WO2016052748A1 - ポリカーボネート用およびポリアリレート用流動性向上剤、ポリカーボネート樹脂組成物、ポリアリレート樹脂組成物、並びにその成形品 - Google Patents
ポリカーボネート用およびポリアリレート用流動性向上剤、ポリカーボネート樹脂組成物、ポリアリレート樹脂組成物、並びにその成形品 Download PDFInfo
- Publication number
- WO2016052748A1 WO2016052748A1 PCT/JP2015/078210 JP2015078210W WO2016052748A1 WO 2016052748 A1 WO2016052748 A1 WO 2016052748A1 JP 2015078210 W JP2015078210 W JP 2015078210W WO 2016052748 A1 WO2016052748 A1 WO 2016052748A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- component
- polyester
- fluidity improver
- group
- polyarylate
- Prior art date
Links
- 0 Oc1ccc(*c(cc2)ccc2O)cc1 Chemical compound Oc1ccc(*c(cc2)ccc2O)cc1 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/02—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
- C08G63/12—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
- C08G63/16—Dicarboxylic acids and dihydroxy compounds
- C08G63/18—Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
- C08G63/19—Hydroxy compounds containing aromatic rings
- C08G63/193—Hydroxy compounds containing aromatic rings containing two or more aromatic rings
- C08G63/195—Bisphenol A
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
- C08L67/02—Polyesters derived from dicarboxylic acids and dihydroxy compounds
- C08L67/03—Polyesters derived from dicarboxylic acids and dihydroxy compounds the dicarboxylic acids and dihydroxy compounds having the carboxyl- and the hydroxy groups directly linked to aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/02—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
- C08G63/12—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
- C08G63/16—Dicarboxylic acids and dihydroxy compounds
- C08G63/18—Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
- C08G63/19—Hydroxy compounds containing aromatic rings
- C08G63/193—Hydroxy compounds containing aromatic rings containing two or more aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/13—Phenols; Phenolates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/13—Phenols; Phenolates
- C08K5/134—Phenols containing ester groups
- C08K5/1345—Carboxylic esters of phenolcarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/49—Phosphorus-containing compounds
- C08K5/51—Phosphorus bound to oxygen
- C08K5/52—Phosphorus bound to oxygen only
- C08K5/524—Esters of phosphorous acids, e.g. of H3PO3
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/49—Phosphorus-containing compounds
- C08K5/51—Phosphorus bound to oxygen
- C08K5/52—Phosphorus bound to oxygen only
- C08K5/527—Cyclic esters
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L67/00—Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
- C08L67/02—Polyesters derived from dicarboxylic acids and dihydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L69/00—Compositions of polycarbonates; Compositions of derivatives of polycarbonates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/0008—Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
- C08K5/005—Stabilisers against oxidation, heat, light, ozone
Definitions
- the present invention allows flow during molding without impairing the original properties (transparency, impact resistance, high rigidity, mechanical strength, surface peel resistance, heat resistance, chemical resistance, etc.) of polycarbonate resin and polyarylate resin.
- the present invention relates to a fluidity improver for improving the fluidity, a high fluidity polycarbonate resin composition and a polyarylate resin composition containing the same, and a molded article thereof.
- Polycarbonate resins and polyarylate resins have excellent mechanical and thermal properties, so OA (office automation) equipment, information / communication equipment, electronic / electric equipment, home appliances, automotive components, building materials It is widely used industrially. However, since these resins have a high melt viscosity, they have a drawback of poor flowability and poor moldability.
- Patent Document 1 a method of reducing the molecular weight of the aromatic polycarbonate resin itself is well known.
- Patent Document 1 a method of reducing the molecular weight of the aromatic polycarbonate resin itself is well known.
- the low molecular weight polycarbonate resin has a high temperature range that changes from ductile fracture to brittle fracture due to low molecular weight, so the impact strength significantly decreases even at room temperature, and the hydrolysis resistance also decreases. There is.
- Patent Document 2 describes that fluidity is improved by adding a pentaerythritol ester compound and reducing the molecular weight of the polycarbonate resin by transesterification. Although this method can improve the fluidity without significantly impairing various properties, the impact strength is not sufficiently maintained, and there is a concern about yellowing due to transesterification. Furthermore, aromatic polycarbonate is also used for aliphatic esters of phthalic acid such as dioctyl phthalate and dibutyl phthalate, which are commonly used as plasticizers, and phosphate esters such as tricresyl phosphate and diphenyl cresyl phosphate. Lack of affinity with resin, and mechanical and thermal properties are significantly reduced.
- Patent Document 3 describes that a specific bisphenol compound is added. However, since this method adds a low molecular compound, there is a concern that the additive bleeds out during molding.
- polymeric fluidity improvers examples include a method of blending a polycarbonate resin with a copolymer obtained by polymerizing several (meth) acrylic acid ester monomers and an aromatic alkenyl compound (patent References 4 and 5) and a method of blending a liquid crystalline resin (Patent Document 6) can be mentioned.
- Patent Document 6 a method of blending a liquid crystalline resin
- Patent Document 7 describes maintaining transparency and mechanical strength by using a copolyester carbonate resin as a fluidity improver for a polycarbonate resin.
- a copolyester carbonate resin as a fluidity improver for a polycarbonate resin.
- the blending amount of the copolyestercarbonate resin is 20 parts by weight or more.
- Patent Document 8 describes that the thermal conductivity of a general-purpose resin can be improved by adding a liquid crystalline thermoplastic resin in which mesogenic groups and spacers are alternately polycondensed to another general-purpose resin. .
- Patent Document 8 discloses that when the liquid crystalline thermoplastic resin is added to a polycarbonate resin or a polyarylate resin, the fluidity at the time of molding can be improved without deteriorating the transparency and mechanical properties of the resin. There is no mention of whether it can be done.
- Patent Document 9 describes liquid crystal resin particles composed of biphenol or bisphenol A and aliphatic dicarboxylic acid as a constituent of the toner composition, and the low melt viscosity of the liquid crystal resin is suitable for the toner composition. It is described that. However, Patent Document 9 has no description regarding whether or not the liquid crystalline resin can improve the fluidity during molding without impairing the transparency and mechanical properties of the polycarbonate resin or polyarylate resin.
- Japanese Patent Publication Japanese Patent Laid-Open No. 62-297319 (published on December 24, 1987)” International Publication No. 2012/068075 Pamphlet (May 24, 2012) Japanese Patent Publication “Japanese Patent Laid-Open No. 1-271456 (published on October 30, 1989)” Japanese Patent Publication “Japanese Laid-Open Patent Publication No. 2013-213153 (Released on October 17, 2013)” Japanese Patent Publication “Japanese Unexamined Patent Publication No. 2011-26593 (published on February 10, 2011)” Japanese Patent Publication “JP 2002-249656 A” (published on September 6, 2002) Japanese Patent Publication “Japanese Patent Laid-Open No. 4-275360 (published on September 30, 1992)” International Publication No. 2011/033815 Pamphlet (Published March 24, 2011) Japanese Patent Publication “Japanese Patent Laid-Open No. 61-69861 (published on April 10, 1986)”
- the present invention allows flow during molding without impairing the original properties of polycarbonate resin or polyarylate resin (transparency, impact resistance, high rigidity, mechanical strength, surface peel resistance, heat resistance, chemical resistance, etc.)
- An object of the present invention is to provide a fluidity improver for improving the property, a highly fluid polycarbonate resin composition and a polyarylate resin composition containing the same, and a molded product thereof.
- the present inventors have polycondensed a bisphenol component and an aliphatic dicarboxylic acid component, and optionally a biphenol component at a specific ratio as components for improving the fluidity of a polycarbonate resin or a polyarylate resin.
- a fluidity improver containing polyester and melt-kneading this fluidity improver with polycarbonate resin or polyarylate resin the useful properties inherent to polycarbonate resin and polyarylate resin (especially transparency and impact strength)
- the present inventors have found that the fluidity at the time of molding can be improved without impairing the present invention, and have completed the present invention. That is, the present invention is an invention shown in the following 1) to 11).
- X 5 to X 8 are the same or different and each represents a hydrogen atom, a halogen atom, or an alkyl group having 1 to 4 carbon atoms.
- Y represents a methylene group, an isopropylidene group, a cyclic group.
- R 1 represents a divalent linear substituent having 2 to 18 main chain atoms and optionally branched.
- a polyester obtained by polycondensation of a monomer containing the dicarboxylic acid component (C) represented by the formula (B): (C) 45: 55 to 55:45, and a flow rate improver for polycarbonate and polyarylate, wherein the content of the part derived from the component (B) and the component (C) in the polyester is 50 mol% or more.
- Biphenol component (A) represented by The following general formula (2)
- X 5 to X 8 are the same or different and each represents a hydrogen atom, a halogen atom, or an alkyl group having 1 to 4 carbon atoms.
- Y represents a methylene group, an isopropylidene group, a cyclic group.
- a polyester obtained by polycondensation of a monomer containing a dicarboxylic acid component (C) represented by: The molar ratio of the component (A) and the component (B) to the component (C) is ⁇ (A) + (B) ⁇ :( C) 45: 55 to 55:45,
- Biphenol component (A) represented by The following general formula (2)
- X 5 to X 8 are the same or different and each represents a hydrogen atom, a halogen atom, or an alkyl group having 1 to 4 carbon atoms.
- Y represents a methylene group, an isopropylidene group, a cyclic group.
- a polyester obtained by polycondensation of a dicarboxylic acid component (D) represented by: The molar ratio of the component (A) and the component (B) to the component (C) and the component (D) is ⁇ (A) + (B) ⁇ : ⁇ (C) + (D) ⁇ 45:55 55:45, The flow rate for polycarbonate and polyarylate, wherein the content of the component derived from the component (A
- a fluidity improver further comprising a phosphite antioxidant, wherein the content of the phosphite antioxidant contained in the fluidity improver is the weight of the polyester contained in the fluidity improver.
- the fluidity improver according to any one of 1) to 3), which is 0.005 to 5% by weight based on the weight.
- a flowability improver further comprising a hindered phenolic antioxidant, wherein the content of the hindered phenolic antioxidant contained in the flowability improver is contained in the flowability improver.
- the fluidity improver according to 4 which is 0.005 to 5% by weight based on the weight of
- the part corresponding to the R 1 portion consisting of the component (C) of the polyester is the number of main chain atoms is even, if it contains a moiety consisting of component (D) in the polyester,
- X 5 to X 8 are the same or different and each represents a hydrogen atom, a halogen atom, or an alkyl group having 1 to 4 carbon atoms.
- Y represents a methylene group, an isopropylidene group, a cyclic group.
- a polyester obtained by polycondensation of a monomer containing a dicarboxylic acid component (C) represented by: The molar ratio of the component (B) to the component (C) is (B) :( C) 45: 55 to 55:45, A fluidity improver in which the content of the part derived from the component (B) and the component (C) in the polyester is 50 mol% or more,
- a method for improving the fluidity of a polycarbonate or polyarylate, comprising a step of mixing the polycarbonate or polyarylate.
- the original properties (transparency, impact resistance, high rigidity, mechanical strength, surface peel resistance, heat resistance, chemical resistance, etc.) of the polycarbonate resin or polyarylate resin are impaired.
- the fluidity during the molding process of these resins can be improved.
- the original properties of the polycarbonate and polyarylate (transparency, impact resistance, high rigidity, mechanical strength, surface peel resistance, heat resistance, These fluidity can be improved without impairing chemical properties.
- the fluidity at the time of molding can be good, and a good molded product can be obtained.
- the molded product of the present invention has the original characteristics of polycarbonate resin and polyarylate resin, and is useful as, for example, a hard coat product, a glazing material, a light diffusion plate, an optical disk substrate, a light guide plate, and the like.
- the fluidity improver of the present invention contains a polyester obtained by polycondensing a bisphenol component and an aliphatic dicarboxylic acid component, and optionally a biphenol component at a specific ratio. Moreover, it is preferable that 90 mass% or more of the said polyester is contained with respect to the whole fluid improvement agent, in order to improve the fluidity
- the structure of the main chain of the polyester contained in the fluidity improver which is one form of the present invention, includes
- X 5 to X 8 are the same or different and each represents a hydrogen atom, a halogen atom, or an alkyl group having 1 to 4 carbon atoms.
- Y represents a methylene group, an isopropylidene group, a cyclic group.
- a bisphenol component (B) represented by: The following general formula (3) HOOC-R 1 -COOH (3) (In the formula, R 1 represents a divalent linear substituent having 2 to 18 main chain atoms and optionally branched.) In which the molar ratio of the component (B) to the component (C) is (B) :( C) 45: 55 to It is 55:45, The content rate of the part originating in the said (B) component and the said (C) component in the said polyester is 50 mol% or more, It is characterized by the above-mentioned.
- the structure of the main chain of the polyester contained in the fluidity improver which is another embodiment of the present invention, has the following general formula (1).
