WO2014021423A1 - 電子デバイス用のパターン形成方法、電子デバイス及びパターン形成装置 - Google Patents

電子デバイス用のパターン形成方法、電子デバイス及びパターン形成装置 Download PDF

Info

Publication number
WO2014021423A1
WO2014021423A1 PCT/JP2013/070888 JP2013070888W WO2014021423A1 WO 2014021423 A1 WO2014021423 A1 WO 2014021423A1 JP 2013070888 W JP2013070888 W JP 2013070888W WO 2014021423 A1 WO2014021423 A1 WO 2014021423A1
Authority
WO
WIPO (PCT)
Prior art keywords
pattern
layer
ink
ink material
substrate
Prior art date
Application number
PCT/JP2013/070888
Other languages
English (en)
French (fr)
Inventor
杉原 和佳
晋太郎 小倉
洋史 牛島
靖之 日下
正義 高武
Original Assignee
東京エレクトロン株式会社
独立行政法人産業技術総合研究所
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社, 独立行政法人産業技術総合研究所, Dic株式会社 filed Critical 東京エレクトロン株式会社
Priority to JP2014528219A priority Critical patent/JPWO2014021423A1/ja
Priority to KR20157002449A priority patent/KR20150037929A/ko
Publication of WO2014021423A1 publication Critical patent/WO2014021423A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/468Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics
    • H10K10/471Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics the gate dielectric comprising only organic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/288Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • H10K71/611Forming conductive regions or layers, e.g. electrodes using printing deposition, e.g. ink jet printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13069Thin film transistor [TFT]

Definitions

  • the present invention relates to a pattern forming method, an electronic device, and a pattern forming apparatus for an electronic device.
  • Electronic devices using organic materials that are light, hard to break, and easy to be flexible are being investigated for use in a wide variety of promising markets such as lighting, electronic paper, and solar cells.
  • electronic devices are expected to pioneer unique applications by taking advantage of the advantage that they can be manufactured at low cost, although inorganic and metallic materials such as silicon (Si) have not yet reached the point of performance.
  • Si silicon
  • the reason why an electronic device can be manufactured at low cost is that an organic material can be made into a solution and a bottom-up manufacturing method such as a printing method can be applied.
  • FIG. 1 shows an example of a general printing process for producing an organic TFT (Thin Film Transistor) array.
  • the reverse printing method disclosed in Patent Document 1 can be used.
  • Reversal printing refers to a flat plate with a reversal pattern to be printed from a blanket plate made of PDMS (silicone rubber) uniformly coated with ink. And printing by transferring ink.
  • PDMS silicone rubber
  • the first problem is the variation in hydrophilicity of the film surface that occurs when the ink is modified.
  • the hydrophilicity of each material surface is different.
  • the surface SU of the material to be made has micro unevenness. Since this unevenness causes a reduction in the performance of the device to be produced, such as cutting the printed pattern of the source-drain layers 30 and 40, the printed surface should be as flat as possible.
  • the second problem is that it takes a long time to manufacture an electronic device. For example, it takes about 12 and a half hours to make one TFT array by an electronic device using a printing method.
  • the third problem is that the relative positions of the patterns (for example, the gate layer 10 and the source-drain layers 30 and 40) printed in each process using the printing method are shifted. This is because the substrate shrinks due to heat treatment during device fabrication.
  • the ink pattern printed in a shorter time can be modified, and the displacement of the pattern due to deformation and distortion of the underlayer can be suppressed.
  • the printed electronics device manufacturing line it is possible to manufacture devices with high accuracy and high quality in a short time.
  • An object of the present invention is a method capable of suppressing unevenness on the surface of a material, suppressing displacement of a pattern, and forming a pattern for an electronic device in a shorter time.
  • An object is to provide an electronic device and a pattern forming apparatus for manufacturing the electronic device.
  • a method of forming a pattern for a plurality of electronic devices using an ink material on a substrate A first pattern forming step of forming a first ink material pattern for the gate layer on the substrate; A second pattern forming step of forming a second ink material pattern for the source-drain layer on the substrate; A third pattern forming step of forming a third ink material pattern for the semiconductor layer on the substrate; Forming an insulating layer on the substrate for insulating between the first ink material pattern and the second ink material pattern; and A reforming step for integrally reforming each of the formed layers; A pattern forming method is provided.
  • a method of forming a pattern for an electronic device using printing of an ink material A first pattern forming step of printing a first ink material pattern for forming a metal layer; After the first pattern formation step, an application step of applying an insulating material; A second pattern forming step of printing a second ink material pattern for forming a metal layer at a position corresponding to the position of the printed first ink material pattern after the coating step; After the second pattern forming step, a reforming step for integrally reforming the first ink material pattern, the insulating material, and the second ink material pattern; A pattern forming method is provided.
  • a first pattern forming step of printing a first ink material pattern to form a metal layer After the first pattern formation step, an application step of applying an insulating material; A second pattern forming step of printing a second ink material pattern for forming a metal layer at a position corresponding to the position of the printed first ink material pattern after the coating step; After the second pattern forming step, a reforming step for integrally reforming the first ink material pattern, the insulating material, and the second ink material pattern;
  • an electronic device manufactured using a pattern forming method including:
  • a pattern forming apparatus for forming a pattern for an electronic device using printing of an ink material, A first pattern forming step of printing a first ink material pattern for forming a metal layer; An application step of applying an insulating material after the first pattern forming step; After the applying step, a second pattern forming step of printing a second ink material pattern for forming a metal layer at a position corresponding to the position of the printed first ink material pattern; A reforming step of integrally modifying the first ink material pattern, the insulating material, and the second ink material pattern after the second pattern forming step;
  • the pattern forming apparatus is characterized by forming a pattern for an electronic device by the steps including:
  • a pattern forming apparatus for manufacturing an electronic device can be provided.
  • the figure which showed the preparation process of the organic TFT array Sectional drawing of an organic TFT array.
  • FIG. 1 is a perspective view showing a reverse printing press according to an embodiment.
  • FIG. The figure for demonstrating operation
  • the figure which showed the TFT production process (the 2) of the BGBC structure which concerns on 2nd Embodiment.
  • the figure for demonstrating the gravure inversion printing method The figure which showed the TFT production process (the 1) of the BGTC structure which concerns on 2nd Embodiment.
  • the figure which showed the TFT preparation process (the 1) of the TGBC structure concerning 2nd Embodiment.
  • the figure which showed the TFT preparation process (the 3) of the TGBC structure concerning 2nd Embodiment The figure which showed the TFT production process (the 1) of the TGTC structure concerning 2nd Embodiment.
  • the figure which showed the TFT preparation process (the 1) of the BGTC structure which concerns on 3rd Embodiment.
  • the figure which showed the TFT preparation process (the 1) of the TGBC structure concerning 3rd Embodiment.
  • the figure which showed the TFT preparation process (the 3) of the TGBC structure concerning 3rd Embodiment.
  • the figure which showed the TFT preparation process (the 1) of the TGTC structure concerning 3rd Embodiment.
  • the figure which showed the TFT production process (the 2) of the TGTC structure concerning 3rd Embodiment.
  • the figure which showed the TFT production process (the 3) of the TGTC structure concerning 3rd Embodiment.
  • FIG. 1 shows an example of an organic TFT array manufacturing process flow.
  • a 125 ⁇ m thick polycarbonate film (PC film) was used as the plastic film substrate.
  • the substrate may be a flexible film substrate.
  • ⁇ Substrate is input, and after the substrate is pre-heated, a gate layer is formed in the first layer. Eliminates the printed surface of the PC film to remove dust and the like.
  • a gate pattern is formed by reversal printing using nano silver ink. Thereby, the gate layer 10 shown in FIG. 2 is printed on the substrate S. In this state, the nano silver ink is modified by heating in an oven at 180 ° C. for 30 minutes. After that, it is allowed to stand at room temperature for about 3 hours and waits for recovery of PC film characteristics.
  • a gate insulating layer is formed.
  • the surface to be printed on which the gate pattern is formed is subjected to spin cleaning to remove dirt.
  • UV irradiation is used to remove dirt and improve the wettability on the wiring.
  • the static electricity is removed to remove dust.
  • a gate insulating layer (PVP: polyvinyl phenol resin) is applied to a thickness of about 1 ⁇ m.
  • the gate insulating layer 20 shown in FIG. 2 is formed so as to cover the gate layer 10.
  • the gate insulating layer 20 is modified by heating in an oven at 170 ° C. for 60 minutes. After that, it is allowed to stand at room temperature for about 3 hours and waits for recovery of PC film characteristics.
  • a source-drain layer is formed.
  • the surface on which the gate insulating film (PVP) is applied is neutralized to remove dust and the like.
  • a source-drain pattern is formed by reversal printing using nano silver ink.
  • the source-drain layers 30 and 40 shown in FIG. 2 are printed on the gate insulating layer 20.
  • the nano silver ink is modified by heating in an oven at 180 ° C. for 30 minutes. After that, it is allowed to stand at room temperature for about 3 hours and waits for recovery of PC film characteristics.
  • a semiconductor layer is formed.
  • the surface to be printed on which the source-drain pattern is formed on the gate insulating layer (PVP) is wet-cleaned to remove organic stains. Subsequently, the charge is removed and dust is removed.
  • a semiconductor pattern is formed by reverse printing using P3HT ink which is an example of a semiconductor material.
