WO2014020906A1 - 複合基板の製造方法および半導体結晶層形成基板の製造方法 - Google Patents

複合基板の製造方法および半導体結晶層形成基板の製造方法 Download PDF

Info

Publication number
WO2014020906A1
WO2014020906A1 PCT/JP2013/004618 JP2013004618W WO2014020906A1 WO 2014020906 A1 WO2014020906 A1 WO 2014020906A1 JP 2013004618 W JP2013004618 W JP 2013004618W WO 2014020906 A1 WO2014020906 A1 WO 2014020906A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystal layer
substrate
single crystal
semiconductor crystal
layer
Prior art date
Application number
PCT/JP2013/004618
Other languages
English (en)
French (fr)
Inventor
武継 山本
健志 青木
辰郎 前田
栄子 三枝
菊池 俊之
小川 有人
Original Assignee
住友化学株式会社
独立行政法人産業技術総合研究所
株式会社日立国際電気
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社, 独立行政法人産業技術総合研究所, 株式会社日立国際電気 filed Critical 住友化学株式会社
Priority to KR20157004877A priority Critical patent/KR20150038335A/ko
Priority to JP2014528000A priority patent/JPWO2014020906A1/ja
Publication of WO2014020906A1 publication Critical patent/WO2014020906A1/ja
Priority to US14/607,254 priority patent/US20150187652A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/8258Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using a combination of technologies covered by H01L21/8206, H01L21/8213, H01L21/822, H01L21/8252, H01L21/8254 or H01L21/8256
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02598Microstructure monocrystalline
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • H01L21/30612Etching of AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/7806Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices involving the separation of the active layers from a substrate
    • H01L21/7813Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices involving the separation of the active layers from a substrate leaving a reusable substrate, e.g. epitaxial lift off
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02543Phosphides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/02546Arsenides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/20Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy
    • H01L21/2003Deposition of semiconductor materials on a substrate, e.g. epitaxial growth solid phase epitaxy characterised by the substrate
    • H01L21/2007Bonding of semiconductor wafers to insulating substrates or to semiconducting substrates using an intermediate insulating layer