- X 5 to X 8 are the same or different and each represents a hydrogen atom, a halogen atom, or an alkyl group having 1 to 4 carbon atoms.
- Y represents a methylene group, an isopropylidene group, a cyclic group.
- the structure of the main chain of the polyester contained in the fluidity improver which is another embodiment of the present invention, includes the following general formula (1)
- X 5 to X 8 are the same or different and each represents a hydrogen atom, a halogen atom, or an alkyl group having 1 to 4 carbon atoms.
- Y represents a methylene group, an isopropylidene group, a cyclic group.
- the polyester contained in the fluidity improver of the present invention comprises a diol component comprising a bisphenol component (B) and an optional biphenol component (A), and a dicarboxylic acid component comprising a component (C) and an optional component (D). It is a polyester produced by polycondensation.
- the polyester is not a low-molecular compound
- the above fluidity improver is added to suppress the occurrence of bleed-out when molding a resin composition formed from a polycarbonate resin or a polyarylate resin. Can do.
- the flow improver is added to the polycarbonate resin and the polyarylate resin by adding a small amount of the polyester.
- the fluidity of the resulting resin composition can be improved efficiently, and various properties such as transparency and impact strength inherent to polycarbonate resins and polyarylate resins are not impaired.
- the molar ratio ((A) / (B)) of the component (A) to the component (B) is preferably 1/9 to 9/1. More preferably, it is 1/7 to 7/1, more preferably 1/5 to 5/1, and most preferably 1/3 to 1/1.
- (A) / (B) is further less than 1/9 and the component (A) is less, the polyester itself becomes completely amorphous and has a low glass transition temperature. May cause fusion of pellets.
- component (C) Only the component (C) may be copolymerized as the dicarboxylic acid component, or even if the components (C) and (D) are copolymerized as the dicarboxylic acid component, they function as a desired fluidity improver.
- the polyester tends to become brittle, and processing such as pelletization becomes difficult. In that case, processing such as pelletization of the polyester is facilitated by copolymerizing the component (D).
- the molar ratio ((C) / (D)) of the component (C) to the component (D) is arbitrary, but is preferably 8/1 to 1/8, more preferably 6 / 1 to 1/4, more preferably 4/1 to 1/1, and most preferably 3/1 to 2/1.
- (C) / (D) is more largely biased to one of the components than 8/1 or 1/8, the polyester becomes more brittle and difficult to be pelletized. There is.
- increasing the copolymerization ratio of the component (C) having a smaller number of main chain atoms than the component (D) than the component (D) increases the glass transition temperature of the fluidity improver, thereby increasing the polycarbonate resin. Further, it is preferable because the heat resistance of the resin composition obtained by adding the above fluidity improver to the polyarylate resin can be increased.
- the molar ratio ( ⁇ (A) + (B) ⁇ : ⁇ (C) + (D) ⁇ ) of the component (A), the component (B), the component (C) and the component (D) is 45:55 to 55 : 45.
- the molar ratio is preferably 48:52 to 52:48, and more preferably 50:50, in order to efficiently improve the molecular weight of the resulting polyester.
- both (A) component and (D) component may be both, or one of them may be 0 mol.
- X 1 to X 4 in the general formula (1) may be the same or different and each represents a hydrogen atom, a halogen atom, or an alkyl group having 1 to 4 carbon atoms. It is more preferable that all of X 1 to X 4 are hydrogen atoms in order to enhance the crystallinity of the fluidity improver itself and improve the handling properties such as preventing fusion during pellet storage.
- X 5 to X 8 in the general formula (2) may be the same or different and each represents a hydrogen atom, a halogen atom, or an alkyl group having 1 to 4 carbon atoms. In order to enhance the compatibility with the polycarbonate resin or the polyarylate resin, it is more preferable that all of X 5 to X 8 are hydrogen atoms.
- Y represents a methylene group, an isopropylidene group, a cyclic alkylidene group, an aryl-substituted alkylidene group, an arylene alkylidene group, —S—, —O—, a carbonyl group, or —SO 2 —.
- 2,2-bis (4-hydroxyphenyl) propane [common name: bisphenol A] is preferable in terms of increasing compatibility with polycarbonate resin and polyarylate resin. It is.
- dihydric phenols other than bisphenol A include bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) ethane, 2,2-bis (4-hydroxyphenyl) butane, 2,2 -Bis (4-hydroxyphenyl) octane, 2,2-bis (4-hydroxy-1-methylphenyl) propane, 1,1-bis (4-hydroxy-t-butylphenyl) propane, 2,2-bis ( 4-hydroxy-3-bromophenyl) propane, 2,2-bis (4-hydroxy-3,5-dimethylphenyl) propane, 2,2-bis (4-hydroxy-3-chlorophenyl) propane, 2,2- Bis (4-hydroxy-3,5-dichlorophenyl) propane, 2,2-bis (4-hydroxy-3,5-dibrom
- Dihydroxydiaryl sulfides dihydroxydiaryl sulfoxides such as 4,4′-dihydroxydiphenyl sulfoxide and 4,4′-dihydroxy-3,3′-dimethyldiphenyl sulfoxide; 4,4′-dihydroxydiphenyl sulfone, 4,4′- And dihydroxydiaryl sulfones such as dihydroxy-3,3′-dimethyldiphenyl sulfone; and dihydroxydiphenyls such as 4,4′-dihydroxydiphenyl.
- These bisphenol components may be used singly or as a mixture of two or more of them without losing the effect of the present invention.
- the terminal structure of the fluidity improver of the present invention is not particularly limited, and in particular, a resin obtained by suppressing transesterification with a polycarbonate resin or polyarylate resin and adding the fluidity improver to the polycarbonate resin or polyarylate resin. It is preferable that the composition is sealed with a monofunctional low molecular compound in that yellowing of the composition can be suppressed.
- the sealing ratio with respect to all ends of the molecular chain is preferably 60% or more, more preferably 70% or more, still more preferably 80% or more, and most preferably 90% or more.
- the end-capping rate of the fluidity improver can be determined by the following formula (5) by measuring the number of end functional groups that are sealed and the number of end functional groups that are not sealed.
- 1 H-NMR was used to determine the number of each terminal group from the integral value of the characteristic signal corresponding to each terminal group.
- the method of calculating the terminal blocking rate using (5) is preferable in terms of accuracy and simplicity.
- Terminal sealing rate (%) ⁇ [number of sealed terminal functional groups] / ([number of sealed terminal functional groups] + [number of unsealed terminal functional groups]) ⁇ ⁇ 100 (5)
- monohydric phenol include phenol, p-cresol, pt-butylphenol, pt-octylphenol, p-cumylphenol, p-nonylphenol, pt-amylphenol, 4-hydroxybiphenyl, And any mixture thereof.
- aliphatic monocarboxylic acids include fatty acids such as acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, caprylic acid, lauric acid, tridecanoic acid, myristic acid, palmitic acid, stearic acid, pivalic acid, and isobutyric acid.
- monoamines include aliphatic monoamines such as methylamine, ethylamine, propylamine, butylamine, hexylamine, octylamine, decylamine, stearylamine, dimethylamine, diethylamine, dipropylamine, dibutylamine, and any of these A mixture etc. are mentioned.
- R 1 therein represents a divalent linear substituent which may have a branch having 2 to 18 main chain atoms.
- the number of main chain atoms is the number of atoms of the main chain skeleton.
- R 1 is preferably a linear substituent not containing a branch, and more preferably a straight aliphatic hydrocarbon chain not containing a branch. Is preferred.
- R 1 may be saturated or unsaturated, but is preferably a saturated aliphatic hydrocarbon chain. When the unsaturated bond is included, the polyester may not be sufficiently flexible and may increase the melt viscosity of the fluidity improver itself.
- R 1 is preferably a straight-chain saturated aliphatic hydrocarbon chain having 2 to 18 carbon atoms from the viewpoint that both the ease of polymerization of the polyester and the improvement of the glass transition point can be achieved. More preferably, it is a straight chain saturated aliphatic hydrocarbon chain having 16 to 16 carbon atoms, more preferably a straight chain saturated aliphatic hydrocarbon chain having 8 to 14 carbon atoms, and a straight chain saturated fat having 8 carbon atoms. Most preferred are group hydrocarbon chains.
- the number of main chain atoms of R 1 is preferably an even number in that the melt viscosity of the fluidity improver itself decreases. From the above points, R 1 is particularly preferably one selected from — (CH 2 ) 8 —, — (CH 2 ) 10 —, and — (CH 2 ) 12 —.
- R 2 therein may be branched with 4 to 20 main chain atoms, and represents a divalent linear substituent having a larger number of main chain atoms than R 1 .
- R 2 is preferably a straight-chain substituent that does not include a branch because the melt viscosity of the fluidity improver itself is low, and is more preferably a straight-chain aliphatic hydrocarbon chain that does not include a branch.
- R 2 may be saturated or unsaturated, but is preferably a saturated aliphatic hydrocarbon chain. When the unsaturated bond is included, the polyester may not be sufficiently flexible and may increase the melt viscosity of the fluidity improver itself.
- R 2 is preferably a linear saturated aliphatic hydrocarbon chain having 4 to 20 carbon atoms, more preferably a linear saturated aliphatic hydrocarbon chain having 8 to 18 carbon atoms, and a carbon number of 10 More preferably, it is a -18 linear saturated aliphatic hydrocarbon chain.
- the number of main chain atoms of R 1 is preferably an even number in that the melt viscosity of the fluidity improver itself decreases. The greater the difference in the number of main chain atoms between R 1 and R 2, the lower the crystallinity of the fluidity improver and the processability of the fluidity improver into pellets increases.
- R 2 is particularly preferably one selected from — (CH 2 ) 10 —, — (CH 2 ) 12 —, and — (CH 2 ) 18 —.
- the polyester contained in the fluidity improver of the present invention may be copolymerized with other monomers to such an extent that the effect is not lost.
- Other monomers include, for example, aromatic hydroxycarboxylic acids, aromatic dicarboxylic acids, aromatic diols, aromatic hydroxyamines, aromatic diamines, aromatic aminocarboxylic acids or caprolactams, caprolactones, aliphatic dicarboxylic acids, fatty acids Aromatic diols, aliphatic diamines, alicyclic dicarboxylic acids, and alicyclic diols, aromatic mercaptocarboxylic acids, aromatic dithiols, and aromatic mercaptophenols.
- the content of the other monomer constituting the polyester is less than 50 mol%, preferably less than 30 mol%, more preferably less than 10 mol%, based on the total number of moles of the polyester. Most preferably, it is less than 5 mol%.
- the content of the other monomer is 50 mol% or more based on the total number of moles of the polyester, the compatibility of the polyester with the polycarbonate resin and the polyarylate resin is lowered, and the polyester is a polycarbonate resin. And it becomes difficult to be compatible with the polyarylate resin.
- aromatic hydroxycarboxylic acid examples include 4-hydroxybenzoic acid, 3-hydroxybenzoic acid, 2-hydroxybenzoic acid, 2-hydroxy-6-naphthoic acid, 2-hydroxy-5-naphthoic acid, 2-hydroxy -7-naphthoic acid, 2-hydroxy-3-naphthoic acid, 4'-hydroxyphenyl-4-benzoic acid, 3'-hydroxyphenyl-4-benzoic acid, 4'-hydroxyphenyl-3-benzoic acid, and their And alkyl, alkoxy or halogen-substituted products.
- aromatic dicarboxylic acid examples include terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 1,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 4,4′-dicarboxybiphenyl, 3 , 4′-dicarboxybiphenyl, 4,4 ′′ -dicarboxyterphenyl, bis (4-carboxyphenyl) ether, bis (4-carboxyphenoxy) butane, bis (4-carboxyphenyl) ethane, bis (3-carboxy Phenyl) ether, bis (3-carboxyphenyl) ethane, and alkyl, alkoxy or halogen substituents thereof.
- aromatic diol examples include pyrocatechol, hydroquinone, resorcin, 2,6-dihydroxynaphthalene, 2,7-dihydroxynaphthalene, 1,6-dihydroxynaphthalene, 3,3′-dihydroxybiphenyl, 3,4′- Examples include dihydroxybiphenyl, 4,4′-dihydroxybiphenyl, 4,4′-dihydroxybiphenol ether, bis (4-hydroxyphenyl) ethane, 2,2′-dihydroxybinaphthyl, and alkyl, alkoxy or halogen substituents thereof. It is done.
- aromatic hydroxyamine examples include 4-aminophenol, N-methyl-4-aminophenol, 3-aminophenol, 3-methyl-4-aminophenol, 4-amino-1-naphthol, 4-amino- 4′-hydroxybiphenyl, 4-amino-4′-hydroxybiphenyl ether, 4-amino-4′-hydroxybiphenylmethane, 4-amino-4′-hydroxybiphenyl sulfide, 2,2′-diaminobinaphthyl, and their Examples thereof include alkyl, alkoxy, and halogen-substituted products.
