WO2014126041A1 - 薄膜の転写方法、薄膜トランジスタの製造方法、液晶表示装置の画素電極形成方法 - Google Patents

薄膜の転写方法、薄膜トランジスタの製造方法、液晶表示装置の画素電極形成方法 Download PDF

Info

Publication number
WO2014126041A1
WO2014126041A1 PCT/JP2014/053043 JP2014053043W WO2014126041A1 WO 2014126041 A1 WO2014126041 A1 WO 2014126041A1 JP 2014053043 W JP2014053043 W JP 2014053043W WO 2014126041 A1 WO2014126041 A1 WO 2014126041A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
thin film
liquid
film
oxide semiconductor
Prior art date
Application number
PCT/JP2014/053043
Other languages
English (en)
French (fr)
Inventor
誠 中積
康孝 西
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Priority to JP2015500226A priority Critical patent/JP6222218B2/ja
Publication of WO2014126041A1 publication Critical patent/WO2014126041A1/ja
Priority to US14/798,964 priority patent/US9536912B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/127Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • H01L21/2003Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy characterised by the substrate
    • H01L21/2007Bonding of semiconductor wafers to insulating substrates or to semiconducting substrates using an intermediate insulating layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1222Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer
    • H01L27/1225Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or crystalline structure of the active layer with semiconductor materials not belonging to the group IV of the periodic table, e.g. InGaZnO
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1262Multistep manufacturing methods with a particular formation, treatment or coating of the substrate
    • H01L27/1266Multistep manufacturing methods with a particular formation, treatment or coating of the substrate the substrate on which the devices are formed not being the final device substrate, e.g. using a temporary substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78603Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the insulating substrate or support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/13613Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit the semiconductor element being formed on a first substrate and thereafter transferred to the final cell substrate

