン
(f)113位のアラニン
(g)355位のアラニン
(h)419位のアラニン
(i)68位のアスパラギン酸
(j)356位のアラニン
 場合により62位のアルギニンに対応する位置のアミノ酸は、アラニン、アスパラギン又はアスパラギン酸へと置換されてもよい。 
場合により(b)63位のロイシンに対応する位置のアミノ酸は、ヒスチジン又はアラニンへと置換されてもよい。 
場合により(c)102位のグルタミン酸に対応する位置のアミノ酸は、リジンへと置換されてもよい。 
場合により(d)106位のアスパラギン酸に対応する位置のアミノ酸は、アラニン、リジン、又はアルギニンへと置換されてもよい。 
場合により(e)110位のグルタミンに対応する位置のアミノ酸はロイシン又はチロシンへと置換されてもよい。 
場合により(f)113位のアラニンに対応する位置のアミノ酸はリジン又はアルギニンへと置換されてもよい。 
場合により(g)355位のアラニンに対応する位置のアミノ酸はセリンへと置換されてもよい。 
場合により(h)419位のアラニンに対応する位置のアミノ酸はリジンへと置換されてもよい。 
場合により(i)68位のアスパラギン酸に対応する位置のアミノ酸はアスパラギンへと置換されてもよい。 
場合により(j)356位のアラニンに対応する位置のアミノ酸はトレオニンへと置換されてもよい。
(アマドリアーゼの界面活性剤耐性を向上させるアミノ酸置換について)
 本発明者らは、アマドリアーゼのアミノ酸残基を置換することによりその界面活性剤耐性を向上させることができることを確認している。例えば特願2013-221515号及びPCT/JP2014/071036号明細書を参照のこと。これらの文献は参照によりその全内容を本明細書に組み入れるものとする。
 アマドリアーゼの界面活性剤耐性を向上させるアミノ酸の置換として、配列番号1に示すアミノ酸配列における以下の位置のアミノ酸に対応する位置のアミノ酸の置換が挙げられる。 
(i)262位のアスパラギン、
(ii)257位のバリン、
(iii)249位のグルタミン酸
(iv)253位のグルタミン酸、
(v)337位のグルタミン、
(vi)340位のグルタミン酸、
(vii)232位のアスパラギン酸、
(viii)129位のアスパラギン酸、
(ix)132位のアスパラギン酸、
(x)133位のグルタミン酸、
(xi)44位のグルタミン酸、
(xii)256位のグリシン、
(xiii)231位のグルタミン酸、及び
(xiv)81位のグルタミン酸、
 場合により262位のアスパラギンに対応する位置のアミノ酸はヒスチジンへと置換されてもよい。 
場合により257位のバリンに対応する位置のアミノ酸はシステイン、セリン、トレオニンへと置換されてもよい。 
場合により249位のグルタミン酸に対応する位置のアミノ酸はリジン、アルギニンへと置換されてもよい。 
場合により253位のグルタミン酸に対応する位置のアミノ酸はリジン、アルギニンへと置換されてもよい。 
場合により337位のグルタミンに対応する位置のアミノ酸はリジン、アルギニンへと置換されてもよい。 
場合により340位のグルタミン酸に対応する位置のアミノ酸はプロリンへと置換されてもよい。 
場合により232位のアスパラギン酸に対応する位置のアミノ酸はリジン、アルギニンへと置換されてもよい。 
場合により129位のアスパラギン酸に対応する位置のアミノ酸はリジン、アルギニンへと置換されてもよい。 
場合により132位のアスパラギン酸に対応する位置のアミノ酸はリジン、アルギニンへと置換されてもよい。 
場合により133位のグルタミン酸に対応する位置のアミノ酸はアラニン、メチオニン、リジン、アルギニンへと置換されてもよい。 
場合により44位のグルタミン酸に対応する位置のアミノ酸はプロリンへと置換されてもよい。 
場合により256位のグリシンに対応する位置のアミノ酸はリジン、アルギニンへと置換されてもよい。 
場合により231位のグルタミン酸に対応する位置のアミノ酸はリジン、アルギニンへと置換されてもよい。 
場合により81位のグルタミン酸に対応する位置のアミノ酸はリジン、アルギニンへと置換されてもよい。
(アマドリアーゼの熱安定性を向上させるアミノ酸欠失について)
 本発明者らは以前に、アマドリアーゼのカルボキシル末端から、3アミノ酸残基を欠失させることにより、その熱安定性を向上させうることを報告した(国際公開第2013/100006号明細書を参照のこと。参照によりその全内容を本明細書に組み入れる)。ある実施形態において、本発明のアマドリアーゼは上記の置換に加え、さらにカルボキシル末端からの3アミノ酸残基を欠失していてもよい。本明細書においてカルボキシル末端からの3アミノ酸残基の欠失を、熱安定性を向上させる欠失と呼ぶことがある。
(アマドリアーゼをコードする遺伝子の取得)
 これらのアマドリアーゼをコードする本発明の遺伝子(以下、単に「アマドリアーゼ遺伝子」ともいう。)を得るには、通常一般的に用いられている遺伝子のクローニング方法が用いられる。例えば、アマドリアーゼ生産能を有する微生物菌体や種々の細胞から常法、例えば、Current Protocols in Molecular Biology(WILEY Interscience,1989)記載の方法により、染色体DNAまたはmRNAを抽出することができる。さらにmRNAを鋳型としてcDNAを合成することができる。このようにして得られた染色体DNAまたはcDNAを用いて、染色体DNAまたはcDNAのライブラリーを作製することができる。
 次いで、上記アマドリアーゼのアミノ酸配列に基づき、適当なプローブDNAを合成して、これを用いて染色体DNAまたはcDNAのライブラリーからアマドリアーゼ遺伝子を選抜する方法、あるいは、上記アミノ酸配列に基づき、適当なプライマーDNAを作製して、5’RACE法や3’RACE法などの適当なポリメラーゼ連鎖反応(PCR法)により、アマドリアーゼをコードする目的の遺伝子断片を含むDNAを増幅させ、これらのDNA断片を連結させて、目的のアマドリアーゼ遺伝子の全長を含むDNAを得ることができる。
 このようにして得られたアマドリアーゼをコードする遺伝子の好ましい一例として、Coniochaeta属由来のアマドリアーゼ遺伝子(特開2003-235585号公報)の例などが挙げられる。
 これらのアマドリアーゼ遺伝子は、常法通り各種ベクターに連結されていることが、取扱い上好ましい。例えば、Coniochaeta sp. NISL 9330株由来のアマドリアーゼ遺伝子をコードするDNAがpKK223-3 Vector(GEヘルスケア社製)に挿入された組換え体プラスミドpKK223-3-CFP(特開2003-235585号公報)が挙げられる。
(ベクター)
 本発明において用いることのできるベクターとしては、上記プラスミドに限定されることなくそれ以外の、例えば、バクテリオファージ、コスミド等の当業者に公知の任意のベクターを用いることができる。具体的には、例えば、pBluescriptII SK+(STRATAGENE社製)等が好ましい。
(アマドリアーゼ遺伝子の変異処理)
 アマドリアーゼ遺伝子の変異処理は、企図する変異形態に応じた、公知の任意の方法で行うことができる。すなわち、アマドリアーゼ遺伝子あるいは当該遺伝子の組み込まれた組換え体DNAと変異原となる薬剤とを接触・作用させる方法;紫外線照射法;遺伝子工学的手法;またはタンパク質工学的手法を駆使する方法等を広く用いることができる。
 上記変異処理に用いられる変異原となる薬剤としては、例えば、ヒドロキシルアミン、N-メチル-N’-ニトロ-N-ニトロソグアニジン、亜硝酸、亜硫酸、ヒドラジン、蟻酸または5-ブロモウラシル等を挙げることができる。
 上記接触・作用の諸条件は、用いる薬剤の種類等に応じた条件をとることが可能であり、現実に所望の変異をアマドリアーゼ遺伝子において惹起することができる限り特に限定されない。通常、好ましくは0.5~12Mの上記薬剤濃度において、20~80℃の反応温度下で10分間以上、好ましくは10~180分間接触・作用させることで、所望の変異を惹起可能である。紫外線照射を行う場合においても、上記の通り常法に従い行うことができる(現代化学、p24~30、1989年6月号)。
 タンパク質工学的手法を駆使する方法としては、一般的に、Site-Specific Mutagenesisとして知られる手法を用いることができる。例えば、Kramer法(Nucleic Acids Res.,12,9441(1984):Methods Enzymol.,154,350(1987):Gene,37,73(1985))、Eckstein法(Nucleic Acids Res.,13,8749(1985):Nucleic Acids Res.,13,8765(1985):Nucleic Acids Res,14,9679(1986))、Kunkel法(Proc. Natl. Acid. Sci. U.S.A.,82,488(1985):Methods Enzymol.,154,367(1987))等が挙げられる。DNA中の塩基配列を変換する具体的な方法としては、例えば市販のキット(Transformer Mutagenesis Kit;Clonetech社, EXOIII/Mung Bean Deletion Kit;Stratagene製, Quick Change Site Directed Mutagenesis Kit;Stratagene製など)の利用が挙げられる。
 また、一般的なPCR法(ポリメラーゼチェインリアクション、Polymerase Chain Reaction)として知られる手法を用いることもできる(Technique,1,11(1989))。なお、上記遺伝子改変法の他に、有機合成法または酵素合成法により、直接所望の改変アマドリアーゼ遺伝子を合成することもできる。
 上記方法により得られるアマドリアーゼ遺伝子のDNA塩基配列の決定もしくは確認を行う場合には、例えば、マルチキャピラリーDNA解析システムCEQ2000(ベックマン・コールター社製)等を用いることにより行うことができる。
(形質転換・形質導入)
 上述の如くして得られたアマドリアーゼ遺伝子を、常法により、バクテリオファージ、コスミド、または原核細胞もしくは真核細胞の形質転換に用いられるプラスミド等のベクターに組み込み、各々のベクターに対応する宿主を常法により、形質転換または形質導入をすることができる。例えば、得られた組換え体DNAを用いて、任意の宿主、例えば、エッシェリシア属に属する微生物、具体例としては大腸菌K-12株、好ましくは大腸菌JM109株、大腸菌DH5α株(ともにタカラバイオ社製)や大腸菌B株、好ましくは大腸菌BL21株(ニッポンジーン社製)等を形質転換またはそれらに形質導入してそれぞれの菌株を得ることができる。
(アミノ酸配列の同一性又は類似性)
 アミノ酸配列の同一性又は類似性は、GENETYX Ver.11(ゼネティックス社製)のマキシマムマッチングやサーチホモロジー等のプログラムまたはDNASIS Pro(日立ソリューションズ社製)のマキシマムマッチングやマルチプルアライメント等のプログラムにより計算することができる。アミノ酸配列同一性を計算するために、2以上のアマドリアーゼをアライメントしたときに、該2以上のアマドリアーゼにおいて同一であるアミノ酸の位置を調べることができる。こうした情報を基に、アミノ酸配列中の同一領域を決定できる。
 また、2以上のアマドリアーゼにおいて類似であるアミノ酸の位置を調べることもできる。例えばCLUSTALWを用いて複数のアミノ酸配列をアライメントすることができ、この場合、アルゴリズムとしてBlosum62を使用し、複数のアミノ酸配列をアライメントしたときに類似と判断されるアミノ酸を類似アミノ酸と呼ぶことがある。本発明の変異体において、アミノ酸置換はこのような類似アミノ酸の間の置換によるものであり得る。こうしたアライメントにより、複数のアミノ酸配列について、アミノ酸配列が同一である領域及び類似アミノ酸によって占められる位置を調べることができる。こうした情報を基に、アミノ酸配列中の相同性領域(保存領域)を決定できる。
 本明細書において「相同性領域」とは、2以上のアマドリアーゼをアライメントしたときに、ある基準となるアマドリアーゼと比較対象のアマドリアーゼの対応する位置におけるアミノ酸が同一であるか又は類似アミノ酸からなる領域であって、連続する3以上、4以上、5以上、6以上、7以上、8以上、9以上又は10以上のアミノ酸からなる領域をいう。例えば、図1では全長アミノ酸配列の配列同一性が74%以上であるアマドリアーゼをアライメントした。このうち、配列番号1で示されるConiochaeta sp.アマドリアーゼを基準として第10位~32位は同一又は類似アミノ酸からなり、よって相同性領域に該当する。同様に、配列番号1で示されるConiochaeta sp.アマドリアーゼを基準として36~41位、49~52位、54~58位、63~65位、73~75位、84~86位、88~90位、120~122位、145~150位、156~162位、164~170位、180~182位、202~205位、207~211位、214~224位、227~230位、236~241位、243~248位、258~261位、266~268位、270~273位、275~287位、295~297位、306~308位、310~316位、324~329位、332~334位、341~344位、346~355位、357~363位、370~383位、385~387位、389~394位、405~410位及び423~431位は相同性領域に該当しうる。
 好ましくは、アマドリアーゼの相同性領域は、配列番号1で示されるConiochaeta sp.アマドリアーゼを基準として、第11位~32位、36~41位、50~52位、54~58位、84~86位、88~90位、145~150位、157~168位、202~205位、207~212位、215~225位、236~248位、258~261位、266~268位、270~273位、275~287位、347~354位、357~363位、370~383位、385~387位、及び405~410位のアミノ酸配列からなる領域である。
 さらに好ましくは、アマドリアーゼの相同性領域は、配列番号1で示されるConiochaeta sp.アマドリアーゼを基準として第11~18位、20~32位、50~52位、54~58位、266~268位、270~273位、277~286位、及び370~383位のアミノ酸配列からなる領域である。
 本発明のアマドリアーゼ変異体は、配列番号1、配列番号3、配列番号6
、配列番号9、配列番号10、配列番号11、配列番号44、配列番号53又は配列番号67に示されるアミノ酸配列を有するアマドリアーゼとアライメントしたときに50%以上、例えば60%以上、70%以上、71%以上、72%以上、73%以上、74%以上、75%以上、76%以上、77%以上、78%以上、79%以上、80%以上、81%以上、82%以上、83%以上、84%以上、85%以上、86%以上、87%以上、88%以上、89%以上、90%以上、91%以上、92%以上、93%以上、94%以上、95%以上、96%以上、97%以上、98%以上、例えば99%以上の全長アミノ酸配列同一性を有し、デヒドロゲナーゼ活性を有する。さらに、本発明のアマドリアーゼ変異体の相同性領域におけるアミノ酸配列は、配列番号1における相同性領域のアミノ酸配列と75%以上、例えば80%以上、81%以上、82%以上、83%以上、84%以上、85%以上、86%以上、87%以上、88%以上、89%以上、90%以上、91%以上、92%以上、93%以上、94%以上、95%以上、96%以上、97%以上、98%以上、例えば99%以上の配列同一性を有する。
(アミノ酸に対応する位置の特定)
 「アミノ酸に対応する位置」とは、配列番号1に示すConiochaeta属由来のアマドリアーゼのアミノ酸配列の特定の位置のアミノ酸に対応する他の生物種由来のアマドリアーゼのアミノ酸配列における位置をいう。
 「アミノ酸に対応する位置」を特定する方法としては、例えばリップマン-パーソン法等の公知のアルゴリズムを用いてアミノ酸配列を比較し、各アマドリアーゼのアミノ酸配列中に存在する保存アミノ酸残基に最大の同一性を与えることにより行うことができる。アマドリアーゼのアミノ酸配列をこのような方法で整列させることにより、アミノ酸配列中にある挿入、欠失にかかわらず、相同アミノ酸残基の各アマドリアーゼ配列における配列中の位置を決めることが可能である。相同位置は、三次元構造中で同位置に存在すると考えられ、対象となるアマドリアーゼの特異的機能に関して類似した効果を有することが推定できる。
 図1-1、1-2、1-3、1-4、1-5に種々の公知の生物種由来のアマドリアーゼの配列を例示する。配列番号1で示されるアミノ酸配列を最上段に示す。図1に示される各種配列は、いずれも配列番号1の配列と70%以上の同一性を有し、公知のアルゴリズムを用いて整列させた。図中に、本発明の変異体における変異点を示す。図1-1、1-2、1-3、1-4、1-5からConiochaeta属由来のアマドリアーゼのアミノ酸配列の特定の位置のアミノ酸に対応する他の生物種由来のアマドリアーゼのアミノ酸配列における位置を知ることができる。図1-1、1-2、1-3、1-4、1-5には、Coniochaeta属由来のアマドリアーゼ(配列番号1)、Eupenicillium terrenum由来のアマドリアーゼ(配列番号3)、Pyrenochaeta sp.由来のケトアミンオキシダーゼ(配列番号4)、Arthrinium sp.由来のケトアミンオキシダーゼ(配列番号5)、Curvularia clavata由来のケトアミンオキシダーゼ(配列番号6)、Neocosmospora vasinfecta由来のケトアミンオキシダーゼ(配列番号7)、Cryptococcus neoformans由来のフルクトシルアミノ酸オキシダーゼ(配列番号8)、Phaeosphaeria nodorum由来のフルクトシルペプチドオキシダーゼ(配列番号9)、Aspergillus nidulans由来のフルクトシルアミノ酸オキシダーゼ(配列番号10)、Emericella nidulans由来のフルクトシルペプチドオキシダーゼ(配列番号11)、Ulocladium sp.由来のフルクトシルアミノ酸オキシダーゼ(配列番号12)およびPenicillium janthinellum由来のフルクトシルアミノ酸オキシダーゼ(配列番号13)のアミノ酸配列を示してある。
(置換箇所に対応する位置)
 なお、本発明において、「配列番号1記載のアミノ酸配列の280位のシステインに対応する位置」とは、確定したアマドリアーゼのアミノ酸配列を、配列番号1に示されるConiochaeta属由来のアマドリアーゼのアミノ酸配列と比較した場合に、配列番号1のアマドリアーゼの280位のシステインに対応するアミノ酸を意味するものである。これにより、上記の「対応する位置のアミノ酸残基(相当する位置のアミノ酸残基)」を特定する方法でアミノ酸配列を整列させた図1-3より特定することができる。
 すなわち、Eupenicillium terrenum由来のアマドリアーゼでは280位のシステイン、Pyrenochaeta sp.由来のケトアミンオキシダーゼでは278位のシステイン、Arthrinium sp.由来のケトアミンオキシダーゼでは280位のシステイン、Curvularia clavata由来のケトアミンオキシダーゼでは278位のシステイン、Neocosmospora vasinfecta由来のケトアミンオキシダーゼでは280位のシステイン、Cryptococcus neoformans由来のフルクトシルアミノ酸オキシダーゼでは280位のシステイン、Phaeosphaeria nodorum由来のフルクトシルペプチドオキシダーゼでは276位のシステイン、Aspergillus nidulans由来のフルクトシルアミノ酸オキシダーゼでは280位のシステイン、Emericella nidulans由来のフルクトシルペプチドオキシダーゼでは280位のシステイン、Ulocladium sp.由来のフルクトシルアミノ酸オキシダーゼでは278位のシステイン、Penicillium janthinellum由来のフルクトシルアミノ酸オキシダーゼでは280位のシステインである。
 また、「配列番号1記載のアミノ酸配列の267位のフェニルアラニンに対応する位置」とは、確定したアマドリアーゼのアミノ酸配列を、配列番号1に示されるConiochaeta属由来のアマドリアーゼのアミノ酸配列と比較した場合に、配列番号1のアマドリアーゼの267位のフェニルアラニンに対応するアミノ酸を意味するものである。これも上記の方法でアミノ酸配列を整列させた図1-3より特定することができる。
 すなわち、Eupenicillium terrenum由来のアマドリアーゼでは267位のフェニルアラニン、Pyrenochaeta sp.由来のケトアミンオキシダーゼでは265位のフェニルアラニン、Arthrinium sp.由来のケトアミンオキシダーゼでは267位のフェニルアラニン、Curvularia clavata由来のケトアミンオキシダーゼでは265位のフェニルアラニン、Neocosmospora vasinfecta由来のケトアミンオキシダーゼでは267位のフェニルアラニン、Cryptococcus neoformans由来のフルクトシルアミノ酸オキシダーゼでは267位のフェニルアラニン、Phaeosphaeria nodorum由来のフルクトシルペプチドオキシダーゼでは263位のフェニルアラニン、Aspergillus nidulans由来のフルクトシルアミノ酸オキシダーゼでは267位のフェニルアラニン、Emericella nidulans由来のフルクトシルペプチドオキシダーゼでは267位のフェニルアラニン、Ulocladium sp.由来のフルクトシルアミノ酸オキシダーゼでは265位のフェニルアラニン、Penicillium janthinellum由来のフルクトシルアミノ酸オキシダーゼでは267位のフェニルアラニンである。