- aromatic diamine and aromatic aminocarboxylic acid include 1,4-phenylenediamine, 1,3-phenylenediamine, N-methyl-1,4-phenylenediamine, N, N′-dimethyl-1,4. -Phenylenediamine, 4,4'-diaminophenyl sulfide (thiodianiline), 4,4'-diaminobiphenylsulfone, 2,5-diaminotoluene, 4,4'-ethylenedianiline, 4,4'-diaminobiphenoxyethane 4,4′-diaminobiphenylmethane (methylenedianiline), 4,4′-diaminobiphenyl ether (oxydianiline), 4-aminobenzoic acid, 3-aminobenzoic acid, 6-amino-2-naphthoic acid, 7-amino-2-naphthoic acid and their alkyl, alkoxy or halogen substituted products.
- aliphatic dicarboxylic acid examples include oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, dodecanedioic acid, tetradecanedioic acid, fumaric acid, maleic acid Etc.
- aliphatic diamine examples include 1,2-ethylenediamine, 1,3-trimethylenediamine, 1,4-tetramethylenediamine, 1,6-hexamethylenediamine, 1,8-octanediamine, 1,9- Nonanediamine, 1,10-decanediamine, 1,12-dodecanediamine and the like can be mentioned.
- alicyclic dicarboxylic acid examples include hexahydroterephthalic acid, trans-1,4-cyclohexanediol, cis-1,4-cyclohexanediol, and trans-1,4-cyclohexane.
- aromatic mercaptocarboxylic acid, aromatic dithiol and aromatic mercaptophenol include 4-mercaptobenzoic acid, 2-mercapto-6-naphthoic acid, 2-mercapto-7-naphthoic acid, benzene-1,4- Dithiol, benzene-1,3-dithiol, 2,6-naphthalene-dithiol, 2,7-naphthalene-dithiol, 4-mercaptophenol, 3-mercaptophenol, 6-mercapto-2-hydroxynaphthalene, 7-mercapto-2 -Hydroxynaphthalene, and reactive derivatives thereof.
- the fluidity improver of the present invention preferably contains a phosphite antioxidant in advance in that a resin composition having a good color tone can be obtained.
- the reason for this is to prevent discoloration of the fluidity improver itself, and to deactivate the polymerization catalyst used for the polymerization of the polyester contained in the fluidity improver, so that the fluidity improver and polycarbonate resin or polyarylate It is thought that it is possible to prevent discoloration due to transesterification or hydrolysis reaction between the polyester contained in the fluidity improver and the polycarbonate resin or polyarylate resin, which may occur when the resin is mixed. It is done.
- the content of the phosphite antioxidant in the fluidity improver is preferably 0.005 to 5% by mass with respect to the weight of the polyester contained in the fluidity improver, and 0.01 to 2% by mass. % Is more preferable, 0.01 to 1% by mass is further preferable, and 0.02 to 0.05% by mass is most preferable.
- the content of the phosphite-based antioxidant is less than 0.005% by mass, the content of the phosphite-based antioxidant is small, and when the fluidity improver is added to the polycarbonate resin or the polyarylate resin, Coloring may occur. Also, when the content of the phosphite antioxidant is more than 5% by mass, the impact strength of the resin composition obtained by adding the above fluidity improver to the polycarbonate resin or polyarylate resin is reduced. There is.
- phosphite antioxidants such as “Antioxidant Handbook” published by Taiseisha, “Degradation and Stabilization of Polymer Materials” (pages 235 to 242) published by CMC Publishing, etc. Although not limited to various compounds described in (1).
- phosphite antioxidants include tris (2,4-di-t-butylphenyl) phosphite, bis [2,4-bis (1,1-dimethylethyl) -6-methylphenyl] ethyl ester Phosphoric acid, bis (2,4-di-t-butylphenyl) pentaerythritol diphosphite, bis (2,4-dicumylphenyl) pentaerythritol diphosphite, bis (2,6-di-t-butyl-) 4-methylphenyl) pentaerythritol di-phosphite and the like.
- the product names include ADK STAB PEP-36, ADK STAB PEP-4C, ADK STAB PEP-8, ADK STAB PEP-8F, ADK STAB PEP-8W, ADK STAB PEP-11C, ADK STAB PEP-24G, ADK STAB HP-10, ADK STAB 2112, ADK STAB 260, ADK STAB P, ADK STAB QL, ADK STAB 522A, ADK STAB 329K, ADK STAB 1178, ADK STAB 1500, ADK STAB C, ADK STAB 13510, ADK STAB 3010 (all of which are manufactured by ADEKA CORPORATION), Irgafos 38, Irgafos 126, Irgafos 126 As mentioned above, BASFBAJAPAN LTD.) And the like can be exemplified.
- Adeka Stub PEP-36, Adeka Stub HP-10 are particularly effective in suppressing the transesterification reaction and hydrolysis reaction, and the antioxidant itself has a high melting point and hardly volatilizes from the resin. More preferable are ADK STAB 2112, ADK STAB PEP-24G, Irgafos 126 and the like.
- the fluidity improver of the present invention contains a hindered phenol-based antioxidant in addition to a phosphite-based antioxidant in advance in that a polycarbonate resin composition and a polyarylate resin composition having good color tone can be obtained.
- a hindered phenol-based antioxidant in addition to a phosphite-based antioxidant in advance in that a polycarbonate resin composition and a polyarylate resin composition having good color tone can be obtained.
- the content of the hindered phenolic antioxidant in the fluidity improver is preferably 0.005 to 5% by mass with respect to the weight of the polyester contained in the fluidity improver, and 0.01 to 2 More preferably, it is more preferably 0.01 to 1% by mass, and most preferably 0.02 to 0.05% by mass.
- the content of the hindered phenolic antioxidant is less than 0.005% by mass, the content of the hindered phenolic antioxidant is small, and the fluidity improver is blended with the polycarbonate resin or the polyarylate resin. Sometimes coloring occurs.
- the content of the hindered phenol antioxidant is more than 5% by mass, the impact strength of the resin composition obtained by adding the fluidity improver to the polycarbonate resin or polyarylate resin may be lowered. is there.
- hindered phenol antioxidant examples include 2,6-di-t-butyl-4-methylphenol, 2,6-di-t-butyl-4-ethylphenol, mono (or di, or tri) ( ⁇ -methylbenzyl) phenol, 2,2′-methylenebis (4-ethyl-6-tert-butylphenol), 2,2′-methylenebis (4-methyl-6-tert-butylphenol), 4,4′-butylidenebis (3-methyl-6-t-butylphenol), 4,4'-thiobis (3-methyl-6-t-butylphenol), 2,5-di-t-butylhydroquinone, 2,5-di-t-amyl Hydroquinone, triethylene glycol-bis- [3- (3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate], 1,6-hexanedioe -Bis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], 2,6
- the trade names are Nocrack 200, Nocrack M-17, Nocrack SP, Nocrack SP-N, Nocrack NS-5, Nocrack NS-6, Nocrack NS-30, Nocrack 300, Nocrack NS-7, Nocrack DAH (all above) Ouchi Shinsei Chemical Co., Ltd.), ADK STAB AO-30, ADK STAB AO-40, ADK STAB AO-50, ADK STAB AO-60, ADK STAB AO-616, ADK STAB AO-635, ADK STAB AO-658, ADK STAB AO-80, ADK STAB AO-15, ADK STAB AO-18, ADK STAB 328, ADK STAB AO-37 (all of which are manufactured by ADEKA CORPORATION), IRGANOX-245, IRGANOX-259, IRGANOX-565, IRGANOX-10 0, IRGANOX-1024, IRGANOX-1035, IRGANOX-1076, IRGANO
- ADK STAB AO-60, IRGANOX-1010, and the like since the antioxidant itself is particularly difficult to discolor, and the coloration of the resin can be efficiently suppressed by the combined use with a phosphite antioxidant. Is more preferable.
- a monoacrylate phenol-based stabilizer having both an acrylate group and a phenol group can also be used as a phenol-based antioxidant.
- monoacrylate phenol-based stabilizers include 2-t-butyl-6- (3-t-butyl-2-hydroxy-5-methylbenzyl) -4-methylphenyl acrylate (trade name: Sumilizer GM), 2 , 4-di-t-amyl-6- [1- (3,5-di-t-amyl-2-hydroxyphenyl) ethyl] phenyl acrylate (trade name: Sumilizer GS).
- a combination of a phosphite antioxidant and a hindered phenol antioxidant a combination of ADK STAB PEP-36 or Irgafos 126 and ADK STAB AO-60 or IRGANOX-1010 can particularly suppress resin coloring. This is preferable.
- the number average molecular weight of the polyester contained in the fluidity improver in the present invention is the concentration of the resin in the present invention in a mixed solvent having a volume ratio of p-chlorophenol and toluene of 3: 8 using polystyrene as a standard substance. Is a value measured at 80 ° C. by GPC using a solution prepared by dissolving so as to be 0.25 wt%.
- the number average molecular weight of the polyester in the present invention is preferably 10,000 to 30,000, more preferably 11,000 to 20,000, and still more preferably 12,000 to 17,000.
- the fluidity improver bleeds out when molding a resin composition obtained by adding a fluidity improver to a polycarbonate resin or polyarylate resin. There is. Further, when the number average molecular weight of the polyester exceeds 30000, the melt viscosity of the fluidity improver itself is increased, and the resin composition obtained by adding the fluidity improver to the polycarbonate resin or the polyarylate resin is molded. In some cases, the fluidity during processing cannot be effectively improved.
- the polyester contained in the fluidity improver of the present invention may be produced by any known method.
- the hydroxyl group of the monomer is individually or collectively made into a lower fatty acid ester using a lower fatty acid such as acetic anhydride, and then removed from the carboxylic acid in another reaction vessel or the same reaction vessel.
- the method of making a lower fatty acid polycondensation reaction is mentioned.
- the polycondensation reaction is carried out in the presence of an inert gas such as nitrogen gas in the presence of an inert gas, usually at a temperature of 220 to 330 ° C., preferably 240 to 310 ° C. in the substantial absence of a solvent. It is performed for 0.5 to 5 hours.
- the reaction temperature is lower than 220 ° C., the reaction proceeds slowly, and when it is higher than 330 ° C., side reactions such as decomposition tend to occur.
- the pressure is rapidly reduced to a high degree of vacuum, the dicarboxylic acid monomer and the low molecular weight compound used for end-capping may volatilize, and a resin having a desired composition or molecular weight may not be obtained.
- the ultimate vacuum is preferably 40 Torr or less, more preferably 30 Torr or less, further preferably 20 Torr or less, and particularly preferably 10 Torr or less.
- the polycondensation reaction may employ a multi-stage reaction temperature. If necessary, the reaction product may be withdrawn in a molten state and recovered as soon as the temperature rises or when the maximum temperature is reached.
- the obtained polyester resin may be used as it is, or solid phase polymerization may be further performed for the purpose of removing unreacted raw materials or improving physical properties. In the case of performing solid phase polymerization, the obtained polyester resin is mechanically pulverized into particles having a particle size of 3 mm or less, preferably 1 mm or less, and an inert gas such as nitrogen gas at 100 to 350 ° C. in a solid state.
- the treatment is preferably performed in an atmosphere or under reduced pressure for 1 to 30 hours.
- the particle diameter of the polyester resin particles is larger than 3 mm, the treatment is not sufficient, and problems with physical properties are caused, which is not preferable. It is preferable to select the treatment temperature and the rate of temperature increase during solid-phase polymerization so that the polyester resin particles do not cause fusion.
- Examples of the lower fatty acid anhydride used for the production of the polyester contained in the fluidity improver of the present invention include lower fatty acid anhydrides having 2 to 5 carbon atoms, such as acetic anhydride, propionic anhydride, monochloroacetic anhydride, Dichloroacetic anhydride, trichloroacetic anhydride, monobromoacetic anhydride, dibromoacetic anhydride, tribromoacetic anhydride, monofluoroacetic anhydride, difluoroacetic anhydride, trifluoroacetic anhydride, butyric anhydride, isobutyric anhydride, valeric anhydride, pivalic anhydride, etc. Can be mentioned.
- acetic anhydride, propionic anhydride, and trichloroacetic anhydride are particularly preferably used.
- the amount of the lower fatty acid anhydride used is 1.01 to 1.5 times equivalent, preferably 1.02 to 1.2 times equivalent to the total of functional groups such as hydroxyl groups of the monomers used.
- the amount of the lower fatty acid anhydride used is less than 1.01 equivalents, the lower fatty acid anhydride is volatilized, so that the functional group such as a hydroxyl group does not completely react with the lower fatty acid anhydride. In some cases, a low molecular weight resin may be obtained.
- a polymerization catalyst may be used.
- conventionally known catalysts can be used as polyester polymerization catalysts, such as magnesium acetate, stannous acetate, tetrabutyl titanate, lead acetate, sodium acetate, potassium acetate, and antimony trioxide.
