WO2016051908A1 - 発光素子および発光素子の製造方法 - Google Patents

発光素子および発光素子の製造方法 Download PDF

Info

Publication number
WO2016051908A1
WO2016051908A1 PCT/JP2015/069722 JP2015069722W WO2016051908A1 WO 2016051908 A1 WO2016051908 A1 WO 2016051908A1 JP 2015069722 W JP2015069722 W JP 2015069722W WO 2016051908 A1 WO2016051908 A1 WO 2016051908A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
light
columnar
emitting element
layer
Prior art date
Application number
PCT/JP2015/069722
Other languages
English (en)
French (fr)
Inventor
倉岡 義孝
翔平 大上
滑川 政彦
守道 渡邊
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to JP2015562614A priority Critical patent/JP5913761B1/ja
Priority to CN201580044820.3A priority patent/CN106716650B/zh
Priority to DE112015004543.0T priority patent/DE112015004543T5/de
Priority to KR1020177008863A priority patent/KR102319284B1/ko
Priority to US15/065,994 priority patent/US9653651B2/en
Publication of WO2016051908A1 publication Critical patent/WO2016051908A1/ja
Priority to US15/391,160 priority patent/US9660138B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/025Physical imperfections, e.g. particular concentration or distribution of impurities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/08Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a plurality of light emitting regions, e.g. laterally discontinuous light emitting layer or photoluminescent region integrated within the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/16Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous
    • H01L33/18Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular crystal structure or orientation, e.g. polycrystalline, amorphous or porous within the light emitting region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/42Transparent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • H01L33/46Reflective coating, e.g. dielectric Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0016Processes relating to electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0025Processes relating to coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0058Processes relating to semiconductor body packages relating to optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0066Processes relating to semiconductor body packages relating to arrangements for conducting electric current to or from the semiconductor body