 また、「配列番号1記載のアミノ酸配列の269位のフェニルアラニンに対応する位置」とは、確定したアマドリアーゼのアミノ酸配列を、配列番号1に示されるConiochaeta属由来のアマドリアーゼのアミノ酸配列と比較した場合に、配列番号1記載のアミノ酸配列の269位のフェニルアラニンに対応するアミノ酸を意味するものである。これも上記の方法でアミノ酸配列を整列させた図1-3より特定することができる。
 すなわち、Eupenicillium terrenum由来のアマドリアーゼでは269位のフェニルアラニン、Pyrenochaeta sp.由来のケトアミンオキシダーゼでは267位のフェニルアラニン、Arthrinium sp.由来のケトアミンオキシダーゼでは269位のフェニルアラニン、Curvularia clavata由来のケトアミンオキシダーゼでは267位のフェニルアラニン、Neocosmospora vasinfecta由来のケトアミンオキシダーゼでは269位のフェニルアラニン、Cryptococcus neoformans由来のフルクトシルアミノ酸オキシダーゼでは269位のフェニルアラニン、Phaeosphaeria nodorum由来のフルクトシルペプチドオキシダーゼでは265位のフェニルアラニン、Aspergillus nidulans由来のフルクトシルアミノ酸オキシダーゼでは269位のフェニルアラニン、Emericella nidulans由来のフルクトシルペプチドオキシダーゼでは269位のイソロイシン、Ulocladium sp.由来のフルクトシルアミノ酸オキシダーゼでは267位のフェニルアラニン、Penicillium janthinellum由来のフルクトシルアミノ酸オキシダーゼでは269位のフェニルアラニンである。
 また、「配列番号1記載のアミノ酸配列の54位のアスパラギン酸に対応する位置」とは、確定したアマドリアーゼのアミノ酸配列を、配列番号1に示されるConiochaeta属由来のアマドリアーゼのアミノ酸配列と比較した場合に、配列番号1記載のアミノ酸配列の54位のアスパラギン酸に対応するアミノ酸を意味するものである。これも上記の方法でアミノ酸配列を整列させた図1-1より特定することができる。
 すなわち、Eupenicillium terrenum由来のアマドリアーゼでは54位のアスパラギン酸、Pyrenochaeta sp.由来のケトアミンオキシダーゼでは54位のアスパラギン酸、Arthrinium sp.由来のケトアミンオキシダーゼでは54位のアスパラギン酸、Curvularia clavata由来のケトアミンオキシダーゼでは54位のアスパラギン酸、Neocosmospora vasinfecta由来のケトアミンオキシダーゼでは54位のアスパラギン酸、Cryptococcus neoformans由来のフルクトシルアミノ酸オキシダーゼでは54位のアスパラギン酸、Phaeosphaeria nodorum由来のフルクトシルペプチドオキシダーゼでは54位のアスパラギン酸、Aspergillus nidulans由来のフルクトシルアミノ酸オキシダーゼでは53位のアスパラギン酸、Emericella nidulans由来のフルクトシルペプチドオキシダーゼでは53位のアスパラギン酸、Ulocladium sp.由来のフルクトシルアミノ酸オキシダーゼでは54位のアスパラギン酸、Penicillium janthinellum由来のフルクトシルアミノ酸オキシダーゼでは54位のアスパラギン酸である。
 さらに、「配列番号1記載のアミノ酸配列の241位のチロシンに対応する位置」とは、確定したアマドリアーゼのアミノ酸配列を、配列番号1に示されるConiochaeta属由来のアマドリアーゼのアミノ酸配列と比較した場合に、配列番号1のアマドリアーゼの241位のチロシンに対応するアミノ酸を意味するものである。これも上記の方法でアミノ酸配列を整列させた図1-3より特定することができる。
 すなわち、Eupenicillium terrenum由来のアマドリアーゼでは241位のフェニルアラニン、Pyrenochaeta sp.由来のケトアミンオキシダーゼでは239位のチロシン、Arthrinium sp.由来のケトアミンオキシダーゼでは241位のチロシン、Curvularia clavata由来のケトアミンオキシダーゼでは239位のチロシン、Neocosmospora vasinfecta由来のケトアミンオキシダーゼでは241位のチロシン、Cryptococcus neoformans由来のフルクトシルアミノ酸オキシダーゼでは241位のチロシン、Phaeosphaeria nodorum由来のフルクトシルペプチドオキシダーゼでは237位のチロシン、Aspergillus nidulans由来のフルクトシルアミノ酸オキシダーゼでは241位のフェニルアラニン、Emericella nidulans由来のフルクトシルペプチドオキシダーゼでは241位のフェニルアラニン、Ulocladium sp.由来のフルクトシルアミノ酸オキシダーゼでは239位のチロシン、Penicillium janthinellum由来のフルクトシルアミノ酸オキシダーゼでは241位のフェニルアラニンである。
(基質特異性改変変異の対応位置)
 なお、本発明において、「配列番号1記載のアミノ酸配列の62位のアルギニンに対応する位置」のアミノ酸とは、確定したアマドリアーゼのアミノ酸配列を、配列番号1に示されるコニオカエタ属由来のアマドリアーゼのアミノ酸配列と比較した場合に、配列番号1のアマドリアーゼの62位のアルギニンに対応するアミノ酸を意味するものである。これにより、上記の「対応する位置のアミノ酸残基」を特定する方法でアミノ酸配列を整列させて特定することができる。
 すなわち、「配列番号1記載のアミノ酸配列の62位のアルギニンに対応する位置」のアミノ酸は、Eupenicillium terrenum由来のアマドリアーゼ、Pyrenochaeta sp.由来のケトアミンオキシダーゼ、Arthrinium sp.由来のケトアミンオキシダーゼ、Curvularia clavata由来のケトアミンオキシダーゼ、Neocosmospora vasinfecta由来のケトアミンオキシダーゼ、Cryptococcus neoformans由来のフルクトシルアミノ酸オキシダーゼ、Ulocladium sp.由来のフルクトシルアミノ酸オキシダーゼ、Penicillium janthinellum由来のフルクトシルアミノ酸オキシダーゼでは62位のアルギニン、Phaeosphaeria nodorum由来のフルクトシルペプチドオキシダーゼでは62位のセリン、Emericella nidulans由来のフルクトシルペプチドオキシダーゼでは61位のアルギニン、Aspergillus nidulans由来のフルクトシルアミノ酸オキシダーゼでは61位のアルギニンである。
 また、本発明において、「配列番号1記載のアミノ酸配列の63位のロイシンに対応する位置」のアミノ酸とは、確定したアマドリアーゼのアミノ酸配列を、配列番号1に示されるコニオカエタ属由来のアマドリアーゼのアミノ酸配列と比較した場合に、配列番号1のアマドリアーゼの63位のロイシンに対応するアミノ酸を意味するものである。これにより、上記の「対応する位置のアミノ酸残基」を特定する方法でアミノ酸配列を整列させて特定することができる。
 すなわち、「配列番号1記載のアミノ酸配列の63位のロイシンに対応する位置」のアミノ酸は、Eupenicillium terrenum由来のアマドリアーゼ、Pyrenochaeta sp.由来のケトアミンオキシダーゼ、Arthrinium sp.由来のケトアミンオキシダーゼ、Curvularia clavata由来のケトアミンオキシダーゼ、Neocosmospora vasinfecta由来のケトアミンオキシダーゼ、Phaeosphaeria nodorum由来のフルクトシルペプチドオキシダーゼ、Ulocladium sp.由来のフルクトシルアミノ酸オキシダーゼ、Penicillium janthinellum由来のフルクトシルアミノ酸オキシダーゼでは63位のロイシン、Cryptococcus neoformans由来のフルクトシルアミノ酸オキシダーゼでは63位のイソロイシン、Aspergillus nidulans由来のフルクトシルアミノ酸オキシダーゼ、Emericella nidulans由来のフルクトシルペプチドオキシダーゼでは62位のロイシンである。
 また、本発明において、「配列番号1記載のアミノ酸配列の102位のグルタミン酸に対応する位置」のアミノ酸とは、確定したアマドリアーゼのアミノ酸配列を、配列番号1に示されるコニオカエタ属由来のアマドリアーゼのアミノ酸配列と比較した場合に、配列番号1のアマドリアーゼの102位のグルタミン酸に対応するアミノ酸を意味するものである。これにより、上記の「対応する位置のアミノ酸残基」を特定する方法でアミノ酸配列を整列させて特定することができる。
 すなわち、「配列番号1記載のアミノ酸配列の102位のグルタミン酸に対応する位置」のアミノ酸は、Eupenicillium terrenum由来のアマドリアーゼ、Curvularia clavata由来のケトアミンオキシダーゼ、Neocosmospora vasinfecta由来のケトアミンオキシダーゼ、Cryptococcus neoformans由来のフルクトシルアミノ酸オキシダーゼ、Penicillium janthinellum由来のフルクトシルアミノ酸オキシダーゼでは102位のグルタミン酸、Pyrenochaeta sp.由来のケトアミンオキシダーゼ、Arthrinium sp.由来のケトアミンオキシダーゼ、Phaeosphaeria nodorum由来のフルクトシルペプチドオキシダーゼ、Ulocladium sp.由来のフルクトシルアミノ酸オキシダーゼでは102位のリジン、Emericella nidulans由来のフルクトシルペプチドオキシダーゼ、Aspergillus nidulans由来のフルクトシルアミノ酸オキシダーゼでは101位のグルタミン酸である。
 また、本発明において、「配列番号1記載のアミノ酸配列の106位のアスパラギン酸に対応する位置」のアミノ酸とは、確定したアマドリアーゼのアミノ酸配列を、配列番号1に示されるコニオカエタ属由来のアマドリアーゼのアミノ酸配列と比較した場合に、配列番号1のアマドリアーゼの106位のアスパラギン酸に対応するアミノ酸を意味するものである。これにより、上記の「対応する位置のアミノ酸残基」を特定する方法でアミノ酸配列を整列させて特定することができる。
 すなわち、「配列番号1記載のアミノ酸配列の106位のアスパラギン酸に対応する位置」のアミノ酸は、Eupenicillium terrenum由来のアマドリアーゼでは106位のアスパラギン、Pyrenochaeta sp.由来のケトアミンオキシダーゼ、Curvularia clavata由来のケトアミンオキシダーゼ、Phaeosphaeria nodorum由来のフルクトシルペプチドオキシダーゼ、Ulocladium sp.由来のフルクトシルアミノ酸オキシダーゼでは106位のアスパラギン酸、Arthrinium sp.由来のケトアミンオキシダーゼでは106位のアラニン、Neocosmospora vasinfecta由来のケトアミンオキシダーゼでは106位のグリシン、Cryptococcus neoformans由来のフルクトシルアミノ酸オキシダーゼ、Penicillium janthinellum由来のフルクトシルアミノ酸オキシダーゼでは106位のセリン、Emericella nidulans由来のフルクトシルペプチドオキシダーゼでは105位のリジン、Aspergillus nidulans由来のフルクトシルアミノ酸オキシダーゼでは105位のグリシンである。
 また、本発明において、「配列番号1記載のアミノ酸配列の110位のグルタミンに対応する位置」のアミノ酸とは、確定したアマドリアーゼのアミノ酸配列を、配列番号1に示されるコニオカエタ属由来のアマドリアーゼのアミノ酸配列と比較した場合に、配列番号1のアマドリアーゼの110位のグルタミンに対応するアミノ酸を意味するものである。これにより、上記の「対応する位置のアミノ酸残基」を特定する方法でアミノ酸配列を整列させて特定することができる。
 すなわち、「配列番号1記載のアミノ酸配列の110位のグルタミンに対応する位置」のアミノ酸は、Eupenicillium terrenum由来のアマドリアーゼ、Penicillium janthinellum由来のフルクトシルアミノ酸オキシダーゼでは110位のリジン、Pyrenochaeta sp.由来のケトアミンオキシダーゼ、Curvularia clavata由来のケトアミンオキシダーゼ、Ulocladium sp.由来のフルクトシルアミノ酸オキシダーゼでは110位のアラニン、Arthrinium sp.由来のケトアミンオキシダーゼでは110位のグルタミン、Neocosmospora vasinfecta由来のケトアミンオキシダーゼでは110位のグルタミン酸、Cryptococcus neoformans由来のフルクトシルアミノ酸オキシダーゼでは110位のセリン、Phaeosphaeria nodorum由来のフルクトシルペプチドオキシダーゼでは110位のグリシン、Emericella nidulans由来のフルクトシルペプチドオキシダーゼでは109位のアルギニン、Aspergillus nidulans由来のフルクトシルアミノ酸オキシダーゼでは、109位のリジンである。
 また、本発明において、「配列番号1記載のアミノ酸配列の113位のアラニンに対応する位置」のアミノ酸とは、確定したアマドリアーゼのアミノ酸配列を、配列番号1に示されるコニオカエタ属由来のアマドリアーゼのアミノ酸配列と比較した場合に、配列番号1のアマドリアーゼの113位のアラニンに対応するアミノ酸を意味するものである。これにより、上記の「対応する位置のアミノ酸残基」を特定する方法でアミノ酸配列を整列させて特定することができる。
 すなわち、「配列番号1記載のアミノ酸配列の113位のアラニンに対応する位置」のアミノ酸は、Eupenicillium terrenum由来のアマドリアーゼ、Pyrenochaeta sp.由来のケトアミンオキシダーゼ、Arthrinium sp.由来のケトアミンオキシダーゼでは113位のトレオニン、Curvularia clavata由来のケトアミンオキシダーゼ、Cryptococcus neoformans由来のフルクトシルアミノ酸オキシダーゼ、Phaeosphaeria nodorum由来のフルクトシルペプチドオキシダーゼ、Ulocladium sp.由来のフルクトシルアミノ酸オキシダーゼでは113位のアラニン、Neocosmospora vasinfecta由来のケトアミンオキシダーゼでは113位のリジン、Aspergillus nidulans由来のフルクトシルアミノ酸オキシダーゼ、Emericella nidulans由来のフルクトシルペプチドオキシダーゼでは112位のセリン、Penicillium janthinellum由来のフルクトシルアミノ酸オキシダーゼでは113位のアスパラギン酸である。
 また、本発明において、「配列番号1記載のアミノ酸配列の355位のアラニンに対応する位置」のアミノ酸とは、確定したアマドリアーゼのアミノ酸配列を、配列番号1に示されるコニオカエタ属由来のアマドリアーゼのアミノ酸配列と比較した場合に、配列番号1のアマドリアーゼの355位のアラニンに対応するアミノ酸を意味するものである。これにより、上記の「対応する位置のアミノ酸残基」を特定する方法でアミノ酸配列を整列させて特定することができる。
 すなわち、「配列番号1記載のアミノ酸配列の355位のアラニンに対応する位置」のアミノ酸は、Eupenicillium terrenum由来のアマドリアーゼ、Cryptococcus neoformans由来のフルクトシルアミノ酸オキシダーゼ、Aspergillus nidulans由来のフルクトシルアミノ酸オキシダーゼ、Emericella nidulans由来のフルクトシルペプチドオキシダーゼ、Penicillium janthinellum由来のフルクトシルアミノ酸オキシダーゼでは355位のアラニン、Pyrenochaeta sp.由来のケトアミンオキシダーゼ、Curvularia clavata由来のケトアミンオキシダーゼ、Ulocladium sp.由来のフルクトシルアミノ酸オキシダーゼでは353位のアラニン、Arthrinium sp.由来のケトアミンオキシダーゼでは356位のアラニン、Neocosmospora vasinfecta由来のケトアミンオキシダーゼでは355位のセリン、Phaeosphaeria nodorum由来のフルクトシルペプチドオキシダーゼでは351位のアラニンである。
 また、本発明において、「配列番号1記載のアミノ酸配列の419位のアラニンに対応する位置」のアミノ酸とは、確定したアマドリアーゼのアミノ酸配列を、配列番号1に示されるコニオカエタ属由来のアマドリアーゼのアミノ酸配列と比較した場合に、配列番号1のアマドリアーゼの419位のアラニンに対応するアミノ酸を意味するものである。これにより、上記の「対応する位置のアミノ酸残基」を特定する方法でアミノ酸配列を整列させて特定することができる。
 すなわち、「配列番号1記載のアミノ酸配列の419位のアラニンに対応する位置」のアミノ酸は、Eupenicillium terrenum由来のアマドリアーゼでは419位のグリシン、Pyrenochaeta sp.由来のケトアミンオキシダーゼ、Curvularia clavata由来のケトアミンオキシダーゼ、Ulocladium sp.由来のフルクトシルアミノ酸オキシダーゼでは418位のアラニン、Arthrinium sp.由来のケトアミンオキシダーゼでは421位のアラニン、Neocosmospora vasinfecta由来のケトアミンオキシダーゼ、Cryptococcus neoformans由来のフルクトシルアミノ酸オキシダーゼ、Emericella nidulans由来のフルクトシルペプチドオキシダーゼでは420位のアラニン、Phaeosphaeria nodorum由来のフルクトシルペプチドオキシダーゼでは416位のセリン、Penicillium janthinellum由来のフルクトシルアミノ酸オキシダーゼでは419位のセリン、Aspergillus nidulans由来のフルクトシルアミノ酸オキシダーゼでは420位のアラニンである。
 また、本発明において、「配列番号1記載のアミノ酸配列の68位のアスパラギン酸に対応する位置」のアミノ酸とは、確定したアマドリアーゼのアミノ酸配列を、配列番号1に示されるコニオカエタ属由来のアマドリアーゼのアミノ酸配列と比較した場合に、配列番号1のアマドリアーゼの68位のアスパラギン酸に対応するアミノ酸を意味するものである。これにより、上記の「対応する位置のアミノ酸残基」を特定する方法でアミノ酸配列を整列させて特定することができる。
 すなわち、「配列番号1記載のアミノ酸配列の68位のアスパラギン酸に対応する位置」のアミノ酸は、Eupenicillium terrenum由来のアマドリアーゼ、Pyrenochaeta sp.由来のケトアミンオキシダーゼ、Arthrinium sp.由来のケトアミンオキシダーゼ、Curvularia clavata由来のケトアミンオキシダーゼ、Neocosmospora vasinfecta由来のケトアミンオキシダーゼ、Cryptococcus neoformans由来のフルクトシルアミノ酸オキシダーゼ、Phaeosphaeria nodorum由来のフルクトシルペプチドオキシダーゼ、Ulocladium sp.由来のフルクトシルアミノ酸オキシダーゼ、Penicillium janthinellum由来のフルクトシルアミノ酸オキシダーゼでは68位のアスパラギン酸、Emericella nidulans由来のフルクトシルペプチドオキシダーゼ及びAspergillus nidulans由来のフルクトシルアミノ酸オキシダーゼでは67位のアスパラギン酸である。
 また、本発明において、「配列番号1記載のアミノ酸配列の356位のアラニンに対応する位置」のアミノ酸とは、確定したアマドリアーゼのアミノ酸配列を、配列番号1に示されるコニオカエタ属由来のアマドリアーゼのアミノ酸配列と比較した場合に、配列番号1のアマドリアーゼの356位のアラニンに対応するアミノ酸を意味するものである。これにより、上記の「対応する位置のアミノ酸残基」を特定する方法でアミノ酸配列を整列させて特定することができる。
 すなわち、「配列番号1記載のアミノ酸配列の356位のアラニンに対応する位置」のアミノ酸は、Eupenicillium terrenum由来のアマドリアーゼでは356位のアスパラギン、Pyrenochaeta sp.由来のケトアミンオキシダーゼでは354位のアラニン、Arthrinium sp.由来のケトアミンオキシダーゼでは357位のアラニン、Curvularia clavata由来のケトアミンオキシダーゼでは354位のアラニン、Neocosmospora vasinfecta由来のケトアミンオキシダーゼでは356位のアラニン、Cryptococcus neoformans由来のフルクトシルアミノ酸オキシダーゼでは356位のアスパラギン、Phaeosphaeria nodorum由来のフルクトシルペプチドオキシダーゼでは352位のアラニン、Aspergillus nidulans由来のフルクトシルアミノ酸オキシダーゼでは356位のアスパラギン、Emericella nidulans由来のフルクトシルペプチドオキシダーゼでは356位のアスパラギン、Ulocladium sp.由来のフルクトシルアミノ酸オキシダーゼでは354位のアラニン、Penicillium janthinellum由来のフルクトシルアミノ酸オキシダーゼでは356位のアスパラギンである。
(界面活性剤耐性向上変異の対応位置)