Definitions

  • the present invention relates to a thin film transfer method, a thin film transistor manufacturing method, and a pixel electrode forming method of a liquid crystal display device.
  • This application claims priority based on Japanese Patent Application No. 2013-27594 for which it applied on February 15, 2013, and uses the content here.
  • an oxide semiconductor film is a material having both visible light transmittance and electrical conductivity, it is used as a transparent electrode for flat panel displays (FPD), thin film solar cells, and the like.
  • an oxide semiconductor film is also used as a semiconductor layer of a thin film transistor because of semiconductor characteristics.
  • These oxide semiconductor films are generally formed by a vacuum film formation method such as a sputtering method.
  • the vacuum film formation method requires a large-scale vacuum apparatus, and thus the manufacturing cost increases. Therefore, as a simpler method for forming an oxide semiconductor film, a wet film forming method such as a sol-gel method, an electroless deposition method, or an electrolytic deposition method is known.
  • PET polyethylene terephthalate
  • oxide semiconductor film with high crystallinity can be obtained by growing (film formation) at a high temperature by heating the substrate. It is difficult to obtain an oxide semiconductor film with high crystallinity at a low temperature (about 100 to 200 ° C.) that can withstand a resin substrate.
  • Patent Document 1 discloses a technique for transferring a transparent conductive layer to a substrate using a transfer foil in which at least a transparent conductive layer and an adhesive layer are sequentially formed on a plastic film directly or via a release layer. ing.
  • aspects of the present invention provide a thin film transfer method, a thin film transistor manufacturing method, and a pixel electrode formation method for a liquid crystal display device that can transfer a thin film onto a substrate without using a release layer or an adhesive layer. Objective.
  • One aspect of the present invention is a thin film transfer method in which a thin film formed on a first substrate is transferred to a second substrate, the first substrate being brought into contact with a liquid to swell, and the second substrate and the thin film Are brought into contact with each other through the liquid, and the liquid is dried and the thin film is attached to the second substrate.
  • Another embodiment of the present invention is a thin film transistor manufacturing method including forming a semiconductor layer provided in contact with a source electrode and a drain electrode, and the semiconductor layer is formed by the thin film transfer method of the above embodiment. .
  • One embodiment of the present invention is a pixel electrode formation method for a liquid crystal display device including forming a pixel electrode connected to a thin film transistor, and the pixel electrode is formed by the thin film transfer method of the above embodiment.
  • a thin film can be transferred onto a substrate without using a release agent or an adhesive layer.
  • FIG. 1 is a process diagram showing a first example of a thin film transfer method according to this embodiment.
  • a first substrate 12 on which a thin film 11 is formed is prepared.
  • a vacuum film forming method such as a sputtering method, a vapor deposition method, or a CVD method is used.
  • a thin film formed by the above-described vacuum film forming method has fewer impurities in the thin film than a thin film formed by a wet film forming method such as a sol-gel method, an electroless deposition method, or an electrolytic deposition method.
  • a wet film forming method such as a sol-gel method, an electroless deposition method, or an electrolytic deposition method.
  • plasma or the like when plasma or the like is used, high energy particles can be deposited. Therefore, a thin film formed by a vacuum film forming method tends to be a highly crystalline film, and tends to have excellent electrical conductivity and transmittance. is there.
  • the thin film 11 is not particularly limited.
  • an oxide semiconductor film is used.
  • the material constituting such an oxide semiconductor film include zinc oxide (ZnO), indium tin oxide (ITO), and the like.
  • zinc oxide zinc oxide
  • ITO indium tin oxide
  • AZO aluminum-doped zinc oxide
  • conductivity may be imparted by doping gallium or the like as a material other than aluminum.
  • the thickness of the thin film 11 is not particularly limited as long as the liquid described later can permeate the first substrate 12, but can be, for example, 50 nm to 2 ⁇ m.
  • the thickness of the thin film 11 can be about 50, 60, 70, 80, 90, 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, or 2000 nm.
  • the bulk density of the thin film 11 is not particularly limited as long as the liquid described later can permeate the first substrate 12, and can be, for example, 2.0 kg / m 3 to 5.6 kg / m 3. .
  • the bulk density of the thin film 11 is about 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, or 5.6 kg / m 3 . it can.
  • the thickness and bulk density of the thin film 11 depend on the film formation conditions such as the film formation time, the degree of vacuum, the voltage applied to the target, and the distance between the target and the substrate when the film is formed by the vacuum film formation method. Adjustment can be made easily by controlling.
  • the first substrate 12 As the 1st board
  • the first substrate 12 include an acrylic substrate and a polystyrene substrate.
  • “Wettability” refers to a characteristic determined by the angle (contact angle) between a droplet and the substrate surface when a liquid is dropped on the substrate, and the wettability is low when the contact angle is large. (It is difficult to wet), and when the contact angle is small, the wettability is high (it is easy to wet).
  • the first substrate 12 swollen by the liquid can be used again for forming and peeling the thin film 11 when dried.
  • the second substrate 21 is not particularly limited as long as it has higher wettability than the first substrate 12 with respect to the liquid described later.
  • Examples of such second substrate 21 include a resin substrate such as polyethylene terephthalate (PET), a glass substrate such as SiO 2, and the like.
  • the second substrate 21 may be subjected to ultraviolet cleaning, plasma treatment, or the like on the surface to which the thin film 11 is transferred in order to improve the wettability with respect to the liquid described later.
  • a liquid 31 is applied to the thin film 11 formed on the first substrate 12.
  • a dip coating method in which the entire first substrate 12 on which the thin film 11 is formed is immersed in the liquid 31
  • a dropping method in which the liquid 31 is dropped on the thin film 11
  • a spray coating method or the like for spraying the liquid 31 is used.
  • the amount of the liquid 31 applied to the thin film 11 is not particularly limited as long as the liquid 31 is applied to the entire thin film 11 formed on the first substrate 12, but the thickness and the thickness of the thin film 11 are not limited. It is appropriately adjusted according to the density and the like.
  • the amount of the liquid 31 applied to the thin film 11 is such that when the liquid 31 applied to the thin film 11 contacts the second substrate 21 with the surface of the first substrate 12 on which the thin film 11 is formed. The amount is sufficient to intervene between the thin film 11 formed on the first substrate 12 and the second substrate 21.
  • a material that swells the first substrate 12 can be used, and water, alcohol, or a mixture of water and alcohol is used.
  • the alcohol include methanol, ethanol, isopropyl alcohol, 1-propanol and the like.
  • the liquid 31 is applied to the thin film 11 formed on the first substrate 12, and the thin film 11 is sufficiently wet with the liquid 31, and the first substrate 12
  • the surface on which the thin film 11 is formed is brought into contact with the second substrate 21.
  • the liquid 31 reaches the first substrate 12 while penetrating the thin film 11, and the first substrate 12 is swollen by the liquid 31, whereby the thin film 11 is peeled from the first substrate 12, and the peeled thin film 11 is the second It adheres to the substrate 21.
  • the thin film 11 thus peeled adheres to the second substrate 21 because the wettability to the liquid 31 is higher in the second substrate 21 than in the first substrate 12, and the thin film 11 is second due to the surface tension of the liquid 31. This is considered to be caused by being drawn to the substrate 21.
  • the first substrate 12 and the second substrate 21 are heated. Then, the liquid 31 evaporates, and the thin film 11, the first substrate 12, and the second substrate 21 are dried, and the thin film 11 is firmly transferred (attached) to the second substrate 21 as shown in FIG. Is done.