- metal salt catalysts such as metal salt catalysts, organic compound catalysts such as N, N-dimethylaminopyridine and N-methylimidazole.
- sodium acetate, potassium acetate, and magnesium acetate are more preferable because discoloration of the fluidity improver itself can be prevented and discoloration of the polycarbonate resin composition and the polyarylate resin composition can be prevented.
- the addition amount of the polymerization catalyst is usually 0.1 ⁇ 10 ⁇ 3 to 100 ⁇ 10 ⁇ 2 wt%, preferably 0.5 ⁇ 10 ⁇ 3 to 50 ⁇ 10 ⁇ based on the total weight of the polyester resin. 2 % by weight is preferred.
- the shape of the fluidity improver of the present invention is not particularly limited, and examples thereof include pellets, flakes, and powders.
- the particle diameter should just be as small as it can be thrown into the extruder melt-kneaded with polycarbonate resin or polyarylate resin, and it is preferable that it is 6 mm or less.
- the resin composition obtained by adding the fluidity improver of the present invention to a polycarbonate resin or polyarylate resin has a polycarbonate resin or polyarylate resin of 80 to 99.9% by mass, and the fluidity improver of the present invention 0.1. Up to 20% by weight.
- the content of the fluidity improver in the resin composition (100% by mass) is more preferably 0.5% by mass or more, further preferably 1% by mass or more, and particularly preferably 3% by mass or more.
- the content of the fluidity improver in the resin composition (100% by mass) is more preferably 15% by mass or less, further preferably 10% by mass or less, and particularly preferably 5% by mass or less.
- the content rate of the fluidity improver in a resin composition (100 mass%) is 0.1 mass% or more, the fluidity
- the content of the fluidity improver in the resin composition (100% by mass) is 20% by mass or less, the heat resistance and mechanical properties of the polycarbonate resin and polyarylate resin are not greatly impaired.
- the fluidity improver of the present invention has a glass transition temperature lower than that of a polycarbonate resin or a polyarylate resin, it lowers the glass transition point of a resin composition obtained by being dissolved in a polycarbonate resin or a polyarylate resin. Therefore, if the fluidity improver of the present invention is contained in excess of 20% by mass, the heat resistance of the resulting resin composition may be lowered.
- the fluidity improver may contain a phosphite antioxidant in advance.
- the resin composition obtained by adding the fluidity improver of the present invention to a polycarbonate resin or a polyarylate resin further includes a phosphite antioxidant regardless of whether the fluidity improver contains a phosphite antioxidant in advance.
- a phyto-based antioxidant may be included separately.
- the content of the phosphite antioxidant is the total mass of the polycarbonate resin or polyarylate resin and the fluidity improver.
- the amount is preferably 0.005 to 5% by mass, more preferably 0.01 to 2% by mass, still more preferably 0.01 to 1% by mass, and 0.02 to 0.001%. Most preferably, it is 05 mass%.
- the fluidity improver may further contain a hindered phenol-based antioxidant in advance.
- the phosphite antioxidant is contained in the resin composition obtained by adding the fluidity improver of the present invention to the polycarbonate resin or polyarylate resin (the phosphite antioxidant is previously contained in the fluidity improver).
- the resin composition contains a hindered phenolic antioxidant in advance in the fluidity improver in the case where a phosphite antioxidant is separately contained in the resin composition) Regardless, it may further contain a hindered phenol-based antioxidant.
- the content of the hindered phenolic antioxidant is the sum of the polycarbonate resin or the polyarylate resin and the fluidity improver.
- the amount is preferably 0.005 to 5% by mass, more preferably 0.01 to 2% by mass, still more preferably 0.01 to 1% by mass, and more preferably 0.02 to 5% by mass. Most preferably, it is 0.05 mass%.
- the polycarbonate resin is not particularly limited, and polycarbonate resins having various structural units can be used.
- a polycarbonate resin produced by a method of interfacial polycondensation of divalent phenol and carbonyl halide, a method of melt polymerization method (transesterification method) of divalent phenol and carbonic acid diester, or the like can be used.
- divalent phenol that is a raw material for the polycarbonate resin
- divalent phenol examples include 4,4′-dihydroxybiphenyl, bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) ethane, 2,2- Bis (4-hydroxyphenyl) propane, 2,2-bis (3-methyl-4-hydroxyphenyl) propane, 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) propane, 1,1-bis (4-hydroxyphenyl) cyclohexane, bis (4-hydroxyphenyl) ether, bis (4-hydroxyphenyl) sulfide, bis (4-hydroxyphenyl) sulfone, bis (4-hydroxyphenyl) sulfoxide, bis (4-hydroxyphenyl) ) Ketone, hydroquinone, resorcin, catechol, etc.
- divalent phenols bis (hydroxyphenyl) alkanes are preferred, and divalent phenols mainly composed of 2,2-bis (4-hydroxyphenyl) propane are particularly preferred.
- the carbonate precursor include carbonyl halide, carbonyl ester, haloformate and the like.
- diaryl carbonates such as dihaloformates of divalent phenols, diphenyl carbonate, ditolyl carbonate, bis (chlorophenyl) carbonate, m-cresyl carbonate; dimethyl carbonate, diethyl carbonate, diisopropyl carbonate, dibutyl carbonate, dia
- aliphatic carbonate compounds such as mil carbonate and dioctyl carbonate.
- the polycarbonate resin may be a resin having a branched structure in addition to a resin in which the molecular structure of the polymer chain is a linear structure.
- a branching agent for introducing such a branched structure 1,1,1-tris (4-hydroxyphenyl) ethane, ⁇ , ⁇ ′, ⁇ ′′ -tris (4-hydroxyphenyl) -1,3, And 5-triisopropylbenzene, phloroglucin, trimellitic acid, isatin bis (o-cresol), etc.
- molecular weight regulators phenol, pt-butylphenol, pt-octylphenol, p-cumylphenol, etc. Can be used.
- the polycarbonate resin used in the present invention is a copolymer having a polycarbonate structural unit and a polyorganosiloxane structural unit in addition to a homopolymer produced using only the above divalent phenol, or a homopolymer thereof.
- a resin composition comprising a copolymer.
- it may be a polyester-polycarbonate resin obtained by conducting a polymerization reaction of a divalent phenol or the like in the presence of an ester precursor such as a bifunctional carboxylic acid such as terephthalic acid or an ester-forming derivative thereof.
- a resin composition obtained by melt-kneading a polycarbonate resin having various structural units can also be used.
- the polyarylate resin is a polyester composed of an aromatic dicarboxylic acid residue and a bisphenol residue.
- the polyarylate resin can be produced by a known method such as a melt polymerization method or an interfacial polymerization method.
- aromatic dicarboxylic acid constituting the aromatic dicarboxylic acid residue in the polyarylate resin
- aromatic dicarboxylic acid examples include terephthalic acid, isophthalic acid, phthalic acid, 2,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2,7 -Naphthalene dicarboxylic acid, 1,5-naphthalene dicarboxylic acid, methyl terephthalic acid, 4,4'-biphenyl dicarboxylic acid, 2,2'-biphenyl dicarboxylic acid, 4,4'-biphenyl ether dicarboxylic acid, 4,4'- Examples include diphenylmethane dicarboxylic acid, 4,4′-diphenylsulfone dicarboxylic acid, 4,4′-diphenylisopropylidenedicarboxylic acid, 1,2-bis (4-carboxyphenoxy) ethane, and 5-sodium sul
- Examples of the bisphenol constituting the bisphenol residue in the polyarylate resin include 2,2-bis (4-hydroxyphenyl) propane [bisphenol A] and 2-phenyl-3,3-bis (4-hydroxyphenyl). Phthalimidine, 4,4 ′-(3,3,5-trimethylcyclohexylidene) diphenol, 2,2-bis (4-hydroxy-3,5-dimethylphenyl) propane, 2,2-bis (4-hydroxy) -3,5-dibromophenyl) propane, 2,2-bis (4-hydroxy-3,5-dichlorophenyl) propane, 4,4'-dihydroxydiphenyl sulfone, 4,4'-dihydroxydiphenyl ether, 4,4'- Dihydroxydiphenyl sulfide, 4,4'-dihydroxydiphenyl ketone, 4 4'-dihydroxy diphenyl methane, 1,1-bis (4-hydroxyphenyl) cyclohexane.
- Phthalimidine 4,4 ′-(3,3,5-
- bisphenols may be used alone or in combination of two or more.
- 2,2-bis (4-hydroxyphenyl) propane is preferably used from the viewpoints of polymerizability and economy.
- 2-phenyl-3,3-bis (4-hydroxyphenyl) phthalimidine and 4,4 ′-(3,3,5-trimethylcyclohexylidene) diphenol are used from the viewpoint of heat resistance. It is preferable.
- the resin composition of the present invention as a component other than polycarbonate resin, polyarylate resin, fluidity improver, and antioxidant (phosphite antioxidant, hindered phenol antioxidant), further depending on the purpose Any other ingredients such as reinforcing agents, thickeners, mold release agents, coupling agents, flame retardants, flame retardants, pigments, colorants, light diffusing agents and other auxiliary agents, or fillers. It can be added within a range not losing the effect of the present invention.
- the amount of these additives used is preferably in the range of 0 to 100 parts by weight in total with respect to 100 parts by weight of the resin composition obtained by adding the fluidity improver to the polycarbonate resin or polyarylate resin.
- the amount of the flame retardant used is more preferably 7 to 80 parts by weight with respect to 100 parts by weight of the resin composition obtained by adding a fluidity improver to the polycarbonate resin or polyarylate resin. More preferably, it is 12 to 40 parts by weight.
- Various compounds are known as flame retardants, for example, various compounds described in “Technology and Application of Polymer Flame Retardation” (pages 149 to 221) published by CMC Publishing Co., Ltd. It is not limited. Among these flame retardants, phosphorus flame retardants, halogen flame retardants, and inorganic flame retardants can be preferably used.
- phosphorus-based flame retardants include phosphate esters, halogen-containing phosphate esters, condensed phosphate esters, polyphosphates, and red phosphorus. These phosphorus flame retardants may be used alone or in combination of two or more.
- halogen flame retardant examples include brominated polystyrene, brominated polyphenylene ether, brominated bisphenol type epoxy polymer, brominated styrene maleic anhydride polymer, brominated epoxy resin, brominated phenoxy resin, deca Examples thereof include bromodiphenyl ether, decabromobiphenyl, brominated polycarbonate, perchlorocyclopentadecane, and brominated crosslinked aromatic polymers. Of these, brominated polystyrene and brominated polyphenylene ether are particularly preferred. These halogen flame retardants may be used alone or in combination of two or more. The halogen element content of these halogen flame retardants is preferably 15 to 87%.
- An inorganic filler may be further added to the resin composition of the present invention in order to improve mechanical strength, dimensional stability, etc., or for the purpose of increasing the amount.
- the inorganic filler examples include zinc sulfate, potassium hydrogen sulfate, aluminum sulfate, antimony sulfate, sulfate ester, potassium sulfate, cobalt sulfate, sodium hydrogen sulfate, iron sulfate, copper sulfate, sodium sulfate, nickel sulfate, barium sulfate, Metal sulfate compounds such as magnesium sulfate and ammonium sulfate; Titanium compounds such as titanium oxide; Carbonate compounds such as potassium carbonate; Metal hydroxide compounds such as aluminum hydroxide and magnesium hydroxide; Silica compounds such as synthetic silica and natural silica; Calcium aluminate, dihydrate gypsum, zinc borate, barium metaborate, borax; nitrate compounds such as sodium nitrate, molybdenum compounds, zirconium compounds, antimony compounds and their modified products; composite fine particles of silicon dioxide and aluminum oxide Etc.
- inorganic fillers include, for example, potassium titanate whiskers, mineral fibers (rock wool, etc.), glass fibers, carbon fibers, metal fibers (stainless fibers, etc.), aluminum borate whiskers, silicon nitride whiskers, boron fibers. , Tetrapotted zinc oxide whisker, talc, clay, kaolin clay, natural mica, synthetic mica, pearl mica, aluminum foil, alumina, glass flakes, glass beads, glass balloon, carbon black, graphite, calcium carbonate, calcium sulfate, silica Examples include calcium acid, titanium oxide, zinc oxide, silica, asbestos, and quartz powder.
- These inorganic fillers may be untreated, or may be subjected to chemical or physical surface treatment in advance.
- the surface treatment agent used for the surface treatment include compounds such as silane coupling agent, higher fatty acid, fatty acid metal salt, unsaturated organic acid, organic titanate, resin acid, and polyethylene glycol. It is done.
- the method for producing the resin composition of the present invention is not particularly limited.
- the resin composition is, for example, a flow improver, polycarbonate resin or polyarylate using a device such as a Henschel mixer, a Banbury mixer, a single screw extruder, a twin screw extruder, a two-roll, a kneader, or a Brabender. It is produced by a known method in which a resin and, if necessary, an additive such as a light diffusing agent are blended and melt-kneaded.