 なお、本明細書において、「配列番号1記載のアミノ酸配列の44位のグルタミン酸に対応する位置」とは、確定したアマドリアーゼのアミノ酸配列を、配列番号1に示されるConiochaeta属由来のアマドリアーゼのアミノ酸配列と比較した場合に、配列番号1のアマドリアーゼの44位のグルタミン酸に対応するアミノ酸を意味するものである。これにより、上記の「対応する位置のアミノ酸残基」を特定する方法でアミノ酸配列を整列させた図1により特定することができる。
 すなわち、Eupenicillium terrenum由来のアマドリアーゼでは44位のリジン、Pyrenochaeta sp.由来のケトアミンオキシダーゼでは44位のプロリン、Arthrinium sp.由来のケトアミンオキシダーゼでは44位のプロリン、Curvularia clavata由来のケトアミンオキシダーゼでは44位のプロリン、Neocosmospora vasinfecta由来のケトアミンオキシダーゼでは44位のプロリン、Cryptococcus neoformans由来のフルクトシルアミノ酸オキシダーゼでは44位のロイシン、Phaeosphaeria nodorum由来のフルクトシルペプチドオキシダーゼでは44位のプロリン、Aspergillus nidulans由来のフルクトシルアミノ酸オキシダーゼでは43位のプロリン、Emericella nidulans由来のフルクトシルペプチドオキシダーゼでは43位のプロリン、Ulocladium sp.由来のフルクトシルアミノ酸オキシダーゼでは44位のプロリン、Penicillium janthinellum由来のフルクトシルアミノ酸オキシダーゼでは44位のプロリンである。
 また、「配列番号1記載のアミノ酸配列の81位のグルタミン酸に対応する位置」とは、確定したアマドリアーゼのアミノ酸配列を、配列番号1に示されるConiochaeta属由来のアマドリアーゼのアミノ酸配列と比較した場合に、配列番号1のアマドリアーゼの81位のグルタミン酸に対応するアミノ酸を意味するものである。これも上記の方法でアミノ酸配列を整列させた図1より特定することができる。
 すなわち、Eupenicillium terrenum由来のアマドリアーゼでは81位のアスパラギン、Pyrenochaeta sp.由来のケトアミンオキシダーゼでは81位のグルタミン酸、Arthrinium sp.由来のケトアミンオキシダーゼでは81位のヒスチジン、Curvularia clavata由来のケトアミンオキシダーゼでは81位のグルタミン酸、Neocosmospora vasinfecta由来のケトアミンオキシダーゼでは81位のアスパラギン、Cryptococcus neoformans由来のフルクトシルアミノ酸オキシダーゼでは81位のアスパラギン、Phaeosphaeria nodorum由来のフルクトシルペプチドオキシダーゼでは81位のグルタミン酸、Aspergillus nidulans由来のフルクトシルアミノ酸オキシダーゼでは80位のアスパラギン、Emericella nidulans由来のフルクトシルペプチドオキシダーゼでは80位のアスパラギン、Ulocladium sp.由来のフルクトシルアミノ酸オキシダーゼでは81位のグルタミン酸、Penicillium janthinellum由来のフルクトシルアミノ酸オキシダーゼでは81位のアスパラギンである。
 また、「配列番号1記載のアミノ酸配列の133位のグルタミン酸に対応する位置」とは、確定したアマドリアーゼのアミノ酸配列を、配列番号1に示されるConiochaeta属由来のアマドリアーゼのアミノ酸配列と比較した場合に、配列番号1記載のアミノ酸配列の133位のグルタミン酸に対応するアミノ酸を意味するものである。これも上記の方法でアミノ酸配列を整列させた図1より特定することができる。
 すなわち、Eupenicillium terrenum由来のアマドリアーゼでは133位のグルタミン酸、Pyrenochaeta sp.由来のケトアミンオキシダーゼでは133位のグルタミン酸、Arthrinium sp.由来のケトアミンオキシダーゼでは133位のアラニン、Curvularia clavata由来のケトアミンオキシダーゼでは133位のグルタミン酸、Neocosmospora vasinfecta由来のケトアミンオキシダーゼでは133位のアラニン、Cryptococcus neoformans由来のフルクトシルアミノ酸オキシダーゼでは133位のグルタミン酸、Phaeosphaeria nodorum由来のフルクトシルペプチドオキシダーゼでは131位のグルタミン酸、Aspergillus nidulans由来のフルクトシルアミノ酸オキシダーゼでは132位のグルタミン酸、Emericella nidulans由来のフルクトシルペプチドオキシダーゼでは132位のグルタミン酸、Ulocladium sp.由来のフルクトシルアミノ酸オキシダーゼでは133位のリジン、Penicillium janthinellum由来のフルクトシルアミノ酸オキシダーゼでは133位のアスパラギン酸である。
 また、「配列番号1記載のアミノ酸配列の253位のグルタミン酸に対応する位置」とは、確定したアマドリアーゼのアミノ酸配列を、配列番号1に示されるConiochaeta属由来のアマドリアーゼのアミノ酸配列と比較した場合に、配列番号1記載のアミノ酸配列の253位のグルタミン酸に対応するアミノ酸を意味するものである。これも上記の方法でアミノ酸配列を整列させた図1より特定することができる。
 すなわち、Eupenicillium terrenum由来のアマドリアーゼでは253位のアラニン、Pyrenochaeta sp.由来のケトアミンオキシダーゼでは251位のアラニン、Arthrinium sp.由来のケトアミンオキシダーゼでは253位のグルタミン酸、Curvularia clavata由来のケトアミンオキシダーゼでは251位のグルタミン酸、Neocosmospora vasinfecta由来のケトアミンオキシダーゼでは253位のバリン、Cryptococcus neoformans由来のフルクトシルアミノ酸オキシダーゼでは253位のグルタミン酸、Phaeosphaeria nodorum由来のフルクトシルペプチドオキシダーゼでは249位のアルギニン、Aspergillus nidulans由来のフルクトシルアミノ酸オキシダーゼでは253位のアラニン、Emericella nidulans由来のフルクトシルペプチドオキシダーゼでは253位のアラニン、Ulocladium sp.由来のフルクトシルアミノ酸オキシダーゼでは251位のグルタミン酸、Penicillium janthinellum由来のフルクトシルアミノ酸オキシダーゼでは253位のグルタミンである。
 さらに、「配列番号1記載のアミノ酸配列の256位のグリシンに対応する位置」とは、確定したアマドリアーゼのアミノ酸配列を、配列番号1に示されるConiochaeta属由来のアマドリアーゼのアミノ酸配列と比較した場合に、配列番号1のアマドリアーゼの256位のグリシンに対応するアミノ酸を意味するものである。これも上記の方法でアミノ酸配列を整列させた図1より特定することができる。
 すなわち、Eupenicillium terrenum由来のアマドリアーゼでは256位のアスパラギン、Pyrenochaeta sp.由来のケトアミンオキシダーゼでは254位のアスパラギン酸、Arthrinium sp.由来のケトアミンオキシダーゼでは256位のグリシン、Curvularia clavata由来のケトアミンオキシダーゼでは254位のアスパラギン、Neocosmospora vasinfecta由来のケトアミンオキシダーゼでは256位のグリシン、Cryptococcus neoformans由来のフルクトシルアミノ酸オキシダーゼでは256位のグルタミン酸、Phaeosphaeria nodorum由来のフルクトシルペプチドオキシダーゼでは252位のアスパラギン、Aspergillus nidulans由来のフルクトシルアミノ酸オキシダーゼでは256位のアスパラギン、Emericella nidulans由来のフルクトシルペプチドオキシダーゼでは256位のアスパラギン、Ulocladium sp.由来のフルクトシルアミノ酸オキシダーゼでは254位のアスパラギン、Penicillium janthinellum由来のフルクトシルアミノ酸オキシダーゼでは256位のアスパラギン酸である。
 さらに、「配列番号1記載のアミノ酸配列の257位のバリンに対応する位置」とは、確定したアマドリアーゼのアミノ酸配列を、配列番号1に示されるConiochaeta属由来のアマドリアーゼのアミノ酸配列と比較した場合に、配列番号1のアマドリアーゼの257位のバリンに対応するアミノ酸を意味するものである。これも上記の方法でアミノ酸配列を整列させた図1より特定することができる。
 すなわち、Eupenicillium terrenum由来のアマドリアーゼでは257位のバリン、Pyrenochaeta sp.由来のケトアミンオキシダーゼでは255位のトレオニン、Arthrinium sp.由来のケトアミンオキシダーゼでは257位のシステイン、Curvularia clavata由来のケトアミンオキシダーゼでは255位のバリン、Neocosmospora vasinfecta由来のケトアミンオキシダーゼでは257位のシステイン、Cryptococcus neoformans由来のフルクトシルアミノ酸オキシダーゼでは257位のシステイン、Phaeosphaeria nodorum由来のフルクトシルペプチドオキシダーゼでは253位のセリン、Aspergillus nidulans由来のフルクトシルアミノ酸オキシダーゼでは257位のトレオニン、Emericella nidulans由来のフルクトシルペプチドオキシダーゼでは257位のトレオニン、Ulocladium sp.由来のフルクトシルアミノ酸オキシダーゼでは255位のバリン、Penicillium janthinellum由来のフルクトシルアミノ酸オキシダーゼでは257位のバリンである。
 さらに、「配列番号1記載のアミノ酸配列の262位のアスパラギンに対応する位置」とは、確定したアマドリアーゼのアミノ酸配列を、配列番号1に示されるConiochaeta属由来のアマドリアーゼのアミノ酸配列と比較した場合に、配列番号1のアマドリアーゼの262位のアスパラギンに対応するアミノ酸を意味するものである。これも上記の方法でアミノ酸配列を整列させた図1より特定することができる。
 すなわち、Eupenicillium terrenum由来のアマドリアーゼでは262位のアスパラギン酸、Pyrenochaeta sp.由来のケトアミンオキシダーゼでは260位のアスパラギン、Arthrinium sp.由来のケトアミンオキシダーゼでは262位のヒスチジン、Curvularia clavata由来のケトアミンオキシダーゼでは260位のアスパラギン、Neocosmospora vasinfecta由来のケトアミンオキシダーゼでは262位のヒスチジン、Cryptococcus neoformans由来のフルクトシルアミノ酸オキシダーゼでは262位のアスパラギン、Phaeosphaeria nodorum由来のフルクトシルペプチドオキシダーゼでは258位のアスパラギン、Aspergillus nidulans由来のフルクトシルアミノ酸オキシダーゼでは262位のアスパラギン酸、Emericella nidulans由来のフルクトシルペプチドオキシダーゼでは262位のアスパラギン酸、Ulocladium sp.由来のフルクトシルアミノ酸オキシダーゼでは260位のアスパラギン、Penicillium janthinellum由来のフルクトシルアミノ酸オキシダーゼでは262位のアスパラギン酸である。
 さらに、「配列番号1記載のアミノ酸配列の337位のグルタミンに対応する位置」とは、確定したアマドリアーゼのアミノ酸配列を、配列番号1に示されるConiochaeta属由来のアマドリアーゼのアミノ酸配列と比較した場合に、配列番号1のアマドリアーゼの337位のグルタミンに対応するアミノ酸を意味するものである。これも上記の方法でアミノ酸配列を整列させた図1より特定することができる。
 すなわちEupenicillium terrenum由来のアマドリアーゼでは337位のリジン、Pyrenochaeta sp.由来のケトアミンオキシダーゼでは335位のリジン、Arthrinium sp.由来のケトアミンオキシダーゼでは338位のグルタミン、Curvularia clavata由来のケトアミンオキシダーゼでは335位のトレオニン、Neocosmospora vasinfecta由来のケトアミンオキシダーゼでは337位のリジン、Cryptococcus neoformans由来のフルクトシルアミノ酸オキシダーゼでは337位のリジン、Phaeosphaeria nodorum由来のフルクトシルペプチドオキシダーゼでは333位のリジン、Aspergillus nidulans由来のフルクトシルアミノ酸オキシダーゼでは337位のアスパラギン、Emericella nidulans由来のフルクトシルペプチドオキシダーゼでは337位のアスパラギン、Ulocladium sp.由来のフルクトシルアミノ酸オキシダーゼでは335位のトレオニン、Penicillium janthinellum由来のフルクトシルアミノ酸オキシダーゼでは337位のリジンである。
 さらに、「配列番号1記載のアミノ酸配列の340位のグルタミン酸に対応する位置」とは、確定したアマドリアーゼのアミノ酸配列を、配列番号1に示されるConiochaeta属由来のアマドリアーゼのアミノ酸配列と比較した場合に、配列番号1のアマドリアーゼの340位のグルタミン酸に対応するアミノ酸を意味するものである。これも上記の方法でアミノ酸配列を整列させた図1より特定することができる。
 すなわち、Eupenicillium terrenum由来のアマドリアーゼでは340位のグルタミン酸、Pyrenochaeta sp.由来のケトアミンオキシダーゼでは338位のグルタミン酸、Arthrinium sp.由来のケトアミンオキシダーゼでは341位のグルタミン酸、Curvularia clavata由来のケトアミンオキシダーゼでは338位のグルタミン酸、Neocosmospora vasinfecta由来のケトアミンオキシダーゼでは340位のプロリン、Cryptococcus neoformans由来のフルクトシルアミノ酸オキシダーゼでは340位のグルタミン酸、Phaeosphaeria nodorum由来のフルクトシルペプチドオキシダーゼでは336位のリジン、Aspergillus nidulans由来のフルクトシルアミノ酸オキシダーゼでは340位のグルタミン酸、Emericella nidulans由来のフルクトシルペプチドオキシダーゼでは340位のグルタミン酸、Ulocladium sp.由来のフルクトシルアミノ酸オキシダーゼでは338位のグルタミン酸、Penicillium janthinellum由来のフルクトシルアミノ酸オキシダーゼでは340位のグルタミン酸である。
 さらに、「配列番号1記載のアミノ酸配列の129位のアスパラギン酸に対応する位置」とは、確定したアマドリアーゼのアミノ酸配列を、配列番号1に示されるConiochaeta属由来のアマドリアーゼのアミノ酸配列と比較した場合に、配列番号1のアマドリアーゼの129位のアスパラギン酸に対応するアミノ酸を意味するものである。これも上記の方法でアミノ酸配列を整列させた図1より特定することができる。
 すなわち、Eupenicillium terrenum由来のアマドリアーゼでは129位のグルタミン酸、Pyrenochaeta sp.由来のケトアミンオキシダーゼでは129位のアスパラギン酸、Arthrinium sp.由来のケトアミンオキシダーゼでは129位のアスパラギン酸、Curvularia clavata由来のケトアミンオキシダーゼでは129位のアスパラギン酸、Neocosmospora vasinfecta由来のケトアミンオキシダーゼでは129位のアスパラギン酸、Cryptococcus neoformans由来のフルクトシルアミノ酸オキシダーゼでは129位のセリン、Phaeosphaeria nodorum由来のフルクトシルペプチドオキシダーゼでは127位のアスパラギン酸、Aspergillus nidulans由来のフルクトシルアミノ酸オキシダーゼでは128位のグルタミン酸、Emericella nidulans由来のフルクトシルペプチドオキシダーゼでは128位のグルタミン酸、Ulocladium sp.由来のフルクトシルアミノ酸オキシダーゼでは129位のアスパラギン酸、Penicillium janthinellum由来のフルクトシルアミノ酸オキシダーゼでは129位のグルタミン酸である。
 さらに、「配列番号1記載のアミノ酸配列の132位のアスパラギン酸に対応する位置」とは、確定したアマドリアーゼのアミノ酸配列を、配列番号1に示されるConiochaeta属由来のアマドリアーゼのアミノ酸配列と比較した場合に、配列番号1のアマドリアーゼの132位のアスパラギン酸に対応するアミノ酸を意味するものである。これも上記の方法でアミノ酸配列を整列させた図1より特定することができる。
 すなわち、Eupenicillium terrenum由来のアマドリアーゼでは132位のアスパラギン酸、Pyrenochaeta sp.由来のケトアミンオキシダーゼでは132位のアスパラギン酸、Arthrinium sp.由来のケトアミンオキシダーゼでは132位のアスパラギン酸、Curvularia clavata由来のケトアミンオキシダーゼでは132位のアスパラギン酸、Neocosmospora vasinfecta由来のケトアミンオキシダーゼでは132位のグルタミン酸、Cryptococcus neoformans由来のフルクトシルアミノ酸オキシダーゼでは132位のアスパラギン酸、Phaeosphaeria nodorum由来のフルクトシルペプチドオキシダーゼでは130位のアスパラギン酸、Aspergillus nidulans由来のフルクトシルアミノ酸オキシダーゼでは131位のアスパラギン酸、Emericella nidulans由来のフルクトシルペプチドオキシダーゼでは131位のアスパラギン酸、Ulocladium sp.由来のフルクトシルアミノ酸オキシダーゼでは132位のアスパラギン酸、Penicillium janthinellum由来のフルクトシルアミノ酸オキシダーゼでは132位のアスパラギン酸である。
 さらに、「配列番号1記載のアミノ酸配列の231位のグルタミン酸に対応する位置」とは、確定したアマドリアーゼのアミノ酸配列を、配列番号1に示されるConiochaeta属由来のアマドリアーゼのアミノ酸配列と比較した場合に、配列番号1のアマドリアーゼの231位のグルタミン酸に対応するアミノ酸を意味するものである。これも上記の方法でアミノ酸配列を整列させた図1より特定することができる。
 すなわち、Eupenicillium terrenum由来のアマドリアーゼでは231位のグルタミン酸、Pyrenochaeta sp.由来のケトアミンオキシダーゼでは229位のグルタミン酸、Arthrinium sp.由来のケトアミンオキシダーゼでは231位のグルタミン酸、Curvularia clavata由来のケトアミンオキシダーゼでは229位のグルタミン酸、Neocosmospora vasinfecta由来のケトアミンオキシダーゼでは231位のグルタミン酸、Cryptococcus neoformans由来のフルクトシルアミノ酸オキシダーゼでは231位のグルタミン酸、Phaeosphaeria nodorum由来のフルクトシルペプチドオキシダーゼでは227位のヒスチジン、Aspergillus nidulans由来のフルクトシルアミノ酸オキシダーゼでは231位のグルタミン酸、Emericella nidulans由来のフルクトシルペプチドオキシダーゼでは231位のグルタミン酸、Ulocladium sp.由来のフルクトシルアミノ酸オキシダーゼでは229位のグルタミン、Penicillium janthinellum由来のフルクトシルアミノ酸オキシダーゼでは231位のグルタミン酸である。
 さらに、「配列番号1記載のアミノ酸配列の232位のアスパラギン酸に対応する位置」とは、確定したアマドリアーゼのアミノ酸配列を、配列番号1に示されるConiochaeta属由来のアマドリアーゼのアミノ酸配列と比較した場合に、配列番号1のアマドリアーゼの232位のアスパラギン酸に対応するアミノ酸を意味するものである。これも上記の方法でアミノ酸配列を整列させた図1より特定することができる。
 すなわち、Eupenicillium terrenum由来のアマドリアーゼでは232位のアスパラギン酸、Pyrenochaeta sp.由来のケトアミンオキシダーゼでは230位のアスパラギン酸、Arthrinium sp.由来のケトアミンオキシダーゼでは232位のグルタミン酸、Curvularia clavata由来のケトアミンオキシダーゼでは230位のアスパラギン酸、Neocosmospora vasinfecta由来のケトアミンオキシダーゼでは232位のグルタミン酸、Cryptococcus neoformans由来のフルクトシルアミノ酸オキシダーゼでは232位のグリシン、Phaeosphaeria nodorum由来のフルクトシルペプチドオキシダーゼでは228位のグルタミン酸、Aspergillus nidulans由来のフルクトシルアミノ酸オキシダーゼでは232位のグルタミン酸、Emericella nidulans由来のフルクトシルペプチドオキシダーゼでは232位のグルタミン酸、Ulocladium sp.由来のフルクトシルアミノ酸オキシダーゼでは230位のアスパラギン酸、Penicillium janthinellum由来のフルクトシルアミノ酸オキシダーゼでは232位のアスパラギン酸である。
 さらに、「配列番号1記載のアミノ酸配列の249位のグルタミン酸に対応する位置」とは、確定したアマドリアーゼのアミノ酸配列を、配列番号1に示されるConiochaeta属由来のアマドリアーゼのアミノ酸配列と比較した場合に、配列番号1のアマドリアーゼの249位のグルタミン酸に対応するアミノ酸を意味するものである。これも上記の方法でアミノ酸配列を整列させた図1より特定することができる。