  • the heating of the first substrate 12 and the second substrate 21 is performed to dry the liquid 31, if the liquid 31 is dried at room temperature, the first substrate 12 and the second substrate 21 are not necessarily used. There is no need to heat the two substrates 21. However, from the viewpoint of shortening the transfer time of the thin film 11, the liquid 31 can be easily dried by heating the first substrate 12 and the second substrate 21.
  • substrate 21 are attached. Can be contacted. Further, when the thin film 11 peeled from the first substrate 12 is attached to the second substrate 21, the thin film 11 can be brought into contact with the second substrate 21 while being sufficiently wet with the liquid 31. If the amount of the liquid 31 is insufficient, the thin film 11 peeled from the first substrate 12 tends to be difficult to adhere to the second substrate 21.
  • the temperature at which the second substrate 21 is heated is equal to or higher than the temperature at which the liquid 31 evaporates (the boiling point of the liquid), and the first The melting point of the substrate 12 and the second substrate 21 may be less than the melting point.
  • the temperature at which the first substrate 12 and the second substrate 21 are heated can be about 100 ° C.
  • FIG. 2 is a process diagram showing a second example of the thin film transfer method according to the present embodiment.
  • the same components as those in the first example of the thin film transfer method shown in FIG. 1 are identical to the first example of the thin film transfer method shown in FIG. 1;
  • a first substrate 12 on which a thin film 11 is formed is prepared.
  • a second substrate 21 for transferring the thin film 11 is prepared (see FIG. 1B).
  • a liquid 31 is applied to one surface (the surface to be brought into contact with the surface of the first substrate 12 on which the thin film 11 is formed) 21a.
  • a dip coating method in which the second substrate 21 is immersed in the liquid 31 a dropping method in which the liquid 31 is dropped on the one surface 21a of the second substrate 21, and the second substrate
  • a spray coating method for spraying the liquid 31 on the one surface 21a of 21 is used.
  • the amount of the liquid 31 applied to the one surface 21a of the second substrate 21 is formed on the first substrate 12 when the second substrate 21 is brought into contact with the surface of the first substrate 12 on which the thin film 11 is formed.
  • the amount of the liquid 31 applied to the entire thin film 11 is not particularly limited, but may be appropriately adjusted according to the thickness, bulk density, etc. of the thin film 11.
  • the amount of the liquid 31 applied to the one surface 21a of the second substrate 21 is such that the liquid 31 after being applied to the one surface 21a of the second substrate 21 is the same as the surface of the first substrate 12 on which the thin film 11 is formed. When the second substrate 21 is brought into contact, the amount is sufficient to be interposed between the thin film 11 formed on the first substrate 12 and the second substrate 21.
  • one surface 21a of the second substrate 21 on which the liquid 31 is applied is brought into contact with the surface of the first substrate 12 on which the thin film 11 is formed. That is, the surface of the first substrate 12 on which the thin film 11 is formed and the one surface 21 a of the second substrate 21 coated with the liquid 31 are brought into contact via the liquid 31. Then, the liquid 31 reaches the first substrate 12 while penetrating the thin film 11, and the first substrate 12 is swollen by the liquid 31, whereby the thin film 11 is peeled from the first substrate 12, and the peeled thin film 11 is the second It adheres to the substrate 21.
  • the thin film 11 thus peeled adheres to the second substrate 21 because the wettability to the liquid 31 is higher in the second substrate 21 than in the first substrate 12, and the thin film 11 is attached to the second substrate due to the surface tension of the liquid 31. This is considered to be caused by being drawn to 21.
  • the first substrate 12 and the second substrate 21 are heated. Then, the liquid 31 evaporates and the thin film 11, the first substrate 12 and the second substrate 21 are dried, and the thin film 11 is firmly transferred to the one surface 21a of the second substrate 21 as shown in FIG. (Attached).
  • the heating of the first substrate 12 and the second substrate 21 is performed to dry the liquid 31, if the liquid 31 is dried at room temperature, the first substrate 12 and the second substrate 21 are not necessarily used. There is no need to heat the two substrates 21. However, from the viewpoint of shortening the transfer time of the thin film 11, the liquid 31 can be easily dried by heating the first substrate 12 and the second substrate 21.
  • the thin film transfer method of the present embodiment it is not necessary to provide a release film for the purpose of facilitating peeling of the thin film from the substrate as in the prior art. Can be prevented. Moreover, since it is not necessary to transfer the thin film 11 onto the second substrate 21 via an adhesive, the thin film 11 can be transferred as it is onto a metal wiring or an electronic device. It can be used for a wider range of applications. Therefore, when the thin film 11 transferred onto the second substrate 21 is formed of an oxide semiconductor or the like having high mobility by the thin film transfer method of the present embodiment, the thin film 11 should be used as a channel layer of the thin film transistor. Is also possible.
  • the thin film transfer method of this embodiment can also be used for a flexible second substrate, for example, a roll that continuously forms a film on the substrate at a low temperature and a normal pressure. ⁇ It can also be applied to the to-roll method.
  • the method for manufacturing a thin film transistor of this embodiment is a method including a step of forming an oxide semiconductor layer by the above-described thin film transfer method.
  • FIG. 3 is a process diagram showing an example of a method for manufacturing a thin film transistor according to the present embodiment.
  • a gate electrode 42 and a gate insulating film 43 are formed on a substrate (hereinafter referred to as “second substrate”) 41 made of resin, glass or the like by a known technique. Form.
  • first substrate a substrate on which an oxide semiconductor film 44 having a desired thickness is formed in advance.
  • the thickness of the oxide semiconductor film 44 can be in the range of 100 nm to 1 ⁇ m.
  • the thickness of the oxide semiconductor film 44 can be about 100, 200, 300, 400, 500, 600, 700, 800, 900, or 1000 nm.
  • the surface on the side on which the oxide semiconductor film 44 is formed and the surface on the side on which the gate electrode 42 and the gate insulating film 43 in the second substrate 41 are formed are brought into contact with each other through the liquid, and the first substrate And the second substrate 41 is heated.
  • a resist 45 is applied on the oxide semiconductor film 44 transferred onto the second substrate 41, and the resist 45 is exposed and developed to form an oxide.
  • the semiconductor film 44 is patterned into a desired shape.
  • the oxide semiconductor film 44 transferred onto the second substrate 41 has the same chemical resistance as that before transfer, so that The oxide semiconductor film 44 is etched with a simple etcher.
  • a source electrode 46, a drain electrode 47, and a passivation film 48 are formed to obtain a thin film transistor.
  • the oxide semiconductor film 44 when transferring the oxide semiconductor film 44 from the first substrate to the second substrate 41, a release film or an adhesive is not required, and therefore, the second substrate directly serving as a base.
  • An oxide semiconductor film 44 can be formed over the substrate 41.
  • the gate electrode 42 and the gate insulating film 43 are insoluble in a liquid necessary for peeling the oxide semiconductor film 44 from the first substrate, the gate electrode 42 and the gate insulating film 43 are deteriorated by the liquid. There is no.
  • the temperature at which the oxide semiconductor film 44 is transferred is equal to or higher than the temperature at which the liquid evaporates (the boiling point of the liquid) and is lower than the melting point of the first substrate and the second substrate 41.
  • the gate insulating film 43 is not deteriorated by heat when the oxide semiconductor film 44 is transferred.
  • the method of forming the source electrode 46 and the drain electrode 47 after forming the oxide semiconductor film 44 on the gate insulating film 43 has been described.
  • the source electrode 46 and the drain on the gate insulating film 43 are described.