  • the semiconductor layer 50 shown in FIG. 2 is formed between the source and drain layers. Immediately after formation, it is put in a glove box in a nitrogen atmosphere and heated on a hot plate at 150 ° C. for 15 minutes. After that, it is left in a glove box with a nitrogen atmosphere for about 3 hours and waits for the PC film characteristics to recover.
  • the electrical characteristics of the produced organic TFT were measured using a tester in a glove box in an N 2 atmosphere.
  • a passivation layer is formed. Wet cleaning or UV irradiation that damages the semiconductor material is not performed, and a fluorine resin (CYTOP (registered trademark)) film having a thickness of 1 ⁇ m is formed by reverse printing. Heat in an oven at 150 ° C. for 20 minutes. Thereby, the passivation layer 60 shown in FIG. 2 is formed on the gate insulating layer 20.
  • CYTOP registered trademark
  • the manufacturing process described above has the following problems.
  • the first problem is the variation in hydrophilicity of the film surface that occurs when the ink is modified.
  • the hydrophilicity of each material surface is different.
  • corrugation is made on the surface of the material printed or apply
  • the pattern of the source-drain layers 30 and 40 printed on the gate insulating layer 20 may be cut off due to the unevenness of the surface SU of the gate insulating layer 20.
  • the second problem is that production takes a long time. It takes 12 hours and a half to make one TFT array.
  • FIG. 4 shows details of the manufacturing process time of FIG.
  • Preliminary heating of the substrate film, heat treatment for modifying the ink necessary for each printing layer, recovery of the properties of the substrate film (natural recovery at atmospheric pressure and room temperature), etc. are the main reasons for the long-time process. Since the plastic film to be used begins to soften the material after the glass transition point is exceeded, the ink modification must be performed at a temperature below the transition point. In the case of a combination of a polycarbonate film and nano silver ink, heating in an oven at 180 ° C. for 30 minutes is required.
  • the third problem is that the relative position of each pattern printed in each process is shifted. This is due to the shrinkage of the substrate due to the heat treatment during fabrication.
  • the ink can be modified in a shorter time without causing deformation deformation in the film substrate, and the unevenness of the surface of the laminated material can be suppressed as much as possible, compared to the above-described printed electronics device production, It is possible to manufacture a device with high accuracy and high quality in a short time.
  • a manufacturing process that improves the above three problems, can suppress the deformation of the substrate and improve the alignment accuracy, can reduce the manufacturing time, and can planarize the printed laminated surface.
  • the manufacturing process of the organic TFT array which concerns on 1st Embodiment is demonstrated.
  • FIG. 5 shows three layers of the TFT fabrication process flow shown in FIG. 1, that is, a gate layer, a gate insulating layer, and a source-drain layer to which the pattern forming method according to this embodiment can be applied.
  • the film substrate is first heated in advance at the equivalent to the maximum maturity load (180 ° C., 60 minutes) applied to the substrate in the post-process firing to release the initial strain of the substrate ( S20).
  • the substrate is cleaned, that is, neutralized to remove particles (S21).
  • the pattern of the gate layer is printed using nano silver ink with a reverse printing machine (S22).
  • Step S22 is an example of a first pattern forming process for printing a first ink material pattern for forming a metal layer.
  • Step S23 is an example of an application process for applying an insulating material after the first pattern formation process.
  • the substrate after the PVP application is sent to a drying furnace and dried at a low temperature for a short time until the surface of the PVP is not sticky (S24).
  • Step S25 is an example of a second pattern forming process for printing a second ink material pattern for forming a metal layer at a position corresponding to the position of the printed first ink material pattern after the coating process. It is.
  • Step S26 is an example of a reforming process for integrally reforming the first ink material pattern, the insulating material, and the second ink material pattern after the second pattern forming process.
  • the three layers may be integrally fired based on the modification condition of the material that is most difficult to modify among the first ink material pattern, the insulating material, and the second ink material pattern.
  • the heating conditions are desirably set to the highest temperature and the longest time among the heating conditions required when the three layers are fired. In the case of this embodiment, it is set to 180 ° C. and 60 minutes. Thereby, each layer can be modified and each layer can have desired electrical characteristics. Then, the produced
  • the ink material of the first ink material pattern and the second ink material pattern may be composed of a material containing nanomaterials of 1 micron or less than 1 micron.
  • the first ink material pattern, the gate insulating material, and the second ink material pattern may not be heated and dried.
  • FIG. 4 is a diagram showing the time required for forming three layers of a gate layer, an insulating layer, and a source-drain layer in an example of a TFT manufacturing process.
  • the time required to form the three-layer structure was 702 minutes.
  • the time required to produce the same structure was 286 minutes as shown in FIG.
  • the reason why the manufacturing time can be greatly shortened by the pattern forming method according to the present embodiment is that three or more layers are formed and then the three layers are integrally fired after the plurality of firing steps for modifying each layer are omitted. .
  • the TFT was manufactured by an example of the TFT manufacturing process and by the process of this embodiment. As a result, the film quality characteristics of the organic TFT array were not changed.
  • the TFT manufactured by the manufacturing process based on the present embodiment is to manufacture a three-layer structure having the same film quality as that of the TFT manufactured by the conventional manufacturing process in less than half the time of the conventional process. It has been found that it has an extremely great effect of significantly increasing productivity.
  • FIG. 8 shows the result of examining the misalignment between the gate layer with a gate insulating film produced in the conventional process example and the source-drain layer printed over it.
  • the alignment marks on the gate layer are arranged in an ideal lattice pattern, it shows how much the alignment marks on the source-drain layer are displaced. Since the plastic substrate is shrunk by firing, the alignment marks of the source-drain layer arranged with the dimensions as designed are enlarged. As can be seen, the pattern does not overlap as desired, no matter how much the alignment mark on the plate is aligned with the alignment mark already printed and present on the film substrate.
  • the baking it is not necessary to perform the baking so that the substrate contracts before the alignment between the gate layer and the source-drain layer that need to be overlaid. If the alignment marks on the substrate and the substrate are aligned, the front pattern will overlap well.
  • FIG. 9 shows the result of measuring the overlay accuracy of the gate layer and the source-drain layer performed based on the present embodiment. It can be seen that the overlay accuracy is greatly improved as compared with the conventional process example of FIG.
  • the fabrication process based on this embodiment can achieve much higher overlay accuracy than the overlay accuracy of the gate layer and the source-drain layer in the TFT structure fabricated in the conventional process example. , It was found to have a very large effect.
  • the reverse printing method can print a pattern of several ⁇ m with high resolution. However, it is said that when the surface of the base is uneven, the printability is deteriorated and generally good printing cannot be performed if there is a step similar to the film thickness of the printing layer.
  • the ink is baked, and after the ink is modified, the insulating film is applied with a target thickness of 1 ⁇ m, as shown in “a” of FIG.
  • the surface is provided with irregularities reflecting the presence or absence of the gate layer. In the case of “a” in FIG. 10, undulations of about 60 to 70 nm are formed.
  • the film thickness of the printed pattern is about 100 nm, the thickness of the printed pattern becomes the same as the unevenness value of the surface of the insulating film, There is a concern that the source-drain layer printed on the surface of the insulating film breaks (FIG. 3).
  • “B” in FIG. 10 is a measurement result of the surface unevenness of the insulating film after coating the insulating film performed based on the process of the present embodiment (FIG. 5).
  • the unevenness value at each measurement point in the plane is about 2/3 as compared with the process shown in FIG. 1, and is smaller than 50 nm.
  • the insulating film is applied without firing the gate layer, so that the difference in hydrophilicity between the ink surface (A in FIG. 3) and the substrate surface (B in FIG. 3) is shown. It is estimated that the surface roughness of the insulating film is smaller than that of the process example shown in FIG.
  • the TFT manufactured by the manufacturing process according to the present embodiment has a smaller concavo-convex value than the insulating film surface of the TFT manufactured by the conventional manufacturing process example, and greatly improves the reliability of pattern formation of the source-drain layer. It has been found that it has a very large effect that it can be. Further, a manufacturing process in which conduction between layers is sufficiently ensured can be provided.
  • the alignment accuracy can be improved by suppressing the deformation of the substrate, the manufacturing time of the TFT can be shortened, and the printed laminated surface can be planarized. It is possible to provide a manufacturing process having a much higher effect than a printed electronics device manufacturing process.
  • the first ink material pattern and the second ink material pattern are printed by the reverse printing method in the gate layer and the source-drain layer.
  • FIG. 11 is a perspective view showing a schematic configuration of the reverse printing machine 1 according to the present embodiment.
  • the reverse printing machine 1 includes a single roller transfer cylinder 3. Connected tables 4 and 5 are movably installed in the main body 9 of the reverse printing machine 1.
  • a master plate 25 (plate-shaped plate) 25 is placed on the table 4.
  • a work plate (a plate-like film) 11 is placed on the table 5.
  • the master plate 25 is a relief plate on which a reverse pattern of a pattern printed on the workpiece plate 11 is formed.
  • the master plate 25 is held in a state of being fixed on the table 4.
  • the master plate 25 comes into contact with the convex portion of the master plate 25 and the roller transfer cylinder 3 in accordance with the rotation of the roller transfer cylinder 3, so that the reverse pattern of the convex portion from above the roller transfer cylinder 3 on which ink has been applied. Is removed and transferred to the master plate 25.
  • the work plate 11 is a flat plate-like printed material made of a glass substrate or a film substrate, and ink corresponding to the printing pattern remaining on the roller transfer cylinder 3 is transferred to the work plate 11.
  • the work plate 11 is held in a state of being fixed on the table 5.