 すなわち、Eupenicillium terrenum由来のアマドリアーゼでは249位のリジン、Pyrenochaeta sp.由来のケトアミンオキシダーゼでは247位のリジン、Arthrinium sp.由来のケトアミンオキシダーゼでは249位のヒスチジン、Curvularia clavata由来のケトアミンオキシダーゼでは247位のグルタミン酸、Neocosmospora vasinfecta由来のケトアミンオキシダーゼでは249位のグルタミン酸、Cryptococcus neoformans由来のフルクトシルアミノ酸オキシダーゼでは249位のグルタミン酸、Phaeosphaeria nodorum由来のフルクトシルペプチドオキシダーゼでは245位のグルタミン酸、Aspergillus nidulans由来のフルクトシルアミノ酸オキシダーゼでは249位のアラニン、Emericella nidulans由来のフルクトシルペプチドオキシダーゼでは249位のアラニン、Ulocladium sp.由来のフルクトシルアミノ酸オキシダーゼでは247位のセリン、Penicillium janthinellum由来のフルクトシルアミノ酸オキシダーゼでは249位のグルタミンである。
(熱安定性向上欠失の対応位置)
 本明細書において「配列番号1記載のアマドリアーゼのカルボキシル末端からの3アミノ酸残基に対応する位置」とは、アマドリアーゼのアミノ酸配列を、配列番号1に示されるConiochaeta属由来のアマドリアーゼのアミノ酸配列と比較した場合に、配列番号1記載のアミノ酸配列のカルボキシル末端からの3アミノ酸残基を意味する。Coniochaeta属由来のアマドリアーゼにおける、この位置の3残基の配列は、435位のプロリン、436位のリジン及び437位のロイシンからなり、これらに対応する位置のアミノ酸配列も、上記の方法でアミノ酸配列を整列させた図1より特定することができる。
 すなわちEupenicillium terrenum由来のアマドリアーゼではカルボキシル末端の3アミノ酸が435位のアラニン、436位のヒスチジン及び437位のロイシンからなり、Pyrenochaeta sp.由来のケトアミンオキシダーゼではカルボキシル末端の3アミノ酸が438位のアラニン、439位のリジン及び440位のロイシンからなり、Arthrinium sp.由来のケトアミンオキシダーゼではカルボキシル末端の3アミノ酸が450位のヒスチジン、451位のリジン及び452位のロイシンからなり、Curvularia clavata由来のケトアミンオキシダーゼではカルボキシル末端の3アミノ酸が438位のセリン、439位のリジン及び440位のロイシンからなり、Phaeosphaeria nodorum由来のフルクトシルペプチドオキシダーゼではカルボキシル末端の3アミノ酸が435位のアラニン、436位のアスパラギン及び437位のロイシンからなり、Aspergillus nidulans由来のフルクトシルアミノ酸オキシダーゼではカルボキシル末端の3アミノ酸が436位のアラニン、437位のリジン及び438位のメチオニンからなり、Emericella nidulans由来のフルクトシルペプチドオキシダーゼではカルボキシル末端の3アミノ酸が436位のアラニン、437位のリジン及び438位のメチオニンからなり、Ulocladium sp.由来のフルクトシルアミノ酸オキシダーゼではカルボキシル末端の3アミノ酸が439位のアラニン、440位のリジン及び441位のロイシンからなり、Penicillium janthinellum由来のフルクトシルアミノ酸オキシダーゼではカルボキシル末端の3アミノ酸が435位のアラニン、436位のリジン及び437位のロイシンからなる。
(本発明のアマドリアーゼの生産)
 上記のようにして得られたアマドリアーゼの生産能を有する菌株を用いて、当該アマドリアーゼを生産するには、この菌株を通常の固体培養法で培養してもよいが、可能な限り液体培養法を採用して培養するのが好ましい。
 また、上記菌株を培養する培地としては、例えば、酵母エキス、トリプトン、ペプトン、肉エキス、コーンスティープリカーまたは大豆もしくは小麦ふすまの浸出液等の1種以上の窒素源に、塩化ナトリウム、リン酸第1カリウム、リン酸第2カリウム、硫酸マグネシウム、塩化マグネシウム、塩化第2鉄、硫酸第2鉄または硫酸マンガン等の無機塩類の1種以上を添加し、さらに必要により糖質原料、ビタミン等を適宜添加したものが用いられる。
 なお、培地の初発pHは、pH7~9に調整するのが適当である。
 また、培養は任意の条件を用いることができるが、例えば、20~42℃の培養温度、好ましくは30℃前後の培養温度で4~24時間、さらに好ましくは30℃前後の培養温度で8~16時間、通気攪拌深部培養、振盪培養、静置培養等により実施することができる。
 培養終了後、該培養物よりアマドリアーゼを採取するには、通常の酵素採取手段を用いて得ることができる。例えば、常法により菌体を、超音波破壊処理、磨砕処理等するか、またはリゾチーム等の溶菌酵素を用いて本酵素を抽出するか、またはトルエン等の存在下で振盪もしくは放置して溶菌を行わせ、本酵素を菌体外に排出させることができる。そして、この溶液を濾過、遠心分離等して固形部分を除去し、必要によりストレプトマイシン硫酸塩、プロタミン硫酸塩または硫酸マンガン等により核酸を除去したのち、これに硫安、アルコール、アセトン等を添加して分画し、沈澱物を採取し、アマドリアーゼの粗酵素を得る。
 上記アマドリアーゼの粗酵素よりさらにアマドリアーゼ精製酵素標品を得るには、例えば、セファデックス、スーパーデックス若しくはウルトロゲル等を用いるゲル濾過法;イオン交換体を用いる吸着溶出法;ポリアクリルアミドゲル等を用いる電気泳動法;ヒドロキシアパタイトを用いる吸着溶出法;蔗糖密度勾配遠心法等の沈降法;アフィニティクロマトグラフィー法;分子ふるい膜若しくは中空糸膜等を用いる分画法等を適宜選択し、またはこれらを組み合わせて実施することにより、精製されたアマドリアーゼ酵素標品を得ることができる。このようにして、所望のデヒドロゲナーゼ活性が向上したアマドリアーゼを得ることができる。
 本発明のキットに含まれるアマドリアーゼは、Eupenicillium属、Pyrenochaeta属、Arthrinium属、Curvularia属、Neocosmospora属、Cryptococcus属、Phaeosphaeria属、Aspergillus属、Emericella属、Ulocladium属、Penicillium属、Fusarium属、Achaetomiella属、Achaetomium属、Thielavia属、Chaetomium属、Gelasinospora属、Microascus属、Leptosphaeria属、Ophiobolus属、Pleospora属、Coniochaetidium属、Pichia属、Corynebacterium属、Agrobacterium属、Arthrobacter属などに由来する天然のアマドリアーゼ又はそれらの変異体であり得る。こうした変異体は、配列番号1に示すアミノ酸配列の280位のシステイン、267位のフェニルアラニン、269位のフェニルアラニン、54位のアスパラギン酸、241位のチロシンよりなる群から選択される位置のアミノ酸に対応する位置で1またはそれ以上のアミノ酸置換を有する。当業者であれば、例えば後述する試験法等により、あるアマドリアーゼ又はその変異体が本発明のキットに使用可能か、すなわち所望のデヒドロゲナーゼ活性を有するか容易に調べることができる。
(本発明のアマドリアーゼにおけるデヒドロゲナーゼ活性の向上)
 上記のような手段で得られる本発明のアマドリアーゼは、遺伝子改変等により、そのアミノ酸配列に変異を生じた結果、改変前のものと比較してオキシダーゼ活性が低下し、かつ/又はデヒドロゲナーゼ活性が向上していることを特徴とする。具体的には、改変前のものと比較して、「デヒドロゲナーゼ活性」に対する「オキシダーゼ活性」の割合が低減していることを特徴とする。オキシダーゼ活性とは、基質を酸化する際、酸素分子に電子を受け渡す活性をいう。デヒドロゲナーゼ活性とは、基質を酸化する際、ヒドリド(H-)を電子アクセプターに受け渡す活性をいう。
 センサーを用いた糖化ヘモグロビンの測定において、酸素の影響を低減するには、オキシダーゼ活性が低いことが望まれる。一方で、基質との反応性の観点からは、デヒドロゲナーゼ活性が高いことが好ましい。この両者を考慮すると、電子メディエーターを使用する糖化ヘモグロビン測定では、アマドリアーゼのオキシダーゼ活性(OX)とデヒドロゲナーゼ活性(DH)の比OX/DHが低いことが好ましく、また、アマドリアーゼのオキシダーゼ活性(OX)が低く、かつ、デヒドロゲナーゼ活性(DH)が高いことが好ましい。そこで本明細書では便宜上、アマドリアーゼの特性を、オキシダーゼ活性に対するデヒドロゲナーゼ活性の割合を示すDH/OX、又はデヒドロゲナーゼ活性に対するオキシダーゼ活性の割合OX/DHを用いて表現することがある。ある実施形態において本発明の改変アマドリアーゼは、改変前のものと比較してデヒドロゲナーゼ活性が増大している。ある実施形態において本発明の改変アマドリアーゼは、改変前のものと比較してオキシダーゼ活性が低減されている。ある実施形態において本発明の改変アマドリアーゼは、改変前のものと比較してデヒドロゲナーゼ活性とオキシダーゼ活性の比OX/DH比が低い(DH/OX比が高い)。ある実施形態において本発明の改変アマドリアーゼは、改変前のものと比較してデヒドロゲナーゼ活性が増大しているのみならず、さらにオキシダーゼ活性が低減されている。具体的には、本発明の改変アマドリアーゼにおける、オキシダーゼ活性に対するデヒドロゲナーゼ活性の割合を示すDH/OXは、改変前(1.0倍)に対して1.3倍以上、2倍以上、3倍以上、4倍以上、5倍以上、10倍以上、20倍以上、30倍以上、40倍以上、50倍以上、100倍以上、200倍以上、300倍以上、400倍以上、例えば450倍以上増大していることが好ましい。また、本発明の改変アマドリアーゼにおける、デヒドロゲナーゼ活性に対するオキシダーゼ活性の割合を示すOX/DHは改変前(100%)と比較して、90%未満、80%未満、75%未満、50%未満、40%未満、30%未満、20%未満、10%未満、5%未満、2%未満、1%未満、0.5%未満、例えば0.2%未満に低減していることが好ましい。
 デヒドロゲナーゼ活性に対するオキシダーゼ活性の割合は、公知のアマドリアーゼの測定法を用いて、任意の条件下で測定し、改変前のものと比較することができる。例えば、pH7.0において、1mMのある糖化基質、例えばαFVを添加して測定したオキシダーゼ活性を、1mMの該糖化基質、例えばαFVを添加して測定したデヒドロゲナーゼ活性で割った比率として求めることにより、デヒドロゲナーゼ活性に対するオキシダーゼ活性の割合を算出し、これを改変前のものと改変後のもので比較することができる。
(ハイスループットスクリーニング)
 アマドリアーゼはさらに、機能性アマドリアーゼ変異体を取得するためにハイスループットスクリーニングに供することができる。例えば変異導入したアマドリアーゼ遺伝子を有する形質転換又は形質導入株のライブラリーを作製し、これをマイクロタイタープレートに基づくハイスループットスクリーニングに供してもよく、または液滴型マイクロ流体に基づく超ハイスループットスクリーニングに供してもよい。例としてはバリアントをコードする変異遺伝子のコンビナトリアルライブラリーを構築し、次いでファージディスプレイ(例えばChem. Rev. 105 (11): 4056-72, 2005)、イーストディスプレイ(例えばComb Chem High Throughput Screen. 2008;11(2): 127-34)、バクテリアルディスプレイ(例えばCurr Opin Struct Biol 17: 474-80, 2007)等を用いて、変異アマドリアーゼの大きな集団をスクリーニングする方法が挙げられる。またAgresti et al, "Ultrahigh-throughput screening in drop-based microfluidics for directed evolution" Proceedings of the National Academy of Sciences 107 (9): 4004-4009 (Mar, 2010)を参照のこと。アマドリアーゼバリアントのスクリーニングに使用しうる超ハイスループットスクリーニング手法についての同文献の記載を参照により本明細書に組み入れる。例えばエラープローンPCR法によりライブラリーを構築することができる。また飽和突然変異誘発を用いて、本明細書に記載の位置又はそれに対応する位置を標的として変異導入しライブラリーを構築してもよい。ライブラリーを用いて電気コンピテントEBY-100細胞等の適当な細胞を形質転換し、約10の7乗の変異体を取得しうる。該ライブラリーで形質転換した酵母細胞を次いでセルソーティングに供しうる。標準ソフトリトグラフィー法を用いて作製したポリジメトキシルシロキサン(PDMS)マイクロ流体デバイスを用いてもよい。フローフォーカスデバイスを用いて単分散の液滴を形成することができる。個別の変異体を含有する形成された液滴を適当なソーティングデバイスに供しうる。細胞を選別する際にはデヒドロゲナーゼ活性の有無を利用しうる。変異導入と選別は複数回反復してもよい。
(アマドリアーゼ活性の測定方法)
 アマドリアーゼの活性は、オキシダーゼ活性とデヒドロゲナーゼ活性があり、種々の方法を用いることにより測定できる。一例として、以下に、本発明で用いるアマドリアーゼ活性の測定方法について説明する。
(アマドリアーゼのオキシダーゼ活性の測定方法)
 本発明におけるアマドリアーゼのオキシダーゼ活性の測定方法としては、酵素の反応により生成する過酸化水素量を測定する方法や酵素反応により消費する酸素量を測定する方法などが主な測定方法として挙げられる。以下に、一例として、過酸化水素量を測定する方法について示す。
 以下、本発明におけるアマドリアーゼのオキシダーゼ活性測定には、断りのない限り、フルクトシルバリンを基質として用いる。なお、ある実施形態において、酵素力価は、フルクトシルバリンを基質として測定したとき、1分間に1μmolの過酸化水素を生成する酵素量を1Uと定義することができる。フルクトシルバリン等の糖化アミノ酸、およびフルクトシルバリルヒスチジン等の糖化ペプチドは、阪上らの方法に基づき合成、精製することができる(特開2001-95598号参照)。なお、これは測定方法の説明のための便宜であって、本発明に用いるアマドリアーゼの基質特異性はフルクトシルバリンに何ら限定されるものではない。
A.試薬の調製
(1)試薬1:POD-4-AA溶液
 4.0kUのパーオキシダーゼ(キッコーマン社製)、100mgの4-アミノアンチピリン(東京化成工業社製)を0.1Mのリン酸カリウム緩衝液(pH7.0)に溶解し、1Lに定容する。
(2)試薬2:TOOS溶液
 500mgのTOOS(N-エチル-N-(2-ヒドロキシ-3-スルホプロピル)-m-トルイジンナトリウム、同仁化学社製)をイオン交換水に溶解し、100mlに定容する。
(3)試薬3:基質溶液(30mM;終濃度 1mM)
 フルクトシルバリン83mgをイオン交換水に溶解して10mlに定容する。
B.測定法
 2.7mlの試薬1,100μlの試薬2、および100μlの試薬3を混和し、37℃で5分間予備加温する。その後、酵素液を100μl加えてよく混ぜた後、分光光度計(U-3010、日立ハイテクノロジーズ社製)により、555nmにおける吸光度を測定する。測定値は、555nmにおける1分後から3分後の1分間あたりの吸光度変化とする。なお対照液は、100μlの試薬3の代わりに100μlのイオン交換水を加える以外は前記と同様に調製する。37℃、1分当たりに生成される過酸化水素のマイクロモル数を酵素液中の活性単位(U)とし、下記の式に従って算出する。
 活性(U/ml)= {(ΔAs-ΔA0)×3.0×df}÷(39.2×0.5×0.1)
 ΔAs : 反応液の1分間あたりの吸光度変化
 ΔA : 対照液の1分間あたりの吸光度変化
 39.2: 反応により生成されるキノンイミン色素のミリモル吸光係数(mM-1・cm-1
 0.5 : 1molの過酸化水素による生成されるキノンイミン色素のmol数
 df  : 希釈係数。
(アマドリアーゼのデヒドロゲナーゼ活性の測定方法)
 本発明におけるアマドリアーゼのデヒドロゲナーゼ活性の測定方法としては、酸素以外の電子メディエーターを電子アクセプターとして利用し、酸化型電子メディエーターの消費量を測定する方法や酵素反応により得られたホルマザン色素の生成量を測定する方法などが主な測定方法として挙げられる。以下に、一例として、ホルマザン色素の生成量を測定する方法について示す。
 以下、本発明におけるアマドリアーゼのデヒドロゲナーゼ活性測定には、断りのない限り、フルクトシルバリンを基質として用いる。なお、酵素力価は、フルクトシルバリンを基質として測定したとき、1分間に1μmolのホルマザン色素を生成する酵素量を1Uと定義する。
C.試薬の調製
(4)試薬4:WST-3溶液
 700mgのWST-3(2-(4-Iodophenyl)-3-(2,4-dinitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt、同仁化学社製)をイオン交換水(pH7.0)に溶解し、100mLに定容する。
(5)試薬5:メトキシPMS(mPMS)溶液
 50mgのmPMS(1-Methoxy-5-methylphenazinium methylsulfate、同仁化学社製)をイオン交換水に溶解し、10mlに定容する。
D.測定法
 541μlの95mMリン酸カリウム緩衝液(pH7.0)に150μlの試薬4,9μlの試薬5、および25μlの酵素液を混和し、37℃で5分間予備加温する。その後、試薬3を25μl加えてよく混ぜた後、分光光度計(U-3010、日立ハイテクノロジーズ社製)により、433nmにおける吸光度を測定する。測定値は、433nmにおける1分後から2分後の1分間あたりの吸光度変化とする。なお対照液は、25μlの試薬3の代わりに25μlのイオン交換水を加える以外は前記と同様に調製する。37℃、1分当たりに生成されるWST-3のホルマザン色素のマイクロモル数を酵素液中の活性単位(U)とし、下記の式に従って算出する。 
 活性(U/ml)= {(ΔAs-ΔA0)×0.75×df}÷(31×0.025)
 ΔAs : 反応液の1分間あたりの吸光度変化
 ΔA : 対照液の1分間あたりの吸光度変化
 31: 反応により生成されるWST-3のホルマザン色素のミリモル吸光係数(mM-1・cm-1
 df  : 希釈係数。
(測定試薬キット、センサー)
 ある実施形態において、本発明は、デヒドロゲナーゼ活性の向上した本発明のアマドリアーゼを含む、HbA1c測定キット及びHbA1c測定装置を提供する。このキット又は装置は、場合により電子メディエーターを含んでもよい。
 ある実施形態において、本発明は、デヒドロゲナーゼ活性の向上した本発明のアマドリアーゼを含む固定した酵素電極を提供する。ある実施形態において、デヒドロゲナーゼ活性の向上した本発明のアマドリアーゼは酵素電極に塗布、吸着、又は固定化されていてもよい。別の実施形態では、電子メディエーターも電極に塗布、吸着、又は固定化してよい。電極としては炭素電極、白金、金、銀、ニッケル、パラジウムなどの金属電極などを用いることができる。炭素電極の場合、材料としてパイロリティック・グラファイトカーボン(PG)、グラッシーカーボン(GC)、カーボンペースト、プラスチックフォームドカーボン(PFC)などが挙げられる。測定システムは二電極系であっても三電極系であってもよく、例えば作用電極上に酵素を固定することができる。参照電極としては、標準水素電極、可逆水素電極、銀-塩化銀電極(Ag/AgCl)、パラジウム・水素電極、飽和カロメル電極等が挙げられ、安定性や再現性の観点から、Ag/AgClを用いることが好ましい。
 酵素は、架橋、透析膜による被覆、高分子マトリックスへの封入、光架橋性ポリマーの使用、電気伝導性ポリマーの使用、酸化/還元ポリマーの使用等により電極に固定することができる。また酵素を電子メディエーターと共にポリマー中に固定あるいは電極上に吸着固定してもよく、これらの手法を組合せてもよい。
 本発明のアマドリアーゼは、ポテンショスタットやガルバノスタットなどを用いることにより、種々の電気化学的な測定手法に適用することができる。電気化学的測定法としては、アンペロメトリー、ポテンショメトリー、クーロメトリーなどの様々な手法が挙げられる。例えばアンペロメトリー法により、還元されたメディエーターが印加電圧によって酸化される際に生じる電流値を測定することで、試料中の糖化基質の濃度を算出することができる。印加電圧はメディエーターや装置の設定にもよるが、例えば-1000~+1000mV(v.s. Ag/AgCl)などとすることができる。
 糖化基質(例えばαFVH)の濃度の測定は、例えば以下のようにして行うことができる。恒温セルに緩衝液を入れ、一定温度に維持する。メディエーターとしては、フェリシアン化カリウム、フェナジンメトサルフェートなどを用いることができる。作用電極として本発明の改変型アマドリアーゼを固定化した電極を用い、対極(例えば白金電極)および参照電極(例えばAg/AgCl電極)を用いる。カーボン電極に一定の電圧を印加して、電流が定常になった後、糖化基質(例えばαFVH)を含む試料を加えて電流の増加を測定する。標準濃度の糖化基質(例えばαFVH)溶液により作製したキャリブレーションカーブに従い、試料中の糖化基質(αFVH)濃度を計算することができる。
 さらに、測定に必要な溶液量を低減するために、印刷電極を用いることもできる。この場合、電極は絶縁基板上に形成されてなることが好ましい。具体的には、フォトリゾグラフィ技術や、スクリーン印刷、グラビア印刷、フレキソ印刷などの印刷技術により、電極を基板上に形成されることが望ましい。また、絶縁基板の素材としては、シリコン、ガラス、セラミック、ポリ塩化ビニル、ポリエチレン、ポリプロピレン、ポリエステルなどが挙げられるが、各種の溶媒や薬品に対する耐性の強いものを用いるのがより好ましい。
