WO2016031762A1 - デバイス製造方法および転写基板 - Google Patents

デバイス製造方法および転写基板 Download PDF

Info

Publication number
WO2016031762A1
WO2016031762A1 PCT/JP2015/073700 JP2015073700W WO2016031762A1 WO 2016031762 A1 WO2016031762 A1 WO 2016031762A1 JP 2015073700 W JP2015073700 W JP 2015073700W WO 2016031762 A1 WO2016031762 A1 WO 2016031762A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
layer
conductive layer
conductive
transfer substrate
Prior art date
Application number
PCT/JP2015/073700
Other languages
English (en)
French (fr)
Inventor
奈良圭
中積誠
西康孝
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to KR1020177005139A priority Critical patent/KR102454094B1/ko
Priority to JP2016545518A priority patent/JP6593336B2/ja
Priority to CN201911389514.XA priority patent/CN111128707B/zh
Priority to CN201580045821.XA priority patent/CN106605294B/zh
Publication of WO2016031762A1 publication Critical patent/WO2016031762A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • H01L21/0275Photolithographic processes using lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays

Definitions

  • the present invention relates to a transfer substrate on which a multilayer structure constituting at least a part of an electronic device is formed, and a device for manufacturing an electronic device by transferring the multilayer structure formed on the transfer substrate to a transfer substrate. It relates to a manufacturing method.
  • Japanese Patent Application Laid-Open No. 2006-302814 discloses a method for forming an organic electroluminescence layer. Briefly, first, a hole transport layer is formed on the first endless belt by a coating method (inkjet method or the like), and a light emitting layer is formed on the second endless belt by a coating method (inkjet method or the like). The electron transport layer is formed on the endless belt 3 by a coating method (inkjet method or the like). Then, the hole transport layer formed on the first endless belt is transferred to the sheet-like substrate supplied from the supply roll, and then the light emitting layer formed on the second endless belt is transferred to the hole transport layer. The organic electroluminescence layer is formed by transferring the electron transport layer formed on the third endless belt onto the light emitting layer.
  • the film is formed in a vacuum space where the film thickness and the like are easily controlled in order to improve the performance and yield of the semiconductor element and stabilize the characteristics. It is desirable to perform this, and it is difficult to manufacture a highly accurate electronic device by a transfer system such as the technique described in Japanese Patent Application Laid-Open No. 2006-302814.
  • a method for manufacturing an electronic device on a glass substrate and transferring the completed electronic device from the glass substrate to another final substrate is widely and generally performed.
  • an electronic device manufacturer forms a film in a vacuum space to form a layer constituting the electronic device on a glass substrate, or development processing, etching processing, CVD processing, or sputtering processing using photolithography. Etc. are repeated according to the laminated structure of the electronic device to create an electronic device, and then the completed electronic device is transferred to the final substrate.
  • a device manufacturing method in which at least a part of a laminated structure constituting an electronic device is formed on a first substrate, and then the laminated structure is transferred onto a second substrate, A first conductive layer made of a conductive material is formed on the first substrate, a functional layer made of at least one of an insulating material and a semiconductor is formed on the first conductive layer, and a conductive layer is formed on the functional layer. Forming a second conductive layer made of a conductive material, the first step of forming the laminated structure, and the first substrate and the second substrate so that the second conductive layer is located on the second substrate side. A second step of transferring the laminated structure to the second substrate by temporarily approaching or closely adhering to the second substrate.
  • a transfer substrate for transferring at least a part of a laminated structure constituting an electronic device to a transfer substrate, wherein the surface of the transfer substrate is made of a conductive material by the conductive material.
  • a first conductive layer formed on the transfer substrate; a functional layer formed on the first conductive layer by at least one of insulating and semiconductor materials; and formed on the functional layer by a conductive material.
  • the laminated structure including the second conductive layer thus formed is formed.
  • the laminated structure in order to transfer at least a part of the laminated structure constituting the electronic device onto a product substrate on which an electronic device including a semiconductor element is formed, the laminated structure is supported.
  • a transfer substrate, wherein the laminated structure is a first conductive layer, an insulating material, or a material exhibiting semiconductor characteristics, which is uniformly or selectively formed of a conductive material from the surface side of the transfer substrate.
  • the functional layer uniformly or selectively formed by and the second conductive layer uniformly or selectively formed by the conductive material.
  • a first conductive layer made of the above material a functional layer made of at least one of insulating and semiconductor material is formed on the first conductive layer, and a second conductive layer made of a conductive material is formed on the functional layer
  • a first step of forming the stacked structure by forming a first and second substrates so that the second conductive layer is located on the second substrate side, or And a second step of transferring the laminated structure including the first substrate to the second substrate in close contact with each other.
  • a transfer substrate for transferring at least a part of a laminated structure constituting an electronic device to a transfer substrate, the conductive foil functioning as a first conductive layer by a conductive material. And a functional layer formed on the first conductive layer with at least one of an insulating material and a semiconductor, and a second conductive layer formed on the functional layer with a conductive material.
  • 6A to 6D are cross-sectional views showing the manufacturing progress state of the TFT manufactured by the process shown in FIGS. It is a flowchart which shows an example of the process of the manufacturing method of top contact type TFT. It is a flowchart which shows an example of the process of the manufacturing method of top contact type TFT.
  • 9A to 9D are cross-sectional views showing the manufacturing progress state of the TFT manufactured by the steps shown in FIGS. 10A to 10C are cross-sectional views showing the manufacturing progress state of the TFT manufactured by the steps shown in FIGS. 10 is a flowchart showing an example of a process of a method for manufacturing a top contact type TFT in Modification 1 of the first embodiment.
  • FIG. 10 is a flowchart showing an example of a process of a method for manufacturing a top contact type TFT in Modification 1 of the first embodiment.
  • 13A to 13F are cross-sectional views showing the manufacturing progress state of the TFT manufactured by the steps shown in FIG. 11 and
  • FIG. 14A to 14F are cross-sectional views showing the manufacturing progress state of the TFT manufactured by the steps shown in FIG. 11 and FIG.
  • the modification 3 of 1st Embodiment it is sectional drawing when an alignment mark is formed in the 2nd conductive layer.
  • the modification 3 of 1st Embodiment it is sectional drawing when a window part is formed in the 1st conductive layer.
  • FIG. 20 is a diagram showing a specific structure of the pixel circuit shown in FIG. 19.
  • FIG. 21 is a flowchart showing an example of a process of the pixel circuit manufacturing method shown in FIG. 20.
  • FIG. FIG. 21 is a flowchart showing an example of a process of the pixel circuit manufacturing method shown in FIG. 20.
  • FIG. FIG. 21 is a flowchart showing an example of a process of the pixel circuit manufacturing method shown in FIG. 20.
  • FIG. FIG. 21 is a flowchart showing an example of a process of the pixel circuit manufacturing method shown in FIG. 20.
  • FIG. 22 is a cross-sectional view of the multilayer structure formed on the first substrate by the processes of Step S101 to Step S105 in FIG.
  • FIG. 22 is a cross-sectional view of the multilayer structure in which the second conductive layer is processed by the processes of Step S106 to Step S111 in FIG. It is a top view of the laminated structure shown in FIG. It is sectional drawing when the laminated structure currently formed in the 1st board
  • FIG. 23 is a cross-sectional view of the multilayer structure in which the first conductive layer is processed by the processes of Step S114 to Step S118 of FIG. It is a top view of the laminated structure shown in FIG. FIG.
  • FIG. 28 is a cross-sectional view of the contact hole portion shown in FIG. 27 when the functional layer is etched by the processes of steps S119 to S122 of FIG.
  • FIG. 23 is a cross-sectional view when an electroless plating contactor is formed in the contact hole shown in FIG. 29 by the process of step S123 of FIG.
  • membrane in the case of the transfer shown in FIG. 34A to 34D are diagrams showing a manufacturing process of the laminated structure when the electronic device laminated structure shown in FIGS.
  • FIG. 23 to 30 is improved. It is a figure which shows the planar arrangement structure of the laminated structure shown in FIG. 34D formed on the 1st board
  • 36A is a view showing a state immediately after the stacked structure shown in FIG. 34D formed on the first substrate is transferred to the second substrate by the transfer step
  • FIG. 36B is a view showing the first conductive layer shown in FIG. 36A. It is a figure which shows a mode that the gate electrode, the source electrode, etc. were formed in FIG. It is a figure which shows an example of the planar arrangement configuration of TFT of FIG. 36B.
  • FIG. 1 is a diagram showing a configuration of a film forming apparatus 10 that forms a thin film on a substrate (hereinafter referred to as a first substrate) P1.
  • the first substrate P1 is a flexible sheet-like substrate (sheet substrate), and the film forming apparatus 10 is a supply roll obtained by winding the first substrate (transfer substrate, supporting substrate) P1 in a roll shape.
  • 12 has a so-called roll-to-roll structure in which the first substrate P1 supplied from 12 is sent out, and after the film-forming process is performed on the sent first substrate P1, the collection roll 14 winds up. .
  • the first substrate P1 has a strip shape in which the moving direction of the first substrate P1 is the longitudinal direction (long) and the width direction is the short direction (short).
  • the film forming apparatus 10 includes a chamber 16, a vacuum pump 18 that sucks air in the chamber 16 to evacuate the chamber 16, a base material 20 that is a film forming material (thin film material), guide rollers GR 1 to GR 3, A film-forming rotary drum 22 is further provided.
  • the supply roll 12 and the collection roll 14 are provided with a motor (not shown).
  • the motor rotates, the first substrate P1 is unloaded from the supply roll 12 and the first substrate P1 sent out by the collection roll 14 is wound.
  • the film-forming rotary drum 22 conveys the first substrate P1 while rotating, and supports the part where the film is formed on the circumferential surface.
  • the first substrate P ⁇ b> 1 is transported toward the collection roll 14 along the outer peripheral surface (circumferential surface) of the film-forming rotary drum 22.
  • the guide rollers GR1 to GR3 guide the path of the first substrate P1 to be transported.
  • the film-forming rotary drum 22 is provided with a motor (not shown), and the film-forming rotary drum 22 rotates as the motor rotates.
  • the film forming apparatus 10 forms a thin film (layer) on the first substrate P1 by vapor deposition or sputtering.
  • the base material 20 is heated by a method such as resistance heating, electron beam, high frequency induction, or laser, and vaporized or sublimated film forming raw materials are attached to the first substrate P1 to form a thin film.
  • a method such as resistance heating, electron beam, high frequency induction, or laser
  • vaporized or sublimated film forming raw materials are attached to the first substrate P1 to form a thin film.
  • ionized argon gas is collided with the base material 20 to release the molecules of the base material 20, and the free molecules are attached to the first substrate P1 to form a thin film. Therefore, the collection roll 14 winds up the first substrate P1 having a thin film (layer) formed on the surface thereof.
  • the film forming apparatus 10 may form a thin film by CVD (Chemical Vapor Deposition).
  • the film forming apparatus 10 may use a mist deposition method (mist CVD method) as disclosed in, for example, International Publication No. 2013/176222 pamphlet.
  • a number of thin films can be continuously stacked on the first substrate P1.
  • the collection roll 14 that has wound the first substrate P ⁇ b> 1 having the first layer formed on the surface thereof as the supply roll 12 of another film forming apparatus 10 a new film forming apparatus 10 can perform a new operation.
  • a layer (second layer) is laminated on the first layer.
  • thin films of different materials can be stacked by changing the base material 20 as a film forming raw material when stacking. By laminating this thin film, at least a part of a laminated structure constituting an electronic device including a semiconductor element such as a thin film transistor (TFT) is formed on the first substrate P1 as a supporting substrate. Can do.
  • TFT thin film transistor
  • a metal material Cu, Al, Mo, etc.
  • an ITO thin film first conductive material
  • Layer a thin film (insulating layer) of an insulating material (SiO 2 , Al 2 O 3 etc.) and a thin film (second conductive layer) of a metal-based material (Cu, Al, Mo etc.) are laminated in this order. Is formed on the first substrate P1.
  • the first substrate P1 thus formed with the laminated structure is processed by a non-vacuum processing apparatus such as photolithography (photo patterning) and etching, which will be described in detail later, and an electrode layer and an insulating layer for a semiconductor element Then, it is processed so as to have a pattern shape such as a wiring layer or a semiconductor layer.
  • the laminated structure of the first substrate P1 processed into such a pattern shape is transferred to a substrate (hereinafter referred to as a second substrate) P2.
  • FIG. 2 is a diagram showing a configuration of a laminator device 30 for transferring the laminated structure formed (supported) on the first substrate P1 to the second substrate P2 (product substrate).
  • the laminator device 30 is, for example, a low-temperature thermal transfer type device that transfers the laminated structure formed on the first substrate P1 to the second substrate P2 at a low temperature of 100 degrees or less.
  • the laminator device 30 includes supply rolls 32 and 34, a pressure heating roller 36, collection rolls 38 and 40, and guide rollers GR5 and GR6.
  • the supply roll 32 is a roll of the first substrate P1 having a laminated structure formed on the surface thereof, and carries the first substrate P1 toward the collection roll 38.
  • the supply roll 34 is obtained by winding the second substrate P2 onto which the laminated structure is transferred in a roll shape, and carries the second substrate P2 toward the collection roll 40.
  • the second substrate P2 is a flexible sheet-like substrate (sheet substrate, transferred substrate), and the moving direction of the second substrate P2 is the longitudinal direction (long), and the width It has a strip shape whose direction is the short direction (short length).
  • the pressurizing and heating roller 36 sandwiches the first substrate P1 supplied from the supply roll 32 and the second substrate P2 supplied from the supply roll 34 from both sides so as to be in close contact with each other to perform press-bonding and heating. .
  • the laminated structure formed on the first substrate P1 can be transferred to the second substrate P2. That is, the laminated structure formed on the first substrate P1 is softened by heating (for example, a low temperature of 100 degrees or less) by the pressure heating roller 36, and the first substrate P1 softened by pressure bonding by the pressure heating roller 36.
  • the upper laminated structure is transferred to the second substrate P2.
  • An elastic body is used for the surface of the pressure heating roller 36, and it is preferable to arbitrarily set the temperature and pressure (force) of the pressure heating roller 36 according to the transfer material.
  • the collection roll 38 collects the first substrate P1 that has passed through the pressure heating roller 36, that is, the first substrate P1 from which the laminated structure has been peeled off.
  • the collection roll 40 winds the second substrate P2 that has passed through the pressure heating roller 36, that is, the second substrate P2 to which the laminated structure is transferred (the second substrate P2 having the laminated structure formed on the surface). to recover.
  • the guide roller GR5 guides the first substrate P1 supplied from the supply roll 32 to the pressure heating roller 36.
  • the guide roller GR6 guides the second substrate P2 supplied from the supply roll 34 to the pressure heating roller 36. It is a guide.
  • the first substrate P1 and the second substrate P2 for example, a foil (foil) made of a metal or an alloy such as a resin film or stainless steel is used.
  • the resin film material include polyethylene resin, polypropylene resin, polyester resin, ethylene vinyl copolymer resin, polyvinyl chloride resin, cellulose resin, polyamide resin, polyimide resin, polycarbonate resin, polystyrene resin, and vinyl acetate resin. Of these, those including at least one of them may be used.
  • the thickness and rigidity (Young's modulus) of the first substrate P1 and the second substrate P2 are caused by buckling or irreversible wrinkles due to buckling in the first substrate P1 and the second substrate P2 when transported.
  • films such as PET (polyethylene terephthalate) and PEN (polyethylene naphthalate) having a thickness of about 25 ⁇ m to 200 ⁇ m are typical of suitable sheet substrates.
  • the first substrate P1 and the second substrate P2 may receive heat in processing performed on the first substrate P1 and the second substrate P2, a substrate having a material whose thermal expansion coefficient is not significantly large is selected. It is preferable.
  • the thermal expansion coefficient can be suppressed by mixing an inorganic filler with a resin film.
  • the inorganic filler may be, for example, titanium oxide, zinc oxide, alumina, or silicon oxide.
  • substrate P2 may be a single-layer body of ultra-thin glass with a thickness of about 100 ⁇ m manufactured by a float process or the like, and the resin film and foil described above may be applied to this ultra-thin glass The laminated body which bonded etc. may be sufficient.
  • the base material of the first substrate P1 is particularly heat resistant.
  • Good polyimide resin, ultra-thin sheet glass, or ultra-thin metal foil sheet (copper foil, stainless steel foil, aluminum foil rolled to a thickness of several tens of ⁇ m to several hundred ⁇ m) or the like is desirable.
  • the first substrate P1 does not necessarily need to be a long sheet substrate that can be wound up in a roll shape, and the first substrate P1 is a single wafer cut into a size that matches the size of the electronic device to be manufactured (or its circuit board). It may be a sheet substrate, a glass substrate, or a metal plate.
  • a method for manufacturing a TFT will be described.
  • the structure of the TFT is roughly classified into a bottom gate type structure and a top gate type structure.
  • a manufacturing process of a bottom gate type TFT will be described. Description of the manufacturing process is omitted.
  • bottom-gate TFTs are classified into bottom contact type and top contact type, first, a method for manufacturing a bottom contact type TFT will be described, and then a method for manufacturing a top contact type TFT will be described.
  • FIGS. 5A to 5F and FIGS. 6A to 6D are manufactured by the steps shown in FIGS. It is sectional drawing which shows the manufacture progress state of TFT made.
  • a release layer 50 is formed on the first substrate P1.
  • the release layer 50 may be formed by applying a fluorine-based material or an alkali-dissolving release agent (a material soluble in alkali) to the surface of the first substrate P1, and the photosensitive alkali-dissolving film may be formed.
  • the release layer 50 may be formed by laminating the formed dry film resist (DFR) on the first substrate P1.
  • the alkali dissolving release agent include a mixture of a binder resin and a carboxyl group.
  • the release layer 50 is for facilitating the peeling of the laminated structure from the first substrate P1.
  • the laminated structure 52 is formed on the first substrate P1 (first step).
  • This laminated structure 52 is made of a metal-based material (conductive material such as Cu, Al, Mo, Au, etc.) or ITO (conductive) deposited on the first substrate P1 (on the peeling layer 50) with a predetermined thickness.
  • step S2 the first conductive layer 52a is formed (deposited) on the first substrate P1 (peeling layer 50).
  • a functional layer 52b which is an insulating layer, is formed (deposited) on the first conductive layer 52a.
  • step S4 a second conductive layer 52c is further formed (deposited).
  • the laminated structure 52 is formed on the first substrate P1.
  • the first conductive layer 52a, the functional layer 52b, and the second conductive layer 52c are continuously formed on the first substrate P1 by using the film forming apparatus 10 as shown in FIG. Note that the first conductive layer 52a functions as an electrode layer for the source and drain electrodes and a wiring layer for wiring accompanying the source and drain electrodes.
  • the second conductive layer 52c functions as an electrode layer of the gate electrode and a wiring layer of wiring accompanying the gate electrode.
  • the interface with is desirably flattened on the order of submicron or less.
  • the first substrate P1 on which the multilayer structure 52 is formed is subjected to an etching process using a photolithographic method, and as shown in FIG. 5C, the second conductive layer 52c is subjected to a gate electrode and wiring associated therewith. Is formed (first step). In FIG. 5C, only the gate electrode is shown.
  • step S5 a photoresist layer is formed on the second conductive layer 52c. Formation of the photoresist layer can be easily performed by using a liquid resist by a roller printing method, a die coating method, a spray method, or by laminating a photoresist layer of a dry film resist (DFR) on the second conductive layer 52c. Can be implemented.
  • step S6 the formed photoresist layer is exposed to a predetermined pattern (pattern of gate electrodes and wirings associated therewith) using ultraviolet rays, and in step S7, development is performed (in a developer such as TMAH).
  • a predetermined pattern is formed in the photoresist layer.
  • a predetermined pattern is formed by immersing the first substrate P1 on which the laminated structure 52 is formed in a corrosive liquid (for example, ferric oxide). Etching is performed using the photoresist layer as a mask to form a gate electrode and wiring associated therewith in the second conductive layer 52c.
  • the photoresist layer on the second conductive layer 52c is peeled off, and the first substrate P1 is cleaned. Thereby, the laminated structure 52 as shown in FIG. 5C is obtained.
  • the first substrate P1 may be cleaned using an alkaline cleaning solution such as NaOH.
  • an adhesive layer 54 is formed by applying an adhesive to the surface side (laminated structure 52 side) of the first substrate P1 on which the laminated structure 52 is formed.
  • the adhesive layer 54 is for facilitating transfer (adhesion) of the laminated structure 52 formed on the first substrate P1 to the second substrate P2.
  • an adhesive for dry lamination a UV (ultraviolet) curable adhesive that changes from a liquid to a solid in response to light energy of ultraviolet light, or a thermosetting adhesive may be used.
  • an adhesive for dry lamination is used.
  • the first substrate P1 and the second substrate P2 are temporarily brought into close contact or in close contact so that the second conductive layer 52c is located on the second substrate P2 side.
  • the laminated structure 52 formed on the substrate P1 is transferred to the second substrate P2 (second step).
  • This transfer is transferred by the laminator device 30 as shown in FIG. That is, the laminator device 30 is formed by rolling the first substrate P1 in which the peeling layer 50, the laminated structure 52, and the adhesive layer 54 are laminated in the above order from the surface side of the first substrate P1.
  • the laminated structure 52 formed on the first substrate P1 can be transferred to the second substrate P2.
  • the release layer 50 remains on the first substrate P1 side without being transferred to the second substrate P2 side.
  • the adhesive layer 54 formed on the laminated structure 52 is adhered to the surface of the second substrate P2 (step S11), and as shown in FIG.
  • the laminated structure 52 is peeled from the first substrate P1 (step S12).
  • the laminated structure 52 on the first substrate P1 is transferred to the second substrate P2.
  • the laminated structure 52 is formed on the second substrate P2 in an inverted state. That is, the second conductive layer 52c, the functional layer 52b, and the first conductive layer 52a constituting the stacked structure 52 are stacked on the second substrate P2 in the above order from the surface side of the second substrate P2.
  • the first conductive layer 52a is exposed.
  • the second substrate P ⁇ b> 2 on which the laminated structure 52 is transferred by the laminator device 30 is taken up by the collection roll 40.
  • the peeling layer 50 is peeled off from the first substrate P1 and transferred to the second substrate P2
  • the peeling layer 50 is removed and the second substrate P2 is cleaned.
  • the second substrate P2 may be cleaned using an alkaline cleaning solution such as NaOH. Since the release layer 50 is soluble, it is removed from the first conductive layer 52a by a solvent.
  • FIG. 6A shows only the source electrode and the drain electrode.
  • a photoresist layer is formed on the surface side (first conductive layer 52a side) of the second substrate P2.
  • the photoresist layer is formed by transferring a dry film resist (DFR) or applying a liquid resist.
  • the formed photoresist layer is exposed to a predetermined pattern (a pattern of the source electrode and the drain electrode and wiring associated with the source electrode and the drain electrode) using ultraviolet rays, and in step S15, the development is performed. I do. Thereby, a predetermined pattern is formed in the photoresist layer.
  • step S16 the second substrate P2 on which the laminated structure 52 is formed is immersed in a corrosive solution (for example, ferric oxide), and etching is performed using the photoresist layer on which a predetermined pattern is formed as a mask. Processing is performed to form a source electrode, a drain electrode, and the like in the first conductive layer 52a.
  • step S17 the photoresist layer on the first conductive layer 52a is peeled off, and the second substrate P2 is cleaned. Thereby, the laminated structure 52 as shown to FIG. 6A is obtained.
  • the source electrode and the drain electrode must be precisely aligned (overlaid) with the gate electrode (second conductive layer 52c) further below the functional layer (insulating layer) 52b immediately below the source electrode and the drain electrode. Therefore, the exposure apparatus (drawing apparatus) used in the exposure process in step S14 is formed by the second conductive layer 52c on the first substrate P1 together with the gate electrode in the formation process of the gate electrode and the like in steps S5 to S9 in FIG.
  • a predetermined pattern source electrode, And a function of precisely adjusting the relative positional relationship between the ultraviolet light corresponding to the drain electrode and the associated wiring pattern
  • the second substrate P2 Based on the alignment sensor that optically detects the alignment mark to be formed via the functional layer (insulating layer) 52b or directly, and the detection position of the mark, a predetermined pattern (source electrode, And a function of precisely adjusting the relative positional relationship between the ultraviolet light corresponding to the drain electrode and the associated wiring pattern) and the second substrate P2.
  • step S18 as shown in FIG. 6B, Au replacement plating is performed on the source electrode and the drain electrode of the first conductive layer 52a (fourth step).
  • Au (gold) 56 applied by this substitution plating process is for lowering the resistance at the contact interface between the source and drain electrodes and the semiconductor layer described later (increasing electron mobility).
  • a thin film (semiconductor layer) 58 of semiconductor is formed on the second substrate P2 (on the first conductive layer 52a) (fourth).
  • an etching process using a photolithography method is performed to process the semiconductor layer 58 as shown in FIG. 6D (fourth step). That is, a photoresist layer is formed on the semiconductor layer 58 in step S20, a predetermined pattern is exposed to the formed photoresist layer using ultraviolet rays in step S21, and development is performed in step S22. Also in this exposure, the alignment mark is detected by the alignment sensor, and the ultraviolet irradiation position is precisely positioned so that the portion of the semiconductor layer 58 to be left crosses between the drain electrode and the source electrode precisely. .
  • step S23 the second substrate P2 is immersed in a corrosive liquid (for example, hydrogen fluoride), and an etching process is performed using the photoresist layer on which a predetermined pattern is formed as a mask. Is processed. As a result, as shown in FIG. 6D, at least the semiconductor layer 58 between the source electrode and the drain electrode can be left, and other unnecessary semiconductor layers 58 can be removed. Thereafter, in step S24, the photoresist layer on the semiconductor layer 58 is peeled off, and the second substrate P2 is cleaned. Through these steps, a bottom contact type TFT as shown in FIG. 6D is formed on the second substrate P2.
  • a bottom contact type TFT as shown in FIG. 6D is formed on the second substrate P2.
  • the semiconductor layer 58 may be an organic semiconductor or an oxide semiconductor.
  • a semiconductor liquid material is selectively applied to a region including between the source electrode and the drain electrode (channel portion), and then the lift-off method is used to form the source electrode and the drain electrode.
  • a semiconductor layer 58 may be formed therebetween.
  • the steps S1 to S4 in FIG. 3 are performed by the supplier of the first substrate P1, and the steps after the steps performed by the supplier are electronic. It may be performed by a device manufacturer.
  • the supplier may perform steps S1 to S4 in FIG. 3, and the manufacturer may perform steps S5 to S24 in FIG. 3 (FIGS. 5C to 6D).
  • the first substrate P1 (the support substrate of the laminated structure 52) manufactured through the steps S1 to S4 in FIG. 3 is wound as an intermediate product in a roll shape, or a predetermined In a state of being cut into a single sheet with a length of 2 mm, it is supplied to the manufacturer of the electronic device.
  • the supplier of the first substrate P1 performs the process of steps S1 to S4 in FIG. 3 (process that requires a vacuum processing apparatus), and the process of steps S5 to S24 of FIG.
  • the burden on the electronic device manufacturer can be reduced, and a highly accurate electronic device can be easily manufactured.