  • the roller transfer cylinder 3 may be a blanket cylinder in which a water-repellent blanket 16 made of, for example, silicone is wound around the outer periphery.
  • the roller transfer cylinder 3 is supported by a bearing whose rotation axis RC is fixed to the bracket 13.
  • Pinions 12 are attached to both sides of the roller transfer cylinder 3 between the brackets 13 and moved by the clutch 7 in conjunction or non-linkage with the rotation axis RC.
  • the main body 9 is provided with a rack 2 that can mesh with the pinion 12.
  • the entire bracket 13 is moved up and down by a vertical mechanism 14. Thereby, the rack 2 and the pinion 12 can select three states of meshing, separation, and separation.
  • the rack 2 and the pinion 12 may be installed on both sides of the roller transfer cylinder 3. Thereby, the rattling of the rack 2 and the pinion 12 can be reduced, and the alignment accuracy when aligning the master plate 25 or the work plate 11 and the roller transfer cylinder 3 can be improved.
  • One end of the roller transfer cylinder 3 is connected to a drive unit 6 for rotational driving fixed to the bracket 13, and a clutch 7 is attached to the other end of the roller transfer cylinder 3.
  • the clutch 7 is connected, the roller transfer cylinder 3 and the pinion 12 rotate in conjunction with each other, and when the clutch 7 is disconnected, only the roller transfer cylinder 3 rotates.
  • An ink coater 8 for applying ink to the surface of the roller transfer cylinder 3 is also fixed to the bracket 13.
  • the linear guide 15 of the linear bearing parallel to the rack 2 is fixed on the main body 9, and the tables 4 and 5 connected on the linear guide 15 are fixed movably.
  • a linear sliding bearing is installed under the pinion 12 so that the rigidity of the table is not lowered.
  • the master plate 25 and the work plate 11 respectively placed on the 6 axes are movable in the X, Y and Z directions and in the rotation ⁇ , ⁇ and ⁇ directions around the X, Y and Z axes.
  • Drive mechanisms 4a and 5a are incorporated.
  • adjustment of the Z-direction distance, the X-direction deviation, the ⁇ -direction inclination between the master plate 25 and the work plate 11 with respect to the roll transfer cylinder 3, and the adjustment between the master plate 25 and the work plate 11 are performed.
  • the distance in the Y direction can be adjusted.
  • FIG. 12 is a schematic cross-sectional view for explaining the operation of the reverse printing machine 1 according to the present embodiment.
  • the connected tables 4 and 5 are returned to the origin (the table position in FIG. 11), and the master plate 25 and the work plate 11 are placed and fixed at predetermined positions of the tables 4 and 5 respectively.
  • Fixing can be performed by, for example, a vacuum chuck or a mechanical fixing method.
  • the 6-axis drive mechanisms 4a and 5a incorporated in the tables 4 and 5 are operated, and the Z direction between the master plate 25 and the work plate 11 with respect to the roll transfer cylinder 3, the X direction deviation, and the ⁇ direction inclination.
  • the distance in the Y direction between the master plate 25 and the work plate 11 is adjusted.
  • the tables 4, 5 are moved in the X direction in synchronization with the rotation of the roller transfer cylinder 3, and when the roller transfer cylinder 3 rolls on the tables 4, 5, the master plate 25 on the tables 4, 5; Ink transfer (printing) can be performed between the work plate 11 and the roller transfer cylinder 3.
  • the bracket 13 is lifted by operating the vertical mechanism 14 and completely separated so that the teeth of the pinion 12 and the rack 2 do not mesh.
  • the roller transfer cylinder 3 is rotated by the drive unit 6 with the clutch 7 disengaged, and the roller transfer cylinder 3 is returned to the origin position.
  • the ink coater 8 is brought close to the roller transfer cylinder 3 at a predetermined position, and the interval between the tip of the ink coater 8 and the surface of the roller transfer cylinder 3 is set to a set value.
  • the roller transfer cylinder 3 is rotated, and the ink 17 having a constant film thickness is formed in a necessary region on the surface of the roller transfer cylinder 3 by the meniscus method.
  • the ink coater 8 is returned to a predetermined position.
  • the rotor transfer cylinder 3 is further rotated, the clutch 7 is connected at a predetermined position, the vertical mechanism 14 is operated, the bracket 13 is lowered, and the rack 2 and the pinion 12 are engaged.
  • the roller transfer cylinder 3 is moved in conjunction with the table 4 by operating the driving unit 6. Since the rack 2 and the pinion 12 mesh with each other, and the radius of the roller transfer cylinder 3 and the radius of the pinion 12 are matched, the outer peripheral speed of the roller transfer cylinder 3 matches the moving speed of the table 4.
  • the master plate 25 on the table 4 is rotated while stripping off the ink contacted from the ink 17 applied to the roller transfer cylinder 3 by the convex portion 25b in the region where the master plate 25 is linearly contacted along the rotation axis RC. Move.
  • a pattern reverse to the pattern formed on the master plate 25 remains, and a printing pattern is formed.
  • the bracket 13 is raised by the vertical mechanism 14, the meshing between the rack 2 and the pinion 12 is released, the roller transfer cylinder 3 is rotated to a predetermined position, and then the bracket 13 is lowered again by the vertical mechanism 14, and the rack 2 and the pinion 12 are meshed. Then, by operating the driving unit 6, the roller transfer cylinder 3 is moved in conjunction with the table 5, and the ink on the water-repellent blanket 16 is transferred onto the work plate 11, as shown in ST3 of FIG.
  • the pattern of the gate layer and the source-drain layer can be overprinted on the work plate 11 to produce a desired structure.
  • the pattern is overprinted on the work board 11, alignment is performed on the previously printed pattern.
  • An alignment mark is formed on the master plate 25, and the alignment mark is transferred to the roller transfer cylinder 3 in the same manner as other patterns.
  • the alignment mark transferred to the roller transfer cylinder 3 is further transferred to the work plate 11. If the alignment mark transferred to the work plate 11 and the alignment mark transferred to the roller transfer cylinder 3 are controlled so as to coincide with each other, the pattern can be printed accurately.
  • BGBC structure TFT The first row in FIG. 13 shows a TFT having a BGBC (Bottom Gate, Bottom Contact) structure.
  • the gate layer 10 is located below (on the substrate), and the source-drain layers 30 and 40 are located below the semiconductor layer 50.
  • the gate layer 10 is formed on the substrate S, and the gate insulating layer 20 is formed so as to cover the gate layer 10.
  • Source-drain layers 30 and 40 are formed on the gate insulating layer 20.
  • the gate insulating layer 20 is provided between the gate layer 10 and the source-drain layers 30, 40 and electrically insulates the gate layer 10 and the source-drain layers 30, 40.
  • a semiconductor layer 50 is formed between and above the source-drain layers 30 and 40.
  • the semiconductor layer 50 is at least partially in contact with the source-drain layers 30 and 40.
  • BGTC structure TFT The second row in FIG. 13 shows a TFT having a BGTC (Bottom Gate, Top Contact) structure.
  • the gate layer 10 is positioned below, and the source-drain layers 30 and 40 are positioned above the semiconductor layer 50.
  • the gate layer 10 is formed on the substrate S, and the gate insulating layer 20 is formed so as to cover the gate layer 10.
  • a semiconductor layer 50 is formed on the gate insulating layer 20.
  • source-drain layers 30 and 40 are formed on the semiconductor layer 50. At least part of the source-drain layers 30 and 40 is in contact with the semiconductor layer 50.
  • TGBC structure TFT The third row in FIG. 13 shows a TFT having a TGBC (Top Gate, Bottom Contact) structure.
  • the gate layer 10 is located at the uppermost part, and the source-drain layers 30 and 40 are located at the lower part of the semiconductor layer 50.
  • a TFT having a TGBC structure source-drain layers 30 and 40 are formed on a substrate S.
  • a semiconductor layer 50 is formed between and above the source-drain layers 30 and 40.
  • a gate insulating layer 20 is formed on the semiconductor layer 50.
  • a gate layer 10 is formed on the gate insulating layer 20.
  • TGTC structure TFT The fourth row in FIG. 13 shows a TFT having a TGTC (Top Gate, Top Contact) structure.
  • the gate layer 10 is positioned at the uppermost position, and the source-drain layers 30 and 40 are electrically connected to the upper portion of the semiconductor layer 50.
  • the semiconductor layer 50 is formed on the substrate S.
  • source-drain layers 30 and 40 are formed so as to be in contact with at least a part of the semiconductor layer 50.
  • a gate insulating layer 20 is formed between and above the source-drain layers 30 and 40.
  • a gate layer 10 is formed on the gate insulating layer 20.
  • the four-structure TFT has been described.
  • a TFT having a BGBC structure in an example of a conventional printing process, as shown in process P1, formation of a gate layer 10 (S1), baking (S2), gate insulating layer 20 steps (S3), firing (S4), formation of source-drain layers 30 and 40 (S5), firing (S6), formation of semiconductor layer 50 (S7), and firing (S8) are required.
  • S1 gate layer 10
  • S2 baking
  • S3 gate insulating layer 20 steps
  • S4 firing
  • formation of source-drain layers 30 and 40 S5
  • firing firing
  • formation of semiconductor layer 50 S7
  • firing formation of semiconductor layer 50
  • Second Embodiment Process for Fabricating Organic TFT Array According to Second Embodiment
  • FIG. 15 in addition to the TFT manufacturing process flow shown in FIG. 1, a bottom gate type TFT manufacturing process flow in which a through via is provided in the passivation film and a pixel electrode is formed through the via is shown.