Definitions

  • the present invention relates to a method for manufacturing a composite substrate and a method for manufacturing a semiconductor crystal layer forming substrate.
  • Non-Patent Document 1 discloses a CMOSFET structure in which an N-channel MOSFET using a III-V group compound semiconductor as a channel and a P-channel MOSFET using Ge as a channel are formed on a single substrate.
  • Non-Patent Document 2 discloses a technique in which an AlAs layer is formed as a sacrificial layer on a GaAs substrate, and the Ge layer formed on the sacrificial layer (AlAs layer) is transferred to a silicon substrate.
  • Non-Patent Document 1 S. Takagi, et al., SSE, vol. 51, pp. 526-536, 2007.
  • Non-Patent Document 2 Y. Bai and E. A. Fitzgerald, ECS Transactions, 33 (6) 927-932 (2010)
  • An N-channel MISFET having a III-V group compound semiconductor as a channel Metal-Insulator-Semiconductor-Field-Effect-Transistor, sometimes referred to simply as "nMISFET” in this specification
  • nMISFET Metal-Insulator-Semiconductor-Field-Effect-Transistor
  • P-channel having a group IV semiconductor as a channel
  • pMISFET Group III-V compound semiconductor crystal layer for nMISFET and a group IV semiconductor for pMISFET
  • a technique for forming a crystal layer on a single substrate is required.
  • nMISFET and pMISFET As LSI (Large Scale Integration), it is possible to form a semiconductor crystal layer for nMISFET or pMISFET on a silicon substrate capable of utilizing existing manufacturing equipment and existing processes. preferable.
  • a group III-V compound semiconductor crystal layer and a group IV semiconductor crystal layer can be formed on a single substrate, and these semiconductor crystal layers are formed on a silicon substrate advantageous for manufacturing. Can be formed.
  • the semiconductor crystal layer forming substrate for forming the semiconductor crystal layer to be transferred an expensive material such as a compound semiconductor single crystal substrate (wafer) is used.
  • a compound semiconductor single crystal substrate wafer
  • the semiconductor crystal layer forming substrate can be reused, and a certain effect can be expected to reduce the manufacturing cost.
  • further cost reduction is desired.
  • the semiconductor crystal layer can be formed on the semiconductor crystal layer forming substrate in consideration of the planar shape (pattern) after the semiconductor crystal layer is transferred to the transfer destination substrate, the process can be simplified. The possibility of reducing manufacturing costs is increased.
  • An object of the present invention is to provide a large-diameter semiconductor crystal layer forming substrate that can be used multiple times. It is another object of the present invention to provide a method for manufacturing a composite substrate in which a semiconductor crystal layer is formed using the large-diameter semiconductor crystal layer forming substrate. Another object of the present invention is to provide a semiconductor crystal layer forming substrate in which a pattern of a semiconductor crystal layer used for a transfer destination substrate can be formed in advance at the stage of forming the semiconductor crystal layer. Another object of the present invention is to provide a semiconductor crystal layer forming substrate that can be used stably even when used multiple times.
  • a support substrate and a single crystal layer supported directly or via an intermediate layer on one of the front and back surfaces of the support substrate are provided.
  • a method for manufacturing a composite substrate using a semiconductor crystal layer forming substrate wherein: (a) a sacrificial layer and a semiconductor crystal layer are formed on the single crystal layer of the semiconductor crystal layer forming substrate; A step of forming crystal layers in order; (b) a first surface which is a surface of a layer formed on a semiconductor crystal layer forming substrate; and a surface of a transfer destination substrate or a layer formed on the transfer destination substrate, which is a first surface.
  • the method may further include a step of smoothing the surface of the single crystal layer of the semiconductor crystal layer forming substrate.
  • the method further includes a step of etching the semiconductor crystal layer so that a part of the sacrificial layer is exposed and dividing the semiconductor crystal layer into a plurality of divided bodies. Good.
  • the method may further include a step of activating one or more surfaces selected from the first surface and the second surface. A step of forming an insulating layer on the semiconductor crystal layer after the step (a) and before the step (b) may be further included.
  • an insulating layer may be further formed on the surface of the transfer destination substrate or the layer formed on the transfer destination substrate, which is located on the semiconductor crystal layer forming substrate side.
  • the transfer destination substrate may have a circle having a diameter of 200 mm or an arbitrary planar shape having a larger area.
  • a semiconductor crystal layer forming substrate manufacturing method used in the above-described composite substrate manufacturing method, the fifth surface being in contact with the single crystal layer of the support substrate, and a single crystal Smoothing one or more surfaces selected from the sixth surface that will contact the support substrate of the layer; activating one or more surfaces selected from the fifth surface and the sixth surface; And a step of forming a single crystal layer on the support substrate by attaching the support substrate and the single crystal layer to each other, and a method for manufacturing a semiconductor crystal layer forming substrate.
  • a method for manufacturing a semiconductor crystal layer forming substrate used in the above-described method for manufacturing a composite substrate, wherein the surface located on the single crystal layer side of the support substrate, and the single crystal layer A step of forming a heat-resistant intermediate layer on one or more surfaces selected from the surfaces positioned on the support substrate side, a seventh surface that is a surface of the support substrate or the intermediate layer formed on the support substrate, and a single crystal
  • the surface of the intermediate layer formed in the layer or the single crystal layer and the eighth surface that is in contact with the seventh surface face each other, and the support substrate and the single crystal layer are bonded to each other to attach a single layer on the support substrate.
  • the method may further include a step of activating one or more surfaces selected from the seventh surface and the eighth surface. Furthermore, after the step of forming the intermediate layer, it may further include a step of smoothing one or more surfaces selected from the seventh surface and the eighth surface before the activating step.
  • a step of polishing the surface by a CMP method can be exemplified.
  • a step of activation a step of irradiating the surface with an ion beam can be exemplified.
  • the bonding step the supporting substrate and the single crystal layer can be heated to 100 to 200 ° C.
  • the support substrate may have a circle having a diameter of 200 mm or an arbitrary planar shape having a larger area.
  • the method further includes a step of rounding the corners of the single crystal layer after the step of bonding the support substrate and the single crystal layer. Also good.
  • a method for manufacturing a semiconductor crystal layer forming substrate used in the above-described method for manufacturing a composite substrate, wherein a single crystal growth layer is formed on a support substrate by using an epitaxial crystal growth method.
  • a method for manufacturing a semiconductor crystal layer forming substrate comprising: forming a single crystal layer on a supporting substrate by patterning the single crystal growth layer.
  • the method may further include a step of forming a recess on the support substrate before forming the single crystal layer on the support substrate.
  • the single crystal layer can be formed in the recess.
  • the method further includes the step of polishing the single crystal layer or the support substrate so that the surface of the single crystal layer formed in the recess and the surface of the support substrate are substantially in the same plane. be able to.
  • the single crystal layer of the support substrate is formed before the single crystal layer is formed on the support substrate.
  • the method may further include a step of performing a surface treatment on one of the region to be formed or the region not to be formed.
  • the single crystal layer may be subjected to the surface treatment or not. It can be formed in self-alignment with any one of the regions.
  • the method may further include a step of thinning the single crystal layer after the single crystal layer is formed over the supporting substrate. When a plurality of single crystal layers are formed on a single support substrate, the surface of all the single crystal layers on the support substrate is simultaneously polished in the step of thinning the single crystal layer. Can be thinned.
  • a plurality of single crystal layers are formed in the plane of a single support substrate, and a groove is formed by two adjacent single crystal layers and the support substrate.
  • the method may further include forming a filling layer filling the groove.
  • the method may further include a step of polishing the single crystal layer or the filling layer so that the surface of the single crystal layer and the surface of the filling layer are substantially in the same plane.
  • the method may further include forming a growth inhibition layer that inhibits the growth of the semiconductor crystal layer on one or more surfaces selected from the surfaces of the formed layers.
  • the method may further include forming a buffer layer on the single crystal layer after forming the single crystal layer on the support substrate.
  • FIG. 3 is a plan view of a semiconductor crystal layer forming substrate 100 used in the method for manufacturing a composite substrate of Embodiment 1.
  • FIG. 2 is a cross-sectional view of a semiconductor crystal layer forming substrate 100 used in the composite substrate manufacturing method of Embodiment 1.
  • FIG. 5 is a cross-sectional view showing the method of manufacturing the composite substrate of Embodiment 1 in the order of steps.
  • FIG. 5 is a cross-sectional view showing the method of manufacturing the composite substrate of Embodiment 1 in the order of steps.
  • FIG. 5 is a cross-sectional view showing the method of manufacturing the composite substrate of Embodiment 1 in the order of steps.
  • FIG. 5 is a cross-sectional view showing the method of manufacturing the composite substrate of Embodiment 1 in the order of steps.
  • FIG. 3 is a plan view illustrating the method for manufacturing the composite substrate of Embodiment 1 in the order of steps.
  • 5 is a plan view showing an example of a planar shape of a divided body 108.
  • FIG. 5 is a plan view showing an example of a planar shape of a divided body 108.
  • FIG. 5 is a cross-sectional view showing the method of manufacturing the composite substrate of Embodiment 1 in the order of steps.
  • FIG. 5 is a cross-sectional view showing the method of manufacturing the composite substrate of Embodiment 1 in the order of steps.
  • FIG. 5 is a cross-sectional view showing the method of manufacturing the composite substrate of Embodiment 1 in the order of steps.
  • FIG. 5 is a cross-sectional view showing the method of manufacturing the composite substrate of Embodiment 1 in the order of steps.
  • FIG. 5 is a cross-sectional view showing the method of manufacturing the composite substrate of Embodiment 1 in the order of steps.
  • 2 is a plan view of a composite substrate 200 manufactured by the method of Embodiment 1.
  • FIG. 5 is a cross-sectional view illustrating a method of manufacturing a composite substrate according to Embodiment 2 in the order of steps.
  • FIG. 5 is a cross-sectional view illustrating a method of manufacturing a composite substrate according to Embodiment 2 in the order of steps.
  • FIG. 5 is a cross-sectional view illustrating a method of manufacturing a composite substrate according to Embodiment 2 in the order of steps. It is sectional drawing which showed the manufacturing method of the semiconductor crystal layer forming substrate of Embodiment 3 in order of the process.
  • FIG. 6 is a cross-sectional view of a semiconductor crystal layer forming substrate 300 manufactured by the method of Embodiment 4.
  • FIG. 4 is a plan view of a semiconductor crystal layer forming substrate 400.
  • FIG. FIG. 10 is a cross-sectional view showing the method for manufacturing the semiconductor crystal layer forming substrate of Embodiment 5 in the order of steps.
  • FIG. 10 is a cross-sectional view showing the method for manufacturing the semiconductor crystal layer forming substrate of Embodiment 5 in the order of steps.
  • FIG. 10 is a cross-sectional view showing the method for manufacturing the semiconductor crystal layer forming substrate of Embodiment 5 in the order of steps.
  • FIG. 10 is a cross-sectional view showing the method for manufacturing the semiconductor crystal layer forming substrate of Embodiment 5 in the order of steps.
  • FIG. 6 is a cross-sectional view of a semiconductor crystal layer forming substrate 500 manufactured by the method of Embodiment 5.
  • FIG. It is sectional drawing which showed the manufacturing method of the semiconductor crystal layer formation board
  • 7 is a cross-sectional view of a semiconductor crystal layer forming substrate 600 manufactured by the method of Embodiment 6.
  • FIG. 10 is a cross-sectional view of a semiconductor crystal layer forming substrate 700 manufactured by the method of Embodiment 7.
  • FIG. 5 is a cross-sectional view of a semiconductor crystal layer forming substrate 800.
  • FIG. 5 is a cross-sectional view showing a method for manufacturing a semiconductor crystal layer forming substrate 900.
  • FIG. 2 is a cross-sectional view of a semiconductor crystal layer forming substrate 900.
  • FIG. 10 is a plan view of a semiconductor crystal layer forming substrate 1000 according to an eighth embodiment.
  • FIG. 10 is a cross-sectional view of a semiconductor crystal layer forming substrate 1000 of an eighth embodiment. It is sectional drawing which showed the manufacturing method of the composite substrate using the semiconductor crystal layer formation board
  • FIG. 1 is a plan view of a semiconductor crystal layer forming substrate 100 used in the method for manufacturing a composite substrate according to the first embodiment.
  • FIG. 2 is a cross-sectional view of the semiconductor crystal layer forming substrate 100.
  • FIG. 2 shows a cross section taken along line AA of FIG.
  • the semiconductor crystal layer forming substrate 100 includes a support substrate 101 and a single crystal layer 102.
  • Single crystal layer 102 is directly supported on one of the front and back surfaces of support substrate 101. That is, the single crystal layer 102 is formed in contact with one of the front surface and the back surface of the support substrate 101.
  • the support substrate 101 is preferably inflexible.
  • the support substrate 101 has heat resistance that can withstand a growth temperature in epitaxial growth described later.
  • Examples of the material of the support substrate 101 include silicon, SiC, quartz, sapphire, AlN, polycrystalline alumina, polycrystalline AlN, glassy carbon, graphite, diamond-like carbon, and germanium.
  • the material of the support substrate 101 is preferably a silicon wafer or a germanium wafer.
  • a silicon wafer or a wafer in which an oxide layer is formed on the surface of a germanium wafer can also be used as the support substrate 101.
  • the support substrate 101 of this example has a circle having a diameter of 200 mm or an arbitrary planar shape having a larger area.
  • productivity (throughput) in manufacturing the composite substrate can be improved.
  • Arbitrary planar shapes include circles, rectangles, squares, rhombuses and the like. Note that in this specification, the planar shape refers to a shape in a plane parallel to the front surface or the back surface of a substrate such as the support substrate 101.
  • the single crystal layer 102 supported by the support substrate 101 may cover all or one part of one surface (front surface or back surface) of the support substrate 101.
  • the single crystal layer 102 may be single or plural. That is, a plurality of single crystal layers 102 may be formed in the plane of the single support substrate 101, or a single single crystal layer 102 may be formed on the single support substrate 101.
  • the size of the planar shape of the single crystal layer 102 is set to the size of a die size, for example, a square having a side of about 0.5 cm to 3 cm. be able to. Alternatively, it may be a rectangle having a long side or a short side of about 0.5 cm to 3 cm.
  • the semiconductor crystal layer formed on one single crystal layer 102 can be handled as a device forming substrate corresponding to one die.
  • a silicon substrate wafer
  • a germanium layer can be applied as the single crystal layer 102. That is, by using a silicon substrate that is sufficiently familiar with handling as the support substrate 101 and applying germanium as the single crystal layer 102, it is possible to epitaxially grow a compound semiconductor such as GaAs on the single crystal layer 102. . Cost can also be reduced by using silicon for the support substrate 101.
  • the planar shape of the single crystal layer 102 can be a square having a side of 100 ⁇ m or more and less than 0.5 cm. Another example of the planar shape of the single crystal layer 102 is a rectangle having one side of about 100 ⁇ m to 50 cm and the other side of 50 cm to 100 ⁇ m. Further, the planar shape of the single crystal layer 102 may be a so-called line and space pattern in which lines (single crystal layer) having a width of 100 ⁇ m to 5 mm and grooves having a width of 1 ⁇ m to 20 mm are alternately arranged.
  • Examples of the so-called line length include 5 cm to 50 cm, or the maximum length limited by the size of the support substrate 101 (the length from the end surface to the end surface of the support substrate 101).
  • a so-called line and space pattern in which a 300 ⁇ m wide line and a 200 ⁇ m wide groove are spread is referred to as a “300/200 ⁇ mLS pattern” using the width of the line (line part) and the space (groove part).
  • the single crystal layer 102 may be a thin film crystal layer (single crystal growth layer) formed by a film growth method such as epitaxial growth.
  • the single crystal layer 102 is formed by shaping a bulk crystal formed by a bulk growth method into a plate shape such as a wafer, and further processing the plate crystal into an appropriate size by cleavage or the like. Also good.
  • a thin film single crystal layer (single crystal growth layer) formed by an epitaxial growth method is used as the single crystal layer 102
  • a single crystal growth layer is formed on the support substrate 101 by using the epitaxial crystal growth method.
  • the single crystal layer 102 can be formed over the supporting substrate 101 by patterning the crystal growth layer.
  • the single crystal layer 102 is a seed layer for forming a high-quality semiconductor crystal layer by epitaxial growth.
  • the material of the preferred single crystal layer 102 depends on the material of the semiconductor crystal layer to be epitaxially grown.
  • the single crystal layer 102 is preferably made of a material that is lattice-matched or pseudo-lattice-matched with the semiconductor crystal layer to be formed.
  • the single crystal layer 102 is preferably an InP single crystal substrate.
  • a single crystal substrate such as sapphire, Ge, or SiC can be selected.
  • the single crystal layer 102 is preferably a GaAs single crystal substrate, and a single crystal substrate of InP, sapphire, Ge, or SiC can be selected.
  • a (100) plane or a (111) plane can be given as a plane orientation in which the semiconductor crystal layer is formed. Note that as described above, a single crystal substrate can be selected as the single crystal layer 102; therefore, in this specification, the single crystal layer 102 may be handled as a substrate.
  • the thickness of the single crystal layer 102 is preferably as long as it is not peeled off from the support substrate 101. Examples of the thickness of the single crystal layer 102 include 0.1 to 600 ⁇ m.
  • the single crystal layer 102 is preferably divided and arranged in advance in the plane of the support substrate 101. By dividing and arranging the single crystal layer 102, the entire warp of the semiconductor crystal layer forming substrate 100 can be suppressed.
  • 3 to 13 are sectional views or plan views showing the method of manufacturing the composite substrate of Embodiment 1 in the order of steps.
  • a method for manufacturing a composite substrate will be described below with reference to the drawings.
  • a portion corresponding to one single crystal layer 102 is shown as in FIG.
  • the surface of the single crystal layer 102 of the semiconductor crystal layer forming substrate 100 is smoothed.
  • the single crystal layer 102 can be polished by, for example, a chemical mechanical polishing (CMP) method.
  • CMP chemical mechanical polishing
  • the surface of the single crystal layer 102 is slid by the polishing pad 103 while supplying a slurry in which an abrasive and a polishing liquid are mixed.
  • the smoothing step the surface of the single crystal layer 102 can be smoothed and particles generated by cleavage of the crystal can be removed. Note that this smoothing step is not essential.
  • the smoothing step may be performed as necessary. Following the smoothing, the surface of the single crystal layer 102 may be cleaned.
  • the sacrificial layer 104 and the semiconductor crystal layer 106 are formed in this order on the single crystal layer 102 of the semiconductor crystal layer formation substrate in the order of the single crystal layer 102, the sacrificial layer 104, and the semiconductor crystal layer 106. .
  • the sacrificial layer 104 is a layer for separating the single crystal layer 102 and the semiconductor crystal layer 106. By removing the sacrificial layer 104 by etching, the single crystal layer 102 and the semiconductor crystal layer 106 are separated. Since the single crystal layer 102 and the semiconductor crystal layer 106 need to remain when the sacrifice layer 104 is etched, the etching rate of the sacrificial layer 104 is larger than the etching rate of the single crystal layer 102 and the semiconductor crystal layer 106, preferably several times. Bigger than that.
  • the sacrificial layer 104 is preferably an Al x Ga 1-x As (0.9 ⁇ x ⁇ 1) layer.
  • a layer is preferable, and an InAlAs layer, an InGaP layer, an InAlP layer, an InGaAlP layer, and an AlSb layer can be selected.
  • the thickness of the sacrificial layer 104 increases, the crystallinity of the semiconductor crystal layer 106 tends to decrease. Therefore, the thickness of the sacrificial layer 104 is preferably as thin as possible to ensure the function as the sacrificial layer.
  • the thickness of the sacrificial layer 104 can be selected in the range of 0.1 nm to 10 ⁇ m.
  • the sacrificial layer 104 can be formed by a CVD (Chemical Vapor Deposition) method, a sputtering method, an MBE (Molecular Beam Epitaxy) method, or an ALD (Atomic Layer Deposition) method.
  • CVD Chemical Vapor Deposition
  • MBE Molecular Beam Epitaxy
  • ALD Atomic Layer Deposition
  • MOCVD Metal Organic Chemical Vapor Deposition
  • the MOCVD method is used for the epitaxial growth of the III-V compound semiconductor, and the CVD method is used for the epitaxial growth of the group IV semiconductor.
  • TMGa trimethylgallium
  • TMA trimethylaluminum
  • TMIn trimethylindium
  • AsH 3 arsine
  • PH 3 phosphine
  • the reaction temperature can be appropriately selected within the range of 300 ° C to 900 ° C, preferably within the range of 400 to 800 ° C.
  • the thickness of the sacrificial layer 104 can be controlled by appropriately selecting the source gas supply amount and the reaction time.
  • the semiconductor crystal layer 106 is a transfer target layer transferred to a transfer destination substrate described later.
  • the semiconductor crystal layer 106 is used as an active layer of a semiconductor device.
  • the crystallinity of the semiconductor crystal layer 106 is realized with high quality.
  • the semiconductor crystal layer 106 can be formed on an arbitrary substrate without considering lattice matching with the substrate.
  • Examples of the semiconductor crystal layer 106 include a Ge crystal layer and a Ge x Si 1-x (0 ⁇ x ⁇ 1) crystal layer.
  • the Ge composition ratio x of the Ge x Si 1-x crystal layer is preferably 0.9 or more. By setting the Ge composition ratio x to 0.9 or more, semiconductor characteristics close to the Ge layer can be obtained.
  • semiconductor crystal layer 106 Ge x Si 1-x ( 0 ⁇ x ⁇ 1) crystal layer, preferably Ge x Si 1-x (0.9 ⁇ x ⁇ 1) crystal layer, more preferably the use of a Ge crystalline layer
  • the semiconductor crystal layer 106 can be used as an active layer of a high mobility field effect transistor, particularly a high mobility complementary field effect transistor.
  • the thickness of the semiconductor crystal layer 106 can be appropriately selected within the range of 0.1 nm to 500 ⁇ m.
  • the thickness of the semiconductor crystal layer 106 is preferably 0.1 nm or more and less than 1 ⁇ m.
  • a composite substrate suitable for the manufacture of high-performance transistors such as ultra-thin body MISFETs can be obtained. Can be used.
  • the semiconductor crystal layer 106 can be formed by a CVD method, a sputtering method, an MBE method, or an ALD method.
  • An example of the CVD method is an MOCVD method.
  • TMGa trimethylgallium
  • TMA trimethylaluminum
  • TMIn trimethylindium
  • AsH 3 arsine
