CN106673625B - 晶粒定向排列透明多晶氧化铝陶瓷的制备方法 - Google Patents

晶粒定向排列透明多晶氧化铝陶瓷的制备方法 Download PDF

Info

Publication number
CN106673625B
CN106673625B CN201710000716.5A CN201710000716A CN106673625B CN 106673625 B CN106673625 B CN 106673625B CN 201710000716 A CN201710000716 A CN 201710000716A CN 106673625 B CN106673625 B CN 106673625B
Authority
CN
China
Prior art keywords
sapphire crystal
grain orientation
preparation
crystal
transparent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710000716.5A
Other languages
English (en)
Other versions
CN106673625A (zh
Inventor
姜本学
杨清华
陈水林
姜益光
张攀德
毛小建
张龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Institute Of Optics And Precision Machinery
Original Assignee
Shanghai Institute of Optics and Fine Mechanics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Optics and Fine Mechanics of CAS filed Critical Shanghai Institute of Optics and Fine Mechanics of CAS
Priority to CN201710000716.5A priority Critical patent/CN106673625B/zh
Publication of CN106673625A publication Critical patent/CN106673625A/zh
Application granted granted Critical
Publication of CN106673625B publication Critical patent/CN106673625B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/787Oriented grains
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9653Translucent or transparent ceramics other than alumina

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

一种晶粒定向排列透明多晶氧化铝陶瓷的制备方法,通过氧化铝粉体与蓝宝石晶体一起干压、冷等静压成型形成素胚,然后经过高温真空或者氢气气氛烧结,在烧结过致密化的同时,蓝宝石晶体会诱导氧化铝晶粒沿蓝宝石晶体方向定向排列,最终获得晶粒定向排列的多晶氧化铝透明陶瓷。本发明制备的晶粒定向排列的多晶氧化铝陶瓷,具有结构致密和透过率高的特点,无残余气孔,不存在双折射现象。