  • 16 to 18 show what structures are formed on the blanket and the substrate in each printing step of the process flow of FIG.
  • the structure on the blanket is originally formed on a curved surface, but in this figure, it is simplified and shown as a structure on a plane.
  • BGBC structure TFT First, a glass substrate or a film substrate (hereinafter referred to as substrate S) is washed and discharged to remove particles and organic matter (S30). The pattern of the gate layer is printed using the reverse printer 1 (S31). The ink used is, for example, nano silver ink.
  • the gate layer ink 17a is applied to the surface of the blanket 16 (P10 in FIG. 16).
  • the ink 17a in contact with the convex portion (not shown) of the master plate on which the reverse pattern of the gate layer is formed is stripped to form a gate layer pattern 17a1 (P11 in FIG. 16) on the substrate S. Transfer is performed (P12 in FIG. 16). Thereby, the gate layer 10 is formed on the substrate S.
  • the gate insulating layer is printed using the reverse printing machine 1 (S32 in FIG. 15).
  • the ink used is, for example, PVP ink.
  • the gate insulating layer ink 17b is applied to the surface of the blanket 16 (P13 in FIG. 16).
  • the ink 17b is printed on the substrate S (P14 in FIG. 16). Thereby, the gate insulating layer 20 is overprinted.
  • the pattern of the source-drain layers 30 and 40 is printed using the reverse printing machine 1 (S33 in FIG. 15).
  • the ink used is, for example, the same nano silver ink as that of the gate layer 10.
  • the source-drain layer ink 17c is applied to the surface of the blanket 16 (P15 in FIG. 16).
  • the ink 17c in contact with the master plate on which the inverted pattern of the source-drain layer is formed is peeled off to form the pattern 17c1 of the source-drain layer (P16 in FIG. 16).
  • alignment between the alignment mark attached to the substrate S side and the alignment mark attached to the pattern 17c1 side is performed, and the pattern 17c1 is printed on the substrate S (P17 in FIG. 16). Thereby, the source-drain layers 30 and 40 are overprinted.
  • the pattern of the semiconductor layer 50 is aligned using the reversal printing machine 1 by the alignment method described above and printed (S34 in FIG. 15).
  • the semiconductor ink to be used is, for example, P3HT ink or IGZO ink.
  • the ink 18a for the semiconductor layer 50 is applied to the surface of the blanket 16 (P18 in FIG. 17).
  • the ink 18a that has come into contact with the master plate on which the reverse pattern of the semiconductor layer is formed is stripped to form the pattern 18a1 of the semiconductor layer 50 (P19 in FIG. 17).
  • the pattern 18a1 is printed on the substrate S (P20 in FIG. 17). Thereby, the semiconductor layer 50 is overprinted.
  • the pattern of the passivation layer 60 is aligned by the alignment method described above using the reverse printing machine 1 and printed (S35 in FIG. 15).
  • the semiconductor ink used is, for example, a fluorine resin ink such as CYTOP.
  • CYTOP ink 19a for the passivation layer 60 is applied to the surface of the blanket 16 (P21 in FIG. 17).
  • the CYTOP ink 19a in contact with the master plate on which the inversion pattern of the passivation layer is formed is stripped to form a pattern 19a1 of the passivation layer 60 (P22 in FIG. 17).
  • the pattern 19a1 is printed on the substrate S (P23 in FIG. 17).
  • the via and the pixel electrode layer 70 are integrally formed (S36 in FIG. 15).
  • Reverse printing is inferior to gravure reverse printing in printing on a stepped film and printing a thick film.
  • the via and pixel electrode layers are thick films of about 1 to 2 ⁇ m. For this reason, the via and the pixel electrode are formed by gravure inversion printing.
  • the gravure reversal printing method is shown in FIGS.
  • the ink 21a is filled in the concave portion of the gravure plate 31 (P24 in FIG. 18). More specifically, as shown in ST10 of FIG. 19, the ink 21a is filled into the concave portion 31a of the gravure plate 31 using the squeegee 22.
  • the ink 21a is extracted from the gravure plate 31 onto the blanket 16 (P25 in FIG. 18). More specifically, as shown in ST11 and ST12 of FIG. 19, the roller transfer cylinder 3 around which the blanket 16 is wound is used to rotate and move the roller transfer cylinder 3 on the gravure plate 31. 21a is pulled out to the blanket 16 side.
  • the ink 21a of the integrated pattern of the via and the pixel electrode is overprinted in the same manner as the printing of the passivation layer 60. Thereby, the via and the pixel electrode layer 70 are formed (P26 in FIG. 18).
  • the blanket 16 is crushed and the ink 21a of the integrated pattern of the via and the pixel electrode is transferred onto the substrate S.
  • the via hole 60a of the lower passivation layer 60 is closed by the blanket 16, and the escape space of the air entering the bottom of the via hole 60a is eliminated.
  • the ink 21a may not come into contact with the pattern 17c1 of the source-drain layers 30 and 40 on the surface Q of the source-drain layers 30 and 40.
  • the printing atmosphere when forming the via and the pixel electrode layer 70 may be purged with He or CO 2 .
  • He or CO 2 has a higher ability to pass through a polymer material such as the ink 21a or the blanket 16 (air permeability coefficient is higher) than air. For this reason, even if the outlet of the via hole 60a is blocked by the blanket 16, air does not accumulate in the via hole 60a but passes through the material and escapes to the outside.
  • the ink 21a easily reaches the source-drain layers 30 and 40, and electrical connection between the image electrode and the pattern 17c1 of the source-drain layers 30 and 40 can be ensured.
  • the contact portion between the blanket 16 and the substrate S only needs to be filled with a gas having a permeability coefficient higher than that of air.
  • a gas having a permeability coefficient higher than that of air can be realized by surrounding the contact portion with an air shower. If comprised in this way, a running cost can be made lower than filling the whole inside of an apparatus with the gas with a high permeability coefficient.
  • gravure inversion printing you may form using normal gravure printing. Further, reverse printing may be used if the step coverage is not considered.
  • the substrate S is sent to a drying furnace, and the six layers on the substrate S are integrally fired (S37 in FIG. 15).
  • firing is performed in an oven at 180 ° C. for 60 minutes in accordance with firing conditions that require the highest temperature and a long time among the firing conditions of the six layers.
  • BGTC structure TFT Next, a manufacturing process of a TFT having a BGTC structure will be described with reference to FIGS. First, after cleaning the substrate S, the pattern of the gate layer 10 is printed as shown in P10 to P12 of FIG. Next, as shown in P13 and P14 of FIG. 16, the gate insulating layer 20 is printed.
  • the pattern of the semiconductor layer 50 is aligned by the alignment method described above and printed.
  • the ink 18a for the semiconductor layer 50 is applied to the surface of the blanket 16 (P30 in FIG. 20).
  • the pattern 18a1 of the semiconductor layer is formed (P31 in FIG. 20), and the pattern 18a1 is printed on the substrate S (P32 in FIG. 20). Thereby, the semiconductor layer 50 is overprinted on the substrate S.
  • the patterns of the source-drain layers 30 and 40 are aligned by the alignment method described above and printed.
  • the source-drain layer ink 17c is applied to the surface of the blanket 16 (P33 in FIG. 20).
  • a source-drain layer pattern 17c1 is formed (P34 in FIG. 20), and the pattern 17c1 is printed on the substrate S (P35 in FIG. 20). Thereby, the source-drain layers 30 and 40 are overprinted.
  • the pattern of the passivation layer 60 is aligned by the alignment method described above and printed.
  • CYTOP ink 19a is applied to the surface of the blanket 16 (P36 in FIG. 21).
  • a passivation layer pattern 19a1 is formed (P37 in FIG. 21), and the pattern 19a1 is printed on the substrate S (P38 in FIG. 21). Thereby, the passivation layer 60 is overprinted.
  • the via and pixel electrode layer 70 is formed by gravure inversion printing.
  • the ink 21a is filled in the concave portion of the gravure plate 31 (P39 in FIG. 21).
  • the ink 21a is extracted from the gravure plate 31 onto the blanket 16 (P40 in FIG. 21).
  • veer and pixel electrode layer pattern is printed on the board
  • the substrate S on which the six-layer electronic device pattern using the ink material is formed is heated in an oven baking furnace. After the integral firing, the substrate S is cooled.
  • TGBC structure TFT Next, a manufacturing process of a TFT having a TGBC structure will be described with reference to FIGS.
  • the pattern of the source-drain layers 30 and 40 is printed.
  • the source-drain layer ink 17c is applied to the surface of the blanket 16 (P50 in FIG. 22).
  • the pattern 17c1 for the source-drain layer is formed (P51 in FIG. 22), and the pattern 17c1 is printed on the substrate S (P52 in FIG. 22).
  • source-drain layers 30 and 40 are formed on the substrate S.
  • the pattern of the semiconductor layer 50 is aligned by the alignment method described above and printed.
  • the semiconductor layer ink 18a is applied to the surface of the blanket 16 (P53 in FIG. 22).
  • a semiconductor layer pattern 18a1 is formed (P54 in FIG. 22) and printed on the substrate S (P55 in FIG. 22). Thereby, the semiconductor layer 50 is overprinted.
  • the pattern of the gate insulating layer is aligned by the alignment method described above and printed.
  • the gate insulating layer ink 17b is applied to the surface of the blanket 16 (P56 in FIG. 23).