Definitions

  • the present invention relates to a light emitting element, and more particularly to its structure.
  • a light emitting device (LED) using a group 13 nitride (group III nitride) as a material for forming a light emitting part is already widely known.
  • a substrate made of a material different from a group 13 nitride such as sapphire (a different material substrate) is usually used as a base substrate, and the group 13 nitride is formed on the base substrate.
  • a plurality of crystal layers are stacked.
  • a lower wiring composed of a silicon thin film and an n-type GaN layer is formed on at least a surface of an insulating substrate such as a sapphire substrate, a ceramic substrate, or a silicon substrate having a silicon oxide film formed on the surface.
  • a mask made of a silicon nitride film is formed thereon, and a first conductive type semiconductor layer, an active layer, and a first layer made of a group 13 nitride are formed at each of a plurality of openings provided in the mask.
  • a self-luminous display in which a plurality of columnar light-emitting portions are provided by laminating and forming a two-conductivity type semiconductor layer is already known (see, for example, Patent Document 1). In such a self-luminous display, a low refractive index body having a refractive index smaller than the refractive index of the semiconductor constituting the light emitting portion is disposed around the light emitting portion.
  • Non-Patent Document 1 a technique for densely forming columnar LED structures having a diameter of 1 ⁇ m or less, which is made of a group 13 nitride and called a nanocolumn, on an n-type silicon single crystal substrate by RF-MBE is already known (for example, Non-Patent Document 1).
  • the group 13 nitride constituting the light emitting portion is caused by a difference in lattice constant or thermal expansion coefficient between the base substrate and the group 13 nitride layer. Dislocation propagates in the layer and current leakage occurs at the location where the dislocation is formed, which has been one of the factors that hinder the improvement of emission intensity.
  • the gallium nitride single crystal free-standing substrate is used as the base substrate, the problem of difference in lattice constant and thermal expansion coefficient with the group 13 nitride layer is solved, but it is not easy to increase the area. There exists a problem that an element manufacturing cost becomes high.
  • Patent Document 1 While using a dissimilar material substrate, the light emission efficiency is improved by means of structural improvements.
  • the technique disclosed in Patent Document 1 has a problem in that a light emitting element having a vertical structure cannot be formed because an insulating substrate is used.
  • the technique disclosed in Non-Patent Document 1 although it is possible to form a light emitting portion with reduced dislocation and distortion, there is still a cost limitation because a silicon single crystal substrate is used.
  • JP 2013-55170 A Japanese Patent No. 3410863 International Publication No. 2013/147326
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a light-emitting element that is inexpensive and easy to manufacture and has excellent light extraction efficiency.
  • the light-emitting element includes an oriented polycrystalline substrate composed of a plurality of oriented crystal grains, and a region where there is no crystal defect on one main surface of the oriented polycrystalline substrate. And a plurality of columnar light emitting portions each of which is a columnar portion having a longitudinal direction in the normal direction of the oriented polycrystalline substrate, and a refractive index higher than that of the constituent material of the columnar light emitting portion. And a light confinement layer provided so as to surround the plurality of columnar light emitting portions above the oriented polycrystalline substrate.
  • the plurality of columnar light emitting portions have a predetermined period virtually determined on the one main surface of the oriented polycrystalline substrate.
  • the crystal defects are provided below the crystal defects.
  • the columnar light emission at a position where the crystal defect exists below the lattice point position of the planar lattice.
  • An incomplete columnar part that is a columnar part having a shorter size in the longitudinal direction than the part is provided.
  • each of the plurality of columnar light emitting portions includes an n-type layer made of a group 13 nitride and an active layer. And a p-type layer are laminated in this order from the side of the oriented polycrystalline substrate.
  • the active layer has an MQW structure.
  • the light confinement layer is made of SiO 2 .
  • each upper end of the plurality of columnar light emitting portions and the upper surface of the light confinement layer form one flat surface.
  • a transparent conductive film is provided on the flat surface.
  • the oriented polycrystalline substrate is an oriented GaN substrate, a pad electrode is provided on the transparent conductive film, A cathode electrode is provided on the other main surface.
  • the oriented polycrystalline substrate is an oriented alumina substrate, and an underlying layer exhibiting n-type conductivity is provided on the oriented alumina substrate.
  • the plurality of columnar light emitting portions are formed on the base layer, a pad electrode is provided on the transparent conductive film, and a cathode electrode is provided on the base layer. did.
  • the method for manufacturing a light-emitting element comprises a plurality of oriented crystal grains, so that a first region having no crystal defects on one main surface and a second region having crystal defects exist.
  • a plurality of first columnar structures each having a columnar shape are formed at a location located above, while a location located above the second region of the plurality of openings is It is columnar and longer than the first columnar structure
  • the plurality of openings are arranged at a predetermined cycle In the first and second light confinement layer forming steps, the first light confinement layer and the second light confinement layer are both the first columnar structures.
  • the material is made of a material having a refractive index lower than that of the constituent material.
  • an average particle diameter of the one main surface of the plurality of crystal grains is D, and an opening diameter of the plurality of openings is d.
  • d ⁇ D / 2.
  • d ⁇ D / 4 when D ⁇ 20 ⁇ m, and d ⁇ D / 3 when D ⁇ 20 ⁇ m. did.
  • the n-type layer, the active layer, and the p was formed of a group 13 nitride.
  • the active layer is formed to have an MQW structure.
  • the first and second light confinement layers are formed of SiO 2 .
  • each upper end of the plurality of first columnar structures is The second optical confinement layer is polished so that the upper surface of the second optical confinement layer forms one flat surface, a transparent conductive film is provided on the flat surface, and a pad electrode is formed on the transparent conductive film. To form.
  • an oriented GaN substrate is used as the oriented polycrystalline substrate, and the other main surface of the oriented GaN substrate is used in the cathode electrode forming step.
  • a cathode electrode was provided on the top.
  • an oriented alumina substrate is used as the oriented polycrystalline substrate, and an underlying layer exhibiting an n-type conductivity type on the oriented alumina substrate.
  • the columnar structure is formed on the base layer at a position located above the first region, and in the cathode electrode forming step, a cathode electrode is provided on the base layer.
  • the light extraction efficiency is excellent and the current leakage is reduced.
  • a light-emitting element having a suppressed vertical structure can be realized.
  • the position of the opening is mechanically determined as the lattice point position of the planar lattice regardless of whether there is a crystal defect immediately below. Only the first columnar structure formed on the first region where the crystal defect of the base substrate does not exist can be suitably used as the columnar light emitting portion.
  • FIG. 3 is a diagram schematically showing a state in the middle of production of the light emitting element 10. It is a top view which illustrates the 1st optical confinement layer 2a in case the opening part 2h of planar view circular shape is provided in the lattice point position of a hexagonal plane lattice. It is a figure which shows typically the mode in the middle of preparation of the light emitting element 110 which concerns on the modification of 1st Embodiment. It is a figure which shows typically the mode in the middle of preparation of the light emitting element 210 which concerns on 2nd Embodiment. It is a figure which illustrates the light emission structure in a whole surface lamination light emitting element.
  • Group 13 refers to aluminum (Al), gallium (Ga), indium (In), etc.
  • Group 14 refers to silicon (Si), germanium (Ge), tin (Sn), lead (Pb), etc.
  • 15 refers to nitrogen (N), phosphorus (P), arsenic (As), antimony (Sb), and the like.
  • FIG. 1 is a diagram schematically showing a configuration of a light emitting element 10 according to the present embodiment.
  • FIG. 1A is a schematic cross-sectional view of the entire light emitting element 10.
  • a light-emitting element 10 mainly includes an optical confinement in which a base substrate 1, a first optical confinement layer 2a, and a second optical confinement layer 2b are stacked in this order from the base substrate side.
  • a plurality of columnar light emitting portions 6 (layer 2), each of which is formed by laminating an n-type layer 3, an active layer 4, and a p-type layer 5 made of a group 13 nitride (group III nitride) in this order from the base substrate side.
  • the light emitting element 10 generally has a vertical light emitting element structure, and when energized between the pad electrode 8 and the cathode electrode 9, light is emitted from the plurality of columnar light emitting portions 6 existing between the two electrodes. It has come to occur.
  • FIG. 1B is a cross-sectional view showing a detailed configuration of the columnar light emitting section 6.
  • the active layer 4 in the columnar light-emitting portion 6 includes a first unit layer 4a and a second unit layer 4b that are alternately stacked in this order from the base substrate side. It has a well (MQW) structure.
  • the p-type layer 5 is formed by laminating a p-type cladding layer 5a and a p-type cap layer 5b in this order from the base substrate side.
  • the base substrate 1 is a polycrystalline substrate made of a plurality of GaN crystals. However, each GaN crystal is oriented so that its c-axis direction is substantially coincident (generally aligned) with the normal direction of the main surface of the base substrate 1 (hereinafter also simply referred to as the normal direction). Being done.
  • the base substrate 1 is a kind of oriented polycrystalline substrate, and is also referred to as an oriented GaN substrate below. Strictly speaking, however, the c-axis direction of each GaN crystal is slightly shifted from the normal direction of the underlying substrate 1. A deviation angle from the normal direction of the base substrate 1 in the c-axis direction of the GaN crystal is referred to as a tilt angle.
  • the base substrate 1 has crystal defects 1d such as crystal grain boundaries due to its configuration and manufacturing method, and a part thereof penetrates in the normal direction.
  • the base substrate 1 can be regarded as having a substantially single crystal structure in the normal direction, and has sufficiently high crystallinity to ensure device characteristics such as a light emitting function.
  • the base substrate 1 is merely an oriented GaN substrate and not a single crystal substrate, it has a feature that the manufacturing cost is lower than that of the single crystal GaN substrate.
  • the base substrate 1 preferably has a thickness of about several tens of ⁇ m or more.
  • the average particle diameter (more specifically, the average particle diameter in the in-plane direction of the main surface of the base substrate 1) D of the GaN crystal constituting the base substrate 1 is preferably 15 ⁇ m or more.
  • the upper limit of the average particle diameter D is not particularly limited in principle, but from the viewpoint of actually producing a polycrystalline oriented GaN substrate, the upper limit is about 200 ⁇ m. A method for manufacturing the base substrate 1 will be described later.
  • the light confinement layer 2 is provided on one main surface side of the base substrate 1 so as to surround the plurality of columnar light emitting units 6.
  • the light confinement layer 2 is made of a material having a refractive index smaller than that of the group 13 nitride constituting the columnar light emitting portion 6. In the case of GaN, the refractive index is about 2.4 to 2.6.
  • the material of the optical confinement layer 2 include SiO 2 , Al 2 O 3 , SiN, and SiON, but SiO 2 is preferable from the viewpoint of ease of manufacture.
  • the light generated in the columnar light-emitting portion 6 propagates in the longitudinal direction of the columnar light-emitting portion 6 while being repeatedly reflected at the interface with the light confinement layer 2, and finally emitted to the outside of the element through the transparent conductive film 7. Is done. That is, the light confinement layer 2 has an effect of confining the light generated in the columnar light emitting unit 6 in the columnar light emitting unit 6. Due to the light confinement effect, the light extraction efficiency of the light emitting element 10 is enhanced.
  • the light confinement layer 2 has a two-layer structure of the first light confinement layer 2a and the second light confinement layer 2b.
  • the first light confinement layer 2a is a layer used as a mask for defining the formation position when the columnar light-emitting portion 6 is formed, as will be described in detail later.
  • the two layers are exactly the same in that they exhibit a light confinement effect.
  • the first optical confinement layer 2a is preferably provided with a thickness of 100 nm to 1000 nm.
  • the thickness of the entire light confinement layer 2 is the same as the thickness (size in the longitudinal direction) of the columnar light emitting portion 6.
  • the columnar light-emitting portion 6 is a part that actually emits light in the light-emitting element 10.
  • the columnar light-emitting portion 6 is a cylindrical, polygonal shape extending along the normal direction above the main surface of the base substrate 1 on the side where the light confinement layer 2 is provided. It is provided as a columnar or other columnar (rod-shaped) laminated structure.
  • the columnar light emitting section 6 is provided on the main surface of the base substrate 1 by sequentially epitaxially growing a plurality of layers made of group 13 nitride.
  • the light emitting element 10 is provided with a plurality of columnar light emitting portions 6 discretely on the main surface of the base substrate 1.
  • each columnar light-emitting portion 6 includes the n-type layer 3, the active layer 4 in which the MQW structure is formed by the first unit layer 4a and the second unit layer 4b, the p-type cladding layer 5a, The p-type layer 5 including the p-type cap layer 5b is stacked.
  • the c-axis direction of each columnar light-emitting portion 6 coincides with the c-axis direction of the GaN crystal immediately below. In other words, this means that the c-axis direction of each of the columnar light emitting portions 6 substantially matches the normal direction of the base substrate 1.
  • the n-type layer 3 is made of GaN doped with Si such that the electron concentration is 2 ⁇ 10 18 / cm 3 to 2 ⁇ 10 19 / cm 3, and preferably has a thickness of 400 nm to 5000 nm.
  • the active layer 4 is a group 13 nitride having a composition of In x Ga 1-x N (0 ⁇ x ⁇ 0.2) in the first unit layer 4a and has a thickness of 2 nm to 10 nm.
  • the layer 4b is preferably made of GaN and has a thickness of 5 nm to 15 nm, and the number of repeated laminations of the pair of the first unit layer 4a and the second unit layer 4b is preferably 3 to 8.
  • the p-type cladding layer 5a is made of Al y Ga 1-y N (0 ⁇ y ⁇ 0.2) doped with Mg so that the hole concentration is 5 ⁇ 10 17 / cm 3 to 5 ⁇ 10 18 / cm 3. It is preferable that it has a thickness of 50 nm to 150 nm.
  • the p-type cap layer 5b is made of GaN doped with Mg so as to have a hole concentration of 1 ⁇ 10 18 / cm 3 to 1 ⁇ 10 19 / cm 3, and preferably has a thickness of 200 nm to 650 nm. .
  • the longitudinal size of the columnar light-emitting portion 6 is about 500 nm to 6000 nm.
  • the upper end portions of all the columnar light emitting portions 6 (more specifically, the upper end portion of the p-type cap layer 5b) and the upper surface of the light confinement layer 2 (more specifically, the second light confinement layer). 2b)
  • the longitudinal size of the columnar light emitting portion 6 is the same as the thickness of the light confinement layer 2 in which the columnar light emitting portion 6 is embedded.
  • the transparent conductive film 7 is formed in a form adjacent to the upper surface of the second light confinement layer 2b and the upper ends of all the columnar light emitting portions 6. As a result, all the columnar light emitting portions 6 are electrically connected to the transparent conductive film 7.
  • the transparent conductive film 7 is formed with a thickness of about 50 nm to 200 nm using, for example, ITO or zinc oxide.
  • the pad electrode 8 is an electrode that is electrically connected to the upper end portion of the columnar light emitting unit 6.
  • the pad electrode 8 is provided on a part of the upper surface of the transparent conductive film 7.
  • the pad electrode 8 is preferably formed as a Ti / Au laminated film.
  • the thicknesses of the Ti film and the Au film constituting the Ti / Au laminated film to be the pad electrode 8 are preferably about 20 nm to 200 nm and 50 nm to 500 nm, respectively.