 ある実施形態において、本発明は、該酵素電極を含むセンサーを提供する。
 別の実施形態では、本発明の酵素電極を利用し、試料中のアマドリ化合物の濃度を、酵素反応により生じる電流を測定することにより決定することができる。一例として、酵素電極を作用電極とし、これを対電極及び参照電極と共に使用する。対電極は例えば白金電極とすることができ、参照電極は例えばAg/AgCl電極とすることができる。温度を一定に保ち、電極をメディエーターを含む緩衝液中に挿入する。作用電極に電圧を印加し、試料を添加後、電流の変化を測定する。
 本発明の測定方法、キット、装置及びセンサーに用いるメディエーター(人工電子メディエーター、人工電子アクセプター、電子メディエーターともいう)は、デヒドロゲナーゼ活性の向上した本発明のアマドリアーゼから電子を受け取ることができるものであれば特に限定されない。メディエーターとしてはキノン類、フェナジン類、ビオロゲン類、シトクロム類、フェノキサジン類、フェノチアジン類、フェリシアン化物、例えばフェリシアン化カリウム、フェレドキシン類、フェロセン、オスミウム錯体およびその誘導体等などが挙げられ、フェナジン化合物としては例えばPMS、メトキシPMSが挙げられるがこれに限定されない。
 ある実施形態において本発明の改変アマドリアーゼはデヒドロゲナーゼ活性が向上している。ある実施形態におて本発明の改変アマドリアーゼはオキシダーゼ活性が低減されている。ある実施形態において、本発明の改変アマドリアーゼはオキシダーゼ活性/デヒドロゲナーゼ活性比(OX/DH比)が低下している。またある実施形態において、本発明の改変アマドリアーゼはデヒドロゲナーゼ活性が向上し、かつオキシダーゼ活性が低減されている。このような本発明の改変アマドリアーゼが触媒する酵素反応は、酸素の影響を受けない、ほとんど受けない又は受けにくい。本発明の改変アマドリアーゼは、従来のアマドリアーゼと同じ用途に使用することができる。また、本発明のアマドリアーゼは、試料中の糖化基質濃度の測定に使用することができ、これは例えば糖尿病の診断に役立てることができる。また、本発明のアマドリアーゼは酵素電極として使用することができる。これは種々の電気化学的測定に用いることができる。また、本発明のアマドリアーゼは酵素センサーとして使用することができる。また、本発明のアマドリアーゼは糖尿病マーカーの測定キットに利用することができる。ただしこれは例示であり、本発明の改変アマドリアーゼの用途はこれに限られない。
[実施例1]
(デヒドロゲナーゼ活性向上型変異について)
(1)組換え体プラスミドpKK223-3-CFP-T7 DNAの調製
 CFP-T7遺伝子(配列番号2)を含む組換え体プラスミドを有する大腸菌JM109(pKK223-3-CFP-T7)株(国際公開2007/125779号参照)を、LB-amp培地[1%(W/V) バクトトリプトン、0.5%(W/V) ペプトン、0.5%(W/V) NaCl、50μg/ml Ampicilin]2.5mlに接種して、37℃で20時間振とう培養し、培養物を得た。
 この培養物を7,000rpmで、5分間遠心分離することにより集菌して菌体を得た。次いで、この菌体よりQIAGEN tip-100(キアゲン社製)を用いて組換え体プラスミドpKK223-3-CFP-T7を抽出して精製し、組換え体プラスミドpKK223-3-CFP-T7のDNA2.5μgを得た。
(2)組換え体プラスミドpKK223-3-CFP-T7 DNAの部位特異的改変操作
 得られた組換え体プラスミドpKK223-3-CFP-T7 DNAを鋳型として、配列番号14、15の合成オリゴヌクレオチド、KOD-Plus-(東洋紡社製)を用い、以下の条件でPCR反応を行った。
 すなわち、10×KOD-Plus-緩衝液を5μl、dNTPが各2mMになるよう調製されたdNTPs混合溶液を5μl、25mMのMgSO溶液を2μl、鋳型となるpKK223-3-CFP-T7 DNAを50ng、上記合成オリゴヌクレオチドをそれぞれ15pmol、KOD-Plus-を1Unit加えて、滅菌水により全量を50μlとした。調製した反応液をサーマルサイクラー(エッペンドルフ社製)を用いて、94℃で2分間インキュベートし、続いて、「94℃、15秒」-「50℃、30秒」-「68℃、6分」のサイクルを30回繰り返した。
 反応液の一部を1.0%アガロースゲルで電気泳動し、約6,000bpのDNAが特異的に増幅されていることを確認した。こうして得られたDNAを制限酵素DpnI(NEW ENGLAND BIOLABS社製)で処理し、残存している鋳型DNAを切断した後、大腸菌JM109を形質転換し、LB-amp寒天培地に展開した。生育したコロニーをLB-amp培地に接種して振とう培養し、上記(1)と同様の方法でプラスミドDNAを単離した。該プラスミド中のアマドリアーゼをコードするDNAの塩基配列を、マルチキャピラリーDNA解析システムApplied Biosystems 3130xlジェネティックアナライザ(Life Technologies社製)を用いて決定し、その結果、配列番号1記載のアミノ酸配列の280位のシステインがグルタミンに置換された改変型アマドリアーゼをコードする組換え体プラスミド(pKK223-3-CFP-T7-280Q)を得た。
 同様の手順で、配列番号1記載のアミノ酸配列の280位のシステインをセリンに置換するために、組換え体プラスミドpKK223-3-CFP-T7 DNAを鋳型として、配列番号15、16の合成オリゴヌクレオチド、KOD-Plus-(東洋紡社製)を用い、上記と同様の条件でPCR反応、大腸菌JM109の形質転換および生育コロニーが保持するプラスミドDNA中のアマドリアーゼをコードするDNAの塩基配列決定を行った。その結果、配列番号1記載のアミノ酸配列の280位のシステインがセリンに置換された改変型アマドリアーゼをコードする組換え体プラスミド(pKK223-3-CFP-T7-280S)を得た。
 同様に、組換え体プラスミドpKK223-3-CFP-T7 DNAを鋳型として、ただし配列番号15、17の合成オリゴヌクレオチドを使用し、配列番号1記載のアミノ酸配列の280位のシステインがアスパラギン酸に置換された改変型アマドリアーゼをコードする組換え体プラスミド(pKK223-3-CFP-T7-280D)を得た。
 同様に、組換え体プラスミドpKK223-3-CFP-T7 DNAを鋳型として、ただし配列番号15、18の合成オリゴヌクレオチドを使用し、配列番号1記載のアミノ酸配列の280位のシステインがグルタミン酸に置換された改変型アマドリアーゼをコードする組換え体プラスミド(pKK223-3-CFP-T7-280E)を得た。
 同様に、組換え体プラスミドpKK223-3-CFP-T7 DNAを鋳型として、ただし配列番号15、19の合成オリゴヌクレオチドを使用し、配列番号1記載のアミノ酸配列の280位のシステインがメチオニンに置換された改変型アマドリアーゼをコードする組換え体プラスミド(pKK223-3-CFP-T7-280M)を得た。
 同様に、組換え体プラスミドpKK223-3-CFP-T7 DNAを鋳型として、ただし配列番号15、20の合成オリゴヌクレオチドを使用し、配列番号1記載のアミノ酸配列の280位のシステインがリシンに置換された改変型アマドリアーゼをコードする組換え体プラスミド(pKK223-3-CFP-T7-280K)を得た。
 同様に、組換え体プラスミドpKK223-3-CFP-T7 DNAを鋳型として、ただし配列番号15、21の合成オリゴヌクレオチドを使用し、配列番号1記載のアミノ酸配列の280位のシステインがアルギニンに置換された改変型アマドリアーゼをコードする組換え体プラスミド(pKK223-3-CFP-T7-280R)を得た。
 同様に、組換え体プラスミドpKK223-3-CFP-T7 DNAを鋳型として、ただし配列番号15、22の合成オリゴヌクレオチドを使用し、配列番号1記載のアミノ酸配列の280位のシステインがバリンに置換された改変型アマドリアーゼをコードする組換え体プラスミド(pKK223-3-CFP-T7-280V)を得た。
 同様に、組換え体プラスミドpKK223-3-CFP-T7 DNAを鋳型として、ただし配列番号15、23の合成オリゴヌクレオチドを使用し、配列番号1記載のアミノ酸配列の280位のシステインがアスパラギンに置換された改変型アマドリアーゼをコードする組換え体プラスミド(pKK223-3-CFP-T7-280N)を得た。
 同様に、組換え体プラスミドpKK223-3-CFP-T7 DNAを鋳型として、ただし配列番号24、25の合成オリゴヌクレオチドを使用し、配列番号1記載のアミノ酸配列の267位のフェニルアラニンがチロシンに置換された改変型アマドリアーゼをコードする組換え体プラスミド(pKK223-3-CFP-T7-267Y)を得た。
 同様に、組換え体プラスミドpKK223-3-CFP-T7 DNAを鋳型として、ただし配列番号26、27の合成オリゴヌクレオチドを使用し、配列番号1記載のアミノ酸配列の269位のフェニルアラニンがチロシンに置換された改変型アマドリアーゼをコードする組換え体プラスミド(pKK223-3-CFP-T7-269Y)を得た。
 同様に、組換え体プラスミドpKK223-3-CFP-T7 DNAを鋳型として、ただし配列番号28、29の合成オリゴヌクレオチドを使用し、配列番号1記載のアミノ酸配列の54位のアスパラギン酸がアスパラギンに置換された改変型アマドリアーゼをコードする組換え体プラスミド(pKK223-3-CFP-T7-54N)を得た。
 同様に、組換え体プラスミドpKK223-3-CFP-T7 DNAを鋳型として、ただし配列番号29、30の合成オリゴヌクレオチドを使用し、配列番号1記載のアミノ酸配列の54位のアスパラギン酸がアラニンに置換された改変型アマドリアーゼをコードする組換え体プラスミド(pKK223-3-CFP-T7-54A)を得た。
 同様に、組換え体プラスミドpKK223-3-CFP-T7 DNAを鋳型として、ただし配列番号31、32の合成オリゴヌクレオチドを使用し、配列番号1記載のアミノ酸配列の241位のチロシンがグルタミン酸に置換された改変型アマドリアーゼをコードする組換え体プラスミド(pKK223-3-CFP-T7-241E)を得た。
 同様に、組換え体プラスミドpKK223-3-CFP-T7 DNAを鋳型として、ただし配列番号32、33の合成オリゴヌクレオチドを使用し、配列番号1記載のアミノ酸配列の241位のチロシンがグルタミンに置換された改変型アマドリアーゼをコードする組換え体プラスミド(pKK223-3-CFP-T7-241Q)を得た。
 同様に、組換え体プラスミドpKK223-3-CFP-T7 DNAを鋳型として、ただし配列番号32、34の合成オリゴヌクレオチドを使用し、配列番号1記載のアミノ酸配列の241位のチロシンがリシンに置換された改変型アマドリアーゼをコードする組換え体プラスミド(pKK223-3-CFP-T7-241K)を得た。
 同様に、組換え体プラスミドpKK223-3-CFP-T7 DNAを鋳型として、ただし配列番号35、36の合成オリゴヌクレオチドを使用し、配列番号1記載のアミノ酸配列の280位のシステインがヒスチジンに置換された改変型アマドリアーゼをコードする組換え体プラスミド(pKK223-3-CFP-T7-280H)を得た。
 同様に、組換え体プラスミドpKK223-3-CFP-T7 DNAを鋳型として、ただし配列番号35、37の合成オリゴヌクレオチドを使用し、配列番号1記載のアミノ酸配列の280位のシステインがスレオニンに置換された改変型アマドリアーゼをコードする組換え体プラスミド(pKK223-3-CFP-T7-280T)を得た。
 同様に、組換え体プラスミドpKK223-3-CFP-T7 DNAを鋳型として、ただし配列番号38、39の合成オリゴヌクレオチドを使用し、PCR反応、DpnI処理を行った後、DpnI処理済みのDNAを2μl、Ligation high ver.2 (東洋紡製)を5μl、5 U/μlのT4ポリヌクレオチドキナーゼを1μl加えて、滅菌水により全量を15μlとして、16℃で1時間反応させた。その後、反応液を用いて大腸菌JM109を形質転換し、配列番号1記載のアミノ酸配列の267位のフェニルアラニンがロイシンに置換された改変型アマドリアーゼをコードする組換え体プラスミド(pKK223-3-CFP-T7-267L)を保持する大腸菌JM109株を得た。
 同様に、組換え体プラスミドpKK223-3-CFP-T7 DNAを鋳型として、ただし配列番号38、40の合成オリゴヌクレオチドを使用し、PCR反応、DpnI処理を行った後、DpnI処理済みのDNAを2μl、Ligation high ver.2 (東洋紡製)を5μl、5 U/μlのT4ポリヌクレオチドキナーゼを1μl加えて、滅菌水により全量を15μlとして、16℃で1時間反応させた。その後、反応液を用いて大腸菌JM109を形質転換し、配列番号1記載のアミノ酸配列の267位のフェニルアラニンがメチオニンに置換された改変型アマドリアーゼをコードする組換え体プラスミド(pKK223-3-CFP-T7-267M)を得た。
 同様に、組換え体プラスミドpKK223-3-CFP-T7 DNAを鋳型として、ただし配列番号41、42の合成オリゴヌクレオチドを使用し、PCR反応、DpnI処理を行った後、DpnI処理済みのDNAを2μl、Ligation high ver.2 (東洋紡製)を5μl、5 U/μlのT4ポリヌクレオチドキナーゼを1μl加えて、滅菌水により全量を15μlとして、16℃で1時間反応させた。その後、反応液を用いて大腸菌JM109を形質転換し、配列番号1記載のアミノ酸配列の269位のフェニルアラニンがロイシンに置換された改変型アマドリアーゼをコードする組換え体プラスミド(pKK223-3-CFP-T7-269L)を得た。
 同様に、組換え体プラスミドpKK223-3-CFP-T7 DNAを鋳型として、ただし配列番号41、43の合成オリゴヌクレオチドを使用し、PCR反応、DpnI処理を行った後、DpnI処理済みのDNAを2μl、Ligation high ver.2 (東洋紡製)を5μl、5 U/μlのT4ポリヌクレオチドキナーゼを1μl加えて、滅菌水により全量を15μlとして、16℃で1時間反応させた。その後、反応液を用いて大腸菌JM109を形質転換し、配列番号1記載のアミノ酸配列の269位のフェニルアラニンがメチオニンに置換された改変型アマドリアーゼをコードする組換え体プラスミド(pKK223-3-CFP-T7-269M)を得た。
 PCR反応、形質転換及び塩基配列決定はいずれも上記と同様に行った。
(3)各種改変型アマドリアーゼの生産
 上記の手順により得られた上記組換え体プラスミドを保持するそれぞれの大腸菌JM109株を、0.1mMのIPTGを添加したLB-amp培地3mlにおいて、30℃で16時間培養した。その後、各菌体をpH7.0の0.01Mリン酸緩衝液で洗浄、超音波破砕、15,000rpmで10分間遠心分離し、各粗酵素液1.5mlを調製した。
(4)各種改変型アマドリアーゼのオキシダーゼ活性およびデヒドロゲナーゼ活性評価
 このようにして調製した各粗酵素液をサンプルとし、上記のオキシダーゼ活性測定法およびデヒドロゲナーゼ活性測定法に従って、各種改変型アマドリアーゼのオキシダーゼ活性とデヒドロゲナーゼ活性の評価を行った。結果の一例を表1に示す。
 表1において、CFP-T7は、大腸菌JM109(pKK223-3-CFP-T7)株由来のアマドリアーゼを示す。なお、本実施例では大腸菌JM109(pKK223-3-CFP-T7)株由来のアマドリアーゼであるCFP-T7を変異元酵素としたため、表中に記載の「アミノ酸変異」の記載には、CFP-T7に既に導入済みの各種変異点は含めていない。表中、オキシダーゼ活性(%)とデヒドロゲナーゼ活性(%)は、元酵素CFP-T7のオキシダーゼ活性(U/mL)を100とした場合のパーセンテージで示す。また表中のOX/DH(%)は、元酵素CFP-T7のOX/DH比を100とした場合のパーセンテージを示す。
Figure JPOXMLDOC01-appb-T000001
 表1に示す通り、本実施例の条件下では、CFP-T7のデヒドロゲナーゼ活性に対するオキシダーゼ活性の割合、OX/DHは26.0となり、酸素の影響を強く受けることが分かった。これに対し、部位特異的変異導入により得られた22の変異体のうち、C280Vを除くすべての変異体、すなわち、CFP-T7の280位のシステインがグルタミン、セリン、アスパラギン酸、グルタミン酸、メチオニン、リシン、アルギニン、アスパラギン、ヒスチジン、トレオニンに、267位のフェニルアラニンがチロシン、ロイシン、メチオニンに、269位のフェニルアラニンがチロシン、ロイシン、メチオニンに、54位のアスパラギン酸がアスパラギン、アラニンに、241位のチロシンがグルタミン酸、グルタミン、リシンに、それぞれ変異したアマドリアーゼにおいては、OX/DHがいずれも19以下まで改善し、顕著なものでは10以下まで改善し、より顕著なものでは6以下まで改善し、さらに顕著なものでは3.7以下まで改善した。特に、C280Q、C280S、F267Y、F267L、F267M、F269Y、F269L、F269M、Y241Qについては、CFP-T7と比較して、デヒドロゲナーゼ活性が向上しているにも関わらず、オキシダーゼ活性が低減していることが示された。したがって、これらの各変異点が、アマドリアーゼのデヒドロゲナーゼ活性を向上させる変異点であることが示された。
 280位については、グルタミン、セリン、アスパラギンへの置換により良好な結果が得られたことから、同じく極性アミノ酸残基であるトレオニンへの置換により同様の結果が得られると考えられ、これは上記のとおり確認された。
 また280位については、アスパラギン酸、グルタミン酸、リシン、アルギニンへの置換により良好な結果が得られたことから、同じく荷電アミノ酸残基であるヒスチジンへの置換により同様の結果が得られると考えられ、これは上記のとおり確認された。
 また280位については、メチオニンへの置換により良好な結果が得られたことから、同じく嵩高いアミノ酸であるフェニルアラニン、チロシン、トリプトファンやさらにはプロリンへの置換により同様の結果が得られると考えられる。
 267位及び269位については、チロシン、メチオニン、ロイシンへの置換により良好な結果が得られたことから、同じく疎水性アミノ酸残基であるイソロイシン、トリプトファン、さらにはバリンやアラニンへの置換により同様の結果が得られると考えられる。
 54位については、アスパラギンへの置換により良好な結果が得られたことから、同じく極性アミノ酸残基であるグルタミンへの置換により同様の結果が得られると考えられる。また、極性アミノ酸残基への置換により良好な結果が得られたことから、荷電アミノ酸であるヒスチジンへの置換により同様の結果が得られると考えられる。
 また54位についてはアラニンへの置換により良好な結果が得られたことから、同じく非極性で側鎖の比較的小さいグリシン及びバリンへの置換により同様の結果が得られると考えられる。
 241位については、グルタミンへの置換により良好な結果が得られたことから、同じく極性アミノ酸残基であるアスパラギンへの置換により同様の結果が得られると考えられる。
 また241位については、リジン、グルタミン酸への置換により良好な結果が得られたことから、同じく荷電アミノ酸残基であるアルギニン、アスパラギン酸及びヒスチジンへの置換により同様の結果が得られると考えられる。
[実施例2]
(CFP-T7、CFP-T7-280Qの精製)
 実施例1で得たCFP-T7およびCFP-T7-280Qの粗酵素を用いて、調製した粗酵素液を20mM リン酸カリウム緩衝液(pH8.0)で平衡化した4mlのQ Sepharose Fast Flow樹脂(GEヘルスケア社製)に吸着させ、次に80mlの同緩衝液で樹脂を洗浄し、続いて100mM NaClを含む20mM リン酸カリウム緩衝液(pH8.0)で樹脂に吸着していた蛋白質を溶出させ、アマドリアーゼ活性を示す画分を回収した。
 得られたアマドリアーゼ活性を示す画分を、Amicon Ultra-15, 30K NMWL(ミリポア社製)で濃縮した。その後、150mM NaClを含む20mM リン酸カリウム緩衝液(pH7.0)で平衡化したHiLoad 26/60 Superdex 200pg(GEヘルスケア社製)にアプライし、同緩衝液で溶出させ、アマドリアーゼ活性を示す画分を回収し、野生型および改変型アマドリアーゼの精製標品を得た。得られた精製標品はSDS-PAGEによる分析により、単一なバンドまで精製されていることを確認した。
(オキシダーゼ活性およびデヒドロゲナーゼ活性評価)
 上記のようにして得た精製酵素CFP-T7およびCFP-T7-280Qのオキシダーゼ活性、デヒドロゲナーゼ活性を評価した。実施例1に準じたオキシダーゼ活性およびデヒドロゲナーゼ活性測定方法に従って、評価を行った。ただし、用いた基質は30mMのαFVHであり、測定に用いた酵素の280nmの吸光度が1あたりの酵素活性値(U/A280)を算出した。結果の一例を表2に示す。表中のOX/DH(%)は、元酵素CFP-T7のOX/DH比を100とした場合のパーセンテージを示す。
Figure JPOXMLDOC01-appb-T000002
 表2より、本実施例の条件下では、CFP-T7のオキシダーゼ活性とデヒドロゲナーゼ活性の割合、OX/DHは9.9となり、αFVHの測定においても酸素の影響を強く受けることが分かった。これに対し、CFP-T7-280QのOX/DHは0.037となり、大幅に改善した。本発明であるC280Q変異体はオキシダーゼ活性を208倍低下させ、デヒドロゲナーゼ活性を1.3倍向上させた。すなわち、酸素の影響をほとんど受けずに、αFVHを測定することができるといえる。
[実施例3](各種アマドリアーゼの部位特異的改変操作)