  • the oxide semiconductor film 44 may be formed (transferred) after the electrode 47 is formed. After that, by patterning the oxide semiconductor film 44 so as to have a desired shape as necessary, a thin film transistor having the same performance as the above example can be formed.
  • FIG. 4 is a process diagram showing another example of a method for manufacturing a thin film transistor according to the present embodiment.
  • an oxide semiconductor film 52 is formed on a substrate 51 made of resin, glass, or the like by the above-described thin film transfer method of the present embodiment.
  • a source electrode 53 and a drain electrode 54 are formed on the oxide semiconductor film 52 by a known technique.
  • a gate insulating film 55 is formed by a known technique so as to cover the source electrode 53 and the drain electrode 54.
  • a gate electrode 56 is formed on the gate insulating film 55 by a known technique to obtain a thin film transistor.
  • the pixel electrode forming method of the liquid crystal display device of the present embodiment is a method including a step of transferring a pixel electrode onto a substrate on which a thin film transistor is formed by the above-described thin film transfer method.
  • FIG. 5 is a process diagram illustrating an example of a pixel electrode forming method of the liquid crystal display device according to the present embodiment.
  • a gate electrode and a gate insulating film are formed on a substrate (hereinafter referred to as “second substrate”) 61 made of resin, glass, or the like by a known technique.
  • a thin film transistor 62 made of a semiconductor film and patterned into a desired pattern is formed.
  • the oxide semiconductor film 63 is transferred onto the second substrate 61 on which the thin film transistor 62 is formed by the above-described thin film transfer method.
  • a substrate on which an oxide semiconductor film 63 having a desired thickness is formed in advance (hereinafter referred to as “first substrate”) is prepared.
  • the thickness of the oxide semiconductor film 63 may be in the range of 100 nm to 1 ⁇ m.
  • the thickness of the oxide semiconductor film 63 can be about 100, 200, 300, 400, 500, 600, 700, 800, 900, or 1000 nm.
  • the oxide semiconductor film 63 in the first substrate is changed.
  • the surface on the side where the thin film transistor 62 is formed on the second substrate 61 is brought into contact with the liquid via the liquid, and the first substrate and the second substrate 61 are heated.
  • a resist 64 for patterning into a desired pixel electrode shape is applied on the oxide semiconductor film 63 transferred onto the second substrate 61.
  • the resist 64 coated on the oxide semiconductor film 63 is exposed using a photomask 65, thereby patterning the resist 64 into the shape of the pixel electrode. .
  • TMAH tetramethylammonium hydroxide
  • the oxide semiconductor film 63 transferred onto the second substrate 61 has the same chemical resistance as that before transfer, so that The oxide semiconductor film 63 is etched with a simple etcher.
  • the pixel electrode 66 is obtained by removing the resist 64.
  • the oxide semiconductor film 63 it is also possible to perform patterning on the oxide semiconductor film 63 before transfer and transfer the patterned oxide semiconductor film 63 directly. In that case, it becomes possible by aligning the pixel electrode 66 and the thin film transistor 62 with high accuracy. This eliminates the need for processes such as exposure and development for patterning the oxide semiconductor film 63 in the subsequent processes for transferring the oxide semiconductor film 63.
  • the manufacturing process of the pixel electrode 66 may be performed in the order of (22) ⁇ (23) ⁇ (24) ⁇ (25) ⁇ (26) ⁇ (27) ⁇ (21).
  • the pixel electrode forming method of the liquid crystal display device of this embodiment when transferring the oxide semiconductor film 63 from the first substrate to the second substrate 61, no release film or adhesive is required, so The oxide semiconductor film 63 can be formed over the second substrate 61. Further, since the thin film transistor 62 is insoluble in a liquid necessary for peeling the oxide semiconductor film 63 from the first substrate, the thin film transistor 62 is not deteriorated by this liquid. Further, since the temperature at which the oxide semiconductor film 63 is transferred is equal to or higher than the temperature at which the liquid evaporates (the boiling point of the liquid) and is lower than the melting point of the first substrate and the second substrate 61, the second substrate 61. The thin film transistor 62 is not deteriorated by heat when the oxide semiconductor film 63 is transferred.
  • an acrylic substrate (first substrate) was prepared, and an aluminum-doped zinc oxide (AZO) film in which zinc atom was doped with 3 atom% aluminum was directly formed on the acrylic substrate by sputtering.
  • the film thickness of the aluminum-doped zinc oxide film formed on the acrylic substrate was 180 nm, and the sheet resistance was 200 ⁇ / ⁇ .
  • a PET substrate (second substrate) for transferring the aluminum-doped zinc oxide film formed on the acrylic substrate was prepared.
  • the PET substrate was immersed in ethanol, and ethanol was applied to the surface of the acrylic substrate that was in contact with the surface on which the oxide semiconductor film was formed.
  • one surface of the PET substrate coated with ethanol was brought into contact with the surface of the acrylic substrate on which the aluminum-doped zinc oxide film was formed. Then, the PET substrate was heated at 100 ° C. for 3 minutes. As a result, the aluminum-doped zinc oxide film was peeled off from the acrylic substrate, ethanol was completely evaporated and the PET substrate was dried, and the aluminum-doped zinc oxide film was adhered to one surface of the PET substrate. In this way, the aluminum-doped zinc oxide film formed on the acrylic substrate was transferred to one surface of the PET substrate.
  • FIG. 6 is an SEM image of the aluminum-doped zinc oxide film transferred to one surface of the PET substrate. As shown in FIG. 6, it was found that the obtained aluminum-doped zinc oxide film was transferred onto the PET substrate without cracks, fine particles, and impurities.
  • the aluminum-doped zinc oxide film transferred to one surface of the PET substrate was subjected to composition analysis by energy dispersive X-ray spectroscopy (EDX), as shown in FIG. Only zinc and zinc were detected, and it was found that a zinc oxide film was obtained. In addition, since the doping amount of aluminum with respect to zinc oxide was a small amount from the detection limit of EDX, aluminum was not detected. Further, the crystal structure analysis of the aluminum-doped zinc oxide film transferred to one surface of the PET substrate was performed by X-ray diffraction (XRD). FIG. 8 shows the result of a ⁇ -2 ⁇ scan by XRD, where the horizontal axis represents 2 ⁇ and the vertical axis represents intensity. As shown in FIG.
  • XRD X-ray diffraction
  • a Si substrate on which a silicon oxide film (film thickness 200 nm) was formed was prepared.
  • a source electrode and a drain electrode made of silver (Ag) were formed on the silicon oxide film by sputtering.
  • the film thickness of the source electrode and the drain electrode was 50 nm.
  • an acrylic substrate on which a zinc oxide film (150 nm) is formed is prepared by sputtering, and ethanol is spin-coated at 400 rpm for 3 seconds on an Si substrate on which a source electrode and a drain electrode are formed. The substrate and the Si substrate were brought into contact.
  • the acrylic substrate was heated to 90 ° C., and after 5 minutes, the acrylic substrate and the Si substrate were peeled off. As a result, the zinc oxide film was transferred between the source electrode and the drain electrode, and on the source electrode and the drain electrode. . Then, the characteristics of the fabricated thin film transistor were evaluated using the Si substrate as a gate electrode.
  • FIG. 9 is a graph showing the characteristics of the manufactured thin film transistor.
  • the horizontal axis indicates the voltage applied between the source and the drain, and the vertical axis indicates the current value detected by the drain electrode.
  • the multiple results shown correspond to the gate voltage applied to the gate electrode.
  • a gate voltage of ⁇ 20 V to 20 V was applied to the gate electrode of the thin film transistor obtained, and a voltage of 0 to ⁇ 40 V was applied between the source and drain to pass a current.
  • the manufactured thin film transistor operated as a transistor.
  • a thin film can be transferred on and between electrodes without using a release layer or an adhesive layer, and the operation of a thin film transistor using such a thin film as a semiconductor layer can also be confirmed.