  • the cathode electrode 9 is an electrode that is electrically connected to the end of the columnar light emitting unit 6 on the base substrate 1 side.
  • the cathode electrode 9 is provided on a substantially entire surface on the other main surface on the side opposite to the main surface on the side of the base substrate 1 on which the columnar light emitting portions 6 are provided.
  • the cathode electrode 9 is preferably formed as a Ti / Al / Ni / Au multilayer film.
  • the thicknesses of the Ti film, Al film, Ni film, and Au film constituting the Ti / Al / Ni / Au multilayer film to be the cathode electrode 9 are about 10 nm to 30 nm, 150 nm to 1000 nm, 20 nm to 100 nm, and 50 nm to 500 nm, respectively. Is preferred.
  • the columnar light emitting units 6 in the light emitting element 10 are discretely provided on one main surface of the base substrate 1. More specifically, each columnar light emitting unit 6 is provided on the main surface.
  • a lattice point hereinafter referred to as a formation candidate position
  • a planar lattice for example, a hexagonal planar lattice or a square planar lattice
  • each of the columnar light emitting portions 6 is provided with a requirement that the maximum size (maximum outer diameter size) d in a cross section perpendicular to the longitudinal direction is D / 2 or less.
  • the columnar light emitting portion 6 is formed only on the GaN crystal that can be regarded as a substantially single crystal. That is, any of the columnar light emitting portions 6 is formed without being affected by crystal defects 1 d such as crystal grain boundaries existing in the base substrate 1. Therefore, all the columnar light emitting portions 6 have excellent crystal quality.
  • the formation candidate position of the columnar light emitting portion 6 is defined as the position of the opening 2h provided when the first light confinement layer 2a is formed (see FIG. 3).
  • the period p is a value that is the minimum pitch of the columnar light-emitting portions 6, and is preferably about 15 ⁇ m to 70 ⁇ m, although it depends on the value of the average particle diameter D of the GaN crystals constituting the base substrate 1.
  • the light emitting element 10 preferably includes a large number of columnar light emitting portions 6 that meet the above requirements. Providing a large number of columnar light emitting portions 6 with excellent crystal quality contributes to an increase in light emission intensity in the light emitting element 10.
  • the period p is too small, the maximum outer diameter size d of the columnar light-emitting portions 6 is naturally reduced, and although the number of columnar light-emitting portions 6 increases, the number of formation candidate positions overlapping the crystal defects 1d increases. The emission intensity cannot be obtained. On the other hand, when the period p is too large, the number of the columnar light emitting portions 6 is reduced, so that sufficient light emission intensity cannot be obtained.
  • the size d is preferably D / 4 or less, and when the average particle diameter D is 20 ⁇ m or more, the size d is preferably D / 3 or less.
  • the light-emitting element 10 having high emission intensity is manufactured with high yield.
  • the lower limit of the size d is not limited as long as the columnar light emitting portion 6 can be formed.
  • the columnar light-emitting portion 6 can be formed relatively easily by MOCVD as will be described later.
  • the columnar light-emitting portion 6 can be formed so that the size d is about 100 nm to 1000 nm by applying a known nanowire forming method, for example.
  • a layered configuration (light emission) similar to that of the columnar light emitting unit 6, not the columnar light emitting unit 6, is a position where the columnar light emitting unit 6 is formed and the crystal defect 1 d exists immediately below.
  • the incomplete columnar portion 6 ⁇ (second columnar structure) having a smaller size in the longitudinal direction than that of the columnar light emitting portion 6.
  • the incomplete columnar portion 6 ⁇ has a crystal defect 1d on one main surface of the base substrate 1 among the formation candidate positions that are two-dimensionally determined on the one main surface of the base substrate 1 with a period p. It is formed above the area to be performed (second area).
  • the incomplete columnar portion 6 ⁇ is formed at the same crystal growth condition as that of the columnar light-emitting portion 6 because the portion where the crystal defect 1d exists is the growth starting point (growth base). This is a part that has become smaller than the light emitting unit 6. Unlike the columnar light-emitting portion 6, the incomplete columnar portion 6 ⁇ is covered with the second light confinement layer 2b and is not electrically connected to the transparent conductive film 7, and thus does not contribute to light emission. .
  • an n-type layer, an active layer, and a p-type layer are sequentially formed on substantially the entire surface of one main surface of the substrate as in a conventional light emitting device.
  • a light emitting device hereinafter referred to as a full surface stacked light emitting device
  • LED structure light emitting structure
  • FIG. 6 is a diagram illustrating a light emitting structure in the entire surface light emitting element, which is shown to explain this point.
  • the growth rate is slow above the crystal defect 1d, so that the n-type layer 3, the active layer 4, And the incomplete columnar part 6 (beta) with the small lamination direction size of the p-type layer 5 is formed. Therefore, the layers are not continuous in the in-plane direction, and the normally formed n-type layer 3 is in contact with the active layer 4 of the incomplete columnar portion 6 ⁇ , and further the p-type layer 5, or the normally formed active layer 4 May come into contact with the p-type layer 5 of the incomplete columnar portion 6 ⁇ .
  • the p-type electrode formed on the p-type layer 5 comes into contact with the active layer 4 or the n-type layer 3. This causes current leakage.
  • the crystal defects 1d are unevenly present in the oriented GaN substrate, in the case of the entire surface laminated light emitting device, the crystal growth is avoided on the substrate surface, or the growth portion on the crystal defect 1d is avoided. Is difficult to form.
  • the light emitting device 10 in the light emitting element 10 according to the present embodiment, only the incomplete columnar portion 6 ⁇ that is not electrically connected to the transparent conductive film 7 exists on the crystal defect 1d, and the columnar light emitting portion 6 has the crystal defect 1d. Since it does not exist above, the occurrence of such current leakage is suitably suppressed. From a different point of view, the light emitting device 10 according to the present embodiment can be regarded as suppressing the occurrence of current leakage by disposing the incomplete columnar portion 6 ⁇ on the crystal defect 1d. it can. That is, in the light emitting element 10, it can be said that the incomplete columnar portion 6 ⁇ functions as a current leakage suppressing portion.
  • the area ratio of the portion responsible for light emission with respect to the area of the one main surface of the base substrate 1 is smaller than that of the whole surface stacked light emitting element.
  • the light emitting device 10 achieves excellent light emission intensity while using the oriented GaN substrate as the base substrate 1.
  • FIG. 2 is a diagram schematically showing a state in the process of manufacturing the light emitting element 10.
  • an oriented GaN substrate having crystal defects 1d such as crystal grain boundaries as shown in FIG. As a method for producing an oriented GaN substrate, for example, a flux method (Na flux method) is exemplified.
  • a flux method Na flux method
  • an oriented alumina substrate which is an oriented polycrystalline substrate is prepared.
  • the oriented alumina substrate is made of a polycrystalline alumina sintered body in which the c-axis of alumina (Al 2 O 3 ) particles having an average particle diameter of about 15 ⁇ m to 70 ⁇ m on one main surface is oriented in the direction of the substrate normal.
  • the size of the alumina substrate is not particularly limited as long as it can be handled in subsequent processing. For example, it is preferable to use a substrate having a diameter of 2 inches to 8 inches and a thickness of about 500 ⁇ m to 2000 ⁇ m.
  • a GaN low-temperature buffer layer having a thickness of about 20 nm to 30 nm and 1 ⁇ m to 5 ⁇ m are formed on one main surface of the oriented alumina substrate by MOCVD using hydrogen as a carrier gas and TMG (trimethylgallium) and ammonia as source gases.
  • a seed substrate is obtained by sequentially forming a GaN layer of a certain thickness.
  • the formation temperature of the GaN low-temperature buffer layer may be about 510 ° C. to 530 ° C., and the formation temperature of the subsequent GaN layer may be about 1050 ° C. to 1150 ° C.
  • the seed substrate is filled in an alumina crucible together with metal Ga and metal Na having a weight corresponding to the size of the alumina substrate, and the alumina crucible is placed in a heat-resistant metal growth vessel and sealed.
  • a growth vessel is placed in a heat-resistant and pressure-resistant crystal growth furnace.
  • the furnace temperature is set to 750 ° C. to 900 ° C.
  • nitrogen gas is introduced to set the pressure in the furnace to 3 MPa to 5 MPa, and then the growth vessel is held for 50 hours to 100 hours while being rotated horizontally.
  • a GaN thick film layer having a thickness of 1 mm is grown. In such a case, the GaN thick film layer is obtained as an oriented polycrystalline layer in which the crystal grains are c-axis oriented following the crystal orientation of the individual crystal grains forming the underlying alumina substrate.
  • the oriented GaN substrate is obtained by polishing the GaN thick film layer to a desired thickness using a known technique such as diamond abrasive grains.
  • the GaN thick film layer formed on the oriented alumina substrate is also a polycrystalline layer, and the c-axis of each crystal grain is generally oriented in the substrate normal direction following the oriented alumina substrate. It includes crystal defects 1d such as grain boundaries. Therefore, the finally obtained oriented GaN substrate also has this feature.
  • the first optical confinement layer 2a is formed on one main surface thereof as shown in FIG. 2 (b).
  • the first optical confinement layer 2a is formed so that the opening 2h serving as a through hole is positioned at a lattice point position of a planar lattice (for example, a hexagonal planar lattice or a square planar lattice) when viewed in plan.
  • FIG. 3 is a plan view illustrating the first optical confinement layer 2a when the opening 2h having a circular shape in plan view is provided at the lattice point position of the hexagonal plane lattice.
  • the arrangement position of the opening 2 h is a formation candidate position of the columnar light emitting unit 6.
  • the first light confinement layer 2a functions as a mask when forming the columnar light emitting portions 6 (and the incomplete columnar portions 6 ⁇ ). In other words, it is the formation position of the columnar light emitting portion 6 or the incomplete columnar portion 6 ⁇ .
  • the maximum outer diameter size of the opening 2h may be a value that substantially matches the maximum outer diameter size d of the columnar light emitting portion 6, and the period p is preferably about 30 ⁇ m to 100 ⁇ m as described above.
  • the arrangement position of the opening 2h, that is, the formation candidate position of the columnar light emitting section 6 is mechanically determined without considering the position of the crystal defect 1d that is unevenly present on the base substrate 1.
  • first optical confinement layer 2a at a sputtering method or a CVD method, SiO 2 and Al 2 O 3, SiN, SiON, etc., a refractive index higher than 13 nitride constituting the columnar light-emitting part 6
  • the opening 2 h having an opening diameter d can be patterned on the layer by a photolithography process and an RIE etching process.
  • the columnar light emitting portion 6 is formed in the opening 2h as shown in FIG.
  • the columnar light emitting portion 6 is formed by the MOCVD method.
  • the base substrate 1 on which the first optical confinement layer 2a is formed is placed on a susceptor in the MOCVD furnace so that the first optical confinement layer 2a side becomes the formation surface. Then, the substrate temperature (susceptor temperature) is set to a predetermined n-type layer formation temperature of 1050 ° C. to 1150 ° C. in a hydrogen / nitrogen mixed atmosphere, nitrogen and hydrogen are used as carrier gases, and TMG (trimethyl gallium) and ammonia are used as raw materials.
  • the Si-doped GaN layer as the n-type layer 3 is grown on the base substrate 1 in the opening 2h using silane gas as a dopant.
  • the substrate temperature susceptor temperature
  • a predetermined active layer formation temperature 750 ° C. to 850 ° C.
  • nitrogen and hydrogen are used as carrier gases
  • TMG, TMI (trimethylindium) and ammonia are used as raw materials
  • the n-type layer 3 a first unit layer 4 a made of a group 13 nitride having a composition of In x Ga 1-x N (0 ⁇ x ⁇ 0.2) and a second unit layer 4 b made of GaN are provided on the base substrate 1 side.
  • the active layer 4 having the MQW structure is formed by repeatedly and alternately forming in this order.
  • the substrate temperature is a predetermined p-type layer formation temperature of 1000 ° C. to 1100 ° C.
  • nitrogen and hydrogen are used as carrier gases
  • TMG, TMA (trimethylaluminum) and ammonia are used as raw materials
  • Cp 2 Mg is used as a source material.
  • a dopant a p-type cladding layer formed by doping Mg into a group 13 nitride having a composition of Al y Ga 1-y N (0 ⁇ y ⁇ 0.2) as a p-type layer 5 on the active layer 4 5a and a p-type cap layer 5b made of Mg-doped GaN are formed in this order.
  • the p-type cap layer 5b when the p-type cap layer 5b is formed, the upper end portion 5e is polished in a subsequent process, and therefore it is necessary to determine the formation thickness in anticipation of the loss due to such polishing. Specifically, as described above, it is preferable that the p-type cap layer 5b has a thickness of 50 nm to 200 nm. Therefore, the formation thickness is preferably about 100 nm to 300 nm larger than the thickness.
  • the columnar light emitting portion 6 is formed in the opening 2h.
  • the arrangement position of the opening 2h is mechanically determined, there may be a crystal defect 1d immediately below a part of the openings 2h, but in a place where the crystal defect 1d exists, Since the incomplete columnar part 6 ⁇ shorter than the columnar light emitting part 6 is formed at a growth rate lower than the growth rate of the columnar light emitting part 6, the columnar light emitting part 6 having a desired size is actually formed. This is only a portion where the crystal defect 1d does not exist immediately below the opening 2h.
  • the columnar light-emitting portion 6 is formed without using special control or distinction by utilizing the difference in the growth rate due to the difference in the state of the growth starting point (growth base). It can be said that the crystal grain boundary portion of the GaN crystal forming the base substrate 1 is excluded from the location.
  • the second light confinement layer 2b is subsequently formed as shown in FIG. Similar to the first optical confinement layer 2a, the second optical confinement layer 2b is made of a material having a refractive index smaller than that of the group 13 nitride constituting the columnar light-emitting portion 6, such as SiO 2 , Al 2 O 3 , SiN, and SiON. As a material, it is formed so as to fill between the columnar light emitting part 6 and the incomplete columnar part 6 ⁇ and to cover the upper end portion 5e of the p-type layer 5 which is the uppermost layer of the columnar light emitting part 6.
  • the second light confinement layer 2b is formed so as to cover the exposed columnar light emitting portion 6 and the incomplete columnar portion 6 ⁇ .
  • the second optical confinement layer 2b is preferably formed by sputtering, for example.
  • the second light confinement layer 2b is preferably formed so that the total thickness of the light confinement layer 2 combined with the first light confinement layer 2a is about 0.8 ⁇ m to 8 ⁇ m. At this time, of course, the upper end portion of the incomplete columnar portion 6 ⁇ is also covered with the second optical confinement layer 2b.
  • the surface layer portion is polished to expose the p-type layer 5 (more precisely, the p-type cap layer 5b) as shown in FIG.
  • a flat surface composed of the upper surface 5s of the p-type layer 5 and the upper surface 2s of the second optical confinement layer 2b is formed.
  • CMP polishing is preferable, and polishing is performed under the condition that the polishing rate (chemical etching rate) of the second optical confinement layer 2b is equal to or faster than the polishing rate of the p-type layer 5. Is preferred.
  • a heat treatment is performed in a nitrogen atmosphere at 750 ° C. to 850 ° C. for 10 minutes to 20 minutes using a rapid annealing furnace (RTA).
  • RTA rapid annealing furnace
  • the cathode electrode 9, the transparent conductive film 7, and the pad electrode 8 are formed in this order.
  • the cathode electrode 9 is preferably formed on substantially the entire main surface of the base substrate 1 opposite to the surface on which the first light confinement layer 2a is formed, by a photolithography process and a vacuum deposition method. . After the cathode electrode 9 is formed, heat treatment is performed for 50 seconds to 300 seconds in a nitrogen atmosphere at 600 ° C. to 650 ° C. in order to improve the ohmic contact characteristics.
  • the transparent conductive film 7 is formed on substantially the entire flat surface composed of the upper surface 5s of the p-type layer 5 and the upper surface 2s of the second optical confinement layer 2b by sputtering.