  • the burden on the electronic device manufacturer is reduced.
  • the manufacturer of the electronic device only needs to form the electronic device by using the first substrate P1 on which the laminated structure 52 is formed. Therefore, the number and arrangement of the electronic devices are arbitrarily determined and the electronic device is determined. The degree of freedom in designing the arrangement, connection, bus line, etc. of the thin film transistors constituting the electronic device can be improved. In addition, even a manufacturer who does not have a large number of vacuum deposition apparatuses, coating apparatuses, or sputtering apparatuses necessary for forming all the layers constituting the electronic device can easily manufacture high-performance electronic devices. be able to.
  • FIG. 7 and FIG. 8 are flowcharts showing an example of steps of a method for manufacturing a top contact type TFT.
  • FIGS. 9A to 9D and FIGS. 10A to 10C are manufactured by the steps shown in FIGS. It is sectional drawing which shows the manufacture progress state of TFT made.
  • step S31 of FIG. 7 a release layer 70 is formed on the first substrate P1, as shown in FIG. 9A. This step is the same as step S1 in FIG.
  • a laminated structure 72 is formed on the first substrate P1 (first step).
  • the laminated structure 72 is made of a metal-based material (conductive material such as Cu, Al, Mo, Au, etc.) or ITO (conductive) deposited on the first substrate P1 (on the release layer 70) with a predetermined thickness.
  • semiconductor layer 72b1 a thin film (insulating layer) 72b2 of an insulating material (insulating material such as SiO 2 and Al 2 O 3 ) deposited on the semiconductor layer 72b1 at a predetermined thickness, and an insulating layer 72b2 And a metal-based material (conductive material such as Cu, Al, Mo, Au, etc.) or a thin film (second conductive layer) 72c of ITO (conductive material) deposited on the substrate at a predetermined thickness. Is done.
  • the semiconductor layer 72b1 and the insulating layer 72b2 constitute a functional layer 72b.
  • the base material of the first substrate P1 is a heat-resistant polyimide resin, ultra-thin sheet glass, or ultra-thin metal foil sheet (100 to 300 ° C.) in consideration of heating during film formation (100 to 300 ° C.).
  • a copper foil, a stainless steel foil, an aluminum foil, etc., rolled to a thickness of dozens of ⁇ m to several hundreds of ⁇ m may be used.
  • the release layer 70 is also made of a fluorine-based material, an alkali-soluble release agent, a release agent based on an inorganic material, or a silicon release agent, like the release layer 50 described with reference to FIGS. Etc. can be used.
  • step S32 the first conductive layer 72a is formed (deposited) on the first substrate P1 (peeling layer 70).
  • the semiconductor layer 72b1 is formed (deposited) on the first conductive layer 72a
  • the insulating layer 72b2 is further formed (deposited) to form the functional layer 72b.
  • the second conductive layer 72c is formed (deposited) on the functional layer 72b.
  • the laminated structure 72 is formed on the first substrate P1.
  • the first conductive layer 72a, the semiconductor layer 72b1, the insulating layer 72b2, and the second conductive layer 72c are continuously formed on the first substrate P1 by using the film forming apparatus 10 described above.
  • the first conductive layer 72a functions as an electrode layer for a source electrode and a drain electrode and a wiring layer for wiring accompanying the source electrode and the drain electrode.
  • the second conductive layer 72c functions as an electrode layer of the gate electrode and a wiring layer of wiring associated with the gate electrode.
  • a resin film such as PET is formed when the semiconductor layer 72b1 is formed on the first conductive layer 72a. Since it can be heated to a temperature much higher than the glass transition temperature (for example, 200 ° C.
  • the orientation (crystallization) of the organic semiconductor material or the oxide semiconductor material is performed well, and the electrical characteristics of the TFT (for example, Mobility) can be dramatically improved.
  • the electrical characteristics of the TFT for example, Mobility
  • the first substrate P1 on which the multilayer structure 72 is formed is subjected to an etching process using a photolithography method, and as shown in FIG. 9C, the gate electrode and the wiring associated therewith are formed on the second conductive layer 72c. Is formed (first step). In FIG. 9C, only the gate electrode is shown.
  • a photoresist layer is formed on the second conductive layer 72c.
  • the photoresist layer is formed by transferring a dry film resist, applying a resist solution, or the like.
  • the formed photoresist layer is exposed to a predetermined pattern (a pattern such as a gate electrode and wiring associated therewith) using ultraviolet rays, and in step S38, development is performed (in a developer such as TMAH). Immerse the first substrate P1). Thereby, a predetermined pattern is formed in the photoresist layer.
  • step S39 the first substrate P1 on which the laminated structure 72 is formed is immersed in a corrosive liquid (for example, ferric oxide or the like), and the photoresist layer on which a predetermined pattern is formed is used as a mask. Etching is performed to form a gate electrode or the like in the second conductive layer 72c.
  • step S40 the photoresist layer on the second conductive layer 72c is peeled off, and the first substrate P1 is cleaned. Thereby, the laminated structure 72 as shown in FIG. 9C is obtained.
  • the first substrate P1 may be cleaned using an alkaline cleaning solution such as NaOH.
  • step S41 of FIG. 8 as shown in FIG. 9D, an adhesive is applied to the front surface side (laminated structure 72 side) of the first substrate P1 on which the laminated structure 72 is formed, whereby the adhesive layer 74 is applied.
  • a laminated structure formed on the first substrate P1 by temporarily bringing the first substrate P1 and the second substrate P2 in close proximity or in close contact so that the second conductive layer 72c is positioned on the second substrate P2 side.
  • the body 72 is transferred to the second substrate P2 (second step).
  • This transfer is transferred by the laminator device 30 described above. That is, the first substrate P1 obtained by laminating the peeling layer 70, the laminated structure 72, and the adhesive layer 74 in the order described above from the surface side of the first substrate P1 is wound around the supply roll 32 of the laminator device 30 in a roll shape. It is set in the state where it is set.
  • the laminator device 30 can transfer the laminated structure 72 formed on the first substrate P1 to the second substrate P2. At this time, the release layer 70 for facilitating the peeling of the multilayer structure 72 from the first substrate P1 is not transferred to the second substrate P2 side but remains on the first substrate P1 side.
  • the adhesive layer 74 formed on the multilayer structure 72 is adhered to the surface of the second substrate P2 (step S42), and the multilayer structure is formed by the release layer 70 as shown in FIG. 10B.
  • 72 is peeled from the first substrate P1 (step S43).
  • the laminated structure 72 on the first substrate P1 is transferred to the second substrate P2.
  • the laminated structure 72 is formed on the second substrate P2 in an inverted state. That is, the second conductive layer 72c, the functional layer 72b, and the first conductive layer 72a constituting the stacked structure 72 are stacked on the second substrate P2 in the above order from the surface side of the second substrate P2.
  • the first conductive layer 72a is exposed.
  • the second substrate P2 to which the laminated structure 72 has been transferred by the laminator device 30 is taken up by the collection roll 40.
  • the peeling layer 70 is peeled off from the first substrate P1 and transferred to the second substrate P2, the peeling layer 70 is removed and the second substrate P2 is cleaned. Since the release layer 70 is soluble, it is removed from the first conductive layer 72a by a solvent.
  • the second substrate P2 unloaded from the supply roller is subjected to an etching process using a photolithography method, and as shown in FIG. 10C, the first conductive layer 72a.
  • a source electrode and a drain electrode and a wiring associated with the source electrode and the drain electrode are formed (fourth step). In FIG. 10C, only the source electrode and the drain electrode are shown.
  • a photoresist layer is formed on the surface side (first conductive layer 72a side) of the second substrate P2.
  • the photoresist layer is formed by dry film resist, coating, or the like as described in step S5 of FIG.
  • the formed photoresist layer is exposed to a predetermined pattern (a pattern of the source electrode and drain electrode and wirings attached to the source electrode and drain electrode) using ultraviolet rays, and developed in step S46. I do. Thereby, a predetermined pattern is formed in the photoresist layer.
  • step S47 the second substrate P2 on which the laminated structure 72 is formed is immersed in a corrosive liquid (for example, ferric oxide), and etching is performed using the photoresist layer on which a predetermined pattern is formed as a mask. Processing is performed to form a source electrode, a drain electrode, and the like on the first conductive layer 72a.
  • step S48 the photoresist layer on the first conductive layer 72a is peeled off, and the second substrate P2 is cleaned. Through such a process, a top contact type TFT as shown in FIG. 10C is formed on the second substrate P2.
  • the second substrate P2 may be cleaned using an alkaline cleaning solution such as NaOH.
  • steps S31 to S35 of FIG. 7 are performed by the supplier of the first substrate P1, and the steps after the steps performed by the supplier are electronic. It may be performed by a device manufacturer.
  • the supplier may perform steps S31 to S35 in FIG. 7, and the manufacturer may perform steps S36 to S48 in FIG. 7 (FIGS. 9C to 10C).
  • the supplier of the first substrate P1 performs steps S31 to S35 in FIG. 7, and the TFT (electronic device) manufacturer performs steps S36 to S48 in FIG.
  • the burden on the manufacturer of the electronic device can be reduced, and a highly accurate electronic device can be easily manufactured.
  • the manufacturer of the electronic device only needs to form the electronic device using the first substrate P1 on which the laminated structure 72 is formed.
  • the number and arrangement of the electronic devices are arbitrarily determined and the electronic device is determined.
  • the degree of freedom in designing the arrangement, connection, bus line, etc. of the thin film transistors constituting the electronic device can be improved.
  • even a manufacturer who does not have a large number of vacuum deposition apparatuses, coating apparatuses, or sputtering apparatuses necessary for forming all the layers constituting the electronic device can easily manufacture high-performance electronic devices. be able to.
  • the first substrate P1 (supporting base material of the laminated structure 72) manufactured through the steps S31 to S35 in FIG. 7 is wound in a roll shape as an intermediate product, or a predetermined In a state of being cut into a single sheet with a length of 2 mm, it is supplied to the manufacturer of the electronic device.
  • Modification 1 In Modification 1, a laminated structure is formed while performing an etching process using a photolithography method for manufacturing a top contact type TFT.
  • FIG. 11 and FIG. 12 are flowcharts showing an example of the steps of the method for manufacturing the top contact type TFT according to the first modification.
  • FIGS. 13A to 13F and FIGS. 14A to 14F are FIGS. It is sectional drawing which shows the manufacture progress state of TFT manufactured by the process shown in FIG. First, in step S61 of FIG. 11, as shown in FIG. 13A, a release layer 80 is formed on the first substrate P1. The formation process of this peeling layer 80 is the same as that of step S1 of FIG.
  • step S62 as shown in FIG. 13B, a thin film (insulating material) of an insulating material (SiO 2 , Al 2 O 3 or the like) deposited on the first substrate P1 (on the peeling layer 80) with a predetermined thickness.
  • Layer 82 is formed.
  • the insulating layer 82 is formed on the first substrate P1 by using the film forming apparatus 10 described above.
  • the insulating layer 82 has a function as a passivation and may also function as an etching stopper.
  • step S63 as shown in FIG. 13C, a metal-based material (conductive material such as Cu, Al, Mo or the like) deposited on the first substrate P1 (on the insulating layer 82) with a predetermined thickness.
  • Thin film (first conductive layer) 84a is formed (first step).
  • the first conductive layer 84a functions as an electrode layer for a source electrode and a drain electrode and a wiring layer for wiring accompanying the source electrode and the drain electrode.
  • the first conductive layer 84a is formed on the first substrate P1 by using the film forming apparatus 10 described above.
  • an etching process using a photolithography method is performed to form a source electrode and a drain electrode and wirings associated with the source electrode and the drain electrode in the first conductive layer 84a as shown in FIG. Process).
  • etching of the release layer 80 is prevented by the insulating layer 82 that also functions as an etching stopper.
  • FIG. 13D only the source electrode and the drain electrode are shown.
  • step S64 a photoresist layer is formed on the first conductive layer 84a.
  • the photoresist layer is formed by dry film resist, coating, or the like as described in step S5 of FIG.
  • step S65 a predetermined pattern (a pattern of the source electrode and drain electrode and wiring associated with the source electrode and drain electrode) is exposed to the formed photoresist layer using ultraviolet rays, and in step S66, development is performed. I do. Thereby, a predetermined pattern is formed in the photoresist layer.
  • step S67 the first substrate P1 on which the first conductive layer 84a is formed is immersed in a corrosive liquid (for example, ferric oxide), and the photoresist layer on which a predetermined pattern is formed is used as a mask. Etching is performed to form a source electrode, a drain electrode, and the like on the first conductive layer 84a.
  • step S68 the photoresist layer on the first conductive layer 84a is peeled off, and the first substrate P1 is cleaned.
  • a corrosive liquid for example, ferric oxide
  • step S69 as shown in FIG. 13E, a thin film (semiconductor layer) of a semiconductor (IGZO, ZnO, etc.) deposited on the first substrate P1 (on the first conductive layer 84a) with a predetermined thickness. ) 84b1 is formed (first step).
  • the semiconductor layer 84b1 is formed on the first substrate P1 by using the film forming apparatus 10 described above.
  • an etching process using a photolithography method is performed to process the semiconductor layer 84b1 as illustrated in FIG. 13F (first step). That is, in step S70, a photoresist layer is formed on the semiconductor layer 84b1.
  • the photoresist layer is formed by dry film resist, coating, or the like as described in step S5 of FIG.
  • step S71 a predetermined pattern is exposed to the formed photoresist layer using ultraviolet rays, and development is performed in step S72. Thereby, a predetermined pattern is formed in the photoresist layer.
  • step S73 the first substrate P1 is immersed in a corrosive liquid (for example, hydrogen fluoride), and an etching process is performed using the photoresist layer on which a predetermined pattern is formed as a mask, and the semiconductor layer 84b1. Is processed. Accordingly, as shown in FIG. 13F, at least the semiconductor layer 84b1 between the source electrode and the drain electrode can be left, and the other unnecessary semiconductor layer 84b1 can be removed.
  • step S74 the photoresist layer is peeled off and the first substrate P1 is cleaned.
  • step S75 of FIG. 12 an insulating material (SiO 2 , Al 2 O 3, etc.) deposited on the surface side (semiconductor layer 84b1 side) of the first substrate P1 with a predetermined thickness. ) Thin film (insulating layer) 84b2 is formed (first step).
  • the insulating layer 84b2 is formed on the first substrate P1 by using the film forming apparatus 10 described above.
  • the semiconductor layer 84b1 and the insulating layer 84b2 constitute a functional layer 84b.
  • step S76 as shown in FIG. 14B, a metallic material (Cu, Al, Mo, etc., deposited on the first substrate P1 (on the insulating layer 84b2) with a predetermined thickness is deposited.
  • Film (second conductive layer) 84c.
  • the second conductive layer 84c is formed on the first substrate P1 by using the film forming apparatus 10 described above.
  • the second conductive layer 84c functions as an electrode layer of the gate electrode and a wiring layer of wiring accompanying the gate electrode.
  • the first conductive layer 84a, the functional layer 84b, and the second conductive layer 84c constitute a laminated structure 84.
  • an etching process using a photolithography method is performed to form a gate electrode and a wiring associated therewith in the second conductive layer 84c as shown in FIG. 14C (first step).
  • first step an etching process using a photolithography method is performed to form a gate electrode and a wiring associated therewith in the second conductive layer 84c as shown in FIG. 14C (first step).
  • FIG. 14C only the gate electrode is shown.
  • the first substrate P1 on which the second conductive layer 84c is formed is subjected to an etching process using a photolithography method for forming a gate electrode and a wiring associated therewith. Thereby, a TFT is formed on the first substrate P1.
  • step S77 a photoresist layer is formed on the second conductive layer 84c.
  • the photoresist layer is formed by dry film resist, coating, or the like as described in step S5 of FIG.
  • step S78 the formed photoresist layer is exposed to a predetermined pattern (a pattern of a gate electrode and wiring associated therewith) using ultraviolet light, and development is performed in step S79. Thereby, a predetermined pattern is formed in the photoresist layer.
  • step S80 the first substrate P1 is immersed in a corrosive liquid (for example, ferric oxide), and an etching process using the photoresist layer on which a predetermined pattern is formed as a mask is performed.
  • a gate electrode and a wiring associated therewith are formed on the two conductive layer 84c.
  • step S81 the photoresist layer on the second conductive layer 84c is peeled off, and the first substrate P1 is cleaned.
  • the laminated structure 84 is formed on the first substrate P1 through the processes of Step S63 in FIG. 11 to Step S81 in FIG.
  • an adhesive layer 86 is formed by applying an adhesive on the first substrate P1 on which the laminated structure 84 is formed, that is, on the second conductive layer 84c. .
  • the adhesive layer 86 is for facilitating the transfer (adhesion) of the laminated structure 84 formed on the first substrate P1 to the second substrate P2.
  • a UV curable resin may be used.
  • the adhesive layer 86 is irradiated with ultraviolet rays.
  • step S83 the first substrate P1 and the second substrate P2 are temporarily brought into close contact or in close contact so that the second conductive layer 84c is located on the second substrate P2 side, as shown in FIG. 14E.
  • the laminated structure 84 formed on the first substrate P1 is transferred to the second substrate P2 (second step). This transfer is transferred by the laminator device 30 described above. That is, the first substrate P1 in which the peeling layer 80, the insulating layer 82, the laminated structure 84, and the adhesive layer 86 are laminated in the above order from the surface side of the first substrate P1 is rolled.
  • the laminated structure 84 formed on the first substrate P1 can be transferred to the second substrate P2 by being used as the supply roll 32 of the laminator device 30.
  • the laminated structure 84 is formed on the second substrate P2 in an inverted state. That is, the second conductive layer 84c, the functional layer 84b, and the first conductive layer 84a constituting the stacked structure 84 are stacked on the second substrate P2 in this order from the surface side of the second substrate P2. .
  • the peeling layer 80 remains on the first substrate P1 side without being transferred to the second substrate P2 side.
  • the second substrate P ⁇ b> 2 on which the laminated structure 84 is transferred by the laminator device 30 is taken up by the collection roll 40. Through such a process, a top contact type TFT as shown in FIG. 14E is formed on the second substrate P2.
  • the insulating layer 82 may be processed as shown in FIG. 14F by performing an etching process using a photolithography method after the laminated structure 84, that is, the TFT is transferred onto the second substrate P2. (Fourth step). By the step shown in FIG. 14F, at least the insulating layer 82 between the source electrode and the drain electrode remains, and the other unnecessary insulating layer 82 is removed.
  • step S61 in FIG. 11 to step S81 in FIG. 12 are performed by the supplier of the first substrate P1, and the steps performed by the supplier are performed.
  • the later steps may be performed by the electronic device manufacturer.
  • the supplier may perform step S61 in FIG. 11 to step S82 in FIG. 12, and the manufacturer may perform step S83 in FIG. 12 (FIG. 14E).
  • the supplier of the first substrate P1 performs the process from step S61 to step S82 in FIG. 11, and the electronic device manufacturer performs at least the process in step S83 in FIG.
  • the burden on the device manufacturer can be reduced, and a highly accurate electronic device can be manufactured.
  • Modification 2 In the modification 1, the insulating layer 82 is formed between the release layer 80 and the first conductive layer 84a. However, in the modification 2, the insulating layer 82 is not formed. That is, in the second modification, step S62 in FIG. 11 is not performed. Therefore, after step S61 in FIG. 11, step S63 is performed.
  • the passivation layer may not be provided, and the insulating layer 82 may not be provided between the release layer 80 and the first conductive layer 84a when the release layer 80 is not likely to be etched. In this case, since the insulating layer 82 is not originally formed, there is no need to process the insulating layer 82 by performing an etching process using a photolithography method as shown in FIG. 14F.
  • the supplier of the first substrate P1 may provide the manufacturer with the first substrate P1 on which the alignment mark Ks is formed.
  • the alignment mark Ks is a reference mark for relatively aligning (aligning) a predetermined pattern exposed in the exposure region W on the substrate and the substrate.
  • the alignment mark Ks is optically detected by an imaging device with a microscope, so that the position of the substrate (position in the longitudinal direction of the substrate, position in the lateral direction, tilted state) or the state of distortion in the plane of the substrate can be detected. Can be detected.
  • the alignment marks Ks are formed at regular intervals along the longitudinal direction (longitudinal direction) of the substrate on both ends in the width direction of the substrate.
  • the photolithography method is used as shown in FIG.
  • the alignment mark Ks may be formed on the second conductive layer 52c (72c) by performing the etching process (third step). And you may make it perform the process after FIG. 5C (FIG. 9C) using the 1st board
  • the first conductive layer 52a (72a) becomes the surface side of the second substrate P2 and the second conductive layer 52c (72c) becomes the deep side of the second substrate P2 by the transfer, so that the formed alignment mark Ks is It is hidden by the first conductive layer 52a (72a). Therefore, after the transfer (for example, when forming the source electrode and the drain electrode), the first conductive layer 52a (in the region facing the alignment mark Ks as shown in FIG. 16) is etched by photolithography.
  • the window 90 may be provided by removing 72a).
  • the window 90 may be provided by not forming the first conductive layer 52a (72a) in the region facing the alignment mark Ks.
  • the alignment mark Ks can be imaged with an optical alignment system such as a microscope, but the functional layer 52b (72b) In the case of being made of a non-permeable material, the functional layer 52b (72b) may be provided with the window 90.
  • the window 90 is an opening formed for imaging the alignment mark Ks.
  • the alignment mark Ks may be formed on the first conductive layer 52a (72a), and the window 90 may be formed on the second conductive layer 52c (72c).
  • the alignment mark Ks or the window 90 is formed in the first conductive layer 52a (72a) by using an etching process utilizing a photolithography method, and the second conductive layer 52a (72a) is formed.
  • the window 90 or the alignment mark Ks may be formed in the second conductive layer 52c (72c) by using an etching process using a photolithography method.
  • the laminated structure 84 is formed while performing the etching process using the photolithography method. Therefore, the alignment mark Ks and the window 90 are also formed during the formation of the laminated structure 84. You may form in.
  • the supplier of the first substrate P1 has a wiring pattern in the device region on the circuit board for electronic devices (for example, artwork such as the shape, arrangement, and dimensions of large patterns such as the ground bus line and the power bus line).
  • the alignment mark Ks and the window 90 are formed in the first conductive layer 52a (72a) or the second conductive layer 52c (72c) by an etching process using a photolithography method. These wiring patterns may be formed.
  • the supplier of the first substrate P1 knows in advance the region where the semiconductor element (TFT) is formed along with the wiring pattern (or the region where no TFT is formed), the function is applied to the region where the TFT is formed.
  • a semiconductor layer as the layer 52b (72b) may be selectively deposited, and an insulating layer as the functional layer 52b (72b) may be selectively deposited in a region where no TFT is formed.
  • the semiconductor layer and the insulating layer may be adjusted to have substantially the same thickness.
  • FIG. 17 is a diagram showing a configuration of a laminator apparatus 30a in Modification 4.
  • the same reference numerals are given to the same configurations as those in the first embodiment, and the description thereof is omitted.
  • a guide roller GR6a having a larger radius than the guide roller GR6 is provided instead of the guide roller GR6.
  • the laminator device 30a is provided with a die coater head DCH for applying a thermosetting adhesive that is cured by heat to the second substrate P2 wound around the guide roller GR6a. That is, in the modified example 4, the adhesive layer 54 (74) is formed by applying an adhesive to the second substrate P2 side instead of the first substrate P1 side.
  • the adhesive layer 54 (74) is not provided on the first substrate P1.
  • the region on the second substrate P2 to which the thermosetting adhesive is applied by the die coater head DCH is supported by the circumferential surface of the guide roller GR6a.
  • the die coater head DCH applies a thermosetting adhesive widely and uniformly to the second substrate P2.
  • the laminated structure 52 (72) formed on the first substrate P1 can be transferred to the second substrate P2 by the pressure heating roller 36.
  • the pressure heating roller 36 is configured so that the laminated structure 52 (72) is located on the second substrate P2 side and is in contact with the thermosetting adhesive applied on the second substrate P2. P1 and the second substrate P2 are in close contact with both sides and heated. Since the thermosetting adhesive is cured by this heating, the adhesive layer 54 (or 74) is formed, and the laminated structure 52 (72) and the second substrate P2 are firmly bonded to form the first substrate P1. The laminated structure 52 (72) thus transferred is transferred to the second substrate P2. The first substrate P1 and the second substrate P2 that have passed through the pressure heating roller 36 are separated from each other.
  • FIG. 18 is a diagram showing a configuration of a laminator apparatus 30b in Modification 5. Note that in the fifth modification, the same reference numerals are given to the same configurations as those in the first embodiment, and description thereof is omitted.
  • a pressure roller 36b that performs only pressure bonding without heating is provided instead of the pressure roller heating roller 36, and a guide roller GR6b having a larger radius than the guide roller GR6 is provided instead of the guide roller GR6.
  • the pressure roller 36b includes a roller R and a drum DRS having a larger radius than the roller R.
  • the first substrate P1 and the second substrate P2 sandwiched and adhered between the roller R and the drum DRS are transported along the circumferential surface of the drum DRS while being overlapped with each other, and thereafter, the guide rollers GR7, Separated from each other by GR8.
  • the first substrate P1 is guided to the collection roll 38 by the guide roller GR7
  • the second substrate P2 is guided to the collection roll 40 by the guide roller GR8.
  • the laminator device 30b is provided with a die coater head DCH1 for applying a UV curing adhesive that is cured by UV light to the second substrate P2 wound around the guide roller GR6b. That is, in the modified example 5, the adhesive layer 54 (74) is formed by applying an adhesive on the second substrate P2 side instead of the first substrate P1 side. Therefore, the adhesive layer 54 (74) is not provided on the first substrate P1.
  • the region on the second substrate P2 to which the UV curable adhesive is applied by the die coater head DCH1 is supported by the circumferential surface of the guide roller GR6b.
  • the die coater head DCH1 applies a UV curing adhesive widely and uniformly to the second substrate P2.
  • the laminator device 30b has an ultraviolet irradiation source 94 for irradiating the UV curable adhesive with UV (ultraviolet) light before the first substrate P1 and the second substrate P2 bonded by the pressure roller 36b are separated from each other. Is provided with a plurality of irradiation devices UVS. Thereby, the laminated structure 52 (72) formed on the first substrate P1 can be transferred to the second substrate P2 by the pressure roller 36b.
  • the roller R and the drum DRS of the pressure roller 36b are positioned so that the laminated structure 52 (72) is located on the second substrate P2 side and is in contact with the UV curable adhesive applied on the second substrate P2.
  • the irradiation device UVS irradiates the first substrate P1 and the second substrate P2 which are wound around the drum DRS and are transported while being superimposed on each other with UV light. Since the UV curable adhesive between the first substrate P1 and the second substrate P2 is cured by the irradiation of the UV light, an adhesive layer 54 (74) is formed, and the laminated structure 52 (72) and the second substrate are formed.
  • the first substrate P1 and the second substrate P2 are separated from each other by the guide rollers GR7 and GR8. Thereby, the laminated structure 52 (72) formed on the first substrate P1 is transferred to the second substrate P2.
  • FIG. 19 is a diagram illustrating an example of a pixel circuit of one light emitting pixel of an active matrix organic EL display
  • FIG. 20 is a diagram illustrating a specific structure of the pixel circuit illustrated in FIG.
  • the pixel circuit includes a TFT, a capacitor C, and an organic light emitting diode (OLED).
  • the source electrode S and drain electrode D of the TFT, the wiring L1 associated therewith, one electrode C1 of the capacitor C, and the pixel electrode E connected to the cathode of the OLED are formed in the first conductive layer 102 of the multilayer structure 100. Has been.
  • the gate electrode G of the TFT, the wiring L2 associated therewith, and the other electrode C2 of the capacitor C are formed in the second conductive layer 104 of the multilayer structure 100.