Abstract

 薄膜の転写方法は、第一基板に形成された薄膜を第二基板に転写する方法であって、前記第一基板を液体に接触させて膨潤させることと、前記第二基板と前記薄膜とを、前記液体を介して接触させることと、前記液体を乾燥させ、前記薄膜を前記第二基板に付着させることと、を有する。

Description

薄膜の転写方法、薄膜トランジスタの製造方法、液晶表示装置の画素電極形成方法
 本発明は、薄膜の転写方法、薄膜トランジスタの製造方法、液晶表示装置の画素電極形成方法に関する。
 本願は、2013年2月15日に出願された特願2013-27594号に基づき優先権を主張し、その内容をここに援用する。
 酸化物半導体膜は、可視光透過性と電気伝導性を兼ね備えた材料であることから、フラットパネルディスプレー(FPD)や薄膜太陽電池等の透明電極として用いられている。
 一方、酸化物半導体膜は、半導体的な特性から、薄膜トランジスタの半導体層としても用いられている。これら酸化物半導体膜は、一般的にスパッタリング法等の真空成膜法により成膜される。真空成膜法では、大規模な真空装置を必要とするため、製造コストが高くなる。
 そこで、より簡便な酸化物半導体膜の成膜方法としては、ゾルゲル法、無電解析出法、電解析出法等の湿式による成膜方法が知られている。しかしながら、これらの成膜方法は、基板を加熱すること等によって、高温で成長(成膜)を行うことにより、結晶性の高い酸化物半導体膜が得られるものの、ポリエチレンテレフタレート(PET)等に代表される樹脂基板が耐えられるような低温(100~200℃程度)では、結晶性の高い酸化物半導体膜を得ることが困難である。
 低温かつ常圧で、真空成膜法により得られるような結晶性の高い酸化物半導体膜を得る方法としては、転写法が挙げられる。例えば、特許文献1には、プラスチックフィルムに直接または離型層を介して、少なくとも透明導電性層および接着層を順次形成した転写箔を用いて基板に透明導電性層を転写する技術が開示されている。
特開平8-160424号公報
 しかしながら、従来技術のように、薄膜の転写を行う際に離型層や接着層を用いると、その分コストがかかるという問題がある。また、離型層や接着層は、薄膜を用いて電子デバイスを作製する際に設計上問題となる場合がある。
 本発明の態様は、離型層や接着層を用いずに薄膜を基板上に転写することが可能な薄膜の転写方法、薄膜トランジスタの製造方法、液晶表示装置の画素電極形成方法を提供することを目的とする。
 本発明の一態様は、第一基板に形成された薄膜を第二基板に転写する、薄膜の転写方法であって、第一基板を液体に接触させて膨潤させることと、第二基板と薄膜とを、液体を介して接触させることと、液体を乾燥させ、薄膜を第二基板に付着させることと、を有する。
 また、本発明の一態様は、ソース電極及びドレイン電極に接触して設けられる半導体層を形成することを含む薄膜トランジスタの製造方法であって、半導体層を、上記態様の薄膜の転写方法により形成する。
 また、本発明の一態様は、薄膜トランジスタと接続する画素電極を形成することを含む液晶表示装置の画素電極形成方法であって、画素電極を、上記態様の薄膜の転写方法により形成する。
 本発明の態様によれば、離型剤や接着層を用いずに薄膜を基板上に転写することができる。
薄膜の転写方法の第一の例を示す工程図である。 薄膜の転写方法の第二の例を示す工程図である。 薄膜トランジスタの製造方法の一例を示す工程図である。 薄膜トランジスタの製造方法の他の例を示す工程図である。 液晶表示装置の画素電極形成方法の一例を示す工程図である。 実施例でPET基板の一面に転写したアルミニウムドープ酸化亜鉛膜のSEM像である。 実施例でPET基板の一面に転写したアルミニウムドープ酸化亜鉛膜のEDXによる組成分析の測定結果を示す図である。 実施例でPET基板の一面に転写したアルミニウムドープ酸化亜鉛膜のXRDによる結晶構造解析の測定結果を示す図である。 実施例で作製した薄膜トランジスタの特性を示すグラフである。
 以下、図面を参照して、本実施形態に係る薄膜の転写方法、薄膜トランジスタの製造方法、液晶表示装置の画素電極形成方法について説明する。
 なお、以下の全ての図面においては、図面を見やすくするため、各構成要素の寸法や比率等は適宜異ならせている。
 また、本実施形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。
「薄膜の転写方法」(第一の例)
 図1は、本実施形態に係る薄膜の転写方法の第一の例を示す工程図である。
 まず、図1(a)に示すように、薄膜11が成膜された第一基板12を用意する。
 第一基板12上に、薄膜11を形成するには、スパッタリング法、蒸着法、CVD法等の真空成膜法が用いられる。
 一般的に、ゾルゲル法、無電解析出法、電解析出法等の湿式成膜法で成膜した薄膜よりも上述の真空成膜法で成膜した薄膜のほうが薄膜中の不純物が少ない。また、プラズマ等を用いた場合には高エネルギーの粒子を堆積させることができるため、真空成膜法で成膜した薄膜は結晶性の高い膜となりやすく、電気伝導性や透過率に優れる傾向にある。
 薄膜11としては、特に限定されるものではないが、例えば、酸化物半導体膜が用いられる。このような酸化物半導体膜を構成する材料としては、例えば、酸化亜鉛(ZnO)、インジウム・スズ酸化物(ITO)等が挙げられる。酸化亜鉛が用いられる場合、酸化亜鉛に僅かながら(例えば、1~5atom%程度)アルミニウムをドープすることにより導電性を付与したアルミニウムドープ酸化亜鉛(AZO)膜を形成してもよい。また、アルミニウム以外の材料としてガリウム等をドープすることにより導電性を付与してもよい。
 薄膜11の厚さは、後述する液体が第一基板12まで浸透可能であれば特に限定されるものではないが、例えば、50nm~2μmとすることができる。例えば、薄膜11の厚さは、約50、60、70、80、90、100、200、300、400、500、600、700、800、900、1000、又は2000nmにできる。
 薄膜11のかさ密度は、後述する液体が第一基板12まで浸透可能であれば特に限定されるものではないが、例えば、2.0kg/m~5.6kg/mとすることができる。例えば、薄膜11のかさ密度は、約2.0、2.5、3.0、3.5、4.0、4.5、5.0、5.5、又は5.6kg/mにできる。
 なお、薄膜11の厚さ及びかさ密度は、真空成膜法により成膜を行う際に、成膜時間や、真空度、ターゲットへの印加電圧、ターゲットと基板間の距離等の成膜条件を制御することにより容易に調整が可能である。
 第一基板12としては、後述する液体に対して、後述する第二基板よりもぬれ性が低く、かつ、後述する液体によって容易に膨潤するものが用いられる。このような第一基板12としては、例えば、アクリル基板、ポリスチレン基板等が挙げられる。
 なお、「ぬれ性」とは、液体を基板に滴下させた場合の、液滴と基板表面とのなす角(接触角)で判断される特性をいい、接触角が大きい場合にぬれ性が低い(ぬれにくい)と表し、接触角が小さい場合にぬれ性が高い(ぬれやすい)と表している。
 なお、液体によって膨潤した第一基板12は、乾燥すれば再び薄膜11の形成、剥離に用いることができる。
 次に、薄膜11を転写するための第二基板21を準備する(図1(c)参照)。
 第二基板21としては、後述する液体に対して、上述の第一基板12よりもぬれ性が高いものであれば特に限定されるものではない。このような第二基板21としては、例えば、ポリエチレンテレフタレート(PET)等の樹脂基板や、SiO等のガラス基板等が挙げられる。
 第二基板21は、後述する液体に対するぬれ性を向上するために、薄膜11が転写される面に紫外線洗浄やプラズマ処理等を行ってもよい。
 次に、図1(b)に示すように、第一基板12上に形成された薄膜11に、液体31を塗布する。
 薄膜11に液体31を塗布する方法としては、薄膜11が形成された第一基板12の全体を液体31に浸漬するディップコーティング法、薄膜11上に液体31を滴下する滴下法、薄膜11上に液体31を散布するスプレーコーティング法等が用いられる。
 薄膜11に塗布する液体31の量は、第一基板12上に形成された薄膜11の全体に液体31が塗布される量であれば特に限定されるものではないが、薄膜11の厚さやかさ密度等に応じて適宜調整される。また、薄膜11に塗布する液体31の量は、薄膜11に塗布した後の液体31が、第一基板12における薄膜11が形成されている側の面と第二基板21を接触させたとき、第一基板12上に形成された薄膜11と第二基板21の間に介在するのに十分な量とする。
 液体31としては、第一基板12を膨潤させるものを用いることができ、水もしくはアルコール、または、水とアルコールとの混合物が用いられる。アルコールとしては、例えば、メタノール、エタノール、イソプロピルアルコール、1-プロパノール等が挙げられる。
 次に、図1(c)に示すように、第一基板12上に形成された薄膜11に液体31を塗布して、薄膜11が液体31に十分にぬれた状態で、第一基板12における薄膜11が形成されている側の面と第二基板21を接触させる。すると、液体31は薄膜11を浸透しながら第一基板12へ到達し、液体31によって第一基板12が膨潤することにより、第一基板12から薄膜11が剥離し、剥離した薄膜11が第二基板21に付着する。このように剥離した薄膜11が第二基板21に付着するのは、液体31に対するぬれ性が第一基板12よりも第二基板21の方が高く、液体31の表面張力で薄膜11が第二基板21に引き寄せられることに起因すると考えられる。