  • the pad electrode 8 is preferably formed on a part of the upper surface of the transparent conductive film 7 by a photolithography process and a vacuum deposition method. After the pad electrode 8 is formed, heat treatment is performed in a nitrogen atmosphere at 600 ° C. to 650 ° C. for 1 minute to 5 minutes in order to improve the ohmic contact characteristics.
  • the distribution of the crystal defects 1d in the base substrate 1 is not uniform, when a large number of light emitting elements 10 are manufactured by the above-described procedure, depending on the balance between the cut portion and the existence location of the crystal defect 1d, a columnar shape is obtained.
  • the light emitting element 10 in which the light emitting part 6 is not sufficiently formed may be generated, the probability that such a light emitting element 10 is formed is preferably determined by appropriately determining the size d of the columnar light emitting part 6 and the period P of the opening 2h. It will be limited. In other words, according to the present embodiment, it is possible to manufacture the light emitting element 10 having high yield and high emission intensity.
  • an oriented GaN substrate which is an oriented polycrystalline substrate that is cheaper and easier to produce than a single crystal substrate, is used as the base substrate, and on one main surface thereof.
  • columnar light emitting portions each formed by laminating an n-type layer, an active layer, and a p-type layer each made of a group 13 nitride are provided discretely at positions where crystal defects such as crystal grain boundaries do not exist.
  • a light confinement layer on a material having a refractive index smaller than that of the group 13 nitride forming the columnar light-emitting portion around the columnar light-emitting portion light extraction efficiency is excellent and current leakage is suppressed.
  • a light emitting element having a vertical structure can be realized.
  • the formation of the columnar light emitting portion there is no crystal defect of the base substrate, although the formation candidate position is mechanically determined as the lattice point position of the planar lattice regardless of whether or not the crystal defect exists immediately below.
  • a columnar light-emitting portion can be suitably formed only at a location.
  • FIG. 4 is a diagram schematically showing a state in the process of manufacturing the light emitting element 110 according to the modification of the first embodiment. Note that the same components as those of the light-emitting element 10 according to the first embodiment, which are components included in the light-emitting element 110 according to the modification, are denoted by the same reference numerals, and detailed description thereof is omitted. To do.
  • the base substrate 1 prepared in the modification is the same as that in the first embodiment.
  • the opening of the first optical confinement layer 102a As shown in FIG. 4A, the base substrate 1 prepared in the modification is the same as that in the first embodiment. However, as shown in FIG. 4B, the opening of the first optical confinement layer 102a. Unlike the shape of the opening 2h of the first light confinement layer 2a provided in the light emitting element 10, the portion 102h has a tapered shape (a trapezoidal cross-sectional shape) that widens upward. This is realized by rotating the base substrate 1 while inclining at the time of RIE etching for forming the opening 102h.
  • the columnar light emitting portion 106 is formed under the same formation conditions as the columnar light emitting portion 6 in the first embodiment. As shown in FIG. Due to the shape of the opening 102 h, the outer size of the n-type layer 103, the active layer 104, and the p-type layer 105 is larger than that of the columnar light emitting unit 6.
  • the second optical confinement layer 102b is formed and a flat surface composed of the upper surface 105s of the p-type layer 105 and the upper surface 102s of the second optical confinement layer 102b is formed by polishing.
  • the formation of the surface, and further, the formation of the separation groove and the formation of the cathode electrode 9, the transparent conductive film 7, and the pad electrode 8 are performed in the same manner as in the first embodiment, whereby the light emitting device shown in FIG. 110 is obtained.
  • the n-type layer 103 has a tapered shape with a larger outer diameter in the vicinity of the base substrate of the n-type layer 103 constituting the columnar light-emitting portion 106.
  • the area of the cross section of the active layer 104 parallel to the interface is larger than the area of the interface between the substrate 103 and the base substrate 1.
  • the light emitting element 110 achieves greater light extraction efficiency than the light emitting element 10 having the same area at the interface between the n-type layer 103 and the base substrate 1.
  • a vertical structure light emitting device with excellent light extraction efficiency is realized by using a GaN substrate which is an oriented polycrystalline substrate as the base substrate 1.
  • a light emitting element 210 having a horizontal structure will be described.
  • FIG. 5 is a diagram schematically showing a state in the process of manufacturing the light emitting element 210 according to the second embodiment.
  • the same components as those of the light-emitting element 10 according to the first embodiment that are included in the light-emitting element 210 according to the present embodiment are denoted by the same reference numerals, and detailed description thereof will be given. Omitted.
  • the case where the light-emitting element 210 is manufactured by a so-called multi-cavity method in which a base substrate 201 in a state of a mother substrate is prepared and a large number of light-emitting elements 210 are manufactured at the same time is targeted.
  • a base layer 201b having an n-type conductivity type is formed as the base substrate 201 on substantially the entire main surface of one side of the oriented alumina substrate 201a. Is used.
  • the oriented alumina substrate 201a is a polycrystalline alumina sintered body in which the c-axis of a plurality of alumina (Al 2 O 3 ) particles having an average particle diameter D of about 15 ⁇ m to 70 ⁇ m on one main surface is oriented in the direction of the substrate normal. Consists of.
  • the size of the oriented alumina substrate 201a is not particularly limited as long as it can be handled in subsequent processing. For example, it is preferable to use a substrate having a diameter of 2 to 8 inches and a thickness of about 500 to 2000 ⁇ m.
  • the underlayer 201b is formed by MOCVD.
  • the oriented alumina substrate 201a is placed on a susceptor in a MOCVD furnace, and once subjected to a cleaning process by being heated and maintained in a cleaning process at 1150 ° C. to 1250 ° C. in a hydrogen atmosphere, the substrate temperature (susceptor temperature) )
  • a low temperature buffer layer formation temperature 500 ° C. to 550 ° C.
  • a GaN low temperature buffer layer (not shown) is grown to a thickness of 10 nm to 30 nm using hydrogen as a carrier gas and TMG and ammonia as raw materials.
  • the substrate temperature (susceptor temperature) is set to a predetermined base layer formation temperature of 1080 ° C. to 1120 ° C.
  • nitrogen and hydrogen are used as carrier gases
  • TMG and ammonia are used as raw materials
  • silane gas is used as a dopant
  • the base layer 201b is formed.
  • a Si-doped GaN layer is formed to a thickness of 2 ⁇ m to 5 ⁇ m.
  • the oriented alumina substrate 201a there are crystal defects 201d such as crystal grain boundaries as in the base substrate 1 used in the light emitting device 10 according to the first embodiment. Further, in the base layer 201b, the crystal quality is deteriorated more in the portion on the crystal defect 201d than in the other portion.
  • the first light confinement layer 2a as a mask is formed by a polishing process in the same procedure as in the first embodiment. Up to the formation of a flat surface composed of the upper surface 5s of the p-type layer 5 and the upper surface 2s of the second optical confinement layer 2b is performed. At that time, preferable requirements for the period p of the opening 2h and the opening diameter d (the relationship between the opening diameter d and the crystal grain diameter D) and other preparation conditions may be the same as those in the first embodiment.
  • the size that is smaller than the columnar light-emitting portion 6 is incomplete above the position where the crystal defect 201d is present, as in the first embodiment. Since the columnar portion 6 ⁇ is formed, in the finally obtained light emitting element 210, like the light emitting element 10, occurrence of current leakage due to the presence of the crystal defect 201d is preferably suppressed.
  • the subsequent formation of the separation groove is performed in the same manner as in the first embodiment, and then, in order to secure the formation position of the cathode electrode 209, a part of the base layer 201b is formed by a photolithography process and RIE etching. Is exposed (FIG. 5F). Then, a cathode electrode 209 is formed on the exposed portion by a photolithography process and a vacuum deposition method. The constituent material and thickness of the cathode electrode 209 may be the same as those in the first embodiment. Furthermore, the formation of the transparent conductive film 7 and the pad electrode 8 may be performed in the same manner as in the first embodiment. As a result, the light emitting element 210 having a lateral structure shown in FIG.
  • the entire structure of the light emitting element 210 is a horizontal type, and an oriented alumina substrate is used as a base substrate.
  • the columnar light emitting portion 6 is formed in the same manner as the light emitting element 10 according to the first embodiment. Therefore, also in the light emitting element 210 according to the present embodiment, as with the light emitting element 10 according to the first embodiment, an oriented polycrystalline substrate that is cheaper and easier to manufacture than a single crystal substrate is used as a base substrate. While being used, excellent light extraction efficiency and suppression of current leakage are realized.
  • Example 10 A plurality of types of light-emitting elements having the same configuration as that of the light-emitting element 10 according to the first embodiment were manufactured.
  • the average particle diameter D in the oriented GaN substrate is different from three levels of 15 ⁇ m, 30 ⁇ m, and 50 ⁇ m
  • the opening diameter of the opening 2 h (maximum outer diameter size of the columnar light emitting portion 6) d is 1 ⁇ m, 2 ⁇ m
  • a total of 24 light emitting elements (sample Nos. 1 to 24) having different 8 levels of 3 ⁇ m, 5 ⁇ m, 10 ⁇ m, 15 ⁇ m, 20 ⁇ m, and 25 ⁇ m were manufactured.
  • an oriented GaN substrate to be the base substrate 1 was produced by a flux method.
  • eight kinds of three kinds of oriented alumina substrates each having an average particle diameter of 15 ⁇ m, 30 ⁇ m, and 50 ⁇ m on one main surface were prepared, and an oriented GaN substrate was prepared using each.
  • Each oriented alumina substrate had a diameter of 2 inches and a thickness of 400 ⁇ m.
  • GaN low-temperature buffer layer having a thickness of 20 nm by MOCVD
  • three types of seed substrates were obtained by forming a GaN layer having a thickness of 3 ⁇ m.
  • the formation temperature of the GaN low-temperature buffer layer was 520 ° C.
  • the formation temperature of the subsequent GaN layer was 1100 ° C.
  • a GaN thick film layer was grown on each of the three types of seed substrates by the flux method.
  • the amounts of metal Ga and metal Na filled in the alumina crucible together with the seed substrate were 20 g and 40 g, respectively.
  • the furnace temperature of the crystal growth furnace was 850 ° C., and the furnace pressure was 4 MPa.
  • the holding time was 20 hours. Thereby, a GaN thick film layer having a thickness of about 500 ⁇ m was grown on the seed substrate.
  • the seed substrate after forming the GaN thick film layer was taken out from the alumina crucible.
  • the GaN thick film layer was polished with diamond abrasive grains to a thickness of 300 ⁇ m.
  • three types of oriented GaN substrates were obtained.
  • the average particle size on one main surface of the obtained three kinds of oriented GaN substrates was almost the same as the average particle size of the oriented alumina substrate which was the base (15 ⁇ m, 30 ⁇ m, 50 ⁇ m).
  • the first optical confinement layer 2a was formed on each of the obtained oriented GaN substrates. Specifically, first, a SiO 2 layer having a thickness of 0.1 ⁇ m was formed by sputtering. Thereafter, the opening 2h was patterned and formed with a different opening diameter d on the layer by a photolithography process and an RIE etching process. In any oriented GaN substrate, the opening 2h is formed at a lattice point position of a hexagonal plane lattice. In addition, all the periods p were 30 micrometers.
  • the columnar light emitting portion 6 was formed by MOCVD.
  • a Si-doped GaN layer having an electron concentration of 5 ⁇ 10 18 / cm 3 was formed to a thickness of 0.7 ⁇ m as the n-type layer 3 at a substrate temperature of 1100 ° C.
  • the substrate temperature is set to 750 ° C.
  • the first unit layer 4a made of In 0.1 Ga 0.9 N and having a thickness of 2 nm and the second unit layer 4b made of GaN and having a thickness of 10 nm are formed from the base substrate 1 side.
  • the active layer 4 was formed by forming five layers in this order.
  • the substrate temperature is set to 1100 ° C.
  • an Mg-doped Al 0.1 Ga 0.9 N layer having a hole concentration of 5 ⁇ 10 17 / cm 3 is formed to a thickness of 25 nm as the p-type cladding layer 5a.
  • an Mg-doped GaN layer having a hole concentration of 5 ⁇ 10 18 / cm 3 was formed to a thickness of 200 nm.
  • an SiO 2 layer as the second optical confinement layer 2b was formed by sputtering.
  • the second light confinement layer 2b was formed so that the total thickness of the light confinement layer 2 was 1 ⁇ m.
  • the surface layer portion was polished flat by CMP until the p-type layer 5 (more precisely, the p-type cap layer 5b) was exposed.
  • separation grooves that are to be divided portions when finally obtaining a large number of light emitting elements 10 were formed by a photolithography process and RIE etching.
  • the Ti / Al / Ni / Au multilayer electrode as the cathode electrode 9 is formed on the main surface of the base substrate 1 opposite to the surface on which the first optical confinement layer 2a is formed by a photolithography process and a vacuum deposition method. Formed on the entire surface.
  • the thickness of each metal film was set to 15 nm, 220 nm, 40 nm, and 75 nm in order.
  • an ITO film as the transparent conductive film 7 is formed by sputtering on a substantially flat surface composed of the upper surface 5s of the p-type layer 5 and the upper surface 2s of the second optical confinement layer 2b at a substrate temperature of 200 ° C. to 100 nm. The thickness was formed.
  • a Ti / Au multilayer electrode as a pad electrode 8 was formed on a part of the upper surface of the transparent conductive film 7 by a photolithography process and a vacuum deposition method.
  • the thickness of each metal film was 20 nm and 200 nm in order.
  • a heat treatment is performed for 5 minutes in a nitrogen atmosphere at 500 ° C. in order to improve the ohmic contact characteristics.
  • a light emitting element was manufactured by using a different material substrate as a base substrate and forming a light emitting layer on substantially the entire surface thereof.
  • the same conditions as the formation conditions of the n-type layer 3, the active layer 4, and the p-type layer 5 are applied.
  • the light emitting layer is formed, and the transparent conductive film 7 and the pad electrode 8 are formed on the upper surface of the light emitting layer under the same conditions as in the embodiment, and the cathode electrode is formed on the other main surface of the sapphire substrate under the same conditions as in the embodiment.
  • a plurality of light emitting elements were manufactured by forming 9 and then cutting.
  • the average value was calculated by measuring the luminescence intensity of the acceptable products other than the sample whose element yield was 0%. Then, using the light emitting element according to the comparative example as a reference element, the ratio of the average light emission intensity (light emission intensity ratio) for each sample of the example with respect to the light emission intensity was obtained.
  • Table 1 shows the average particle diameter D in the oriented GaN substrate, the opening diameter d of the opening 2h, the ratio d / D of both, the device yield, and the emission intensity ratio for all 24 types of samples according to the examples. Is shown in a list. However, in Table 1, the average particle diameter D in the oriented GaN substrate is expressed as “average particle diameter D in GaN substrate”, and the opening diameter d of the opening 2h is expressed as “mask opening diameter d”. Note that the yield of the light-emitting element according to the comparative example was 10%.
  • the element yield may be as low as less than 50%.
  • a light-emitting element having a larger emission intensity than that of the comparative example can be obtained.
  • the average particle diameter D is 15 ⁇ m and d / D is 0.2 or less
  • a light emitting device having a high emission intensity with an emission intensity ratio exceeding 300% is obtained with an element yield of 75% or more.
  • a light emitting element having a high emission intensity with an emission intensity ratio exceeding 300% is obtained with an element yield of 75% or more.
  • the average particle diameter D is 50 ⁇ m and d / D is 0.3 or less, a light emitting element having a high emission intensity with an emission intensity ratio exceeding 300% is obtained with an element yield of 70% or more.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