  • the electrode C2 of the capacitor C is connected to the ground GND (earth line).
  • an electroless plating contactor M is provided at a location where it is necessary to connect the wiring L1 formed in the first conductive layer 102 and the wiring L2 formed in the second conductive layer 104.
  • the first conductive layer 102 is indicated by hatching for convenience in order to distinguish the first conductive layer 102 and the second conductive layer 104.
  • FIG. 21 and FIG. 22 are flowcharts showing an example of the steps of the pixel circuit manufacturing method.
  • Steps S101 to S105 are sequentially formed from the surface side of the first substrate P1.
  • Two conductive layers 104 are formed on the first substrate P1.
  • Steps S101 to S105 are the same as steps S31 to S35 in FIG. Needless to say, the semiconductor layer 108 and the insulating layer 110 constitute a functional layer 112, and the first conductive layer 102, the functional layer 112 (the semiconductor layer 108 and the insulating layer 110), and the second conductive layer 104 are stacked.
  • the structure 100 is configured.
  • the first conductive layer 102 and the second conductive layer 104 are formed of Cu (copper), the semiconductor layer 108 is formed of ZnO which is a kind of oxide semiconductor, and the insulating layer 110 is formed. Is made of SiO 2 .
  • a predetermined pattern (the pattern of the gate electrode G, the wiring L2, and the electrode C2 of the capacitor C described above) is formed on the second conductive layer 104 by etching using photolithography. ).
  • a predetermined pattern the pattern of the gate electrode G, the wiring L2, and the electrode C2 of the capacitor C described above.
  • FIG. 24 only the gate electrode G and the wiring L2 are shown in the second conductive layer 104.
  • the first conductive layer 102 is indicated by hatching in order to distinguish the first conductive layer 102 and the second conductive layer 104.
  • a photoresist layer is formed on the second conductive layer 104 in step S106.
  • a predetermined pattern pattern of the gate electrode G, the wiring L1, and the electrode C2 is exposed to the coated photoresist layer using ultraviolet rays, and development is performed in step S108. Thereby, a predetermined pattern is formed in the photoresist layer.
  • the first substrate P1 is immersed in a ferric oxide corrosive solution, whereby an etching process is performed using the photoresist layer on which a predetermined pattern is formed as a mask.
  • a gate electrode G and the like are formed on the substrate.
  • step S110 the photoresist layer is peeled off and the first substrate P1 is cleaned.
  • Steps S106 to S110 are the same as steps S36 to S40 in FIG.
  • the functional layer 112 is exposed in the region where the second conductive layer 104 is removed by this etching process.
  • step S111 the functional layer 112 is also etched (processed) as shown in FIG. 24 by immersing the first substrate P1 in a corrosive solution of hydrogen fluoride. Since the functional layer 112 is exposed in the region where the second conductive layer 104 is removed by the etching process in step S109, the functional layer 112 in the region where the second conductive layer 104 is removed is subjected to the etching process in step S111. Removed by.
  • step S112 an adhesive layer 114 is formed by applying an adhesive to the surface side (second conductive layer 104 side) of the first substrate P1 on which the multilayer structure 100 is formed.
  • step S113 the first substrate P1 and the second substrate P2 are temporarily brought into close contact or in close contact so that the second conductive layer 104 is located on the second substrate P2 side, as shown in FIG.
  • the laminated structure 100 formed on the first substrate P1 is transferred to the second substrate P2. This transfer is transferred by the laminator device 30.
  • Steps S112 and S113 are the same as steps S41 to S43 in FIG.
  • the first conductive layer 102 has a predetermined pattern (the source electrode S and drain electrode D, the wiring L1, and the electrode C1 of the capacitor C described above). , And the pattern of the pixel electrode E).
  • the first conductive layer 102 is indicated by hatching in order to distinguish the first conductive layer 102 and the second conductive layer 104.
  • a photoresist layer is formed on the surface side (first conductive layer 102 side) of the second substrate P2 in step S114 of FIG.
  • a predetermined pattern (a pattern of the source electrode S, the drain electrode D, the wiring L1, the electrode C1, and the pixel electrode E) is exposed to the formed photoresist layer using ultraviolet rays, and in step S116.
  • a predetermined pattern is formed in the photoresist layer.
  • step S117 the second substrate P2 is immersed in a ferric oxide corrosive solution, and an etching process is performed using the photoresist layer on which a predetermined pattern is formed as a mask.
  • a source electrode S, a drain electrode D, and the like are formed.
  • an opening portion of the contact hole H for forming the electroless plating contactor M is also formed in the first conductive layer 102.
  • step S118 the photoresist layer on the first conductive layer 102 is peeled off, and the second substrate P2 is cleaned. Steps S114 to S118 are the same as steps S44 to S48 in FIG. 8 except that the contact hole H is formed.
  • the functional layer 112 semiconductor layer 108 and insulating layer 110 in the contact hole H portion is etched by an etching process using a photolithography method. That is, in step S119, a photoresist layer is formed on the surface side (first conductive layer 102 side) of the second substrate P2. In step S120, a predetermined pattern is exposed to the formed photoresist layer using ultraviolet rays, and development is performed in step S121. Thereby, a predetermined pattern is formed in the photoresist layer.
  • step S122 the second substrate P2 is immersed in an etching solution of hydrogen fluoride, and an etching process is performed using the photoresist layer on which a predetermined pattern is formed as a mask. 112 is also etched. Thereby, the contact hole H is completed.
  • step S123 an electroless plating process is performed on the contact hole H, and as shown in FIG. 30, an electroless plating contactor M made of, for example, Cu, Cr, NiP or the like is formed, and the first conductive The layer 102 (wiring L1) and the second conductive layer 104 (wiring L2) are electrically connected.
  • step S124 the photoresist layer on the second substrate P2 is peeled off, and the second substrate P2 is cleaned.
  • the thin film is processed using an etching process using a photolithography method, but an optical patterning method is used. Any processing can be used.
  • the processing using the optical patterning method in addition to the etching processing using the photolithography method, for example, in the state where the first substrate P1 on which the laminated structure 52 is formed is immersed in a special liquid, ultraviolet rays are used.
  • the bottom gate type TFT has been described as an example.
  • a top gate type TFT may be used.
  • the laminated structures 52 and 72 formed on the first substrate P1 (supporting substrate) are not limited to thin film transistors (TFTs), and are also useful for manufacturing electronic devices including thin film diodes (TFDs).
  • the functional layer 52b (72b) sandwiched between the upper and lower first conductive layers and the second conductive layer may be a thin film having two or more layers.
  • the first functional film corresponds to the entire device region on the first substrate P1.
  • the second functional film may be formed uniformly in a region, and the second functional film may be selectively formed in a partial region on the first functional film.
  • the said 2nd Embodiment etc., among the surfaces of the 1st board
  • the roughness of the surface on which the semiconductor layer is laminated is expressed by an arithmetic average roughness Ra value (nm) defined by JIS standards
  • the roughness Ra value is the value of the insulating layer (or semiconductor layer) to be laminated. It is determined in a range not exceeding the thickness.
  • the surface roughness Ra value of the first substrate P1 is preferably 200 nm or less (submicron or less), and more preferably in the range of 1 nm to several tens of nm.
  • the characteristics of the TFT such as electron mobility, on / off ratio, and leakage current, are improved.
  • the roughness Ra value can be less than 1 nm, a practical roughness Ra value may be about several nm. Such roughness Ra value can be easily obtained by the current surface treatment (polishing) technique.
  • first conductive layer (52a, 72a, 84a, 102) of the laminated structure is formed on the surface of the first substrate P1, instead of flattening the surface of the first substrate P1 by a polishing process or the like.
  • a peeling layer (50, 70, 80, 106) and a first conductive layer (52a, 72a, 84a, 102) are formed on the planarization film. You may form into a film in order.
  • the flattening film is a material that fills the recesses on the surface of the first substrate P1 to alleviate the recesses and protrusions and has strong etching resistance, and does not denature even during heat treatment during transfer (laminate) or post-annealing, for example It is made of a silicon oxide (SiO 2 ) -based wet material.
  • a material for such a flattened film Sumise Fine (registered trademark) manufactured by Sumitomo Osaka Cement Co., Ltd., Vistrater (registered trademark) manufactured by Nippon Soda Co., Ltd., Colcoat (registered trademark) manufactured by Colcoat Co., Ltd.
  • SOG Spin On Glass
  • FIG. 31 shows a schematic configuration of a film forming apparatus 10A for continuously forming a multilayer structure for an electronic device on the first substrate P1, similarly to the film forming apparatus 10 of FIG.
  • a film forming apparatus 10A shown in FIG. 31 is disposed around the chamber 16, the vacuum pump 18, the film forming rotary drum 22, and the film forming rotary drum 22, and continuously deposits a plurality of film forming materials (thin film materials).
  • the base material 20A disposed around the film-forming rotary drum 22 is formed by forming a conductive layer by vapor deposition, sputtering, CVD, or the like, and the base material 20B is conductive by vapor deposition, sputtering, CVD, or the like.
  • the base material 20C is a semiconductor layer formed on the insulating layer by vapor deposition, sputtering, CVD, or the like. Note that when a two-layer structure of a conductive layer and an insulating layer is formed on the first substrate P1, film formation using the base material 20C may be avoided. Furthermore, depending on the structure of the TFT to be formed, the arrangement of the base material 20B and the base material 20C may be changed, and the conductive layer, the semiconductor layer, and the insulating layer may be formed in this order.
  • the surface of the first substrate P1 wound up by the collection roll 14 is formed by sequentially arranging the respective film-forming portions of the plurality of thin-film material base materials 20A, 20B, and 20C around the film-forming rotary drum 22. Since a desired laminated structure is formed at once, it is not necessary to replace the collection roll 14 with another film forming apparatus, and productivity is improved. In this case, it is desirable to set the same temperature in the film forming unit using the base material 20A, the film forming unit using the base material 20B, and the film forming unit using the base material 20C. Further, the film forming apparatus 10A may incorporate a mist deposition method (mist CVD method) as disclosed in, for example, International Publication No. 2013/176222 pamphlet.
  • the base material of the film forming material is contained in an ionic state or a nanoparticle state in the mist sprayed on the surface of the first substrate P1. Furthermore, when non-equilibrium atmospheric pressure plasma is generated in the space between the mist spray nozzle and the surface of the first substrate P1 using a high-pressure pulse power source, the temperature of the first substrate P1 is about 200 ° C. Therefore, good film formation by the mist CVD method is possible, and the film formation rate is improved.
  • FIG. 32 is a schematic diagram showing a modification of the transfer method according to FIGS. 9 and 10 described above, and the same members (layers, films, materials, etc.) as those in FIGS. 9 and 10 are denoted by the same reference numerals. It is.
  • the first conductive layer 72a, the semiconductor layer 72b1, the insulating layer 72b2, and the second conductive layer 72c are sequentially stacked on the first substrate P1, as shown in FIG. 9B.
  • the second conductive layer 72c was etched to form a gate electrode.
  • a peeling layer 70, a first conductive layer 72a, a semiconductor layer 72b1, an insulating layer 72b2, and a second conductive layer 72c are stacked on the first substrate P1 shown in FIG. 72b1 is not formed uniformly on the first conductive layer 72a, but the semiconductor layer 72b1 is selectively formed in a local region corresponding to the channel portion (gap portion between the source electrode and the drain electrode) of the TFT.
  • a photoresist layer is formed on the first conductive layer 72a, a resist layer opening is formed in a region where the semiconductor layer 72b1 is to be formed by photolithography, and vapor deposition, sputtering, CVD, or the like is performed in the opening.
  • a semiconductor material may be deposited.
  • an insulating layer 72b2 is formed so as to uniformly cover the first conductive layer 72a and the selectively formed semiconductor layer 72b1, and the second conductive layer is further formed on the insulating layer 72b2.
  • a layer 72c is formed, and the second conductive layer 72c is processed so as to become a gate electrode (and a wiring connected thereto) by an etching process using a photolithography method, as in FIG. 9C.
  • the semiconductor layer 72b1 can be selectively formed by limiting to the TFT formation region, so that the amount of semiconductor material used can be suppressed.
  • the adhesive layer 74 is applied to the surface of the multilayer structure 72 of the first substrate P1 in FIG. 9D.
  • an adhesive layer 74 is formed on the second substrate P2 side as shown in FIG.
  • the second substrate P2 in this modification has a configuration in which a buffer layer P2b made of polyethylene (PE) or the like is laminated on the surface of a sheet substrate P2a such as PET or PEN, and a sealant layer (Silicon Sealant or the like) P2c on the surface of the buffer layer P2b. Then, an adhesive layer 74 is formed.
  • PE polyethylene
  • the surface of the stacked structure 72 facing the second substrate P2 has irregularities.
  • the adhesion with the second substrate P2 may be non-uniform during transfer. Therefore, a buffer layer P2b is provided to absorb such irregularities.
  • the buffer layer P2b is preferably one having stability and plasticity, and a thermoplastic material such as polyethylene (PE) is preferable when thermocompression bonding is performed during transfer.
  • the adhesive layer 74 formed on the buffer layer P2b is a synthetic resin emulsion type adhesive EVA (Ethylene Vinyl Acetate) mainly composed of vinyl acetate resin and ethylene vinyl acetate copolymer resin.
  • EVA Ethylene Vinyl Acetate
  • a planarization film FP is formed so as to cover the entire stacked structure 72.
  • the planarizing film FP fills the concave portion of the multilayer structure 72 to relieve the irregularity, has a strong etching resistance, and is a material that does not denature even during heat treatment during transfer (laminate) or post-annealing, for example, It is made of a silicon oxide (SiO 2 ) -based wet material.
  • a flattening film FP Sumise Fine (registered trademark) manufactured by Sumitomo Osaka Cement Co., Ltd., Visrent (registered trademark) manufactured by Nippon Soda Co., Ltd., Colcoat (registered trademark) manufactured by Colcoat Co., Ltd.
  • the planarizing film FP is an inorganic insulating film (or organic insulating film), and cracks due to internal stress at the time of curing of the adhesive layer 74 (EVA) by directly bonding to the adhesive layer 74 (EVA) to be laminated. Has the effect of reducing the occurrence.
  • FIG. 33 after the laminated structure 72 is formed on the first substrate P1, the wet material of the planarization film FP is applied thereon, but as shown in FIG. 32, the second substrate P2 is used.
  • the planarizing film FP is formed on the adhesive layer 74 (EVA), and before the planarizing film FP is dried, the laminated structure on the first substrate P1
  • the body 72 may be transferred to the planarizing film FP while being heated.
  • the laminated structure 72 formed on the first substrate P1 has the first conductive layer 72a on the first substrate P1 side as a source electrode / drain electrode of the TFT and a wiring connected thereto.
  • the second conductive layer 72c on the second substrate P2 side has been described as the gate electrode of the TFT and the wiring connected thereto, but the reverse is also possible. That is, the first conductive layer 72a may be a TFT gate electrode and a wiring connected thereto, and the second conductive layer 72c may be a TFT source / drain electrode and a wiring connected thereto.
  • FIG. 34 to FIG. 36 are diagrams showing steps of manufacturing an electronic device (TFT) obtained by improving a part of the manufacturing method according to the embodiment of FIG. 23 to FIG. Accordingly, the same members (materials) shown in FIGS. 34 to 36 as those in FIGS. 23 to 30 are denoted by the same reference numerals as those in FIGS. 23 to 30.
  • the first substrate P1 is a copper (Cu) sheet foil plate having a thickness of several tens to several hundreds of ⁇ m, and copper ( A Cu) first conductive layer 102 is laminated on the entire surface.
  • the first conductive layer 102 is formed by laminating a copper foil rolled to a thickness of several tens of ⁇ m or less on the release layer 106.
  • the first conductive layer 102 after the lamination is wrapped so that the arithmetic average roughness Ra value of the surface is about several nm to several tens nm while reducing the thickness.
  • an insulating layer 110 that functions as a gate insulating film of the TFT is formed on the first conductive layer 102 of the first substrate P1.
  • the insulating layer 110 is a typical silicon oxide film (SiO 2 ), and is formed on the entire surface of the first conductive layer 102, and then a method of removing the silicon oxide film other than the TFT formation region by etching or the like, or selection By a typical film formation, a silicon oxide film is deposited only on the TFT formation region from the beginning. Since both the first substrate P1 and the first conductive layer 102 are made of copper (Cu) having high heat resistance, they can be formed at a high temperature in a vacuum, and the flatness (roughness Ra) of the silicon oxide film is improved. be able to.
  • Cu copper
  • the semiconductor layer 108 is formed on the insulating layer 110 (SiO 2 ).
  • the semiconductor layer 108 is an IGZO (oxide semiconductor) composed of indium, gallium, zinc, and oxygen.
  • the semiconductor layer 108 made of IGZO has indium, gallium, zinc, and oxygen as constituent elements, and has a predetermined atomic ratio of indium to the total amount of indium and gallium and a specific atomic ratio of zinc to the total amount of indium, gallium, and zinc.
  • the film is formed by a sputtering apparatus using an oxide sintered body having a ratio of 1 to 5 as a sputtering target.
  • a window corresponding to the formation region of the semiconductor layer 108 is opened in the resist layer formed on the entire surface of the first substrate P1 by a photolithography process (pattern exposure and resist development).
  • a step of peeling the resist layer is also performed.
  • an IGZO semiconductor layer 108 is selectively formed on the insulating layer 110 as shown in FIG. 34C.
  • the source electrode 104 (S) and the drain electrode 104 (D) as the second conductive layer 104 are formed with a certain gap so as to form a channel portion on the semiconductor layer 108. It is formed so as to face each other.
  • a photolithography step is used to form a resist layer window in a region where the source electrode 104 (S) and the drain electrode 104 (D) are formed, and the metallic source electrode 104 (S) is formed in the window.
  • the drain electrode 104 (D) are deposited by vapor deposition or the like.
  • the source electrode 104 (S) and the drain electrode 104 (D) are preferably made of gold (Au) having a high work function in order to be bonded to the semiconductor layer 108, but other metal materials (aluminum, copper) or silver A conductive ink material containing nanoparticles or metallic carbon nanotubes may be used.
  • the source electrode 104 (S) and the drain electrode 104 (D) are formed so as to extend from the channel portion to the first conductive layer 102 outside the region of the insulating layer 110 as shown in FIG. 34D.
  • 104 (S) and the drain electrode 104 (D) are in electrical conduction with the first conductive layer 102 (ohmic coupling).
  • FIG. 35 is a diagram showing a planar arrangement configuration of the laminated structure 100 formed on the first substrate P1.
  • the surface of the first conductive layer 102 serving as the base of the TFT is a smooth surface having a sufficiently small arithmetic average roughness Ra value. Therefore, the insulating layer 110 and the semiconductor layer 108 formed thereon are also formed as a flat film having a uniform thickness, and the flatness of the contact interface between the semiconductor layer 108 and the second conductive layer 104 (source electrode and drain electrode). Well maintained. As a result, good characteristics can be obtained in terms of electron mobility, on / off ratio, and leakage current.
  • the gap between the source electrode 104 (S) and the drain electrode 104 (D) in the channel portion can be reduced to about several ⁇ m, a high-performance TFT utilizing the characteristics of the IGZO semiconductor can be obtained.
  • the insulating layer 110, the semiconductor layer 108, and the second conductive layer 104 (source electrode and drain electrode) are stacked, relative stacking on the order of microns is required. Therefore, in the photolithography process, an alignment mark formed at a specific position on the first substrate P1 (particularly the first conductive layer 102) is detected by the alignment sensor in the exposure apparatus, and the alignment for adjusting the pattern exposure position. Action is required.
  • FIG. 36 is a diagram showing a state in which the laminated structure 100 shown in FIGS. 34 and 35 is transferred to the second substrate P2 and further processed.
  • FIG. 36A shows a state immediately after the laminated structure 100 on the first substrate P1 is transferred to the second substrate P2 by the transfer (laminating) step. Also in the present embodiment, before the transfer, as described with reference to FIG. 33, the planarization film FP that covers the entire surface of the stacked structure 100 of the first substrate P1 is formed on the first substrate P1, As described above with reference to FIG.
  • a second substrate P2 is prepared in which a buffer layer P2b made of polyethylene resin is formed with a predetermined thickness on the surface of a sheet substrate P2a made of PET, and a vinyl acetate resin is further formed on the second substrate P2.
  • the adhesive layer (EVA) 114 is formed with a predetermined thickness.
  • the adhesive layer (EVA) 114 is cured by heating while the flattening film FP on the first substrate P1 and the adhesive layer (EVA) 114 on the second substrate P2 are pressure-bonded with a predetermined pressure.
  • the laminated structure 100 is peeled from one substrate P1. As a result, as shown in FIG. 36A, the laminated structure 100 is bonded onto the second substrate P2 with the first conductive layer (Cu) 102 exposed on the top surface.
  • a residue of the release layer 106 may be attached to the surface of the first conductive layer 102.
  • the surface of the first conductive layer 102 may be cleaned or polished.
  • the subsequent processing (particularly etching) of the first conductive layer 102 may take time.
  • the thickness of one conductive layer 102 is preferably about several ⁇ m.
  • the internal TFT may be damaged (cracked or disconnected) by the external force during polishing of the surface of the first conductive layer 102.
  • the alignment marks formed at each of the plurality of positions of the first conductive layer 102 are fine through-holes.
  • the first conductive layer 102 is the uppermost surface as shown in FIG. 36A, so that the alignment mark can be easily detected by the alignment sensor of the exposure apparatus. .
  • the positions of the TFTs below the first conductive layer 102 can be accurately identified with reference to the position of.
  • a resist layer is applied to the surface of the first conductive layer 102 in FIG. 36A, and pattern light corresponding to the shape of the TFT gate electrode, source electrode, drain electrode, and wiring connected to these electrodes is resist-resisted by an exposure apparatus. Expose the layer. At this time, the projection position of the pattern light is precisely set by detecting the alignment mark formed on the first conductive layer 102 by the alignment sensor of the exposure apparatus. As shown in FIG. 36B, the resist layer after the exposure process and the first conductive layer 102 (Cu) are etched to form the gate electrode 102G, the source electrode 102S, the drain electrode 102D (and the electrodes) by the first conductive layer 102, as shown in FIG. Is formed).
  • the etched source electrode 102S is bonded to the source electrode 104 (S) directly bonded to the semiconductor layer 108, and the drain electrode 102D is bonded to the drain electrode 104 (D) directly bonded to the semiconductor layer 108. Alignment and patterning are performed so as to achieve the above state. Further, the etched gate electrode 102G is patterned so as to cover the channel portion (cap portion of the source electrode 104 (S) and the drain electrode 104 (D)) shown in FIG.
  • FIG. 37 is a diagram showing an example of a planar arrangement configuration of the TFT of FIG. 36B, and a cross section taken along the line 36B-36B ′ in FIG. 37 is FIG. 36B.
  • the unnecessary portion of the first conductive layer 102 is removed by the etching process, but the insulating planarizing film FP is exposed in the removed portion.
  • further functional elements resistor, capacitors, light emitting elements, light receiving elements, ICs, etc.
  • these functional elements can be soldered.
  • the first conductive layer 102 is copper (Cu)
  • an insulating and heat resistant film that prevents corrosion due to oxidation may be selectively or entirely formed.
  • the arithmetic mean roughness Ra value of the first conductive layer 102 of the multilayer structure 100 formed on the first substrate P1 is sufficiently reduced, and a vacuum process or a high temperature process can be used. Since the first substrate P1 is a metal foil (copper foil), a high-performance TFT can be formed. Therefore, the performance of the electronic device (display panel, touch panel, sheet sensor, etc.) finally manufactured on the flexible second substrate P2 is greatly improved.
  • the second conductive layer 104 of the stacked structure 100 formed on the first substrate P1 is processed so as to be a source electrode and a drain electrode of the TFT. Processing may be performed so that the layer 104 serves as a gate electrode.
  • the order of the insulating layer 110 and the semiconductor layer 108 stacked on the first conductive layer 102 may be reversed. That is, first, the semiconductor layer 108 is formed in a predetermined region on the first conductive layer 102, and the insulating layer 110 is formed on the insulating layer 110 so as to completely cover the semiconductor layer 108.
  • the gate electrode formed by the second conductive layer 104 may be formed so as to be partially coupled to the first conductive layer 102.
  • the first substrate P1 is a copper (Cu) sheet foil plate, and the first conductive layer 102 of the multilayer structure 100 is formed on the surface of the first substrate P1 with the release layer 106 interposed therebetween.
  • the copper (Cu) sheet foil plate itself of the first substrate P ⁇ b> 1 can be used as the first conductive layer 102 of the laminated structure 100.
  • substrate P1 is good to make the metal foil (copper foil) by rolling that the arithmetic mean roughness Ra value of the surface becomes small enough, and also wraps the surface as needed.
  • the first substrate P1 When the first conductive layer 102 is used as the first substrate P1, the first substrate P1 itself becomes the first conductive layer 102 (electrode, wiring) and is transferred to the second substrate P2 side. It is desirable to perform a polishing process to reduce the thickness of the first substrate P1 (first conductive layer 102) immediately after the process. As described above, when the first substrate P1 itself is used as the first conductive layer 102, the entire stacked structure (conductive layer, insulating layer, semiconductor layer) including the first substrate P1 is used as the second substrate. As a result, the first substrate P1 is also transferred to the second substrate P2.
  • a structure in which two layers of the insulating layer 110 and the semiconductor layer 108 are sandwiched between the first conductive layer 102 (or the first substrate P1 itself) and the second conductive layer 104 is a laminated structure.
  • a structure in which only the insulating layer (or only the semiconductor layer) is sandwiched between the first conductive layer 102 (or the first substrate P1 itself) and the second conductive layer 104 is used. It is good also as a laminated structure.
  • the first substrate on which at least a part of the multilayer structure constituting the electronic device is formed is transferred to the second substrate.
  • a first substrate is prepared as a first conductive layer made of a conductive material
  • a functional layer made of at least one of an insulating material and a semiconductor is formed on the first conductive layer
  • the functional layer By forming a second conductive layer on the conductive material on the first step, a first step of forming a laminated structure, and the first substrate and the second substrate so that the second conductive layer is located on the second substrate side.
  • a second step of transferring the laminated structure including the first substrate to the second substrate by temporarily bringing the substrate close to or in close contact with the substrate is performed.
  • the transfer substrate for transferring at least a part of the laminated structure constituting the electronic device to the transfer target substrate is made of a conductive material.
  • a conductive foil functioning as one conductive layer for example, a metal foil
  • the second conductive layer is provided. In this case, the entire transfer substrate is transferred (bonded) to the transfer substrate.
  • a copper foil is laminated as the first conductive layer 102 on the first substrate P1 via the peeling layer 106.
  • the first conductive layer 102 may be laminated. These metal foils are produced as rolled foils and electrolytic foils (electroplated foils).
  • the back surface facing the first substrate P1 has a certain degree of roughness (for example, arithmetic). Average roughness Ra value of about 200 nm) is required.
  • the surface on which the functional layer (insulating layer, semiconductor layer, etc.) of the metal foil is formed needs to be a smooth surface having a roughness Ra value of several nanometers to several tens of nanometers. Therefore, when the first conductive layer 102 is a metal foil, the roughness Ra value is intentionally different between the front surface and the back surface of the metal foil, and the surface having the large roughness Ra value is the first substrate P1 side.
  • a surface with a small Ra value may be a surface on which a laminated structure is formed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Optics & Photonics (AREA)
  • Thin Film Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Electroluminescent Light Sources (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Liquid Crystal (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