  • a pattern 17b1 of the gate insulating layer is formed (P57 in FIG. 23), and the pattern 17b1 is printed on the substrate S (P58 in FIG. 23). Thereby, the gate insulating layer 20 is overprinted.
  • the pattern of the gate layer 10 is printed by being aligned by the alignment method described above.
  • the gate layer ink 17a is applied to the surface of the blanket 16 (P59 in FIG. 23).
  • a gate layer pattern 17a1 is formed (P60 in FIG. 23), and the pattern 17a1 is printed on the substrate S (P61 in FIG. 23). Thereby, the gate layer 10 is overprinted.
  • the pattern of the passivation layer 60 is aligned by the alignment method described above and printed.
  • CYTOP ink 19a is applied to the surface of the blanket 16 (P62 in FIG. 24).
  • a passivation layer pattern 19a1 is formed (P63 in FIG. 24), and the pattern 19a1 is printed on the substrate S (P64 in FIG. 24). Thereby, the passivation layer 60 is overprinted.
  • the via and the pixel electrode layer 70 are integrally formed by gravure inversion printing.
  • the ink 21a is filled in the concave portion of the gravure plate 31 (P65 in FIG. 24).
  • the ink 21a is extracted from the gravure plate 31 onto the blanket 16 (P66 in FIG. 24).
  • the pattern ink 21a is printed on the substrate S (P67 in FIG. 24). Thereby, the via and the pixel electrode layer 70 are overprinted.
  • the substrate S on which the six-layer electronic device pattern using the ink material is formed is heated in an oven baking furnace. After the integral firing, the substrate S is cooled.
  • TGTC structure TFT Next, a manufacturing process of a TFT having a TGTC structure will be described with reference to FIGS.
  • the pattern of the semiconductor layer 50 is printed.
  • the semiconductor layer ink 18a is applied to the surface of the blanket 16 (P70 in FIG. 25).
  • a pattern 18a1 of the semiconductor layer is formed (P71 in FIG. 25), and the pattern 18a1 is printed on the substrate S (P72 in FIG. 25). Thereby, the semiconductor layer 50 is formed on the substrate S.
  • the pattern of the source-drain layers 30 and 40 is printed.
  • the source-drain layer ink 17c is applied to the surface of the blanket 16 (P73 in FIG. 25).
  • the pattern 17c1 for the source-drain layer is formed (P74 in FIG. 25), and the pattern 17c1 is printed on the substrate S (P75 in FIG. 25). Thereby, the source-drain layers 30 and 40 are overprinted.
  • the pattern of the gate insulating layer is aligned by the alignment method described above and printed.
  • the gate insulating layer ink 17b is applied to the surface of the blanket 16 (P76 in FIG. 26).
  • the gate insulating layer pattern 17b1 is formed (P77 in FIG. 26), and the ink 17b1 is printed on the substrate S (P78 in FIG. 26). Thereby, the gate insulating layer 20 is overprinted.
  • the pattern of the gate layer 10 is printed by being aligned by the alignment method described above.
  • the gate layer ink 17a is applied to the surface of the blanket 16 (P79 in FIG. 26).
  • the gate layer pattern 17a1 is formed (P80 in FIG. 26), and the pattern 17a1 is printed on the substrate S (P81 in FIG. 26). Thereby, the gate layer 10 is overprinted.
  • the pattern of the passivation layer 60 is aligned by the alignment method described above and printed.
  • CYTOP ink 19a is applied to the surface of the blanket 16 (P82 in FIG. 27).
  • a passivation layer pattern 19a1 is formed (P83 in FIG. 27), and the pattern 19a1 is printed on the substrate S (P84 in FIG. 27). Thereby, the passivation layer 60 is overprinted.
  • the via and pixel electrode layer 70 is formed by gravure inversion printing.
  • the ink 21a is filled in the concave portion of the gravure plate 31 (P85 in FIG. 27).
  • the ink 21a is extracted from the gravure plate 31 onto the blanket 16 (P86 in FIG. 27).
  • the pattern ink 21a is printed on the substrate S (P87 in FIG. 27). Thereby, the via and the pixel electrode layer 70 are overprinted.
  • the substrate S on which the six-layer electronic device pattern using the ink material is formed is heated in an oven baking furnace. After the integral firing, the substrate S is cooled.
  • the six layers are integrally fired after all the six layers of patterns are overprinted. That is, since the heat treatment is not performed during the overprinting of the 6-layer pattern, the substrate S is not contracted while the 6-layer pattern is formed. Even when a plastic film is used for the substrate S, the ink of each layer is not thermally baked, so that deformation of the substrate S such as heat shrinkage does not occur during the pattern formation of 6 layers. Therefore, accurate overprinting with reference to the alignment mark can be performed. Thereby, a TFT structure with high overlay accuracy can be manufactured.
  • the baking process and the drying process are not performed between the layers by integrally baking the pattern of 6 layers, the process time can be shortened. Furthermore, since all the six-layer patterns are overprinted without causing shrinkage of the substrate S due to heat treatment and then integrally fired, pattern disconnection and conduction failure are reduced, and printing reliability can be improved. From the above, according to the pattern forming method according to the present embodiment, it is possible to provide a manufacturing process having a significantly higher effect than the conventional printed electronics device manufacturing process.
  • the semiconductor layer 50 deteriorates in performance due to moisture absorption, better performance can be obtained by firing the structure in a nitrogen atmosphere. Further, since the printing atmosphere of the via and pixel electrode layer 70 is purged with He or CO 2 , air can pass through the material and escape to the outside without accumulating in the via opening. For this reason, the ink easily reaches the source / drain layers 30 and 40, and electrical connection between the image electrode and the pattern of the source / drain layers 30 and 40 can be ensured. The above effect can be obtained as an effect of a manufacturing process of a TFT having four structures.
  • the second embodiment in the manufacturing process of the TFT having the four structures described above, the second embodiment is that two layers are stacked on the blanket 16 and two layers are printed on the substrate S by one transfer. Different from form.
  • steps for manufacturing the TFTs having the four structures will be described in order.
  • FIGS. 29 to FIG. 31 show what structures are formed on the blanket 16 and the substrate in each printing step of the process flow of FIG.
  • the structure on the blanket is originally formed on a curved surface, but in this figure, it is simplified and shown as a structure on a plane.
  • the substrate S is cleaned and neutralized to remove particles and organic substances (S40 in FIG. 28).
  • the pattern of the gate layer is printed using the reverse printing machine 1 (S41).
  • the gate layer ink 17a is applied to the surface of the blanket 16 (P90 in FIG. 29), the gate layer pattern 17a1 is formed (P91 in FIG. 29), and transferred onto the substrate S (FIG. 29). P92).
  • the gate layer 10 is formed on the substrate S.
  • the gate insulating layer 20 and the source-drain layers 30 and 40 are integrally printed (S42 in FIG. 28).
  • nano silver ink 17c to be the source-drain layers 30 and 40 is coated on the blanket 16 (P93 in FIG. 29).
  • unnecessary ink is removed with a source / drain layer master plate to form a source / drain layer pattern 17c1 (P94 in FIG. 29).
  • the PVP ink 17b for the gate insulating layer is applied over the entire surface (P95 in FIG. 29). Two layers (a pattern of a source-drain layer and a gate insulating layer) superimposed on the blanket 16 are integrally printed on the substrate S.
  • the gate insulating layer 20 and the source-drain layers 30 and 40 are integrally formed on the substrate S. Since the plastic film, which is the base substrate S, is not thermally baked, substrate deformation such as heat shrinkage does not occur. For this reason, it is possible to perform overlay printing with reference to the alignment mark with high accuracy.
  • the semiconductor layer 50 is aligned and printed by the reverse printing machine 1 (S43 in FIG. 28).
  • the semiconductor ink used is, for example, P3HT ink.
  • the ink 18a for the semiconductor layer 50 is applied to the surface of the blanket 16 (P97 in FIG. 30).
  • the pattern 18a1 of the semiconductor layer 50 is formed (P98 in FIG. 30).
  • the pattern 18a1 is printed on the substrate S (P99 in FIG. 30). Thereby, the semiconductor layer 50 is overprinted.
  • the passivation layer 60 is reversely printed (S44 in FIG. 28).
  • CYTOP insulating film
  • CYTOP ink 19a is applied to the blanket surface (P100 in FIG. 30), unnecessary ink is removed with a master plate for passivation layer (P101 in FIG. 30), and a hole pattern 19a1 for embedding vias is formed on the substrate S.
  • the lower layer pattern is overprinted (P102 in FIG. 30). Thereby, the passivation layer 60 is overprinted.
  • the via and pixel electrode layer 70 are integrally formed by gravure inversion printing (S45 in FIG. 28).
  • the ink 21a is filled in the concave portion of the gravure plate 31 (P103 in FIG. 31).
  • the ink 21a is extracted from the gravure plate 31 onto the blanket 16 (P104 in FIG. 31).
  • the pattern ink 21a is printed on the substrate S (P105 in FIG. 31).
  • the via and the pixel electrode layer 70 are overprinted on the substrate S.
  • the printing atmosphere when forming the via and pixel electrode layer 70 may be He or CO 2 .
  • the substrate S on which the six-layer electronic device pattern using the ink material is formed is heated in an oven firing furnace (S46 in FIG. 28), and after firing, the substrate S is cooled (S47).
  • the pattern forming method according to the third embodiment in the manufacturing process of the TFT having the BGBC structure, two layers are stacked on the blanket 16, two layers are printed on the substrate S by one transfer, and six layers are integrally fired. As a result, the same effects as those of the second embodiment can be obtained, and the process time can be shortened by reducing the number of steps.