 安価かつ作製容易であるとともに光取り出し効率に優れた発光素子を提供する。発光素子が、配向した複数の結晶粒からなる配向多結晶基板と、配向多結晶基板の一方主面の結晶欠陥が存在しない領域の上方に離散的に設けられてなり、それぞれが配向多結晶基板の法線方向に長手方向を有する柱状の部位である複数の柱状発光部と、柱状発光部の構成材料よりも屈折率の低い材料にて、配向多結晶基板の上方に複数の柱状発光部を取り囲むように設けられてなる光閉じ込め層と、を備えるようにした。

Description

発光素子および発光素子の製造方法
 本発明は、発光素子に関し、特に、その構造に関する。
 13族窒化物(III族窒化物)を発光部の形成材料として用いた発光素子(LED)はすでに広く知られている。係る従来周知の発光素子においては、通常、例えばサファイアなどの13族窒化物とは異なる材料からなる基板(異種材料基板)が下地基板として用いられ、該下地基板の上に13族窒化物からなる複数の結晶層が積層されてなる。
 例えば、サファイア基板やセラミック基板、表面にシリコン酸化膜を形成したシリコン基板など、少なくとも表面が絶縁性とされた基板の上にシリコン薄膜とn型のGaN層とからなる下部配線を形成し、さらにその上にシリコン窒化膜からなるマスクを形成したうえで、該マスクに設けられた複数の開口部のそれぞれの位置においていずれも13族窒化物からなる第1導電型の半導体層と活性層と第2導電型の半導体層とを積層形成させることによって複数の柱状の発光部を備えるようにした自発光ディスプレイも、すでに公知である(例えば、特許文献1参照)。係る自発光ディスプレイにおいては、発光部の周囲に、発光部を構成する半導体の屈折率よりも小さい屈折率を持つ低屈折率体が配置されてなる。
 また、n型のシリコン単結晶基板の上に、RF-MBE法によって、13族窒化物からなりナノコラムと呼ばれる1μm以下の径の柱状のLED構造を密に形成する技術もすでに公知である(例えば、非特許文献1参照)。
 また、c軸方向に配向性を有する化合物半導体からなる配向性多結晶基板を作製する技術、およびこの基板上に窒化物化合物半導体膜を形成し発光層を有する半導体層を積層する技術が公知である(例えば、特許文献2参照)。
 一方、フラックス法により窒化ガリウム単結晶自立基板を作製する方法もすでに公知である(例えば、特許文献3参照)。
 異種材料基板を下地基板として用いた従来周知の発光素子においては、下地基板と13族窒化物層との格子定数や熱膨張率の差が原因となって、発光部を構成する13族窒化物層に転位が伝播し、係る転位の形成箇所において電流リークが生じることが、発光強度の向上を妨げる要因の一つとなっていた。
 これに対し、窒化ガリウム単結晶自立基板を下地基板とした場合には、13族窒化物層との格子定数や熱膨張率の差の問題は解消されるが、大面積化は容易でないため、素子製造コストが高くなるという問題がある。
 一方、特許文献1や非特許文献1に開示された発光素子においては、異種材料基板を用いつつも、構成上の工夫によって、発光効率の向上が図られている。しかしながら、特許文献1に開示された技術の場合、絶縁性の基板を用いているために縦型構造の発光素子を作成できないという問題がある。また、非特許文献1に開示された技術の場合、転位や歪みの低減された発光部の形成が可能ではあるものの、シリコン単結晶基板を用いるために、やはりコスト面での制約がある。
特開2013-55170号公報 特許第3410863号公報 国際公開第2013/147326号
Akihiko Kikuchi, Mizue Kawai, Makoto Tada and Katsumi Kishino,"InGaN/GaN Multiple Quantum Disk Nanocolumn Light-Emitting Diodes Grown on (111) Si Substrate",Japanese Journal of Applied Physics,Vol.43,No.12A,2004,pp.L1524-L1526.
 本発明は、上記課題に鑑みてなされたものであり、安価かつ作製容易であるとともに光取り出し効率に優れた発光素子を提供することを目的とする。
 上記課題を解決するため、本発明の第1の態様では、発光素子が、配向した複数の結晶粒からなる配向多結晶基板と、前記配向多結晶基板の一方主面の結晶欠陥が存在しない領域の上方に離散的に設けられてなり、それぞれが前記配向多結晶基板の法線方向に長手方向を有する柱状の部位である複数の柱状発光部と、前記柱状発光部の構成材料よりも屈折率の低い材料にて、前記配向多結晶基板の上方に前記複数の柱状発光部を取り囲むように設けられてなる光閉じ込め層と、を備えるようにした。
 本発明の第2の態様では、第1の態様に係る発光素子において、前記複数の柱状発光部が、前記配向多結晶基板の前記一方主面において仮想的に定めた所定の周期を有する平面格子の格子点位置のうち、下方に前記結晶欠陥が存在しない位置に設けられてなるようにした。
 本発明の第3の態様では、第2の態様に係る発光素子において、前記複数の結晶粒の前記一方主面における平均粒径をDとし、前記複数の柱状発光部の長手方向に垂直な断面における最大外径サイズをdとするとき、d≦D/2であるようにした。
 本発明の第4の態様では、第3の態様に係る発光素子において、D<20μmのときにd≦D/4であり、D≧20μmのときにd≦D/3であるようにした。
 本発明の第5の態様では、第2ないし第4のいずれかの態様に係る発光素子において、前記平面格子の前記格子点位置のうち、下方に前記結晶欠陥が存在する位置に、前記柱状発光部よりも長手方向のサイズが短い柱状の部位である不完全柱状部が備わるようにした。
 本発明の第6の態様では、第1ないし第5のいずれかの態様に係る発光素子において、前記複数の柱状発光部がそれぞれ、いずれもが13族窒化物からなるn型層と、活性層と、p型層とを前記配向多結晶基板の側からこの順に積層してなるものであるようにした。
 本発明の第7の態様では、第6の態様に係る発光素子において、前記活性層が、MQW構造を有してなるようにした。
 本発明の第8の態様では、第6または第7の態様に係る発光素子において、前記光閉じ込め層がSiOからなるようにした。
 本発明の第9の態様では、第1ないし第8のいずれかの態様に係る発光素子において、前記複数の柱状発光部のそれぞれの上端と前記光閉じ込め層の上面とが一の平坦面をなしており、前記平坦面に透明導電膜が設けられてなるようにした。
 本発明の第10の態様では、第9の態様に係る発光素子において、前記配向多結晶基板が配向GaN基板であり、前記透明導電膜上にパッド電極が設けられてなり、前記配向GaN基板の他方主面上にカソード電極が設けられてなるようにした。
 本発明の第11の態様では、第9の態様に係る発光素子において、前記配向多結晶基板が配向アルミナ基板であり、前記配向アルミナ基板の上にn型の導電型を呈する下地層が設けられてなり、前記複数の柱状発光部が前記下地層の上に形成されてなり、前記透明導電膜上にパッド電極が設けられてなり、前記下地層の上にカソード電極が設けられてなるようにした。
 本発明の第12の態様では、発光素子の製造方法が、配向した複数の結晶粒からなることで、一方主面に結晶欠陥が存在しない第1の領域と結晶欠陥が存在する第2の領域とを有する配向多結晶基板の前記一方主面上に、複数の開口部を有する第1光閉じ込め層を形成する第1光閉じ込め層形成工程と、前記第1光閉じ込め層をマスクとして、前記複数の開口部において前記配向多結晶基板の前記一方主面の上方にn型層と活性層とp型層とをこの順に積層形成させることによって、前記複数の開口部のうち前記第1の領域の上方に位置する箇所にはそれぞれが柱状のをなす複数の第1の柱状構造体が形成されるようにする一方で前記複数の開口部のうち前記第2の領域の上方に位置する箇所には柱状をなし前記第1の柱状構造体よりも長手方向のサイズが短い第2の柱状構造体が形成されるようにする柱状構造体形成工程と、前記第1光閉じ込め層の上に前記第1光閉じ込め層と同じ材料にて前記第1および第2の柱状構造体を覆うように第2光閉じ込め層を形成する第2光閉じ込め層形成工程と、前記複数の第1の柱状構造体のみに電気的に接続され、前記第2の柱状構造体とは電気的に接続されないように前記第2光閉じ込め層の上に透明導電膜を形成する透明導電膜形成工程と、前記透明導電膜の上にパッド電極を形成するアノード電極形成工程と、前記複数の第1の柱状構造体の前記配向多結晶基板側の端部と電気的に接続されるカソード電極を形成するカソード電極形成工程と、を備え、前記第1光閉じ込め層形成工程においては、前記複数の開口部を、所定の周期を有する平面格子の格子点位置として定めるようにし、前記第1および第2光閉じ込め層形成工程においてはいずれも、前記第1光閉じ込め層および前記第2光閉じ込め層が、前記第1の柱状構造体の構成材料よりも屈折率の低い材料にて形成するようにした。
 本発明の第13の態様では、第12の態様に係る発光素子の製造方法において、前記複数の結晶粒の前記一方主面における平均粒径をDとし、前記複数の開口部の開口径をdとするとき、d≦D/2とするようにした。
 本発明の第14の態様では、第13の態様に係る発光素子の製造方法において、D<20μmのときにd≦D/4とし、D≧20μmのときにd≦D/3とするようにした。
 本発明の第15の態様では、第12ないし第14のいずれかの態様に係る発光素子の製造方法において、前記柱状構造体形成工程においては、前記n型層と、前記活性層と、前記p型層とを、13族窒化物にて形成するようにした。
 本発明の第16の態様では、第15の態様に係る発光素子の製造方法において、前記活性層を、MQW構造を有するように形成するようにした。
 本発明の第17の態様では、第15または第16の態様に係る発光素子の製造方法において、前記第1および前記第2の光閉じ込め層をSiOにて形成するようにした。
 本発明の第18の態様では、第12ないし第17のいずれかの態様に係る発光素子の製造方法において、前記アノード電極形成工程においては、前記複数の第1の柱状構造体のそれぞれの上端と前記第2の光閉じ込め層の上面とが一の平坦面をなすように前記第2の光閉じ込め層を研磨したうえで、前記平坦面に透明導電膜を設け、前記透明導電膜上にパッド電極を形成するようにした。
 本発明の第19の態様では、第18の態様に係る発光素子の製造方法において、前記配向多結晶基板として配向GaN基板を用い、前記カソード電極形成工程においては、前記配向GaN基板の他方主面上にカソード電極を設けるようにした。
 本発明の第20の態様では、第18の態様に係る発光素子の製造方法において、前記配向多結晶基板として配向アルミナ基板を用い、前記配向アルミナ基板の上にn型の導電型を呈する下地層を形成する下地層形成工程、をさらに備え、前記第1光閉じ込め層形成工程においては前記第1光閉じ込め層を前記下地層の上に形成し、前記柱状構造体形成工程においては、前記第1の柱状構造体を前記下地層の上であって、前記第1の領域の上方に位置する箇所において形成し、前記カソード電極形成工程においては、前記下地層の上にカソード電極を設けるようにした。
 本発明の第1ないし第20の態様によれば、下地基板として、単結晶基板に比して安価でかつ作製容易な配向多結晶基板を用いつつも、光取り出し効率が優れるとともに、電流リークの抑制された縦型構造の発光素子を実現することができる。
 特に、本発明の第12ないし第20の態様によれば、開口部の位置を直下に結晶欠陥が存在しているか否かによらず平面格子の格子点位置として機械的に定めるにも関わらず、下地基板の結晶欠陥が存在しない第1の領域上に形成された第1の柱状構造体のみを柱状発光部として好適に利用することができる。
第1の実施の形態に係る発光素子10の構成を模式的に示す図である。 発光素子10の作製途中の様子を模式的に示す図である。 平面視円形状の開口部2hが六方平面格子の格子点位置に設けられてなる場合の第1光閉じ込め層2aを例示する平面図である。 第1の実施の形態の変形例に係る発光素子110の作製途中の様子を模式的に示す図である。 第2の実施の形態に係る発光素子210の作製途中の様子を模式的に示す図である。 全面積層発光素子における発光構造を例示する図である。
 本明細書中に示す周期表の族番号は、1989年国際純正応用化学連合会(International Union of Pure Applied Chemistry:IUPAC)による無機化学命名法改訂版による1~18の族番号表示によるものであり、13族とはアルミニウム(Al)・ガリウム(Ga)・インジウム(In)等を指し、14族とは、シリコン(Si)、ゲルマニウム(Ge)、スズ(Sn)、鉛(Pb)等を指し、15族とは窒素(N)・リン(P)・ヒ素(As)・アンチモン(Sb)等を指す。
  <第1の実施の形態>
  <発光素子の構成>
 図1は、本実施の形態に係る発光素子10の構成を模式的に示す図である。図1(a)は、発光素子10全体の模式断面図である。図1(a)に示すように、発光素子10は、主に、下地基板1と、第1光閉じ込め層2aと第2光閉じ込め層2bとが下地基板側からこの順に積層されてなる光閉じ込め層2と、いずれも13族窒化物(III族窒化物)からなるn型層3、活性層4、およびp型層5が下地基板側からこの順に積層されてなる複数の柱状発光部6(第1の柱状構造体)と、透明導電膜7と、パッド電極8と、カソード電極9とを備える。発光素子10は、概略、縦型の発光素子構造を有し、パッド電極8とカソード電極9との間に通電がなされると、両電極の間に存在する複数の柱状発光部6において発光が生じるようになっている。
 また、図1(b)は、柱状発光部6の詳細構成を示す断面図である。図1(b)に示すように、柱状発光部6において活性層4は、第1単位層4aと第2単位層4bとが下地基板側からこの順に繰り返し交互に積層されてなることで多重量子井戸(MQW)構造を有するものとなっている。一方、p型層5は、p型クラッド層5aとp型キャップ層5bとが下地基板側からこの順に積層されることによって構成されてなる。
 下地基板1は、複数のGaN結晶からなる多結晶基板である。ただし、それぞれのGaN結晶は、そのc軸方向が下地基板1の主面の法線方向(以下、単に法線方向とも称する)に略一致するように(概ね揃うように)配向させられ、連結されてなる。下地基板1は、配向多結晶基板の一種であって、以下においては配向GaN基板とも称する。ただし、厳密にいえば、各々のGaN結晶のc軸方向は、下地基板1の法線方向からわずかにずれている。GaN結晶のc軸方向の、下地基板1の法線方向からのずれ角を、チルト角と称する。
 また、下地基板1には、その構成および製法に起因して、結晶粒界等の結晶欠陥1dが存在し、その一部は法線方向において貫通してなる。しかしながら、下地基板1は、法線方向においては概ね単結晶構造を有するものとみなすことができ、発光機能等のデバイス特性を確保するのに十分な高い結晶性を有するものとなっている。その一方で、下地基板1はあくまで配向GaN基板であって単結晶基板ではないことから、単結晶GaN基板に比して製造コストが低いという特長も有する。
 発光素子10の製造過程における把持などの取扱いの容易さを鑑みると、下地基板1は数十μm程度以上の厚みを有することが好ましい。また、下地基板1を構成するGaN結晶の平均粒径(より具体的には、下地基板1の主面の面内方向における平均粒径)Dは、15μm以上であることが好ましい。係る平均粒径Dの上限には原理上は特段の制限はないが、実際に多結晶の配向GaN基板を作製するという観点からすると、200μm程度が事実上の上限となる。下地基板1の作製手法については後述する。
 光閉じ込め層2は、下地基板1の一方主面側において、複数の柱状発光部6の周囲を取り囲むように設けられてなる。光閉じ込め層2は、柱状発光部6を構成する13族窒化物よりも屈折率が小さい材料からなる。なお、GaNの場合で屈折率は2.4~2.6程度である。光閉じ込め層2の材料としては、SiO、Al、SiN、SiONなどが例示されるが、製造の容易さの観点からは、SiO2が好ましい。これにより、柱状発光部6において発生した光は光閉じ込め層2との界面における反射を繰り返しつつ柱状発光部6の長手方向に伝播し、最終的には、透明導電膜7を通じて素子外部へと放出される。すなわち、光閉じ込め層2は、柱状発光部6において発生した光を柱状発光部6内に閉じ込める効果を有するものとなっている。係る光閉じ込め効果により、発光素子10の光取り出し効率は高められてなる。
 なお、上述のように光閉じ込め層2は第1光閉じ込め層2aと第2光閉じ込め層2bとの2層構造を有してなる。このうちの第1光閉じ込め層2aは、詳細は後述するが、柱状発光部6を形成する際にその形成位置を規定するマスクとして用いられる層でもある。ただし、両層は、光閉じ込め効果を奏する点では全く同様である。
 マスクとしての機能を好適に果たすという点からは、第1光閉じ込め層2aは、100nm~1000nmの厚みに設けられるのが好適である。一方、光閉じ込め層2全体の厚みは、柱状発光部6の厚み(長手方向のサイズ)と同じとなる。
 柱状発光部6は、発光素子10において実際に発光を担う部位であり、下地基板1の光閉じ込め層2が備わる側の主面の上方に、法線方向に沿って延在する円柱状、多角柱状その他柱状の(ロッド状の)積層構造体として備わる。柱状発光部6は、下地基板1の当該主面上に、13族窒化物からなる複数の層を順次にエピタキシャル成長させることによって設けられてなる。発光素子10には、複数の柱状発光部6が、下地基板1の主面上に離散的に備わっている。
 それぞれの柱状発光部6は、上述したように、n型層3と、第1単位層4aと第2単位層4bとによってMQW構造が形成されてなる活性層4と、p型クラッド層5aとp型キャップ層5bとからなるp型層5とが積層した構成を有する。それぞれの柱状発光部6のc軸方向は、直下のGaN結晶のc軸方向と一致してなる。これは、換言すれば、それぞれの柱状発光部6のc軸方向が、下地基板1の法線方向と概ね一致していることを意味する。