  • PH phosphine
  • the semiconductor crystal layer 106 is made of a group IV compound semiconductor and is formed by a CVD method
  • GeH 4 (germane), SiH 4 (silane), Si 2 H 6 (disilane), or the like can be used as a source gas.
  • Hydrogen can be used as the carrier gas.
  • a compound in which a part of a plurality of hydrogen atom groups of the source gas is substituted with a chlorine atom or a hydrocarbon group can also be used.
  • the reaction temperature can be appropriately selected within the range of 300 ° C to 900 ° C, preferably within the range of 400 to 800 ° C.
  • the thickness of the semiconductor crystal layer 106 can be controlled by appropriately selecting the source gas supply amount and the reaction time.
  • an insulating layer 107 is formed on the semiconductor crystal layer 106.
  • the insulating layer 107 can function as an adhesive layer to the transfer destination substrate.
  • An example of the insulating layer 107 is an aluminum oxide layer formed by an ALD method.
  • As the insulating layer 107 a silicon oxide layer or a silicon nitride layer formed by a CVD method may be used. Note that the insulating layer 107 is not essential. The insulating layer 107 may be formed as needed.
  • the insulating layer 107 and the semiconductor crystal layer 106 are etched so that a part of the sacrificial layer 104 is exposed, and the insulating layer 107 and the semiconductor crystal layer 106 are divided into a plurality of divided bodies 108.
  • the divided body 108 has a circle having a diameter of 30 mm or an arbitrary planar shape smaller than the circle. By this etching, a groove 110 is formed between the divided body 108 and the adjacent divided body 108.
  • “so that a part of the sacrificial layer 104 is exposed” includes the following cases where it can be said that the sacrificial layer 104 is substantially exposed in the etching region where the groove 110 is formed.
  • the sacrificial layer 104 is completely etched at the bottom of the groove 110, the single crystal layer 102 is exposed at the bottom of the groove 110, and the cross section of the sacrificial layer 104 is exposed as part of the side surface of the groove 110.
  • the groove 110 is dug into the single crystal layer 102 and the cross section of the sacrificial layer 104 is exposed as a part of the side surface of the groove 110, (3) in the region where the groove 110 is formed.
  • the semiconductor crystal layer 106 remains at a part of the bottom of the groove 110 and is sacrificed at the bottom of the groove 110.
  • the ultrathin semiconductor crystal layer 106 remains on the entire bottom of the groove 110, but the etching liquid penetrates the remaining semiconductor crystal layer 106. Thin enough, if it can be said that substantially the sacrificial layer 104 is exposed, including.
  • etching for forming the groove 110 either a dry method or a wet method can be employed.
  • a aqueous solution of HCl, HF, phosphoric acid, citric acid, aqueous hydrogen peroxide, ammonia, or sodium hydroxide can be used as an etchant.
  • the etching mask an appropriate organic or inorganic material having an etching selectivity can be used, and the pattern of the groove 110 can be arbitrarily formed by patterning the mask.
  • the single crystal layer 102 can be used as an etching stopper. However, in consideration of reusing the single crystal layer 102, etching is performed on the surface of the sacrificial layer 104 or in the middle thereof. It is desirable to stop.
  • the semiconductor crystal layer 106 is thin, for example, when the thickness of the semiconductor crystal layer 106 is 2 ⁇ m or less, it may be desirable to dig the groove 110 up to the single crystal layer 102.
  • FIG. 7 is a plan view of the semiconductor crystal layer forming substrate 100 as viewed from above. A large number of divided bodies 108 are formed on the single crystal layer 102 on the support substrate 101.
  • the planar shape of the semiconductor crystal layer 106 separated by the pattern of the groove 110 (the planar shape of the divided body 108) is reduced from the point of the edge of the divided body 108 to the normal direction at the point at a constant speed. Assuming that it disappears, it is preferable that the figure immediately before shrinking and disappearing is not a single point but a single line, a plurality of lines, or a planar shape that is a plurality of points. In this assumption, the reduction of the planar shape starts simultaneously at each point.
  • the edge refers to a line indicating a planar outer shape.
  • the planar shape refers to a shape in a plane perpendicular to the stacking direction of each layer.
  • the assumption of reduction and disappearance of the planar shape refers to an operation of virtually reducing and eliminating the planar shape so as to define the shape of the planar shape, rather than actually reducing and eliminating the semiconductor crystal layer 106.
  • the shape immediately before the planar shape disappears by the operation is used to define the planar shape before reduction (that is, the actual planar shape of the semiconductor crystal layer 106).
  • a planar shape of the divided body 108 a shape of a plane surrounded by two parallel line segments and two lines connecting the end points of the two line segments can be given.
  • the planar shape of the semiconductor crystal layer 106 is a shape other than a regular circle and a regular n-gon (n is an integer of 3 or more).
  • the length of at least one of the four lines may be different from the length of the other lines.
  • the longest long side of the plane-shaped sides of the semiconductor crystal layer 106 may be two times or larger, four times or larger, or ten times or larger than the shortest short side.
  • a straight line, a curve, or a broken line can be mentioned as a line connecting between end points.
  • FIG. 8A shows an example of a planar shape in which the end points of two parallel line segments are connected by a straight line.
  • FIG. 8B shows an example of a planar shape in which the end points of two parallel line segments are connected by a curve.
  • FIG. 8C shows an example of a planar shape in which end points of two parallel line segments are connected by a broken line.
  • the planar shape is a rectangle.
  • the planar shape of the divided body is reduced at a constant speed as indicated by an arrow in FIG. 9A
  • the planar shape of the reduced divided body indicated by a broken line is a straight line immediately before disappearance.
  • a line-and-space pattern in which elongated line-shaped divided bodies 108 are repeatedly arranged, or a rectangular shape (rounded rectangle) in which corners are replaced with curves as shown in FIG.
  • the figure just before disappearance is a straight line.
  • the I type as shown in FIG.
  • planar shape immediately before disappearance is collected at two points.
  • the planar shape immediately before disappearance is a combination of straight lines or a curve.
  • the semiconductor crystal layer 106 receives a force in a direction away from the single crystal layer 102 due to the gaseous product.
  • the force is concentrated on one point of the remaining portion of the sacrificial layer 104.
  • the semiconductor crystal layer 106 and the single crystal layer 102 are separated by a relatively large force, and the semiconductor crystal layer 106 is damaged by an impact at the time of separation. For this reason, a hole or a recess may be generated near the center of the pattern of the transferred semiconductor crystal layer 106.
  • the remaining portion of the sacrificial layer 104 can be not a single point but a plurality of points or straight lines.
  • the impact when separated from the single crystal layer 102 can be reduced.
  • the generation of a hole or a recess near the center of the planar pattern of the transferred semiconductor crystal layer 106 can be suppressed, and transfer defects can be reduced.
  • the surface of the transfer destination substrate 120 and the surface of the insulating layer 107 are subjected to an adhesion strengthening process that strengthens the adhesion between the transfer destination substrate 120 and the insulating layer 107 and the semiconductor crystal layer 106.
  • the surface of the insulating layer 107 other than the groove 110 on the single crystal layer 102 is the surface of the layer formed in the single crystal layer 102 and formed on the transfer destination substrate 120 or the transfer destination substrate 120. It is an example of a “first surface 112” that will be in contact with a layer.
  • the surface of the transfer destination substrate 120 is an example of a “second surface 122” that is in contact with the first surface 112 as a surface of the transfer destination substrate 120 or a layer formed on the transfer destination substrate 120.
  • the adhesion enhancement treatment may be performed only on either the surface of the transfer destination substrate 120 (second surface 122) or the surface of the insulating layer 107 (first surface 112).
  • ion beam activation by the ion beam generator 130 can be exemplified.
  • the ions to be irradiated are, for example, argon ions.
  • Plasma activation may be performed as an adhesion strengthening treatment.
  • an oxygen plasma process can be exemplified.
  • the adhesion between the transfer destination substrate 120 and the insulating layer 107 can be enhanced by the adhesion enhancement treatment.
  • the adhesion strengthening treatment is not essential. Instead of the adhesion strengthening treatment, an adhesive layer may be formed in advance on the transfer destination substrate 120.
  • the transfer destination substrate 120 is a substrate to which the semiconductor crystal layer 106 is transferred.
  • the transfer destination substrate 120 may be a target substrate on which an electronic device using the semiconductor crystal layer 106 as an active layer is finally disposed, and in an intermediate state until the semiconductor crystal layer 106 is transferred to the target substrate. It may be a temporary substrate.
  • the transfer destination substrate 120 may be either organic or inorganic. Examples of the transfer destination substrate 120 include a silicon substrate, an SOI (Silicon-on-insulator) substrate, a glass substrate, a sapphire substrate, an SiC substrate, and an AlN substrate. In addition, an insulating substrate such as a ceramic substrate or a plastic substrate, or a conductive substrate such as a metal may be used.
  • the transfer destination substrate 120 When a silicon substrate or an SOI substrate is used as the transfer destination substrate 120, a manufacturing apparatus used in an existing silicon process can be used, and knowledge of the known silicon process can be used to increase research and development and manufacturing efficiency.
  • the transfer destination substrate 120 is a hard substrate that is not easily bent, such as a silicon substrate, the semiconductor crystal layer 106 to be transferred is protected from mechanical vibration or the like, and the crystal quality of the semiconductor crystal layer 106 can be kept high.
  • a heat-resistant insulating layer may be formed on the transfer destination substrate 120.
  • the heat resistant insulating layer include Al 2 O 3 by ALD, SiO 2 and Si 3 N 4 by CVD.
  • the transfer destination substrate 120 preferably has a circle having a diameter of 200 mm or an arbitrary planar shape having a larger area. By increasing the size of the transfer destination substrate 120, productivity can be increased.
  • the arbitrary planar shape includes a circle, a rectangle, a square, a rhombus, and the like.
  • the transfer destination substrate 120 and the semiconductor crystal layer forming substrate 100 are bonded so that the surface of the insulating layer 107 as the first surface 112 and the surface of the transfer destination substrate 120 as the second surface 122 are bonded. to paste together.
  • the bonding can be performed at room temperature.
  • the semiconductor crystal layer forming substrate 100 and the transfer destination substrate 120 may be pressure bonded.
  • the pressure range can be appropriately selected within a range of 0.01 MPa to 1 GPa.
  • Adhesive strength can be improved by pressure bonding. You may heat at the time of pressure bonding or after pressure bonding. The heating temperature is preferably 50 to 600 ° C, more preferably 100 ° C to 400 ° C.
  • the semiconductor crystal layer forming substrate 100 and the transfer destination substrate 120 may be bonded together in the above-described pressure range at the same time as bonding.
  • a cavity 140 is formed by the inner wall of the groove 110 and the surface of the transfer destination substrate 120 as shown in FIG.
  • An etching solution 142 is supplied to the cavity 140 to etch the sacrificial layer 104.
  • the etching may be dry etching with an etching gas.
  • examples of the etching solution 142 include HCl, HF, phosphoric acid, citric acid, hydrogen peroxide solution, ammonia, an aqueous solution of sodium hydroxide, or water.
  • the temperature during etching is preferably controlled in the range of 10 to 90 ° C.
  • the etching time can be appropriately controlled in the range of 1 minute to 200 hours.
  • a method of supplying the etching solution 142 to the cavity 140 As a method of supplying the etching solution 142 to the cavity 140, a method of supplying the etching solution 142 into the cavity 140 by a capillary phenomenon, one end of the cavity 140 is immersed in the etching solution 142, and the etching solution 142 is sucked from the other end.
  • a method of dropping the etching solution 142 to one end of the cavity 140 with a micropipette or the like can be given.
  • the other end of the cavity 140 needs to be open.
  • the etching solution 142 is dropped onto one end of the cavity 140 and the etching solution 142 in the cavity 140 is supplied, the etching solution 142 can be supplied into the cavity 140 simply and reliably.
  • the entire transfer destination substrate 120 and the semiconductor crystal layer forming substrate 100 can be immersed in an etching tank filled with the etching liquid 142 to perform the etching. .
  • the etching can proceed while supplying the etchant 142 to one end of the cavity 140.
  • the etchant 142 is continuously supplied to one end of the cavity 140 by dropping, the amount of the etchant 142 to be used is very small. Therefore, the etchant 142 can be reduced, resulting in cost reduction and disposal of the etchant 142. Environmental load can be reduced.
  • the cavity 140 when the cavity 140 is immersed in the etching solution 142, grease can be attached to a part of the side surface of the bonded substrates. In this case, by attaching grease to the side surface of the substrate, it is possible to prevent the etching solution from penetrating into the cavity 140 from the side surface.
  • the etching solution is to be filled into the cavity 140 by capillary action, if the etching solution penetrates from the side surface, the capillary phenomenon may be hindered and the etching solution may not be sufficiently filled into the cavity 140.
  • the etching solution by attaching grease to the side surface of the substrate, penetration of the etching solution from the side surface is suppressed, and the cavity 140 is reliably filled with the etching solution.
  • not only grease but also other substances can be used.
  • the transfer destination substrate 120 and the single crystal layer 102 are left with the semiconductor crystal layer 106 left on the transfer destination substrate 120 side.
  • the semiconductor crystal layer 106 is transferred to the transfer destination substrate 120, and a composite substrate having the semiconductor crystal layer 106 on the transfer destination substrate 120 is manufactured.
  • the semiconductor crystal layer 106 on the transfer destination substrate 120 is formed as a large number of divided bodies as shown in FIG.
  • the separated semiconductor crystal layer forming substrate 100 is reused and similarly used from the smoothing step shown in FIG.
  • the semiconductor crystal layer forming substrate 100 can be reused until the single crystal layer 102 is consumed and can no longer be used, and a significant reduction in manufacturing cost can be expected due to the reuse.
  • Embodiment 2 15 to 17 are cross-sectional views showing the method of manufacturing the composite substrate of Embodiment 2 in the order of steps.
  • a composite substrate composite substrate having the semiconductor crystal layer 106 on the transfer destination substrate 120
  • a method of manufacturing a composite substrate in which the semiconductor crystal layer 106 on the transfer destination substrate 120 is further transferred to the second transfer destination substrate 150 and the semiconductor crystal layer 106 is provided on the second transfer destination substrate 150 will be described. .
  • the surface (third surface 124) of the semiconductor crystal layer 106 on the transfer destination substrate 120 and the surface (fourth surface 152) of the second transfer destination substrate 150 face each other, and are shown in FIG. As described above, the transfer destination substrate 120 and the second transfer destination substrate 150 are bonded together.
  • the surface of the semiconductor crystal layer 106 is the surface of the semiconductor crystal layer 106 on the transfer destination substrate 120 or the surface of the layer formed on the semiconductor crystal layer 106, and is the second transfer destination substrate 150 or the second transfer destination. It is an example of the 3rd surface 124 which will contact the layer formed in the board
  • the surface of the second transfer destination substrate 150 is an example of a fourth surface 152 that is in contact with the third surface 124 as a surface of the second transfer destination substrate 150 or a layer formed on the second transfer destination substrate 150. It is.
  • the insulating layer 107 is removed, and the transfer destination substrate 120 and the second transfer destination substrate 150 are separated with the semiconductor crystal layer 106 left on the second transfer destination substrate 150.
  • the insulating layer 107 functions as an adhesive layer in Embodiment 1, but here it functions as a sacrificial layer used for peeling.
  • an insulating layer 107 that functions as both an adhesive layer and a sacrificial layer may be provided, and a sacrificial layer may be formed separately from the insulating layer 107.
  • the semiconductor crystal layer 106 can be transferred to the second transfer destination substrate. Needless to say, it may be transferred to another transfer destination substrate.
  • the transfer destination substrate 120 may be a flexible organic substrate such as a film. In this case, the organic substrate can be dissolved or swollen with an organic solvent or the like, and peeling can be easily performed.
  • Embodiment 3 18 to 21 are cross-sectional views showing the method of manufacturing the semiconductor crystal layer forming substrate of Embodiment 3 in the order of steps.
  • a method for manufacturing the semiconductor crystal layer forming substrate 100 used in the first embodiment will be described.
  • one or more surfaces selected from the fifth surface 162 in contact with the single crystal layer 102 of the support substrate 101 and the sixth surface 164 in contact with the support substrate 101 of the single crystal layer 102 are smoothed.
  • the single crystal layer 102 in this example is a single crystal substrate.
  • the CMP method can be exemplified as described above.
  • one or more surfaces selected from the fifth surface 162 and the sixth surface 164 are activated.
  • an argon ion beam can be used.
  • the fifth surface 162 and the sixth surface 164 face each other, and the supporting substrate 101 and the single crystal layer 102 are bonded together as shown in FIG.
  • Examples of the temperature of the support substrate 101 and the single crystal layer 102 in the bonding include ⁇ 20 ° C. to 80 ° C., which is the same as the operating temperature range of the component manufactured using the composite substrate according to the embodiment of the present invention.
  • the normal temperature range is 0 ° C. to 60 ° C., and more preferably the normal temperature range of 20 to 30 ° C. during the bonding process.
  • the support substrate 101 and the single crystal layer 102 may be pressure-bonded, and the pressure range in this case is preferably 0.01 MPa to 1 GPa.
  • the support substrate 101 and the single crystal layer 102 are strengthened.
  • a semiconductor crystal layer forming substrate 100 that is bonded and does not easily peel off even when subjected to thermal stress such as temperature rise / fall in a layer formation process such as an epitaxial growth method can be manufactured.
  • the planarity of the support substrate 101 or the single crystal layer 102 can be set to a root-mean-square roughness (R RMS ) of 0.5 nm or less by smoothing by the CMP method.
  • Embodiment 4 23 and 24 are cross-sectional views showing the method of manufacturing the semiconductor crystal layer forming substrate of Embodiment 4 in the order of steps.
  • Embodiment 3 the case where the support substrate 101 and the single crystal layer 102 are in direct contact with each other has been described.
  • a heat-resistant intermediate layer 302 is formed over the support substrate 101, and FIG.
  • the single crystal layer 102 may be attached to the intermediate layer 302. If the plurality of single crystal layers 102 are similarly bonded, a semiconductor crystal layer forming substrate 300 can be manufactured as shown in FIG.
  • the heat-resistant intermediate layer 302 is formed on one or more surfaces selected from the surface located on the single crystal layer 102 side of the support substrate 101 and the surface located on the support substrate 101 side of the single crystal layer 102. .
  • a seventh surface 166 which is in contact with the support substrate 101 or the surface of the intermediate layer 302 formed on the support substrate 101 and is in contact with the single crystal layer 102 or the intermediate layer 302 formed on the single crystal layer 102;
  • the support substrate 101 and the single crystal layer 102 are bonded to each other with the eighth surface 168 that is in contact with the seventh surface 166 being the surface of the intermediate layer 302 formed in the layer 102 or the single crystal layer 102.
  • an aluminum oxide layer by ALD method, a silicon oxide layer or silicon nitride layer by CVD method can be used as the intermediate layer 302.
  • one or more surfaces selected from the seventh surface 166 and the eighth surface 168 can be activated after forming the intermediate layer 302 and before bonding.
  • one or more surfaces selected from the seventh surface 166 and the eighth surface 168 can be smoothed after the formation of the intermediate layer 302 and before activation.
  • a square is shown as the planar shape of the single crystal layer 102, but the shape is not limited to a square, and any shape such as a rectangle, other polygons, a circle, an ellipse, or the like is possible.
  • the planar shape of the single crystal layer 102 bonded to the supporting substrate 101 has corner portions 402
  • the single crystal layer 102 is bonded to the supporting substrate 101 and the single crystal layer 102 as illustrated in FIG. It is preferable to perform a process of rounding the corner portion 402 in a planar shape. By rounding the corner 402, peeling from the corner 402 can be reduced.
  • Examples of the processing method for rounding the corner 402 include isotropic etching and wet or dry etching after mask formation.
  • FIG. 31 is a cross-sectional view of a semiconductor crystal layer forming substrate 500 manufactured by the method of the fifth embodiment.
  • a method for manufacturing a semiconductor crystal layer forming substrate which is different from the third and fourth embodiments, will be described.
  • a recess 502 is formed on the support substrate 101 as shown in FIG.
  • the recess 502 can be formed, for example, by forming a mask such as a photoresist on the support substrate 101 and etching the support substrate 101 in a region not covered by the mask by dry etching or the like.
  • the single crystal layer 102 is formed in the recess 502.
  • the single crystal layer 102 is formed in the concave portion 502 by bonding the single crystal layer 102 to the supporting substrate 101, for example, as in the third or fourth embodiment. If the size of the single crystal layer 102 is processed in advance to a size suitable for the recess 502, alignment at the time of bonding becomes easy, and bonding can be performed accurately.
  • the single crystal layer 102 is bonded and formed in all the recesses 502, and the surface of the single crystal layer 102 is polished by the polishing pad 103 as shown in FIG.
  • This polishing is performed so that the surface of the single crystal layer 102 formed in the recess 502 and the surface of the support substrate 101 are substantially in the same plane. That is, the polishing is finished when the surface of the single crystal layer 102 and the surface of the support substrate 101 are substantially in the same plane.
  • the semiconductor crystal layer forming substrate 500 is formed.
  • the semiconductor crystal layer forming substrate 500 is formed so that the surface of the single crystal layer 102 and the surface of the support substrate 101 are substantially in the same plane, the semiconductor crystal layer forming substrate 500 is used for epitaxial growth or the like.
  • the crystal layer 106 or the like is formed, the gas flow in the epitaxial growth is not disturbed, and the uniform semiconductor crystal layer 106 can be formed.
  • the single crystal layer 102 is thinned by polishing, even if stress such as warpage occurs in the single crystal layer 102 due to an increase in the substrate temperature in epitaxial growth or the like, the semiconductor crystal layer formation is difficult.
  • the substrate 500 can be made thermally stable.