  • BGTC structure TFT Transfer by stacking two layers
  • the gate insulating layer 20 and the semiconductor layer 50 integral printing of the gate insulating layer 20 and the semiconductor layer 50 is performed.
  • the ink 18a of the semiconductor layer 50 is applied on the blanket 16 (P110 in FIG. 32).
  • unnecessary ink is removed with a master plate for the semiconductor layer, and a pattern 18a1 of the semiconductor layer is formed (P111 in FIG. 32).
  • the gate insulating layer PVP ink 17b is overlaid and applied over the entire surface (P112 in FIG. 32).
  • Two layers (a pattern of a semiconductor layer and a gate insulating layer) superimposed on the blanket 16 are integrally printed on the substrate S. (P113 in FIG. 32). Thereby, the gate insulating layer 20 and the semiconductor layer 50 are integrally formed on the substrate S.
  • the patterns of the source-drain layers 30 and 40 are aligned by the alignment method described above and printed.
  • the source-drain layer ink 17c is applied to the surface of the blanket 16 (P114 in FIG. 32).
  • a pattern 17c1 for the source-drain layer is formed (P115 in FIG. 32) and printed on the substrate S (P116 in FIG. 32). Thereby, the source-drain layers 30 and 40 are overprinted.
  • the pattern of the passivation layer 60 is aligned by the alignment method described above and printed.
  • CYTOP ink 19a is applied to the surface of the blanket 16 (P117 in FIG. 33).
  • a passivation layer pattern 19a1 is formed (P118 in FIG. 33) and printed on the substrate S (P119 in FIG. 33). Thereby, the passivation layer 60 is overprinted.
  • the via and pixel electrode layer 70 is formed by gravure inversion printing.
  • the ink 21a is filled in the concave portion of the gravure plate 31 (P120 in FIG. 33).
  • the ink 21a is extracted from the gravure plate 31 onto the blanket 16 (P121 in FIG. 33).
  • the pattern ink 21a is printed on the substrate S (P122 in FIG. 33). Thereby, the via and the pixel electrode layer 70 are overprinted.
  • the substrate S on which the six-layer electronic device pattern using the ink material is formed is heated in an oven baking furnace. After the integral firing, the substrate S is cooled.
  • TGBC structure TFT Transfer by stacking two layers
  • a manufacturing process of a TFT having a TGBC structure will be described with reference to FIGS.
  • the pattern of the source-drain layers 30 and 40 is printed.
  • the source-drain layer ink 17c is applied to the surface of the blanket 16 (P130 in FIG. 34).
  • a source-drain layer pattern 17c1 is formed (P131 in FIG. 34) and printed on the substrate S (P132 in FIG. 34).
  • source-drain layers 30 and 40 are formed on the substrate S.
  • the pattern of the semiconductor layer 50 is aligned by the alignment method described above and printed.
  • the semiconductor layer ink 18a is applied to the surface of the blanket 16 (P133 in FIG. 34).
  • a semiconductor layer pattern 18a1 is formed (P134 in FIG. 34) and printed on the substrate S (P135 in FIG. 34). Thereby, the semiconductor layer 50 is overprinted on the substrate S.
  • the gate layer ink 17a is applied on the blanket 16 (P136 in FIG. 35).
  • a gate layer pattern 17a1 is formed (P137 in FIG. 35).
  • the gate insulating layer ink 17b is applied over the entire surface (P138 in FIG. 35).
  • a gate insulating layer pattern 17b1 is formed (P139 in FIG. 35).
  • two layers (a pattern of a gate layer and a gate insulating layer) superimposed on the blanket 16 are integrally printed on the substrate S (P140 in FIG. 35). Thereby, the gate insulating layer 20 and the gate layer 10 are integrally formed on the substrate S.
  • the pattern of the passivation layer 60 is aligned by the alignment method described above and printed.
  • CYTOP ink 19a is applied to the surface of the blanket 16 (P141 in FIG. 36).
  • a passivation layer pattern 19a1 is formed (P142 in FIG. 36) and printed on the substrate S (P143 in FIG. 36). Thereby, the passivation layer 60 is overprinted.
  • the via and pixel electrode layer 70 is formed by gravure inversion printing.
  • the ink 21a is filled in the concave portion of the gravure plate 31 (P144 in FIG. 36).
  • the ink 21a is extracted from the gravure plate 31 onto the blanket 16 (P145 in FIG. 36).
  • the pattern ink 21a is printed on the substrate S (P146 in FIG. 36). Thereby, the via and the pixel electrode layer 70 are overprinted.
  • the substrate S on which the six-layer electronic device pattern using the ink material is formed is heated in an oven baking furnace. After the integral firing, the substrate S is cooled.
  • TGTC structure TFT two layers stacked
  • a manufacturing process of a TFT having a TGTC structure will be described with reference to FIGS.
  • a semiconductor layer pattern is printed.
  • the semiconductor layer ink 18a is applied to the surface of the blanket 16 (P150 in FIG. 37).
  • a semiconductor layer pattern 18a1 is formed (P151 in FIG. 37) and printed on the substrate S (P152 in FIG. 37). Thereby, the semiconductor layer 50 is formed on the substrate S.
  • the patterns of the source-drain layers 30 and 40 are aligned by the alignment method described above and printed.
  • the source-drain layer ink 17c is applied to the surface of the blanket 16 (P153 in FIG. 37).
  • a source-drain layer pattern 17c1 is formed (P154 in FIG. 37) and printed on the substrate S (P155 in FIG. 37). Thereby, the source-drain layers 30 and 40 are overprinted.
  • integral printing of the gate insulating layer 20 and the gate layer 10 is performed.
  • the ink 17a for the gate layer is applied on the blanket 16 (P156 in FIG. 38).
  • a gate layer pattern 17a1 is formed (P157 in FIG. 38).
  • the gate insulating layer ink 17b is applied over the entire surface (P158 in FIG. 38).
  • a pattern 17b1 of the gate insulating layer is formed (P159 in FIG. 38).
  • two layers (a pattern of a gate layer and a gate insulating layer) superimposed on the blanket 16 are integrally printed on the substrate S (P160 in FIG. 38). Thereby, the gate insulating layer 20 and the gate layer 10 are integrally formed on the substrate S.
  • the pattern of the passivation layer 60 is aligned by the alignment method described above and printed.
  • CYTOP ink 19a is applied to the surface of the blanket 16 (P161 in FIG. 39).
  • a passivation layer pattern 19a1 is formed (P162 in FIG. 39) and printed on the substrate S (P163 in FIG. 39). Thereby, the passivation layer 60 is overprinted.
  • the via and pixel electrode layer 70 is formed by gravure inversion printing.
  • the ink 21a is filled in the concave portion of the gravure plate 31 (P164 in FIG. 39).
  • the ink 21a is extracted from the gravure plate 31 onto the blanket 16 (P165 in FIG. 39).
  • the pattern ink 21a is printed on the substrate S (P166 in FIG. 39).
  • the via and the pixel electrode layer 70 are overprinted on the substrate S.
  • the substrate S on which the six-layer electronic device pattern using the ink material is formed is heated in an oven baking furnace. After the integral firing, the substrate S is cooled.
  • the number of steps can be reduced by overlapping two layers on the blanket 16, and the process time can be further increased. It can be shortened. Further, by overlapping two layers on the blanket 16, it can be embedded in the other layer of one layer. Thereby, the plurality of layers formed on the substrate S can be further flattened, and the performance of the device can be improved.
  • FIG. 40 shows the result of characteristic evaluation of the TFT manufactured by the pattern forming method according to the second or third embodiment.
  • the horizontal axis indicates the gate voltage, and the vertical axis indicates the drain current.
  • a BGBC structure TFT (embodiment) and a TGBC structure TFT (embodiment) produced by the pattern formation method of the present embodiment are compared to a BGBC structure TFT (comparative example) produced by a conventional pattern formation method.
  • the characteristics of the form that is, the shape of each graph in the figure
  • did not change from this result, it can be seen that the TFT manufactured by the pattern forming method of this embodiment operates normally.
  • the performance of the TFT manufactured by the pattern forming method of this embodiment is inferior to that of the comparative example at present.
  • This can be improved by improving the process and ink material.
  • a drying step may be inserted between printing of each layer.
  • the drying process there is a method of incorporating a dryer or the like around the roller transfer cylinder 3 of the reverse printing machine 1.
  • the TFT manufactured by the pattern forming method of the present embodiment can suppress a design error due to the distortion of the substrate and can obtain a highly accurate TFT.
  • the TFT manufactured by the pattern forming method of this embodiment has a shorter manufacturing time than the TFT manufactured by the conventional pattern forming method and can suppress errors between products due to substrate distortion. Are better.
  • the TFT manufactured by the pattern forming method of the present embodiment can be applied to TFTs having four structures of BGBC, BGTC, TGBC, and TGTC, it is excellent from the viewpoint of device design flexibility.
  • FIG. 41 is a diagram schematically showing a pattern forming process in the reverse printing method.
  • the ink 8 is a mixture of a low boiling point solvent that evaporates at a low temperature and a high boiling point solvent that evaporates at a high temperature.
  • the blanket 16 is also made of a material that absorbs a high boiling point solvent.
  • the low boiling point solvent gradually evaporates from the surface layer of the coating film. Further, the high boiling point solvent soaks into the blanket 16 at the interface with the surface of the blanket 16.