 n型層3は、電子濃度が2×1018/cm~2×1019/cmとなるようにSiがドープされたGaNからなり、400nm~5000nmの厚みを有するのが好適である。
 活性層4は、第1単位層4aがInGa1-xN(0<x≦0.2)なる組成の13族窒化物にて2nm~10nmの厚みを有してなり、第2単位層4bがGaNにて5nm~15nmの厚みを有してなり、かつ、第1単位層4aと第2単位層4bのペアの繰り返し積層数が3~8であるのが好適である。
 p型クラッド層5aは、ホール濃度が5×1017/cm~5×1018/cmとなるようにMgがドープされたAlGa1-yN(0<y≦0.2)なる組成の13族窒化物からなり、50nm~150nmの厚みを有するのが好適である。
 p型キャップ層5bは、ホール濃度が1×1018/cm~1×1019/cmとなるようにMgがドープされたGaNからなり、200nm~650nmの厚みを有するのが好適である。
 以上のような構成を有することから、柱状発光部6の長手方向のサイズは500nm~6000nm程度となる。なお、発光素子10においては、全ての柱状発光部6の上端部(より具体的にはp型キャップ層5bの上端部)と光閉じ込め層2の上面(より具体的には第2光閉じ込め層2bの上面)とが面一となっていることから、柱状発光部6の長手方向のサイズは該柱状発光部6が埋め込まれた光閉じ込め層2の厚みと同じとなっている。
 柱状発光部6の詳細およびその形成態様に基づく作用効果については後述する。
 透明導電膜7は、第2光閉じ込め層2bの上面と全ての柱状発光部6の上端部とに隣接する態様にて形成されてなる。これにより、全ての柱状発光部6は透明導電膜7と電気的に接続されてなる。透明導電膜7は、例えばITOや酸化亜鉛などによって50nm~200nm程度の厚みに形成されてなる。
 パッド電極8は、柱状発光部6の上端部分と電気的に接続される電極である。パッド電極8は、透明導電膜7の上面の一部に設けられてなる。パッド電極8は、Ti/Au積層膜として形成されてなるのが好適な一例である。パッド電極8となるTi/Au積層膜を構成するTi膜、Au膜の厚みはそれぞれ、20nm~200nm、50nm~500nm程度であるのが好ましい。
 カソード電極9は、柱状発光部6の下地基板1側の端部と電気的に接続される電極である。カソード電極9は、下地基板1の柱状発光部6等が備わる側の主面とは反対側の他方主面上の略全面に備わる。カソード電極9は、Ti/Al/Ni/Au多層膜として形成するのが好適である。カソード電極9となるTi/Al/Ni/Au多層膜を構成するTi膜、Al膜、Ni膜、Au膜の厚みは、それぞれ、10nm~30nm、150nm~1000nm、20nm~100nm、50nm~500nm程度であるのが好ましい。
  <柱状発光部の詳細>
 次に、柱状発光部6について、特に、その配置位置およびサイズと、これによる作用効果について、詳細に説明する。
 上述のように、発光素子10において柱状発光部6は、下地基板1の一方主面上に離散的に備わっているが、より具体的には、それぞれの柱状発光部6は、当該主面上において仮想的に定めた所定の周期pを有する平面格子(例えば六方平面格子や正方平面格子など)の格子点位置(以下、形成候補位置)であって、かつ、当該主面に結晶欠陥1dが存在していない箇所に、備わっている。換言すれば、下地基板1の一方主面上において周期pで2次元的に定められてなる形成候補位置のうち、下地基板1の一方主面の結晶欠陥1dが存在しない領域(第1の領域)の上方に、備わっている。また、それぞれの柱状発光部6は、長手方向に垂直な断面における最大のサイズ(最大外径サイズ)dがD/2以下であるという要件をみたして備わっている。
 これにより、本実施の形態に係る発光素子10においては、実質的に単結晶とみなせるGaN結晶上にのみ、柱状発光部6が形成されてなる。すなわち、いずれの柱状発光部6も、下地基板1に存在する結晶粒界等の結晶欠陥1dの影響を受けずに形成されてなる。それゆえ、いずれの柱状発光部6も、優れた結晶品質を有するものとなっている。
 なお、後述するように、柱状発光部6の形成候補位置は、第1光閉じ込め層2aの形成時に設けられる開口部2hの位置として規定される(図3参照)。
 また、周期pは、柱状発光部6の最小ピッチとなる値であり、下地基板1を構成するGaN結晶の平均粒径Dの値にもよるが、15μm~70μm程度が好適である。係る場合に、発光素子10は上記要件をみたす多数の柱状発光部6を好適に備えるものとなる。結晶品質の優れた柱状発光部6を多数備えることは、発光素子10における発光強度の増大に資するものとなっている。
 仮に周期pが小さ過ぎると、自ずから柱状発光部6の最大外径サイズdも小さくなり、柱状発光部6の数は増えるものの結晶欠陥1dと重なる形成候補位置も多くなるために、結果として十分な発光強度は得られない。一方、周期pが大き過ぎる場合には、柱状発光部6の数が少なくなるため、やはり十分な発光強度は得られない。
 より詳細は、平均粒径Dが20μm未満の場合は、サイズdはD/4以下が好ましく、平均粒径Dが20μm以上の場合は、サイズdはD/3以下が好ましい。これらを満たす場合には、発光強度の大きな発光素子10が歩留まりよく作製される。
 一方、サイズdの下限については、柱状発光部6が形成可能である限りにおいて、制限はない。ただし、サイズdが1μm以上の場合には、後述するように柱状発光部6をMOCVD法によって比較的容易に形成することが可能である。あるいは、例えば公知のナノワイヤの形成手法を適用することによってサイズdが100nm~1000nm程度となるように柱状発光部6を形成することも可能である。
 なお、発光素子10において、柱状発光部6の形成候補位置であって直下に結晶欠陥1dが存在している箇所には、柱状発光部6ではなく、柱状発光部6と同様の積層構成(発光構造)を有するものの柱状発光部6よりも長手方向のサイズが小さい不完全柱状部6β(第2の柱状構造体)が存在している。換言すれば、不完全柱状部6βは、下地基板1の一方主面上において周期pで2次元的に定められてなる形成候補位置のうち、下地基板1の一方主面の結晶欠陥1dが存在する領域(第2の領域)の上方に、形成されてなる。不完全柱状部6βは、結晶欠陥1dの存在する箇所が成長の起点(成長下地)となっているがために、柱状発光部6と同一の結晶成長条件で形成されてなるものの成長レートが柱状発光部6よりも小さくなってしまっている部位である。柱状発光部6とは異なり、不完全柱状部6βは、その上端部分が第2光閉じ込め層2bによって覆われ、透明導電膜7と電気的に接続されていないので、発光に寄与することはない。
 仮に、下地基板1として本実施の形態と同様に配向GaN基板を用い、従来の発光素子のように当該基板の一方主面の略全面にn型層、活性層、およびp型層を順次に積層して発光構造(LED構造)を形成した発光素子(以下、全面積層発光素子)の場合、配向GaN基板をなす各結晶粒の結晶欠陥1dに起因して、その上方に形成された部分には、面内方向においてn型層、活性層、およびp型層からなるLED構造に不連続が生じ得る。図6は、この点を説明するべく示す、全面積層発光素子における発光構造を例示する図である。図6に示すように、全面積層発光素子の場合も、結晶欠陥1dの上方においては成長レートが遅くなるために、周囲に比して、発光構造を形成するn型層3、活性層4、およびp型層5の積層方向サイズが小さい不完全柱状部6βが形成される。そのため、各層が面内方向に連続せず、正常に形成されたn型層3が不完全柱状部6βの活性層4さらにはp型層5と接触したり、正常に形成された活性層4が不完全柱状部6βのp型層5と接触する場合が起こり得る。特に、活性層4(なかでもMQW構造)に不連続が生じた場合、p型層5の上に形成されたp型電極が、活性層4やn型層3に接触するといった不都合が生じるため、電流リークが生じる要因となる。しかも、配向GaN基板においては係る結晶欠陥1dが不揃いに存在することから、全面積層発光素子の場合、基板表面においてこれを避けて結晶成長させることや、結晶欠陥1d上の成長部分を避けて電極を形成することは困難である。
 これに対し、本実施の形態に係る発光素子10の場合、結晶欠陥1d上には透明導電膜7と電気的に接続されない不完全柱状部6βのみが存在し、柱状発光部6は結晶欠陥1d上には存在していないので、そのような電流リークの発生が好適に抑制されてなる。このことは、見方を変えれば、本実施の形態に係る発光素子10は、結晶欠陥1d上に不完全柱状部6βを配置することで、電流リークの発生を抑制したものであると捉えることができる。すなわち、発光素子10において、不完全柱状部6βは、電流リーク抑制部として機能をしているということができる。
 なお、本実施の形態に係る発光素子10の場合、全面積層発光素子に比して、下地基板1の一方主面の面積に対する発光を担う部分の面積の割合が小さいが、上述したように柱状発光部6の周囲に光閉じ込め層2を備えることで、むしろ全面積層発光素子よりも光取り出し効率は高められる。
 ゆえに、上述のような構成を有することで、本実施の形態に係る発光素子10においては、配向GaN基板を下地基板1として用いつつも、優れた発光強度が実現されてなる。
  <発光素子の作製方法>
 次に、本実施の形態に係る発光素子10を作製する方法について説明する。以降の説明においては、母基板(ウェハ)の状態にある下地基板1を用意し、多数の発光素子10を同時に作製する、いわゆる多数個取りの手法によって発光素子10を作製する場合を対象とする。図2は、発光素子10の作製途中の様子を模式的に示す図である。
 まず、下地基板1として、図2(a)に示すような結晶粒界等の結晶欠陥1dが存在する配向GaN基板を用意(作製)する。配向GaN基板の作製方法としては、例えば、フラックス法(Naフラックス法)によるものが例示される。
 フラックス法による場合、まず、配向多結晶基板である配向アルミナ基板を用意する。
 配向アルミナ基板は、一方主面における平均粒径15μm~70μm程度のアルミナ(Al)粒子のc軸が概ね基板法線方向に配向してなる多結晶アルミナ焼結体からなる。アルミナ基板のサイズには、後段の処理に際して取り扱い可能な限りにおいて特段の制限はないが、例えば直径2インチ~8インチで、厚みが500μm~2000μm程度のものを用いるのが好適である。
 そして、この配向アルミナ基板の一方主面上に、水素をキャリアガスとし、TMG(トリメチルガリウム)とアンモニアとを原料ガスとして、MOCVD法によって20nm~30nm程度の厚みのGaN低温バッファ層および1μm~5μm程度の厚みのGaN層を順次に形成することにより、種基板を得る。GaN低温バッファ層の形成温度は510℃~530℃程度であればよく、続くGaN層の形成温度は1050℃~1150℃程度であればよい。
 係る種基板を、アルミナ基板のサイズに応じた重量の金属Gaおよび金属Naとともにアルミナ坩堝に充填し、さらに、該アルミナ坩堝を耐熱金属製の育成容器に入れて密閉する。係る育成容器を耐熱・耐圧の結晶育成炉内に載置する。炉内温度を750℃~900℃とし、窒素ガスを導入して炉内圧力を3MPa~5MPaとした後、該育成容器を水平回転させながら50時間~100時間保持することによって、250μm~500μm程度の厚みを有するGaN厚膜層を成長させる。係る場合において、GaN厚膜層は、下地となっているアルミナ基板をなす個々の結晶粒の結晶方位に倣って結晶粒がc軸配向してなる配向多結晶層として得られる。
 そして、配向アルミナ基板側をグラインダーによる研削などにより除去した後、GaN厚膜層をダイヤモンド砥粒などの公知の手法を用いて所望の厚みに研磨することによって、配向GaN基板が得られる。
 配向アルミナ基板上に形成されたGaN厚膜層も多結晶層となっており、かつ、配向アルミナ基板に倣って、各結晶粒のc軸が概ね基板法線方向に配向してなるものの、結晶粒界等の結晶欠陥1dを内包してなる。従って、最終的に得られる配向GaN基板も、この特長を有するものとなっている。
 下地基板1としての配向GaN基板が得られると、図2(b)に示すように、その一方主面上に第1光閉じ込め層2aを形成する。第1光閉じ込め層2aは、これを平面視した場合に貫通孔たる開口部2hが平面格子(例えば六方平面格子や正方平面格子など)の格子点位置に位置するように、形成される。図3は、平面視円形状の開口部2hが六方平面格子の格子点位置に設けられてなる場合の第1光閉じ込め層2aを例示する平面図である。上述したように、係る開口部2hの配置位置が、柱状発光部6の形成候補位置となる。すなわち、第1光閉じ込め層2aは柱状発光部6(および不完全柱状部6β)を形成する際にマスクとして機能する。換言すれば、柱状発光部6もしくは不完全柱状部6βの形成位置となる。
 開口部2hの最大外径サイズは柱状発光部6の最大外径サイズdと略一致した値であればよく、また、周期pは上述のように30μm~100μm程度が好適である。なお、開口部2hの配置位置、つまりは柱状発光部6の形成候補位置は、下地基板1に不揃いに存在する結晶欠陥1dの位置を何ら考慮せずにいわば機械的に定められる。
 このような第1光閉じ込め層2aの形成は、例えばスパッタ法やCVD法にて、SiOやAl、SiN、SiONなど、柱状発光部6を構成する13族窒化物よりも屈折率の小さい材料の層を0.05μm~5μmの厚みに形成した後、当該層に対しフォトリソグラフィープロセスとRIEエッチングプロセスとによって開口径dの開口部2hをパターニングすることによって行うことができる。
 第1光閉じ込め層2aの形成が終わると、図2(c)に示すように、開口部2hに柱状発光部6を形成する。柱状発光部6の形成は、MOCVD法によって行う。
 まず、第1光閉じ込め層2aを形成した下地基板1を、第1光閉じ込め層2aの側が形成面となるようにMOCVD炉内のサセプタ上に載置する。そして、水素・窒素混合雰囲気中で基板温度(サセプタ温度)を1050℃~1150℃の所定のn型層形成温度とし、窒素と水素をキャリアガスとし、TMG(トリメチルガリウム)とアンモニアとを原料とし、シランガスをドーパントとして、n型層3としてのSiドープGaN層を開口部2hにおいて下地基板1の上に成長させる。
 続いて、基板温度(サセプタ温度)を750℃~850℃の所定の活性層層形成温度とし、窒素と水素をキャリアガスとし、TMGおよびTMI(トリメチルインジウム)とアンモニアとを原料として、n型層3の上に、InGa1-xN(0<x≦0.2)なる組成の13族窒化物からなる第1単位層4aとGaNからなる第2単位層4bとを下地基板1側からこの順に繰り返し交互に形成することによって、MQW構造を有する活性層4を形成する。
 さらに、基板温度(サセプタ温度)を1000℃~1100℃の所定のp型層形成温度とし、窒素と水素をキャリアガスとし、TMGおよびTMA(トリメチルアルミニウム)とアンモニアとを原料とし、CpMgをドーパントとして、活性層4の上に、p型層5として、AlGa1-yN(0<y≦0.2)なる組成の13族窒化物にMgがドープされてなるp型クラッド層5aとMgドープGaNからなるp型キャップ層5bとをこの順に形成する。なお、p型キャップ層5bの形成に際しては、その上端部分5eを後段の処理にて研磨することから、係る研磨による減失分を見越して形成厚みを定める必要がある。具体的には、上述のように、p型キャップ層5bは50nm~200nmの厚みを有するのが好適であることから、係る厚みよりも100nm~300nm程度大きな形成厚みとするのがよい。
 以上の手順を行うことによって、開口部2hに柱状発光部6が形成される。上述のように、開口部2hの配置位置は機械的に定められるので、一部の開口部2hの直下には結晶欠陥1dが存在する場合もあるが、結晶欠陥1dが存在する箇所においては、柱状発光部6の成長レートよりも小さい成長レートにて、柱状発光部6よりも短い不完全柱状部6βが形成されることになるので、実際に所望のサイズの柱状発光部6が形成されるのは、開口部2hの直下に結晶欠陥1dが存在していない箇所のみである。換言すれば、本実施の形態においては、成長起点(成長下地)の状態の違いに起因した成長レートの違いを利用することで、特段の制御や峻別を行わずとも、柱状発光部6の形成箇所から、下地基板1をなすGaN結晶の結晶粒界部分を除外しているともいえる。
 柱状発光部6の形成が終わると、続いて、図2(d)に示すように、第2光閉じ込め層2bを形成する。第2光閉じ込め層2bは、第1光閉じ込め層2aと同様、SiO、Al、SiN、SiONなど、柱状発光部6を構成する13族窒化物よりも屈折率の小さい材料を構成材料として、柱状発光部6および不完全柱状部6βの間を埋めるように、かつ、柱状発光部6の最上層たるp型層5の上端部分5eを覆うように形成される。換言すれば、第2光閉じ込め層2bは、露出している柱状発光部6および不完全柱状部6βを覆うように、形成される。係る第2光閉じ込め層2bは、例えばスパッタ法にて形成するのが好適である。また、第2光閉じ込め層2bは、第1光閉じ込め層2aと合わせた光閉じ込め層2全体の厚みが0.8μm~8μm程度となるように形成するのが好適である。このとき、当然ながら不完全柱状部6βの上端部分も第2光閉じ込め層2bによって覆われる。
 第2光閉じ込め層2bの形成が終わると、その表層部分を研磨し、図2(e)に示すように、p型層5を(より厳密にはp型キャップ層5bを)露出させて、p型層5の上面5sと第2光閉じ込め層2bの上面2sとからなる平坦面が形成されるようにする。係る研磨の手法としては、CMP研磨が好適であり、第2光閉じ込め層2bの研磨速度(化学的エッチング速度)がp型層5の研磨速度と同等かより早くなる条件にて研磨を行うのが好ましい。