 電子デバイスの製造業者の負担を軽減させるとともに、高精度な電子デバイスの製造を可能にする。電子デバイスを構成する少なくとも一部の積層構造体を転写基板である第1基板上に形成した後、積層構造体(52)を第2基板(P2)上に転写するデバイス製造方法は、第1基板(P1)上に第1導電層(52a)を形成し、第1導電層(52a)の上に機能層(52b)を形成し、機能層(52b)の上に第2導電層(52c)を形成することで、積層構造体(52)を形成する第1の工程と、第2導電層(52c)が第2基板(P2)側に位置するように、第1基板(P1)と第2基板(P2)とを一時的に密着させて、積層構造体(52)を第2基板(P2)に転写する第2の工程とを備える。

Description

デバイス製造方法および転写基板
 本発明は、電子デバイスの少なくとも一部を構成する積層構造体が形成された転写基板と、該転写基板上に形成された積層構造体を被転写基板に転写することで電子デバイスを製造するデバイス製造方法とに関する。
 特開2006-302814号公報には、有機エレクトロルミネッセンス層の形成方法が開示されている。簡単に説明すると、まず、第1のエンドレスベルトに正孔輸送層を塗布法(インクジェット方式等)により形成し、第2のエンドレスベルトに発光層を塗布法(インクジェット方式等)により形成し、第3のエンドレスベルトに電子輸送層を塗布法(インクジェット方式等)により形成する。そして、供給ロールから供給されるシート状の基板に、第1のエンドレスベルトに形成された正孔輸送層を転写し、その後、第2のエンドレスベルトに形成された発光層を正孔輸送層の上に転写し、そして、第3のエンドレスベルトに形成された電子輸送層を発光層の上に転写することで、有機エレクトロルミネッセンス層を形成するというものである。
 しかしながら、例えば、薄膜トランジスタ等の半導体素子を含む電子デバイスを製造する場合は、半導体素子の性能や歩留まりの向上や特性の安定化のために、膜厚等の制御がしやすい真空空間で成膜を行うことが望ましく、特開2006-302814号公報に記載の技術のような転写方式では高精度な電子デバイスを製造することは難しい。
 一方で、ガラス基板上に電子デバイスを製造し、完成した電子デバイスをガラス基板から他の最終基板(例えば、フレキシブルな樹脂フィルムやプラスチック板等)に転写する手法が広く一般的に行われているが、この場合、電子デバイスの製造業者は、真空空間において成膜を行って電子デバイスを構成する層をガラス基板に形成したり、フォトリソグラフィを利用した現像処理、エッチング処理、CVD処理、スパッタ処理等を電子デバイスの積層構造に応じて繰り返し行って電子デバイスを作成してから、最終基板に完成した電子デバイスを転写している。そのため、電子デバイスの製造業者は、ガラス基板上に電子デバイスの層構造を形成する多数の成膜工程を実施する設備を使ってガラス基板上に完成した電子デバイスを作成するための製造コストに加えて、ガラス基板上の電子デバイスを最終基板上に転写(転着)するための製造コスト(設備)も必要となる。そのため、最終的な電子デバイス(LCD方式や有機EL方式の表示パネル、タッチパネル等)の製品価格を抑えることが難しく、電子デバイスの製造業者の負担が大きい。
 本発明の第1の態様は、電子デバイスを構成する少なくとも一部の積層構造体を第1基板上に形成した後、前記積層構造体を第2基板上に転写するデバイス製造方法であって、前記第1基板上に導電性の材料による第1導電層を形成し、前記第1導電層の上に絶縁性および半導体の少なくとも一方の材料による機能層を形成し、前記機能層の上に導電性の材料による第2導電層を形成することで、前記積層構造体を形成する第1の工程と、前記第2導電層が前記第2基板側に位置するように、前記第1基板と前記第2基板とを一時的に近接または密着させて、前記積層構造体を前記第2基板に転写する第2の工程と、を備える。
 本発明の第2の態様は、被転写基板に電子デバイスを構成する少なくとも一部の積層構造体を転写するための転写基板であって、前記転写基板の表面には、導電性の材料によって前記転写基板上に形成された第1導電層と、絶縁性および半導体の少なくとも一方の材料によって前記第1導電層の上に形成された機能層と、導電性の材料によって前記機能層の上に形成された第2導電層とで構成される前記積層構造体が形成されている。
 本発明の第3の態様は、半導体素子を含む電子デバイスが形成される製品基板上に、前記電子デバイスを構成する少なくとも一部の積層構造体を転写するために、前記積層構造体を担持する転写基板であって、前記積層構造体は、前記転写基板の表面側から、導電性材料によって一様に、或いは選択的に形成された第1導電層、絶縁性の材料または半導体特性を示す材料によって一様に、或いは選択的に形成された機能層、および導電性材料によって一様に、或いは選択的に形成された第2導電層の順番で積層される。
 本発明の第4の態様は、電子デバイスを構成する少なくとも一部の積層構造体が形成された第1基板を第2基板上に転写するデバイス製造方法であって、前記第1基板を導電性の材料による第1導電層として用意し、前記第1導電層の上に絶縁性および半導体の少なくとも一方の材料による機能層を形成し、前記機能層の上に導電性の材料による第2導電層を形成して前記積層構造体を形成する第1の工程と、前記第2導電層が前記第2基板側に位置するように、前記第1基板と前記第2基板とを一時的に近接または密着させて、前記第1基板を含む前記積層構造体を前記第2基板に転写する第2の工程と、を含む。
 本発明の第5の態様は、被転写基板に電子デバイスを構成する少なくとも一部の積層構造体を転写するための転写基板であって、導電性の材料によって第1導電層として機能する導電箔と、絶縁性および半導体の少なくとも一方の材料によって前記第1導電層の上に形成される機能層と、導電性の材料によって前記機能層の上に形成される第2導電層と、を備える。
第1の実施の形態の基板に薄膜を形成する成膜装置の構成を示す図である。 第1の実施の形態の第1基板に形成された積層構造体を第2基板に転写するためのラミネータ装置の構成を示す図である。 ボトムコンタクト型のTFTの製造方法の工程の一例を示すフローチャートである。 ボトムコンタクト型のTFTの製造方法の工程の一例を示すフローチャートである。 図5A~図5Fは、図3および図4に示す工程によって製造されるTFTの製造経過状態を示す断面図である。 図6A~図6Dは、図3および図4に示す工程によって製造されるTFTの製造経過状態を示す断面図である。 トップコンタクト型のTFTの製造方法の工程の一例を示すフローチャートである。 トップコンタクト型のTFTの製造方法の工程の一例を示すフローチャートである。 図9A~図9Dは、図7および図8に示す工程によって製造されるTFTの製造経過状態を示す断面図である。 図10A~図10Cは、図7および図8に示す工程によって製造されるTFTの製造経過状態を示す断面図である。 第1の実施の形態の変形例1におけるトップコンタクト型のTFTの製造方法の工程の一例を示すフローチャートである。 第1の実施の形態の変形例1におけるトップコンタクト型のTFTの製造方法の工程の一例を示すフローチャートである。 図13A~図13Fは、図11および図12に示す工程によって製造されるTFTの製造経過状態を示す断面図である。 図14A~図14Fは、図11および図12に示す工程によって製造されるTFTの製造経過状態を示す断面図である。 第1の実施の形態の変形例3において、第2導電層にアライメントマークを形成したときの断面図である。 第1の実施の形態の変形例3において、第1導電層に窓部を形成したときの断面図である。 第1の実施の形態の変形例4におけるラミネータ装置の構成を示す図である。 第1の実施の形態の変形例5におけるラミネータ装置の構成を示す図である。 第2の実施の形態における有機ELディスプレイの画素回路の一例を示す図である。 図19に示す画素回路の具体的な構造を示す図である。 図20に示す画素回路の製造方法の工程の一例を示すフローチャートである。 図20に示す画素回路の製造方法の工程の一例を示すフローチャートである。 図21のステップS101~ステップS105の工程によって第1基板上に形成された積層構造体の断面図である。 図21のステップS106~ステップS111の工程によって第2導電層が加工された積層構造体の断面図である。 図24に示す積層構造体の平面図である。 図21のステップS113によって第1基板に形成されている積層構造体が第2基板に転写されたときの断面図である。 図22のステップS114~ステップS118の工程によって第1導電層が加工された積層構造体の断面図である。 図27に示す積層構造体の平面図である。 図22のステップS119~ステップS122の工程によって、図27に示すコンタクトホール部分の機能層をエッチングしたときの断面図である。 図22のステップS123の工程によって図29に示すコンタクトホールに無電解メッキコンタクタを形成したときの断面図である。 図1に示す成膜装置の変形例を示す図である。 トップコンタクト型のTFTの積層構造体の他の構成例、および、その積層構造体の転写例を示す図である。 図32に示す転写の際に、平坦化膜を用いた状態を示す図である。 図34A~図34Dは、図23~図30に示す電子デバイスの積層構造体を改良したときの、積層構造体の製造工程を示す図である。 第1基板上に形成された図34Dに示す積層構造体の平面的な配置構成を示す図である。 図36Aは、転写工程によって、第1基板上に形成された図34Dに示す積層構造体が第2基板に転写された直後の様子を示す図、図36Bは、図36Aに示す第1導電層にゲート電極およびソース電極等を形成した様子を示す図である。 図36BのTFTの平面的な配置構成の一例を示す図である。
 本発明の態様に係るデバイス製造方法および転写基板について、好適な実施の形態を掲げ、添付の図面を参照しながら以下、詳細に説明する。なお、本発明の態様は、これらの実施の形態に限定されるものではなく、多様な変更または改良を加えたものも含まれる。
[第1の実施の形態]
 図1は、基板(以下、第1基板)P1に薄膜を形成する成膜装置10の構成を示す図である。第1基板P1は、フレキシブル(可撓性)のシート状の基板(シート基板)であり、成膜装置10は、第1基板(転写基板、担持基材)P1をロール状に巻いた供給ロール12から供給された第1基板P1が送出され、送出された第1基板P1に対して成膜処理を施した後、回収ロール14が巻き取る、いわゆる、ロール・ツー・ロール方式の構造を有する。この第1基板P1は、第1基板P1の移動方向が長手方向(長尺)となり、幅方向が短手方向(短尺)となる帯状の形状を有する。成膜装置10は、チャンバー16、チャンバー16内の空気を吸引してチャンバー16内を真空にする真空ポンプ18、成膜原料(薄膜原料)となる基材20、ガイドローラGR1~GR3、および、成膜用回転ドラム22をさらに備える。
 供給ロール12および回収ロール14には、図示しないモータが設けられ、該モータが回転することで、供給ロール12から第1基板P1が搬出され、回収ロール14によって送出された第1基板P1が巻き取られる。また、成膜用回転ドラム22は、回転しながら第1基板P1を搬送するとともに、成膜が行われる部分を円周面で支持する。これにより、第1基板P1は、成膜用回転ドラム22の外周面(円周面)に倣って回収ロール14に向かって搬送される。ガイドローラGR1~GR3は、搬送される第1基板P1の経路をガイドするものである。なお、成膜用回転ドラム22には、図示しないモータが設けられ、該モータが回転することで、成膜用回転ドラム22は回転する。
 成膜装置10は、蒸着若しくはスパッタリングにより第1基板P1上に薄膜(層)を形成する。蒸着により成膜を行う場合は、基材20を抵抗加熱、電子ビーム、高周波誘導、または、レーザー等の方法で加熱させ、気化若しくは昇華された成膜原料を第1基板P1に付着させて薄膜を形成する。また、スパッタリングにより成膜を行う場合は、基材20にイオン化させたアルゴンガスを衝突させて基材20の分子を遊離させ、この遊離分子を第1基板P1に付着させて薄膜を形成する。したがって、回収ロール14は、その表面に薄膜(層)が形成された第1基板P1を巻き取ることになる。なお、成膜装置10は、CVD(Chemical Vapor Deposition)により薄膜を形成してもよい。また、成膜装置10として、例えば国際公開第2013/176222号パンフレットに開示されているようなミストデポジション法(ミストCVD法)を利用したものでも良い。
 このような成膜装置10を用いて、第1基板P1に何層もの薄膜を連続して積層することができる。つまり、第1の層が表面に形成された第1基板P1を巻き取った回収ロール14を、別の成膜装置10の供給ロール12として用いることで、前記別の成膜装置10によって新たな層(第2の層)が第1の層の上に積層される。また、積層する際に、成膜原料となる基材20を変えることで、異なる材質の薄膜を積層することもできる。この薄膜を積層することで、薄膜トランジスタ(TFT;Thin Film Transistor)等の半導体素子を含む電子デバイスを構成する少なくとも一部の積層構造体を、担持基材としての第1基板P1上に形成することができる。
 例えば、ボトムコンタクト型のTFT(薄膜トランジスタ)を形成する場合は、成膜装置10によって、第1基板P1の表面に、金属系の材料(Cu、Al、Mo等)やITOの薄膜(第1導電層)、絶縁材料(SiO2、Al23等)の薄膜(絶縁層)、金属系の
材料(Cu、Al、Mo等)の薄膜(第2導電層)を順に積層することで、TFTを構成する少なくとも一部の積層構造体を第1基板P1上に形成する。また、トップコンタクト型のTFTを形成する場合は、成膜装置10によって、金属系の材料(Cu、Al、Mo等)の薄膜(第1導電層)、酸化物半導体(IGZO、ZnO等)、シリコン(α-Si
)、または、有機半導体(ペンタセン)等の薄膜(半導体層)、絶縁材料(SiO2、A
23等)の薄膜(絶縁層)、金属系の材料(Cu、Al、Mo等)やITOの薄膜(第2導電層)を順に積層することで、TFTを構成する積層構造体を第1基板P1上に形成することができる。
 このようにして積層構造体が形成された第1基板P1は、後に詳述するフォトリソグラフィ(光パターニング)、エッチング等の非真空系の処理装置によって処理され、半導体素子用の電極層、絶縁層、配線層、或いは半導体層等のパターン形状を持つように加工される。そのようなパターン形状に加工された第1基板P1の積層構造体は、基板(以下、第2基板)P2に転写される。図2は、第1基板P1に形成(担持)された積層構造体を第2基板P2(製品基板)に転写するためのラミネータ装置30の構成を示す図である。このラミネータ装置30は、例えば、100度以下の低温で、第1基板P1に形成された積層構造体を第2基板P2に転写する低温熱転写方式の装置である。ラミネータ装置30は、供給ロール32、34、圧着加熱ローラ36、回収ロール38、40、および、ガイドローラGR5、GR6を備える。
 供給ロール32は、表面に積層構造体が形成された第1基板P1をロール状に巻いたものであり、第1基板P1を回収ロール38に向けて搬出する。供給ロール34は、積層構造体が転写される第2基板P2をロール状に巻いたものであり、第2基板P2を回収ロール40に向けて搬出する。なお、第2基板P2も、第1基板P1と同様に、フレキシブルのシート状の基板(シート基板、被転写基板)であり、第2基板P2の移動方向が長手方向(長尺)となり、幅方向が短手方向(短尺)となる帯状の形状を有する。
 圧着加熱ローラ36は、供給ロール32から供給された第1基板P1と、供給ロール34から供給された第2基板P2とを両側から挟んで、一時的に密着させて圧着を行うとともに加熱も行う。これにより、第1基板P1上に形成された積層構造体を第2基板P2に転写することができる。つまり、圧着加熱ローラ36による加熱(例えば、100度以下の低温)によって第1基板P1上に形成された積層構造体が軟化されるとともに、圧着加熱ローラ36による圧着によって軟化された第1基板P1上の積層構造体が第2基板P2に転写される。この圧着加熱ローラ36の表面は弾性体が用いられ、転写材料に応じて圧着加熱ローラ36の温度と圧着力(加圧力)とを任意に設定することが好ましい。
 回収ロール38は、圧着加熱ローラ36を通過した第1基板P1、つまり、積層構造体が剥がれた第1基板P1を巻き取ることで回収する。回収ロール40は、圧着加熱ローラ36を通過した第2基板P2、つまり、積層構造体が転写された第2基板P2(積層構造体が表面に形成された第2基板P2)を巻き取ることで回収する。ガイドローラGR5は、供給ロール32から供給された第1基板P1を圧着加熱ローラ36に案内するものであり、ガイドローラGR6は、供給ロール34から供給された第2基板P2を圧着加熱ローラ36に案内するものである。
 ここで、第1基板P1および第2基板P2は、例えば、樹脂フィルム、ステンレス鋼等の金属または合金からなる箔(フォイル)等が用いられる。樹脂フィルムの材質としては、例えば、ポリエチレン樹脂、ポリプロピレン樹脂、ポリエステル樹脂、エチレンビニル共重合体樹脂、ポリ塩化ビニル樹脂、セルロース樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリカーボネート樹脂、ポリスチレン樹脂、および、酢酸ビニル樹脂のうち、少なくとも1つ以上を含んだものを用いてもよい。また、第1基板P1および第2基板P2の厚みや剛性(ヤング率)は、搬送される際に、第1基板P1および第2基板P2に座屈による折れ目や非可逆的なシワが生じないような範囲であればよい。第1基板P1および第2基板P2の母材として、厚みが25μm~200μm程度のPET(ポリエチレンテレフタレート)やPEN(ポリエチレンナフタレート)等のフィルムは、好適なシート基板の典型である。
 第1基板P1および第2基板P2は、第1基板P1および第2基板P2に対して施される処理において熱を受ける場合があるため、熱膨張係数が顕著に大きくない材質の基板を選定することが好ましい。例えば、無機フィラーを樹脂フィルムに混合することによって熱膨張係数を抑えることができる。無機フィラーは、例えば、酸化チタン、酸化亜鉛、アルミナ、または酸化ケイ素等でもよい。また、第1基板P1および第2基板P2は、フロート法等で製造された厚さ100μm程度の極薄ガラスの単層体であってもよいし、この極薄ガラスに上記の樹脂フィルム、箔等を貼り合わせた積層体であってもよい。
 なお、図1のような成膜装置10では、成膜の際に第1基板P1を、例えば100℃~300℃程度に加熱することがあることから、第1基板P1の母材は特に耐熱性のよいポリイミド樹脂、極薄シートガラス、或いは極薄の金属箔シート(十数μm~数百μmの厚さに圧延した銅箔、ステンレス箔、アルミ箔)等が望ましい。さらに、第1基板P1は、必ずしもロール状に巻き取れる長尺のシート基板である必要はなく、製造すべき電子デバイス(或いはその回路基板)の大きさに合わせたサイズに切断された枚葉のシート基板やガラス基板、金属板であってもよい。
 次に、TFTの製造方法について説明する。TFTの構造は、ボトムゲート型構造とトップゲート型構造に大別されるが、本第1の実施の形態では、ボトムゲート型構造のTFTの製造工程について説明し、トップゲート型構造のTFTの製造工程の説明を省略する。また、ボトムゲート型構造のTFTは、ボトムコンタクト型とトップコンタクト型に分類されるので、まず、ボトムコンタクト型のTFTの製造方法を説明した後、トップコンタクト型のTFTの製造方法を説明する。
 (ボトムコンタクト型のTFTの製造方法について)
 図3および図4は、ボトムコンタクト型のTFTの製造方法の工程の一例を示すフローチャートであり、図5A~図5F、および、図6A~図6Dは、図3および図4に示す工程によって製造されるTFTの製造経過状態を示す断面図である。まず、図3のステップS1で、図5Aに示すように、第1基板P1上に剥離層50を形成する。例えば、フッ素系の材質若しくはアルカリ溶解離形剤(アルカリに対して可溶な材料)を第1基板P1の表面に塗布することで剥離層50を形成してもよく、感光性アルカリ溶解膜が形成されたドライフィルムレジスト(DFR)を第1基板P1にラミネートすることで剥離層50を形成してもよい。アルカリ溶解離形剤としては、バインダー樹脂とカルボキシル基の混合物等が挙げられる。この剥離層50は、積層構造体が第1基板P1から剥離しやすくするためのものである。
 そして、図5Bに示すように、第1基板P1上に、積層構造体52を形成する(第1の工程)。この積層構造体52は、第1基板P1上(剥離層50上)に所定の厚さで堆積された金属系の材料(Cu、Al、Mo、Au等の導電性の材料)やITO(導電性の材料)の薄膜(第1導電層)52aと、第1導電層52aの上に所定の厚さで堆積された絶縁材料(SiO2、Al23等の絶縁性の材料)の薄膜(機能層)52bと、機能層52bの上に所定の厚さで堆積された金属系の材料(Cu、Al、Mo、Au等の導電性の材料)やITO(導電性の材料)の薄膜(第2導電層)52cとで構成される。なお、積層構造体52を構成する第1導電層52aと第2導電層52cの材料を銅(Cu)とする場合、第1基板P1の材料も銅(Cu)にして、熱膨張率を揃えるのがよい。
 したがって、まず、ステップS2で、第1基板P1(剥離層50)の上に第1導電層52aを形成(堆積)する。そして、ステップS3で、第1導電層52aの上に絶縁層である機能層52bを形成(堆積)し、ステップS4で、さらに第2導電層52cを形成(堆積)する。これにより、第1基板P1上に積層構造体52が形成される。この第1導電層52a、機能層52b、および、第2導電層52cは、上述した図1のような成膜装置10を用いることで第1基板P1上に連続して形成される。なお、第1導電層52aは、ソース電極およびドレイン電極の電極層と、ソース電極およびドレイン電極に付随する配線の配線層として機能するものである。また、第2導電層52cは、ゲート電極の電極層とゲート電極に付随する配線の配線層として機能するものである。ここで、TFTとしての電気特性(移動度、オンオフ比、リーク電流等)を良好なものとするため、第1導電層52aと機能層52bとの界面、或いは機能層52bと第2導電層52cとの界面は、サブミクロン以下のオーダーで平坦化されていることが望ましい。そのためには、第1基板P1の剥離層50側の表面も、サブミクロン以下のオーダーで平坦化されていることが望ましい。
 その後、積層構造体52が形成された第1基板P1に対して、フォトリソグラフィ法を利用したエッチング処理を施して、図5Cに示すように、第2導電層52cにゲート電極およびそれに付随する配線を形成する(第1の工程)。なお、図5Cでは、ゲート電極のみを表している。
 このフォトリソグラフィ法を利用したエッチング処理は周知技術なので簡単に説明すると、ステップS5で、第2導電層52c上にフォトレジスト層を形成する。フォトレジスト層の形成は、液体レジストをローラ印刷方式、ダイコート方式、スプレー方式等で行ったり、ドライフィルムレジスト(DFR)のフォトレジスト層を第2導電層52c上にラミネートしたりすることで簡単に実施できる。そして、ステップS6で、形成されたフォトレジスト層に紫外線を用いて所定のパターン(ゲート電極およびそれに付随する配線等のパターン)を露光し、ステップS7で、現像を行う(TMAH等の現像液に第1基板P1を浸す)ことで紫外線が露光された部分のフォトレジスト層を除去する。これにより、フォトレジスト層に所定のパターン(レジスト像)が形成される。次いで、第1基板P1の洗浄、乾燥後のステップS8で、積層構造体52が形成された第1基板P1を腐食液(例えば、酸化第二鉄)に浸漬することで、所定のパターンが形成されたフォトレジスト層をマスクとしたエッチング処理が施されて、第2導電層52cにゲート電極およびそれに付随する配線等が形成される。そして、ステップS9で、第2導電層52c上にあるフォトレジスト層を剥離し、第1基板P1の洗浄を行う。これにより、図5Cに示すような積層構造体52が得られる。なお、第1基板P1の洗浄は、NaOH等のアルカリ洗浄液を用いて洗浄してもよい。