- the temperature of the melt kneading is It is preferable that the temperature is as low as possible.
- the molded product of the present invention can be molded into various shapes such as various shaped extruded products, sheets, films, etc. by extrusion molding.
- the various extrusion molding methods include cold runner and hot runner molding methods, as well as injection compression molding, injection press molding, gas assist injection molding, foam molding (including the case of supercritical fluid injection), inserts. Examples thereof include injection molding methods such as molding, in-mold coating molding, heat insulating mold molding, rapid heating / cooling mold molding, two-color molding, sandwich molding, and ultra-high speed injection molding.
- an inflation method, a calendar method, a casting method, or the like can be used for forming a sheet or a film.
- it can be formed as a heat-shrinkable tube by applying a specific stretching operation.
- it is also possible to make a hollow molded product by molding the resin composition of the present invention by rotational molding, blow molding or the like.
- the molded product of the present invention can be used in a wide range of applications such as various cases, hard coat products, glazing materials, light diffusion plates, optical disk substrates, light guide plates, medical materials, and miscellaneous goods.
- the molded article of the present invention includes, for example, exterior materials for OA equipment and home appliances, various containers, miscellaneous goods, such as personal computers, notebook computers, game machines, display devices (CRT, liquid crystal, plasma, projector, and Organic EL, etc.), mice, and exterior materials such as printers, copiers, scanners and fax machines (including these multifunction devices), keyboard keys, switch molded products, personal digital assistants (so-called PDAs), mobile phones, and mobile books (Dictionaries, etc.), mobile TV, drive for recording media (CD, MD, DVD, Blu-ray disc, hard disk, etc.), reader for recording media (IC card, smart media, memory stick, etc.), optical camera, digital camera, parabolic Antenna, electric tool, VTR, iron, hair dryer, rice cooker, electric Range
- injection molded products golf tees, cotton swab cores, candy sticks, brushes, toothbrushes, helmets, syringes, dishes, Cups, combs, razor handles, tape cassettes and cases, disposable spoons and forks, stationery such as ballpoint pens, etc.
- the molded product of the present invention includes a binding tape (a binding band), a prepaid card, a balloon, a pantyhose, a hair cap, a sponge, a cellophane tape, an umbrella, a feather, a plastic glove, a hair cap, a rope, a tube, a foam tray, a foam It can be used for various fields such as cushioning materials, cushioning materials, packing materials, and cigarette filters.
- the molded article of the present invention is also used for vehicle parts such as lamp sockets, lamp reflectors, lamp housings, instrument panels, center console panels, deflector parts, car navigation parts, car audio visual parts, and auto mobile computer parts. be able to.
- vehicle parts such as lamp sockets, lamp reflectors, lamp housings, instrument panels, center console panels, deflector parts, car navigation parts, car audio visual parts, and auto mobile computer parts.
- the present invention may also include a method for improving the fluidity of polycarbonate or polyarylate using the above-described fluidity improver.
- the present invention may include a method for improving the fluidity of polycarbonate or polyarylate, which comprises the step of mixing the above-described fluidity improver and polycarbonate or polyarylate.
- it can be expressed as the use of the above-described fluidity improver for improving the fluidity of polycarbonate or polyarylate.
- the polyester contained in the fluidity improver of the present invention is mixed in a mixed solvent having a volume ratio of p-chlorophenol (manufactured by Tokyo Chemical Industry Co., Ltd.) and toluene of 3: 8 so that the concentration becomes 0.25% by weight.
- a sample solution The standard material was polystyrene, and a similar sample solution was prepared.
- measurement was performed using a high temperature GPC (manufactured by Viscotek: 350 HT-GPC System) under conditions of a column temperature of 80 ° C. and a flow rate of 1.00 mL / min.
- a differential refractometer (RI) was used as a detector.
- the spiral flow (mm) of the resin composition was evaluated using an injection molding machine (IS-100, manufactured by Toshiba Machine Co., Ltd.).
- the polycarbonate resin composition had a molding temperature of 310 ° C., a mold temperature of 80 ° C., and an injection pressure of 100 MPa
- the polyarylate resin composition had a molding temperature of 320 ° C., a mold temperature of 100 ° C., and an injection pressure of 120 MPa.
- the thickness of the molded product was 1 mm and the width was 10 mm.
- acetic anhydride 1.04 equivalent of acetic anhydride was added to the phenolic hydroxyl group in the monomer, and 0.001% by mass of sodium acetate was added as a polymerization catalyst to the yield of the polyester.
- the monomer was reacted at 145 ° C. under atmospheric pressure and nitrogen gas atmosphere to obtain a uniform solution, and then the temperature was raised to 250 ° C. at 2 ° C./min while distilling off the generated acetic acid. Stir. While maintaining the temperature, the pressure was reduced to 5 Torr over about 60 minutes, and then the reduced pressure state was maintained.
- the inside of the closed reactor was returned to normal pressure with nitrogen gas, and the antioxidants (B-1) and (B-4) were each added to the mass of the produced polyester by 0.2. Each mass% was added and stirred for 5 minutes to obtain a fluidity improver. Thereafter, the fluidity improver was taken out from the reactor. The number average molecular weight of the obtained polyester was 12,000. The obtained polyester is designated as (C-1).
- the resin, the antioxidant and the polyester obtained in Example 1 were blended in the proportions (parts by weight) shown in Table 1 and supplied to the twin screw extruder.
- the resin composition was obtained by melt-kneading at the extrusion temperature shown in FIG.
- the performance of the fluidity improver was evaluated by measuring the physical properties of the resin composition.
- Table 3 shows various physical properties of the resin composition.
- Example 2 and 3 A polyester was obtained in the same manner as in Example 1 except that the time from the start of decompression to the removal of the fluidity improver was 1.7 hours and 2 hours. The number average molecular weights of the obtained polyester were 17,000 and 27,000, respectively. The obtained polyesters are designated as (C-2) and (C-3), respectively. Further, in the same manner as in Example 1, the resin, the antioxidant and the obtained polyester were blended at the ratio (parts by weight) shown in Table 1 and supplied to the twin screw extruder, and melted at the extrusion temperature shown in Table 1. The resin composition was obtained by kneading. And the performance of the fluidity improver was evaluated by measuring the physical properties of the resin composition. Table 3 shows various physical properties of the resin composition.
- Example 4 In a closed reactor equipped with a reflux condenser, a thermometer, a nitrogen gas inlet tube, and a stirring rod, 4,4′-dihydroxybiphenyl, bisphenol A, and sebacic acid were mixed at a molar ratio of 24:24:52. In addition, 6.7 mol% of 4-t-butylphenol as an end-capping agent is added to the total amount of the monomer, 1.03 equivalent of acetic anhydride is added to the phenolic hydroxyl group in the monomer, and 0.001 mass% sodium acetate with respect to the yield was added as a polymerization catalyst. The monomer was reacted at 145 ° C.
- the obtained polyester is designated as (C-4). Further, in the same manner as in Example 1, the resin, the antioxidant and the obtained polyester were blended at the ratio (parts by weight) shown in Table 1 and supplied to the twin screw extruder, and melted at the extrusion temperature shown in Table 1. The resin composition was obtained by kneading. And the performance of the fluidity improver was evaluated by measuring the physical properties of the resin composition. Table 3 shows various physical properties of the resin composition.
- Example 5 In a closed reactor equipped with a reflux condenser, a thermometer, a nitrogen gas inlet tube and a stirring rod, 4,4′-dihydroxybiphenyl, bisphenol A, sebacic acid, and tetradecanedioic acid in a molar ratio of 45: 5: Charged at a ratio of 37.5: 12.5, 1.04 equivalents of acetic anhydride was added to the phenolic hydroxyl group in the monomer, and 0.001% by mass of sodium acetate was used as a polymerization catalyst for the polyester yield. added. The monomer was reacted at 145 ° C. under atmospheric pressure and nitrogen gas atmosphere to obtain a uniform solution, and then the temperature was raised to 250 ° C.
- the obtained polyester is designated as (C-5). Further, in the same manner as in Example 1, the resin, the antioxidant and the obtained polyester were blended at the ratio (parts by weight) shown in Table 1 and supplied to the twin screw extruder, and melted at the extrusion temperature shown in Table 1. The resin composition was obtained by kneading. And the performance of the fluidity improver was evaluated by measuring the physical properties of the resin composition. Table 3 shows various physical properties of the resin composition.
- Example 6 A polyester was obtained in the same manner as in Example 1 except that bisphenol A and sebacic acid were added as monomers in a molar ratio of 50:50. The number average molecular weight of the obtained polyester was 17,000. The obtained polyester is designated as (C-6). Further, in the same manner as in Example 1, the resin, the antioxidant and the obtained polyester were blended at the ratio (parts by weight) shown in Table 1 and supplied to the twin screw extruder, and melted at the extrusion temperature shown in Table 1. The resin composition was obtained by kneading. And the performance of the fluidity improver was evaluated by measuring the physical properties of the resin composition. Table 3 shows various physical properties of the resin composition.
- Example 1 A polyester was obtained in the same manner as in Example 5 except that 4,4′-dihydroxybiphenyl, sebacic acid and tetradecanedioic acid were added as monomers in a molar ratio of 50: 37.5: 12.5. . The number average molecular weight of the obtained polyester was 17,000. The obtained polyester is designated as (C-8). Further, in the same manner as in Example 1, the resin, the antioxidant and the obtained polyester were blended at the ratio (parts by weight) shown in Table 1 and supplied to the twin screw extruder, and melted at the extrusion temperature shown in Table 1. The resin composition was obtained by kneading. And the performance of the fluidity improver was evaluated by measuring the physical properties of the resin composition. Table 3 shows various physical properties of the resin composition.
- Example 11 4,4'-dihydroxybiphenyl, bisphenol A, and sebacic acid are charged as monomers in a molar ratio of 30:20:50, and sodium acetate as a polymerization catalyst is not used.
- a polyester was obtained in the same manner as in Example 1 except that the time until the pressure was returned to normal pressure with nitrogen gas was 3 hours. The number average molecular weight of the obtained polyester was 11,300. The obtained polyester is designated as (C-7). Further, in the same manner as in Example 1, the resin, the antioxidant and the obtained polyester were blended at the ratio (parts by weight) shown in Table 1 and supplied to the twin screw extruder, and melted at the extrusion temperature shown in Table 2. The resin composition was obtained by kneading. And the performance of the fluidity improver was evaluated by measuring the physical properties of the resin composition. Table 4 shows various physical properties of the resin composition.
- Example 5 since the fluidity improver did not contain an antioxidant in advance, the YI of the resin composition was slightly higher than in Examples 1 to 4. From this, it is understood that the fluidity improver preferably contains an appropriate amount of an antioxidant in advance. In Example 10, since the end of the polyester is sealed, yellowing of the resin composition is further suppressed, and the amount of the antioxidant is smaller than the amount used in Example 8 when melt-kneading with the polycarbonate resin. However, it can be seen that an equivalent YI can be obtained. Further, from the comparison between Example 11 and Comparative Example 5, the addition of the fluidity improver of the present invention allows the resin to be obtained with respect to the polyarylate resin without impairing the original properties of the resin, as in the case of the polycarbonate resin. It can be seen that the fluidity of the can be improved.
- the fluidity improver of the present invention the original properties (transparency, impact resistance, high rigidity, mechanical strength, surface peel resistance, heat resistance, chemical resistance, etc.) of the polycarbonate resin and polyarylate resin are impaired.