 研磨処理が終わると、続いて、p型層5を活性化させるため、高速アニール炉(RTA)を用い、750℃~850℃の窒素雰囲気中で10分~20分間の熱処理を行う。
 続いて、フォトリソグラフィープロセスとRIEエッチングとによって、最終的に多数個の発光素子10を得る際の分断箇所となる分離溝を形成したうえで、カソード電極9、透明導電膜7、および、パッド電極8をこの順に形成する。
 カソード電極9は、フォトリソグラフィープロセスと真空蒸着法によって、カソード電極9は、下地基板1の第1光閉じ込め層2aの形成面とは反対側の主面の略全面に形成するのが好適である。カソード電極9の形成後、そのオーム性接触特性を良好なものとするため、600℃~650℃の窒素雰囲気中で50秒~300秒間の熱処理を行う。
 また、透明導電膜7は、スパッタ法によって、p型層5の上面5sと第2光閉じ込め層2bの上面2sとからなる平坦面の略全面に形成するのが好適である。
 さらに、パッド電極8は、フォトリソグラフィープロセスと真空蒸着法によって、透明導電膜7の上面の一部に形成するのが好適である。パッド電極8の形成後、そのオーム性接触特性を良好なものとするため、600℃~650℃の窒素雰囲気中で1分~5分間の熱処理を行う。
 最後に、ダイサー等により、先に形成した分離溝に沿って切断することによって、多数個の発光素子10を得ることができる(図3(f))。
 なお、下地基板1における結晶欠陥1dの分布は不揃いであるため、以上のような手順にて多数個の発光素子10を作製した場合、切断箇所と結晶欠陥1dの存在箇所との兼ね合いによっては柱状発光部6が十分に形成されない発光素子10も生じ得るが、柱状発光部6のサイズdと開口部2hの周期Pとを好適に定めることで、そのような発光素子10の形成される確率は限定的なものとなる。本実施の形態によれば、換言すれば、高い歩留まりで発光強度の大きな発光素子10を作製することができる。
 以上、説明したように、本実施の形態によれば、下地基板として、単結晶基板に比して安価でかつ作製容易な配向多結晶基板たる配向GaN基板を用い、かつ、その一方主面上であって結晶粒界等の結晶欠陥が存在していない位置に、それぞれが13族窒化物からなるn型層と活性層とp型層とを積層してなる柱状発光部を離散的に設けるとともに、該柱状発光部の周囲に柱状発光部をなす13族窒化物よりも屈折率の小さい物質に光閉じ込め層を設けるようにすることで、光取り出し効率が優れるとともに、電流リークの抑制された縦型構造の発光素子を実現することができる。
 しかも、結晶粒界等の結晶欠陥が存在する箇所が成長起点である場合に結晶欠陥が存在しない箇所が成長起点である場合に比して13族窒化物の成長レートが小さいことを利用し、柱状発光部の形成にあたってはその形成候補位置を直下に結晶欠陥が存在しているか否かによらず平面格子の格子点位置として機械的に定めるにも関わらず、下地基板の結晶欠陥が存在しない箇所にのみ柱状発光部を好適に形成することができる。
  <第1の実施の形態の変形例>
 図4は、第1の実施の形態の変形例に係る発光素子110の作製途中の様子を模式的に示す図である。なお、当該変形例に係る発光素子110に備わる構成要素であって、第1の実施の形態に係る発光素子10の構成要素と同一のものは、同じ符号を付してその詳細な説明を省略する。
 図4(a)に示すように、当該変形例において用意する下地基板1は第1の実施の形態と同様であるが、図4(b)に示すように、第1光閉じ込め層102aの開口部102hが、発光素子10に備わる第1光閉じ込め層2aの開口部2hの形状とは異なり、上方ほど広がったテーパー状(断面視台形状)をなしている。これは、開口部102hを形成するためのRIEエッチング時に、下地基板1を傾斜させつつ回転させることによって実現されてなる。
 係る開口部102hの形成に続いては、第1の実施の形態における柱状発光部6の形成条件と同じ形成条件にて柱状発光部106の形成を行うが、図4(c)に示すように、開口部102hの形状に起因して、n型層103、活性層104、およびp型層105の外形サイズが柱状発光部6よりも大きくなる。
 以降、図4(d)~(e)に示すように、第2光閉じ込め層102bの形成と、研磨処理によるp型層105の上面105sと第2光閉じ込め層102bの上面102sとからなる平坦面の形成、さらには、分離溝形成およびカソード電極9、透明導電膜7、および、パッド電極8の形成を第1の実施の形態と同様に行うことで、図4(f)に示す発光素子110が得られる。
 発光素子110においては、その作製手順からもわかるように、柱状発光部106を構成するn型層103の下地基板近傍が上方ほど外径サイズの大きいテーパー状をなしていることで、n型層103と下地基板1との界面の面積よりも当該界面に平行な活性層104の断面の面積の方が大きくなっている。これにより、発光素子110は、n型層103と下地基板1との界面の面積が同じである発光素子10に比して、より大きな光取り出し効率が実現されるものとなっている。
  <第2の実施の形態>
 上述のように、第1の実施の形態(およびその変形例)においては、下地基板1として配向多結晶基板であるGaN基板を用いることで光取り出し効率の優れた縦型構造の発光素子が実現されることを説明しているが、本実施の形態においては、横型構造の発光素子210について説明する。
 図5は、第2の実施の形態に係る発光素子210の作製途中の様子を模式的に示す図である。なお、本実施の形態に係る発光素子210に備わる構成要素であって、第1の実施の形態に係る発光素子10の構成要素と同一のものは、同じ符号を付してその詳細な説明を省略する。なお、以降の説明においては、母基板の状態にある下地基板201を用意し、多数の発光素子210を同時に作製する、いわゆる多数個取りの手法によって発光素子210を作製する場合を対象とする。
 図5(a)に示すように、本実施の形態においては、下地基板201として、配向アルミナ基板201aの一方主面の略全面にn型の導電型を呈する下地層201bが形成されてなるものを用いる。
 配向アルミナ基板201aは、一方主面における平均粒径Dが15μm~70μm程度の複数のアルミナ(Al)粒子のc軸が概ね基板法線方向に配向してなる多結晶アルミナ焼結体からなる。配向アルミナ基板201aのサイズには、後段の処理に際して取り扱い可能な限りにおいて特段の制限はないが、例えば直径2インチ~8インチで、厚みが500μm~2000μm程度のものを用いるのが好適である。
 下地層201bの形成は、MOCVD法によって行う。まず、配向アルミナ基板201aを、MOCVD炉内のサセプタ上に載置し、いったん水素雰囲気中で1150℃~1250℃のクリーニング処理に加熱保持することでクリーニング処理を行った後、基板温度(サセプタ温度)を500℃~550℃の低温バッファ層形成温度にまで低下させ、水素をキャリアガスとし、TMGとアンモニアとを原料として、図示しないGaN低温バッファ層を10nm~30nmの厚みに成長させる。続いて、基板温度(サセプタ温度)を1080℃~1120℃の所定の下地層形成温度とし、窒素と水素をキャリアガスとし、TMGとアンモニアとを原料とし、シランガスをドーパントとして、下地層201bとしてのSiドープGaN層を2μm~5μmの厚みに形成する。
 なお、配向アルミナ基板201aにおいては、第1の実施の形態に係る発光素子10に用いている下地基板1と同様に、結晶粒界等の結晶欠陥201dが存在する。また、下地層201bのうち、係る結晶欠陥201d上の部分においては、他の部分よりも結晶品質の劣化が生じている。
 下地基板201が用意できると、図5(b)~(e)に示すように、第1の実施形態と同様の手順にて、マスクとしての第1光閉じ込め層2aの形成から、研磨処理によるp型層5の上面5sと第2光閉じ込め層2bの上面2sとからなる平坦面の形成までを行う。その際の、開口部2hの周期pや開口径dの好ましい要件(開口径dと結晶粒径Dとの関係)その他の作成条件は、第1の実施の形態と同様でよい。
 なお本実施の形態における柱状発光部6の形成時においても、第1の実施の形態と同様、結晶欠陥201dの存在位置の上方に形成されるのは柱状発光部6よりもサイズが小さい不完全柱状部6βとなるので、最終的に得られる発光素子210においては、発光素子10と同様、結晶欠陥201dの存在に起因した電流リークの発生は好適に抑制される。
 続く分離溝の形成についても第1の実施の形態と同様に行った後、次に、カソード電極209の形成位置を確保するために、フォトリソグラフィープロセスとRIEエッチングとによって、下地層201bの一部を露出させる(図5(f))。そして、係る露出箇所に対し、フォトリソグラフィープロセスと真空蒸着法によってカソード電極209を形成する。カソード電極209の構成材料および厚みは、第1の実施の形態と同様でよい。さらに、透明導電膜7およびパッド電極8の形成についても、第1の実施の形態と同様に行えばよい。これにより、図5(f)に示す横型構造の発光素子210が得られる。
 発光素子210は、全体の構造が横型であり、下地基板に配向アルミナ基板を用いているが、柱状発光部6の形成態様については第1の実施の形態に係る発光素子10と同様である。それゆえ、本実施の形態に係る発光素子210においても、第1の実施の形態に係る発光素子10と同様、単結晶基板に比して安価でかつ作製容易な配向多結晶基板を下地基板として用いつつ、優れた光取り出し効率と、電流リークの抑制とが、実現されてなる。
 (実施例)
 第1の実施の形態に係る発光素子10と同様の構成を有する複数種類の発光素子を作製した。
 具体的には、配向GaN基板における平均粒径Dを15μm、30μm、50μmの3水準に違え、かつ、開口部2hの開口径(柱状発光部6の最大外径サイズ)dを1μm、2μm、3μm、5μm、10μm、15μm、20μm、25μmの8水準に違えた計24通りの発光素子(試料No.1~24)を作製した。
 まず、下地基板1となる配向GaN基板をフラックス法により作製した。始めに、一方主面における平均粒径が15μm、30μm、50μmの3種類の配向アルミナ基板を8枚ずつ用意し、それぞれを用いて配向GaN基板を作製した。なお、いずれの配向アルミナ基板も、直径は2インチで、厚みは400μmであった。
 これらの配向アルミナ基板についてそれぞれ、MOCVD法によって厚みが20nmのGaN低温バッファ層を形成した後、厚みが3μmのGaN層を形成することにより、3種類の種基板を得た。GaN低温バッファ層の形成温度は520℃とし、続くGaN層の形成温度は1100℃とした。
 係る3種類の種基板についてそれぞれ、フラックス法によりGaN厚膜層を成長させた。その際、種基板とともにアルミナ坩堝に充填する金属Gaおよび金属Naの充填量はそれぞれ、20g、40gとした。結晶育成炉の炉内温度は850℃とし、炉内圧力は4MPaとした。また、保持時間は20時間とした。これにより、種基板上におよそ500μm程度の厚みを有するGaN厚膜層を成長させた。アルミナ坩堝を室温まで冷却した後、GaN厚膜層形成後の種基板をアルミナ坩堝から取り出した。
 そして、配向アルミナ基板側をグラインダーによる研削により除去した後、GaN厚膜層をダイヤモンド砥粒を用いて研磨し、300μmの厚みとした。これにより、3種類の配向GaN基板を得た。得られた3種の配向GaN基板の一方主面における平均粒径は、下地となっていた配向アルミナ基板における平均粒径とほぼ同様(15μm、30μm、50μm)であった。
 次に、得られた配向GaN基板のそれぞれに対し第1光閉じ込め層2aを形成した。具体的にはまず、スパッタ法にて、厚みが0.1μmのSiO層を形成した。その後、当該層に対し、フォトリソグラフィープロセスとRIEエッチングプロセスとによって、開口部2hを相異なる開口径dにてパターニング形成した。いずれの配向GaN基板においても、開口部2hは、六方平面格子の格子点位置に形成されるようにした。なお、周期pは全て30μmとした。
 係る第1光閉じ込め層2aの形成が終わると、MOCVD法によって柱状発光部6を形成した。
 まず、基板温度を1100℃とし、n型層3として電子濃度が5×1018/cmのSiドープGaN層を、0.7μmの厚みに形成した。
 続いて、基板温度を750℃として、In0.1Ga0.9Nからなり厚みが2nmの第1単位層4aとGaNからなり厚みが10nmの第2単位層4bとを下地基板1側からこの順に5層ずつ形成することにより、活性層4を形成した。
 さらに、基板温度を1100℃とし、p型クラッド層5aとしてホール濃度が5×1017/cmのMgドープAl0.1Ga0.9N層を25nmの厚みに形成し、続いて、p型キャップ層5bとして、ホール濃度が5×1018/cmのMgドープGaN層を200nmの厚みに形成した。
 柱状発光部6の形成が終了すると、スパッタ法により、第2光閉じ込め層2bとしてのSiO層を形成した。第2光閉じ込め層2bは、光閉じ込め層2の全体の厚みが1μmとなるように形成した。
 第2光閉じ込め層2bの形成が終わると、その表層部分をCMP研磨によって、p型層5が(より厳密にはp型キャップ層5bが)露出するまで平坦に研磨した。
 研磨処理が終わると、続いて、p型層5を活性化させるため、高速アニール炉(RTA)を用い、800℃の窒素雰囲気中で10分間の熱処理を行った。
 続いて、フォトリソグラフィープロセスとRIEエッチングとによって、最終的に多数個の発光素子10を得る際の分断箇所となる分離溝を形成した。
 次に、フォトリソグラフィープロセスと真空蒸着法により、カソード電極9としてのTi/Al/Ni/Au多層電極を、下地基板1の第1光閉じ込め層2aの形成面とは反対側の主面の略全面に形成した。それぞれの金属膜の厚みは順に、15nm、220nm、40nm、75nmとした。
 係るカソード電極9の形成後、そのオーム性接触特性を良好なものとするため、700℃の窒素雰囲気中で30秒間の熱処理を行った。
 続いて、スパッタ法により、透明導電膜7としてのITO膜を、p型層5の上面5sと第2光閉じ込め層2bの上面2sとからなる平坦面の略全面に基板温度200℃にて100nmの厚みに形成した。
 さらに、フォトリソグラフィープロセスと真空蒸着法によって、透明導電膜7の上面の一部に、パッド電極8としてのTi/Au多層電極を形成した。それぞれの金属膜の厚みは順に、20nm、200nmとした。
 係るパッド電極8の形成後、そのオーム性接触特性を良好なものとするため、500℃の窒素雰囲気中で5分間の熱処理を行う。
 最後に、ダイサー等により、先に形成した分離溝に沿って切断することによって、多数個の発光素子10を得た。素子サイズは0.3mm×0.3mmとした。
 (比較例)
 比較例として、異種材料基板を下地基板とし、その略全面に発光層を形成することによって発光素子を作製した。
 具体的には、直径2インチで厚さ400μmの単結晶サファイア基板の一方主面の略全面に、実施例に係るn型層3、活性層4、p型層5の形成条件と同じ条件にて発光層を形成し、かつ、該発光層の上面に実施例と同条件で透明導電膜7およびパッド電極8を形成し、さらに、サファイア基板の他方主面に実施例と同条件でカソード電極9を形成し、その後切断することにより、多数個の発光素子を作製した。
 (特性評価)
 作製した実施例に係る全24種の発光素子10および比較例に係る発光素子についてそれぞれ、20個ずつを抽出し、それぞれに対し順方向+5Vおよび逆方向-100Vの電圧を印加して、電流量を測定した。-100V印加時の電流量に対する+5V印加時の電流量の比が100以上となった場合を合格品と判定し、全20個に対する合格品の割合(%)求め、これを素子歩留まりとした。
 また、素子歩留まりが0%となった試料以外について、合格品の発光強度を測定して平均値を算出した。そして、比較例に係る発光素子を基準素子とし、その発光強度に対する実施例の各試料についての平均発光強度の比(発光強度比)を求めた。
 表1に、実施例に係る全24種の試料について、配向GaN基板における平均粒径Dと、開口部2hの開口径dと、両者の比d/Dと、素子歩留まりと、発光強度比とを一覧にして示す。ただし、表1においては、配向GaN基板における平均粒径Dを「GaN基板における平均粒径D」と表し、開口部2hの開口径dを「マスクの開口径d」と表している。なお、比較例に係る発光素子の歩留まりは10%であった。
Figure JPOXMLDOC01-appb-T000001
 表1に示す結果からは、d/Dが0.5以下であれば、つまりは、開口径dが平均粒径Dの1/2以下であれば、素子歩留まりが50%未満と低い場合もあるものの、比較例よりも発光強度の大きな発光素子が得られることがわかる。
 さらにいえば、平均粒径Dが15μmであってd/Dが0.2以下の場合に、発光強度比300%超という発光強度の高い発光素子が75%以上という素子歩留まりで得られている。これは、平均粒径Dが20μm未満の場合にdがD/4以下であれば発光強度の大きな発光素子が高い素子歩留まりで得られるという要件を満たしている。
 また、平均粒径Dが30μmであってd/Dが0.33以下の場合に、発光強度比300%超という発光強度の高い発光素子が75%以上という素子歩留まりで得られている。そして、平均粒径Dが50μmであってd/Dが0.3以下の場合には、発光強度比300%超という発光強度の高い発光素子が70%以上という素子歩留まりで得られている。これらは、平均粒径Dが20μm以上の場合にdがD/3以下であれば発光強度の大きな発光素子が高い素子歩留まりで得られるという要件を満たしている。
 これらの結果は、配向多結晶基板である配向GaN基板を下地基板として用いる場合であっても、柱状発光部を好適に形成し、かつ、光閉じ込め層を設けることで、基板の略全面に発光層を設ける構成よりも大きな発光強度が得られる発光素子が実現可能であることを意味している。