 そして、ステップS10で、図5Dに示すように、積層構造体52が形成された第1基板P1の表面側(積層構造体52側)に接着剤を塗布することで、接着層54を形成する。この接着層54は、第1基板P1上に形成された積層構造体52を第2基板P2に転写(接着)させやすくするためのものである。この接着剤として、例えば、ドライラミネート用接着剤、紫外線の光エネルギーに反応して液体から固体に変化するUV(紫外線)硬化接着剤、または、熱硬化接着剤を用いてもよい。第1の実施の形態では、ドライラミネート用接着剤を用いるものとする。
 そして、ドライラミネート用接着剤の場合は、第2導電層52cが第2基板P2側に位置するように、第1基板P1と第2基板P2とを一時的に近接または密着させて、第1基板P1上に形成された積層構造体52を第2基板P2に転写する(第2の工程)。この転写は、上述の図2のようなラミネータ装置30によって転写される。すなわち、剥離層50、積層構造体52、および、接着層54が、第1基板P1の表面側から前記の順で積層された第1基板P1がロール状に巻かれたものを、ラミネータ装置30の供給ロール32として用いることで、第1基板P1に形成された積層構造体52を第2基板P2に転写することができる。このとき、剥離層50は、第2基板P2側には転写されずに第1基板P1側に残されたままとなる。
 詳しく説明すると、まず、図5Eに示すように、積層構造体52上に形成された接着層54を第2基板P2の表面に接着させ(ステップS11)、図5Fに示すように、剥離層50によって積層構造体52を第1基板P1から剥離する(ステップS12)。これにより、第1基板P1上の積層構造体52が第2基板P2に転写される。この転写によって、積層構造体52が反転した状態で第2基板P2上に形成される。つまり、積層構造体52を構成する第2導電層52c、機能層52b、および、第1導電層52aが、第2基板P2の表面側から前記の順で第2基板P2上に積層されることになり、第1導電層52aが露呈する。ラミネータ装置30によって積層構造体52が転写された第2基板P2は、回収ロール40によって巻き取られる。なお、剥離層50が第1基板P1から剥がれ第2基板P2側に転写された場合は、剥離層50を除去して第2基板P2の洗浄を行う。第2基板P2の洗浄は、NaOH等のアルカリ洗浄液を用いて洗浄してもよい。剥離層50は、可溶性なので、溶媒によって第1導電層52aから取り除かれる。
 そして、回収ロール40を供給ローラとして用い、この供給ローラから搬出された第2基板P2に対して、フォトリソグラフィ法を利用したエッチング処理を施して、図6Aに示すように、第1導電層52aにソース電極およびドレイン電極と、ソース電極およびドレイン電極に付随する配線とを形成する(第4の工程)。なお、図6Aでは、ソース電極およびドレイン電極のみを表している。
 フォトリソグラフィ法を利用したエッチング処理によるソース電極等の形成について簡単に説明すると、まず、図4のステップS13で、第2基板P2の表面側(第1導電層52a側)にフォトレジスト層を形成する。フォトレジスト層は、ステップS5で説明したように、ドライフィルムレジスト(DFR)の転写や液体レジストの塗布等によって形成される。そして、ステップS14で、形成されたフォトレジスト層に紫外線を用いて所定のパターン(ソース電極およびドレイン電極と、ソース電極およびドレイン電極に付随する配線等のパターン)を露光し、ステップS15で、現像を行う。これにより、フォトレジスト層に所定のパターンが形成される。次いで、ステップS16で、積層構造体52が形成された第2基板P2を腐食液(例えば、酸化第二鉄等)に浸漬することで、所定のパターンが形成されたフォトレジスト層をマスクとしてエッチング処理が施されて、第1導電層52aにソース電極およびドレイン電極等が形成される。そして、ステップS17で、第1導電層52a上にあるフォトレジスト層を剥離し、第2基板P2の洗浄を行う。これにより、図6Aに示すような積層構造体52が得られる。
 ソース電極とドレイン電極は、その直下の機能層(絶縁層)52bのさらに下のゲート電極(第2導電層52c)に対して、精密に位置合わせ(重ね合せ)されている必要がある。したがって、ステップS14での露光工程で使われる露光装置(描画装置)は、図3中のステップS5~S9のゲート電極等形成工程で、ゲート電極とともに第1基板P1上の第2導電層52cによって形成されるアライメントマークを、機能層(絶縁層)52bを介して、或いは直接的に光学検出するアライメントセンサーと、そのマークの検出位置に基づいて、ステップS14で露光すべき所定パターン(ソース電極、ドレイン電極、および付随する配線等のパターン)に対応した紫外線と第2基板P2との相対位置関係を精密に調整する機能とを備えている。
 そして、ステップS18で、図6Bに示すように、第1導電層52aのソース電極およびドレイン電極にAu置換メッキ処理を行う(第4の工程)。この置換メッキ処理により塗布されたAu(金)56は、ソース電極およびドレイン電極と、後述する半導体層との接触界面の抵抗を下げる(電子移動度を高める)ためのものである。
 その後、ステップS19で、図6Cに示すように、第2基板P2の上(第1導電層52aの上)に、半導体(IGZO、ZnO等)の薄膜(半導体層)58を形成する(第4の工程)。そして、フォトリソグラフィ法を利用したエッチング処理を施して、図6Dに示すように、半導体層58を加工する(第4の工程)。つまり、ステップS20で、半導体層58上にフォトレジスト層を形成し、ステップS21で、形成されたフォトレジスト層に紫外線を用いて所定のパターンを露光し、ステップS22で現像を行う。この露光の際も、アライメントセンサーによってアライメントマークを検出し、半導体層58のうちの残すべき部分がドレイン電極とソース電極との間を精密に跨ぐように、紫外線の照射位置が精密に位置決めされる。
 これにより、フォトレジスト層に所定のパターンが形成される。次いで、ステップS23で、第2基板P2を腐食液(例えば、フッ化水素等)に浸漬することで、所定のパターンが形成されたフォトレジスト層をマスクとしてエッチング処理が施されて、半導体層58が加工される。これにより、図6Dに示すように、少なくともソース電極とドレイン電極との間にある半導体層58を残し、それ以外の不要な半導体層58を除去することができる。その後、ステップS24で、半導体層58上にあるフォトレジスト層を剥離し、第2基板P2の洗浄を行う。このような工程を経ることで、第2基板P2上に、図6Dに示すようなボトムコンタクト型のTFTが形成される。なお、半導体層58は、有機半導体や酸化物半導体であってもよい。この場合は、予めレジストによりパターニングし、半導体の液体材料をソース電極とドレイン電極の間(チャネル部)を含む領域に選択的に塗布した後、リフトオフ法を用いて、ソース電極とドレイン電極との間に半導体層58を形成してもよい。
 以上説明した工程のうち、少なくとも図3のステップS1~ステップS4の工程(図5Aおよび図5B)を第1基板P1の供給業者が行うようにし、供給業者が行った工程より後の工程を電子デバイスの製造業者が行うようにしてもよい。例えば、供給業者は、図3のステップS1~ステップS4の工程を行い、製造業者は、図3のステップS5~図4のステップS24の工程(図5C~図6D)を行ってもよい。本実施の形態では、図3のステップS1~ステップS4の工程を経て製造された第1基板P1(積層構造体52の担持基材)が、中間製品としてロール状に巻かれた状態、または所定の長さで枚葉状に切断された状態で、電子デバイスの製造業者に供給される。
 このように、例えば、図3のステップS1~ステップS4の工程(真空処理装置を必要とする工程)を第1基板P1の供給業者が行い、図3のステップS5~図4のステップS24の工程(真空処理装置が不要な工程)をTFT(電子デバイス)の製造業者が行うことで、電子デバイスの製造業者の負担を軽減させることができ、高精度な電子デバイスを簡単に製造することができる。つまり、高精度な電子デバイスを製造するためには、電子デバイスを構成する少なくとも一部の積層構造体52を真空空間で成膜する必要があるが、電子デバイスの製造業者は真空空間での成膜を行わなくて済むので、電子デバイスの製造業者の負担が軽減する。また、電子デバイスの製造業者は、積層構造体52が形成された第1基板P1を用いて、電子デバイスを形成していけばよいので、電子デバイスの数および配置を任意に決定して電子デバイスを製造することができ、電子デバイスを構成する薄膜トランジスタ等の配置や結線、バスライン等の設計の自由度が向上する。また、電子デバイスを構成する全ての層の成膜に必要な多数の真空蒸着装置や塗工装置、或いはスパッタ装置等を持たない製造業者であっても、容易に高性能な電子デバイスを製造することができる。
 (トップコンタクト型のTFTの製造方法について)
 図7および図8は、トップコンタクト型のTFTの製造方法の工程の一例を示すフローチャートであり、図9A~図9D、および、図10A~図10Cは、図7および図8に示す工程によって製造されるTFTの製造経過状態を示す断面図である。まず、図7のステップS31で、図9Aに示すように、第1基板P1上に剥離層70を形成する。この工程は、図3のステップS1と同様である。
 そして、図9Bに示すように、第1基板P1上に、積層構造体72を形成する(第1の工程)。この積層構造体72は、第1基板P1上(剥離層70上)に所定の厚さで堆積された金属系の材料(Cu、Al、Mo、Au等の導電性の材料)やITO(導電性の材料)の薄膜(第1導電層)72aと、第1導電層72aの上に所定の厚さで堆積された半導体(IGZO、ZnO、シリコン、ペンタセン等の半導体特性を示す材料)の薄膜(半導体層)72b1と、半導体層72b1の上に所定の厚さで堆積された絶縁材料(SiO2、Al23等の絶縁性の材料)の薄膜(絶縁層)72b2と、絶縁層72b2の上に所定の厚さで堆積された金属系の材料(Cu、Al、Mo、Au等の導電性の材料)やITO(導電性の材料)の薄膜(第2導電層)72cとで構成される。半導体層72b1および絶縁層72b2は、機能層72bを構成する。なお、ここでも、第1基板P1の母材は、成膜時の加熱(100~300℃)を考慮して、耐熱性のよいポリイミド樹脂、極薄シートガラス、或いは極薄の金属箔シート(十数μm~数百μmの厚さに圧延した銅箔、ステンレス箔、アルミ箔)等にするとよい。また、剥離層70も、先の図3~図6で説明した剥離層50と同様に、フッ素系の材質、若しくはアルカリ溶解離形剤、無機材料をベースとした離型剤、シリコン離型剤等が使える。
 したがって、まず、ステップS32で、第1基板P1(剥離層70)の上に第1導電層72aを形成(堆積)する。そして、ステップS33で、第1導電層72aの上に半導体層72b1を形成(堆積)し、ステップS34で、さらに絶縁層72b2を形成(堆積)することで機能層72bを形成する。その後、ステップS35で、機能層72bの上に第2導電層72cを形成(堆積)する。これにより、第1基板P1上に積層構造体72が形成される。この第1導電層72a、半導体層72b1、絶縁層72b2、および、第2導電層72cは、上述した成膜装置10を用いることで第1基板P1上に連続して形成される。なお、第1導電層72aは、ソース電極およびドレイン電極の電極層と、ソース電極およびドレイン電極に付随する配線の配線層として機能するものである。また、第2導電層72cは、ゲート電極の電極層と、ゲート電極に付随する配線の配線層として機能するものである。以上の構成において、第1基板P1や第1導電層72aを金属系の材料(例えばCu)とした場合、第1導電層72a上に半導体層72b1を形成する際に、PET等の樹脂フィルムのガラス転移温度よりも遥かに高い温度(例えば200℃以上)に加熱することが可能なので、有機半導体材料や酸化物半導体材料等の配向(結晶化)が良好に行われ、TFTの電気特性(例えば移動度)を飛躍的に向上させることができる。併せて、少なくとも第1導電層72aと半導体層72b1との界面、および、絶縁層72b2と第2導電層72cとの界面の各々を、サブミクロン以下のオーダーで平坦化しておくことも、TFTの電気特性の向上に寄与する。
 その後、積層構造体72が形成された第1基板P1に対して、フォトリソグラフィ法を利用したエッチング処理を施して、図9Cに示すように、第2導電層72cにゲート電極およびそれに付随する配線を形成する(第1の工程)。なお、図9Cでは、ゲート電極のみを表している。
 フォトリソグラフィ法を利用したエッチング処理によるゲート電極等の形成について簡単に説明すると、まず、ステップS36で、第2導電層72c上にフォトレジスト層を形成する。フォトレジスト層は、図3のステップS5で説明したように、ドライフィルムレジストの転写やレジスト液の塗布等によって形成される。そして、ステップS37で、形成されたフォトレジスト層に紫外線を用いて所定のパターン(ゲート電極およびそれに付随する配線等のパターン)を露光し、ステップS38で、現像を行う(TMAH等の現像液に第1基板P1を浸す)。これにより、フォトレジスト層に所定のパターンが形成される。次いで、ステップS39で、積層構造体72が形成された第1基板P1を腐食液(例えば、酸化第二鉄等)に浸漬することで、所定のパターンが形成されたフォトレジスト層をマスクとしたエッチング処理が施されて、第2導電層72cにゲート電極等が形成される。そして、ステップS40で、第2導電層72c上にあるフォトレジスト層を剥離し、第1基板P1の洗浄を行う。これにより、図9Cに示すような積層構造体72が得られる。なお、第1基板P1の洗浄は、NaOH等のアルカリ洗浄液を用いて洗浄してもよい。
 そして、図8のステップS41で、図9Dに示すように、積層構造体72が形成された第1基板P1の表面側(積層構造体72側)に接着剤を塗布することで、接着層74を形成する。
 次いで、第2導電層72cが第2基板P2側に位置するように、第1基板P1と第2基板P2とを一時的に近接または密着させて、第1基板P1上に形成された積層構造体72を第2基板P2に転写する(第2の工程)。この転写は、上述したラミネータ装置30によって転写される。すなわち、剥離層70、積層構造体72、および、接着層74を、第1基板P1の表面側から前記の順で積層した第1基板P1が、ラミネータ装置30の供給ロール32にロール状に巻かれた状態でセットされる。ラミネータ装置30によって、第1基板P1に形成された積層構造体72を第2基板P2に転写することができる。このとき、積層構造体72を第1基板P1から剥がれやすくするための剥離層70は、第2基板P2側には転写されずに第1基板P1側に残されたままとなる。
 まず、図10Aに示すように、積層構造体72上に形成された接着層74を第2基板P2の表面に接着させ(ステップS42)、図10Bに示すように、剥離層70によって積層構造体72を第1基板P1から剥離する(ステップS43)。これにより、第1基板P1上の積層構造体72が第2基板P2に転写される。この転写によって、積層構造体72が反転した状態で第2基板P2上に形成される。つまり、積層構造体72を構成する第2導電層72c、機能層72b、および、第1導電層72aが、第2基板P2の表面側から前記の順で第2基板P2上に積層されることになり、第1導電層72aが露呈する。ラミネータ装置30によって積層構造体72が転写された第2基板P2は、回収ロール40によって巻き取られる。なお、剥離層70が第1基板P1から剥がれ第2基板P2側に転写された場合は、剥離層70を除去して第2基板P2の洗浄を行う。剥離層70は、可溶性なので、溶媒によって第1導電層72aから取り除かれる。
 そして、回収ロール40を供給ローラとして用い、この供給ローラから搬出された第2基板P2に対して、フォトリソグラフィ法を利用したエッチング処理を施して、図10Cに示すように、第1導電層72aにソース電極およびドレイン電極と、ソース電極およびドレイン電極に付随する配線とを形成する(第4の工程)。なお、図10Cでは、ソース電極およびドレイン電極のみを表している。
 フォトリソグラフィ法を利用したエッチング処理によるソース電極等の形成について簡単に説明すると、まず、ステップS44で、第2基板P2の表面側(第1導電層72a側)にフォトレジスト層を形成する。フォトレジスト層は、図3のステップS5で説明したように、ドライフィルムレジストや塗布等によって形成される。そして、ステップS45で、形成されたフォトレジスト層に紫外線を用いて所定のパターン(ソース電極およびドレイン電極と、ソース電極およびドレイン電極に付随する配線等のパターン)を露光し、ステップS46で、現像を行う。これにより、フォトレジスト層に所定のパターンが形成される。次いで、ステップS47で、積層構造体72が形成された第2基板P2を腐食液(例えば、酸化第二鉄等)に浸漬することで、所定のパターンが形成されたフォトレジスト層をマスクとしてエッチング処理が施されて、第1導電層72aにソース電極およびドレイン電極等が形成される。そして、ステップS48で、第1導電層72a上にあるフォトレジスト層を剥離し、第2基板P2の洗浄を行う。このような工程を経ることで、第2基板P2上に、図10Cに示すようなトップコンタクト型のTFTが形成される。なお、第2基板P2の洗浄は、NaOH等のアルカリ洗浄液を用いて洗浄してもよい。
 以上説明した工程のうち、少なくとも図7のステップS31~ステップS35の工程(図9Aおよび図9B)を第1基板P1の供給業者が行うようにし、供給業者が行った工程より後の工程を電子デバイスの製造業者が行うようにしてもよい。例えば、供給業者は、図7のステップS31~ステップS35の工程を行い、製造業者は、図7のステップS36~図8のステップS48の工程(図9C~図10C)を行ってもよい。
 このように、例えば、図7のステップS31~ステップS35の工程を第1基板P1の供給業者が行い、図7のステップS36~図8のステップS48の工程をTFT(電子デバイス)の製造業者が行うことで、電子デバイスの製造業者の負担を軽減させることができ、高精度な電子デバイスを簡単に製造することができる。つまり、高精度な電子デバイスを製造するためには、電子デバイスを構成する少なくとも一部の積層構造体72を真空空間で成膜する必要があるが、電子デバイスの製造業者は真空空間での成膜を行わなくて済むので、電子デバイスの製造業者の負担が軽減する。また、電子デバイスの製造業者は、積層構造体72が形成された第1基板P1を用いて、電子デバイスを形成していけばよいので、電子デバイスの数および配置を任意に決定して電子デバイスを製造することができ、電子デバイスを構成する薄膜トランジスタ等の配置や結線、バスライン等の設計の自由度が向上する。また、電子デバイスを構成する全ての層の成膜に必要な多数の真空蒸着装置や塗工装置、或いはスパッタ装置等を持たない製造業者であっても、容易に高性能な電子デバイスを製造することができる。本実施の形態でも、図7のステップS31~ステップS35の工程を経て製造された第1基板P1(積層構造体72の担持基材)は、中間製品としてロール状に巻かれた状態、または所定の長さで枚葉状に切断された状態で、電子デバイスの製造業者に供給される。
[第1の実施の形態の変形例]
 上記第1の実施の形態は、以下の変形例も可能である。
 (変形例1)変形例1では、トップコンタクト型のTFTの製造について、フォトリソグラフィ法を利用したエッチング処理を施しながら積層構造体を形成するというものである。図11および図12は、本変形例1におけるトップコンタクト型のTFTの製造方法の工程の一例を示すフローチャートであり、図13A~図13F、および、図14A~図14Fは、図11および図12に示す工程によって製造されるTFTの製造経過状態を示す断面図である。まず、図11のステップS61で、図13Aに示すように、第1基板P1上に剥離層80を形成する。この剥離層80の形成工程は、図3のステップS1と同様である。
 次いで、ステップS62で、図13Bに示すように、第1基板P1上(剥離層80の上)に所定の厚さで堆積された絶縁材料(SiO2、Al23等)の薄膜(絶縁層)82を形成する。この絶縁層82は、上述した成膜装置10を用いることで第1基板P1上に形成される。この絶縁層82は、パッシベーションとしての機能を有し、エッチングストッパーとしての機能も兼ねてもよい。
 そして、ステップS63で、図13Cに示すように、第1基板P1上(絶縁層82の上)に所定の厚さで堆積された金属系の材料(Cu、Al、Mo等の導電性の材料)の薄膜(第1導電層)84aを形成する(第1の工程)。この第1導電層84aは、ソース電極およびドレイン電極の電極層と、ソース電極およびドレイン電極に付随する配線の配線層として機能するものである。この第1導電層84aは、上述した成膜装置10を用いることで第1基板P1上に形成される。
 その後、フォトリソグラフィ法を利用したエッチング処理を施して、図13Dに示すように、第1導電層84aにソース電極およびドレイン電極と、ソース電極およびドレイン電極に付随する配線とを形成する(第1の工程)。このとき、エッチングストッパーとしても機能する絶縁層82によって、剥離層80のエッチングが防止される。なお、図13Dでは、ソース電極およびドレイン電極のみを表している。
 フォトリソグラフィ法を利用したエッチング処理によるソース電極等の形成について簡単に説明すると、まず、ステップS64で、第1導電層84a上にフォトレジスト層を形成する。フォトレジスト層は、図3のステップS5で説明したように、ドライフィルムレジストや塗布等によって形成される。そして、ステップS65で、形成されたフォトレジスト層に紫外線を用いて所定のパターン(ソース電極およびドレイン電極と、ソース電極およびドレイン電極に付随する配線等のパターン)を露光し、ステップS66で、現像を行う。これにより、フォトレジスト層に所定のパターンが形成される。次いで、ステップS67で、第1導電層84aが形成された第1基板P1を腐食液(例えば、酸化第二鉄等)に浸漬することで、所定のパターンが形成されたフォトレジスト層をマスクとしてエッチング処理が施されて、第1導電層84aにソース電極およびドレイン電極等が形成される。そして、ステップS68で、第1導電層84a上にあるフォトレジスト層を剥離し、第1基板P1の洗浄を行う。
 そして、ステップS69で、図13Eに示すように、第1基板P1の上(第1導電層84aの上)に、所定の厚さで堆積された半導体(IGZO、ZnO等)の薄膜(半導体層)84b1を形成する(第1の工程)。この半導体層84b1は、上述した成膜装置10を用いることで第1基板P1上に形成される。次いで、フォトリソグラフィ法を利用したエッチング処理を施して、図13Fに示すように、半導体層84b1を加工する(第1の工程)。つまり、ステップS70で、半導体層84b1上にフォトレジスト層を形成する。フォトレジスト層は、図3のステップS5で説明したように、ドライフィルムレジストや塗布等によって形成される。そして、ステップS71で、形成されたフォトレジスト層に紫外線を用いて所定のパターンを露光し、ステップS72で、現像を行う。これにより、フォトレジスト層に所定のパターンが形成される。次いで、ステップS73で、第1基板P1を腐食液(例えば、フッ化水素等)に浸漬することで、所定のパターンが形成されたフォトレジスト層をマスクとしてエッチング処理が施されて、半導体層84b1が加工される。これにより、図13Fに示すように、少なくともソース電極とドレイン電極との間にある半導体層84b1を残し、それ以外の不要な半導体層84b1を除去することができる。そして、ステップS74で、フォトレジスト層を剥離し、第1基板P1の洗浄を行う。