 次に、第一基板12と第二基板21を加熱する。すると、液体31が蒸発して、薄膜11、第一基板12および第二基板21が乾燥するとともに、図1(d)に示すように、薄膜11は強固に第二基板21に転写(付着)される。なお、本実施形態において、第一基板12と第二基板21の加熱は液体31を乾燥させるために行っているので、室温にて液体31が乾燥するのであれば、必ずしも第一基板12と第二基板21の加熱を行う必要はない。ただし、薄膜11の転写時間の短縮という観点からは、第一基板12と第二基板21の加熱を行い、液体31を乾燥させやすくすることができる。
 なお、第一基板12上に形成された薄膜11に液体31を塗布した後、液体31が乾燥する前に、第一基板12における薄膜11が形成されている側の面と第二基板21を接触させることができる。
 また、第一基板12から剥離した薄膜11を第二基板21に付着させる際には、薄膜11を液体31に十分にぬれた状態にしたまま第二基板21と接触させることができる。
 液体31の量が不十分であると、第一基板12から剥離した薄膜11が第二基板21に付着しにくくなる傾向にある。
 また、第一基板12から剥離した薄膜11を第二基板21に付着させる際、第二基板21を加熱する温度は、液体31が蒸発する温度(液体の沸点)以上であり、かつ、第一基板12と第二基板21の融点未満としてもよい。例えば、第一基板12としてアクリル基板、第二基板21としてPET基板、液体31としてエタノールを用いた場合、第一基板12と第二基板21を加熱する温度は100℃程度とすることができる。
(第二の例)
 図2は、本実施形態に係る薄膜の転写方法の第二の例を示す工程図である。図2において、図1に示した薄膜の転写方法の第一の例と同一の構成要素には同一符号を付して、その説明を省略する。
 まず、図2(a)に示すように、薄膜11が成膜された第一基板12を用意する。
 次に、薄膜11を転写するための第二基板21を準備する(図1(b)参照)。
 次に、図1(b)に示すように、第二基板21の一面(第一基板12における薄膜11が形成されている側の面と接触させる面)21aに、液体31を塗布する。
 第二基板21の一面21aに液体31を塗布する方法としては、第二基板21を液体31に浸漬するディップコーティング法、第二基板21の一面21aに液体31を滴下する滴下法、第二基板21の一面21aに液体31を散布するスプレーコーティング法等が用いられる。
 第二基板21の一面21aに塗布する液体31の量は、第一基板12における薄膜11が形成されている側の面と第二基板21を接触させたとき、第一基板12上に形成された薄膜11の全体に液体31が塗布される量であれば特に限定されるものではないが、薄膜11の厚さやかさ密度等に応じて適宜調整される。また、第二基板21の一面21aに塗布する液体31の量は、第二基板21の一面21aに塗布した後の液体31が、第一基板12における薄膜11が形成されている側の面と第二基板21を接触させたとき、第一基板12上に形成された薄膜11と第二基板21の間に介在するのに十分な量とする。
 次に、図2(c)に示すように、液体31が塗布された第二基板21の一面21aと、第一基板12における薄膜11が形成されている側の面とを接触させる。すなわち、第一基板12における薄膜11が形成されている側の面と、液体31が塗布された第二基板21の一面21aとを、液体31を介して接触させる。すると、液体31は薄膜11を浸透しながら第一基板12へ到達し、液体31によって第一基板12が膨潤することにより、第一基板12から薄膜11が剥離し、剥離した薄膜11が第二基板21に付着する。このように剥離した薄膜11が第二基板21に付着するのは、液体31に対するぬれ性が第一基板12よりも第二基板21のほうが高く、液体31の表面張力で薄膜11が第二基板21に引き寄せられることに起因すると考えられる。
 次に、第一基板12と第二基板21を加熱する。すると、液体31が蒸発して、薄膜11、第一基板12および第二基板21が乾燥するとともに、図2(d)に示すように、薄膜11は強固に第二基板21の一面21aに転写(付着)される。なお、本実施形態において、第一基板12と第二基板21の加熱は液体31を乾燥させるために行っているので、室温にて液体31が乾燥するのであれば、必ずしも第一基板12と第二基板21の加熱を行う必要はない。ただし、薄膜11の転写時間の短縮という観点からは、第一基板12と第二基板21の加熱を行い、液体31を乾燥させやすくすることができる。
 本実施形態の薄膜の転写方法によれば、従来のように、基板から薄膜を剥離し易くすることを目的とした離型膜を設ける必要がないので、離型膜に由来する汚れが薄膜11に付着することを防止できる。また、接着剤を介して、第二基板21上に薄膜11を転写する必要がないばかりでなく、金属配線や電子デバイスの上にもそのまま薄膜11を転写することができるので、従来の転写法よりも適用可能な用途が広い。したがって、本実施形態の薄膜の転写方法によって、第二基板21上に転写される薄膜11を高い移動度を示す酸化物半導体等で形成した場合は、薄膜11を薄膜トランジスタのチャネル層として利用することも可能となる。一方、転写前に、第一基板12上に形成された薄膜11にパターニングを施して、その薄膜11を第二基板21上に転写した場合、パターニングされた薄膜11をそのまま第二基板21上に転写することが可能であるので、レジスト等を用いることなく、簡単にパターニングされた薄膜11を転写することが可能となる。なお、本実施形態の薄膜の転写方法は、可撓性を有する第二基板に対しても使用することができ、例えば、低温、常圧にて、基板上に連続的に成膜を行うロール・トゥ・ロール方式においても適用可能である。
「薄膜トランジスタの製造方法」
 本実施形態の薄膜トランジスタの製造方法は、酸化物半導体層を、上述の薄膜の転写方法により形成する工程を含む方法である。
 図3は、本実施形態に係る薄膜トランジスタの製造方法の一例を示す工程図である。
(1)まず、図3(a)に示すように、公知技術により、樹脂やガラス等からなる基板(以下、「第二基板」と言う。)41上に、ゲート電極42とゲート絶縁膜43を形成する。
(2)次に、図3(b)に示すように、ゲート電極42とゲート絶縁膜43が形成された第二基板41上に、上述の本実施形態の薄膜の転写方法により、酸化物半導体膜44を転写する。
 このとき、予め所望の厚さの酸化物半導体膜44が形成された基板(以下、「第一基板」と言う。)を用意する。なお、酸化物半導体膜44の厚さは、特に限定されるものではないが、例えば、100nm~1μmの範囲とすることができる。例えば、酸化物半導体膜44の厚さは、約100、200、300、400、500、600、700、800、900、又は1000nmにできる。
 また、第一基板に形成された酸化物半導体膜44に液体を塗布するか、あるいは、ゲート電極42とゲート絶縁膜43が形成された第二基板41に液体を塗布した後、第一基板における酸化物半導体膜44が形成されている側の面と、第二基板41におけるゲート電極42とゲート絶縁膜43が形成されている側の面とを、液体を介して接触させるとともに、第一基板と第二基板41を加熱する。
(3)次に、図3(c)に示すように、第二基板41上に転写された酸化物半導体膜44上にレジスト45を塗布し、そのレジスト45を露光、現像して、酸化物半導体膜44を所望の形状にパターニングする。
(4)次に、図3(d)に示すように、第二基板41上に転写された酸化物半導体膜44は、転写前のものと化学的な耐性は全く同じであるので、一般的なエッチャーにて、酸化物半導体膜44のエッチングを行う。
(5)次に、図3(e)に示すように、レジスト45を除去する。
(6)次に、図3(f)に示すように、ソース電極46、ドレイン電極47およびパッシベーション膜48を形成し、薄膜トランジスタが得られる。
 本実施形態の薄膜トランジスタの製造方法によれば、第一基板から第二基板41に酸化物半導体膜44を転写する際、離型膜や接着剤を必要としないので、直接、下地となる第二基板41上に酸化物半導体膜44を形成することが可能である。また、ゲート電極42やゲート絶縁膜43は、第一基板から酸化物半導体膜44を剥離させる時に必要な液体には不溶であるため、この液体によってゲート電極42やゲート絶縁膜43が劣化することはない。また、酸化物半導体膜44を転写する時の温度は、液体が蒸発する温度(液体の沸点)以上であり、かつ、第一基板と第二基板41の融点未満であるため、ゲート電極42やゲート絶縁膜43は、酸化物半導体膜44を転写する時の熱により劣化することはない。
 なお、上述の例では、ゲート絶縁膜43上に酸化物半導体膜44を形成してからソース電極46及びドレイン電極47を形成する方法について述べたが、ゲート絶縁膜43上にソース電極46及びドレイン電極47を形成してから酸化物半導体膜44を形成(転写)するようにしてもよい。その後、必要に応じて酸化物半導体膜44を所望の形状となるようにパターニングすることで、上述の例と同様の性能を有する薄膜トランジスタを形成することが可能である。
 また、上述の例以外にも、次のようにして薄膜トランジスタを製造することができる。