Description

晶粒定向排列透明多晶氧化铝陶瓷的制备方法
技术领域
本发明涉及功能陶瓷制备领域,特别涉及一种晶粒定向排列透明多晶氧化铝陶瓷的制备方法。
背景技术
氧化铝透明陶瓷具有高温强度大、耐热性能好、耐腐蚀性能强、电绝缘性能好、热导率高等优点,同时在可见和红外光波段具有良好的透过性,因此可用作陶瓷金卤灯管壳、透明装甲材料、高温红外探测窗口材料,或者全角度发光用LED基板材料等。
由于氧化铝属于六方晶系,光线入射时会产生双折射现象,因此即使满足完全致密化以及精细的微观结构,也难以得到较高透明度的透明氧化铝陶瓷。为了消除氧化铝陶瓷的双折射现象,中国科学院上海硅酸盐研究所的毛小建等(毛小建,等,一种具有择优取向的多晶氧化铝透明陶瓷及其制备方法,中国专利,公开号:CN 10146915 A,公开日:2009年7月1日;Xiaojian Mao,et al,Transparent polycrystalline alumina ceramics withorientated optical axes,J.Am.Ceram.Soc.91(10:3431-3433(2008));Xiaojian Mao,etal,Transparent alumina ceramics with oriented grains and preparation methodthereof,Pub.No.:US 2012/0223449A1,Pub.Date:Sep.6,2012)在4~10T磁场强度下辅助注浆成型得到沿C轴定向排列的氧化铝陶瓷素胚,然后在高于1800℃氢气气氛下烧结得到晶粒定向的透明氧化铝陶瓷。但是由于是采用注浆成型而得到的素胚,素胚中含有大量的有机物,导致在致密烧结过程中会残余有少量气孔,从而影响其透过率。因此,如何使氧化铝陶瓷晶粒定向排列,且保持高的致密度,是提高氧化铝陶瓷透过率的关键问题。
发明内容
本发明所解决的技术问题是氧化铝同时陶瓷晶粒定向排列和致密烧结的问题,提出一种晶粒定向排列透明多晶氧化铝陶瓷的制备方法,该方法制备的蓝宝石晶体诱导晶粒定向排列透明多晶氧化铝陶瓷,具有结构致密和透过率高的特点,无残余气孔,不存在双折射现象。
本发明技术解决方案如下:
一种晶粒定向排列透明多晶氧化铝陶瓷的制备方法,其特点是该制备方法包括以下步骤:
1)将一根具有晶面取向的蓝宝石晶体置于氧化铝粉中,通过干压法形成氧化铝粉包覆蓝宝石晶体的一体成型,成型压力为5~10MPa,然后再经过200~300MPa等静压,得到包覆有蓝宝石晶体的氧化铝素胚;
2)将所述的的氧化铝素胚置于钼坩埚中,在真空或者氢气气氛下1600~1850℃保温10~50h烧结,后自然冷却至室温,得到蓝宝石诱导晶粒定向排列的透明的多晶氧化铝陶瓷。
所述的蓝宝石晶体的晶面取向为C向、A向、R向或M向。
本发明的特点在于:
(1)在氧化铝素胚致密烧结的同时,蓝宝石晶体会诱导氧化铝晶粒产生定向排列;
(2)在素胚成型过程中不额外加入任何有机粘结剂,仅通过干压和冷等静压使包边用的氧化铝粉体包覆在蓝宝石晶体的四周,避免了烧结过程中由于有机粘结剂挥发留下过多气孔而难以烧结致密的问题。
(3)本发明制备的蓝宝石晶体诱导晶粒定向排列透明多晶氧化铝陶瓷,具有结构致密和透过率高的特点,无残余气孔,不存在双折射现象。
附图说明
图1为本发明实施例1晶粒定向排列的多晶透明氧化铝陶瓷的XRD图谱
图2为本发明实施例2晶粒定向排列的多晶透明氧化铝陶瓷的XRD图谱,
具体实施方式
实施例1:
将直径为80mm的C向蓝宝石晶体置于100g氧化铝粉中,经过5MPa干压和200MPa冷等静压成型,得到氧化铝粉包覆蓝宝石晶体的素胚,在真空气氛下1750℃烧结,保温30小时,冷却至室温得到晶粒定向排列的多晶透明氧化铝陶瓷。
经测试表明,本实施例,多晶透明氧化铝陶瓷具有很好的透过性。
图1为本实施例晶粒定向排列的多晶透明氧化铝陶瓷的XRD图谱,由图可见,该图谱仅有一个衍射峰,对应于氧化铝(PDF#10-0173)的(006)晶面,与C向蓝宝石晶体的衍射峰一致,表明蓝宝石晶体在氧化铝陶瓷致密化的过程中诱导使氧化铝晶粒沿着蓝宝石晶体取向方向定向排列。
实施例2:
将直径为80mm的R向蓝宝石晶体置于100g氧化铝粉体中,经过10MPa干压和300MPa冷等静压成型,得到包覆蓝宝石晶体的素胚,在真空气氛下1800℃烧结,保温50h,冷却至室温得到的晶粒定向排列的多晶透明氧化铝陶瓷。
经测试表明,本实施例,晶粒定向排列的多晶透明氧化铝陶瓷具有高透过率。
图2为实施例2晶粒定向排列的多晶透明氧化铝陶瓷的XRD图谱,由图可见,该图谱仅有一个衍射峰,对应于氧化铝(PDF#10-0173)的(024)晶面和(012),与R向蓝宝石晶体的衍射峰一致,表明蓝宝石晶体在氧化铝陶瓷致密化的过程中诱导使氧化铝晶粒沿着蓝宝石晶体取向方向定向排列。
实施例3:
将直径为80mm的M向蓝宝石晶体置于100g氧化铝粉体中,经过8MPa干压和250MPa冷等静压成型,得到包覆蓝宝石晶体的素胚,在真空气氛下1700℃烧结,保温20h,冷却至室温得到的透明氧化铝陶瓷即为本发明晶粒定向排列的多晶透明氧化铝陶瓷。
该多晶氧化铝陶瓷晶粒沿(300)晶面定向排列,与M向蓝宝石晶体的晶相一致,具有高透过率。
实施例4:
将直径为80mm的A向蓝宝石晶体置于100g氧化铝粉体中经过6MPa干压和280MPa冷等静压成型,得到包覆蓝宝石晶体的素胚,在真空气氛下1850℃烧结,保温10h,冷却至室温得到晶粒定向排列的多晶透明氧化铝陶瓷。
该晶粒定向排列的多晶氧化铝陶瓷晶粒沿(110)晶面定向排列,与M向蓝宝石晶体的晶相一致,具有高的透过率。