 その後、図12のステップS75で、図14Aに示すように、第1基板P1の表面側(半導体層84b1側)に、所定の厚さで堆積された絶縁材料(SiO2、Al23等)の薄膜(絶縁層)84b2を形成する(第1の工程)。この絶縁層84b2は、上述した成膜装置10を用いることで第1基板P1上に形成される。この半導体層84b1、および、絶縁層84b2は、機能層84bを構成する。
 そして、ステップS76で、図14Bに示すように、第1基板P1の上(絶縁層84b2の上)に、所定の厚さで堆積された金属系の材料(Cu、Al、Mo等の導電性の材料)の薄膜(第2導電層)84cを形成する。この第2導電層84cは、上述した成膜装置10を用いることで第1基板P1上に形成される。第2導電層84cは、ゲート電極の電極層と、ゲート電極に付随する配線の配線層として機能するものである。この第1導電層84a、機能層84b、および、第2導電層84cで、積層構造体84が構成される。
 次いで、フォトリソグラフィ法を利用したエッチング処理を施して、図14Cに示すように、第2導電層84cにゲート電極とそれに付随する配線とを形成する(第1の工程)。なお、図14Cでは、ゲート電極のみを表している。図14Cに示す工程では、第2導電層84cが形成された第1基板P1に対して、ゲート電極とそれに付随する配線を形成するためのフォトリソグラフィ法を利用したエッチング処理を施す。これにより、第1基板P1上にTFTが形成される。
 フォトリソグラフィ法を利用したエッチング処理によるゲート電極等の形成について簡単に説明すると、まず、ステップS77で、第2導電層84c上にフォトレジスト層を形成する。フォトレジスト層は、図3のステップS5で説明したように、ドライフィルムレジストや塗布等によって形成される。そして、ステップS78で、形成されたフォトレジスト層に紫外線を用いて所定のパターン(ゲート電極およびそれに付随する配線等のパターン)を露光し、ステップS79で、現像を行う。これにより、フォトレジスト層に所定のパターンが形成される。次いで、ステップS80で、第1基板P1を腐食液(例えば、酸化第二鉄等)に浸漬することで、所定のパターンが形成されたフォトレジスト層をマスクとしたエッチング処理が施されて、第2導電層84cにゲート電極およびそれに付随する配線等が形成される。そして、ステップS81で、第2導電層84c上にあるフォトレジスト層を剥離し、第1基板P1の洗浄を行う。図11のステップS63~図12のステップS81の工程を経ることで第1基板P1上に積層構造体84が形成される。
 そして、ステップS82で、図14Dに示すように、積層構造体84が形成された第1基板P1上、つまり、第2導電層84c上に接着剤を塗布することで、接着層86を形成する。この接着層86は、第1基板P1上に形成された積層構造体84を第2基板P2に転写(接着)させやすくするためのものである。この接着剤として、例えば、UV硬化樹脂を用いてもよい。この場合は、接着層86を形成した後に紫外線を接着層86に照射する。
 次いで、ステップS83で、第2導電層84cが第2基板P2側に位置するように、第1基板P1と第2基板P2とを一時的に近接または密着させて、図14Eに示すように、第1基板P1上に形成された積層構造体84を第2基板P2に転写する(第2の工程)。この転写は、上述したラミネータ装置30によって転写される。すなわち、剥離層80、絶縁層82、積層構造体84、および、接着層86が、第1基板P1の表面側から前記の順で積層された第1基板P1がロール状に巻かれたものを、ラミネータ装置30の供給ロール32として用いることで、第1基板P1に形成された積層構造体84を第2基板P2に転写することができる。これにより、積層構造体84が反転した状態で第2基板P2上に形成される。つまり、積層構造体84を構成する第2導電層84c、機能層84b、第1導電層84aが、第2基板P2の表面側から前記の順で第2基板P2上に積層されることになる。このとき、剥離層80は、第2基板P2側には転写されずに第1基板P1側に残されたままとなる。ラミネータ装置30によって積層構造体84が転写された第2基板P2は、回収ロール40によって巻き取られる。このような工程を経ることで、第2基板P2上に、図14Eに示すようなトップコンタクト型のTFTが形成される。
 なお、第2基板P2上に積層構造体84、つまり、TFTを転写した後に、フォトリソグラフィ法を利用したエッチング処理を施すことで、図14Fに示すように、絶縁層82を加工してもよい(第4の工程)。この図14Fに示す工程により、少なくともソース電極とドレイン電極との間にある絶縁層82が残り、それ以外の不要な絶縁層82が除去される。
 以上説明した工程のうち、少なくとも図11のステップS61~図12のステップS81の工程(図13A~図14C)に示す工程を第1基板P1の供給業者が行うようにし、供給業者が行った工程より後の工程を電子デバイスの製造業者が行うようにしてもよい。例えば、供給業者は、図11のステップS61~図12のステップS82の工程を行い、製造業者は、図12のステップS83の工程(図14E)を行ってもよい。
 このように、例えば、図11のステップS61~図12のステップS82の工程を第1基板P1の供給業者が行い、少なくとも図12のステップS83の工程を電子デバイスの製造業者が行うことで、電子デバイスの製造業者の負担を軽減させることができ、高精度な電子デバイスを製造することができる。
 (変形例2)上記変形例1においては、剥離層80と第1導電層84aとの間に、絶縁層82を形成するようにしたが、変形例2においては、絶縁層82を形成しない。つまり、本変形例2では、図11のステップS62の工程を行わない。したがって、図11のステップS61の工程を経るとステップS63の工程を行う。例えば、パッシベーション層を設けなくてもよく、剥離層80がエッチングされる虞がない場合は、絶縁層82を剥離層80と第1導電層84aとの間に設けなくてもよい。なお、この場合は、絶縁層82を元々形成しないので、図14Fのように絶縁層82に、フォトリソグラフィ法を利用したエッチング処理を施して、絶縁層82を加工する必要もない。
 (変形例3)また、第1基板P1の供給業者は、アライメントマークKsが形成された第1基板P1を、製造業者に提供してもよい。このアライメントマークKsとは、基板上の露光領域Wに露光される所定のパターンと基板とを相対的に位置合わせする(アライメントする)ための基準マークである。このアライメントマークKsを顕微鏡付きの撮像装置によって光学的に検出することで、基板の位置(基板の長手方向の位置、短手方向の位置、傾き状態)、或いは基板の面内での歪み状態を検出することができる。このアライメントマークKsは、例えば、基板の幅方向の両端側に、基板の長手方向(長尺方向)に沿って一定間隔で形成されている。
 例えば、第1基板P1の供給業者は、図5B若しくは図9Bに示すように、第1基板P1上に積層構造体52(72)を形成すると、図15に示すように、フォトリソグラフィ法を利用したエッチング処理を施して、第2導電層52c(72c)にアライメントマークKsを形成するようにしてもよい(第3の工程)。そして、アライメントマークKsが形成された第1基板P1を用いて、図5C(図9C)以降の工程を行うようにしてもよい。この場合は、転写により第1導電層52a(72a)が第2基板P2の表面側となり、第2導電層52c(72c)が第2基板P2の深部側となるので、形成したアライメントマークKsが第1導電層52a(72a)によって隠れてしまう。したがって、転写後(例えば、ソース電極およびドレイン電極を形成する際に)、フォトリソグラフィ法を利用したエッチング処理によって、図16に示すように、アライメントマークKsと対向する領域の第1導電層52a(72a)を除去することで窓部90を設けるようにしてもよい。また、アライメントマークKsと対向する領域には第1導電層52a(72a)を形成しないようにすることで窓部90を設けてもよい。これにより、アライメントマークKsと対向する領域の第1導電層52a(72a)を除去する手間が省ける。なお、機能層52b(72b)は、透過性のある材料で構成されているので、アライメントマークKsを顕微鏡等の光学的なアライメント系で撮像することはできるが、機能層52b(72b)が、非透過性の材料で構成されている場合は、機能層52b(72b)にも窓部90を設けるのがよい。なお、窓部90とは、アライメントマークKsを撮像するために形成された開口部である。また、アライメントマークKsを第1導電層52a(72a)に形成し、窓部90を第2導電層52c(72c)に形成してもよい。
 また、第1導電層52a(72a)を形成したときに、フォトリソグラフィ法を利用したエッチング処理を用いて、第1導電層52a(72a)にアライメントマークKsまたは窓部90を形成し、第2導電層52c(72c)を形成したときに、フォトリソグラフィ法を利用したエッチング処理を用いて、第2導電層52c(72c)に窓部90またはアライメントマークKsを形成してもよい。特に、上記変形例1および2では、フォトリソグラフィ法を利用したエッチング処理を施しながら積層構造体84を形成していくので、積層構造体84の形成中に、アライメントマークKsおよび窓部90も一緒に形成してもよい。
 また、第1基板P1の供給業者が、電子デバイス用の回路基板上におけるデバイス領域内の配線パターン(例えば、アースバスライン、電源バスライン等の大きなパターンの形状、配置、寸法等のアートワーク)を予め把握している場合は、フォトリソグラフィ法を利用したエッチング処理によって、第1導電層52a(72a)または第2導電層52c(72c)にアライメントマークKsや窓部90を形成するのと同時に、それらの配線パターンを形成してもよい。さらに、第1基板P1の供給業者が、配線パターンとともに半導体素子(TFT)が形成される領域(或いはTFTが全く形成されない領域)を予め把握している場合は、TFTが形成される領域に機能層52b(72b)としての半導体層を選択的に堆積し、TFTが全く形成されない領域には機能層52b(72b)としての絶縁層を選択的に堆積させてもよい。この場合、機能層52b(72b)の全体の厚みをなるべく均一にするために、半導体層と絶縁層はほぼ同じ厚みになるように調整してもよい。
 (変形例4)図17は、変形例4におけるラミネータ装置30aの構成を示す図である。なお、変形例4においては、上記第1の実施の形態と同様の構成については、同一の符号を付し、その説明を省略する。変形例4においては、ガイドローラGR6の代わりに、ガイドローラGR6より半径が大きいガイドローラGR6aを設けている。ラミネータ装置30aには、ガイドローラGR6aに巻き付いた第2基板P2に対して熱によって硬化する熱硬化接着剤を塗布するダイコータヘッドDCHが設けられている。つまり、変形例4では、第1基板P1側ではなく、第2基板P2側に接着剤を塗布することで接着層54(74)を形成する。したがって、第1基板P1には、接着層54(74)が設けられていない。ダイコータヘッドDCHによって熱硬化接着剤が塗布される第2基板P2上の領域は、ガイドローラGR6aの円周面で支持されている。このダイコータヘッドDCHは、熱硬化接着剤を第2基板P2に対して幅広く一様に塗布する。これにより、圧着加熱ローラ36によって、第1基板P1上に形成された積層構造体52(72)を、第2基板P2に転写することができる。
 詳しくは、圧着加熱ローラ36は、積層構造体52(72)が、第2基板P2側に位置し、且つ、第2基板P2上に塗布された熱硬化接着剤と接するように、第1基板P1と第2基板P2とを両側から挟んで密着させるとともに加熱を行う。この加熱によって熱硬化接着剤が硬化するので、接着層54(または74)が形成され、積層構造体52(72)と第2基板P2とが強固に接着されて、第1基板P1上に形成された積層構造体52(72)が第2基板P2に転写される。なお、圧着加熱ローラ36を通過した第1基板P1と第2基板P2とは互いに離間する。
 (変形例5)図18は、変形例5におけるラミネータ装置30bの構成を示す図である。なお、変形例5においては、上記第1の実施の形態と同様の構成については、同一の符号を付し、その説明を省略する。変形例5においては、圧着加熱ローラ36の代わりに、加熱を行わずに、圧着のみを行う圧着ローラ36bを設け、ガイドローラGR6の代わりに、ガイドローラGR6より半径が大きいガイドローラGR6bを設けている。この圧着ローラ36bは、ローラRと、ローラRに比べ半径が大きいドラムDRSとを有する。したがって、ローラRとドラムDRSとによって挟まれて密着した第1基板P1と第2基板P2とは、互いに重ね合わさった状態でドラムDRSの円周面に沿って搬送され、その後、ガイドローラGR7、GR8によって互いに離間する。第1基板P1は、ガイドローラGR7によって回収ロール38に案内され、第2基板P2は、ガイドローラGR8によって回収ロール40に案内される。
 ラミネータ装置30bには、ガイドローラGR6bに巻き付いた第2基板P2に対してUV光によって硬化するUV硬化接着剤を塗布するダイコータヘッドDCH1が設けられている。つまり、変形例5では、第1基板P1側ではなく、第2基板P2側に接着剤を塗布することで接着層54(74)を形成する。したがって、第1基板P1には、接着層54(74)が設けられていない。ダイコータヘッドDCH1によってUV硬化接着剤が塗布される第2基板P2上の領域は、ガイドローラGR6bの円周面で支持されている。このダイコータヘッドDCH1は、UV硬化接着剤を第2基板P2に対して幅広く一様に塗布する。また、ラミネータ装置30bには、圧着ローラ36bによって圧着された第1基板P1と第2基板P2とが離間する前に、UV硬化接着剤に対してUV(紫外線)光を照射する紫外線照射源94を複数有する照射装置UVSが設けられている。これにより、圧着ローラ36bによって、第1基板P1上に形成された積層構造体52(72)を、第2基板P2に転写することができる。
 詳しくは、圧着ローラ36bのローラRとドラムDRSとは、積層構造体52(72)が、第2基板P2側に位置し、且つ、第2基板P2上に塗布されたUV硬化接着剤と接するように、第1基板P1と第2基板P2とを両側から挟んで密着させる。その後、照射装置UVSは、互いに重ね合わさった状態でドラムDRSに巻き付いて搬送されている第1基板P1および第2基板P2に対してUV光を照射する。このUV光の照射によって第1基板P1と第2基板P2との間にあるUV硬化接着剤が硬化するので、接着層54(74)が形成され、積層構造体52(72)と第2基板P2とが強固に接着される。このUVの照射後に、第1基板P1と第2基板P2とが、ガイドローラGR7、GR8によって互いに離間する。これにより、第1基板P1上に形成された積層構造体52(72)が第2基板P2に転写される。
[第2の実施の形態]
 第2の実施の形態においては、有機ELディスプレイの画素回路の具体的な製造方法について説明する。図19は、アクティブマトリックス方式の有機ELディスプレイの1つの発光画素の画素回路の一例を示す図であり、図20は、図19に示す画素回路の具体的な構造を示す図である。画素回路は、TFT、コンデンサC、および、有機発光ダイオード(OLED:Organic Light Emitting Diode)を有する。TFTのソース電極Sおよびドレイン電極Dとそれに付随する配線L1、コンデンサCの一方の電極C1、および、OLEDのカソードに接続される画素電極Eは、積層構造体100の第1導電層102に形成されている。TFTのゲート電極Gとそれに付随する配線L2、および、コンデンサCの他方の電極C2は、積層構造体100の第2導電層104に形成されている。このコンデンサCの電極C2は、グラウンドGND(アースライン)に接続されている。また、第1導電層102に形成された配線L1と第2導電層104に形成された配線L2とを繋ぐ必要がある箇所には、無電解メッキコンタクタMが設けられている。なお、図20においては、第1導電層102と、第2導電層104とを区別するため、便宜上第1導電層102を斜線で示している。
 本第2の実施の形態では、トップコンタクト型のTFTを有する画素回路の製造方法について説明する。図21および図22は、画素回路の製造方法の工程の一例を示すフローチャートである。
 まず、ステップS101~ステップS105の工程を経て、図23に示すように、第1基板P1の表面側から順に、剥離層106、第1導電層102、半導体層108、絶縁層110、および、第2導電層104を第1基板P1上に形成する。このステップS101~ステップS105の工程は、図7のステップS31~ステップS35の工程と同一である。言うまでもないが、半導体層108および絶縁層110は、機能層112を構成し、第1導電層102と、機能層112(半導体層108および絶縁層110)と、第2導電層104とは、積層構造体100を構成する。本第2の実施の形態においては、第1導電層102および第2導電層104はCu(銅)で形成され、半導体層108は、酸化物半導体の一種であるZnOで形成され、絶縁層110はSiO2で形成されている。
 そして、フォトリソグラフィ法を利用したエッチング処理によって、図24および図25に示すように、第2導電層104に所定のパターン(上述したゲート電極G、配線L2、および、コンデンサCの電極C2のパターン)を形成する。なお、図24においては、第2導電層104には、ゲート電極Gおよび配線L2のみを図示している。また、図25においては、第1導電層102と、第2導電層104とを区別するため、第1導電層102を斜線で示している。
 フォトリソグラフィ法を利用したエッチング処理によるゲート電極等の形成について簡単に説明すると、まず、ステップS106で、第2導電層104上にフォトレジスト層を形成する。そして、ステップS107で、塗布されたフォトレジスト層に紫外線を用いて所定のパターン(ゲート電極G、配線L1、および、電極C2のパターン)を露光し、ステップS108で、現像を行う。これにより、フォトレジスト層に所定のパターンが形成される。次いで、ステップS109で、第1基板P1を酸化第二鉄の腐食液に浸漬することで、所定のパターンが形成されたフォトレジスト層をマスクとしたエッチング処理が施されて、第2導電層104にゲート電極G等が形成される。そして、ステップS110で、フォトレジスト層を剥離し、第1基板P1の洗浄を行う。このステップS106~ステップS110の工程は、図7のステップS36~ステップS40と同様である。このエッチング処理によって第2導電層104が除去された領域は、機能層112が露出することになる。
 その後、ステップS111で、第1基板P1をフッ化水素の腐食液に浸漬することで、図24に示すように機能層112もエッチング(加工)している。ステップS109のエッチング処理によって第2導電層104が除去された領域は、機能層112が露出することになるので、第2導電層104が除去された領域の機能層112が、ステップS111のエッチング処理によって除去される。
 その後、ステップS112で、積層構造体100が形成された第1基板P1の表面側(第2導電層104側)に接着剤を塗布することで接着層114を形成する。そして、ステップS113で、第2導電層104が第2基板P2側に位置するように、第1基板P1と第2基板P2とを一時的に近接または密着させて、図26に示すように、第1基板P1に形成された積層構造体100を第2基板P2に転写する。この転写は、ラミネータ装置30によって転写される。このステップS112およびステップS113の工程は、図8のステップS41~ステップS43と同様である。
 そして、フォトリソグラフィ法を利用したエッチング処理によって、図27および図28に示すように、第1導電層102に所定のパターン(上述したソース電極Sおよびドレイン電極D、配線L1、コンデンサCの電極C1、および、画素電極Eのパターン)を形成する。なお、図27においては、第1導電層102には、ソース電極S、ドレイン電極D、および、配線L1のみを図示している。また、図28においては、第1導電層102と、第2導電層104とを区別するため、第1導電層102を斜線で示している。
 フォトリソグラフィ法を利用したエッチング処理によるソース電極等の形成について簡単に説明すると、図22のステップS114で、第2基板P2の表面側(第1導電層102側)にフォトレジスト層を形成する。そして、ステップS115で、形成されたフォトレジスト層に紫外線を用いて所定のパターン(ソース電極S、ドレイン電極D、配線L1、電極C1、および、画素電極Eのパターン)を露光し、ステップS116で、現像を行う。これにより、フォトレジスト層に所定のパターンが形成される。次いで、ステップS117で、第2基板P2を酸化第二鉄の腐食液に浸漬することで、所定のパターンが形成されたフォトレジスト層をマスクとしてエッチング処理が施されて、第1導電層102にソース電極Sおよびドレイン電極D等が形成される。この際、無電解メッキコンタクタMを形成するためのコンタクトホールHの開口部分も第1導電層102に形成される。そして、ステップS118で、第1導電層102上にあるフォトレジスト層を剥離し、第2基板P2の洗浄を行う。このステップS114~ステップS118の工程は、コンタクトホールHを形成する点以外では、図8のステップS44~ステップS48と同様である。
 そして、フォトリソグラフィ法を利用したエッチング処理によって、図29に示すように、コンタクトホールH部分の機能層112(半導体層108および絶縁層110)をエッチングする。つまり、ステップS119で、第2基板P2の表面側(第1導電層102側)にフォトレジスト層を形成する。そしてステップS120で、形成されたフォトレジスト層に紫外線を用いて所定のパターンを露光し、ステップS121で現像を行う。これにより、フォトレジスト層に所定のパターンが形成される。次いで、ステップS122で、第2基板P2をフッ化水素の腐食液に浸漬することで、所定のパターンが形成されたフォトレジスト層をマスクとしてエッチング処理が施されて、コンタクトホールH部分の機能層112もエッチングする。これにより、コンタクトホールHが完成する。
 その後、ステップS123で、コンタクトホールH部分に無電解メッキ処理を行い、図30に示すように、例えば、Cu、Cr、NiP等で構成された無電解メッキコンタクタMを形成して、第1導電層102(配線L1)と第2導電層104(配線L2)とを電気的に接続する。そして、ステップS124で、第2基板P2上にあるフォトレジスト層を剥離し、第2基板P2の洗浄を行う。以上のような工程を経て、図20に示すような画素回路を製造することができる。
 なお、上記第1の実施の形態(変形例も含む)および上記第2の実施の形態では、フォトリソグラフィ法を利用したエッチング処理を用いて薄膜を加工するようにしたが、光パターニング法を利用した加工処理であればなんでもよい。光パターニング法を利用した加工処理としては、フォトリソグラフィ法を利用したエッチング処理の他に、例えば、積層構造体52が形成された第1基板P1を特殊な液体中に浸漬させた状態で、紫外線のパターン光を照射することで第2導電層52cの上に被覆されたレジスト層をエッチングする手法や、高NAで集光するレーザビームのスポットによって紫外線のパターン光を照射することで第2導電層52cを直接除去(エッチング)するアブレーション手法等がある。
 また、上記第1の実施の形態(変形例も含む)および上記第2の実施の形態では、ボトムゲート型構造のTFTを例にとって説明したが、トップゲート型構造のTFTであってもよい。また、第1基板P1(担持基材)上に形成される積層構造体52、72等は、薄膜トランジスタ(TFT)に限られず、薄膜ダイオード(TFD)を含む電子デバイスの製造にも有用である。さらに、積層構造体52、72等の構成において、上下の第1導電層と第2導電層の間に挟まれる機能層52b(72b)は2層以上の薄膜であってもよい。例えば、機能層52b(72b)が第1の機能性膜と第2の機能性膜の積層で構成される場合、第1の機能性膜は第1基板P1上でデバイス領域の全体に対応した領域に一様に成膜し、第2の機能性膜は第1の機能性膜上の一部分の領域に選択的に成膜してもよい。