- the fluidity at the time of molding can be improved. Therefore, the polycarbonate resin composition and the polyarylate resin composition of the present invention can realize molding of a molded product having a large size, a thin wall, and a complicated shape, and a hard coat product, a glazing material, a light diffusion plate, and an optical disk. It is suitably used for a wide range of applications such as substrates, light guide plates, medical materials, and miscellaneous goods.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Polyesters Or Polycarbonates (AREA)
Abstract
Description
で表されるビスフェノール成分(B)、および、
下記一般式(3)
HOOC-R1-COOH ・・・(3)
(式中、R1は主鎖原子数2~18で分岐を含んでいてもよい2価の直鎖状置換基を示す。)
で表されるジカルボン酸成分(C)を含むモノマーを重縮合してなるポリエステルを含み、(B)成分と(C)成分とのモル比率が、(B):(C)=45:55~55:45であり、上記ポリエステルにおける、上記(B)成分および上記(C)成分に由来する部分の含有率が、50モル%以上である、ポリカーボネート用およびポリアリレート用流動性向上剤。
で表されるビフェノール成分(A)、
下記一般式(2)
で表されるビスフェノール成分(B)、および、
下記一般式(3)
HOOC-R1-COOH ・・・(3)
(式中、R1は主鎖原子数2~18で分岐を含んでいてもよい2価の直鎖状置換基を示す。)
で表されるジカルボン酸成分(C)を含むモノマーを重縮合してなるポリエステルを含み、
(A)成分および(B)成分と、(C)成分とのモル比率が、{(A)+(B)}:(C)=45:55~55:45であり、
上記ポリエステルにおける、上記(A)成分、上記(B)成分および上記(C)成分に由来する部分の含有率が、50モル%以上である、ポリカーボネート用およびポリアリレート用流動性向上剤。
で表されるビスフェノール成分(B)、
下記一般式(3)
HOOC-R1-COOH ・・・(3)
(式中、R1は主鎖原子数2~18で分岐を含んでいてもよい2価の直鎖状置換基を示す。)
で表されるジカルボン酸成分(C)、および、
下記一般式(4)
HOOC-R2-COOH ・・・(4)
(式中、R2は主鎖原子数4~20で分岐を含んでいてもよい、上記R1よりも主鎖原子数の数が多い2価の直鎖状置換基を示す。)
で表されるジカルボン酸成分(D)を重縮合してなるポリエステルであり、
(A)成分および(B)成分と、(C)成分および(D)成分とのモル比率が、{(A)+(B)}:{(C)+(D)}=45:55~55:45であり、
上記ポリエステルにおける、上記(A)成分、上記(B)成分、上記(C)成分および上記(D)成分に由来する部分の含有率が、50モル%以上である、ポリカーボネート用およびポリアリレート用流動性向上剤。
で表されるビスフェノール成分(B)、および、
下記一般式(3)
HOOC-R1-COOH ・・・(3)
(式中、R1は主鎖原子数2~18で分岐を含んでいてもよい2価の直鎖状置換基を示す。)
で表されるジカルボン酸成分(C)を含むモノマーを重縮合してなるポリエステルを含み、
(B)成分と(C)成分とのモル比率が、(B):(C)=45:55~55:45であり、
上記ポリエステルにおける、上記(B)成分および上記(C)成分に由来する部分の含有率が、50モル%以上である流動性向上剤と、
ポリカーボネートまたはポリアリレートと、を混合する工程を含む、ポリカーボネートまたはポリアリレートの流動性を向上させる方法。
で表されるビスフェノール成分(B)、および、
下記一般式(3)
HOOC-R1-COOH ・・・(3)
(式中、R1は主鎖原子数2~18で分岐を含んでいてもよい2価の直鎖状置換基を示す。)
で表されるジカルボン酸成分(C)に由来する部分を含むことを特徴とし、さらに、(B)成分と(C)成分とのモル比率が、(B):(C)=45:55~55:45であり、上記ポリエステルにおける、上記(B)成分および上記(C)成分に由来する部分の含有率が、50モル%以上であることを特徴とする。
で表されるビスフェノール成分(B)に由来する部分、および、
下記一般式(3)
HOOC-R1-COOH ・・・(3)
(式中、R1は主鎖原子数2~18で分岐を含んでいてもよい2価の直鎖状置換基を示す。)
で表されるジカルボン酸成分(C)に由来する部分が、(A)成分および(B)成分と、(C)成分とのモル比率が、{(A)+(B)}:(C)=45:55~55:45となるように含まれ、かつ、上記(A)成分、上記(B)成分および上記(C)成分に由来する部分の含有率が、50モル%以上であることを特徴とする。
で表されるビスフェノール成分(B)に由来する部分、
下記一般式(3)
HOOC-R1-COOH ・・・(3)
(式中、R1は主鎖原子数2~18で分岐を含んでいてもよい2価の直鎖状置換基を示す。)
で表されるジカルボン酸成分(C)に由来する部分、および、
下記一般式(4)
HOOC-R2-COOH ・・・(4)
(式中、R2は主鎖原子数4~20で分岐を含んでいてもよい、上記R1よりも主鎖原子数の数が多い2価の直鎖状置換基を示す。)
で表されるジカルボン酸成分(D)に由来する部分が、(A)成分および(B)成分と、(C)成分および(D)成分とのモル比率が、{(A)+(B)}:{(C)+(D)}=45:55~55:45となるように含まれ、かつ、上記(A)成分、上記(B)成分上記(C)成分および上記(D)成分に由来する部分の含有率が、50モル%以上であることを特徴とする。
末端封止率(%)={[封止された末端官能基数]/([封止された末端官能基数]+[封止されていない末端官能基数])}×100 ・・・(5)
封止に用いる一官能性の低分子化合物としては、一価のフェノール、炭素数1~20のモノアミン、または脂肪族モノカルボン酸が挙げられる。一価のフェノールの具体例としては、フェノール、p-クレゾール、p-t-ブチルフェノール、p-t-オクチルフェノール、p-クミルフェノール、p-ノニルフェノール、p-t-アミルフェノール、4-ヒドロキシビフェニル、およびこれらの任意の混合物等が挙げられる。脂肪族モノカルボン酸の具体例としては、酢酸、プロピオン酸、酪酸、吉草酸、カプロン酸、カプリル酸、ラウリン酸、トリデカン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ピバリン酸、イソ酪酸等の脂肪族モノカルボン酸、およびこれらの任意の混合物等が挙げられる。これらのなかでも、高沸点で重合が容易である点から、ミリスチン酸、パルミチン酸、ステアリン酸が好ましい。モノアミンの具体例としては、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ヘキシルアミン、オクチルアミン、デシルアミン、ステアリルアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン等の脂肪族モノアミン、およびこれらの任意の混合物等が挙げられる。
HOOC-R1-COOH ・・・(3)
中のR1は、主鎖原子数2~18で分岐を含んでいてもよい2価の直鎖状置換基を表す。ここで主鎖原子数とは主鎖骨格の原子の数であり、例えば-R1-が-(CH2)8-である場合には、主鎖原子数は炭素原子の数であり「8」となる。流動性向上剤自体の溶融粘度が低くなることから、R1は、分岐を含まない直鎖状置換基であることが好ましく、さらには分岐を含まない直鎖の脂肪族炭化水素鎖であることが好ましい。また、R1は飽和でも不飽和でもよいが、飽和脂肪族炭化水素鎖であることが好ましい。不飽和結合を含む場合には、上記ポリエステルが屈曲性を十分に得られないことがあり、流動性向上剤自体の溶融粘度の増加を招く場合がある。上記ポリエステルの重合の容易さ、およびガラス転移点の向上を両立することができる点で、R1は炭素数2~18の直鎖の飽和脂肪族炭化水素鎖であることが好ましく、炭素数4~16の直鎖の飽和脂肪族炭化水素鎖であることがより好ましく、炭素数8~14の直鎖の飽和脂肪族炭化水素鎖であることがさらに好ましく、炭素数8の直鎖の飽和脂肪族炭化水素鎖であることが最も好ましい。上記ポリエステルのガラス転移点の向上は、ポリカーボネート樹脂やポリアリレート樹脂に上記流動性向上剤を添加して得られる樹脂組成物の耐熱性の向上につながる。流動性向上剤自体の溶融粘度が低下する点で、R1の主鎖原子数は偶数であることが好ましい。以上の点から、R1は特に-(CH2)8-、-(CH2)10-、-(CH2)12-から選ばれる1種であることが好ましい。
HOOC-R2-COOH ・・・(4)
中のR2は、主鎖原子数4~20で分岐を含んでいてもよく、R1よりも主鎖原子数の数が多い2価の直鎖状置換基を表す。R2は、流動性向上剤自体の溶融粘度が低くなることから、分岐を含まない直鎖状置換基であることが好ましく、分岐を含まない直鎖の脂肪族炭化水素鎖であることがより好ましい。また、R2は飽和でも不飽和でもよいが、飽和脂肪族炭化水素鎖であることが好ましい。不飽和結合を含む場合には、上記ポリエステルが屈曲性を十分に得られないことがあり、流動性向上剤自体の溶融粘度の増加を招く場合がある。R2は、炭素数4~20の直鎖の飽和脂肪族炭化水素鎖であることが好ましく、炭素数8~18の直鎖の飽和脂肪族炭化水素鎖であることがより好ましく、炭素数10~18の直鎖の飽和脂肪族炭化水素鎖であることがさらに好ましい。流動性向上剤自体の溶融粘度が低下する点で、R1の主鎖原子数は偶数であることが好ましい。R1とR2の主鎖原子数の違いが大きいほど、流動性向上剤の結晶性が低下して流動性向上剤のペレットへの加工性が増す。特に結晶性が低下して加工性に優れるポリエステルが得られるという観点から、R1およびR2に相当する部分の主鎖原子数mおよびnが、下記一般式(6)を満たすことが好ましい。
n-m≧4 ・・・(6)
化学的安定性、入手性の観点から、R2は特に-(CH2)10-、-(CH2)12-、-(CH2)18-から選ばれる1種であることが好ましい。
[数平均分子量の測定方法]
本発明の流動性向上剤に含まれるポリエステルを、p-クロロフェノール(東京化成工業株式会社製)とトルエンとの体積比が3:8の混合溶媒に、濃度が0.25重量%となるように溶解して試料溶液を調製した。標準物質はポリスチレンとし、同様の試料溶液を調製した。そして、高温GPC(Viscotek社製:350 HT-GPC System)を用いて、カラム温度80℃、流速1.00mL/分の条件で測定した。検出器は、示差屈折計(RI)を使用した。
樹脂組成物のスパイラルフロー(mm)を、射出成形機(IS-100、東芝機械株式会社製)を用いて評価した。ポリカーボネート樹脂組成物は成形温度310℃、金型温度80℃、射出圧力100MPaとし、ポリアリレート樹脂組成物は成形温度320℃、金型温度100℃、射出圧力120MPaとした。そして、成形品の肉厚は1mm、幅は10mmとした。
ISO 179に従い、樹脂組成物のノッチ付きの試験片を作製し、この試験片のシャルピー衝撃強度(kJ/m2)を測定した。
射出成形により縦4cm×横4cm×厚さ4mmの試験片を作製し、ヘイズメーター(日本電色工業株式会社製「ND-1001DP」)を用いて、樹脂組成物の全光線透過率(%)およびヘイズ(%)を測定した。
射出成形により縦4cm×横4cm×厚さ4mmの試験片を作製し、分光式色彩計SE-2000(日本電色工業株式会社製)を用いて、樹脂組成物の初期黄変度(YI)を測定した。
機械的特性を評価するため、AUTOGRAPH AG-I(株式会社島津製作所製)を用いて、JIS K7171に準拠して(測定温度23℃、曲げ試験片の寸法:長さ80mm×幅10mm×厚さ4mm)、樹脂組成物の曲げ弾性率(MPa)および曲げ強度(MPa)を測定した。
耐熱性を評価するため、HOT.TESTER S-3(株式会社東洋精機製作所製)を用いて、JIS K7191に準拠して(試験条件:荷重1.8MPa、昇温速度120℃/時間)、樹脂組成物の荷重たわみ温度(℃)を測定した。
[樹脂]
(A-1)ポリカーボネート、タフロンA2200(出光興産株式会社製)
(A-2)ポリカーボネート、タフロンA1900(出光興産株式会社製)
(A-3)ポリカーボネート、タフロンA1700(出光興産株式会社製)
(A-4)ポリアリレート、UポリマーU-100(ユニチカ株式会社製)
[酸化防止剤]
(B-1)ホスファイト系酸化防止剤:PEP36(株式会社アデカ製)
(B-2)ホスファイト系酸化防止剤:2112(株式会社アデカ製)
(B-3)ホスファイト系酸化防止剤:Irgafos126(BASF JAPAN Ltd.製)
(B-4)ヒンダードフェノール系酸化防止剤:AO60(株式会社アデカ製)
[流動性向上剤]
〔実施例1〕
還流冷却器、温度計、窒素ガス導入管および攪拌棒を備え付けた密閉型反応器に、4,4’-ジヒドロキシビフェニル、ビスフェノールA、セバシン酸を、モル比率にて25:25:50の割合で仕込み、モノマー中のフェノール性水酸基に対して1.04当量の無水酢酸を加えるとともに、ポリエステルの収量に対して0.001質量%の酢酸ナトリウムを重合触媒として加えた。常圧、窒素ガス雰囲気下で145℃にてモノマーを反応させて均一な溶液を得た後、生じた酢酸を留去しながら2℃/分で250℃まで昇温し、250℃で1時間撹拌した。引き続きその温度を保ったまま、約60分間かけて5Torrまで減圧した後、その減圧状態を維持した。減圧開始から1.5時間後、密閉型反応器内を窒素ガスで常圧に戻し、生成したポリエステルの質量に対し、酸化防止剤(B-1)および(B-4)をそれぞれ0.2質量%ずつ添加し、5分間撹拌して流動性向上剤を得た。その後、反応器から流動性向上剤を取り出した。得られたポリエステルの数平均分子量は12,000であった。得られたポリエステルを(C-1)とする。
減圧開始から流動性向上剤を取り出すまでの時間を1.7時間および2時間にした以外は、実施例1と同様にしてポリエステルを得た。得られたポリエステルの数平均分子量はそれぞれ17,000および27,000であった。得られたポリエステルをそれぞれ(C-2)、(C-3)とする。また、実施例1と同様にして、表1に示す割合(重量部)で樹脂、酸化防止剤および得られたポリエステルを配合して二軸押出機に供給し、表1に示す押出温度で溶融混練して樹脂組成物を得た。そして、樹脂組成物の物性を測定することによって、流動性向上剤の性能を評価した。上記樹脂組成物の各種物性を表3に示す。