  • the object to be polished by the polishing pad 103 is the surface of the single crystal layer 102. It was. On the other hand, the single crystal layer 102 may be formed thin, and the surface of the single crystal layer 102 may be recessed from the surface of the support substrate 101. In this case, the object to be polished by the polishing pad 103 is the surface of the support substrate 101.
  • the example in which the single crystal layer 102 is formed in the recess 502 has been described.
  • a convex portion is formed on the support substrate 101
  • the single crystal layer 102 may be formed on the convex portion.
  • the single crystal layer 102 in the case where the single crystal layer 102 is formed over the supporting substrate 101, the single crystal layer 102 can be formed in self-alignment with the convex portion.
  • FIG. 6 is a cross-sectional view of the semiconductor crystal layer forming substrate 600 manufactured by the method of the sixth embodiment.
  • a method for manufacturing a semiconductor crystal layer forming substrate which is further different from the third to fifth embodiments, will be described.
  • an insulating layer 602 is formed over the support substrate 101.
  • the insulating layer 602 is, for example, a natural oxide layer.
  • the insulating layer 602 is, for example, a layer of Al 2 O 3, HfO 2 , ZrO 2 , La 2 O 3 formed by ALD method, HfO 2 , ZrO 2 , La 2 O 3 , SiO 2 formed by MOCVD method. There may be.
  • the thickness of the insulating layer 602 can be in the range of 1 nm to 15 nm, for example.
  • a part of the insulating layer 602 is removed by patterning.
  • the removal of part of the insulating layer 602 is an example of surface treatment on a region where the single crystal layer 102 of the supporting substrate 101 is formed or a region where the single crystal layer 102 is not formed, and is an example of hydrophilization or hydrophobization of the surface of the supporting substrate 101.
  • the region can be made hydrophilic or hydrophobic by the presence or absence of the insulating layer 602. That is, when it is desired to make a part of the surface of the support substrate 101 hydrophilic, the insulating layer 602 having a higher hydrophilicity than the support substrate 101 is formed in the part of the region.
  • an insulating layer 602 having a higher hydrophobicity than the support substrate 101 is formed in the part of the region.
  • the insulating layer 602 having a higher hydrophilicity than the support substrate 101 is formed in a partial region of the surface of the support substrate 101.
  • the surface of the insulating layer 602 and the surface of the single crystal layer 102 face each other, and the support substrate 101 and the single crystal layer 102 are bonded to each other.
  • the single crystal layer 102 is handled with a chip sorter or the like and aligned roughly.
  • the surface of the support substrate 101 is hydrophilized by the insulating layer 602. Therefore, as shown in FIG. 35, the hydrophilic or non-hydrophobized portion of the surface of the support substrate 101 and the single crystal
  • the single crystal layer 102 is aligned in a self-aligned manner with respect to the support substrate 101 by the surface tension effect of water existing between the surface of the layer 102.
  • the water may be supplied to the surface of the support substrate 101 after the insulating layer 602 is formed. This makes it possible to accurately align even rough alignment with a chip sorter, and to reduce positional variations that can lead to performance degradation of electronic devices, such as differences in crystal orientation due to misalignment. it can.
  • the semiconductor crystal layer forming substrate 600 is formed. That is, before the single crystal layer 102 is formed over the supporting substrate 101, surface treatment is performed on either the region where the single crystal layer 102 is formed or the region where the single crystal layer 102 is not formed. Then, in the step of forming the single crystal layer 102, the single crystal layer 102 is formed in a self-aligned manner in either the surface-treated region or the non-treated region.
  • the semiconductor crystal layer forming substrate 600 formed as described above since the single crystal layer 102 is formed in self-alignment with the support substrate 101, the single crystal layer 102 is accurately aligned on the support substrate 101. It is formed. If there is a difference in crystal orientation or the like due to the displacement of the position of the single crystal layer 102, a difference in crystal orientation or the like also occurs in the semiconductor crystal layer 106 formed using the semiconductor crystal layer formation substrate 600. It may lead to performance degradation. However, in the case of the semiconductor crystal layer forming substrate 600, such a problem is suppressed.
  • the single crystal layer 102 may be thinned after the single crystal layer 102 is formed over the supporting substrate 101. By thinning the single crystal layer 102, even if the support substrate 101 and the single crystal layer 102 are subjected to thermal stress, peeling or the like hardly occurs.
  • the single crystal layer 102 is preferably thinned. By polishing the surfaces of all the single crystal layers 102 at the same time, the surfaces of the single crystal layers 102 can be made substantially the same plane.
  • FIG. 39 is a cross-sectional view of the semiconductor crystal layer forming substrate 700 manufactured by the method of the seventh embodiment.
  • a plurality of single crystal layers 102 are formed on a single support substrate 101 as in the semiconductor crystal layer formation substrate 100 shown in FIG. 22, and two adjacent single crystal layers 102 and the support substrate 101 are formed. The form in case a groove
  • a filling layer 702 is formed, and a groove constituted by two adjacent single crystal layers 102 and the support substrate 101 is formed in the filling layer.
  • an insulating layer having excellent step coverage for example, a silicon oxide layer formed by a CVD method using TEOS (tetraethoxysilane) or TMOS (tetramethoxysilane) as a source gas, SOG (Spin on glass) etc. can be illustrated.
  • the surface of the single crystal layer 102 is also covered with the filling layer 702.
  • the filling layer 702 is polished with the polishing pad 103. As shown in FIG. As shown in FIG. 39, the filling layer 702 is polished so that the surface of the single crystal layer 102 and the surface of the filling layer 702 are substantially in the same plane. In this way, the semiconductor crystal layer forming substrate 700 is formed.
  • the semiconductor crystal layer forming substrate 700 is formed so that the surface of the single crystal layer 102 and the surface of the filling layer 702 are substantially in the same plane. Therefore, when the semiconductor crystal layer 106 is formed using the semiconductor crystal layer formation substrate 700 for epitaxial growth or the like, the gas flow in the epitaxial growth is not disturbed, and the uniform semiconductor crystal layer 106 can be formed.
  • the single crystal layer 102 is not formed, for example, growth that inhibits the growth of the semiconductor crystal layer 106 in the groove portion between the single crystal layers 102.
  • the inhibition layer 802 may be formed.
  • the growth inhibition layer 802 may be formed instead of the filling layer 702.
  • the growth inhibition layer 802 makes it possible to form the semiconductor crystal layer 106 only in a desired portion.
  • a region where the growth inhibition layer 802 may be formed includes a side surface of the single crystal layer 102 formed over the supporting substrate 101 and a surface of the layer formed over the side surface (that is, the side surface of the single crystal layer 102).
  • the growth inhibition layer 802 may be formed before the single crystal layer 102 is formed, or may be formed after the single crystal layer 102 is formed.
  • the buffer layer may be formed on the single crystal layer 102 after the single crystal layer 102 is formed on the support substrate 101. In some cases, formation of the semiconductor crystal layer 106 can be facilitated by forming the buffer layer.
  • the buffer layer is a layer having a lattice constant between the single crystal layer 102 and the semiconductor crystal layer 106, for example.
  • the protective layer 902 that covers the single crystal layer 102 is replaced with the support substrate 101 on which the single crystal layer 102 is formed. Form over the entire surface. Then, as shown in FIG. 42, part of the protective layer 902 is removed so that the surface of the single crystal layer 102 or a layer formed over the single crystal layer 102 (for example, a buffer layer) is exposed.
  • the protective layer 902 may be formed so as to cover the entire surface of the support substrate 101 after forming a layer over the single crystal layer 102 such as a buffer layer.
  • a method using photolithography and etching, or polishing can be used.
  • FIG. 43 is a plan view of the semiconductor crystal layer forming substrate 1000.
  • FIG. 44 is a cross-sectional view of the semiconductor crystal layer forming substrate 1000.
  • FIG. 44 shows a cross section taken along line BB of FIG.
  • the semiconductor crystal layer forming substrate 1000 of the eighth embodiment has a support substrate 101 and a single crystal layer 102.
  • the support substrate 101 and the single crystal layer 102 of the semiconductor crystal layer forming substrate 1000 are the same as those in the above embodiments except for the points described below.
  • the planar shape of the single crystal layer 102 of the semiconductor crystal layer forming substrate 1000 is an LS pattern in which lines having a width of 100 ⁇ m to 5 mm (single crystal layer) and grooves having a width of 1 ⁇ m to 20 mm are alternately laid.
  • the so-called line length can be 5 cm to 50 cm. As shown in FIG. 43, the length of the line may be the maximum length (the length from the end surface to the end surface of the support substrate 101) limited by the area (or diameter) of the support substrate 101.
  • the semiconductor crystal layer forming substrate 1000 can be manufactured as follows. That is, a crystal layer that becomes the sacrificial layer and the single crystal layer 102 is sequentially formed on the entire surface of the growth substrate of the semiconductor crystal layer by using, for example, an epitaxial growth method. The crystal layer formed on the entire surface of the growth substrate is etched to expose a part of the sacrifice layer or the growth substrate. Thereby, the crystal layer is divided into a plurality of divided bodies. The divided body of the crystal layer formed on the growth substrate is later transferred to the support substrate 101 to become the single crystal layer 102.
  • the formation method of the crystal layer divided body is as follows.
  • a resist mask is formed on the crystal layer using a positive resist using a mask pattern having the size of the divided body and the width of the groove.
  • the crystal layer is etched to form a divided body of the crystal layer. In this etching, it is preferable to perform etching up to the growth substrate. That is, it is preferable that the growth substrate is exposed through the sacrifice layer by the etching.
  • Adhesion is enhanced by activating the growth substrate on which the crystal layer divided body has been formed and the surface of the transfer destination support substrate 101 using an ion beam. Thereafter, the growth substrate having the crystal layer divided body and the surface of the support substrate 101 are bonded to each other to obtain a bonded substrate. At the time of bonding, the growth substrate and the support substrate 101 are pressure-bonded as necessary. By this bonding, a cavity is formed by the inner wall of the groove formed between the adjacent divided bodies and the support substrate 101.
  • An etchant is introduced into the cavity formed by the above-described bonding, and the sacrificial layer of the growth substrate is etched, so that the crystal layer divided body (single crystal layer 102) is left on the support substrate 101.
  • the substrate 101 and the growth substrate are separated. In this manner, the semiconductor crystal layer forming substrate 1000 having the single crystal layer 102 on the support substrate 101 can be manufactured.
  • 45 to 48 are sectional views showing a method of manufacturing a composite substrate using the semiconductor crystal layer forming substrate 1000 in the order of steps. As shown in FIG. 45, a sacrificial layer 104 and a semiconductor crystal layer 106 are sequentially formed on the entire surface of the semiconductor crystal layer forming substrate 1000 formed as described above by, for example, an epitaxial growth method.
  • the semiconductor crystal layer 106 is etched so that a part of the sacrificial layer 104 is exposed to the semiconductor crystal layer formation substrate 1000 on which the sacrificial layer 104 and the semiconductor crystal layer 106 are formed.
  • the semiconductor crystal layer 106 is etched with an LS pattern similar to the LS pattern of the single crystal layer 102.
  • the semiconductor crystal layer 106 is divided into a plurality of divided bodies 108, and grooves are formed between the adjacent divided bodies 108.
  • the divided body 108 can be formed as follows. A positive resist mask having an LS pattern having the same line width and groove width as that of the single crystal layer 102 is formed on the semiconductor crystal layer 106 in accordance with the pattern of the single crystal layer 102. Next, the semiconductor crystal layer 106 and the sacrificial layer 104 are etched using the positive resist mask as a mask. In the etching, it is preferable that etching is performed up to the support substrate 101.
  • the surface of the semiconductor crystal layer forming substrate 1000 having the semiconductor crystal layer 106 and the surface of the transfer destination substrate 120 are activated using an ion beam to enhance the adhesion.
  • the surface of the semiconductor crystal layer 106 and the surface of the transfer destination substrate 120 are bonded to face each other to obtain a bonded substrate as shown in FIG.
  • pressure bonding is performed as necessary. By this bonding, a cavity is formed by the groove between the adjacent divided bodies 108 and the surface of the transfer destination substrate 120.
  • the sacrificial layer 104 is etched by introducing an etchant into the cavity.
  • Etching of the sacrificial layer 104 can be performed by immersing the side surface of the bonded substrate in an etchant (agent), supplying the etchant into the cavity by capillary action, and allowing it to stand.
  • etching of the sacrificial layer 104 proceeds, the transfer destination substrate 120 and the semiconductor crystal layer forming substrate 1000 are separated, and a composite substrate having the semiconductor crystal layer 106 on the transfer destination substrate 120 is obtained.
  • the semiconductor crystal layer forming substrate 1000 is reused.
  • Embodiments 5 to 8 the smoothing and activation of Embodiment 3 may be applied, or the intermediate layer 302 of Embodiment 4 may be applied. Further, the corner 402 shown in FIG. 26 may be applied.
  • the transfer destination substrate 120 or the second transfer destination substrate 150 may be formed with an electronic circuit composed of a semiconductor element or the like. After the insulating layer is formed on the entire surface of the substrate on which the electronic circuit is formed, the transfer destination substrate 120 or the second transfer destination substrate 150 may be planarized.
  • the semiconductor crystal layer 106 may be attached to a region different from the region where the electronic circuit is formed on the transfer destination substrate 120 or the second transfer destination substrate 150, and the semiconductor crystal layer 106 is overlapped with the region where the electronic circuit is formed. May be pasted together.
  • Example 1 A method for manufacturing the semiconductor crystal layer forming substrate 1000 described in Embodiment 8 will be specifically described.
  • a 4-inch GaAs substrate was used as a growth substrate for a semiconductor crystal layer to be the single crystal layer 102 of the semiconductor crystal layer forming substrate 1000.
  • a 4-inch Si substrate was used as the support substrate 101 of the semiconductor crystal layer forming substrate 1000, and a GaAs crystal layer was used as the semiconductor crystal layer to be the single crystal layer 102.
  • An AlAs crystal layer as a sacrificial layer and a GaAs crystal layer as a single crystal layer 102 were sequentially formed on the entire surface of a 4-inch GaAs substrate as a growth substrate using an epitaxial crystal growth method by a low pressure MOCVD method.
  • the thicknesses of the AlAs crystal layer and the GaAs crystal layer were 7 nm and 1.0 ⁇ m, respectively.
  • a positive resist film with a 300/200 ⁇ mL S pattern was formed on the GaAs crystal layer, and the AlAs crystal layer and the GaAs crystal layer were etched down to the 4-inch GaAs substrate using the resist film as a mask.
  • the GaAs crystal layer was divided into a plurality of divided bodies by the etching.
  • a phosphoric acid etchant was used as an etchant for the GaAs crystal layer.
  • the surface of the GaAs crystal layer of the 4-inch GaAs substrate and the surface of the 4-inch Si substrate as the support substrate 101 were irradiated with an argon ion beam in vacuum to activate the surfaces. Thereafter, the surface of the GaAs crystal layer and the surface of the 4-inch Si substrate were faced to each other in a vacuum, and the 4-inch GaAs substrate and the 4-inch Si substrate were bonded together. At the time of bonding, a load of 100000 N (pressure: 12.3 MPa) was applied to pressure-bond both substrates. Crimping was performed at room temperature.
  • An etching solution is introduced into a cavity formed by a groove between adjacent divisions of the GaAs crystal layer, and the AlAs crystal layer, which is a sacrificial layer, is removed by etching to leave the GaAs crystal layer on the 4-inch Si substrate.
  • the GaAs substrate and the 4-inch Si substrate were separated.
  • the etching of the AlAs crystal layer is performed by immersing the side surface of the bonded substrate in an etching solution (10% hydrogen chloride aqueous solution) having an HCl concentration of 10% by mass at 23 ° C. and supplying the etching solution into the cavity by capillary action. It was executed by placing.
  • a semiconductor crystal layer forming substrate having a GaAs crystal layer having a thickness of 1.0 ⁇ m and a 300/200 ⁇ mL S pattern on a 4-inch Si substrate was obtained.
  • Example 2 Using the semiconductor crystal layer forming substrate 1000 obtained in Example 1, a composite substrate was manufactured by the method described in Embodiment 8. A 7 nm thick AlAs crystal layer was used as the sacrificial layer 104, and a 100 nm thick GaAs crystal layer was used as the semiconductor crystal layer 106. A 4-inch Si substrate was used as the transfer destination substrate 120.
  • An AlAs crystal layer having a thickness of 7 nm and a GaAs crystal layer having a thickness of 100 nm were sequentially formed on the entire surface of the semiconductor crystal layer forming substrate 1000 by using an epitaxial crystal growth method by a low pressure MOCVD method.
  • a positive resist film having a 300/200 ⁇ mL S pattern is formed on a GaAs crystal layer having a thickness of 100 nm in accordance with the 300/200 ⁇ mL S pattern of the GaAs crystal layer that is the single crystal layer 102, and the positive resist film is used as a mask to form the GaAs
  • the crystal layer and the AlAs crystal layer were etched to reach the Si substrate as the support substrate 101.
  • a phosphoric acid etchant was used for etching the GaAs crystal layer.
  • the surface of the GaAs crystal layer as the semiconductor crystal layer 106 and the surface of the 4-inch Si substrate as the transfer destination substrate 120 were irradiated with an argon ion beam in vacuum to activate the surfaces. Thereafter, the surface of the GaAs crystal layer and the surface of the 4-inch Si substrate face each other in a vacuum, and the semiconductor crystal layer forming substrate 1000 and the 4-inch Si substrate were bonded together. At the time of bonding, a load of 100000 N (pressure: 12.3 MPa) was applied to pressure-bond both substrates. Crimping was performed at room temperature.
  • An etching solution is introduced into the cavities formed by the grooves between the semiconductor crystal layers 106 (divided bodies 108), and the AlAs crystal layer that is the sacrificial layer 104 is removed by etching, and the GaAs that is the semiconductor crystal layer 106 is formed on the 4-inch Si substrate.
  • the semiconductor crystal layer forming substrate 1000 and the 4-inch Si substrate were separated while leaving the crystal layer.
  • a composite substrate having a GaAs crystal layer with a thickness of 100 nm and a 300/200 ⁇ mL S pattern on a 4-inch Si substrate as the transfer destination substrate 120 was obtained.
  • the semiconductor crystal layer forming substrate obtained here is used as a growth substrate, and the above process is repeated for a plurality of transfer destination substrates 120, whereby a 100 nm thick, 300/200 ⁇ mL S pattern is formed on a 4-inch Si substrate.
  • a composite substrate having a GaAs crystal layer was repeatedly obtained.
  • Example 3 A semiconductor crystal layer forming substrate was formed in the same manner as in Example 1 except that a 12-inch Si substrate was used as the support substrate 101.
  • a 12-inch Si substrate is used as the support substrate 101
  • a semiconductor crystal layer forming substrate having a GaAs crystal layer with a thickness of 1.0 ⁇ m and a 300/200 ⁇ mL S pattern on the 12-inch Si substrate is obtained as in Example 1. It was.
  • Example 4 A composite substrate is formed in the same manner as in Example 2 except that the semiconductor crystal layer formation substrate obtained in Example 3 is used as the semiconductor crystal layer formation substrate 1000 and a 12-inch Si substrate is used as the transfer destination substrate 120.
  • the load at the time of bonding shall be 100,000 N (pressure: 1.37 MPa).
  • a 12-inch Si substrate is used as the transfer destination substrate 120, a composite substrate having a GaAs crystal layer with a thickness of 100 nm and a 300/200 ⁇ mL S pattern on the 12-inch Si substrate is obtained as in the second embodiment.
  • Example 5 A composite substrate was manufactured in the same manner as in Example 2 except that a 1 ⁇ m thick Ge crystal layer was used as the semiconductor crystal layer 106 instead of the 100 nm thick GaAs crystal layer. As a result, the semiconductor crystal layer forming substrate 1000 obtained in Example 1 was used to form a 1 ⁇ m thick, 300/200 ⁇ mL S pattern on a 4-inch Si substrate as the transfer destination substrate 120 in the same manner as in Example 2. A composite substrate having a Ge crystal layer was obtained.
  • the semiconductor crystal layer forming substrate obtained here is used as a growth substrate, and the above process is repeated for a plurality of transfer destination substrates 120, thereby forming a 1 ⁇ m thick, 300/200 ⁇ mL S pattern on a 4-inch Si substrate.
  • a composite substrate having a Ge crystal layer was repeatedly obtained.
  • Example 6 A method for manufacturing the semiconductor crystal layer forming substrate 1000 will be specifically described.
  • a 4-inch GaAs substrate was used as a growth substrate for the semiconductor crystal layer that becomes the single crystal layer 102 of the semiconductor crystal layer forming substrate 1000.
  • a 4-inch Si substrate was used as the support substrate 101 of the semiconductor crystal layer forming substrate 1000, and a GaAs crystal layer was used as the semiconductor crystal layer to be the single crystal layer 102.
  • Example 7 A composite substrate was produced in the same manner as in Example 2 using the semiconductor crystal layer forming substrate 1000 obtained in Example 6. As a result, a composite substrate having a GaAs crystal layer having a thickness of 100 nm and a 300/200 ⁇ mL S pattern on a 4-inch Si substrate as the transfer destination substrate 120 was obtained. The semiconductor crystal layer forming substrate obtained here is used as a growth substrate, and the above process is repeated for a plurality of transfer destination substrates 120, thereby forming a GaAs having a thickness of 100 nm and a 300/200 ⁇ mL S pattern on a 4-inch Si substrate. A composite substrate having a crystal layer was repeatedly obtained.
  • a second element when a second element is “on” a first element such as a layer or a substrate, the second element is disposed directly on the first element.
  • a case where the second element is indirectly disposed on the first element by interposing other elements between the second element and the first element can also be included.
  • the case where the second element is formed “on” the first element can include the case where the second element is formed directly or indirectly on the first element, as described above.
  • phrases indicating directions such as “up” and “down” indicate relative directions in the semiconductor substrate, the composite substrate, and the device, and do not indicate an absolute direction with respect to an external reference surface such as the ground. Also good.
  • DESCRIPTION OF SYMBOLS 100 ... Semiconductor crystal layer formation substrate, 101 ... Support substrate, 102 ... Single crystal layer, 103 ... Polishing pad, 104 ... Sacrificial layer, 106 ... Semiconductor crystal layer, 107 ... Insulating layer 108... Divided body 110 110 groove 112 first surface 120 transfer destination substrate 122 second surface 124 124 third surface 130 ... Ion beam generator, 140 ... Cavity, 142 ... Etching solution, 150 ... Second transfer destination substrate, 152 ... Fourth surface, 162 ... Fifth surface, 164 ... -6th surface, 166 ... 7th surface, 168 ... 8th surface, 200 ... composite substrate, 300 ... semiconductor crystal layer forming substrate, 302 ...