 図4は、本実施形態に係る薄膜トランジスタの製造方法の他の例を示す工程図である。
(11)まず、図4(a)に示すように、上述の本実施形態の薄膜の転写方法により、樹脂やガラス等からなる基板51上に、酸化物半導体膜52を形成する。
(12)次に、図4(b)に示すように、公知技術により、酸化物半導体膜52上に、ソース電極53とドレイン電極54を形成する。
(13)次に、図4(c)に示すように、公知技術により、ソース電極53とドレイン電極54を覆うように、ゲート絶縁膜55を形成する。
(14)次に、図4(d)に示すように、公知技術により、ゲート絶縁膜55上に、ゲート電極56を形成し、薄膜トランジスタが得られる。
「液晶表示装置の画素電極形成方法」
 本実施形態の液晶表示装置の画素電極形成方法は、上述の薄膜の転写方法により、薄膜トランジスタが形成された基板上に画素電極を転写する工程を含む方法である。
 図5は、本実施形態に係る液晶表示装置の画素電極形成方法の一例を示す工程図である。
(21)まず、図5(a)に示すように、公知技術により、樹脂やガラス等から構成される基板(以下、「第二基板」と言う。)61上に、ゲート電極とゲート絶縁膜、半導体膜により構成され、所望のパターンにパターニングされた薄膜トランジスタ62を形成する。
(22)次に、図5(b)に示すように、薄膜トランジスタ62が形成された第二基板61上に、上述の薄膜の転写方法により、酸化物半導体膜63を転写する。
 このとき、予め所望の厚さの酸化物半導体膜63が形成された基板(以下、「第一基板」と言う。)を用意する。なお、酸化物半導体膜63の厚さは、特に限定されるものではないが、例えば、100nm~1μmの範囲とすることができる。例えば、酸化物半導体膜63の厚さは、約100、200、300、400、500、600、700、800、900、又は1000nmにできる。
 また、第一基板に形成された酸化物半導体膜63に液体を塗布するか、あるいは、薄膜トランジスタ62が形成された第二基板61に液体を塗布した後、第一基板における酸化物半導体膜63が形成されている側の面と、第二基板61における薄膜トランジスタ62が形成されている側の面とを、液体を介して接触させるとともに、第一基板と第二基板61を加熱する。
(23)次に、図5(c)に示すように、第二基板61上に転写された酸化物半導体膜63上に、所望の画素電極の形状にパターニングするためのレジスト64を塗布する。
(24)次に、図5(d)に示すように、フォトマスク65を用いて、酸化物半導体膜63上に塗布したレジスト64を露光することにより、レジスト64を画素電極の形状にパターニングする。
(25)次に、図5(e)に示すように、水酸化テトラメチルアンモニウム(TMAH:tetramethylammonium hydroxide)等の現像液により、感光部のレジスト64を除去する。
(26)次に、図5(f)に示すように、第二基板61上に転写された酸化物半導体膜63は、転写前のものと化学的な耐性は全く同じであるので、一般的なエッチャーにて、酸化物半導体膜63のエッチングを行う。
(27)次に、図5(g)に示すように、レジスト64を除去することにより、画素電極66が得られる。
 また、転写前の酸化物半導体膜63に、予めパターニングを施し、パターニングされた酸化物半導体膜63を直接、転写することも可能である。その場合、画素電極66と薄膜トランジスタ62とを高精度に位置合わせすることによって可能となる。これにより、酸化物半導体膜63を転写する以降のプロセスにおいて、酸化物半導体膜63をパターニングするための露光や現像といったプロセスが不要となる。
 一方、薄膜トランジスタ62を形成する前に、予め第二基板61上に画素電極66をパターニングしておき、その後、薄膜トランジスタ62を形成することも可能である。その場合、画素電極66の製造工程を、上述の(22)→(23)→(24)→(25)→(26)→(27)→(21)の順に行えばよい。
 本実施形態の液晶表示装置の画素電極形成方法によれば、第一基板から第二基板61に酸化物半導体膜63を転写する際、離型膜や接着剤を必要としないので、直接、下地となる第二基板61上に酸化物半導体膜63を形成することが可能である。また、薄膜トランジスタ62は、第一基板から酸化物半導体膜63を剥離させる時に必要な液体には不溶であるため、この液体によって薄膜トランジスタ62が劣化することはない。また、酸化物半導体膜63を転写する時の温度は、液体が蒸発する温度(液体の沸点)以上であり、かつ、第一基板と第二基板61の融点未満であるため、第二基板61及び薄膜トランジスタ62は、酸化物半導体膜63を転写する時の熱により劣化することはない。
 以下、実施例により薄膜の転写方法、及び薄膜トランジスタの製造方法をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。
(薄膜の転写方法)
 まず、アクリル基板(第一基板)を用意し、このアクリル基板上に、直接、スパッタリング法により、酸化亜鉛に3atom%のアルミニウムがドープされたアルミニウムドープ酸化亜鉛(AZO)膜を成膜した。アクリル基板上に形成されたアルミニウムドープ酸化亜鉛膜の膜厚は180nm、シート抵抗は200Ω/□であった。
 次に、アクリル基板上に形成されたアルミニウムドープ酸化亜鉛膜を転写するためのPET基板(第二基板)を準備した。
 次に、PET基板をエタノールに浸漬し、アクリル基板における酸化物半導体膜が形成されている側の面と接触させる面に、エタノールを塗布した。
 次に、エタノールが塗布されたPET基板の一面と、アクリル基板におけるアルミニウムドープ酸化亜鉛膜が形成されている側の面とを接触させた。そして、PET基板を100℃で3分加熱した。これにより、アクリル基板からアルミニウムドープ酸化亜鉛膜が剥離し、エタノールが完全に蒸発してPET基板が乾燥するとともに、アルミニウムドープ酸化亜鉛膜がPET基板の一面に付着した。
 このようにして、アクリル基板上に形成されたアルミニウムドープ酸化亜鉛膜が、PET基板の一面に転写された。
 PET基板の一面に転写されたアルミニウムドープ酸化亜鉛膜のシート抵抗は2000Ω/□であった。
 また、PET基板の一面に転写されたアルミニウムドープ酸化亜鉛膜を走査型電子顕微鏡(SEM)により観察した。図6は、PET基板の一面に転写されたアルミニウムドープ酸化亜鉛膜のSEM像である。図6に示すように、得られたアルミニウムドープ酸化亜鉛膜は、クラックや微粒子、不純物もなくPET基板上に転写されていることが分かった。
 また、PET基板の一面に転写されたアルミニウムドープ酸化亜鉛膜について、エネルギー分散型X線分析法(Energy Dispersive X-ray Spectrometry:EDX)により組成解析を行ったところ、図7に示すように、酸素と亜鉛のみが検出され、酸化亜鉛膜が得られていることが分かった。なお、酸化亜鉛に対するアルミニウムのドーピング量は、EDXの検出限界よりも少量であるため、アルミニウムは検出されなかった。
 また、PET基板の一面に転写されたアルミニウムドープ酸化亜鉛膜について、X線回折法(X-ray Diffraction:XRD)により結晶構造解析を行った。図8は、XRDによるθ-2θスキャンの結果であり、横軸が2θ、縦軸が強度を示している。図8に示すように、酸化亜鉛(002)の回折ピークのみが確認され、アルミニウムドープ酸化亜鉛膜はC軸方向に強く配向していることが分かった。つまり、このように高い結晶性でC軸配向しているため、PET基板の一面に転写されたアルミニウムドープ酸化亜鉛膜は高い伝導性を示すといえる。
(薄膜トランジスタの製造方法)
 シリコン酸化膜(膜厚200nm)が形成されたSi基板を用意した。次に、このシリコン酸化膜上に、スパッタリング法を用いて、銀(Ag)からなるソース電極及びドレイン電極を形成した。このときのソース電極及びドレイン電極の膜厚は50nmであった。
 そして、スパッタリング法を用いて、酸化亜鉛膜(150nm)が形成されたアクリル基板を用意し、ソース電極及びドレイン電極が形成されたSi基板上にエタノールを400rpmで3秒間スピンコートしてから、アクリル基板とSi基板とを接触させた。
 その後、アクリル基板を90℃に加熱し、5分後にアクリル基板とSi基板とを剥がしたところ、ソース電極とドレイン電極との間、及びソース電極上、ドレイン電極上に酸化亜鉛膜が転写された。そして、Si基板をゲート電極とし、作製した薄膜トランジスタの特性を評価した。
 図9は、作製した薄膜トランジスタの特性を示すグラフである。図9のグラフにおいて、横軸はソース・ドレイン間に印加した電圧を示し、縦軸はドレイン電極で検出された電流値を示す。図示する複数の結果は、ゲート電極に印加するゲート電圧に対応する。
 得られた薄膜トランジスタのゲート電極に-20V~20Vのゲート電圧を印加し、ソース・ドレイン間に0~-40Vの電圧を印加して電流を流した。
 その結果、図9に示すように、作製した薄膜トランジスタはトランジスタとして動作した。以上のように、電極上や電極間にも離型層や接着層を用いずに薄膜を転写できることができ、このような薄膜を半導体層とする薄膜トランジスタの動作も確認することできた。
 11・・・薄膜、12・・・第一基板、21・・・第二基板、31・・・液体。