 ところで、上記第1の実施の形態(変形例も含む)および上記第2の実施の形態等において、第1基板P1(金属箔等の担持基材)の表面のうち、積層構造体の絶縁層または半導体層が積層される表面の粗さを、JIS規格で定義される算術平均粗さRa値(nm)で表した場合、その粗さRa値は積層される絶縁層(または半導体層)の厚みを越えない範囲に定められる。しかしながら、TFTとしての長期安定動作を保証するためには、第1基板P1の表面の粗さRa値は200nm以下(サブミクロン以下)、さらには1nm~数十nmの範囲にするのが好ましい。粗さRa値を小さくするほど、TFTの電気特性である電子移動度、オンオフ比、リーク電流の各特性が向上する。粗さRa値を1nm未満にすることも可能であるが、実用的な粗さRa値として、数nm程度であればよい。そのような粗さRa値は現在の表面処理(研磨)技術で容易に得られる。また、第1基板P1の表面上に、積層構造体の第1導電層(52a、72a、84a、102)を成膜する場合は、第1基板P1の表面を研磨処理等で平坦化する代わりに、第1基板P1の表面に平坦化膜を形成した後、その平坦化膜の上に剥離層(50、70、80、106)、第1導電層(52a、72a、84a、102)の順に成膜してもよい。平坦化膜は、第1基板P1の表面の凹部を埋めて凹凸を緩和するとともに、強いエッチング耐性を有し、転写(ラミネート)時やポストアニール時の加熱処理においても変性しないような材料、例えば、酸化シリコン(SiO2)系の湿式材料で構成される。そのような平坦化膜の材料として、住友大阪セメント(株)製のスミセファイン(登録商標)、日本曹達(株)製のビストレイター(登録商標)、コルコート(株)製のコルコート(登録商標)、ハネウェル社や日立化成(株)等から販売されている平坦化材料SOG(Spin On Glass)等が使える。
 [上記各実施の形態の変形例]
 上記各実施の形態(各変形例も含む)は、さらに、以下のように変形することも可能である。
 [変形例1]
 図31は、先の図1の成膜装置10と同様に、第1基板P1上に電子デバイス用の積層構造体を連続的に成膜する成膜装置10Aの概略構成を示す。図31の成膜装置10Aは、チャンバー16、真空ポンプ18、成膜用回転ドラム22、成膜用回転ドラム22の周囲に配置され、複数の成膜原料(薄膜原料)を連続して堆積するための複数の基材20A、20B、20C、および、ガイドローラGR1~GR3を備える。先の各実施の形態や変形例で説明したように、第1基板P1上には、導電層(金属膜、ITO膜等)、絶縁層(誘電体膜)の2層構造体、または、その2層構造の上に半導体層を成膜した3層構造体が形成される。そこで、成膜用回転ドラム22の周囲に配置される基材20Aは、蒸着、スパッタリング、或いはCVD等により導電層を成膜するものとし、基材20Bは、蒸着、スパッタリング、或いはCVD等により導電層の上に絶縁層を成膜するものとし、基材20Cは、蒸着、スパッタリング、或いはCVD等により絶縁層の上に半導体層を成膜するものとする。なお、第1基板P1上に導電層と絶縁層の2層構造体を形成する場合は、基材20Cによる成膜を行わない様にすればよい。さらに、作成すべきTFTの構造によっては、基材20Bと基材20Cの配置を入れ替えて、導電層、半導体層、絶縁層の順番で成膜を行ってもよい。
 このように、複数の薄膜材料の基材20A、20B、20Cによる各成膜部を、成膜用回転ドラム22の周囲に順次配置することにより、回収ロール14で巻き上げられる第1基板P1の表面には所望の積層構造体が一度に形成されるため、回収ロール14を別の成膜装置に掛け替える必要が無くなり、生産性が向上する。この場合、基材20Aによる成膜部、基材20Bによる成膜部、基材20Cによる成膜部では、同じような温度に設定しておくのが望ましい。また、成膜装置10Aとして、例えば国際公開第2013/176222号パンフレットに開示されているようなミストデポジション法(ミストCVD法)を組み込んだものでもよい。その場合、成膜材料の基材は、第1基板P1の表面に噴霧されるミスト中に、イオン状態、またはナノ粒子状態となって含有される。さらに、ミストの噴霧ノズルと第1基板P1の表面との間の空間中に、高圧パルス電源を使って非平衡状態の大気圧プラズマを発生させると、第1基板P1の温度が200℃程度でも、ミストCVD法による良好な成膜が可能となり、成膜レートも向上する。
 [変形例2]
 図32は、先の図9、図10による転写法の変形例を示す概略図であり、図9、図10中の符号と同じ部材(層、膜、材料等)には同じ符号を付してある。先の図9の例では、図9Bに示すように、第1基板P1上に、剥離層70、第1導電層72a、半導体層72b1、絶縁層72b2、第2導電層72cを順次積層した後に、図9Cに示すように、第2導電層72cをエッチングしてゲート電極を形成した。図32に示す第1基板P1にも、同様に、剥離層70、第1導電層72a、半導体層72b1、絶縁層72b2、第2導電層72cが積層されるが、本変形例では、半導体層72b1を第1導電層72a上に一様に形成するのではなく、TFTのチャネル部(ソース電極とドレイン電極のギャップ部分)に相当する局所的な領域に選択的に半導体層72b1を形成する。この場合、第1導電層72a上にフォトレジスト層を形成し、フォトリソグラフィ法によって半導体層72b1を成膜すべき領域にレジスト層の開口部を形成し、その開口部内に蒸着、スパッタリング、CVD等により、半導体材料を堆積させればよい。
 その後、図32の変形例では、第1導電層72aと選択的に形成された半導体層72b1とを一様に覆うように絶縁層72b2が成膜され、さらに絶縁層72b2の上に第2導電層72cが成膜され、第2導電層72cは、先の図9Cと同様に、フォトリソグラフィ法を利用したエッチング処理によってゲート電極(およびそれと接続される配線)となるように加工される。本変形例では、半導体層72b1をTFTの形成領域に制限して選択的に成膜することができるので、半導体材料の使用量が抑えられる。このように第1基板P1上に形成された積層構造体72を第2基板P2に転写する場合、先の図9Dでは第1基板P1の積層構造体72の表面に接着層74を塗布したが、本変形例では、図32に示すように第2基板P2側に接着層74を形成する。本変形例における第2基板P2は、PETやPEN等のシート基板P2aの表面にポリエチレン(PE)等による緩衝層P2bを積層した構成とし、緩衝層P2bの表面にシーラント層(Silicon Sealant等)P2cを介して接着層74を形成する。
 図32に示すように、第1基板P1側の積層構造体72が選択的な半導体層72b1やゲート電極で形成される場合、積層構造体72の第2基板P2と対向する面には凹凸が生じるため、転写の際に第2基板P2との密着が不均一になる場合もある。そこで、そのような凹凸を吸収するために、緩衝層P2bが設けられる。緩衝層P2bとしては、安定性と可塑性を有するものが好ましく、転写時に熱圧着する場合にはポリエチレン(PE)等の熱可塑性のある材料がよい。さらに、本変形例では、緩衝層P2b上に形成される接着層74は、酢酸ビニル樹脂、エチレン酢酸ビニル共重合樹脂を主体とした合成樹脂エマルジョンタイプの接着剤EVA(Ethylene Vinyl Acetate)とする。このような構成とすることで、凹凸のある第1基板P1側の積層構造体72は、ひび割れ等のダメージを受けること無く、第2基板P2側に精密に転写される。
 [変形例3]
 上記の図32のように、接着層74(EVA)を使った場合、良好な転写が可能となるが、第1基板P1側の積層構造体72の凹凸が比較的に大きいと、接着層74(EVA)の硬化時に生じる内部応力によって、硬化後の接着層74(EVA)中、特に積層構造体72の第2導電層72cの上部や近傍に微細なクラックが生じる可能性がある。そこで、図32のように第1基板P1上に積層構造体72(第1導電層72a、半導体層72b1、絶縁層72b2、第2導電層72c)を形成した後、図33に示すように、積層構造体72の上を全体的に覆うように平坦化膜FPを形成する。この平坦化膜FPは、積層構造体72の凹部を埋めて凹凸を緩和するとともに、強いエッチング耐性を有し、転写(ラミネート)時やポストアニール時の加熱処理においても変性しないような材料、例えば、酸化シリコン(SiO2)系の湿式材料で構成される。そのような平坦化膜FPの材料として、住友大阪セメント(株)製のスミセファイン(登録商標)、日本曹達(株)製のビストレイター(登録商標)、コルコート(株)製のコルコート(登録商標)、ハネウェル社や日立化成(株)等から販売されている平坦化材料SOG(Spin On Glass)等が使える。そして平坦化膜FPの材料が完全に乾燥した後、或いは乾燥の途中で、第2基板P2上の接着層74(EVA)に平坦化膜FP付の積層構造体72を圧着転写する。
 平坦化膜FPは、無機絶縁膜(或いは有機絶縁膜)であり、ラミネートされる接着層74(EVA)と直接接合することで、接着層74(EVA)の硬化時の内部応力に起因したクラック発生を低減させる作用を有する。なお、図33では、第1基板P1上に積層構造体72を形成した後に、その上に平坦化膜FPの湿式材料を塗工するものとしたが、図32のように、第2基板P2上に接着層74(EVA)を形成した後、その接着層74(EVA)の上に平坦化膜FPを形成し、その平坦化膜FPが乾燥する前に、第1基板P1上の積層構造体72を平坦化膜FPに加熱しながら転写してもよい。また、図32、図33において、第1基板P1上に形成される積層構造体72は、第1基板P1側の第1導電層72aがTFTのソース電極/ドレイン電極およびそれと接続される配線になり、第2基板P2側の第2導電層72cがTFTのゲート電極およびそれと接続される配線になるとして説明したが、逆であってもよい。すなわち、第1導電層72aをTFTのゲート電極およびそれと接続される配線とし、第2導電層72cをTFTのソース電極/ドレイン電極およびそれと接続される配線としてもよい。
[第3の実施の形態]
 図34~図36は、先の図23~図30の実施の形態による製造方法の一部を改良した電子デバイス(TFT)の製造工程を示す図である。したがって、図34~図36に示す各部材(材料)で図23~図30中の各部材(材料)と同じものには、図23~図30中の符号と同じ符号を付してある。本実施の形態では、図34Aに示すように、第1基板P1を厚さ数十μm~数百μm程度の銅(Cu)のシート箔板とし、その表面に剥離層106を挟んで銅(Cu)の第1導電層102を全面に積層する。この第1導電層102は、厚さが数十μm以下に圧延された銅箔を剥離層106上にラミネートして形成される。ラミネート後の第1導電層102は、その厚みを減少させつつ、表面の算術平均粗さRa値が数nm~十数nm程度になるようにラッピングされる。
 次に、図34Bに示すように、第1基板P1の第1導電層102の上に、TFTのゲート絶縁膜として機能する絶縁層110を形成する。この絶縁層110は、典型的なシリコン酸化膜(SiO2)とし、第1導電層102の全面に成膜した後、エッチング等によりTFTの形成領域以外のシリコン酸化膜を除去する方法、または選択的な成膜によって初めからTFTの形成領域のみにシリコン酸化膜を蒸着する方法等によって形成される。第1基板P1も第1導電層102も、耐熱性の高い銅(Cu)であるため、真空内で高温成膜することができ、シリコン酸化膜の平坦性(粗さRa)を良好にすることができる。
 次に、図34Cに示すように、絶縁層110(SiO2)の上に、半導体層108を形成する。ここで、半導体層108は、インジウム(Indium)、ガリウム(Gallium)、亜鉛(Zinc)、および、酸素(Oxide)から構成されるIGZO(酸化物半導体)とする。IGZOによる半導体層108は、インジウム、ガリウム、亜鉛および酸素を構成元素とし、インジウムとガリウムの合量に対するインジウムの原子数比と、インジウムとガリウムと亜鉛の合量に対する亜鉛の原子数比とを所定の比にした酸化物焼結体をスパッタリングターゲットとするスパッタ装置によって成膜される。スパッタ工程の前に、第1基板P1上の全面に形成されたレジスト層に、フォトリソグラフィ工程(パターンの露光とレジストの現像)によって半導体層108の形成領域に対応した窓を開ける処理が実施され、スパッタ装置によってIGZO半導体がスパッタされた後には、レジスト層を剥離する工程も実施される。これによって図34Cのように、絶縁層110上に選択的にIGZOの半導体層108が形成される。
 次に、図34Dに示すように、第2導電層104としてのソース電極104(S)とドレイン電極104(D)が半導体層108の上でチャネル部(Channel)となるように一定のギャップで対向配置して形成される。ここでも、フォトリソグラフィ工程を用いて、ソース電極104(S)とドレイン電極104(D)が形成される領域にレジスト層の窓部を形成し、その窓部内に金属性のソース電極104(S)とドレイン電極104(D)を蒸着等によって堆積する。ソース電極104(S)とドレイン電極104(D)は、半導体層108と接合するため、仕事関数の大きい金(Au)とするのが望ましいが、他の金属材料(アルミニウム、銅)、或いは銀ナノ粒子や金属性カーボンナノチューブを含む導電性インク材料でもよい。ここで、ソース電極104(S)とドレイン電極104(D)は、図34Dに示すように、チャネル部から絶縁層110の領域の外側の第1導電層102まで広がるように形成され、ソース電極104(S)とドレイン電極104(D)は第1導電層102と電気的に導通した状態(オーミック結合)になっている。以上の工程によって、第1基板P1上に積層構造体100(第1導電層102、絶縁層110、半導体層108、第2導電層104)が形成される。
 図35は、第1基板P1上に形成された積層構造体100の平面的な配置構成を示す図である。TFTの電気特性として、電子移動度とオンオフ比がともに高く、リーク電流が充分に小さいことが望まれる。本実施の形態では、TFTのベースとなる第1導電層102の表面を、算術平均粗さRa値が充分に小さい平滑面とした。そのため、その上に形成される絶縁層110、半導体層108も均一な厚みの平坦な膜として形成され、半導体層108と第2導電層104(ソース電極とドレイン電極)との接触界面の平坦性も良好に維持される。これにより、電子移動度、オンオフ比、リーク電流とも良好な特性が得られる。また、チャネル部のソース電極104(S)とドレイン電極104(D)のギャップを数μm程度に小さくできるので、IGZO半導体の特性を生かした高性能なTFTが得られる。なお、図35のように、絶縁層110、半導体層108、第2導電層104(ソース電極とドレイン電極)の積層に際しては、ミクロンオーダーでの相対的な重ね合せが必要になる。したがって、フォトリソグラフィ工程において、第1基板P1(特に第1導電層102)上の特定位置に形成したアライメントマークの位置を、露光装置内のアライメントセンサーで検出して、パターン露光位置を調整するアライメント動作が必要となる。
 図36は、図34、図35で示した積層構造体100を、第2基板P2に転写して、さらなる加工処理を施す様子を示す図である。図36Aは、転写(ラミネート)工程によって、第1基板P1上の積層構造体100が第2基板P2に転写された直後の様子を示す。本実施の形態でも、転写の前に、先の図33で説明したように、第1基板P1の積層構造体100の全面を覆うような平坦化膜FPを第1基板P1上に形成し、先の図32で説明したように、PETによるシート基板P2aの表面にポリエチレン樹脂による緩衝層P2bを所定厚さで形成した第2基板P2を用意し、さらに第2基板P2の上に酢酸ビニル樹脂による接着層(EVA)114を所定の厚さで形成する。転写の際は、第1基板P1上の平坦化膜FPと第2基板P2上の接着層(EVA)114とを所定圧力で圧着させつつ、接着層(EVA)114を加熱により硬化させ、第1基板P1から積層構造体100を剥離する。これにより、図36Aに示すように、第2基板P2上には、積層構造体100が第1導電層(Cu)102を最上面に露出した状態で貼り合される。
 図36Aに示す転写直後の状態では、第1導電層102の表面に剥離層106の残渣が付着している場合がある。その場合は、第1導電層102の表面を洗浄、または研磨するとよい。特に、第1導電層102の厚みが数十μm程度である場合、この後の第1導電層102の加工処理(特にエッチング処理)に時間が掛ることがあるので、研磨工程を入れて、第1導電層102の厚みを数μm程度にしておくとよい。本実施の形態では、緩衝層P2b、EVAによる接着層114、平坦化膜FPを設けたので、第1導電層102の表面の研磨時の外力によって、内部のTFTが破損すること(ひび割れ、断線)が抑制される。また、第1基板P1上にTFTの積層構造体100を製造する際のフォトリソグラフィ工程で使ったアライメントマークのうち、第1導電層102の複数位置の各々に形成したアライメントマークを微細な貫通孔(例えば、20μm径の円形、20μm角の矩形等)とした場合は、図36Aのように第1導電層102が最上面になるため、そのアライメントマークを露光装置のアライメントセンサーで容易に検出できる。そのため、第1導電層102をフォトリソグラフィ工程で加工処理する際、第1導電層102の下層のTFTの位置、特にソース電極104(S)とドレイン電極104(D)の各位置を、アライメントマークの位置を基準として正確に特定することができる。
 そこで、図36Aの第1導電層102の表面にレジスト層を塗布し、露光装置によって、TFTのゲート電極、ソース電極、ドレイン電極、およびそれらの電極と連なる配線の形状に対応したパターン光をレジスト層に露光する。その際、パターン光の投射位置は、第1導電層102に形成されたアライメントマークを、露光装置のアライメントセンサーが検出することによって精密に設定される。露光後のレジスト層の現像処理、第1導電層102(Cu)のエッチング処理によって、図36Bに示すように、第1導電層102によるゲート電極102G、ソース電極102S、ドレイン電極102D(およびそれら電極と接続される配線)が形成される。その際、エッチング後のソース電極102Sが半導体層108と直接結合しているソース電極104(S)と接合し、ドレイン電極102Dが半導体層108と直接結合しているドレイン電極104(D)と接合した状態となるように、アライメントとパターニングが実施される。さらに、エッチング後のゲート電極102Gは、図35に示したチャネル部(ソース電極104(S)とドレイン電極104(D)とのキャップ部)を覆うようにパターニングされる。
 図37は、図36BのTFTの平面的な配置構成の一例を示す図であり、図37中の36B-36B’矢視断面が図36Bとなっている。エッチング処理により、第1導電層102の不要な部分が除去されるが、除去された部分では、絶縁性の平坦化膜FPが露出している。電子デバイスの製造のために、更なる機能素子(抵抗、コンデンサ、発光素子、受光素子、IC等)を第2基板P2上に形成する場合は、第1導電層102で形成された配線部分等に、それらの機能素子をハンダ付けすることができる。また、第1導電層102が銅(Cu)である場合は、酸化による腐食を防止する絶縁性、耐熱性の膜を、選択的または全体に形成してもよい。
 以上、本実施の形態では、第1基板P1上に形成される積層構造体100の第1導電層102の算術平均粗さRa値を充分に小さくするとともに、真空プロセスや高温プロセスを使えるように、第1基板P1を金属箔(銅箔)としたので、高性能なTFTを形成することができる。したがって、最終的にフレキシブルな第2基板P2上に製造される電子デバイス(表示パネル、タッチパネル、シートセンサー等)の性能が飛躍的に向上する。なお、本実施の形態では、第1基板P1上に形成される積層構造体100のうちの第2導電層104を、TFTのソース電極、ドレイン電極とするように加工処理したが、第2導電層104をゲート電極とするように加工処理してもよい。その場合は、図34に示したTFT(積層構造体100)の製造工程において、第1導電層102上に積層する絶縁層110と半導体層108の順番(上下関係)を逆にすればよい。すなわち、最初に第1導電層102上の所定領域に半導体層108を形成し、その上に半導体層108を完全に覆うような大きさで絶縁層110を形成し、その絶縁層110の上に、第2導電層104によるゲート電極を第1導電層102と部分的に結合するように形成すればよい。
 また、以上の本実施の形態では、第1基板P1を銅(Cu)のシート箔板とし、その表面に剥離層106を介して積層構造体100の第1導電層102を形成するようにしたが、第1基板P1の銅(Cu)のシート箔板自体を、積層構造体100の第1導電層102とすることもできる。その場合、第1基板P1は、その表面の算術平均粗さRa値が充分に小さくなるような圧延による金属箔(銅箔)とし、さらに必要に応じて、表面をラッピングするとよい。
 また、第1導電層102を第1基板P1とする場合は、第1基板P1自体が第1導電層102(電極、配線)となって、第2基板P2側に転写されるので、例えば転写工程の直後に、第1基板P1(第1導電層102)の厚みを減少させる研磨処理を行うのが望ましい。このように、第1基板P1自体を第1導電層102とする場合は、第1基板P1を含んで構成される積層構造体(導電層、絶縁層、半導体層)の全体を、第2基板P2側に転写することになり、結果的に第1基板P1も第2基板P2側に転写される。
 また、以上の本実施の形態では、絶縁層110と半導体層108との2層を第1導電層102(または第1基板P1自体)と第2導電層104とで挟み込むような構成を積層構造体としたが、先の図5に示したように、絶縁層のみ(または半導体層のみ)を第1導電層102(または第1基板P1自体)と第2導電層104とで挟み込むような構成の積層構造体としてもよい。
 このように、第1基板P1自体を積層構造体の一部として構成する場合、電子デバイスを構成する少なくとも一部の積層構造体が形成された第1基板を第2基板上に転写するためのデバイス製造方法では、第1基板を導電性の材料による第1導電層として用意し、その第1導電層の上に絶縁性および半導体の少なくとも一方の材料による機能層を形成し、その機能層の上に導電性の材料による第2導電層を形成することで、積層構造体を形成する第1の工程と、第2導電層が第2基板側に位置するように、第1基板と第2基板とを一時的に近接または密着させて、第1基板を含む積層構造体を第2基板に転写する第2の工程と、が実施されることになる。
 また、第1基板P1自体を積層構造体の一部として構成する場合、被転写基板に電子デバイスを構成する少なくとも一部の積層構造体を転写するための転写基板は、導電性の材料によって第1導電層として機能する導電箔(例えば金属箔)と、絶縁性および半導体の少なくとも一方の材料によって第1導電層の上に形成される機能層と、導電性の材料によって機能層の上に形成される第2導電層とを備えることになる。この場合、転写基板の全体を被転写基板に転写する(貼り合せる)ことになる。
 さらに、上記の図34の実施の形態では、第1基板P1上に剥離層106を介して第1導電層102として銅箔をラミネートしたが、その他、アルミニウム(Al)、亜鉛(Zn)、モリブデン(Mo)、ニッケル(Ni)、タンタル(Ta)、錫(Sn)、ステンレス(SUS)等の箔、またはそれらの合金による箔、或いは、それらの箔に金(Au)等をメッキした箔を第1導電層102としてラミネートしてもよい。これらの金属箔は、圧延箔、電解箔(電気メッキ箔)として生成されるが、ラミネート時の密着性を高めるために、第1基板P1と対向する裏面にはある程度の粗さ(例えば、算術平均粗さRa値で200nm程度)が必要である。一方、金属箔の機能層(絶縁層や半導体層等)が形成される表面は、粗さRa値が数nm~数十nm程度の平滑面である必要がある。したがって、第1導電層102を金属箔とする場合、金属箔の表面と裏面とで粗さRa値を意図的に異ならせ、粗さRa値が大きい面を第1基板P1側とし、粗さRa値が小さい面を積層構造体が形成される面にするとよい。