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

 単結晶層を有する半導体結晶層形成基板を用いた複合基板の製造方法であって、(a)半導体結晶層形成基板の単結晶層の上に犠牲層および半導体結晶層を順次に形成するステップと、(b)半導体結晶層形成基板側の表面である第1表面と、転写先基板側の表面であって第1表面に接することとなる第2表面とを向かい合わせ半導体結晶層形成基板と転写先基板とを貼り合わせるステップと、(c)犠牲層をエッチングし、転写先基板に半導体結晶層を残した状態で半導体結晶層形成基板と転写先基板とを分離するステップとを有し、(c)ステップで分離した半導体結晶層形成基板を用いて、(a)から(c)の各ステップを繰り返す複合基板の製造方法を提供する。

Description

複合基板の製造方法および半導体結晶層形成基板の製造方法
 本発明は、複合基板の製造方法および半導体結晶層形成基板の製造方法に関する。
 GaAs、InGaAs、InP等のIII-V族化合物半導体は、高い電子移動度を有し、Ge、SiGe等のIV族半導体は、高い正孔移動度を有する。よって、III-V族化合物半導体でNチャネル型のMOSFET(Metal-Oxide-Semiconductor Field Effect Transistor、本明細書においては単に「nMOSFET」という場合がある。)を構成し、IV族半導体でPチャネル型のMOSFET(本明細書においては単に「pMOSFET」という場合がある。)を構成すれば、高い性能を備えたCMOSFET(Complementary Metal-Oxide-Semiconductor Field Effect Transistor)を実現することができる。非特許文献1には、III-V族化合物半導体をチャネルとするNチャネル型MOSFETとGeをチャネルとするPチャネル型MOSFETが、単一基板に形成されたCMOSFET構造が開示されている。
 単一基板(たとえばシリコン基板)上に、III-V族化合物半導体結晶層およびIV族半導体結晶層というような異種材料を形成する技術として、半導体結晶層形成基板に形成した半導体結晶層を転写先基板に転写する技術が知られている。たとえば非特許文献2には、GaAs基板上に犠牲層としてAlAs層を形成し、当該犠牲層(AlAs層)上に形成したGe層を、シリコン基板に転写する技術が開示されている。
 [非特許文献1]S. Takagi, et al., SSE, vol. 51, pp. 526-536, 2007.
 [非特許文献2]Y. Bai and E. A. Fitzgerald, ECS Transactions, 33 (6) 927-932 (2010)
 III-V族化合物半導体をチャネルとするNチャネル型MISFET(Metal-Insulator-Semiconductor Field Effect Transistor、本明細書においては単に「nMISFET」という場合がある。)と、IV族半導体をチャネルとするPチャネル型MISFET(本明細書においては単に「pMISFET」という場合がある。)とを、一つの基板上に形成するには、nMISFET用のIII-V族化合物半導体結晶層と、pMISFET用のIV族半導体結晶層とを単一基板上に形成する技術が必要になる。また、nMISFETとpMISFETをLSI(Large Scale Integration)として製造することを考慮すれば、既存製造装置および既存工程の活用が可能なシリコン基板上に、nMISFETあるいはpMISFET用の半導体結晶層を形成することが好ましい。非特許文献2の技術を用いることで、III-V族化合物半導体結晶層およびIV族半導体結晶層を単一基板上に形成することができ、これら半導体結晶層を、製造に有利なシリコン基板上に形成することができる。
 転写対象の半導体結晶層を形成するための半導体結晶層形成基板には、化合物半導体の単結晶基板(ウェハ)等、高価な材料が用いられる。非特許文献2に記載の犠牲層を用いることで、半導体結晶層形成基板の再利用が可能となり、製造コストの低減に一定の効果が期待できる。しかし、より一層のコスト削減が望まれている。また、半導体結晶層形成基板として大口径の化合物半導体単結晶ウェハを得ることは困難なので、基板サイズの大口径化による製造コストの低減を図ることができない。さらに、半導体結晶層を転写先基板に転写した後の平面形状(パターン)を考慮して半導体結晶層を半導体結晶層形成基板に形成することができれば、プロセスを簡略化することが可能になり、製造コストを削減できる可能性が高くなる。
 本発明の目的は、複数回使用することができる大口径の半導体結晶層形成基板を提供することにある。また、当該大口径の半導体結晶層形成基板を用いて半導体結晶層を形成する複合基板の製造方法を提供することにある。また、転写先基板に用いる半導体結晶層のパターンを予め半導体結晶層の形成段階で作り込むことが可能な半導体結晶層形成基板を提供することにある。さらに、複数回の使用においても安定して使用することができる半導体結晶層形成基板を提供することにある。
 上記課題を解決するために、本発明の第1の態様においては、支持基板と、支持基板の表面または裏面のうち一方の面に直接または中間層を介して支持された単結晶層とを有する半導体結晶層形成基板を用いた、複合基板の製造方法であって、(a)半導体結晶層形成基板の単結晶層の上に、犠牲層および半導体結晶層を、単結晶層、犠牲層、半導体結晶層の順に形成するステップと、(b)半導体結晶層形成基板に形成された層の表面である第1表面と、転写先基板または転写先基板に形成された層の表面であって第1表面に接することとなる第2表面と、を向かい合わせ、半導体結晶層形成基板と転写先基板とを貼り合わせるステップと、(c)犠牲層をエッチングし、転写先基板に半導体結晶層を残した状態で半導体結晶層形成基板と転写先基板とを分離するステップと、を有し、(c)ステップで分離した半導体結晶層形成基板を用いて、(a)から(c)の各ステップを繰り返す転写先基板の上に半導体結晶層を有する複合基板の製造方法を提供する。
 (a)ステップの前に、半導体結晶層形成基板の単結晶層の表面を平滑化するステップをさらに有してもよい。(a)ステップの後、(b)ステップの前に、犠牲層の一部が露出するように半導体結晶層をエッチングし、半導体結晶層を複数の分割体に分割するステップをさらに有してもよい。(a)ステップの後、(b)ステップの前に、第1表面および第2表面から選択された1以上の表面を活性化するステップをさらに有してもよい。(a)ステップの後、(b)ステップの前に、半導体結晶層の上に絶縁層を形成するステップをさらに有してもよい。(b)ステップの前に、転写先基板または転写先基板に形成された層の表面であって半導体結晶層形成基板側に位置する表面に絶縁層を形成するステップをさらに有してもよい。転写先基板が、直径200mmの円またはそれより面積の大きい任意の平面形状を有してもよい。(b)ステップの前に、転写先基板または転写先基板に形成された層の表面であって半導体結晶層形成基板側に位置する表面に接着層を形成するステップと、(c)ステップの後、転写先基板上の半導体結晶層の表面または半導体結晶層の上に形成された層の表面である第3表面と、第2転写先基板または第2転写先基板に形成された層の表面であって第3表面に接することとなる第4表面と、を向かい合わせ、転写先基板と第2転写先基板とを貼り合わせるステップと、転写先基板の接着層を除去し、第2転写先基板に半導体結晶層を残した状態で転写先基板と第2転写先基板とを分離するステップと、をさらに有してもよい。
 本発明の第2の態様においては、上記した複合基板の製造方法で用いる半導体結晶層形成基板の製造方法であって、支持基板の単結晶層と接することとなる第5表面、および、単結晶層の支持基板と接することとなる第6表面から選択された1以上の表面を平滑化するステップと、第5表面および第6表面から選択された1以上の表面を活性化するステップと、第5表面と第6表面とを向い合せ、支持基板と単結晶層とを貼り合せることで支持基板上に単結晶層を形成するステップと、を有する、半導体結晶層形成基板の製造方法を提供する。
 あるいは本発明の第3の態様においては、上記した複合基板の製造方法で用いる半導体結晶層形成基板の製造方法であって、支持基板の単結晶層側に位置する表面、および、単結晶層の支持基板側に位置する表面から選択された1以上の表面に、耐熱性の中間層を形成するステップと、支持基板または支持基板に形成された中間層の表面である第7表面と、単結晶層または単結晶層に形成された中間層の表面であって第7表面と接することとなる第8表面と、を向い合せ、支持基板と単結晶層とを貼り合せることで支持基板上に単結晶層を形成するステップと、を有する、半導体結晶層形成基板の製造方法を提供する。
 第3の態様において、中間層を形成するステップの後、貼り合せるステップの前に、第7表面および第8表面から選択された1以上の表面を活性化するステップをさらに有してもよい。さらに中間層を形成するステップの後、活性化するステップの前に、第7表面および第8表面から選択された1以上の表面を平滑化するステップをさらに有してもよい。
 第2の態様および第3の態様において、平滑化するステップとして、表面をCMP法により研磨するステップを例示することができる。また、活性化するステップとして、表面にイオンビームを照射するステップを例示することができる。貼り合せるステップにおいて、支持基板および単結晶層を100~200℃に加熱することができる。支持基板が、直径200mmの円またはそれより面積の大きい任意の平面形状を有してもよい。支持基板に貼り合わされた単結晶層の平面形状が角部を有する場合、支持基板と単結晶層とを貼り合せるステップの後、単結晶層の角部を丸める加工を施すステップをさらに有してもよい。
 あるいは本発明の第4の態様においては、上記した複合基板の製造方法で用いる半導体結晶層形成基板の製造方法であって、支持基板の上に、エピタキシャル結晶成長法を用いて単結晶成長層を形成するステップと、単結晶成長層をパターニングすることで支持基板上に単結晶層を形成するステップと、を有する、半導体結晶層形成基板の製造方法を提供する。
 第2の態様、第3の態様および第4の態様において、支持基板上に単結晶層を形成するより前に、支持基板上に凹部を形成するステップをさらに有することができ、この場合、単結晶層を形成するステップにおいて、単結晶層を凹部に形成することができる。単結晶層を凹部に形成する場合、凹部に形成された単結晶層の表面と支持基板の表面とが実質的に同一の平面になるよう、単結晶層または支持基板を研磨するステップをさらに有することができる。
 第2の態様、第3の態様および第4の態様において、支持基板上に単結晶層を形成する場合に、支持基板上に単結晶層を形成するより前に、支持基板の単結晶層を形成する領域または形成しない領域のいずれか一方に表面処理を施すステップをさらに有することができ、この場合、単結晶層を形成するステップにおいて、単結晶層を、表面処理を施した領域または施さなかった領域のいずれか一方に自己整合させて形成することができる。この場合、支持基板上に単結晶層を形成した後、単結晶層を薄化するステップをさらに有することができる。単一の支持基板上に複数の単結晶層が形成される場合には、単結晶層を薄化するステップにおいて、支持基板上の全ての単結晶層の表面を同時に研磨することで単結晶層を薄化することができる。
 第2の態様、第3の態様および第4の態様において、単一の支持基板の面内に複数の単結晶層が形成され、隣接する二つの単結晶層と支持基板とで溝が構成される場合に、溝を埋める充填層を形成するステップをさらに有することができる。この場合、単結晶層の表面と充填層の表面とが実質的に同一の平面になるよう、単結晶層または充填層を研磨するステップをさらに有することができる。
 支持基板上に形成された単結晶層の側面、側面の上に形成された層の表面、単結晶層が形成されていない非形成領域における支持基板の表面および非形成領域において支持基板上に形成された層の表面、から選択された1以上の面に、半導体結晶層の成長を阻害する成長阻害層を形成するステップをさらに有することができる。支持基板上に単結晶層を形成した後、単結晶層上にバッファ層を形成するステップをさらに有することができる。支持基板上に単結晶層を形成した後、単結晶層を覆う保護層を、単結晶層が形成された支持基板面の全面に渡り形成するステップと、単結晶層または単結晶層上に形成された層の表面が露出するように、保護層の一部を除去するステップと、をさらに有することができる。
実施形態1の複合基板の製造方法で用いる半導体結晶層形成基板100の平面図である。 実施形態1の複合基板の製造方法で用いる半導体結晶層形成基板100の断面図である。 実施形態1の複合基板の製造方法を工程順に示した断面図である。 実施形態1の複合基板の製造方法を工程順に示した断面図である。 実施形態1の複合基板の製造方法を工程順に示した断面図である。 実施形態1の複合基板の製造方法を工程順に示した断面図である。 実施形態1の複合基板の製造方法を工程順に示した平面図である。 分割体108の平面形状の例を示した平面図である。 分割体108の平面形状の例を示した平面図である。 実施形態1の複合基板の製造方法を工程順に示した断面図である。 実施形態1の複合基板の製造方法を工程順に示した断面図である。 実施形態1の複合基板の製造方法を工程順に示した断面図である。 実施形態1の複合基板の製造方法を工程順に示した断面図である。 実施形態1の方法で製造した複合基板200の平面図である。 実施形態2の複合基板の製造方法を工程順に示した断面図である。 実施形態2の複合基板の製造方法を工程順に示した断面図である。 実施形態2の複合基板の製造方法を工程順に示した断面図である。 実施形態3の半導体結晶層形成基板の製造方法を工程順に示した断面図である。 実施形態3の半導体結晶層形成基板の製造方法を工程順に示した断面図である。 実施形態3の半導体結晶層形成基板の製造方法を工程順に示した断面図である。 実施形態3の半導体結晶層形成基板の製造方法を工程順に示した断面図である。 実施形態3の方法で製造した半導体結晶層形成基板100の断面図である。 実施形態4の半導体結晶層形成基板の製造方法を工程順に示した断面図である。 実施形態4の半導体結晶層形成基板の製造方法を工程順に示した断面図である。 実施形態4の方法で製造した半導体結晶層形成基板300の断面図である。 半導体結晶層形成基板400の平面図である。 実施形態5の半導体結晶層形成基板の製造方法を工程順に示した断面図である。 実施形態5の半導体結晶層形成基板の製造方法を工程順に示した断面図である。 実施形態5の半導体結晶層形成基板の製造方法を工程順に示した断面図である。 実施形態5の半導体結晶層形成基板の製造方法を工程順に示した断面図である。 実施形態5の方法で製造した半導体結晶層形成基板500の断面図である。 実施形態6の半導体結晶層形成基板の製造方法を工程順に示した断面図である。 実施形態6の半導体結晶層形成基板の製造方法を工程順に示した断面図である。 実施形態6の半導体結晶層形成基板の製造方法を工程順に示した断面図である。 実施形態6の半導体結晶層形成基板の製造方法を工程順に示した断面図である。 実施形態6の方法で製造した半導体結晶層形成基板600の断面図である。 実施形態7の半導体結晶層形成基板の製造方法を工程順に示した断面図である。 実施形態7の半導体結晶層形成基板の製造方法を工程順に示した断面図である。 実施形態7の方法で製造した半導体結晶層形成基板700の断面図である。 半導体結晶層形成基板800の断面図である。 半導体結晶層形成基板900の製造方法を示した断面図である。 半導体結晶層形成基板900の断面図である。 実施形態8の半導体結晶層形成基板1000の平面図である。 実施形態8の半導体結晶層形成基板1000の断面図である。 半導体結晶層形成基板1000を用いた複合基板の製造方法を工程順に示した断面図である。 半導体結晶層形成基板1000を用いた複合基板の製造方法を工程順に示した断面図である。 半導体結晶層形成基板1000を用いた複合基板の製造方法を工程順に示した断面図である。 半導体結晶層形成基板1000を用いた複合基板の製造方法を工程順に示した断面図である。
(実施形態1)
 図1は、実施形態1の複合基板の製造方法で用いる半導体結晶層形成基板100の平面図である。図2は、当該半導体結晶層形成基板100の断面図である。図2は、図1のA-A線における断面を示す。半導体結晶層形成基板100は、支持基板101と単結晶層102とを有する。単結晶層102は、支持基板101の表面または裏面のうち一方の面に直接支持されている。つまり、単結晶層102は、支持基板101の表面または裏面のうち一方の面に接して形成されている。
 支持基板101は、非可撓性であることが好ましい。支持基板101は、後に説明するエピタキシャル成長において成長温度に耐え得る耐熱性を有する。支持基板101の材料として、シリコン、SiC、石英、サファイア、AlN,多結晶アルミナ、多結晶AlN、グラッシーカーボン、グラファイト、ダイヤモンドライクカーボン、および、ゲルマニウムなどを挙げることができる。耐熱性、コスト、半導体プロセスにおける取扱の容易性から、支持基板101の材料は、シリコンウェハ、または、ゲルマニウムウェハが好ましい。また、シリコンウェハ、または、ゲルマニウムウェハの表面に酸化物層を形成したウェハも、支持基板101として使用できる。本例の支持基板101は、直径200mmの円、または、それより面積の大きい任意の平面形状を有する。大きな支持基板101とすることにより、複合基板の製造における生産性(スループット)を向上できる。任意の平面形状には、円形、長方形、正方形、菱形等が含まれる。なお、本明細書において平面形状とは、支持基板101等の基板の表面または裏面に平行な面における形状を指す。
 支持基板101に支持される単結晶層102は、支持基板101の一方の面(表面または裏面)の全部を覆ってもよく、一部を覆ってもよい。単結晶層102は、単一または複数の何れでもよい。すなわち、単一の支持基板101の面内に複数の単結晶層102が形成されてもよく、単一の支持基板101に単一の単結晶層102が形成されてもよい。単一の支持基板101に複数の単結晶層102が形成される場合、単結晶層102の平面形状の大きさをダイサイズ程度の大きさ、たとえば一辺が0.5cm~3cm程度の正方形とすることができる。あるいは長辺または短辺が0.5cm~3cm程度の長方形とすることができる。これにより、一つの単結晶層102の上に形成される半導体結晶層を、一つのダイに対応するデバイス形成用基板として取り扱うことができる。単一の支持基板101に単一の単結晶層102が形成される場合、たとえば、支持基板101としてシリコン基板(ウェハ)を適用し、単結晶層102としてゲルマニウム層を適用できる。すなわち、支持基板101として取り扱いに十分習熟しているシリコン基板を用い、単結晶層102としてゲルマニウムを適用することにより、単結晶層102上にGaAs等の化合物半導体のエピタキシャル成長を可能にすることができる。支持基板101をシリコンとすることにより、コストを低減することもできる。
 単結晶層102の平面形状は、上記した他、一辺が100μm以上0.5cm未満の正方形とすることができる。また、単結晶層102の平面形状の他の例として、一辺が100μm~50cm程度であって他の一辺が50cm~100μmの長方形が挙げられる。さらに、単結晶層102の平面形状を、100μm~5mmの幅の線(単結晶層)と、1μm~20mmの幅の溝を交互に配置して敷き詰めた、いわゆるラインアンドスペースパターンとしてもよい。いわゆるラインの長さとしては、5cm~50cm、あるいは、支持基板101の大きさで制限される最大の長さ(支持基板101の端面から端面までの長さ)が挙げられる。本明細書において、300μm幅の線と200μm幅の溝を敷き詰めた、いわゆるラインアンドスペースパターンを、ライン(線部分)とスペース(溝部分)の幅を用いて「300/200μmLSパターン」と称する。
 単結晶層102は、エピタキシャル成長等の膜成長法により形成された薄膜結晶層(単結晶成長層)であってよい。また、単結晶層102は、バルク成長法により形成されたバルク結晶をウェハ状等の板状に整形し、当該板状結晶をさらに劈開等により適切な大きさに加工形成されたものであってもよい。単結晶層102に、エピタキシャル成長法により形成された薄膜単結晶層(単結晶成長層)を用いる場合、支持基板101の上に、エピタキシャル結晶成長法を用いて単結晶成長層を形成し、当該単結晶成長層をパターニングすることで支持基板101上に単結晶層102を形成することができる。
 単結晶層102は、高品位な半導体結晶層をエピタキシャル成長により形成するためのシード層である。好ましい単結晶層102の材料は、エピタキシャル成長させる半導体結晶層の材料に依存する。一般に、単結晶層102は、形成しようとする半導体結晶層と格子整合または擬格子整合する材料からなることが望ましい。たとえば、半導体結晶層としてInP層をエピタキシャル成長法により形成する場合、単結晶層102は、InP単結晶基板が好ましい。また、単結晶層102として、サファイア、Ge、SiC等の単結晶基板を選択することができる。また、半導体結晶層としてGaAs層またはGe層をエピタキシャル成長法により形成する場合、単結晶層102は、GaAs単結晶基板が好ましく、InP、サファイア、Ge、SiCの単結晶基板が選択可能である。単結晶層102がGaAs単結晶基板またはInP単結晶基板である場合、半導体結晶層が形成される面方位として(100)面または(111)面が挙げられる。なお、上述した通り、単結晶層102として単結晶基板を選択できるので、本明細書では単結晶層102を基板として扱う場合がある。
 単結晶層102の厚さは、支持基板101から剥離しない限りにおいて厚い方が好ましい。単結晶層102の厚さとして、たとえば、0.1~600μmを挙げることができる。単結晶層102は、支持基板101の面内において、予め分割して配置することが好ましい。単結晶層102を分割して配置することで、半導体結晶層形成基板100の全体の反りを抑制できる。
 図3から図13は、実施形態1の複合基板の製造方法を工程順に示した断面図または平面図である。以下図面に従って複合基板の製造方法を説明する。本例の断面図においては、図2と同様に一つの単結晶層102に対応する部分を示している。
 図3に示すように、半導体結晶層形成基板100の単結晶層102の表面を平滑化する。単結晶層102は、たとえば化学機械研磨(CMP)法で研磨できる。化学機械研磨法による研磨においては、研磨剤および研磨液を混合したスラリを供給しつつ研磨パッド103により単結晶層102の表面を摺動する。平滑化のステップにより、単結晶層102の表面を平滑にするとともに、結晶の劈開等により発生したパーティクルを除去できる。なお、本平滑化のステップは必須ではない。平滑化のステップは必要に応じて実施すればよい。平滑化に続いて単結晶層102の表面を洗浄してもよい。
 次に図4に示すように、半導体結晶層形成基板の単結晶層102の上に、犠牲層104および半導体結晶層106を、単結晶層102、犠牲層104、半導体結晶層106の順に形成する。
 犠牲層104は、単結晶層102と半導体結晶層106とを分離するための層である。犠牲層104がエッチングにより除去されることで、単結晶層102と半導体結晶層106とが分離する。犠牲層104のエッチングに際し、単結晶層102および半導体結晶層106が残る必要があるため、犠牲層104のエッチング速度は、単結晶層102および半導体結晶層106のエッチング速度より大きい、好ましくは数倍以上大きい。単結晶層102としてGaAs単結晶基板が、半導体結晶層106としてGaAs層が選択される場合、犠牲層104はAlGa1-xAs(0.9≦x≦1)層が好ましく、さらにAlAs層が好ましく、InAlAs層、InGaP層、InAlP層、InGaAlP層、AlSb層が選択できる。犠牲層104の厚さが大きくなると、半導体結晶層106の結晶性が低下する傾向にあるから、犠牲層104の厚さは、犠牲層としての機能が確保できる限り薄いことが好ましい。犠牲層104の厚さは、0.1nm~10μmの範囲で選択できる。
 犠牲層104は、CVD(Chemical Vapor Deposition)法、スパッタ法、MBE(Molecular Beam Epitaxy)法またはALD(Atomic Layer Deposition)法により形成することができる。CVD法として、MOCVD(Metal Organic Chemical Vapor Deposition)法が挙げられる。III-V族化合物半導体のエピタキシャル成長には、MOCVD法が用いられ、IV族半導体のエピタキシャル成長にはCVD法が用いられる。犠牲層104をMOCVD法で形成する場合、ソースガスとして、TMGa(トリメチルガリウム)、TMA(トリメチルアルミニウム)、TMIn(トリメチルインジウム)、AsH(アルシン)、PH(ホスフィン)等を用いることができる。キャリアガスには水素を用いることができる。ソースガスの複数の水素原子基の一部を塩素原子または炭化水素基で置換した化合物を用いることもできる。反応温度は、300℃から900℃の範囲で、好ましくは400~800℃の範囲内で適宜選択することができる。ソースガス供給量や反応時間を適宜選択することで犠牲層104の厚さを制御することができる。