(組換え体プラスミドpUTE100K’-EFP-T5 DNAの調製)
 配列番号44はEupenicillium terrenum由来フルクトシルペプチドオキシダーゼ(EFP-T5)の改変型酵素のアミノ酸配列であり、配列番号44のアミノ酸配列をコードする遺伝子(配列番号45)を挿入した組換え体プラスミドpUTE100K’-EFP-T5を保持する大腸菌により生産できる(国際公開第2007/125779号公報参照)。pUTE100K’-EFP-T5を保持する大腸菌JM109株を「実施例1 (1)組換え体プラスミドpK223-3-CFP-T7 DNAの調製」に記載の方法に従って培養し、pUTE100K’-EFP-T5を抽出、精製した。
(Eupenicillium terrenum由来フルクトシルペプチドオキシダーゼ遺伝子への点変異導入)
 EFP-T5に基質特異性改善型変異を導入するために、組換え体プラスミドpUTE100K’-EFP-T5を鋳型にして、配列番号46、47の合成オリゴヌクレオチド、KOD-Plus-(東洋紡績社製)を用い、実施例1と同様の条件でPCR反応、大腸菌JM109の形質転換および生育コロニーが保持するプラスミドDNA中のEFP-T5変異体をコードするDNAの塩基配列決定を行った。その結果、配列番号44記載のアミノ酸配列の280位のシステインがグルタミンに置換されたEFP-T5遺伝子をコードする組換え体プラスミド(pUTE100K’-EFP-T5-280Q)を得た。
 同様に、組換え体プラスミドドpUTE100K’-EFP-T5を鋳型として、ただし配列番号35、36の合成オリゴヌクレオチドを使用し、配列番号1記載のアミノ酸配列の280位のシステインがセリンに置換された改変型アマドリアーゼをコードする組換え体プラスミド(pUTE100K’-EFP-T5-280S)を得た。
(組換え体プラスミドpET22b-PnFX DNAの調製)
 配列番号9はPhaeosphaeria nodorum由来フルクトシルペプチドオキシダーゼ(PnFX)のアミノ酸配列であり、配列番号9のアミノ酸配列をコードする遺伝子(配列番号49)を挿入した組換え体プラスミドpET22b-PnFXを保持する大腸菌により生産できる(国際公開第2013/162035号公報参照)。pET22b-PnFXを保持する大腸菌JM109株を「実施例1 (1)組換え体プラスミドpK223-3-CFP-T7 DNAの調製」に記載の方法に従って培養し、pET22b-PnFXを抽出、精製した。
(Phaeosphaeria nodorum由来のフルクトシルペプチドオキシダーゼ遺伝子への点変異導入)
 PnFXに基質特異性改善型変異を導入するために、前述の様に調製した組換え体プラスミドpET22b-PnFXを鋳型にして、配列番号50、51の合成オリゴヌクレオチド、KOD-Plus-(東洋紡績社製)を用い、実施例1と同様の条件でPCR反応、大腸菌JM109の形質転換および生育コロニーが保持するプラスミドDNA中のPnFX変異体をコードするDNAの塩基配列決定を行った。その結果、配列番号9記載のアミノ酸配列の276位のシステインがグルタミンに置換されたPnFX遺伝子をコードする組換え体プラスミド(pET22b-PnFX-276Q)を得た。
 続いて、上記と同様にして、pET22b-PnFXを鋳型とし、配列番号50、52の合成オリゴヌクレオチドを使用して、配列番号9記載のアミノ酸配列の276位のシステインがセリンに置換されたPnFX遺伝子をコードする組換え体プラスミド(pET22b-PnFX-276S)を得た。
 そして、実施例1と同様の条件で大腸菌BL21(DE3)株を形質転換し、大腸菌BL21(DE3) (pET22b-PnFX-276Q)株、大腸菌BL21(DE3) (pET22b-PnFX-276S)株を得た。
(組換え体プラスミドpET22b-AnFX DNAの調製)
 配列番号53はフルクトシルペプチドオキシダーゼ活性を付与するために59位のセリンをグリシンへ置換したAspergillus nidulans由来フルクトシルアミノ酸オキシダーゼ(AnFX)のアミノ酸配列であり、配列番号53のアミノ酸配列をコードする遺伝子(配列番号54)を挿入した組換え体プラスミドpET22b-AnFXを保持する大腸菌により生産できる(国際公開第2012/018094号公報参照)。pET22b-AnFXを保持する大腸菌JM109株を「実施例1 (1)組換え体プラスミドpK223-3-CFP-T7 DNAの調製」に記載の方法に従って培養し、pET22b-AnFXを抽出、精製した。
(Aspergillus nidulans由来のフルクトシルペプチドオキシダーゼ遺伝子への点変異導入)
 AnFXに基質特異性改善型変異を導入するために、組換え体プラスミドpET22b-AnFXを鋳型にして、配列番号55、56の合成オリゴヌクレオチド、KOD-Plus-(東洋紡績社製)を用い、実施例1と同様の条件でPCR反応、大腸菌JM109の形質転換および生育コロニーが保持するプラスミドDNA中のAnFX変異体をコードするDNAの塩基配列決定を行った。その結果、配列番号53記載のアミノ酸配列の280位のシステインがグルタミンに置換されたAnFX遺伝子をコードする組換え体プラスミド(pET22b-AnFX-280Q)を得た。
 続いて、上記と同様にして、pET22b-AnFXを鋳型とし、配列番号55,57の合成オリゴヌクレオチドを使用して、配列番号53記載のアミノ酸配列の280位のシステインがセリンに置換されたAnFX遺伝子をコードする組換え体プラスミド(pET22b-AnFX-280S)を得た。
 そして、実施例1と同様の条件で大腸菌BL21(DE3)株を形質転換し、大腸菌BL21(DE3) (pET22b-AnFX-280Q)株、大腸菌BL21(DE3) (pET22b-AnFX-280S)株を得た。
(組換え体プラスミドpKK223-3-CcFX DNAの調製)
 配列番号6はCurvularia clavata由来ケトアミンオキシダーゼ(CcFX)のアミノ酸配列である(国際公開第WO2004/104203号)。配列番号6のアミノ酸配列をコードする遺伝子(配列番号58)を挿入した組換え体プラスミドpKK223-3-CcFXを保持する大腸菌により生産できる(国際公開第2015/020200号公報参照)。pKK223-3-CcFXを保持する大腸菌JM109株を「実施例1 (1)組換え体プラスミドpK223-3-CFP-T7 DNAの調製」に記載の方法に従って培養し、pKK223-3-CcFXを抽出、精製した。
(Curvularia clavata由来のケトアミンオキシダーゼ遺伝子への点変異導入)
 CcFXに基質特異性改善型変異を導入するために、組換え体プラスミドpKK223-3-CcFXを鋳型にして、配列番号59、60の合成オリゴヌクレオチド、KOD-Plus-(東洋紡績社製)を用い、実施例1と同様の条件でPCR反応、大腸菌JM109の形質転換および生育コロニーが保持するプラスミドDNA中のCcFX変異体をコードするDNAの塩基配列決定を行った。その結果、配列番号6記載のアミノ酸配列の278位のシステインがグルタミンに置換されたCcFX遺伝子をコードする組換え体プラスミド(pKK223-3-CcFX-278Q)を得た。
 続いて、上記と同様にして、pKK223-3-CcFXを鋳型とし、配列番号59,61の合成オリゴヌクレオチドを使用して、配列番号6記載のアミノ酸配列の278位のシステインがセリンに置換されたCcFX遺伝子をコードする組換え体プラスミド(pKK223-3-CcFX-278S)を得た。
 続いて、上記と同様にして、pKK223-3-CcFXを鋳型とし、配列番号62,63の合成オリゴヌクレオチドを使用して、PCR反応、DpnI処理を行った後、DpnI処理済みのDNAを2μl、Ligation high ver.2 (東洋紡製)を5μl、5 U/μlのT4ポリヌクレオチドキナーゼを1μl加えて、滅菌水により全量を15μlとして、16℃で1時間反応させた。その後、反応液を用いて大腸菌JM109を形質転換し、配列番号6記載のアミノ酸配列の265位のフェニルアラニンがロイシンに置換されたCcFX遺伝子をコードする組換え体プラスミド(pKK223-3-CcFX-265L)を得た。
 続いて、上記と同様にして、pKK223-3-CcFXを鋳型とし、配列番号62,64の合成オリゴヌクレオチドを使用して、PCR反応、DpnI処理を行った後、DpnI処理済みのDNAを2μl、Ligation high ver.2 (東洋紡製)を5μl、5 U/μlのT4ポリヌクレオチドキナーゼを1μl加えて、滅菌水により全量を15μlとして、16℃で1時間反応させた。その後、反応液を用いて大腸菌JM109を形質転換し、配列番号6記載のアミノ酸配列の265位のフェニルアラニンがメチオニンに置換されたCcFX遺伝子をコードする組換え体プラスミド(pKK223-3-CcFX-265M)を得た。
 続いて、上記と同様にして、pKK223-3-CcFXを鋳型とし、配列番号65,66の合成オリゴヌクレオチドを使用して、PCR反応、DpnI処理を行った後、DpnI処理済みのDNAを2μl、Ligation high ver.2 (東洋紡製)を5μl、5 U/μlのT4ポリヌクレオチドキナーゼを1μl加えて、滅菌水により全量を15μlとして、16℃で1時間反応させた。その後、反応液を用いて大腸菌JM109を形質転換し、配列番号6記載のアミノ酸配列の267位のフェニルアラニンがロイシンに置換されたCcFX遺伝子をコードする組換え体プラスミド(pKK223-3-CcFX-267L)を得た。
 続いて、上記と同様にして、pKK223-3-CcFXを鋳型とし、配列番号65,82の合成オリゴヌクレオチドを使用して、PCR反応、DpnI処理を行った後、DpnI処理済みのDNAを2μl、Ligation high ver.2 (東洋紡製)を5μl、5 U/μlのT4ポリヌクレオチドキナーゼを1μl加えて、滅菌水により全量を15μlとして、16℃で1時間反応させた。その後、反応液を用いて大腸菌JM109を形質転換し、配列番号6記載のアミノ酸配列の267位のフェニルアラニンがメチオニンに置換されたCcFX遺伝子をコードする組換え体プラスミド(pKK223-3-CcFX-267M)を得た。
(Emericella nidulans由来のケトアミンオキシダーゼ遺伝子への点変異導入)
 配列番号67はEmericella nidulans由来糖化ヘキサペプチドオキシダーゼ(En42FX)のアミノ酸配列である(国際公開第WO2015/005258号)。配列番号67のアミノ酸配列をコードする遺伝子(配列番号68)を定法である遺伝子断片のPCRによる全合成によりcDNAを全合成することで取得した(終止コドンTAAを含む)。続いて、取得した配列番号69の遺伝子を大腸菌で発現させるために、以下の手順を行った。まず、In-Fusion HD Cloning Kit (Clontech Laboratories, Inc.製)のユーザーマニュアルに従って、配列番号68の遺伝子を含む断片を、配列番号69,70の合成オリゴヌクレオチドを用いて増幅した。平行して、pET22bを含む断片を、配列番号71、72の合成オリゴヌクレオチドを用いて増幅した。続いて、In-fusion反応により、配列番号68の遺伝子を含む断片を、pET22bを含む断片にサブクローニングし、組換え体プラスミドpET22b-En42FXを取得し、上記と同様の条件で大腸菌JM109株を形質転換し、大腸菌JM109 (pET22b-En42FX)株を得た。
 En42FXに基質特異性改善型変異を導入するために、組換え体プラスミドpET22b-En42FXを鋳型にして、配列番号73、74の合成オリゴヌクレオチド、KOD-Plus-(東洋紡績社製)を用い、実施例1と同様の条件でPCR反応を行った後、DpnI処理済みのDNAを2μl、Ligation high ver.2 (東洋紡製)を5μl、5 U/μlのT4ポリヌクレオチドキナーゼを1μl加えて、滅菌水により全量を15μlとして、16℃で1時間反応させた。その後、反応液を用いて大腸菌JM109を形質転換し、生育コロニーが保持するプラスミドDNA中のEn42FX変異体をコードするDNAの塩基配列決定を行った。その結果、配列番号67記載のアミノ酸配列の280位のシステインがグルタミンに置換されたEn42FX遺伝子をコードする組換え体プラスミド(pET22b-En42FX-280Q)を得た。
 続いて、上記と同様にして、pET22b-En42FXを鋳型とし、配列番号73,75の合成オリゴヌクレオチドを使用して、配列番号67記載のアミノ酸配列の280位のシステインがセリンに置換されたEn42FX遺伝子をコードする組換え体プラスミド(pET22b-En42FX-280S)を得た。
 続いて、上記と同様にして、pET22b-En42FXを鋳型とし、配列番号76,77の合成オリゴヌクレオチドを使用して、配列番号67記載のアミノ酸配列の267位のフェニルアラニンがロイシンに置換されたEn42FX遺伝子をコードする組換え体プラスミド(pET22b-En42FX-267L)を得た。
 続いて、上記と同様にして、pET22b-En42FXを鋳型とし、配列番号76,78の合成オリゴヌクレオチドを使用して、配列番号67記載のアミノ酸配列の267位のフェニルアラニンがメチオニンに置換されたEn42FX遺伝子をコードする組換え体プラスミド(pET22b-En42FX-267M)を得た。
 続いて、上記と同様にして、pET22b-En42FXを鋳型とし、配列番号79,80の合成オリゴヌクレオチドを使用して、配列番号67記載のアミノ酸配列の269位のイソロイシンがロイシンに置換されたEn42FX遺伝子をコードする組換え体プラスミド(pET22b-En42FX-269L)を得た。
 続いて、上記と同様にして、pET22b-En42FXを鋳型とし、配列番号79,81の合成オリゴヌクレオチドを使用して、配列番号67記載のアミノ酸配列の269位のイソロイシンがメチオニンに置換されたEn42FX遺伝子をコードする組換え体プラスミド(pET22b-En42FX-269M)を得た。
 そして、実施例1と同様の条件で大腸菌BL21(DE3)株を形質転換し、大腸菌BL21(DE3) (pET22b-En42FX-280Q)株、大腸菌BL21(DE3) (pET22b-En42FX-280S)株、大腸菌BL21(DE3) (pET22b-En42FX-267L)株、大腸菌BL21(DE3) (pET22b-En42FX-267M)株、大腸菌BL21(DE3) (pET22b-En42FX-269L)株、大腸菌BL21(DE3) (pET22b-En42FX-269M)株を得た。
(各種改変型アマドリアーゼの生産)
 上記の手順により得られた上記組換え体プラスミドを保持するそれぞれの大腸菌JM109株、もしくは大腸菌BL21(DE3)株を、0.1mMのIPTGを添加したLB-amp培地3mlにおいて、25℃で16時間培養した。その後、各菌体をpH7.0の0.01Mリン酸緩衝液で洗浄、超音波破砕、15,000rpmで10分間遠心分離し、各粗酵素液1.5mlを調製した。
(各種改変型アマドリアーゼのオキシダーゼ活性およびデヒドロゲナーゼ活性評価)
 このようにして調製した各粗酵素液をサンプルとし、上記のオキシダーゼ活性測定法およびデヒドロゲナーゼ活性測定法に従って、各種改変型アマドリアーゼのオキシダーゼ活性とデヒドロゲナーゼ活性の評価を行った。結果を表3-7に示す。表4、5、6中、オキシダーゼ活性(%)とデヒドロゲナーゼ活性(%)は、それぞれの野生型酵素または元酵素のオキシダーゼ活性(U/mL)を100とした場合のパーセンテージで示す。また表3-7中のOX/DH(%)は、それぞれの野生型酵素または元酵素のOX/DH比を100とした場合のパーセンテージを示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 表3-7に示す通り、配列番号1のアマドリアーゼの280位のシステインに対応する位置のアミノ酸残基をグルタミン、もしくはセリンに置換した全ての場合において、アミノ酸置換前の野生型酵素と比較して、OX/DHの値が改善された。これは、前述のアミノ酸置換によるOX/DH改善効果が、アマドリアーゼの由来を問わず発揮されることを意味する。
[実施例4]
(印刷電極によるαFVHの定量)
 実施例2で得たCFP-T7及びCFP-T7-280Qの精製酵素を用いて、印刷電極測定によるαFVHの定量を行った。具体的には、カーボンの作用電極、銀塩化銀の参照電極が印刷されてなる、DEP Chip電極(DEP-EP-PP,丸形・カーボン・ダムリング付き;バイオデバイステクノロジー社製)上に、終濃度3.75mM又は7.5mMのmPMS、終濃度約10mMのリン酸緩衝液(pH7.0)及び1mM αFVHに対して50mUの各種精製酵素液を15μLに溶解した液を載せた。その後、DEP Chip専用コネクターを用いて、小型ポテンショスタット BDT miniSTAT 100(バイオデバイステクノロジー社製)に接続した。そして、+200mV(v.s. Ag/AgCl)の電圧を印加して、所定濃度のαFVH溶液5μLをそれぞれ電極上に載せて反応を行い、120秒後の電流値を測定した。CFP-T7を用いて反応させた各αFVH濃度における電流応答値をプロットした結果を図3に、CFP-T7-280Qを用いて反応させた各αFVH濃度における電流応答値をプロットした結果を図4に示す。
 図3-1、4-1より、3.75mMのmPMSを添加した系においては、CFP-T7よりもCFP-T7-280Qの方が、精度よくαFVHを定量できることが示された。また、図3-2、4-2より、7.5mMのmPMSを添加した系においても、CFP-T7よりもCFP-T7-280Qの方が、精度よくαFVHを定量できることが示された。
 本明細書で引用した全ての刊行物、特許および特許出願をそのまま参考として本明細書にとり入れるものとする。
配列の簡単な説明
配列番号1 CFP-T7のアミノ酸配列
配列番号2 CFP-T7の遺伝子配列
配列番号3 Eupenicillium terrenum由来のアマドリアーゼ
配列番号4 Pyrenochaeta sp.由来のケトアミンオキシダーゼ
配列番号5 Arthrinium sp.由来のケトアミンオキシダーゼ
配列番号6 Curvularia clavata由来のケトアミンオキシダーゼ
配列番号7 Neocosmospora vasinfecta由来のケトアミンオキシダーゼ
配列番号8 Cryptococcus neoformans由来のフルクトシルアミノ酸オキシダーゼ
配列番号9 Phaeosphaeria nodorum由来のフルクトシルペプチドオキシダーゼ
配列番号10 Aspergillus nidulans由来のフルクトシルアミノ酸オキシダーゼ
配列番号11 Emericella nidulans由来のフルクトシルペプチドオキシダーゼ
配列番号12 Ulocladium sp.由来のフルクトシルアミノ酸オキシダーゼ
配列番号13 Penicillium janthinellum由来のフルクトシルアミノ酸オキシダーゼ
配列番号14 C280Q-Fw
配列番号15 C280Q-Rv
配列番号16 C280S-Fw
配列番号17 C280D-Fw
配列番号18 C280E-Fw
配列番号19 C280M-Fw
配列番号20 C280K-Fw
配列番号21 C280R-Fw
配列番号22 C280V-Fw
配列番号23 C280N-Fw
配列番号24 F267Y-Fw
配列番号25 F267X-Rv
配列番号26 F269Y-Fw
配列番号27 F269X-Rv
配列番号28 D54N-Fw
配列番号29 D54X-Rv
配列番号30 D54A-Fw
配列番号31 Y241E-Fw
配列番号32 Y241X-Rv
配列番号33 Y241Q-Fw
配列番号34 Y241K-Fw
配列番号35 CFP-T7 C280X r
配列番号36 CFP-T7 C280H f
配列番号37 CFP-T7 C280T f
配列番号38 CFP-T7 F267X r
配列番号39 CFP-T7 F267L f
配列番号40 CFP-T7 F267M f
配列番号41 CFP-T7 F269X r
配列番号42 CFP-T7 F269L f
配列番号43 CFP-T7 F269M f
配列番号44 EFP-T5 protein
配列番号45 EFP-T5 gene
配列番号46 EFP C280X r
配列番号47 EFP C280Q f
配列番号48 EFP C280S f
配列番号49 PnFX gene
配列番号50 Pn C276X r
配列番号51 Pn C276Q f
配列番号52 Pn C276S r
配列番号53 AnFX protein
配列番号54 AnFX gene
配列番号55 An C280X r
配列番号56 An C280Q f
配列番号57 An C280S f
配列番号58 CcFX gene
配列番号59 Cc C278X r
配列番号60 Cc C278Q f
配列番号61 Cc C278S f
配列番号62 Cc F265X r
配列番号63 Cc F265L f
配列番号64 Cc F265M f
配列番号65 Cc F267X r
配列番号66 Cc F267L f
配列番号67 En42FX protein
配列番号68 En42FX gene
配列番号69 In-fusion En42X insert
配列番号70 In-fusion En42X insert
配列番号71 In-fusion pET22b vector
配列番号72 In-fusion pET22b vector
配列番号73 En C280X r
配列番号74 En C280Q f
配列番号75 En C280S f
配列番号76 En F267X r
配列番号77 En F267L f
配列番号78 En F267M f
配列番号79 En I269X r
配列番号80 En I269L f
配列番号81 En I269M f
配列番号82 Cc F267M f