Claims (21)

  1.  電子デバイスを構成する少なくとも一部の積層構造体を第1基板上に形成した後、前記積層構造体を第2基板上に転写するデバイス製造方法であって、
     前記第1基板上に導電性の材料による第1導電層を形成し、前記第1導電層の上に絶縁性および半導体の少なくとも一方の材料による機能層を形成し、前記機能層の上に導電性の材料による第2導電層を形成することで、前記積層構造体を形成する第1の工程と、
     前記第2導電層が前記第2基板側に位置するように、前記第1基板と前記第2基板とを一時的に近接または密着させて、前記積層構造体を前記第2基板に転写する第2の工程と、
     を備える、デバイス製造方法。
  2.  請求項1に記載のデバイス製造方法であって、
     前記第1の工程と前記第2の工程との間に、または、前記第2の工程の後に、前記第2導電層または第1導電層に対して、光パターニング法を利用した加工処理を施して、前記第2基板の位置を検出するためのアライメントマークを形成する第3の工程を備える、デバイス製造方法。
  3.  請求項1または2に記載のデバイス製造方法であって、
     前記第2基板に転写された前記積層構造体の表面となった前記第1導電層側から、前記積層構造体に対して追加の処理を施す第4の工程を備える、デバイス製造方法。
  4.  請求項3に記載のデバイス製造方法であって、
     前記電子デバイスは、薄膜トランジスタであって、
     前記第1の工程は、前記第2導電層に対して、光パターニング法を利用した加工処理を施してゲート電極を形成する工程を含み、
     前記第4の工程は、前記積層構造体の第1導電層に対して、光パターニング法を利用した加工処理を施してソース電極およびドレイン電極を形成する工程を含む、デバイス製造方法。
  5.  請求項4に記載のデバイス製造方法であって、
     前記機能層を、絶縁層、或いは半導体層と絶縁層との積層で構成する、デバイス製造方法。
  6.  請求項4に記載のデバイス製造方法であって、
     前記電子デバイスは、ボトムコンタクト型の薄膜トランジスタであって、
     前記機能層は、絶縁性の材料によって構成され、
     前記第4の工程は、前記ソース電極および前記ドレイン電極との間に半導体層を形成する工程を含む、デバイス製造方法。
  7.  請求項4に記載のデバイス製造方法であって、
     前記電子デバイスは、トップコンタクト型の薄膜トランジスタであって、
     前記機能層は、半導体の材料によって前記第1導電層の上に堆積された半導体層と、絶縁性の材料によって前記半導体層の上に堆積された絶縁層とで構成されている、デバイス製造方法。
  8.  請求項1または2に記載のデバイス製造方法であって、
     前記電子デバイスは、トップコンタクト型の薄膜トランジスタであって、
     前記第1の工程は、
     前記機能層を形成する前に、前記第1導電層に対して、光パターニング法を利用した加工処理を施してソース電極およびドレイン電極を形成した後、前記ソース電極および前記ドレイン電極との間に半導体層を形成し、
     前記第2導電層を形成した後に、前記第2導電層に対して、光パターニング法を利用した加工処理を施してゲート電極を形成する、デバイス製造方法。
  9.  被転写基板に電子デバイスを構成する少なくとも一部の積層構造体を転写するための転写基板であって、
     前記転写基板の表面には、導電性の材料によって前記転写基板上に形成された第1導電層と、絶縁性および半導体の少なくとも一方の材料によって前記第1導電層の上に形成された機能層と、導電性の材料によって前記機能層の上に形成された第2導電層とで構成される前記積層構造体が形成されている、転写基板。
  10.  請求項9に記載の転写基板であって、
     前記第2導電層または前記第1導電層には、前記被転写基板の位置を検出するためのアライメントマークが、光パターニング法を利用した加工処理によって形成されている、転写基板。
  11.  請求項9または10に記載の転写基板であって、
     前記機能層は、絶縁層、または、半導体層と絶縁層との両方で構成されている、転写基板。
  12.  請求項9~11のいずれか1項に記載の転写基板であって、
     前記転写基板の表面には、前記第1導電層、前記機能層、および、前記第2導電層が連続して積層されている、転写基板。
  13.  請求項9~12のいずれか1項に記載の転写基板であって、
     前記第1導電層、前記機能層、および、前記第2導電層のいずれか、または全てが、蒸着、スパッタリング、および、CVDのうちどれかで形成された、転写基板。
  14.  請求項9~13のいずれか1項に記載の転写基板であって、
     前記転写基板は、可撓性の基板であり、
     前記第1導電層、前記機能層、および、前記第2導電層は、ロール・ツー・ロール方式によって搬送されている前記転写基板に対して形成された、転写基板。
  15.  請求項9~14のいずれか1項に記載の転写基板であって、
     前記転写基板と前記第1導電層との間には、可溶性の材料で構成された剥離層が設けられており、
     前記剥離層は、転写後に溶媒により前記第1導電層から取り除かれる、転写基板。
  16.  請求項15に記載の転写基板であって、
     前記可溶性の材料は、アルカリに対して可溶な材料である、転写基板。
  17.  請求項9~16のいずれか1項に記載の転写基板であって、前記第1導電層は、前記転写基板上の前記電子デバイスを形成するデバイス領域に一様に、或いは該デバイス領域内に選択的に堆積され、前記機能層は、前記第1導電層の上に一様、或いは選択的に堆積され、前記第2導電層は、前記機能層の上に一様に、或いは選択的に堆積される、転写基板。
  18.  半導体素子を含む電子デバイスが形成される製品基板上に、前記電子デバイスを構成する少なくとも一部の積層構造体を転写するために、前記積層構造体を担持する転写基板であって、
     前記積層構造体は、前記転写基板の表面側から、導電性材料によって一様に、或いは選択的に形成された第1導電層、絶縁性の材料または半導体特性を示す材料によって一様に、或いは選択的に形成された機能層、および導電性材料によって一様に、或いは選択的に形成された第2導電層の順番で積層される、転写基板。
  19.  請求項18に記載の転写基板であって、
     前記導電性材料は、金属材料またはITOであり、前記機能層は、前記絶縁性の材料と前記半導体特性を示す材料とのいずれか一方による層、或いは前記絶縁性の材料と前記半導体特性を示す材料との積層である、転写基板。
  20.  電子デバイスを構成する少なくとも一部の積層構造体が形成された第1基板を第2基板上に転写するデバイス製造方法であって、
     前記第1基板を導電性の材料による第1導電層として用意し、前記第1導電層の上に絶縁性および半導体の少なくとも一方の材料による機能層を形成し、前記機能層の上に導電性の材料による第2導電層を形成して前記積層構造体を形成する第1の工程と、
     前記第2導電層が前記第2基板側に位置するように、前記第1基板と前記第2基板とを一時的に近接または密着させて、前記第1基板を含む前記積層構造体を前記第2基板に転写する第2の工程と、
     を含む、デバイス製造方法。
  21.  被転写基板に電子デバイスを構成する少なくとも一部の積層構造体を転写するための転写基板であって、
     導電性の材料によって第1導電層として機能する導電箔と、
     絶縁性および半導体の少なくとも一方の材料によって前記第1導電層の上に形成される機能層と、
     導電性の材料によって前記機能層の上に形成される第2導電層と、
     を備える、転写基板。
PCT/JP2015/073700 2014-08-26 2015-08-24 デバイス製造方法および転写基板 WO2016031762A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020177005139A KR102454094B1 (ko) 2014-08-26 2015-08-24 디바이스 제조 방법 및 전사 기판
JP2016545518A JP6593336B2 (ja) 2014-08-26 2015-08-24 デバイス製造方法
CN201911389514.XA CN111128707B (zh) 2014-08-26 2015-08-24 元件制造方法及转印基板
CN201580045821.XA CN106605294B (zh) 2014-08-26 2015-08-24 元件制造方法及转印基板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014171246 2014-08-26
JP2014-171246 2014-08-26

Publications (1)

Publication Number Publication Date
WO2016031762A1 true WO2016031762A1 (ja) 2016-03-03

Family

ID=55399652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/073700 WO2016031762A1 (ja) 2014-08-26 2015-08-24 デバイス製造方法および転写基板

Country Status (5)

Country Link
JP (2) JP6593336B2 (ja)
KR (1) KR102454094B1 (ja)
CN (3) CN111128707B (ja)
TW (3) TWI777064B (ja)
WO (1) WO2016031762A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017183717A (ja) * 2016-03-24 2017-10-05 株式会社半導体エネルギー研究所 半導体装置およびその作製方法、および剥離装置
WO2021044705A1 (ja) * 2019-09-03 2021-03-11 国立大学法人東京大学 有機半導体デバイスのソース/ドレイン用電極、それを用いた有機半導体デバイス、及びそれらの製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108962975A (zh) * 2018-06-26 2018-12-07 武汉华星光电技术有限公司 一种低温多晶硅薄膜晶体管及其制作方法、显示装置
KR20210137176A (ko) * 2019-05-20 2021-11-17 미쓰이금속광업주식회사 캐리어를 구비하는 금속박 그리고 그 사용 방법 및 제조 방법
TWI715447B (zh) * 2020-02-21 2021-01-01 友達光電股份有限公司 背板的製造方法
CN112687548B (zh) * 2020-12-25 2024-05-24 光华临港工程应用技术研发(上海)有限公司 可转移的柔性互联结构的制备方法以及结构
US11178774B1 (en) 2021-03-23 2021-11-16 Chung W. Ho Method for manufacturing circuit board
CN114281215A (zh) * 2021-12-28 2022-04-05 安徽辅朗光学材料有限公司 一种触控板、触控模组及制备工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1124106A (ja) * 1997-07-03 1999-01-29 Seiko Epson Corp 液晶パネル用基板及び液晶パネル並びにそれらの製造方法
JP2004165600A (ja) * 2002-09-25 2004-06-10 Sharp Corp 単結晶Si基板、半導体装置およびその製造方法
JP2005079556A (ja) * 2003-09-03 2005-03-24 Seiko Epson Corp 転写装置
JP2006066906A (ja) * 2004-07-30 2006-03-09 Semiconductor Energy Lab Co Ltd 薄膜集積回路の剥離方法および半導体装置の作製方法
WO2010001537A1 (ja) * 2008-06-30 2010-01-07 株式会社ニコン 表示素子の製造方法及び製造装置、薄膜トランジスタの製造方法及び製造装置、及び回路形成装置
WO2014126041A1 (ja) * 2013-02-15 2014-08-21 株式会社ニコン 薄膜の転写方法、薄膜トランジスタの製造方法、液晶表示装置の画素電極形成方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3445402B2 (ja) * 1995-03-03 2003-09-08 大日本印刷株式会社 薄膜トランジスタとその製造方法およびアクティブマトリックス基板とその製造方法
TW487958B (en) * 2001-06-07 2002-05-21 Ind Tech Res Inst Manufacturing method of thin film transistor panel
US7508034B2 (en) * 2002-09-25 2009-03-24 Sharp Kabushiki Kaisha Single-crystal silicon substrate, SOI substrate, semiconductor device, display device, and manufacturing method of semiconductor device
JP3918708B2 (ja) * 2002-10-08 2007-05-23 セイコーエプソン株式会社 回路基板及びその製造方法、転写チップ、転写元基板、電気光学装置、電子機器
JP4651924B2 (ja) * 2003-09-18 2011-03-16 シャープ株式会社 薄膜半導体装置および薄膜半導体装置の製造方法
JP2005150686A (ja) * 2003-10-22 2005-06-09 Sharp Corp 半導体装置およびその製造方法
CN101120433B (zh) * 2004-06-04 2010-12-08 伊利诺伊大学评议会 用于制造并组装可印刷半导体元件的方法
KR101203090B1 (ko) * 2004-07-30 2012-11-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체장치의 제조방법
JP2007150097A (ja) * 2005-11-29 2007-06-14 Toshiba Corp 半導体素子およびその製造方法
CN101506985A (zh) * 2006-09-22 2009-08-12 国产大学法人东北大学 半导体装置和半导体装置的制造方法
JP2010238873A (ja) * 2009-03-31 2010-10-21 Panasonic Corp フレキシブル半導体装置およびその製造方法
JP5677306B2 (ja) * 2009-09-25 2015-02-25 出光興産株式会社 有機薄膜トランジスタ
EP2624326A4 (en) * 2010-09-29 2017-05-10 Posco Method for manufacturing a flexible electronic device using a roll-shaped motherboard, flexible electronic device, and flexible substrate
JP6006975B2 (ja) * 2011-05-19 2016-10-12 株式会社半導体エネルギー研究所 半導体装置の作製方法
WO2014021423A1 (ja) * 2012-08-01 2014-02-06 東京エレクトロン株式会社 電子デバイス用のパターン形成方法、電子デバイス及びパターン形成装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1124106A (ja) * 1997-07-03 1999-01-29 Seiko Epson Corp 液晶パネル用基板及び液晶パネル並びにそれらの製造方法
JP2004165600A (ja) * 2002-09-25 2004-06-10 Sharp Corp 単結晶Si基板、半導体装置およびその製造方法
JP2005079556A (ja) * 2003-09-03 2005-03-24 Seiko Epson Corp 転写装置
JP2006066906A (ja) * 2004-07-30 2006-03-09 Semiconductor Energy Lab Co Ltd 薄膜集積回路の剥離方法および半導体装置の作製方法
WO2010001537A1 (ja) * 2008-06-30 2010-01-07 株式会社ニコン 表示素子の製造方法及び製造装置、薄膜トランジスタの製造方法及び製造装置、及び回路形成装置
WO2014126041A1 (ja) * 2013-02-15 2014-08-21 株式会社ニコン 薄膜の転写方法、薄膜トランジスタの製造方法、液晶表示装置の画素電極形成方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017183717A (ja) * 2016-03-24 2017-10-05 株式会社半導体エネルギー研究所 半導体装置およびその作製方法、および剥離装置
US11107846B2 (en) 2016-03-24 2021-08-31 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, manufacturing method thereof, and separation apparatus
WO2021044705A1 (ja) * 2019-09-03 2021-03-11 国立大学法人東京大学 有機半導体デバイスのソース/ドレイン用電極、それを用いた有機半導体デバイス、及びそれらの製造方法

Also Published As

Publication number Publication date
KR102454094B1 (ko) 2022-10-14
TWI777064B (zh) 2022-09-11
TWI760683B (zh) 2022-04-11
JP2020074364A (ja) 2020-05-14
KR20170048353A (ko) 2017-05-08
TW201621978A (zh) 2016-06-16
TWI662587B (zh) 2019-06-11
CN111128707B (zh) 2023-06-16
CN106605294A (zh) 2017-04-26
JP6593336B2 (ja) 2019-10-23
TW202018789A (zh) 2020-05-16
CN111128707A (zh) 2020-05-08
TW201933449A (zh) 2019-08-16
JPWO2016031762A1 (ja) 2017-06-08
CN110379715A (zh) 2019-10-25
CN106605294B (zh) 2020-01-21
JP6897734B2 (ja) 2021-07-07

Similar Documents

Publication Publication Date Title
JP6897734B2 (ja) 転写基板
US9377918B2 (en) Method and apparatus for forming patterns in coatings on opposite sides of a transparent substrate
JP4550944B2 (ja) フレキシブル半導体装置およびその製造方法
KR20100115302A (ko) 박막 트랜지스터의 제조 방법 및 박막 트랜지스터
JP2015060780A (ja) 表示装置の製造方法及び製造システム
JP2005506704A (ja) 薄膜トランジスタ装置及び薄膜トランジスタ装置の製造方法
JP5505032B2 (ja) アクティブマトリクス型駆動基板、その製造方法及び表示装置
WO2011142081A1 (ja) フレキシブル半導体装置およびその製造方法
JP4679673B2 (ja) フレキシブル半導体装置の製造方法及びそれに使用される積層膜
US7686052B2 (en) Lamination apparatus and laser-induced thermal imaging method using the same
JP2013026546A (ja) 薄膜デバイス用基板、及び薄膜デバイスの製造方法
JP5445590B2 (ja) 薄膜トランジスタの製造方法
JP7434898B2 (ja) 無線通信装置の製造方法、無線通信装置および無線通信装置の集合体
JP2005166894A (ja) 有機薄膜トランジスタ、その製造方法および製造装置
WO2018038107A1 (ja) 有機薄膜トランジスタとその製造方法および画像表示装置
JP2007180471A (ja) 薄膜トランジスタ及びその製造方法
JPH1012904A (ja) 薄膜半導体装置の製造方法
JP7116962B2 (ja) 有機薄膜トランジスタ用の電極形成方法および電極形成装置ならびに有機薄膜トランジスタの製造方法
JP5261384B2 (ja) 透明導電ナノ構造膜画素電極およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15835496

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016545518

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177005139

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15835496

Country of ref document: EP

Kind code of ref document: A1