 半導体結晶層106は、後に説明する転写先基板に転写される転写対象層である。半導体結晶層106は、半導体デバイスの活性層等に利用される。半導体結晶層106が単結晶層102上にエピタキシャル成長法等により形成されることで、半導体結晶層106の結晶性が高品位に実現される。また、半導体結晶層106が転写先基板に転写されることで、基板との格子整合等を考慮すること無く、半導体結晶層106を任意の基板上に形成することが可能になる。
 半導体結晶層106として、Ge結晶層またはGeSi1-x(0<x<1)結晶層が挙げられる。GeSi1-x結晶層のGe組成比xは、0.9以上であることが好ましい。Ge組成比xを0.9以上とすることにより、Ge層に近い半導体特性を得ることができる。半導体結晶層106としてGeSi1-x(0<x≦1)結晶層、好ましくはGeSi1-x(0.9<x≦1)結晶層、より好ましくはGe結晶層を用いることにより、半導体結晶層106を高移動度な電界効果トランジスタ、特に高移動度な相補型電界効果トランジスタの活性層に用いることが可能になる。
 半導体結晶層106の厚さは、0.1nm~500μmの範囲で適宜選択することができる。半導体結晶層106の厚さは、0.1nm以上1μm未満であることが好ましい。半導体結晶層106を1μm未満とすることにより、さらに好ましくは200nm未満とすることにより、特に好ましくは20nm未満とすることにより、たとえば極薄ボディMISFET等の高性能トランジスタの製造に適した複合基板に用いることができる。
 半導体結晶層106は、CVD法、スパッタ法、MBE法またはALD法により形成することができる。CVD法として、MOCVD法が挙げられる。半導体結晶層106がIII-V族化合物半導体からなり、MOCVD法で形成する場合、ソースガスとして、TMGa(トリメチルガリウム)、TMA(トリメチルアルミニウム)、TMIn(トリメチルインジウム)、AsH(アルシン)、PH(ホスフィン)等を用いることができる。半導体結晶層106がIV族化合物半導体からなり、CVD法で形成する場合、ソースガスとして、GeH(ゲルマン)、SiH(シラン)またはSi(ジシラン)等を用いることができる。キャリアガスには水素を用いることができる。ソースガスの複数の水素原子基の一部を塩素原子または炭化水素基で置換した化合物を用いることもできる。反応温度は、300℃から900℃の範囲で、好ましくは400~800℃の範囲内で適宜選択することができる。ソースガス供給量や反応時間を適宜選択することで半導体結晶層106の厚さを制御することができる。
 次に図5に示すように、半導体結晶層106の上に絶縁層107を形成する。絶縁層107は、転写先基板への接着層として機能させることができる。絶縁層107として、ALD法による酸化アルミニウム層を例示することができる。絶縁層107として、CVD法によるシリコン酸化物層またはシリコン窒化物層を適用してもよい。なお、絶縁層107は必須ではない、必要に応じて絶縁層107を形成すればよい。
 次に、図6に示すように、犠牲層104の一部が露出するように絶縁層107および半導体結晶層106をエッチングし、絶縁層107および半導体結晶層106を複数の分割体108に分割する。分割体108は、直径30mmの円またはそれより小さい任意の平面形状を有する。このエッチングにより分割体108と隣接する分割体108との間に溝110が形成される。ここで、「犠牲層104の一部を露出するように」とは、溝110が形成されるエッチング領域において、犠牲層104が実質的に露出していると言える以下のような場合を含む。すなわち、(1)溝110の底部において犠牲層104が完全にエッチングされ、溝110の底部に単結晶層102が露出され、犠牲層104の断面が溝110の側面の一部として露出されるような場合、(2)単結晶層102に溝110が掘り込まれ、犠牲層104の断面が溝110の側面の一部として露出されるような場合、(3)溝110が形成される領域において犠牲層104の途中までエッチングされ、溝110の底面に犠牲層104が露出されるような場合、(4)溝110の底部の一部に半導体結晶層106が残存し、溝110の底部において犠牲層104が一部露出しているような場合、(5)溝110の底部全体に極薄い半導体結晶層106が残存するものの、残存する半導体結晶層106の厚さはエッチング液が浸透する程度に薄く、実質的に犠牲層104が露出していると言える場合、を含む。
 溝110を形成するエッチングには、ドライ方式またはウェット方式の何れのエッチング方式も採用できる。ドライエッチングの場合、エッチングガスには、SF、CH4-x(x=1~4の整数)等のハロゲンガスが利用できる。ウェットエッチングの場合、エッチング液として、HCl、HF、リン酸、クエン酸、過酸化水素水、アンモニア、水酸化ナトリウムの水溶液が利用できる。エッチングのマスクには、エッチング選択比を有する適当な有機物または無機物が利用でき、マスクをパターニングすることにより、溝110のパターンを任意に形成できる。なお、溝110を形成するエッチングにおいて、単結晶層102をエッチングストッパに利用することが可能であるが、単結晶層102を再利用することを考慮すれば、犠牲層104の表面または途中でエッチングを停止することが望ましい。半導体結晶層106が薄い場合、たとえば半導体結晶層106の厚さが2μm以下である場合、単結晶層102まで溝110を掘り込むことが望ましい場合もある。
 溝110を形成することにより、犠牲層104のエッチングにおいて、エッチング液が溝110から供給され、溝110を多く形成することで、犠牲層104のエッチングが必要な距離を短くし、犠牲層104の除去に必要な時間を短縮できる。図7は、半導体結晶層形成基板100を上方から見た平面図であり、支持基板101上の単結晶層102に分割体108が多数形成されている。
 溝110のパターンによって分離される半導体結晶層106の平面形状(分割体108の平面形状)は、分割体108の辺縁の点から当該点における法線方向へ等速度に当該平面形状が縮小し消滅すると仮定した場合に、縮小し消滅する直前の図形が単一の点ではなく、単一の線、複数の線または複数の点となる平面形状であることが好ましい。また、当該仮定において、平面形状の縮小は、各点において同時に開始する。ここで、辺縁とは、平面形状の外形を示す線を指す。また、平面形状は、各層の積層方向とは垂直な面における形状を指す。また、平面形状の縮小および消滅の仮定とは、半導体結晶層106を実際に縮小および消滅させるのではなく、平面形状の形を定義すべく、仮想的に平面形状を縮小および消滅させる操作を指す。本例では、当該操作によって平面形状が消滅する直前の形状を用いて、縮小させる前の平面形状(すなわち、実際の半導体結晶層106の平面形状)を定義している。分割体108の好ましい平面形状として、平行な2本の線分と、当該2本の線分のそれぞれの端点間を結ぶ2本の線とで囲まれた平面の形状を挙げることができる。但し、半導体結晶層106の平面形状は、正円および正n角形(nは3以上の整数)以外の形状である。例えば、当該4本の線のうち、少なくとも一つの線の長さは、他の線の長さと異なってよい。また、半導体結晶層106の平面形状の辺のうち、最も長い長辺は、最も短い短辺に対して、2倍以上大きくてよく、4倍以上大きくてよく、10倍以上大きくてもよい。また、端点間を結ぶ線として、直線、曲線または折れ線を挙げることができる。図8(a)は、互いに平行な2本の線分の端点を直線で結んだ平面形状の例を示す。図8(b)は、互いに平行な2本の線分の端点を曲線で結んだ平面形状の例を示す。図8(c)は、互いに平行な2本の線分の端点を折れ線で結んだ平面形状の例を示す。端点を結ぶ2本の線が何れも直線であって、平行な2本の線分と端点を結ぶ直線とが垂直な関係にある場合、平面形状は長方形になる。平面形状が長方形である場合、図9(a)の矢印に示すように等速度に分割体の平面形状が縮小すると、破線で示す縮小された分割体の平面形状は、消滅直前には直線になる。細長いライン形状の分割体108を繰り返して配置するラインアンドスペースパターンの場合や、図9(b)に示すような角が曲線に置き換えられた長方形状(rounded rectangle)も、図9(a)の長方形と同様に消滅直前の図形は直線になる。図9(c)に示すようなI型の場合、消滅直前の平面形状は2点に集約される。図9(d)に示すようなT型あるいは図9(e)に示すようなガルウイング型の場合、消滅直前の平面形状は直線の組み合わせあるいは曲線となる。
 犠牲層104のエッチング工程においては、ガス状の生成物により、半導体結晶層106は単結晶層102から離れる方向に力を受ける。そして、犠牲層104が全て溶解される直前において犠牲層104の残りが単一の点に集中されると、当該犠牲層104の残存部分の一点に力が集中される。このような状況では比較的大きな力で半導体結晶層106と単結晶層102が分離され、分離時の衝撃によって半導体結晶層106がダメージを受ける。これが原因で、転写された半導体結晶層106のパターン中央付近に穴または凹部が発生する場合がある。しかし、分割体108の平面形状を図8または図9に示すような形状とすることで、犠牲層104の残存部分を一点ではなく、複数点または直線とすることができ、半導体結晶層106が単結晶層102から分離される時の衝撃を緩和することができる。これにより転写された半導体結晶層106の平面形状のパターン中央付近の穴または凹部の発生を抑制でき、転写不良を少なくすることができる。
 次に、図10に示すように、転写先基板120と絶縁層107および半導体結晶層106との接着性を強化する接着性強化処理を転写先基板120の表面および絶縁層107の表面に施す。ここで、単結晶層102上の、溝110以外の部分の絶縁層107の表面は、単結晶層102に形成された層の表面であって転写先基板120または転写先基板120に形成された層に接することとなる「第1表面112」の一例である。また、転写先基板120の表面は、転写先基板120または転写先基板120に形成された層の表面であって第1表面112に接することとなる「第2表面122」の一例である。
 接着性強化処理は、転写先基板120の表面(第2表面122)または絶縁層107の表面(第1表面112)の何れか一方にだけ施してもよい。接着性強化処理として、イオンビーム生成器130によるイオンビーム活性化を例示することができる。照射するイオンは、たとえばアルゴンイオンである。接着性強化処理として、プラズマ活性化を施してもよい。プラズマ活性化の処理として、酸素プラズマ処理を例示することができる。接着性強化処理により、転写先基板120と絶縁層107との接着性を強化することができる。なお、接着性強化処理は、必須ではない。接着性強化処理に代えて、転写先基板120上に、接着層を予め形成しておいても良い。
 転写先基板120は、半導体結晶層106が転写される先の基板である。転写先基板120は、半導体結晶層106を活性層として利用する電子デバイスが最終的に配置されるターゲット基板であってもよく、半導体結晶層106がターゲット基板に転写されるまでの中間状態における、仮置き基板であってもよい。転写先基板120は、有機物、無機物の何れであってもよい。転写先基板120として、シリコン基板、SOI(Silicon on Insulator)基板、ガラス基板、サファイア基板、SiC基板、AlN基板を例示することができる。他に、セラミックス基板、プラスティック基板等の絶縁体基板、金属等の導電体基板であっても良い。転写先基板120にシリコン基板またはSOI基板を用いる場合、既存のシリコンプロセスで用いられる製造装置が利用でき、既知のシリコンプロセスにおける知見を利用して、研究開発および製造の効率を高めることができる。転写先基板120がシリコン基板等、容易には曲がらない硬い基板である場合、転写する半導体結晶層106が機械的振動等から保護され、半導体結晶層106の結晶品質を高く保つことができる。
 なお、転写先基板120に耐熱性の絶縁層を形成してもよい。耐熱性の絶縁層として、ALD法によるAl、CVD法によるSiO、Siを例示することができる。転写先基板120は、直径200mmの円、または、それより面積の大きい任意の平面形状を有することが好ましい。転写先基板120を大きくすることで、生産性を高めることができる。なお、任意の平面形状には、円形、長方形、正方形、菱形等が含まれる。
 次に、図11に示すように、転写先基板120の表面(第2表面122)と絶縁層107の表面(第1表面112)とを向かい合わせ、転写先基板120と半導体結晶層形成基板100とを貼り合わせる。貼り合わせにおいて、第1表面112である絶縁層107の表面と、第2表面122である転写先基板120の表面とが接合されるように、転写先基板120と半導体結晶層形成基板100とを貼り合わせる。接着性強化処理を行う場合、貼り合わせは室温で行うことができる。貼り合わせにおいて、半導体結晶層形成基板100と転写先基板120を圧着してもよい。この場合の圧力範囲は0.01MPa~1GPaの範囲で適宜選択できる。圧着により接着強度を向上させることができる。圧着時または圧着後に加熱してもよい。加熱温度として50~600℃が好ましく、さらに好ましくは100℃~400℃がよい。なお、半導体結晶層形成基板100と転写先基板120は、貼り合わせると同時に上記した圧力範囲で圧着してもよい。
 貼り合わせにより、図12に示すように、溝110の内壁と転写先基板120の表面とによって空洞140が形成される。空洞140にエッチング液142を供給し、犠牲層104をエッチングする。なお、エッチングはエッチングガスによるドライエッチングでもよい。犠牲層104がAlAs層である場合、エッチング液142として、HCl、HF、リン酸、クエン酸、過酸化水素水、アンモニア、水酸化ナトリウムの水溶液または水を例示することができる。エッチング中の温度は、10~90℃の範囲で制御することが好ましい。エッチング時間は、1分~200時間の範囲で適宜制御することができる。
 空洞140にエッチング液142を供給する方法として、毛細管現象によりエッチング液142を空洞140内に供給する方法、空洞140の一端をエッチング液142に浸漬し、他端からエッチング液142を吸引することで強制的にエッチング液142を空洞140内に供給する方法、空洞140の一端が開放され他端が閉塞されている場合に、転写先基板120および半導体結晶層形成基板100を減圧状態に置き、空洞140の開放されている一端をエッチング液142に浸漬した後、転写先基板120および半導体結晶層形成基板100を大気圧状態にすることで、強制的にエッチング液142を空洞140内に供給する方法、を挙げることができる。
 毛細管現象によりエッチング液142を空洞140内に供給する方法の具体例として、空洞140の一端にエッチング液142をマイクロピペッター等により滴下する方法を挙げることができる。毛細管現象を利用してエッチング液142を空洞140内に供給するには、空洞140の他端は開放されている必要がある。空洞140の一端にエッチング液142を滴下して空洞140内のエッチング液142を供給する場合、エッチング液142を簡便かつ確実に空洞140内に供給することができる。なお、空洞140の内部がエッチング液142で満たされた後、転写先基板120および半導体結晶層形成基板100の全体を、エッチング液142で満たしたエッチング槽に浸漬してエッチングを進行することができる。あるいは、空洞140の一端にエッチング液142を供給し続けてエッチングを進行することができる。空洞140の一端にエッチング液142を滴下により供給し続ける場合、使用するエッチング液142の量はごく微量で済むため、エッチング液142の削減が可能となり、コストの低減およびエッチング液142の廃棄に伴う環境負荷の低減を図ることができる。
 また、空洞140をエッチング液142に浸漬する場合、貼り合わせた基板の側面の一部にグリースを付着させこともできる。この場合、基板の側面にグリースを付着することで、エッチング液が側面から空洞140の内部に浸透することが抑制される。毛細管現象により空洞140の内部にエッチング液を充填しようとする場合、側面からのエッチング液の浸透があると、毛細管現象が阻害され、空洞140の内部にエッチング液が十分に充填されない場合がある。しかし、基板側面にグリースを付着させることで側面からのエッチング液の浸透が抑制され、空洞140内部にエッチング液が確実に充填される。なお、側面からのエッチング液の浸透を抑制できるものであれば、グリースに限らず、他の物質を用いることも可能である。
 犠牲層104がエッチングにより除去されると、図13に示すように、半導体結晶層106を転写先基板120側に残した状態で、転写先基板120と単結晶層102(半導体結晶層形成基板100)とが分離する。これにより、半導体結晶層106が転写先基板120に転写され、転写先基板120上に半導体結晶層106を有する複合基板が製造される。転写先基板120上の半導体結晶層106は、図14に示すように、多数の分割体として形成される。
 また、分離された半導体結晶層形成基板100は、再利用され、図3に示す平滑化のステップから同様に利用される。半導体結晶層形成基板100は、単結晶層102が消耗されて使えなくなるまで再利用が可能であり、再利用による大幅な製造コストの削減が期待できる。
(実施形態2)
 図15から図17は、実施形態2の複合基板の製造方法を工程順に示した断面図である。実施形態2では、実施形態1の方法で製造した複合基板(転写先基板120上に半導体結晶層106を有する複合基板)を用いる。実施形態2では、転写先基板120上の半導体結晶層106を、さらに第2転写先基板150に転写し、第2転写先基板150上に半導体結晶層106を有する複合基板の製造方法について説明する。
 図15に示すように、転写先基板120上の半導体結晶層106の表面(第3表面124)と、第2転写先基板150の表面(第4表面152)とを向かい合わせ、図16に示すように、転写先基板120と第2転写先基板150とを貼り合わせる。なお、半導体結晶層106の表面は、転写先基板120上の半導体結晶層106の表面または半導体結晶層106の上に形成された層の表面であって第2転写先基板150または第2転写先基板150に形成された層に接することとなる第3表面124の一例である。また、第2転写先基板150の表面は、第2転写先基板150または第2転写先基板150に形成された層の表面であって第3表面124に接することとなる第4表面152の一例である。
 次に、図17に示すように、絶縁層107を除去し、第2転写先基板150に半導体結晶層106を残した状態で転写先基板120と第2転写先基板150とを分離する。なお、絶縁層107は、実施形態1においては接着層として機能させたが、ここでは剥離に用いる犠牲層として機能させた。第2実施形態においては、接着層および犠牲層の両方として機能する絶縁層107を設けてよく、絶縁層107とは別に犠牲層を形成してもよい。
 以上のようにして、半導体結晶層106を第2転写先基板に転写することができる。さらに他の転写先基板に転写してもよいことは言うまでもない。なお、転写先基板120は、フィルム等の可撓性を有する有機物基板であってもよい。この場合、有機物基板を有機溶剤等により溶解もしくは膨潤させて、剥離を容易に行うことができる。
(実施形態3)
 図18から図21は、実施形態3の半導体結晶層形成基板の製造方法を工程順に示した断面図である。実施形態3では、実施形態1で用いた半導体結晶層形成基板100の製造方法を説明する。
 まず、図18に示すように、支持基板101の単結晶層102と接する第5表面162、および、単結晶層102の支持基板101と接する第6表面164から選択された1以上の表面を平滑化する。本例の単結晶層102は、単結晶基板である。平滑化の処理には、先に説明した通り、CMP法を例示することができる。次に、図19に示すように、第5表面162および第6表面164から選択された1以上の表面を活性化する。活性化には、先に説明した通り、アルゴンイオンビームを用いることができる。次に、図20に示すように、第5表面162と第6表面164とを向い合せ、図21に示すように、支持基板101と単結晶層102とを貼り合せる。貼り合わせにおける支持基板101および単結晶層102の温度として、本発明の実施形態に係る複合基板を利用して製造される部品の使用温度範囲と同様の-20℃~80℃が挙げられ、好ましくは通常の装置の使用温度範囲である0℃~60℃が挙げられ、さらに好ましくは貼り合わせプロセス中の常温の温度範囲である20~30℃が挙げられる。支持基板101および単結晶層102を圧着してもよく、この場合の圧力範囲は、0.01MPa~1GPaが好ましい。以上の工程を複数の単結晶層102について施せば、図22に示すように、半導体結晶層形成基板100が製造できる。
 以上のような半導体結晶層形成基板100の製造方法によれば、支持基板101と単結晶層102との間を平滑化し、かつ活性化するので、支持基板101と単結晶層102とが強固に接着され、エピタキシャル成長法等の層形成プロセスにおける昇温・降温等、熱ストレスを受けても容易には剥離しない半導体結晶層形成基板100が製造できる。なお、CMP法による平滑化により、支持基板101または単結晶層102の平坦性は、自乗平均平方根粗さ(RRMS)を0.5nm以下にすることができる。
(実施形態4)
 図23および図24は、実施形態4の半導体結晶層形成基板の製造方法を工程順に示した断面図である。実施形態3では、支持基板101と単結晶層102とを直接接触させた場合を説明したが、図23に示すように、支持基板101上に耐熱性の中間層302を形成し、図24に示すように、中間層302に単結晶層102を貼り合わせてもよい。複数の単結晶層102について同様に貼り合わせを行えば、図25に示すように、半導体結晶層形成基板300が製造できる。すなわち、支持基板101の単結晶層102側に位置する表面、および、単結晶層102の支持基板101側に位置する表面から選択された1以上の表面に、耐熱性の中間層302を形成する。そして、支持基板101または支持基板101に形成された中間層302の表面であって単結晶層102または単結晶層102に形成された中間層302に接することとなる第7表面166と、単結晶層102または単結晶層102に形成された中間層302の表面であって第7表面166と接することとなる第8表面168と、を向い合せ、支持基板101と単結晶層102とを貼り合せることができる。なお、実施形態1において、本実施形態4の半導体結晶層形成基板300を用いてもよいことは勿論である。
 中間層302には、たとえばALD法による酸化アルミニウム層、CVD法による酸化シリコン層または窒化シリコン層を用いることができる。本実施形態4において、中間層302を形成した後、貼り合わせる前に、第7表面166および第8表面168から選択された1以上の表面を活性化することができる。また、中間層302を形成した後、活性化する前に、第7表面166および第8表面168から選択された1以上の表面を平滑化することができる。
 なお、上記した実施形態では、単結晶層102の平面形状として、正方形を示したが、正方形に限られず、長方形、その他の多角形、円形、楕円形等、任意の形状が可能である。ただし、支持基板101に貼り合わされた単結晶層102の平面形状が角部402を有する場合、図26に示すように、支持基板101と単結晶層102とを貼り合せた後、単結晶層102の角部402を、平面形状において丸める加工を施すことが好ましい。角部402を丸めることで、角部402からの剥離を少なくすることができる。角部402を丸める加工の方法として、等方性エッチング、マスク形成した後のウェットまたはドライエッチングを例示することができる。
(実施形態5)
 図27から図30は、実施形態5の半導体結晶層形成基板の製造方法を工程順に示した断面図である。図31は、実施形態5の方法で製造した半導体結晶層形成基板500の断面図である。実施形態5では、実施形態3および実施形態4とは異なる半導体結晶層形成基板の製造方法を説明する。
 支持基板101上に単結晶層102を形成するより前に、図27に示すように、支持基板101上に凹部502を形成する。凹部502は、たとえば、支持基板101上にフォトレジスト等のマスクを形成し、当該マスクで遮蔽されない領域の支持基板101をドライエッチング等によりエッチングして形成できる。
 そして、図28に示すように、凹部502に単結晶層102を形成する。凹部502への単結晶層102の形成は、たとえば実施形態3または実施形態4と同様に、単結晶層102を支持基板101に貼り合わせて形成する。単結晶層102の大きさを、予め凹部502に適合する大きさに加工しておけば、貼り合わせ時の位置合わせが容易になり、貼り合わせを正確に行うことができる。