Claims (16)

  1.  デヒドロゲナーゼ活性に対するオキシダーゼ活性の割合(OX/DH)が、改変前のアマドリアーゼと比較して低減している改変アマドリアーゼであって、
    (i) アマドリアーゼのアミノ酸配列を、配列番号1記載のアミノ酸配列とアライメントしたときに、配列番号1に示すアミノ酸配列における280位、267位、269位、54位及び241位からなる群より選択される位置に対応する位置の1以上のアミノ酸が置換されており、かつデヒドロゲナーゼ活性を有するアマドリアーゼ、
    (ii) 前記(i)のアマドリアーゼにおいて、配列番号1に示すアミノ酸配列における280位、267位、269位、54位及び241位に対応する位置以外の位置における1又は数個のアミノ酸が置換、欠失又は付加されたアミノ酸配列からなり、かつデヒドロゲナーゼ活性を有するアマドリアーゼ、
    (iii) 前記(i)のアマドリアーゼにおいて、当該アマドリアーゼの全長アミノ酸配列が配列番号1、配列番号3、配列番号6、配列番号9、配列番号10、配列番号11、配列番号44、配列番号53又は配列番号67のアミノ酸配列と70%以上の配列同一性を有し、配列番号1の第10位~32位、36~41位、49~52位、54~58位、63~65位、73~75位、84~86位、88~90位、120~122位、145~150位、156~162位、164~170位、180~182位、202~205位、207~211位、214~224位、227~230位、236~241位、243~248位、258~261位、266~268位、270~273位、275~287位、295~297位、306~308位、310~316位、324~329位、332~334位、341~344位、346~355位、357~363位、370~383位、385~387位、389~394位、405~410位及び423~431位のアミノ酸配列からなる相同性領域におけるアミノ酸配列と当該アマドリアーゼの対応する位置の相同性領域におけるアミノ酸配列とが90%以上の配列同一性を有し、かつデヒドロゲナーゼ活性を有するアマドリアーゼ、或いは
    (iv) 前記(i)のアマドリアーゼにおいて、当該アマドリアーゼの全長アミノ酸配列が配列番号1、配列番号3、配列番号6、配列番号9、配列番号10、配列番号11、配列番号44、配列番号53又は配列番号67のアミノ酸配列と80%以上の配列同一性を有し、かつデヒドロゲナーゼ活性を有するアマドリアーゼ。
  2.  配列番号1に示すアミノ酸配列における280位に対応する位置のアミノ酸が、グルタミン、セリン、トレオニン及びアスパラギンからなる群より選択される極性アミノ酸、アスパラギン酸、グルタミン酸、リシン、アルギニン、及びヒスチジンからなる群より選択される荷電アミノ酸、又はメチオニン、プロリン、フェニルアラニン、チロシン、及びトリプトファンからなる群より選択されるアミノ酸に置換されている、
     配列番号1に示すアミノ酸配列における267位に対応する位置のアミノ酸が、メチオニン、ロイシン、チロシン、イソロイシン、トリプトファン、バリン又はアラニンに置換されている、
     配列番号1に示すアミノ酸配列における269位に対応する位置のアミノ酸が、メチオニン、ロイシン、チロシン、イソロイシン、トリプトファン、バリン又はアラニンに置換されている、
     配列番号1に示すアミノ酸配列における54位に対応する位置のアミノ酸が、アスパラギン、アラニン、グルタミン、ヒスチジン、グリシン又はバリンからなる群より選択されるアミノ酸に置換されている、或いは
     配列番号1に示すアミノ酸配列における241位に対応する位置のアミノ酸が、グルタミン、リシン、グルタミン酸、アスパラギン、アルギニン、アスパラギン酸又はヒスチジンからなる群より選択されるアミノ酸に置換されている、請求項1に記載のアマドリアーゼ。
  3.  配列番号1に示すアミノ酸配列における280位に対応する位置のアミノ酸が、グルタミン、セリン、ヒスチジン、トレオニン、アスパラギン、アスパラギン酸、グルタミン酸、リシン、アルギニン又はメチオニンに置換されている、
     配列番号1に示すアミノ酸配列における267位に対応する位置のアミノ酸が、メチオニン、ロイシン、チロシン、イソロイシン又はトリプトファンに置換されている、
     配列番号1に示すアミノ酸配列における269位に対応する位置のアミノ酸が、メチオニン、ロイシン、チロシン、イソロイシン又はトリプトファンに置換されている、
     配列番号1に示すアミノ酸配列における54位に対応する位置のアミノ酸が、アスパラギン又はアラニンに置換されている、或いは
     配列番号1に示すアミノ酸配列における241位に対応する位置のアミノ酸が、グルタミン、グルタミン酸又はリシンに置換されている、請求項2に記載のアマドリアーゼ。
  4.  配列番号1に示すアミノ酸配列における280位に対応する位置のアミノ酸が、グルタミン、セリン、ヒスチジン、トレオニン、アスパラギン、アスパラギン酸、グルタミン酸、リシン、アルギニン又はメチオニンに置換されている、
     配列番号1に示すアミノ酸配列における267位に対応する位置のアミノ酸が、メチオニン、ロイシン又はチロシンに置換されている、
     配列番号1に示すアミノ酸配列における269位に対応する位置のアミノ酸が、メチオニン、ロイシン又はチロシンに置換されている、
     配列番号1に示すアミノ酸配列における54位に対応する位置のアミノ酸が、アスパラギン又はアラニンに置換されている、或いは
     配列番号1に示すアミノ酸配列における241位に対応する位置のアミノ酸が、グルタミン、グルタミン酸又はリシンに置換されている、請求項3に記載のアマドリアーゼ。
  5.  配列番号1に示すアミノ酸配列における280位に対応する位置のアミノ酸が、グルタミン、又はセリンに置換されている、
     配列番号1に示すアミノ酸配列における267位に対応する位置のアミノ酸が、メチオニン、ロイシン又はチロシンに置換されている、
     配列番号1に示すアミノ酸配列における269位に対応する位置のアミノ酸が、メチオニン、ロイシン又はチロシンに置換されている、或いは
     配列番号1に示すアミノ酸配列における241位に対応する位置のアミノ酸が、グルタミンに置換されている、請求項3に記載のアマドリアーゼ。
  6.  配列番号1に示すアミノ酸配列における280位に対応する位置のアミノ酸が、グルタミン又はヒスチジンに置換されている、
     配列番号1に示すアミノ酸配列における267位に対応する位置のアミノ酸が、メチオニン又はロイシンに置換されている、或いは
     配列番号1に示すアミノ酸配列における269位に対応する位置のアミノ酸が、メチオニン又はロイシンに置換されている、請求項3に記載のアマドリアーゼ。
  7.  配列番号1に示すアミノ酸配列における280位に対応する位置のアミノ酸が、グルタミンに置換されている、
     配列番号1に示すアミノ酸配列における267位に対応する位置のアミノ酸が、メチオニン又はロイシンに置換されている、或いは
     配列番号1に示すアミノ酸配列における269位に対応する位置のアミノ酸が、メチオニン又はロイシンに置換されている、請求項3に記載のアマドリアーゼ。
  8.  デヒドロゲナーゼ活性に対するオキシダーゼ活性の割合(OX/DH)が、改変前のアマドリアーゼ(100%)と比較して80%未満に低減されている、請求項1~7のいずれか1項に記載のアマドリアーゼ。
  9.  前記アマドリアーゼが、コニオカエタ(Coniochaeta)属、ユーペニシリウム(Eupenicillium)属、ピレノケータ(Pyrenochaeta)属、アルスリニウム(Arthrinium)属、カーブラリア(Curvularia)属、ネオコスモスポラ(Neocosmospora)属、クリプトコッカス(Cryptococcus)属、フェオスフェリア(Phaeosphaeria)属、アスペルギルス(Aspergillus)属、エメリセラ(Emericella)属、ウロクラディウム(Ulocladium)属、ペニシリウム(Penicillium)属、フザリウム(Fusarium)属、アカエトミエラ(Achaetomiella)属、アカエトミウム(Achaetomium)属、シエラビア(Thielavia)属、カエトミウム(Chaetomium)属、ゲラシノスポラ(Gelasinospora)属、ミクロアスカス(Microascus)属、レプトスフェリア(Leptosphaeria)属、オフィオボラス(Ophiobolus)属、プレオスポラ(Pleospora)属、コニオケチジウム(Coniochaetidium)属、ピチア(Pichia)属、デバリオマイセス(Debaryomyces)属、コリネバクテリウム(Corynebacterium)属、アグロバクテリウム(Agrobacterium)属、又はアルスロバクター(Arthrobacter)属由来である、請求項1~8のいずれか1項に記載のアマドリアーゼ。
  10.  配列番号1、配列番号3、配列番号4、配列番号5、配列番号6、配列番号7、配列番号8、配列番号9、配列番号10、配列番号11、配列番号12、配列番号13、配列番号44、配列番号53又は配列番号67に示すアミノ酸配列を有し、請求項1~7のいずれかに規定したアミノ酸置換を有する、請求項1~9のいずれか1項に記載のアマドリアーゼ。
  11.  さらに、アマドリアーゼのアミノ酸配列を、配列番号1記載のアミノ酸配列とアライメントしたときに、配列番号1に示すアミノ酸配列における以下からなる群より選択される位置に対応する位置にアミノ酸置換又は欠失を1以上有し、かつデヒドロゲナーゼ活性を有する、請求項1~10のいずれか1項に記載のアマドリアーゼ、
    (A)62位、63位、102位、106位、110位、113位、355位、419位、68位及び356位、
    (B)262位、257位、249位、253位、337位、340位、232位、129位、132位、133位、44位、256位、231位及び81位、並びに
    (C)カルボキシル末端の435位、436位及び437位の3アミノ酸残基の欠失。
  12.  さらに、アマドリアーゼのアミノ酸配列を、配列番号1記載のアミノ酸配列とアライメントしたときに、配列番号1に示すアミノ酸配列における以下からなる群より選択される位置に対応する位置のアミノ酸の1以上が、以下からなる群より選択されるアミノ酸に置換されており又は欠失しており、かつデヒドロゲナーゼ活性を有する、請求項11に記載のアマドリアーゼ、
    (A)62位のアルギニンに対応する位置のアミノ酸の、アラニン、アスパラギン又はアスパラギン酸への置換、
    63位のロイシンに対応する位置のアミノ酸の、ヒスチジン又はアラニンへの置換、
    102位のグルタミン酸に対応する位置のアミノ酸の、リジンへの置換 
    106位のアスパラギン酸に対応する位置のアミノ酸の、アラニン、リジン、又はアルギニンへの置換、
    110位のグルタミンに対応する位置のアミノ酸のロイシン又はチロシンへの置換、
    113位のアラニンに対応する位置のアミノ酸のリジン又はアルギニンへの置換、
    355位のアラニンに対応する位置のアミノ酸のセリンへの置換、
    419位のアラニンに対応する位置のアミノ酸のリジンへの置換、
    68位のアスパラギン酸に対応する位置のアミノ酸のアスパラギンへの置換、
    356位のアラニンに対応する位置のアミノ酸のトレオニンへの置換、
    (B)262位のアスパラギンに対応する位置のアミノ酸のヒスチジンへの置換、
    257位のバリンに対応する位置のアミノ酸のシステイン、セリン、トレオニンへの置換、
    249位のグルタミン酸に対応する位置のアミノ酸のリジン、アルギニンへの置換、
    253位のグルタミン酸に対応する位置のアミノ酸のリジン、アルギニンへの置換、
    337位のグルタミンに対応する位置のアミノ酸のリジン、アルギニンへの置換、
    340位のグルタミン酸に対応する位置のアミノ酸のプロリンへの置換、
    232位のアスパラギン酸に対応する位置のアミノ酸のリジン、アルギニンへの置換、
    129位のアスパラギン酸に対応する位置のアミノ酸のリジン、アルギニンへの置換、
    132位のアスパラギン酸に対応する位置のアミノ酸のリジン、アルギニンへの置換、
    133位のグルタミン酸に対応する位置のアミノ酸のアラニン、メチオニン、リジン、アルギニンへの置換、
    44位のグルタミン酸に対応する位置のアミノ酸のプロリンへの置換、
    256位のグリシンに対応する位置のアミノ酸のリジン、アルギニンへの置換、
    231位のグルタミン酸に対応する位置のアミノ酸のリジン、アルギニンへの置換、
    81位のグルタミン酸に対応する位置のアミノ酸のリジン、アルギニンへの置換、並びに
    (C)435位のプロリン、436位のリジン及び437位のロイシンに対応する位置のカルボキシル末端3アミノ酸の欠失。
  13.  請求項1~12のいずれか1項に記載のアマドリアーゼを含むHbA1c測定試薬キット。
  14.  請求項1~12のいずれか1項に記載のアマドリアーゼを含む酵素電極。
  15.  請求項14に記載の酵素電極を作用電極として有する酵素センサー。
  16.  請求項1~12のいずれか1項に記載のアマドリアーゼ又は請求項14に記載の酵素電極若しくは請求項15に記載の酵素センサー及び電子メディエーターを用いる、HbA1cの測定方法。
PCT/JP2015/080014 2014-10-24 2015-10-23 デヒドロゲナーゼ活性の向上したアマドリアーゼ WO2016063984A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP20195853.5A EP3786291B1 (en) 2014-10-24 2015-10-23 Amadoriase having enhanced dehydrogenase activity
EP15852718.4A EP3211079B1 (en) 2014-10-24 2015-10-23 Amadoriase having enhanced dehydrogenase activity
KR1020177009797A KR102159807B1 (ko) 2014-10-24 2015-10-23 디히드로게나아제 활성이 향상된 아마도리아제
CN201580057464.9A CN107148475A (zh) 2014-10-24 2015-10-23 脱氢酶活性提高的阿马多里酶
JP2016555413A JP6980383B2 (ja) 2014-10-24 2015-10-23 デヒドロゲナーゼ活性の向上したアマドリアーゼ
US15/521,104 US11499143B2 (en) 2014-10-24 2015-10-23 Amadoriase having enhanced dehydrogenase activity