Claims (11)

  1.  第一基板に形成された薄膜を第二基板に転写する、薄膜の転写方法であって、前記第一基板を液体に接触させて膨潤させることと、前記第二基板と前記薄膜とを、前記液体を介して接触させることと、前記液体を乾燥させ、前記薄膜を前記第二基板に付着させることと、を有する薄膜の転写方法。
  2.  前記液体に対する前記第一基板のぬれ性は、前記液体に対する前記第二基板のぬれ性よりも低い請求項1に記載の薄膜の転写方法。
  3.  前記液体はアルコールを含む請求項1または2に記載の薄膜の転写方法。
  4.  前記第一基板はアクリル樹脂から構成される請求項1~3のいずれか1項に記載の薄膜の転写方法。
  5.  前記第二基板は樹脂材料から構成される請求項1~4のいずれか1項に記載の薄膜の転写方法。
  6.  前記第二基板は可撓性を有する請求項1~5のいずれか1項に記載の薄膜の転写方法。
  7.  前記薄膜は酸化物半導体である請求項1~6のいずれか1項に記載の薄膜の転写方法。
  8.  前記酸化物半導体は酸化亜鉛である請求項7に記載の薄膜の転写方法。
  9.  前記第一基板に形成された前記薄膜は、真空成膜法によって形成される請求項1~8のいずれか1項に記載の薄膜の転写方法。
  10.  ソース電極及びドレイン電極に接触して設けられる半導体層を形成することを含む薄膜トランジスタの製造方法であって、前記半導体層を、請求項1~9のいずれか1項に記載の薄膜の転写方法により形成する、薄膜トランジスタの製造方法。
  11.  薄膜トランジスタと接続する画素電極を形成することを含む液晶表示装置の画素電極形成方法であって、前記画素電極を、請求項1~9のいずれか1項に記載の薄膜の転写方法により形成する、液晶表示装置の画素電極形成方法。
PCT/JP2014/053043 2013-02-15 2014-02-10 薄膜の転写方法、薄膜トランジスタの製造方法、液晶表示装置の画素電極形成方法 WO2014126041A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015500226A JP6222218B2 (ja) 2013-02-15 2014-02-10 薄膜の転写方法、薄膜トランジスタの製造方法、液晶表示装置の画素電極形成方法
US14/798,964 US9536912B2 (en) 2013-02-15 2015-07-14 Method of transferring thin film, method of manufacturing thin film transistor, method of forming pixel electrode of liquid crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013027594 2013-02-15
JP2013-027594 2013-02-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/798,964 Continuation US9536912B2 (en) 2013-02-15 2015-07-14 Method of transferring thin film, method of manufacturing thin film transistor, method of forming pixel electrode of liquid crystal display device

Publications (1)

Publication Number Publication Date
WO2014126041A1 true WO2014126041A1 (ja) 2014-08-21

Family

ID=51354043

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/053043 WO2014126041A1 (ja) 2013-02-15 2014-02-10 薄膜の転写方法、薄膜トランジスタの製造方法、液晶表示装置の画素電極形成方法

Country Status (3)

Country Link
US (1) US9536912B2 (ja)
JP (1) JP6222218B2 (ja)
WO (1) WO2014126041A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016031762A1 (ja) * 2014-08-26 2016-03-03 株式会社ニコン デバイス製造方法および転写基板

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014126041A1 (ja) * 2013-02-15 2014-08-21 株式会社ニコン 薄膜の転写方法、薄膜トランジスタの製造方法、液晶表示装置の画素電極形成方法
DE102017202793B4 (de) 2017-02-21 2022-09-29 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum Transfer zumindest einer Dünnschicht
DE102018210658B4 (de) * 2018-06-28 2024-03-21 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren zum Bonden von zumindest einem Wafer und Substrat mit einem darauf befindlichen Wafer

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003017666A (ja) * 2001-06-29 2003-01-17 Toshiba Corp 半導体装置の製造方法、液晶表示装置の製造方法、及びel表示装置の製造方法
JP2003229588A (ja) * 2002-02-01 2003-08-15 Canon Inc 薄膜半導体の製造方法及び太陽電池の製造方法
WO2007083570A1 (ja) * 2006-01-16 2007-07-26 Matsushita Electric Industrial Co., Ltd. 半導体小片の製造方法ならびに電界効果トランジスタおよびその製造方法
WO2014020906A1 (ja) * 2012-07-30 2014-02-06 住友化学株式会社 複合基板の製造方法および半導体結晶層形成基板の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3604436B2 (ja) 1994-12-08 2004-12-22 尾池工業株式会社 プラスチック液晶パネル用透明導電性転写箔
JP3697859B2 (ja) * 1997-10-06 2005-09-21 松下電器産業株式会社 微細パターンの製造方法
JP2001352019A (ja) * 2000-06-09 2001-12-21 Kyushu Nitto Denko Kk 粘性魂状物の転写方法
JP2012248332A (ja) * 2011-05-25 2012-12-13 Dainippon Printing Co Ltd 色素増感型光電変換素子、色素増感型太陽電池及び色素増感型太陽電池モジュールの製造方法
JP2013080897A (ja) * 2011-09-22 2013-05-02 Sumitomo Chemical Co Ltd 複合基板の製造方法
WO2014126041A1 (ja) * 2013-02-15 2014-08-21 株式会社ニコン 薄膜の転写方法、薄膜トランジスタの製造方法、液晶表示装置の画素電極形成方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003017666A (ja) * 2001-06-29 2003-01-17 Toshiba Corp 半導体装置の製造方法、液晶表示装置の製造方法、及びel表示装置の製造方法
JP2003229588A (ja) * 2002-02-01 2003-08-15 Canon Inc 薄膜半導体の製造方法及び太陽電池の製造方法
WO2007083570A1 (ja) * 2006-01-16 2007-07-26 Matsushita Electric Industrial Co., Ltd. 半導体小片の製造方法ならびに電界効果トランジスタおよびその製造方法
WO2014020906A1 (ja) * 2012-07-30 2014-02-06 住友化学株式会社 複合基板の製造方法および半導体結晶層形成基板の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016031762A1 (ja) * 2014-08-26 2016-03-03 株式会社ニコン デバイス製造方法および転写基板

Also Published As

Publication number Publication date
JPWO2014126041A1 (ja) 2017-02-02
US20150318306A1 (en) 2015-11-05
JP6222218B2 (ja) 2017-11-01
US9536912B2 (en) 2017-01-03

Similar Documents

Publication Publication Date Title
US8435832B2 (en) Double self-aligned metal oxide TFT
CN106782769A (zh) 低粗糙度低方阻的柔性透明导电复合薄膜及其制备方法
JP2005260040A (ja) ドーピング方法、半導体装置の製造方法および電子応用装置の製造方法
US9812579B2 (en) Thin film transistor, method of fabricating the same, array substrate and display device
JP6222218B2 (ja) 薄膜の転写方法、薄膜トランジスタの製造方法、液晶表示装置の画素電極形成方法
Xian et al. A practical ITO replacement strategy: Sputtering‐free processing of a metallic nanonetwork
US20210408174A1 (en) Display substrates, display panels, and display devices
WO2015010427A1 (zh) 阵列基板及其制作方法和显示装置
US10460852B2 (en) Electrode having nano mesh multi-layer structure, using single crystal copper, and manufacturing method therefor
CN102969393A (zh) 一种基底上ito薄膜图案化方法
WO2015143745A1 (zh) 一种阵列基板的制造方法
JP6162897B2 (ja) 導電性基板およびその製造方法
CN103985764A (zh) 氧化物tft及其制备方法、阵列基板、显示器件
US9269637B2 (en) Thin film transistor substrate
CN107275343B (zh) 底栅型tft基板的制作方法
US9214560B2 (en) VTFT including overlapping electrodes
WO2020147575A1 (zh) 薄膜晶体管的制备方法及显示装置
WO2014173146A1 (zh) 薄膜晶体管及其制作方法、阵列基板及显示装置
CN108022875B (zh) 薄膜晶体管的制作方法及阵列基板的制作方法
CN106024707B (zh) 阵列基板及其制备方法
KR101446910B1 (ko) 도전성 유리의 투명전도 산화막 패턴 형성방법 및 이에의하여 제조되는 도전성 유리
Aleksandrova et al. Photolithography versus lift off process for patterning of sputtered indium tin oxide for flexible displays
US10153354B2 (en) TFT substrate manufacturing method
JP2011077258A (ja) 薄膜トランジスタ及びその製造方法並びに画像表示装置
CN105449001A (zh) 一种薄膜晶体管及其制作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14751371

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015500226

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14751371

Country of ref document: EP

Kind code of ref document: A1