 図29に示すように、全ての凹部502に単結晶層102を貼り合わせて形成し、図30に示すように、単結晶層102の表面を研磨パッド103により研磨する。この研磨は、凹部502に形成された単結晶層102の表面と支持基板101の表面とが実質的に同一の平面になるよう研磨する。すなわち、単結晶層102の表面と支持基板101の表面とが実質的に同一の平面になった段階で研磨を終了する。これにより、図31に示すように、半導体結晶層形成基板500が形成される。
 半導体結晶層形成基板500は、単結晶層102の表面と支持基板101の表面とが実質的に同一の平面になるよう形成されているので、半導体結晶層形成基板500をエピタキシャル成長等に用いて半導体結晶層106等を形成する場合、エピタキシャル成長におけるガス流に乱れが生じず、均一な半導体結晶層106を形成できる。また、研磨により単結晶層102を薄化していることにもなるので、エピタキシャル成長等における基板温度の上昇により単結晶層102に反り等のストレスが発生しても、剥離し難く、半導体結晶層形成基板500を熱的に安定なものとすることができる。
 なお、図30における説明では、研磨前の単結晶層102の表面が支持基板101の表面より突出している場合を説明したので、研磨パッド103により研磨される対象は単結晶層102の表面であった。これに対し、単結晶層102が薄く形成され、単結晶層102の表面が支持基板101の表面より窪んでいてもよい。この場合、研磨パッド103により研磨される対象は支持基板101の表面である。
 上記した実施形態5では、凹部502に単結晶層102を形成する例を説明したが、支持基板101上に単結晶層102を形成するより前に、支持基板101上に凸部を形成し、当該凸部に単結晶層102を形成してもよい。この場合、支持基板101上に単結晶層102を貼り合わせて形成する場合には、単結晶層102を凸部に自己整合させて形成することができる。
(実施形態6)
 図32から図35は、実施形態6の半導体結晶層形成基板の製造方法を工程順に示した断面図である。図36は、実施形態6の方法で製造した半導体結晶層形成基板600の断面図である。実施形態6では、実施形態3から実施形態5とはさらに異なる半導体結晶層形成基板の製造方法を説明する。
 図32に示すように、支持基板101上に絶縁層602を形成する。絶縁層602は、たとえば、自然酸化層である。絶縁層602は、たとえばALD法により形成されたAl3、HfO、ZrO、La、MOCVD法により形成されたHfO、ZrO、La、SiOの層であってもよい。絶縁層602の厚さは、たとえば1nmから15nmの範囲とすることができる。
 図33に示すように、絶縁層602の一部をパターニングにより除去する。絶縁層602の一部の除去は、支持基板101の単結晶層102を形成する領域または形成しない領域への表面処理の一例であり、支持基板101表面の親水化または疎水化の一例である。絶縁層602の材料により、絶縁層602の有無により親水化または疎水化された領域とすることができる。つまり、支持基板101の表面の一部の領域を親水化したい場合、支持基板101よりも親水性の高い絶縁層602を、当該一部の領域に形成する。また、支持基板101の表面の一部の領域を疎水化したい場合、支持基板101よりも疎水性の高い絶縁層602を、当該一部の領域に形成する。本例では、支持基板101よりも親水性の高い絶縁層602を、支持基板101の表面の一部の領域に形成する。
 次に図34に示すように、絶縁層602の表面と単結晶層102の表面とを向かい合わせ、支持基板101と単結晶層102とを貼り合わせる。このとき、単結晶層102は、チップソーター等でハンドリングし、粗く位置合わせする。この貼り合わせの際、支持基板101の表面が絶縁層602により親水化されているので、図35に示すように、支持基板101表面の親水化された部分または疎水化されていない部分と単結晶層102の表面との間に存在する水の表面張力作用により、単結晶層102が支持基板101に対し自己整合して位置合わせされる。当該水は、絶縁層602の形成後に、支持基板101の表面に供給されてよい。これにより、チップソーターによる粗い位置合わせであっても、正確に位置合わせでき、位置のずれに起因する結晶方位の相違等、電子デバイスの性能低下につながる可能性のある位置ばらつきを低減することができる。
 図36に示すように、支持基板101上に必要な単結晶層102を全て配置する。なお、複数個の単結晶層102は、個々にピックアップして配置してもよく、複数個を同時にハンドリングしてもよい。以上のようにして、半導体結晶層形成基板600が形成される。すなわち、支持基板101上に単結晶層102を形成するより前に、支持基板101の単結晶層102を形成する領域または形成しない領域のいずれか一方に表面処理を施す。そして、単結晶層102を形成するステップにおいて、単結晶層102を、表面処理を施した領域または施さなかった領域のいずれか一方に自己整合させて形成する。
 以上のようにして形成した半導体結晶層形成基板600は、単結晶層102が支持基板101に対し自己整合して形成されるため、単結晶層102が支持基板101上に正確に位置合わせされて形成される。単結晶層102の位置のずれに起因する結晶方位の相違等があれば、半導体結晶層形成基板600を用いて形成された半導体結晶層106にも結晶方位の相違等が発生し、電子デバイスの性能低下につながる可能性がある。しかし、半導体結晶層形成基板600の場合、そのような不具合は抑制される。
 なお、支持基板101上に単結晶層102を形成した後、単結晶層102を薄化してもよい。単結晶層102を薄化することにより、支持基板101および単結晶層102が熱ストレスを受けても剥離等が発生し難くなる。また、単一の支持基板101上に複数の単結晶層102が形成され、当該複数の単結晶層102を薄化するとき、支持基板101上の全ての単結晶層102の表面を同時に研磨することで単結晶層102を薄化することが好ましい。全ての単結晶層102の表面を同時に研磨することで、それぞれの単結晶層102の表面を、実質的に同一の平面にすることができる。
(実施形態7)
 図37および図38は、実施形態7の半導体結晶層形成基板の製造方法を工程順に示した断面図である。図39は、実施形態7の方法で製造した半導体結晶層形成基板700の断面図である。実施形態7では、図22に示した半導体結晶層形成基板100のように、単一の支持基板101上に複数の単結晶層102が形成され、隣接する二つの単結晶層102と支持基板101とで溝が構成される場合の形態を示す。
 図22に示す半導体結晶層形成基板100を形成した後、図37に示すように、充填層702を形成し、隣接する二つの単結晶層102と支持基板101とで構成される溝を充填層702で埋める。充填層702として、ステップカバレッジ(溝を埋め込む特性)に優れた絶縁層、たとえば、TEOS(テトラエトキシシラン)またはTMOS(テトラメトキシシラン)を原料ガスとするCVD法により形成された酸化シリコン層、SOG(スピンオンガラス)等を例示することができる。本例では、単結晶層102の表面も、充填層702で覆っている。
 図38に示すように、充填層702を研磨パッド103で研磨する。なお、図39に示すように、単結晶層102の表面と充填層702の表面とが実質的に同一の平面になるよう充填層702を研磨する。このようにして、半導体結晶層形成基板700が形成される。
 半導体結晶層形成基板700は、単結晶層102の表面と充填層702の表面とが実質的に同一の平面になるよう形成されている。このため、半導体結晶層形成基板700をエピタキシャル成長等に用いて半導体結晶層106等を形成する場合、エピタキシャル成長におけるガス流に乱れが生じず、均一な半導体結晶層106を形成できる。
 なお、上記した各実施形態において、図40に示すように、単結晶層102が形成されていない、たとえば、単結晶層102の間の溝の部分に、半導体結晶層106の成長を阻害する成長阻害層802を形成してもよい。実施形態7においては、成長阻害層802は、充填層702に代えて形成されてよい。成長阻害層802により、所望の部分にのみ半導体結晶層106を形成できるようになる。なお、成長阻害層802を形成しても良い領域は、支持基板101上に形成された単結晶層102の側面、側面の上に形成された層の表面(すなわち、単結晶層102の側面に対して支持基板101の表面と平行な方向に延伸して形成された層の、露出している面)、単結晶層102が形成されていない非形成領域における支持基板101の表面および非形成領域において支持基板101上に形成された層の表面、である。成長阻害層802は、単結晶層102の形成前に形成されてもよく、単結晶層102の形成後に形成されてもよい。
 上記した各実施形態において、支持基板101上に単結晶層102を形成した後、単結晶層102上にバッファ層を形成してもよい。バッファ層を形成することにより、半導体結晶層106の形成を容易にすることできる場合がある。バッファ層は、例えば単結晶層102および半導体結晶層106の間の格子定数を有する層である。
 上記した各実施形態において、図41に示すように、支持基板101上に単結晶層102を形成した後、単結晶層102を覆う保護層902を、単結晶層102が形成された支持基板101面の全面に渡り形成する。そして、図42に示すように、単結晶層102または単結晶層102上に形成された層(たとえばバッファ層)の表面が露出するように、保護層902の一部を除去する。保護層902は、バッファ層等の単結晶層102上の層を形成した後に、支持基板101の全面を覆うように形成してよい。保護層902の除去には、フォトリソグラフィとエッチングを用いた方法、または、研磨を用いることができる。
 貼り合わせる前の単結晶層102を僻開で形成する場合には、僻開部に発生するバリの除去、劈開時に発生する粉の除去、液中での僻開、僻開前にレジスト等での保護等により、粉塵の付着を防止することができる。粉塵の付着により接着性が低下する恐れがあるので、これら対策により接着性を高めることが期待できる。
(実施形態8)
 図43は、半導体結晶層形成基板1000の平面図である。図44は、半導体結晶層形成基板1000の断面図である。図44は、図43のB-B線における断面を示す。本実施形態8では、支持基板101上の単結晶層102の平面形状が、図7等において示した分割体108の平面形状と一致する場合を説明する。つまり、本例におけるそれぞれの単結晶層102は、複数の分割体108に分割されない。
 本実施形態8の半導体結晶層形成基板1000は、支持基板101および単結晶層102を有する。半導体結晶層形成基板1000の支持基板101および単結晶層102は、以下に述べる点を除き上記した各実施形態と同様である。ただし、半導体結晶層形成基板1000の単結晶層102の平面形状は、100μm~5mmの幅の線(単結晶層)と1μm~20mmの幅の溝を交互に敷き詰めた、LSパターンである。いわゆるラインの長さは、5cm~50cmとすることができる。ラインの長さは、図43に示すように、支持基板101の面積(または口径)で制限される最大の長さ(支持基板101の端面から端面までの長さ)とすることもできる。
 半導体結晶層形成基板1000は、以下のようにして製造できる。すなわち、半導体結晶層の成長用基板の全面に、犠牲層と単結晶層102となる結晶層を、たとえばエピタキシャル成長法を用いて順次形成する。成長用基板の全面に形成した結晶層をエッチングして、犠牲層または成長用基板の一部を露出させる。これにより、結晶層を複数の分割体に分割する。成長用基板に形成された結晶層の分割体は、後に支持基板101に転写されて単結晶層102になる。
 結晶層の分割体の形成方法は以下の通りである。分割体の大きさおよび溝の幅を有するマスクパターンを用い、ポジ型レジストを用いて結晶層の上にレジストマスクを形成する。当該レジストマスクをマスクとして、結晶層をエッチングし、結晶層の分割体を形成する。当該エッチングでは、成長用基板に至るまでエッチングすることが好ましい。つまり、当該エッチングにより、犠牲層を貫通して成長用基板が露出することが好ましい。
 結晶層の分割体が形成された成長用基板と、転写先の支持基板101の表面とを、イオンビームを用いて活性化することで、接着性を強化する。その後、結晶層の分割体を有する成長用基板および支持基板101の表面を向かい合わせて貼り合わせ、貼り合わせ基板を得る。貼りあわせ時には、必要に応じて成長用基板および支持基板101を圧着する。この貼り合わせにより、隣接する分割体の間に形成されている溝の内壁と、支持基板101とによって空洞が形成される。
 上記した貼り合わせにより形成された空洞にエッチング剤を導入し、成長用基板の犠牲層をエッチングすることで、結晶層の分割体(単結晶層102)を支持基板101に残した状態で、支持基板101と成長用基板とを分離する。このようにして、支持基板101上に単結晶層102を有する半導体結晶層形成基板1000が製造できる。
 図45~図48は、半導体結晶層形成基板1000を用いた複合基板の製造方法を工程順に示した断面図である。上記のように形成した半導体結晶層形成基板1000の全面に、図45に示すように、犠牲層104および半導体結晶層106を、たとえばエピタキシャル成長法により順次形成する。
 犠牲層104と半導体結晶層106を形成した半導体結晶層形成基板1000に対し、犠牲層104の一部が露出するように半導体結晶層106をエッチングする。本例では、図46に示すように、単結晶層102のLSパターンと同様のLSパターンで、半導体結晶層106をエッチングする。これにより、半導体結晶層106が複数の分割体108に分割され、隣接する分割体108との間には溝が形成される。
 分割体108は以下のように形成できる。単結晶層102と同じ線幅および溝幅のLSパターンのポジ型レジストマスクを単結晶層102のパターンに合わせて半導体結晶層106上に形成する。次に、当該ポジ型レジストマスクをマスクとして、半導体結晶層106および犠牲層104をエッチングする。当該エッチングでは、支持基板101に至るまでエッチングすることが好ましい。
 半導体結晶層106を有する半導体結晶層形成基板1000と転写先基板120の表面を、イオンビームを用いて活性化することで接着性を強化する。次に、半導体結晶層106の表面と転写先基板120の表面を向かい合わせて貼り合わせ、図47に示すように、貼り合わせ基板を得る。貼り合わせ時には、必要に応じて圧着する。この貼り合わせにより、隣接する分割体108の間の溝と、転写先基板120の表面によって空洞が形成される。
 図48に示すように、空洞にエッチング剤を導入することで犠牲層104をエッチングする。犠牲層104をエッチングにより除去することで、半導体結晶層106を転写先基板120に残した状態で、転写先基板120と半導体結晶層形成基板1000とを分離することができる。犠牲層104のエッチングは、貼り合わせ基板の側面を、エッチング液(剤)に浸漬させ、空洞内に毛細管現象によりエッチング液を供給し、静置することで実行できる。これにより犠牲層104のエッチングが進行し、転写先基板120と半導体結晶層形成基板1000とが分離され、転写先基板120上に半導体結晶層106を有する複合基板が得られる。なお、半導体結晶層形成基板1000は再利用される。
 上記した実施形態5~8において、実施形態3の平滑化および活性化を適用してもよく、実施形態4の中間層302を適用してもよい。また、図26に示す角部402を適用してもよい。
 上記した実施形態において、転写先基板120あるいは第2転写先基板150には、半導体素子等で構成された電子回路が形成されていてもよい。電子回路が形成された基板の表面全体に絶縁層を形成した後、転写先基板120あるいは第2転写先基板150は平坦化されていてもよい。転写先基板120あるいは第2転写先基板150の電子回路が形成された領域とは別の領域に半導体結晶層106を貼り合わせてもよく、電子回路が形成された領域に重ねて半導体結晶層106を貼り合わせてもよい。
(実施例1)
 実施形態8で説明した半導体結晶層形成基板1000の製造方法を具体的に説明する。半導体結晶層形成基板1000の単結晶層102となる半導体結晶層の成長用基板として4インチGaAs基板を用いた。半導体結晶層形成基板1000の支持基板101として4インチSi基板を用い、単結晶層102となる半導体結晶層としてGaAs結晶層を用いた。
 成長用基板である4インチGaAs基板の全面に、犠牲層となるAlAs結晶層および単結晶層102となるGaAs結晶層を、低圧MOCVD法によるエピタキシャル結晶成長法を用いて、順次形成した。AlAs結晶層およびGaAs結晶層の厚さは、各々7nmおよび1.0μmとした。
 300/200μmLSパターンのポジ型レジスト膜をGaAs結晶層上に形成し、当該レジスト膜をマスクにして、AlAs結晶層およびGaAs結晶層を4インチGaAs基板に至るまでエッチングした。当該エッチングによりGaAs結晶層を複数の分割体に分割した。GaAs結晶層に対するエッチング剤としてリン酸系エッチャントを用いた。
 4インチGaAs基板のGaAs結晶層表面と支持基板101である4インチSi基板の表面に真空中でアルゴンイオンビームを照射して、当該表面を活性化した。その後、真空中でGaAs結晶層の表面と4インチSi基板の表面を向かい合わせ、4インチGaAs基板と4インチSi基板とを貼り合わせた。貼り合わせの際、100000Nの荷重(圧力:12.3MPa)を加えて両基板を圧着した。圧着は常温で行った。
 GaAs結晶層の隣接する分割体間の溝による空洞にエッチング液を導入し、犠牲層であるAlAs結晶層をエッチングにより除去して、4インチSi基板上にGaAs結晶層を残した状態で4インチGaAs基板と4インチSi基板とを分離した。AlAs結晶層のエッチングは、貼り合わせ基板の側面を、23℃、HCl濃度が10質量%のエッチング液(10%塩化水素水溶液)に浸漬させ、空洞内に毛細管現象によりエッチング液を供給し、静置することで実行した。以上のようにして、4インチSi基板上に、厚さ1.0μm、300/200μmLSパターンのGaAs結晶層を有する半導体結晶層形成基板が得られた。
(実施例2)
 実施例1で得られた半導体結晶層形成基板1000を用い、実施形態8で説明した方法により複合基板を製造した。犠牲層104として厚さ7nmのAlAs結晶層を用い、半導体結晶層106として厚さ100nmのGaAs結晶層を用いた。転写先基板120として4インチSi基板を用いた。
 半導体結晶層形成基板1000の全面に、厚さ7nmのAlAs結晶層および厚さ100nmのGaAs結晶層を、低圧MOCVD法によるエピタキシャル結晶成長法を用いて、順次形成した。単結晶層102であるGaAs結晶層の300/200μmLSパターンに合わせて、300/200μmLSパターンのポジ型レジスト膜を厚さ100nmのGaAs結晶層上に形成し、当該ポジ型レジスト膜をマスクとして、GaAs結晶層およびAlAs結晶層を支持基板101であるSi基板に至るまでエッチングした。GaAs結晶層のエッチングにはリン酸系エッチャントを用いた。
 半導体結晶層106であるGaAs結晶層の表面と転写先基板120である4インチSi基板の表面に真空中でアルゴンイオンビームを照射して、当該表面を活性化した。その後、真空中でGaAs結晶層の表面と4インチSi基板の表面とを向かい合わせ、半導体結晶層形成基板1000と4インチSi基板とを貼り合わせた。貼り合わせの際、100000Nの荷重(圧力:12.3MPa)を加えて両基板を圧着した。圧着は常温で行った。
 半導体結晶層106(分割体108)の間の溝による空洞にエッチング液を導入し、犠牲層104であるAlAs結晶層をエッチングにより除去して、4インチSi基板上に半導体結晶層106であるGaAs結晶層を残した状態で半導体結晶層形成基板1000と4インチSi基板とを分離した。以上のようにして、転写先基板120である4インチSi基板上に、厚さ100nm、300/200μmLSパターンのGaAs結晶層を有する複合基板が得られた。ここで得られた半導体結晶層形成基板を成長用基板として用い、上述の工程を複数の転写先基板120に対して繰り返すことにより、4インチSi基板上に、厚さ100nm、300/200μmLSパターンのGaAs結晶層を有する複合基板を繰り返し得た。
(実施例3)
 支持基板101として12インチSi基板を用いた以外は実施例1と同様に半導体結晶層形成基板を形成した。支持基板101として12インチSi基板を用いた場合も実施例1と同様に、12インチSi基板上に、厚さ1.0μm、300/200μmLSパターンのGaAs結晶層を有する半導体結晶層形成基板が得られた。
(実施例4)
 半導体結晶層形成基板1000として実施例3で得られた半導体結晶層形成基板を用い、転写先基板120として12インチSi基板を用いた以外は実施例2と同様に複合基板を形成する。ただし、貼り合わせの際の荷重は、100000N(圧力:1.37MPa)とする。転写先基板120として12インチSi基板を用いた場合も、実施例2と同様に、12インチSi基板上に、厚さ100nm、300/200μmLSパターンのGaAs結晶層を有する複合基板が得られる。
(実施例5)
 半導体結晶層106として厚さ100nmのGaAs結晶層の代わりに厚さ1μmのGe結晶層を用いる以外は、実施例2と同様の方法で複合基板を製造した。これにより、実施例1で得られた半導体結晶層形成基板1000を用い、実施例2と同様の方法で、転写先基板120である4インチSi基板上に、厚さ1μm、300/200μmLSパターンのGe結晶層を有する複合基板が得られた。
 ここで得られた半導体結晶層形成基板を成長用基板として用い、上述の工程を複数の転写先基板120に対して繰り返すことにより、4インチSi基板上に、厚さ1μm、300/200μmLSパターンのGe結晶層を有する複合基板を繰り返し得た。
(実施例6)
 半導体結晶層形成基板1000の製造方法を具体的に説明する。半導体結晶層形成基板1000の単結晶層102となる半導体結晶層の成長用基板として、4インチGaAs基板を用いた。半導体結晶層形成基板1000の支持基板101として4インチSi基板を用い、単結晶層102となる半導体結晶層としてGaAs結晶層を用いた。
 4インチGaAs基板の表面をレジストで保護した後、1辺が2cmの正方形の板状に劈開し、平面形状が2cm角のサンプルを4つ得た。表面のレジストをアセトンで除去した後、2cm角のGaAs基板表面と支持基板101である4インチSi基板の表面に真空中でアルゴンイオンビームを照射して、当該表面を活性化した。その後、真空中でGaAs結晶層の表面と4インチSi基板の表面を向かい合わせ、2cm角のGaAs基板4枚と4インチSi基板とを貼り合わせた。貼り合わせの際、3000Nの荷重(圧力:1.88MPa)を加えて両基板を圧着した。圧着は常温で行った。4インチSi基板上に、2cm角のGaAs基板を4つ有する半導体結晶層形成基板が得られた。さらにこの半導体結晶層形成基板のGaAs基板表面をCMP処理した。
(実施例7)
 実施例6で得られた半導体結晶層形成基板1000を用い、実施例2と同様の方法で複合基板を製造した。これにより、転写先基板120である4インチSi基板上に、厚さ100nm、300/200μmLSパターンのGaAs結晶層を有する複合基板が得られた。ここで得られる半導体結晶層形成基板を成長用基板として用い、上述の工程を複数の転写先基板120に対して繰り返すことにより、4インチSi基板上に、厚さ100nm、300/200μmLSパターンのGaAs結晶層を有する複合基板を繰り返し得た。
 なお本明細書において、層または基板などの第1の要素の「上」に第2の要素があるという場合は、第2の要素が第1の要素の上に直接的に配置される場合だけでなく、第2の要素および第1の要素の間にその他の要素が介在して、第2の要素が第1の要素の上に間接的に配置される場合も含むことができる。第1の要素の「上」に第2の要素を形成する場合も、前記と同様に、第1の要素の上に直接的または間接的に第2の要素を形成する場合を含むことができる。また、「上」、「下」等の方向を指す語句は、半導体基板、複合基板およびデバイスにおける相対的な方向を示しており、地面等の外部の基準面に対する絶対的な方向を示さなくてもよい。
100・・・半導体結晶層形成基板、101・・・支持基板、102・・・単結晶層、103・・・研磨パッド、104・・・犠牲層、106・・・半導体結晶層、107・・・絶縁層、108・・・分割体、110・・・溝、112・・・第1表面、120・・・転写先基板、122・・・第2表面、124・・・第3表面、130・・・イオンビーム生成器、140・・・空洞、142・・・エッチング液、150・・・第2転写先基板、152・・・第4表面、162・・・第5表面、164・・・第6表面、166・・・第7表面、168・・・第8表面、200・・・複合基板、300・・・半導体結晶層形成基板、302・・・中間層、400・・・半導体結晶層形成基板、402・・・角部、500・・・半導体結晶層形成基板、502・・・凹部、600・・・半導体結晶層形成基板、602・・・絶縁層、700・・・半導体結晶層形成基板、702・・・充填層、800・・・半導体結晶層形成基板、802・・・成長阻害層、900・・・半導体結晶層形成基板、902・・・保護層、1000・・・半導体結晶層形成基板