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-217405 2014-10-24
JP2014217405 2014-10-24

Publications (1)

Publication Number Publication Date
WO2016063984A1 true WO2016063984A1 (ja) 2016-04-28

Family

ID=55761014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/080014 WO2016063984A1 (ja) 2014-10-24 2015-10-23 デヒドロゲナーゼ活性の向上したアマドリアーゼ

Country Status (6)

Country Link
US (1) US11499143B2 (ja)
EP (2) EP3211079B1 (ja)
JP (1) JP6980383B2 (ja)
KR (1) KR102159807B1 (ja)
CN (1) CN107148475A (ja)
WO (1) WO2016063984A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017183717A1 (ja) * 2016-04-22 2017-10-26 キッコーマン株式会社 HbA1cデヒドロゲナーゼ
WO2019045052A1 (ja) 2017-08-31 2019-03-07 キッコーマン株式会社 糖化ヘモグロビンオキシダーゼ改変体及び測定方法
EP3461907A1 (en) 2017-10-02 2019-04-03 ARKRAY, Inc. Measurement of glycoprotein
WO2020003752A1 (ja) * 2018-06-27 2020-01-02 東洋紡株式会社 フルクトシルバリルヒスチジンオキシダーゼ活性を有するタンパク質

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003235585A (ja) * 2001-09-04 2003-08-26 Kikkoman Corp 新規なフルクトシルペプチドオキシダーゼ
WO2007125779A1 (ja) * 2006-04-25 2007-11-08 Kikkoman Corporation 熱安定性に優れた真核型アマドリアーゼ、その遺伝子及び組換え体dna、並びに熱安定性に優れた真核型アマドリアーゼの製造法
WO2010041715A1 (ja) * 2008-10-09 2010-04-15 協和メデックス株式会社 新規フルクトシルペプチドオキシダーゼ
JP2013500729A (ja) * 2009-08-03 2013-01-10 エフ ホフマン−ラ ロッシュ アクチェン ゲゼルシャフト フルクトシルアミノ酸オキシダーゼ
WO2013100006A1 (ja) * 2011-12-28 2013-07-04 キッコーマン株式会社 熱安定性が向上したアマドリアーゼ、その遺伝子および組換えdnaならびに熱安定性が向上したアマドリアーゼの製造法
WO2013162035A1 (ja) * 2012-04-27 2013-10-31 キッコーマン株式会社 フルクトシルヘキサペプチドに作用する改変型アマドリアーゼ
WO2015005258A1 (ja) * 2013-07-09 2015-01-15 協和メデックス株式会社 糖化ヘキサペプチドオキシダーゼとその利用
WO2015020200A1 (ja) * 2013-08-09 2015-02-12 キッコーマン株式会社 改変型アマドリアーゼ及びその製造法、並びにアマドリアーゼの界面活性剤耐性向上剤及びこれを用いたHbA1c測定用組成物

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61280297A (ja) 1985-06-04 1986-12-10 Noda Sangyo Kagaku Kenkyusho アマドリ化合物の定量法及びその定量用試薬
JPH01127895A (ja) 1987-11-04 1989-05-19 Akutoronikusu Kk 閉ループ管型熱伝達装置
JPH0533997A (ja) 1991-07-26 1993-02-09 Nippondenso Co Ltd フイルムドアユニツト
GB9116315D0 (en) 1991-07-29 1991-09-11 Genzyme Ltd Assay
WO1997013872A1 (fr) 1995-10-12 1997-04-17 Kyoto Daiichi Kagaku Co., Ltd. Procede pour doser les composes d'amadori
JP3949854B2 (ja) 1999-10-01 2007-07-25 キッコーマン株式会社 糖化蛋白質の測定方法
JP2004104203A (ja) 2002-09-05 2004-04-02 Toshiba Corp 固体撮像装置
JP4227820B2 (ja) 2003-03-12 2009-02-18 旭化成ファーマ株式会社 新規な酵素
JP4248900B2 (ja) 2003-03-14 2009-04-02 イチビキ株式会社 新規なフルクトシルアミンオキシダーゼをコードする遺伝子及びそれを用いての該フルクトシルアミンオキシダーゼの製造方法
JP4504923B2 (ja) 2003-05-21 2010-07-14 旭化成ファーマ株式会社 ヘモグロビンA1c測定法およびそれに用いる酵素とその製造法
JP4544517B2 (ja) 2003-07-15 2010-09-15 三菱レイヨン株式会社 光源装置
ATE509119T1 (de) 2003-11-19 2011-05-15 Sekisui Medical Co Ltd Verfahren zum testen von glykosyliertem protein
WO2009140343A1 (en) * 2008-05-13 2009-11-19 General Atomics Electrochemical biosensor for direct determination of percentage of glycated hemoglobin
TWI405472B (zh) 2008-07-31 2013-08-11 Htc Corp 電子裝置及其電聲換能器
JP5350762B2 (ja) 2008-08-04 2013-11-27 東洋紡株式会社 フルクトシルアミノ酸オキシダーゼ、およびその利用法
JP5243878B2 (ja) 2008-08-04 2013-07-24 東洋紡株式会社 フルクトシルバリルヒスチジン測定用酵素、およびその利用法
JP5075757B2 (ja) 2008-08-05 2012-11-21 オリンパス株式会社 画像処理装置、画像処理プログラム、画像処理方法、および電子機器
US8993255B2 (en) 2008-10-10 2015-03-31 Toyo Boseki Kabushiki Kaisha Protein having fructosyl valyl histidine oxidase activity, modified protein, and use of the protein or the modified protein
JP2011015325A (ja) 2009-07-06 2011-01-20 Mitsubishi Electric Corp 監視画像記録装置
EP2281900A1 (en) 2009-08-03 2011-02-09 Roche Diagnostics GmbH Fructosyl peptidyl oxidase and sensor for assaying a glycated protein
JP5927771B2 (ja) 2010-04-09 2016-06-01 東洋紡株式会社 ヘモグロビンA1cの測定方法
WO2012018094A1 (ja) * 2010-08-06 2012-02-09 キッコーマン株式会社 基質特異性が改変されたアマドリアーゼ
US20130269351A1 (en) 2012-04-17 2013-10-17 General Electric Company Micromixer assembly of a turbine system and method of assembly
JP2014217405A (ja) 2013-04-30 2014-11-20 東海工業ミシン株式会社 多針ミシンの上糸掛け装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003235585A (ja) * 2001-09-04 2003-08-26 Kikkoman Corp 新規なフルクトシルペプチドオキシダーゼ
WO2007125779A1 (ja) * 2006-04-25 2007-11-08 Kikkoman Corporation 熱安定性に優れた真核型アマドリアーゼ、その遺伝子及び組換え体dna、並びに熱安定性に優れた真核型アマドリアーゼの製造法
WO2010041715A1 (ja) * 2008-10-09 2010-04-15 協和メデックス株式会社 新規フルクトシルペプチドオキシダーゼ
JP2013500729A (ja) * 2009-08-03 2013-01-10 エフ ホフマン−ラ ロッシュ アクチェン ゲゼルシャフト フルクトシルアミノ酸オキシダーゼ
WO2013100006A1 (ja) * 2011-12-28 2013-07-04 キッコーマン株式会社 熱安定性が向上したアマドリアーゼ、その遺伝子および組換えdnaならびに熱安定性が向上したアマドリアーゼの製造法
WO2013162035A1 (ja) * 2012-04-27 2013-10-31 キッコーマン株式会社 フルクトシルヘキサペプチドに作用する改変型アマドリアーゼ
WO2015005258A1 (ja) * 2013-07-09 2015-01-15 協和メデックス株式会社 糖化ヘキサペプチドオキシダーゼとその利用
WO2015020200A1 (ja) * 2013-08-09 2015-02-12 キッコーマン株式会社 改変型アマドリアーゼ及びその製造法、並びにアマドリアーゼの界面活性剤耐性向上剤及びこれを用いたHbA1c測定用組成物

Non-Patent Citations (18)

* Cited by examiner, † Cited by third party
Title
"Fructosyl amine:oxygen oxidoreductase", GENPEPT, ACCESSION ID Q4WIF5, 13 September 2005 (2005-09-13), Retrieved from the Internet <URL:http://www.ncbi.nlm.nih.qov/protein/Q4WIF5?report=qirevhist> *
ATSUSHI ICHIYANAGI: "Tonyobyo Shindan'yo Koso no X Sen Kessho Kozo Kaiseki Oyobi Kishitsu Tokuisei no Kairyo", ABSTRACTS OF ANNUAL MEETING, JAPANESE SOCIETY OF ENZYME ENGINEERING, vol. 70, 2013, pages 8 - 10, XP009502500 *
CHAIYEN, P. ET AL.: "The enigmatic reaction of flavins with oxygen", TREND BIOCHEM. SCI., vol. 37, no. 9, 2012, pages 373 - 380, XP055275207 *
CHEN, L. ET AL.: "The Binding and Release of Oxygen and Hydrogen Peroxide are Directed by a hydrophobic Tunnnel in Cholesterol Oxidase", BIOCHEMISTRY, vol. 47, 2008, pages 5368 - 5377, XP055275209 *
COLLARD, F. ET AL.: "Crystal Structure of the Deglycating Enzyme Fructosamine Oxidase(Amadoriase II", J. BIOL. CHEM., vol. 283, no. 40, 2008, pages 27007 - 27016, XP055275211 *
FERRI, S. ET AL.: "Engineering Fructosyl Peptide Oxidase to Improve Activity toward the Fructosyl Hexapeptide Standard for HbAlc Measurement", MOL. BIOTECHNOL., vol. 54, 2013, pages 939 - 943, XP055174656 *
FERRI, S. ET AL.: "Tuning Fructosyl peptidyl Oxidase into Dehydrogenase and Its Application for the Construction of an Enzyme Electrode", ECS TRANSACTIONS, vol. 35, no. 7, 2011, pages 113 - 116, XP055275198 *
GAN, W. ET AL.: "Structural basis of the substrate specificity of the FPOD/FAOD family revealed by fructosyl peptide oxidase from Eupenicillium terrenum", ACTA CRYSTALLOGR. F STRUCT. BIOL. COMMUN., vol. 71, April 2015 (2015-04-01), pages 381 - 387, XP055435049 *
GOMI, K. ET AL.: "Development of novel fructosyl peptide oxidases and their applications for the clinical diagnosis for diabetes", JOURNAL OF THE SOCIETY FOR BIOSCIENCE AND BIOENGINEERING, vol. 92, no. 2, February 2014 (2014-02-01), Japan, pages 62 - 68, XP009502394 *
HORAGUCHI, Y. ET AL.: "Construction of Mutant Glucose Oxidases with Increased Dye-Mediated Dehydrogenase Activity", INT. J. MOL. SCI., vol. 13, 2012, pages 14149 - 14157, XP002696020 *
KIM, S. ET AL.: "Construction of engineered fructosyl peptidyl oxidase for enzyme sensor applications under normal atmospheric conditions", BIOTECHNOL. LETT., vol. 34, 2012, pages 491 - 497, XP035011922 *
KIM, S. ET AL.: "Engineering of dye-mediated dehydrogenase property of fluctosyl amino acid oxidases by site directed mutagenesis studies of its putative proton relay system", BIOTECHNOL. LETT., vol. 32, 2010, pages 1123 - 1129, XP019813449 *
KIM, S. ET AL.: "Motif-based search for a novel Fructosyl Peptide Oxidase from Genome Databases", BIOTECHNOL. BIOENG., vol. 106, no. 3, 2010, pages 358 - 366, XP055275195 *
KOJIMA, K. ET AL.: "Mutational analysis of the oxgen-binding site of cholesterol oxidase and its impact on dye-mediated dehydrogenase activity", J. MOL. CATAL. B-ENZYME, vol. 88, 2013, pages 41 - 46, XP028973547 *
MASAKARI, Y. ET AL.: "Development of thermostable fructosyl peptide oxidase", PROCEEDINGS ( ONLINE ) OF THE ANNUAL MEETING OF JAPAN SOCIETY FOR BIOSCIENCE, BIOTECHNOLOGY, AND AGROCHEMISTRY, 5 March 2014 (2014-03-05), XP009502406 *
NIBE, E. ET AL.: "Tuning fructosyl amino acid/fructosyl peptidyl oxidases into dehydrogenases", PACIFICHEM 2010 ONLINE TECHNICAL PROGRAM, 2010, XP009502450, Retrieved from the Internet <URL:http://pacifichem.abstractcentral.com/planner.jsp> [retrieved on 20151113] *
NIERMAN, W.C. ET AL.: "Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus", NATURE, vol. 438, 2005, pages 1151 - 1156, XP002415975 *
WU, X. ET AL.: "Cloning of Amadoriase I isoenzyme from Aspergillus sp.: Evidence of FAD Covalently Linked to Cys342", BIOCHEMISTRY, vol. 39, 2000, pages 1515 - 1521, XP055275206 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017183717A1 (ja) * 2016-04-22 2017-10-26 キッコーマン株式会社 HbA1cデヒドロゲナーゼ
US11111517B2 (en) 2016-04-22 2021-09-07 Kikkoman Corporation HbA1c dehydrogenase
WO2019045052A1 (ja) 2017-08-31 2019-03-07 キッコーマン株式会社 糖化ヘモグロビンオキシダーゼ改変体及び測定方法
EP3461907A1 (en) 2017-10-02 2019-04-03 ARKRAY, Inc. Measurement of glycoprotein
US10989714B2 (en) 2017-10-02 2021-04-27 Arkray, Inc. Measurement of glycoprotein
WO2020003752A1 (ja) * 2018-06-27 2020-01-02 東洋紡株式会社 フルクトシルバリルヒスチジンオキシダーゼ活性を有するタンパク質
JPWO2020003752A1 (ja) * 2018-06-27 2021-07-15 東洋紡株式会社 フルクトシルバリルヒスチジンオキシダーゼ活性を有するタンパク質
JP7352838B2 (ja) 2018-06-27 2023-09-29 東洋紡株式会社 フルクトシルバリルヒスチジンオキシダーゼ活性を有するタンパク質

Also Published As

Publication number Publication date
JP6980383B2 (ja) 2021-12-15
KR20170054475A (ko) 2017-05-17
US11499143B2 (en) 2022-11-15
US20170355967A1 (en) 2017-12-14
EP3211079A4 (en) 2018-07-04
JPWO2016063984A1 (ja) 2017-08-03
EP3211079A1 (en) 2017-08-30
KR102159807B1 (ko) 2020-09-25
EP3786291B1 (en) 2023-10-18
EP3786291A1 (en) 2021-03-03
EP3211079B1 (en) 2020-12-02
CN107148475A (zh) 2017-09-08

Similar Documents

Publication Publication Date Title
US8999691B2 (en) Glucose dehydrogenase
JP6538101B2 (ja) 基質特異性が改変されたアマドリアーゼ
JP5243878B2 (ja) フルクトシルバリルヒスチジン測定用酵素、およびその利用法
WO2013162035A1 (ja) フルクトシルヘキサペプチドに作用する改変型アマドリアーゼ
JP2022081510A (ja) HbA1cデヒドロゲナーゼ
WO2016063984A1 (ja) デヒドロゲナーゼ活性の向上したアマドリアーゼ
JP7084867B2 (ja) フラビン結合型グルコースデヒドロゲナーゼ改変体
KR101766522B1 (ko) 포도당 탈수소 효소
JP2010104278A (ja) フルクトシルアミノ酸測定用酵素、およびその利用法
JP5234474B1 (ja) 新規l−アミノ酸オキシダーゼ、l−リジンの測定方法、キット及び酵素センサ
JP5216889B2 (ja) 新規l−アミノ酸オキシダーゼ、l−リジンの測定方法、キット及び酵素センサー
WO2012043601A1 (ja) アマドリアーゼ改変体
JP6764219B2 (ja) グッド緩衝液に対して安定なアマドリアーゼ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15852718

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016555413

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177009797

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15521104

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015852718

Country of ref document: EP