Claims (2)

1.一种晶粒定向排列透明多晶氧化铝陶瓷的制备方法,其特征在于该制备方法包括以下步骤:
(1)将一根具有晶面取向的蓝宝石晶体置于氧化铝粉中,通过干压法形成氧化铝粉包覆蓝宝石晶体的一体成型,成型压力为5~10MPa,然后再经过200~300MPa等静压,得到包覆有蓝宝石晶体的氧化铝素胚;
(2)将所述的氧化铝素胚置于钼坩埚中,在真空或者氢气气氛下1600~1850℃保温10~50h烧结,后自然冷却至室温,得到蓝宝石诱导晶粒定向排列的透明的多晶氧化铝陶瓷。
2.根据权利要求1所述的制备方法,其特征在于所述的蓝宝石晶体的晶面取向为C向、A向、R向或M向。
CN201710000716.5A 2017-01-03 2017-01-03 晶粒定向排列透明多晶氧化铝陶瓷的制备方法 Active CN106673625B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710000716.5A CN106673625B (zh) 2017-01-03 2017-01-03 晶粒定向排列透明多晶氧化铝陶瓷的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710000716.5A CN106673625B (zh) 2017-01-03 2017-01-03 晶粒定向排列透明多晶氧化铝陶瓷的制备方法

Publications (2)

Publication Number Publication Date
CN106673625A CN106673625A (zh) 2017-05-17
CN106673625B true CN106673625B (zh) 2019-07-16

Family

ID=58849925

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710000716.5A Active CN106673625B (zh) 2017-01-03 2017-01-03 晶粒定向排列透明多晶氧化铝陶瓷的制备方法

Country Status (1)

Country Link
CN (1) CN106673625B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109400123B (zh) * 2018-10-09 2021-11-19 广东工业大学 一种细晶氧化铝陶瓷及其制备方法和应用
CN111072374B (zh) * 2018-10-18 2022-05-06 深圳光峰科技股份有限公司 荧光陶瓷及其制备方法
CN109920725B (zh) * 2019-02-13 2021-10-15 保定中创燕园半导体科技有限公司 一种近单晶双层透明AlN陶瓷复合衬底的制备方法
CN109796197B (zh) * 2019-03-25 2021-08-06 中国科学院上海硅酸盐研究所 一种类单晶结构氧化铝透明陶瓷的制备方法
CN111484319B (zh) * 2020-03-27 2022-07-05 宁波南海泰格尔陶瓷有限公司 一种晶粒定向排列多晶半透明氧化铝陶瓷的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1103680A (zh) * 1993-09-24 1995-06-14 通用电气公司 采用籽晶使多晶氧化铝到蓝宝石的固态热转换
CN1389428A (zh) * 2002-07-05 2003-01-08 清华大学 亚微米高纯透明氧化铝陶瓷材料的制备方法
WO2014165276A1 (en) * 2013-03-13 2014-10-09 Surmet Corporation Transparent polycrystalline ceramic material
CN105645932A (zh) * 2015-12-30 2016-06-08 佛山市业丰赛尔陶瓷科技有限公司 α-Al2O3透明陶瓷及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106716650B (zh) * 2014-10-01 2018-10-09 日本碍子株式会社 发光元件及发光元件的制造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1103680A (zh) * 1993-09-24 1995-06-14 通用电气公司 采用籽晶使多晶氧化铝到蓝宝石的固态热转换
CN1389428A (zh) * 2002-07-05 2003-01-08 清华大学 亚微米高纯透明氧化铝陶瓷材料的制备方法
WO2014165276A1 (en) * 2013-03-13 2014-10-09 Surmet Corporation Transparent polycrystalline ceramic material
CN105645932A (zh) * 2015-12-30 2016-06-08 佛山市业丰赛尔陶瓷科技有限公司 α-Al2O3透明陶瓷及其制备方法