Claims (21)

  1.  支持基板と、前記支持基板の表面または裏面のうち一方の面に直接または中間層を介して支持された単結晶層とを有する半導体結晶層形成基板を用いた、複合基板の製造方法であって、
     (a)前記半導体結晶層形成基板の前記単結晶層の上に、犠牲層および半導体結晶層を、前記単結晶層、前記犠牲層、前記半導体結晶層の順に形成するステップと、
     (b)前記半導体結晶層形成基板に形成された層の表面である第1表面と、転写先基板または前記転写先基板に形成された層の表面であって前記第1表面に接することとなる第2表面と、を向かい合わせ、前記半導体結晶層形成基板と前記転写先基板とを貼り合わせるステップと、
     (c)前記犠牲層をエッチングし、前記転写先基板に前記半導体結晶層を残した状態で前記半導体結晶層形成基板と前記転写先基板とを分離するステップと、を有し、
     前記(c)ステップで分離した前記半導体結晶層形成基板を用いて、前記(a)から前記(c)の各ステップを繰り返す
     前記転写先基板の上に前記半導体結晶層を有する複合基板の製造方法。
  2.  前記(a)ステップの前に、前記半導体結晶層形成基板の前記単結晶層の表面を平滑化するステップをさらに有する
     請求項1に記載の複合基板の製造方法。
  3.  前記(a)ステップの後、前記(b)ステップの前に、前記犠牲層の一部が露出するように前記半導体結晶層をエッチングし、前記半導体結晶層を複数の分割体に分割するステップをさらに有する
     請求項1に記載の複合基板の製造方法。
  4.  前記(a)ステップの後、前記(b)ステップの前に、前記第1表面および前記第2表面から選択された1以上の表面を活性化するステップをさらに有する
     請求項1に記載の複合基板の製造方法。
  5.  前記(a)ステップの後、前記(b)ステップの前に、前記半導体結晶層の上に絶縁層を形成するステップをさらに有する
     請求項1に記載の複合基板の製造方法。
  6.  前記(b)ステップの前に、前記転写先基板または前記転写先基板に形成された層の表面であって前記半導体結晶層形成基板側に位置する表面に絶縁層を形成するステップをさらに有する
     請求項1に記載の複合基板の製造方法。
  7.  前記転写先基板が、直径200mmの円、または、それより面積の大きい任意の平面形状を有する
     請求項1に記載の複合基板の製造方法。
  8.  前記(b)ステップの前に、前記転写先基板または前記転写先基板に形成された層の表面であって前記半導体結晶層形成基板側に位置する表面に接着層を形成するステップと、
     前記(c)ステップの後、前記転写先基板上の前記半導体結晶層の表面または前記半導体結晶層の上に形成された層の表面である第3表面と、第2転写先基板または前記第2転写先基板に形成された層の表面であって前記第3表面に接することとなる第4表面と、を向かい合わせ、前記転写先基板と前記第2転写先基板とを貼り合わせるステップと、
     前記転写先基板の前記接着層を除去し、前記第2転写先基板に前記半導体結晶層を残した状態で前記転写先基板と前記第2転写先基板とを分離するステップと、
     をさらに有する請求項1に記載の複合基板の製造方法。
  9.  請求項1に記載の複合基板の製造方法で用いる半導体結晶層形成基板の製造方法であって、
     前記支持基板の前記単結晶層と接することとなる第5表面、および、前記単結晶層の前記支持基板と接することとなる第6表面から選択された1以上の表面を平滑化するステップと、
     前記第5表面および前記第6表面から選択された1以上の表面を活性化するステップと、
     前記第5表面と前記第6表面とを向い合せ、前記支持基板と前記単結晶層とを貼り合せることで前記支持基板上に前記単結晶層を形成するステップと、
     を有する、半導体結晶層形成基板の製造方法。
  10.  請求項1に記載の複合基板の製造方法で用いる半導体結晶層形成基板の製造方法であって、
     前記支持基板の前記単結晶層側に位置する表面、および、前記単結晶層の前記支持基板側に位置する表面から選択された1以上の表面に、耐熱性の中間層を形成するステップと、
     前記支持基板、または、前記支持基板に形成された前記中間層の表面である第7表面と、前記単結晶層または前記単結晶層に形成された前記中間層の表面であって前記第7表面と接することとなる第8表面と、を向い合せ、前記支持基板と前記単結晶層とを貼り合せることで前記支持基板上に前記単結晶層を形成するステップと、
     を有する、半導体結晶層形成基板の製造方法。
  11.  前記中間層を形成するステップの後、前記貼り合せるステップの前に、前記第7表面および前記第8表面から選択された1以上の表面を活性化するステップをさらに有する
     請求項10に記載の半導体結晶層形成基板の製造方法。
  12.  前記中間層を形成するステップの後、前記活性化するステップの前に、前記第7表面および前記第8表面から選択された1以上の表面を平滑化するステップをさらに有する
     請求項11に記載の半導体結晶層形成基板の製造方法。
  13.  前記貼り合せるステップにおいて、前記支持基板および前記単結晶層を100~200℃に加熱する
     請求項9に記載の半導体結晶層形成基板の製造方法。
  14.  前記支持基板が、直径200mmの円、または、それより面積の大きい任意の平面形状を有する
     請求項9に記載の半導体結晶層形成基板の製造方法。
  15.  前記支持基板に貼り合わされた前記単結晶層の平面形状が角部を有し、
     前記支持基板と前記単結晶層とを貼り合せるステップの後、前記単結晶層の前記角部を丸める加工を施すステップをさらに有する
     請求項9に記載の半導体結晶層形成基板の製造方法。
  16.  請求項1に記載の複合基板の製造方法で用いる半導体結晶層形成基板の製造方法であって、
     前記支持基板の上に、エピタキシャル結晶成長法を用いて単結晶成長層を形成するステップと、
     前記単結晶成長層をパターニングすることで前記支持基板上に前記単結晶層を形成するステップと、
     を有する、半導体結晶層形成基板の製造方法。
  17.  前記支持基板上に前記単結晶層を形成するより前に、前記支持基板上に凹部を形成するステップをさらに有し、
     前記単結晶層を形成するステップにおいて、前記単結晶層を前記凹部に形成する
     請求項9に記載の半導体結晶層形成基板の製造方法。
  18.  前記凹部に形成された前記単結晶層の表面と前記支持基板の表面とが実質的に同一の平面になるよう、前記単結晶層または前記支持基板を研磨するステップをさらに有する
     請求項17に記載の半導体結晶層形成基板の製造方法。
  19.  前記支持基板上に前記単結晶層を形成するより前に、前記支持基板の前記単結晶層を形成する領域または形成しない領域のいずれか一方の領域に表面処理を施すステップをさらに有し、
     前記単結晶層を形成するステップにおいて、前記単結晶層を、前記表面処理を施した領域または施さなかった領域のいずれか一方の領域に自己整合させて形成する
     請求項9に記載の半導体結晶層形成基板の製造方法。
  20.  単一の前記支持基板の面内に複数の前記単結晶層が形成され、隣接する二つの前記単結晶層と前記支持基板とで溝が構成され、前記溝を埋める充填層を形成するステップをさらに有する
     請求項9に記載の半導体結晶層形成基板の製造方法。
  21.  前記単結晶層の表面と前記充填層の表面とが実質的に同一の平面になるよう、前記単結晶層または前記充填層を研磨するステップをさらに有する
     請求項20に記載の半導体結晶層形成基板の製造方法。
PCT/JP2013/004618 2012-07-30 2013-07-30 複合基板の製造方法および半導体結晶層形成基板の製造方法 WO2014020906A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR20157004877A KR20150038335A (ko) 2012-07-30 2013-07-30 복합 기판의 제조 방법 및 반도체 결정층 형성 기판의 제조 방법
JP2014528000A JPWO2014020906A1 (ja) 2012-07-30 2013-07-30 複合基板の製造方法および半導体結晶層形成基板の製造方法
US14/607,254 US20150187652A1 (en) 2012-07-30 2015-01-28 Method for producing a composite wafer and a method for producing a semiconductor crystal layer forming wafer

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012-169016 2012-07-30
JP2012169016 2012-07-30
JP2012267877 2012-12-07
JP2012-267877 2012-12-07

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/607,254 Continuation-In-Part US20150187652A1 (en) 2012-07-30 2015-01-28 Method for producing a composite wafer and a method for producing a semiconductor crystal layer forming wafer

Publications (1)

Publication Number Publication Date
WO2014020906A1 true WO2014020906A1 (ja) 2014-02-06

Family

ID=50027610

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/004618 WO2014020906A1 (ja) 2012-07-30 2013-07-30 複合基板の製造方法および半導体結晶層形成基板の製造方法

Country Status (5)

Country Link
US (1) US20150187652A1 (ja)
JP (1) JPWO2014020906A1 (ja)
KR (1) KR20150038335A (ja)
TW (1) TW201413833A (ja)
WO (1) WO2014020906A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014126041A1 (ja) * 2013-02-15 2014-08-21 株式会社ニコン 薄膜の転写方法、薄膜トランジスタの製造方法、液晶表示装置の画素電極形成方法
JP2015176899A (ja) * 2014-03-13 2015-10-05 信越化学工業株式会社 複合基板の製造方法
WO2021024768A1 (ja) * 2019-08-08 2021-02-11 信越半導体株式会社 半導体基板の仮接合方法
JP7136311B1 (ja) 2021-12-03 2022-09-13 信越半導体株式会社 接合型半導体ウェーハの製造方法
WO2023068160A1 (ja) 2021-10-18 2023-04-27 信越半導体株式会社 接合型半導体ウェーハの製造方法
WO2023074423A1 (ja) 2021-10-28 2023-05-04 信越半導体株式会社 接合型半導体ウェーハの製造方法
JP7272412B1 (ja) 2021-12-03 2023-05-12 信越半導体株式会社 接合型半導体ウェーハの製造方法
WO2023136003A1 (ja) 2022-01-12 2023-07-20 信越半導体株式会社 マイクロled構造体を有するウェーハ、マイクロled構造体を有するウェーハの製造方法およびマイクロled構造体を有する接合型半導体ウェーハの製造方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101743017B1 (ko) 2015-05-19 2017-06-05 한국과학기술연구원 고속 에피택셜 리프트오프와 iii-v족 직접 성장용 템플릿을 이용한 반도체 소자의 제조 방법 및 이에 의해 제조된 반도체 소자
US9881956B2 (en) * 2016-05-06 2018-01-30 International Business Machines Corporation Heterogeneous integration using wafer-to-wafer stacking with die size adjustment
WO2020061810A1 (en) * 2018-09-26 2020-04-02 Yangtze Memory Technologies Co., Ltd. Step coverage improvement for memory channel layer in 3d nand memory
US10910272B1 (en) * 2019-10-22 2021-02-02 Sandisk Technologies Llc Reusable support substrate for formation and transfer of semiconductor devices and methods of using the same
FR3108777A1 (fr) * 2020-03-24 2021-10-01 Commissariat à l'Energie Atomique et aux Energies Alternatives procede de fabrication d’une structure semiconductrice par report de vignettes sur un substrat support
KR102322540B1 (ko) * 2021-06-17 2021-11-09 한국과학기술원 InP 기판을 이용한 소자 제조 방법

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000277405A (ja) * 1999-03-29 2000-10-06 Meidensha Corp 半導体素子の製造方法
JP2003324188A (ja) * 2002-04-30 2003-11-14 Ishikawajima Harima Heavy Ind Co Ltd 大面積単結晶シリコン基板の製造方法
JP2004047691A (ja) * 2002-07-11 2004-02-12 Seiko Epson Corp 半導体装置の製造方法、電気光学装置、及び電子機器
WO2008105101A1 (ja) * 2007-02-28 2008-09-04 Shin-Etsu Chemical Co., Ltd. 貼り合わせ基板の製造方法および貼り合わせ基板
WO2009028399A1 (ja) * 2007-08-24 2009-03-05 Sumco Corporation 半導体ウェーハおよびその製造方法
WO2010024230A1 (ja) * 2008-08-29 2010-03-04 住友電気工業株式会社 AlGaAs支持基板の製造方法、エピタキシャルウエハの製造方法、LEDの製造方法、AlGaAs支持基板、エピタキシャルウエハおよびLED
WO2010070782A1 (ja) * 2008-12-17 2010-06-24 シャープ株式会社 半導体装置及びその製造方法
WO2010099544A2 (en) * 2009-02-27 2010-09-02 Alta Devices, Inc. Tiled substrates for deposition and epitaxial lift off processes
WO2011027871A1 (ja) * 2009-09-04 2011-03-10 住友化学株式会社 半導体基板、電界効果トランジスタ、集積回路、及び半導体基板の製造方法
JP2011100985A (ja) * 2009-10-06 2011-05-19 Semiconductor Energy Lab Co Ltd 半導体装置の作製方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000277405A (ja) * 1999-03-29 2000-10-06 Meidensha Corp 半導体素子の製造方法
JP2003324188A (ja) * 2002-04-30 2003-11-14 Ishikawajima Harima Heavy Ind Co Ltd 大面積単結晶シリコン基板の製造方法
JP2004047691A (ja) * 2002-07-11 2004-02-12 Seiko Epson Corp 半導体装置の製造方法、電気光学装置、及び電子機器
WO2008105101A1 (ja) * 2007-02-28 2008-09-04 Shin-Etsu Chemical Co., Ltd. 貼り合わせ基板の製造方法および貼り合わせ基板
WO2009028399A1 (ja) * 2007-08-24 2009-03-05 Sumco Corporation 半導体ウェーハおよびその製造方法
WO2010024230A1 (ja) * 2008-08-29 2010-03-04 住友電気工業株式会社 AlGaAs支持基板の製造方法、エピタキシャルウエハの製造方法、LEDの製造方法、AlGaAs支持基板、エピタキシャルウエハおよびLED
WO2010070782A1 (ja) * 2008-12-17 2010-06-24 シャープ株式会社 半導体装置及びその製造方法
WO2010099544A2 (en) * 2009-02-27 2010-09-02 Alta Devices, Inc. Tiled substrates for deposition and epitaxial lift off processes
WO2011027871A1 (ja) * 2009-09-04 2011-03-10 住友化学株式会社 半導体基板、電界効果トランジスタ、集積回路、及び半導体基板の製造方法
JP2011100985A (ja) * 2009-10-06 2011-05-19 Semiconductor Energy Lab Co Ltd 半導体装置の作製方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014126041A1 (ja) * 2013-02-15 2014-08-21 株式会社ニコン 薄膜の転写方法、薄膜トランジスタの製造方法、液晶表示装置の画素電極形成方法
JP2015176899A (ja) * 2014-03-13 2015-10-05 信越化学工業株式会社 複合基板の製造方法
WO2021024768A1 (ja) * 2019-08-08 2021-02-11 信越半導体株式会社 半導体基板の仮接合方法
WO2023068160A1 (ja) 2021-10-18 2023-04-27 信越半導体株式会社 接合型半導体ウェーハの製造方法
WO2023074423A1 (ja) 2021-10-28 2023-05-04 信越半導体株式会社 接合型半導体ウェーハの製造方法
JP7136311B1 (ja) 2021-12-03 2022-09-13 信越半導体株式会社 接合型半導体ウェーハの製造方法
JP7272412B1 (ja) 2021-12-03 2023-05-12 信越半導体株式会社 接合型半導体ウェーハの製造方法
WO2023100952A1 (ja) 2021-12-03 2023-06-08 信越半導体株式会社 接合型半導体ウェーハの製造方法
JP2023082874A (ja) * 2021-12-03 2023-06-15 信越半導体株式会社 接合型半導体ウェーハの製造方法
JP2023083004A (ja) * 2021-12-03 2023-06-15 信越半導体株式会社 接合型半導体ウェーハの製造方法
WO2023136003A1 (ja) 2022-01-12 2023-07-20 信越半導体株式会社 マイクロled構造体を有するウェーハ、マイクロled構造体を有するウェーハの製造方法およびマイクロled構造体を有する接合型半導体ウェーハの製造方法

Also Published As

Publication number Publication date
JPWO2014020906A1 (ja) 2016-07-21
US20150187652A1 (en) 2015-07-02
KR20150038335A (ko) 2015-04-08
TW201413833A (zh) 2014-04-01

Similar Documents

Publication Publication Date Title
WO2014020906A1 (ja) 複合基板の製造方法および半導体結晶層形成基板の製造方法
US7262112B2 (en) Method for producing dislocation-free strained crystalline films
US8921209B2 (en) Defect free strained silicon on insulator (SSOI) substrates
WO2013187079A1 (ja) 複合基板の製造方法および複合基板
US20140203408A1 (en) Method of producing composite wafer and composite wafer
KR20230129170A (ko) 가공된 기판에 통합된 무선 주파수 디바이스
US11587824B2 (en) Method for manufacturing semiconductor structure
US20190348275A1 (en) System for integration of elemental and compound semiconductors on a ceramic substrate
KR20120112533A (ko) 접합 웨이퍼의 제조 방법
WO2013187078A1 (ja) 半導体基板、半導体基板の製造方法および複合基板の製造方法
WO2013187076A1 (ja) 半導体基板、半導体基板の製造方法および複合基板の製造方法
JP2014003104A (ja) 複合基板の製造方法および複合基板
JP2014003106A (ja) 複合基板および複合基板の製造方法
WO2013042382A1 (ja) 複合基板の製造方法
JP2014090121A (ja) 複合基板の製造方法
JP2014216356A (ja) 半導体基板、半導体基板の製造方法および複合基板の製造方法
JP2014209527A (ja) 複合基板の製造方法および複合基板
JP2014090122A (ja) 複合基板の製造方法
JP2014216355A (ja) 半導体結晶層形成基板および複合基板の製造方法
JP2016111027A (ja) 中間基板、半導体基板および半導体基板の製造方法
CN107403725A (zh) 氮化硅薄膜去除方法及半导体器件的制作方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13825303

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014528000

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20157004877

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13825303

Country of ref document: EP

Kind code of ref document: A1