還流冷却器、温度計、窒素ガス導入管および攪拌棒を備え付けた密閉型反応器に、4,4’-ジヒドロキシビフェニル、ビスフェノールA、セバシン酸を、モル比率にて24:24:52の割合で仕込み、さらにモノマー全量に対して6.7モル%の末端封止剤としての4-t-ブチルフェノールを加え、モノマー中のフェノール性水酸基に対して1.03当量の無水酢酸を加えるとともに、ポリエステルの収量に対して0.001質量%の酢酸ナトリウムを重合触媒として加えた。常圧、窒素ガス雰囲気下で145℃にてモノマーを反応させて均一な溶液を得た後、生じた酢酸を留去しながら2℃/分で260℃まで昇温し、240℃で1時間撹拌した。引き続きその温度を保ったまま、約60分間かけて5Torrまで減圧した後、その減圧状態を維持した。減圧開始から3時間後、密閉型反応器内を窒素ガスで常圧に戻し、生成したポリエステルの質量に対し、酸化防止剤(B-1)および(B-4)をそれぞれ0.2質量%ずつ添加し、5分間撹拌して流動性向上剤を得た。その後、反応器から流動性向上剤を取り出した。得られたポリエステルの数平均分子量は11,000であり、末端の封止率は70%であった。得られたポリエステルを(C-4)とする。また、実施例1と同様にして、表1に示す割合(重量部)で樹脂、酸化防止剤および得られたポリエステルを配合して二軸押出機に供給し、表1に示す押出温度で溶融混練して樹脂組成物を得た。そして、樹脂組成物の物性を測定することによって、流動性向上剤の性能を評価した。上記樹脂組成物の各種物性を表3に示す。
還流冷却器、温度計、窒素ガス導入管および攪拌棒を備え付けた密閉型反応器に、4,4’-ジヒドロキシビフェニル、ビスフェノールA、セバシン酸、テトラデカン二酸を、モル比率にて45:5:37.5:12.5の割合で仕込み、モノマー中のフェノール性水酸基に対して1.04当量の無水酢酸を加えるとともに、ポリエステルの収量に対して0.001質量%の酢酸ナトリウムを重合触媒として加えた。常圧、窒素ガス雰囲気下で145℃にてモノマーを反応させて均一な溶液を得た後、生じた酢酸を留去しながら2℃/分で250℃まで昇温し、250℃で1時間撹拌した。引き続きその温度を保ったまま、約60分間かけて5Torrまで減圧した後、その減圧状態を維持した。減圧開始から1.7時間後、密閉型反応器内を窒素ガスで常圧に戻し、反応器からポリエステルを取り出した。得られたポリエステルの数平均分子量は17,000であった。得られたポリエステルを(C-5)とする。また、実施例1と同様にして、表1に示す割合(重量部)で樹脂、酸化防止剤および得られたポリエステルを配合して二軸押出機に供給し、表1に示す押出温度で溶融混練して樹脂組成物を得た。そして、樹脂組成物の物性を測定することによって、流動性向上剤の性能を評価した。上記樹脂組成物の各種物性を表3に示す。
モノマーとしてビスフェノールA、セバシン酸を、モル比率にて50:50の割合で仕込んだ以外は、実施例1と同様にしてポリエステルを得た。得られたポリエステルの数平均分子量は17,000であった。得られたポリエステルを(C-6)とする。また、実施例1と同様にして、表1に示す割合(重量部)で樹脂、酸化防止剤および得られたポリエステルを配合して二軸押出機に供給し、表1に示す押出温度で溶融混練して樹脂組成物を得た。そして、樹脂組成物の物性を測定することによって、流動性向上剤の性能を評価した。上記樹脂組成物の各種物性を表3に示す。
モノマーとして4,4’-ジヒドロキシビフェニル、セバシン酸、テトラデカン二酸を、モル比率にて50:37.5:12.5の割合で仕込んだ以外は、実施例5と同様にしてポリエステルを得た。得られたポリエステルの数平均分子量は17,000であった。得られたポリエステルを(C-8)とする。また、実施例1と同様にして、表1に示す割合(重量部)で樹脂、酸化防止剤および得られたポリエステルを配合して二軸押出機に供給し、表1に示す押出温度で溶融混練して樹脂組成物を得た。そして、樹脂組成物の物性を測定することによって、流動性向上剤の性能を評価した。上記樹脂組成物の各種物性を表3に示す。
樹脂、酸化防止剤およびポリエステルを表1、2に示す割合(重量部)で配合して二軸押出機に供給し、表1、2に示す押出温度で溶融混練して樹脂組成物を得た。そして、樹脂組成物の物性を測定することによって、流動性向上剤の性能を評価した。上記樹脂組成物の各種物性を表3、4に示す。
モノマーとして4,4’-ジヒドロキシビフェニル、ビスフェノールA、セバシン酸を、モル比率にて30:20:50の割合で仕込み、重合触媒である酢酸ナトリウムを使用せず、減圧開始から密閉型反応機内を窒素ガスで常圧に戻すまでの時間を3時間にした以外は、実施例1と同様にしてポリエステルを得た。得られたポリエステルの数平均分子量は11,300であった。得られたポリエステルを(C-7)とする。また、実施例1と同様にして、表1に示す割合(重量部)で樹脂、酸化防止剤および得られたポリエステルを配合して二軸押出機に供給し、表2に示す押出温度で溶融混練して樹脂組成物を得た。そして、樹脂組成物の物性を測定することによって、流動性向上剤の性能を評価した。上記樹脂組成物の各種物性を表4に示す。
Claims (12)
- 下記一般式(2)
で表されるビスフェノール成分(B)、および、
下記一般式(3)
HOOC-R1-COOH ・・・(3)
(式中、R1は主鎖原子数2~18で分岐を含んでいてもよい2価の直鎖状置換基を示す。)
で表されるジカルボン酸成分(C)を含むモノマーを重縮合してなるポリエステルを含み、
(B)成分と(C)成分とのモル比率が、(B):(C)=45:55~55:45であり、
上記ポリエステルにおける、上記(B)成分および上記(C)成分に由来する部分の含有率が、50モル%以上である、ポリカーボネート用およびポリアリレート用流動性向上剤。 - 下記一般式(1)
で表されるビフェノール成分(A)、
下記一般式(2)
で表されるビスフェノール成分(B)、および、
下記一般式(3)
HOOC-R1-COOH ・・・(3)
(式中、R1は主鎖原子数2~18で分岐を含んでいてもよい2価の直鎖状置換基を示す。)
で表されるジカルボン酸成分(C)を含むモノマーを重縮合してなるポリエステルを含み、
(A)成分および(B)成分と、(C)成分とのモル比率が、{(A)+(B)}:(C)=45:55~55:45であり、
上記ポリエステルにおける、上記(A)成分、上記(B)成分および上記(C)成分に由来する部分の含有率が、50モル%以上である、ポリカーボネート用およびポリアリレート用流動性向上剤。 - 下記一般式(1)
で表されるビフェノール成分(A)、
下記一般式(2)
で表されるビスフェノール成分(B)、
下記一般式(3)
HOOC-R1-COOH ・・・(3)
(式中、R1は主鎖原子数2~18で分岐を含んでいてもよい2価の直鎖状置換基を示す。)
で表されるジカルボン酸成分(C)、および、
下記一般式(4)
HOOC-R2-COOH ・・・(4)
(式中、R2は主鎖原子数4~20で分岐を含んでいてもよい、上記R1よりも主鎖原子数の数が多い2価の直鎖状置換基を示す。)
で表されるジカルボン酸成分(D)を重縮合してなるポリエステルであり、
(A)成分および(B)成分と、(C)成分および(D)成分とのモル比率が、{(A)+(B)}:{(C)+(D)}=45:55~55:45であり、
上記ポリエステルにおける、上記(A)成分、上記(B)成分、上記(C)成分および上記(D)成分に由来する部分の含有率が、50モル%以上である、ポリカーボネート用およびポリアリレート用流動性向上剤。 - ホスファイト系酸化防止剤をさらに含む流動性向上剤であって、
上記流動性向上剤中に含まれる上記ホスファイト系酸化防止剤の含有量が、流動性向上剤に含まれるポリエステルの重量に対して0.005~5重量%である、請求項1~3のいずれか1項に記載の流動性向上剤。 - ヒンダードフェノール系酸化防止剤をさらに含む流動性向上剤であって、
上記流動性向上剤中に含まれる上記ヒンダードフェノール系酸化防止剤の含有量が、流動性向上剤に含まれるポリエステルの重量に対して0.005~5重量%である、請求項4に記載の流動性向上剤。 - 上記ポリエステルの数平均分子量が10000~30000である、請求項1~5のいずれか1項に記載の流動性向上剤。
- 上記ポリエステル中の(C)成分からなる部分のR1に相当する部分が、直鎖の飽和脂肪族炭化水素鎖であり、
上記ポリエステルに(D)成分からなる部分が含まれている場合には、上記ポリエステル中の(D)成分からなる部分のR2に相当する部分が、直鎖の飽和脂肪族炭化水素鎖である、請求項1~6のいずれか1項に記載の流動性向上剤。 - 上記ポリエステル中の(C)成分からなる部分のR1に相当する部分は、主鎖原子数が偶数であり、
上記ポリエステルに(D)成分からなる部分が含まれている場合には、上記ポリエステル中の(D)成分からなる部分のR2に相当する部分は、主鎖原子数が偶数である、請求項1~7のいずれか1項に記載の流動性向上剤。 - 上記ポリエステルの末端が一官能性の低分子化合物で封止され、その封止率が60%以上である、請求項1~8のいずれか1項に記載の流動性向上剤。
- ポリカーボネート樹脂またはポリアリレート樹脂80~99.9重量%と、請求項1~9のいずれか1項に記載の流動性向上剤0.1~20重量%とを含有する樹脂組成物。
- 請求項10に記載の樹脂組成物を成形して得られる成形品。
- 下記一般式(2)
で表されるビスフェノール成分(B)、および、
下記一般式(3)
HOOC-R1-COOH ・・・(3)
(式中、R1は主鎖原子数2~18で分岐を含んでいてもよい2価の直鎖状置換基を示す。)
で表されるジカルボン酸成分(C)を含むモノマーを重縮合してなるポリエステルを含み、
(B)成分と(C)成分とのモル比率が、(B):(C)=45:55~55:45であり、
上記ポリエステルにおける、上記(B)成分および上記(C)成分に由来する部分の含有率が、50モル%以上である流動性向上剤と、
ポリカーボネートまたはポリアリレートと、を混合する工程を含む、ポリカーボネートまたはポリアリレートの流動性を向上させる方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201580053478.3A CN107075238B (zh) | 2014-10-03 | 2015-10-05 | 用于聚碳酸酯及聚芳酯的流动性改进剂、聚碳酸酯树脂组合物、聚芳酯树脂组合物、以及树脂组合物的成型品 |
EP15847031.0A EP3202849B1 (en) | 2014-10-03 | 2015-10-05 | Flowability improver for polycarbonate and polyarylate, polycarbonate resin composition, polyarylate resin composition, and molded article thereof |
JP2016552190A JP6655543B2 (ja) | 2014-10-03 | 2015-10-05 | ポリカーボネート用およびポリアリレート用流動性向上剤、ポリカーボネート樹脂組成物、ポリアリレート樹脂組成物、並びにその成形品 |
US15/477,483 US10253178B2 (en) | 2014-10-03 | 2017-04-03 | Flowability improver for polycarbonate and polyarylate, polycarbonate resin composition, polyarylate resin composition, and molded article thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014-205199 | 2014-10-03 | ||
JP2014205199 | 2014-10-03 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15/477,483 Continuation US10253178B2 (en) | 2014-10-03 | 2017-04-03 | Flowability improver for polycarbonate and polyarylate, polycarbonate resin composition, polyarylate resin composition, and molded article thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016052748A1 true WO2016052748A1 (ja) | 2016-04-07 |
Family
ID=55630768
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/078210 WO2016052748A1 (ja) | 2014-10-03 | 2015-10-05 | ポリカーボネート用およびポリアリレート用流動性向上剤、ポリカーボネート樹脂組成物、ポリアリレート樹脂組成物、並びにその成形品 |
Country Status (5)
Country | Link |
---|---|
US (1) | US10253178B2 (ja) |
EP (1) | EP3202849B1 (ja) |
JP (1) | JP6655543B2 (ja) |
CN (1) | CN107075238B (ja) |
WO (1) | WO2016052748A1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018095852A (ja) * | 2016-12-15 | 2018-06-21 | ユニチカ株式会社 | ポリアミド樹脂組成物およびそれを成形してなる成形体 |
WO2018230370A1 (ja) * | 2017-06-12 | 2018-12-20 | 株式会社カネカ | 熱可塑性樹脂、熱可塑性樹脂組成物および熱伝導シート |
JPWO2017175790A1 (ja) * | 2016-04-06 | 2019-02-14 | 株式会社カネカ | 樹脂組成物および自動車部品 |
JPWO2017175791A1 (ja) * | 2016-04-06 | 2019-02-14 | 株式会社カネカ | ポリカーボネート樹脂用流動性向上剤およびその製造方法ならびにポリカーボネート樹脂組成物およびその成形品 |
US20190119490A1 (en) * | 2016-04-06 | 2019-04-25 | Kaneka Corporation | Resin composition, moulded article, and plated moulded article |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60104155A (ja) * | 1983-11-12 | 1985-06-08 | Toyobo Co Ltd | 樹脂組成物 |
JPS61149901A (ja) * | 1984-12-25 | 1986-07-08 | Idemitsu Kosan Co Ltd | 光学機器用素材 |
JPS62174195A (ja) * | 1985-06-03 | 1987-07-30 | Canon Inc | 画像形成方法 |
JPH03203956A (ja) * | 1989-12-28 | 1991-09-05 | Nippon G Ii Plast Kk | ポリカーボネート組成物およびその製造方法 |
JPH07310002A (ja) * | 1994-05-19 | 1995-11-28 | Kanegafuchi Chem Ind Co Ltd | 熱可塑性樹脂組成物 |
JPH07310001A (ja) * | 1994-05-19 | 1995-11-28 | Kanegafuchi Chem Ind Co Ltd | 熱可塑性樹脂組成物 |
JPH07310003A (ja) * | 1994-05-19 | 1995-11-28 | Kanegafuchi Chem Ind Co Ltd | 熱可塑性樹脂組成物 |
JP2003026911A (ja) * | 2001-07-12 | 2003-01-29 | Mitsubishi Engineering Plastics Corp | ポリカーボネート樹脂組成物及びそれを用いた成形品 |