Also Published As

Publication number Publication date
CN106673625A (zh) 2017-05-17

Similar Documents

Publication Publication Date Title
CN106673625B (zh) 晶粒定向排列透明多晶氧化铝陶瓷的制备方法
An et al. Fabrication of transparent lutetium oxide by spark plasma sintering
CN107352994B (zh) 一种镁铝尖晶石透明陶瓷的制备方法
Huang et al. Fabrication of transparent lanthanum‐doped yttria ceramics by combination of two‐step sintering and vacuum sintering
CN107721406A (zh) 一种制备高透光性镁铝尖晶石透明陶瓷的方法
CN110606740A (zh) 高熵稀土铪酸盐陶瓷材料及其制备方法
Gan et al. Effects of pre-sintering and annealing on the optical transmittance of Zr-doped Y2O3 transparent ceramics fabricated by vacuum sintering conjugated with post-hot-isostatic pressing
CN101817683A (zh) MgAlON透明陶瓷的无压烧结制备方法
Gan et al. Facile fabrication of highly transparent yttria ceramics with fine microstructures by a hot‐pressing method
CN100387548C (zh) 增韧镁铝尖晶石透明陶瓷的制备方法
CN102020470A (zh) 高光学质量的氧化钇透明陶瓷的制备方法
Hu et al. Spark plasma sintering of Sm3+ doped Y2O3 transparent ceramics for visible light lasers
HUANG et al. Sintering of transparent Nd: YAG ceramics in oxygen atmosphere
CN108546109B (zh) 氧空位可控的大尺寸azo磁控溅射靶材制备方法
Fang et al. Effect of heat treatment of green bodies on the sintering and optical properties of large-size and thick transparent YAG ceramics
CN103981385A (zh) 一种钼-铬-硼化锆复合材料的制备方法
CN107285771A (zh) 一种三元稀土二硼二碳陶瓷材料的制备方法
Yoshida et al. Densification of nanocrystalline yttria by low temperature spark plasma sintering
Chen et al. Fabrication of YAG transparent ceramics by two-step sintering
CN105016776B (zh) 一种氮氧化铝透明陶瓷及其制备方法
Luo et al. Yttrium oxide transparent ceramics by low-temperature microwave sintering
An et al. Fabrication of transparent Lu2Hf2O7 by reactive spark plasma sintering
CN107473730B (zh) 一种制备细晶、高强镁铝尖晶石透明陶瓷的方法
CN109354501B (zh) 一种MgAlON透明陶瓷的制备方法
Gan et al. The effects of the temperature and pressure on ZrO2-doped transparent yttria ceramics fabricated by a hot-pressing method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220928

Address after: 311421 no.328 Daqiao South Road, Chunjiang street, Fuyang District, Hangzhou City, Zhejiang Province

Patentee after: Hangzhou Institute of Optics and precision machinery

Address before: 201800 mail box 800-211, Shanghai, Jiading District, Shanghai

Patentee before: SHANGHAI INSTITUTE OF OPTICS AND FINE MECHANICS CHINESE ACADEMY OF SCIENCES