  • the state after the time when the low boiling point solvent evaporates is the state before contact with the master plate. In this state, most of the ink 8 is dried and integrated, and only the interface with the blanket 16 is wet. In FIG. 41, the ink wet layer on the surface of the blanket 16 is drawn so as to be relatively thick, but the wet area is extremely thin, and only the interface is wet.
  • the ink 8 remaining on the surface of the blanket 16 is brought into contact with the substrate S (work plate 11), the ink 8 is separated at the interface and transferred to the substrate S side.
  • the ink 8 does not remain on the blanket 16 and 100% transfer can be performed.
  • the surface of the ink 8 transferred to the substrate side that has been in contact with the blanket 16 becomes the front, and the remaining solvent gradually evaporates. Therefore, when printing is completed, that is, when the ink 8 is transferred to the substrate S, the ink 8 is considered to be in a semi-dry state.
  • the inks 8 are continuously laminated, the inks are not mixed between the laminated layers, the structure is completed, and the TFT operates normally. It is because it is piled up in.
  • the step of forming the gate layer is an example of a first pattern formation step of forming the first ink material pattern for the gate layer on the substrate.
  • the step of forming the source-drain layer is an example of a second pattern formation step of forming the second ink material pattern for the source-drain layer on the substrate.
  • the step of forming the semiconductor layer is an example of a third pattern formation step of forming a third ink material pattern for the semiconductor layer on the substrate.
  • the step of forming the gate insulating layer is an example of an insulating layer forming step of forming an insulating layer that insulates the first and second ink material patterns on the substrate.
  • step of integrally firing a plurality of layers is an example of a reforming step for integrally reforming each formed layer.
  • the step of forming the passivation layer is an example of a fourth pattern forming step of forming the fourth ink material pattern for the passivation layer on the substrate.
  • the step of forming the via and the pixel electrode layer is an example of a fifth pattern forming step of forming the fifth ink material pattern for the via and the pixel electrode layer on the substrate.
  • the step of printing on the substrate with two layers on the blanket includes any one of the first to third pattern forming steps and the insulating layer forming step as one step.
  • FIG. 42 shows how the performance of the ink film is lowered by the mixing layer formed between the ink layers when overprinting is performed, “interface between nano silver ink and PVP ink” and “interface between nano silver ink and glass substrate”. It is the result of comparing and examining.
  • the mixing layer is a layer in which the ink of each layer generated at the interface between adjacent layers is mixed.
  • the thickness of each adjacent layer refers to the thickness of each layer of the adjacent layer (not including the thickness of the portion that has become the mixing layer).
  • the volume resistance after firing becomes a constant value (about 0.00001 ⁇ cm at a thickness of 100 nm or more) as the film thickness of the nano silver ink increases.
  • the volume resistance after firing is about 0.00004 ⁇ cm when the thickness is 150 nm or more. It was.
  • SEM scanning electron microscope
  • the thickness of the ink layer may be larger than the mixing layer thickness generated at the ink interface. I found it important. What is necessary is just to determine how much thickness is based on a requirement specification.
  • the mixing layer can be selected by reducing the amount of residual solvent in each semi-dry state of each ink as small as possible, or by selecting a combination of ink materials so that adjacent ink layer components do not dissolve in the residual solvent of the ink layer in the semi-dry state.
  • the thickness can be reduced.
  • a mixing layer is generated between the inks generated at the interface between layers when overprinting is performed
  • printing is performed so that the first ink layer and the second ink layer are thicker than the thickness of the mixing layer.
  • the thickness of the mixing layer generated when the inks to be used are stacked is measured in advance, and the ink exceeding the thickness is printed, so that the performance degradation due to the mixing layer does not lower the required performance.
  • the thickness of each printing layer is made larger than the mixing layer thickness to ensure a film thickness that meets the required specifications, a manufacturing process that guarantees the film performance of each layer can be provided.
  • two layers are targeted.
  • the present embodiment it is possible to prevent deterioration of the film quality due to the mixing layer that occurs when ink is overprinted without the modifying step, and the material of each layer can exhibit stable performance.
  • the gate layer is first reverse printed on the substrate, and after the gate insulating film is applied, the source-drain layer is reverse printed on the gate insulating film.
  • the arrangement of the source-drain layers may be reversed. That is, a TFT may be manufactured by first performing reverse printing of the source-drain layer on the substrate and then reverse printing of the gate layer on the gate insulating film.
  • the pattern forming method for an electronic device according to the present invention is not only for producing a TFT, but also for example, a metal layer as the first ink material pattern, such as a wiring layer, the insulating material, and the second ink. It can be generally used for producing a pattern for an electronic device having a laminated structure of metal layers as a material pattern.
  • the electronic device manufactured by using the pattern forming method of the present invention is not limited to the organic TFT, but the metal layer as the first ink material pattern, the insulating material, and the metal as the second ink material pattern. All electronic devices having a layered structure of layers are included, and the pattern forming method of the present invention can be applied to all such electronic devices.
  • the gate layer 10, the gate insulating layer 20, the source-drain layers 30, 40, the semiconductor layer 50, the passivation layer 60, the via, and the pixel electrode layer 70 are integrally fired.
  • the pattern forming method according to the present invention is not limited to this.
  • three layers of the gate layer 10, the gate insulating layer 20, and the source-drain layers 30 and 40 may be integrally fired, and the semiconductor layer 50 is added to the three layers.
  • the layers may be integrally fired, or five layers obtained by adding the passivation layer 60 to the four layers may be fired integrally. In either case, the number of processes can be reduced.