JP2006106719A (ja) * | 2004-09-10 | 2006-04-20 | Canon Inc | 電子写真感光体、プロセスカートリッジおよび電子写真装置 |
JP2007262290A (ja) * | 2006-03-29 | 2007-10-11 | Dainippon Ink & Chem Inc | ポリカーボネート樹脂組成物 |
JP2010083930A (ja) * | 2008-09-30 | 2010-04-15 | Unitika Ltd | 樹脂組成物 |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4126602A (en) * | 1977-12-22 | 1978-11-21 | Hooker Chemicals & Plastics Corp. | Aromatic polyesters having improved properties |
US4278785A (en) * | 1979-06-04 | 1981-07-14 | Hooker Chemicals & Plastics Corp. | Polyester composition, process therefor and molded articles therefrom |
US4452933A (en) * | 1983-06-09 | 1984-06-05 | General Electric Company | Stabilized polyester-polycarbonate blends and stabilization process therefor |
US4543313A (en) | 1984-08-02 | 1985-09-24 | Xerox Corporation | Toner compositions containing thermotropic liquid crystalline polymers |
EP0205083B1 (en) | 1985-06-03 | 1993-09-01 | Canon Kabushiki Kaisha | Image forming method and transfer recording medium therefor |
JPH0625253B2 (ja) | 1986-06-18 | 1994-04-06 | 三菱化成株式会社 | ポリカ−ボネ−ト樹脂の製造方法 |
JPH0768445B2 (ja) | 1988-04-22 | 1995-07-26 | 三菱化学株式会社 | 芳香族ポリカーボネート樹脂組成物 |
JPH04275360A (ja) | 1991-02-28 | 1992-09-30 | Nippon G Ii Plast Kk | 熱可塑性樹脂組成物 |
US5254610A (en) * | 1991-08-02 | 1993-10-19 | Eastman Kodak Company | Polyester/polycarbonate blends containing phosphites |
DE19820123A1 (de) * | 1998-05-06 | 1999-11-11 | Ticona Gmbh | Polyesterformmassen mit verbesserter Witterungsbeständigkeit |
JP2002249656A (ja) | 2000-12-19 | 2002-09-06 | Toray Ind Inc | 薄肉情報記録媒体部品用樹脂組成物および成形品 |
EP1792232B1 (en) | 2004-09-10 | 2015-09-02 | Canon Kabushiki Kaisha | Electrophotographic photosensitive member, process cartridge and electrophotographic apparatus |
JP5021192B2 (ja) * | 2004-12-06 | 2012-09-05 | 出光興産株式会社 | ポリカーボネート樹脂組成物及び成形体 |
US20100179286A1 (en) * | 2007-06-05 | 2010-07-15 | Teijin Limited | Polycarbonate resin composition |
US8114952B2 (en) * | 2008-05-16 | 2012-02-14 | Sabic Innovative Plastics Ip B.V. | Polycarbonate-polyester blends, methods of manufacture, and articles thereof |
JP2011084731A (ja) * | 2009-09-15 | 2011-04-28 | Muroran Institute Of Technology | 芳香族ポリエステル |
CN102498149B (zh) | 2009-09-16 | 2013-11-27 | 株式会社钟化 | 有机导热性添加剂、树脂组合物及硬化物 |
JP2011026593A (ja) | 2010-07-13 | 2011-02-10 | Mitsubishi Rayon Co Ltd | 流動性向上剤、該流動性向上剤を含有するポリカーボネート樹脂組成物、成形品 |
US9345298B2 (en) | 2010-11-15 | 2016-05-24 | Max Mirani Investments, Llc | Portable closet with separable tote |
JP5993179B2 (ja) | 2012-04-03 | 2016-09-14 | 帝人株式会社 | 芳香族ポリカーボネート樹脂組成物および成形品 |
-
2015
- 2015-10-05 JP JP2016552190A patent/JP6655543B2/ja active Active
- 2015-10-05 EP EP15847031.0A patent/EP3202849B1/en active Active
- 2015-10-05 CN CN201580053478.3A patent/CN107075238B/zh active Active
- 2015-10-05 WO PCT/JP2015/078210 patent/WO2016052748A1/ja active Application Filing
-
2017
- 2017-04-03 US US15/477,483 patent/US10253178B2/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60104155A (ja) * | 1983-11-12 | 1985-06-08 | Toyobo Co Ltd | 樹脂組成物 |
JPS61149901A (ja) * | 1984-12-25 | 1986-07-08 | Idemitsu Kosan Co Ltd | 光学機器用素材 |
JPS62174195A (ja) * | 1985-06-03 | 1987-07-30 | Canon Inc | 画像形成方法 |
JPH03203956A (ja) * | 1989-12-28 | 1991-09-05 | Nippon G Ii Plast Kk | ポリカーボネート組成物およびその製造方法 |
JPH07310002A (ja) * | 1994-05-19 | 1995-11-28 | Kanegafuchi Chem Ind Co Ltd | 熱可塑性樹脂組成物 |
JPH07310001A (ja) * | 1994-05-19 | 1995-11-28 | Kanegafuchi Chem Ind Co Ltd | 熱可塑性樹脂組成物 |
JPH07310003A (ja) * | 1994-05-19 | 1995-11-28 | Kanegafuchi Chem Ind Co Ltd | 熱可塑性樹脂組成物 |
JP2003026911A (ja) * | 2001-07-12 | 2003-01-29 | Mitsubishi Engineering Plastics Corp | ポリカーボネート樹脂組成物及びそれを用いた成形品 |
JP2006106719A (ja) * | 2004-09-10 | 2006-04-20 | Canon Inc | 電子写真感光体、プロセスカートリッジおよび電子写真装置 |
JP2007262290A (ja) * | 2006-03-29 | 2007-10-11 | Dainippon Ink & Chem Inc | ポリカーボネート樹脂組成物 |
JP2010083930A (ja) * | 2008-09-30 | 2010-04-15 | Unitika Ltd | 樹脂組成物 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3202849A4 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPWO2017175790A1 (ja) * | 2016-04-06 | 2019-02-14 | 株式会社カネカ | 樹脂組成物および自動車部品 |
JPWO2017175791A1 (ja) * | 2016-04-06 | 2019-02-14 | 株式会社カネカ | ポリカーボネート樹脂用流動性向上剤およびその製造方法ならびにポリカーボネート樹脂組成物およびその成形品 |
US20190119490A1 (en) * | 2016-04-06 | 2019-04-25 | Kaneka Corporation | Resin composition, moulded article, and plated moulded article |
JP2018095852A (ja) * | 2016-12-15 | 2018-06-21 | ユニチカ株式会社 | ポリアミド樹脂組成物およびそれを成形してなる成形体 |
WO2018230370A1 (ja) * | 2017-06-12 | 2018-12-20 | 株式会社カネカ | 熱可塑性樹脂、熱可塑性樹脂組成物および熱伝導シート |
JPWO2018230370A1 (ja) * | 2017-06-12 | 2020-04-09 | 株式会社カネカ | 熱可塑性樹脂、熱可塑性樹脂組成物および熱伝導シート |
JP7152396B2 (ja) | 2017-06-12 | 2022-10-12 | 株式会社カネカ | 熱可塑性樹脂、熱可塑性樹脂組成物および熱伝導シート |
US11572437B2 (en) | 2017-06-12 | 2023-02-07 | Kaneka Corporation | Thermoplastic resin, thermoplastic resin composition, and heat conductive sheet |
Also Published As
Publication number | Publication date |
---|---|
US10253178B2 (en) | 2019-04-09 |
US20170204262A1 (en) | 2017-07-20 |
CN107075238B (zh) | 2019-04-09 |
JP6655543B2 (ja) | 2020-02-26 |
EP3202849B1 (en) | 2020-05-13 |
CN107075238A (zh) | 2017-08-18 |
EP3202849A4 (en) | 2018-06-20 |
EP3202849A1 (en) | 2017-08-09 |
JPWO2016052748A1 (ja) | 2017-07-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6655543B2 (ja) | ポリカーボネート用およびポリアリレート用流動性向上剤、ポリカーボネート樹脂組成物、ポリアリレート樹脂組成物、並びにその成形品 | |
JPH08319409A (ja) | 低い複屈折を示す組成物 | |
JPH08157703A (ja) | 透明なポリカーボネートポリエステルブレンド物 | |
JP6462497B2 (ja) | ポリカーボネート用およびポリアリレート用添加剤、ポリカーボネート樹脂組成物、ポリアリレート樹脂組成物、並びにその成形品 | |
TWI229110B (en) | Damping thermoplastic resin composition and molded article | |
JP5153053B2 (ja) | 難燃性帯電防止ポリエステル系樹脂組成物 | |
US10619004B2 (en) | Flowability enhancing agent for polycarbonate resin, method for producing said agent, polycarbonate resin composition and molded article thereof | |
JP2017186446A (ja) | 芳香族ポリカーボネート系樹脂組成物および光拡散性成形品 | |
JP2016216556A (ja) | ポリカーボネート樹脂組成物及びそれからなる成形品 | |
JP6806244B2 (ja) | 無機強化熱可塑性ポリエステル樹脂組成物 | |
JP2017186465A (ja) | ポリカーボネート樹脂組成物、およびその成形品 | |
JP2014218573A (ja) | ポリカーボネート樹脂組成物 | |
JP2017186464A (ja) | ポリカーボネート樹脂組成物、およびその成形品 | |
WO2017175788A1 (ja) | ポリカーボネート樹脂組成物、並びにその成形品 | |
WO2017175787A1 (ja) | ポリカーボネート樹脂組成物、およびその成形品 | |
WO2017175789A1 (ja) | 樹脂組成物、成形品およびメッキ成形品 | |
WO2017175786A1 (ja) | 導光板、これを備えた面光源体、芳香族ポリカーボネート系樹脂組成物および光拡散性成形品 | |
JP2017186463A (ja) | ポリカーボネート樹脂組成物、およびその成形品 | |
JP2017187616A (ja) | 導光板およびこれを備えた面光源体 | |
JPWO2017175790A1 (ja) | 樹脂組成物および自動車部品 | |
JP2011074342A (ja) | ポリカーボネート樹脂組成物及びその樹脂成形品 | |
JP2019014847A (ja) | ポリスルホン樹脂組成物およびその成形品 | |
WO2013011977A1 (ja) | ポリカーボネート樹脂組成物及びその樹脂成形品 | |
JP2012007034A (ja) | ポリカーボネート樹脂組成物及びその樹脂成形品 | |
JPH0819322B2 (ja) | ポリエステル系樹脂組成物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15847031 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016552190 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REEP | Request for entry into the european phase |
Ref document number: 2015847031 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2015847031 Country of ref document: EP |