Claims (20)

  1.  発光素子であって、
     配向した複数の結晶粒からなる配向多結晶基板と、
     前記配向多結晶基板の一方主面の結晶欠陥が存在しない領域の上方に離散的に設けられてなり、それぞれが前記配向多結晶基板の法線方向に長手方向を有する柱状の部位である複数の柱状発光部と、
     前記柱状発光部の構成材料よりも屈折率の低い材料にて、前記配向多結晶基板の上方に前記複数の柱状発光部を取り囲むように設けられてなる光閉じ込め層と、
    を備えることを特徴とする発光素子。
  2.  請求項1に記載の発光素子であって、
     前記複数の柱状発光部が、前記配向多結晶基板の前記一方主面において仮想的に定めた所定の周期を有する平面格子の格子点位置のうち、下方に前記結晶欠陥が存在しない位置に設けられてなる、
    ことを特徴とする発光素子。
  3.  請求項2に記載の発光素子であって、
     前記複数の結晶粒の前記一方主面における平均粒径をDとし、前記複数の柱状発光部の長手方向に垂直な断面における最大外径サイズをdとするとき、
       d≦D/2
    である、
    ことを特徴とする発光素子。
  4.  請求項3に記載の発光素子であって、
     D<20μmのときに
       d≦D/4
    であり、
     D≧20μmのときに
       d≦D/3
    である、
    ことを特徴とする発光素子。
  5.  請求項2ないし請求項4のいずれかに記載の発光素子であって、
     前記平面格子の前記格子点位置のうち、下方に前記結晶欠陥が存在する位置に、前記柱状発光部よりも長手方向のサイズが短い柱状の部位である不完全柱状部が備わる、
    ことを特徴とする発光素子。
  6.  請求項1ないし請求項5のいずれかに記載の発光素子であって、
     前記複数の柱状発光部がそれぞれ、いずれもが13族窒化物からなるn型層と、活性層と、p型層とを前記配向多結晶基板の側からこの順に積層してなるものである、
    ことを特徴とする発光素子。
  7.  請求項6に記載の発光素子であって、
     前記活性層が、MQW構造を有してなる、
    ことを特徴とする発光素子。
  8.  請求項6または請求項7に記載の発光素子であって、
     前記光閉じ込め層がSiOからなる、
    ことを特徴とする発光素子。
  9.  請求項1ないし請求項8のいずれかに記載の発光素子であって、
     前記複数の柱状発光部のそれぞれの上端と前記光閉じ込め層の上面とが一の平坦面をなしており、前記平坦面に透明導電膜が設けられてなる、
    ことを特徴とする発光素子。
  10.  請求項9に記載の発光素子であって、
     前記配向多結晶基板が配向GaN基板であり、
     前記透明導電膜上にパッド電極が設けられてなり、
     前記配向GaN基板の他方主面上にカソード電極が設けられてなる、
    ことを特徴とする発光素子。
  11.  請求項9に記載の発光素子であって、
     前記配向多結晶基板が配向アルミナ基板であり、
     前記配向アルミナ基板の上にn型の導電型を呈する下地層が設けられてなり、
     前記複数の柱状発光部が前記下地層の上に形成されてなり、
     前記透明導電膜上にパッド電極が設けられてなり、
     前記下地層の上にカソード電極が設けられてなる、
    ことを特徴とする発光素子。
  12.  発光素子の製造方法であって、
     配向した複数の結晶粒からなることで、一方主面に結晶欠陥が存在しない第1の領域と結晶欠陥が存在する第2の領域とを有する配向多結晶基板の前記一方主面上に、複数の開口部を有する第1光閉じ込め層を形成する第1光閉じ込め層形成工程と、
     前記第1光閉じ込め層をマスクとして、前記複数の開口部において前記配向多結晶基板の前記一方主面の上方にn型層と活性層とp型層とをこの順に積層形成させることによって、前記複数の開口部のうち前記第1の領域の上方に位置する箇所にはそれぞれが柱状のをなす複数の第1の柱状構造体が形成される一方で前記複数の開口部のうち前記第2の領域の上方に位置する箇所には柱状をなし前記第1の柱状構造体よりも長手方向のサイズが短い第2の柱状構造体が形成されるようにする柱状構造体形成工程と、
     前記第1光閉じ込め層の上に前記第1光閉じ込め層と同じ材料にて前記第1および第2の柱状構造体を覆うように第2光閉じ込め層を形成する第2光閉じ込め層形成工程と、
     前記複数の第1の柱状構造体のみに電気的に接続され、前記第2の柱状構造体とは電気的に接続されないように前記第2光閉じ込め層の上に透明導電膜を形成する透明導電膜形成工程と、
     前記透明導電膜の上にパッド電極を形成するアノード電極形成工程と、
     前記複数の第1の柱状構造体の前記配向多結晶基板側の端部と電気的に接続されるカソード電極を形成するカソード電極形成工程と、
    を備え、
     前記第1光閉じ込め層形成工程においては、前記複数の開口部を、その下方位置が前記第1の領域であるか前記第2の領域であるかによらず、所定の周期を有する平面格子の格子点位置として定めるようにし、
     前記第1および第2光閉じ込め層形成工程においてはいずれも、前記第1光閉じ込め層および前記第2光閉じ込め層が、前記第1の柱状構造体の構成材料よりも屈折率の低い材料にて形成する、
    ことを特徴とする発光素子の製造方法。
  13.  請求項12に記載の発光素子の製造方法であって、
     前記複数の結晶粒の前記一方主面における平均粒径をDとし、前記複数の開口部の開口径をdとするとき、
       d≦D/2
    とする、
    ことを特徴とする発光素子の製造方法。
  14.  請求項13に記載の発光素子の製造方法であって、
     D<20μmのときに
       d≦D/4
    とし、
     D≧20μmのときに
       d≦D/3
    とする、
    ことを特徴とする発光素子の製造方法。
  15.  請求項12ないし請求項14のいずれかに記載の発光素子の製造方法であって、
     前記柱状構造体形成工程においては、前記n型層と、前記活性層と、前記p型層とを、13族窒化物にて形成する、
    ことを特徴とする発光素子の製造方法。
  16.  請求項15に記載の発光素子の製造方法であって、
     前記活性層を、MQW構造を有するように形成する、
    ことを特徴とする発光素子の製造方法。
  17.  請求項15または請求項16に記載の発光素子の製造方法であって、
     前記第1および前記第2の光閉じ込め層をSiOにて形成する、
    ことを特徴とする発光素子の製造方法。
  18.  請求項12ないし請求項17のいずれかに記載の発光素子の製造方法であって、
     前記アノード電極形成工程においては、前記複数の第1の柱状構造体のそれぞれの上端と前記第2の光閉じ込め層の上面とが一の平坦面をなすように前記第2の光閉じ込め層を研磨したうえで、前記平坦面に透明導電膜を設け、前記透明導電膜上にパッド電極を形成する、
    ことを特徴とする発光素子の製造方法。
  19.  請求項18に記載の発光素子の製造方法であって、
     前記配向多結晶基板として配向GaN基板を用い、
     前記カソード電極形成工程においては、前記配向GaN基板の他方主面上にカソード電極を設ける、
    ことを特徴とする発光素子の製造方法。
  20.  請求項18に記載の発光素子の製造方法であって、
     前記配向多結晶基板として配向アルミナ基板を用い、
     前記配向アルミナ基板の上にn型の導電型を呈する下地層を形成する下地層形成工程、
    をさらに備え、
     前記第1光閉じ込め層形成工程においては前記第1光閉じ込め層を前記下地層の上に形成し、
     前記柱状構造体形成工程においては、前記第1の柱状構造体を前記下地層の上であって、前記第1の領域の上方に位置する箇所において形成し、
     前記カソード電極形成工程においては、前記下地層の上にカソード電極を設ける、
    ことを特徴とする発光素子の製造方法。
PCT/JP2015/069722 2014-10-01 2015-07-09 発光素子および発光素子の製造方法 WO2016051908A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2015562614A JP5913761B1 (ja) 2014-10-01 2015-07-09 発光素子および発光素子の製造方法
CN201580044820.3A CN106716650B (zh) 2014-10-01 2015-07-09 发光元件及发光元件的制造方法
DE112015004543.0T DE112015004543T5 (de) 2014-10-01 2015-07-09 Lichtemittierendes Element und Verfahren zur Herstellung eines lichtemittierenden Elements
KR1020177008863A KR102319284B1 (ko) 2014-10-01 2015-07-09 발광 소자 및 발광 소자의 제조방법
US15/065,994 US9653651B2 (en) 2014-10-01 2016-03-10 Light emitting device and method for manufacturing light emitting device
US15/391,160 US9660138B2 (en) 2014-10-01 2016-12-27 Light emitting device and method for manufacturing light emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014202818 2014-10-01
JP2014-202818 2014-10-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/065,994 Continuation US9653651B2 (en) 2014-10-01 2016-03-10 Light emitting device and method for manufacturing light emitting device

Publications (1)

Publication Number Publication Date
WO2016051908A1 true WO2016051908A1 (ja) 2016-04-07

Family

ID=55629960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/069722 WO2016051908A1 (ja) 2014-10-01 2015-07-09 発光素子および発光素子の製造方法

Country Status (7)

Country Link
US (2) US9653651B2 (ja)
JP (1) JP5913761B1 (ja)
KR (1) KR102319284B1 (ja)
CN (1) CN106716650B (ja)
DE (1) DE112015004543T5 (ja)
TW (1) TWI663747B (ja)
WO (1) WO2016051908A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020161622A (ja) * 2019-03-26 2020-10-01 セイコーエプソン株式会社 発光装置およびプロジェクター
JP2020161621A (ja) * 2019-03-26 2020-10-01 セイコーエプソン株式会社 発光装置およびプロジェクター

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016051908A1 (ja) 2014-10-01 2016-04-07 日本碍子株式会社 発光素子および発光素子の製造方法
CN106673625B (zh) * 2017-01-03 2019-07-16 中国科学院上海光学精密机械研究所 晶粒定向排列透明多晶氧化铝陶瓷的制备方法
JP6939133B2 (ja) * 2017-06-22 2021-09-22 豊田合成株式会社 発光装置
JP6988460B2 (ja) * 2017-12-26 2022-01-05 セイコーエプソン株式会社 発光装置、発光装置の製造方法、およびプロジェクター
KR102419325B1 (ko) * 2018-02-01 2022-07-12 삼성디스플레이 주식회사 플렉서블 표시 패널 및 이의 제조 방법
FR3083002B1 (fr) * 2018-06-20 2020-07-31 Aledia Dispositif optoelectronique comprenant une matrice de diodes
FR3087579B1 (fr) 2018-10-22 2022-08-12 Aledia Dispositif optoelectronique a diodes electroluminescentes a extraction de lumiere amelioree
JP7556246B2 (ja) * 2020-09-23 2024-09-26 セイコーエプソン株式会社 発光装置、発光装置の製造方法およびプロジェクター
CN114284405B (zh) * 2021-12-30 2023-10-20 江苏第三代半导体研究院有限公司 发光二极管及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0927636A (ja) * 1995-07-12 1997-01-28 Toshiba Corp 化合物半導体装置及び化合物半導体発光装置
JP2009076896A (ja) * 2007-08-31 2009-04-09 Panasonic Corp 半導体発光素子
JP2013055170A (ja) * 2011-09-02 2013-03-21 Sharp Corp 自発光ディスプレイおよび自発光ディスプレイの製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011118273A1 (de) * 2011-11-11 2013-05-16 Forschungsverbund Berlin E.V. Herstellung einer Halbleitereinrichtung mit mindestens einem säulen- oder wandförmigen Halbleiter-Element
US8785905B1 (en) * 2012-01-19 2014-07-22 Sandia Corporation Amber light-emitting diode comprising a group III-nitride nanowire active region
TWI530594B (zh) 2012-03-30 2016-04-21 Ngk Insulators Ltd A method for producing a nitride crystal of Group 13 element, and a melt composition
WO2016051908A1 (ja) 2014-10-01 2016-04-07 日本碍子株式会社 発光素子および発光素子の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0927636A (ja) * 1995-07-12 1997-01-28 Toshiba Corp 化合物半導体装置及び化合物半導体発光装置
JP2009076896A (ja) * 2007-08-31 2009-04-09 Panasonic Corp 半導体発光素子
JP2013055170A (ja) * 2011-09-02 2013-03-21 Sharp Corp 自発光ディスプレイおよび自発光ディスプレイの製造方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020161622A (ja) * 2019-03-26 2020-10-01 セイコーエプソン株式会社 発光装置およびプロジェクター
JP2020161621A (ja) * 2019-03-26 2020-10-01 セイコーエプソン株式会社 発光装置およびプロジェクター
US11329190B2 (en) 2019-03-26 2022-05-10 Seiko Epson Corporation Light emitting device and projector
JP7232464B2 (ja) 2019-03-26 2023-03-03 セイコーエプソン株式会社 発光装置およびプロジェクター
JP7232465B2 (ja) 2019-03-26 2023-03-03 セイコーエプソン株式会社 発光装置およびプロジェクター
US11626533B2 (en) 2019-03-26 2023-04-11 Seiko Epson Corporation Light emitting device and projector

Also Published As

Publication number Publication date
CN106716650A (zh) 2017-05-24
KR20170060614A (ko) 2017-06-01
TWI663747B (zh) 2019-06-21
KR102319284B1 (ko) 2021-11-01
US9653651B2 (en) 2017-05-16
JP5913761B1 (ja) 2016-04-27
US9660138B2 (en) 2017-05-23
US20160190392A1 (en) 2016-06-30
JPWO2016051908A1 (ja) 2017-04-27
CN106716650B (zh) 2018-10-09
TW201624761A (zh) 2016-07-01
US20170110624A1 (en) 2017-04-20
DE112015004543T5 (de) 2017-06-22

Similar Documents

Publication Publication Date Title
JP5913761B1 (ja) 発光素子および発光素子の製造方法
US9385266B2 (en) Method of manufacturing a nanostructure light emitting device by planarizing a surface of the device
JP5702739B2 (ja) ホウ素導入iii族窒化物発光ダイオード装置
JP2018532265A (ja) 2次元正孔ガスを組み込んだ紫外線発光デバイス
TWI689611B (zh) Iii族氮化物積層體及具有該積層體之發光元件
JP4882618B2 (ja) GaN系半導体発光ダイオードの製造方法
JP2005277374A (ja) Iii族窒化物系化合物半導体発光素子及びその製造方法
TWI757747B (zh) 氮化物半導體發光元件
TW201044637A (en) Group III nitride compound semiconductor light emitting device and production method thereof, and lamp
JP5038382B2 (ja) 半導体発光素子
WO2011162332A1 (ja) 半導体発光素子の製造方法、半導体発光素子、電子機器及び機械装置
JP2014036231A (ja) 半導体素子の製造方法
US20140048819A1 (en) Semiconductor light-emitting device
JP2020077831A (ja) 半導体素子及び紫外発光ダイオード
JP2014528178A (ja) オプトエレクトロニクス半導体チップの製造方法および対応するオプトエレクトロニクス半導体チップ
JP5646545B2 (ja) 半導体発光素子及びその製造方法
US20120286284A1 (en) Semiconductor light emitting device and wafer
US20150364646A1 (en) Crystal layered structure and light emitting element
JP2011159801A (ja) 半導体発光素子及びその製造方法、並びにランプ
TWI545798B (zh) Nitride semiconductor light emitting device and manufacturing method thereof
TWI805657B (zh) 包含三維發光二極體之光電裝置
JP5951732B2 (ja) 半導体発光素子
KR20110091246A (ko) 반도체 발광소자의 제조방법 및 이에 의해 제조된 반도체 발광소자
JP2012015394A (ja) AlGaAs基板、赤外LED用のエピタキシャルウエハおよび赤外LED
JP2012146866A (ja) 赤外led用のエピタキシャルウエハおよび赤外led

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015562614

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15848022

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177008863

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112015004543

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15848022

Country of ref document: EP

Kind code of ref document: A1