  • the pattern of the semiconductor layer 50 can be formed while removing moisture in the pattern, and the performance of the semiconductor layer 50 is degraded due to moisture absorption. It can effectively avoid what happens.
  • the integral firing is performed under the firing conditions of the ink that requires the highest temperature and the longest time among the firing conditions of the plurality of layers.
  • the gate layer 10 the gate insulating layer 20, and the source-drain layers 30 and 40 are integrally fired, they are fired in an oven at 180 ° C. for 60 minutes in accordance with the PVP ink for forming the gate insulating layer. Thereafter, another layer is printed on the substrate S, and further baked to produce a TFT.
  • the drying process in the TFT manufacturing process as in step S24 in FIG. 5 may be omitted. Thereby, the process time can be further shortened. Whether or not to omit the drying step is preferably determined depending on the material.
  • the integral firing is the firing condition of the ink that requires the highest temperature and the longest time among the firing conditions of the plurality of layers, but is not limited thereto. If there are conditions to consider other than temperature and time, it is desirable to set the most demanding conditions among the firing conditions of the plurality of layers. In addition, when other ink materials deteriorate under the above baking conditions, it is possible to make changes such as lowering the baking conditions. For example, if the semiconductor ink layer deteriorates after baking at 180 ° C. for 60 minutes, the maximum temperature is set to 150 ° C. and the baking time is extended to 75 minutes to reduce the thermal load on the semiconductor ink. In addition to suppressing deterioration, the insulating film ink can be completely modified.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Thin Film Transistor (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

 インク材料を用いた複数層の電子デバイス用パターンを、基板上に形成する方法であって、ゲート層用の第1のインク材料パターンを基板上に形成する第1のパターン形成工程と、ソース-ドレイン層用の第2のインク材料パターンを基板上に形成する第2のパターン形成工程と、半導体層用の第3のインク材料パターンを基板上に形成する第3のパターン形成工程と、前記第1のインク材料パターンと前記第2のインク材料パターンとの間を絶縁する絶縁層を基板上に形成する絶縁層形成工程と、前記形成された各層を一体的に改質する改質工程と、を有することを特徴とするパターン形成方法が提供される。

Description

電子デバイス用のパターン形成方法、電子デバイス及びパターン形成装置
 本発明は、電子デバイス用のパターン形成方法、電子デバイス及びパターン形成装置に関する。
 軽い、壊れにくい、フレキシブル化が容易等の特性を持つ有機材料を使用したエレクトロニクスデバイスは、照明、電子ペーパー、太陽電池等、多岐に渡たる有望市場にて利用の可能性が検討されている。また、エレクトロニクスデバイスは、ケイ素(Si)等の無機・金属材料に性能面では未だ及ばない点があるものの、安価に作製できるなどの利点を生かしてユニークなアプリケーションの開拓が期待されている。エレクトロニクスデバイスが安価に作製できる理由としては、有機材料は溶液化が可能で、印刷法等によるボトムアップ作製法が適用できることによる。
 図1に有機TFT(Thin Film Transistor)アレイを作製するための一般的な印刷プロセスの一例を示す。印刷法としては、特許文献1に開示された反転印刷法を使用することができる。反転印刷とは、一様にインクを塗った例えばPDMS(シリコーンゴム)からなるブランケット板から印刷したいパターンの反転パターンを持つ凸版で不要インクを除き、被転写基板(フィルム)を上記平面基板に接触させ、インクを転写して印刷する手法である。
特許第3689536号公報
 しかしながら、印刷法を用いたエレクトロニクスデバイスの作製では、以下の課題を有する。第1の課題は、インクの改質を行うことで発生する膜表面の親水性のばらつきである。例えば、図3に示したゲート層10の印刷パターンのインク表面Aと基板Sの表面Bとが混在する印刷面では、それぞれの材料表面の親水性が異なるため、その上に印刷する、あるいは塗布する材料の表面SUにミクロな凹凸ができる。この凹凸は、ソース-ドレイン層30、40の印刷パターンが切れる等、作製するデバイスの性能を低下させる要因となるため、印刷表面はできる限り平坦な方がよい。
 第2の課題は、エレクトロニクスデバイスの作製に長時間を要することである。例えば、印刷法を用いたエレクトロニクスデバイスによりTFTアレイを1枚作るのに約12時間半かかる。
 第3の課題は、印刷法を用いて各工程で印刷した各パターン(例えば、ゲート層10とソース-ドレイン層30、40)の相対的位置がずれることである。これは、デバイス作製中の熱処理によって基板が収縮することによる。
 これらの課題に対して、積層される材料表面の凹凸をできる限り抑え、より短時間で印刷されたインクパターンを改質し、かつ下地層の変形及び歪によるパターンの位置ずれを抑制できれば、従来のプリンテッドエレクトロニクスデバイス作製ラインに比べて、短時間、高精度、高品質のデバイス作製を可能にすることができる。
 本発明の目的とするところは、材料表面の凹凸を抑え、パターンの位置ずれを抑制し、より短時間で電子デバイス用のパターンを形成することが可能な方法、該方法を用いて作製された電子デバイス、及び電子デバイスを作製するパターン形成装置を提供することにある。
 本発明のある観点によれば、
 インク材料を用いた複数層の電子デバイス用パターンを、基板上に形成する方法であって、
 ゲート層用の第1のインク材料パターンを基板上に形成する第1のパターン形成工程と、
 ソース-ドレイン層用の第2のインク材料パターンを基板上に形成する第2のパターン形成工程と、
 半導体層用の第3のインク材料パターンを基板上に形成する第3のパターン形成工程と、
 前記第1のインク材料パターンと前記第2のインク材料パターンとの間を絶縁する絶縁層を基板上に形成する絶縁層形成工程と、
 前記形成された各層を一体的に改質する改質工程と、
 を有することを特徴とするパターン形成方法が提供される。
 本発明の別の観点によれば、
 インク材料の印刷を用いて電子デバイス用パターンを形成する方法であって、
 メタル層を形成するための第1のインク材料パターンを印刷する第1のパターン形成工程と、
 前記第1のパターン形成工程後、絶縁材料を塗布する塗布工程と、
 前記塗布工程後、前記印刷された第1のインク材料パターンの位置に応じた位置に、メタル層を形成するための第2のインク材料パターンを印刷する第2のパターン形成工程と、
 前記第2のパターン形成工程後、前記第1のインク材料パターン、前記絶縁材料及び前記第2のインク材料パターンを一体的に改質する改質工程と、
 を含むことを特徴とするパターン形成方法が提供される。
 本発明の別の観点によれば、
 メタル層を形成するために第1のインク材料パターンを印刷する第1のパターン形成工程と、
 前記第1のパターン形成工程後、絶縁材料を塗布する塗布工程と、
 前記塗布工程後、前記印刷された第1のインク材料パターンの位置に応じた位置に、メタル層を形成するための第2のインク材料パターンを印刷する第2のパターン形成工程と、
 前記第2のパターン形成工程後、前記第1のインク材料パターン、前記絶縁材料及び前記第2のインク材料パターンを一体的に改質する改質工程と、
 を含むパターン形成方法を用いて作製された電子デバイスが提供される。
 本発明の別の観点によれば、
 インク材料の印刷を用いて電子デバイス用パターンを形成するパターン形成装置であって、
 メタル層を形成するための第1のインク材料パターンを印刷する第1のパターン形成ステップと、
 前記第1のパターン形成ステップ後、絶縁材料を塗布する塗布ステップと、
 前記塗布ステップ後、前記印刷された第1のインク材料パターンの位置に応じた位置に、メタル層を形成するための第2のインク材料パターンを印刷する第2のパターン形成ステップと、
 前記第2のパターン形成工程後、前記第1のインク材料パターン、前記絶縁材料及び前記第2のインク材料パターンを一体的に改質する改質ステップと、
 を含むステップにより電子デバイス用パターンを形成することを特徴とするパターン形成装置が提供される。
 本発明によれば、材料表面の凹凸を抑え、パターンの位置ずれを抑制し、より短時間で電子デバイス用のパターンを形成することが可能な方法、該方法を用いて作製された電子デバイス、及び電子デバイスを作製するパターン形成装置を提供することができる。
有機TFTアレイの作製工程を示した図。 有機TFTアレイの断面図。 有機TFTアレイの作製時に生じる膜の凹凸を示した図。 有機TFTアレイの作製時間の内訳を示した図。 第1実施形態に係る有機TFTアレイの作製工程のフローチャート。 第1実施形態に係る有機TFTアレイの作製時間の内訳を示した図。 第1実施形態に係るプロセスの有機TFTアレイの膜質特性を示した表。 フィルム基板の位置合わせの精度を示した図。 第1実施形態に係るフィルム基板の位置合わせの精度を示した図。 第1実施形態に係るプロセスの絶縁膜上の凹凸を示した図。 一実施形態に係る反転印刷機を示した斜視図。 一実施形態に係る反転印刷機の動作を説明するための図。 4構造のTFTを説明するための図。 TFTの製造工程例を示した図。 第2実施形態に係る有機TFTアレイの作製工程のフローチャート。 第2実施形態に係るBGBC構造のTFT作製工程(その1)を示した図。 第2実施形態に係るBGBC構造のTFT作製工程(その2)を示した図。 第2実施形態に係るBGBC構造のTFT作製工程(その3)を示した図。 グラビア反転印刷法を説明するための図。 第2実施形態に係るBGTC構造のTFT作製工程(その1)を示した図。 第2実施形態に係るBGTC構造のTFT作製工程(その2)を示した図。 第2実施形態に係るTGBC構造のTFT作製工程(その1)を示した図。 第2実施形態に係るTGBC構造のTFT作製工程(その2)を示した図。 第2実施形態に係るTGBC構造のTFT作製工程(その3)を示した図。 第2実施形態に係るTGTC構造のTFT作製工程(その1)を示した図。 第2実施形態に係るTGTC構造のTFT作製工程(その2)を示した図。 第2実施形態に係るTGTC構造のTFT作製工程(その3)を示した図。 第3実施形態に係る有機TFTアレイの作製工程のフローチャート。 第3実施形態に係るBGBC構造のTFT作製工程(その1)を示した図。 第3実施形態に係るBGBC構造のTFT作製工程(その2)を示した図。 第3実施形態に係るBGBC構造のTFT作製工程(その3)を示した図。 第3実施形態に係るBGTC構造のTFT作製工程(その1)を示した図。 第3実施形態に係るBGTC構造のTFT作製工程(その2)を示した図。 第3実施形態に係るTGBC構造のTFT作製工程(その1)を示した図。 第3実施形態に係るTGBC構造のTFT作製工程(その2)を示した図。 第3実施形態に係るTGBC構造のTFT作製工程(その3)を示した図。 第3実施形態に係るTGTC構造のTFT作製工程(その1)を示した図。 第3実施形態に係るTGTC構造のTFT作製工程(その2)を示した図。 第3実施形態に係るTGTC構造のTFT作製工程(その3)を示した図。 第2又は第3実施形態で作製したTFTの特性評価結果の一例を示した図。 第2又は第3実施形態の反転印刷法でのパターン形成過程を模式的に示した図。 各実施形態で重ね印刷した際のインク層間にできるミキシング層によるインク膜の性能の変化を示した図。
 以下に添付図面を参照しながら、本発明の実施形態について説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
[電子デバイスの製造工程]
 はじめに、有機TFT(thin film transistor)アレイを作製するための印刷プロセスの一例について説明する。ここでは、印刷法として反転印刷法を使用する。反転印刷とは、一様にインクを塗った、例えばPDMSからなるブランケット板から印刷したいパターンの反転パターンを持つ凸版で不要インクを除き、被転写基板(フィルム)を上記平面基板に接触させインクを転写して印刷する手法である。
 図1は、有機TFTアレイの作製プロセスフローの一例を示す。プラスチックフィルム基板として125μm厚のポリカーボネートフィルム(PCフィルム)を使用した。基板は、可撓性フィルム基板であってもよい。
 基板を投入し、基板の事前加熱処理後、第1層では、ゲート(gate)層を形成する。PCフィルムの印刷面を除電し、ダスト等を除去する。ナノ銀インクを使って反転印刷によりゲートパターンを形成する。これにより、図2に示したゲート層10が基板S上に印刷される。この状態で、オーブンで180℃、30分加熱してナノ銀インクを改質する。その後約3時間室温で放置し、PCフィルム特性の回復を待つ。
 第2層では、ゲート絶縁(insulator)層を形成する。まず、ゲートパターンが形成された被印刷面をスピン洗浄し、汚れを除去する。続いてUV照射で汚れ除去と配線上の濡れ性の向上を図り、最後に除電しダストの除去を行う。次に、ゲート絶縁層(PVP:ポリビニルフェノール樹脂)を約1μm厚に塗布する。これにより、図2に示したゲート絶縁層20がゲート層10を覆うように形成される。この状態で、オーブンで170℃、60分加熱してゲート絶縁層20を改質する。その後約3時間室温で放置し、PCフィルム特性の回復を待つ。
 第3層では、ソース(source)-ドレイン(drain)層を形成する。ゲート絶縁膜(PVP)の塗布面を除電し、ダスト等を除去する。ナノ銀インクを使って反転印刷によりソース-ドレインパターンを形成する。これにより、図2に示したソース-ドレイン層30,40がゲート絶縁層20上に印刷される。オーブンで180℃、30分加熱してナノ銀インクを改質する。その後約3時間室温で放置し、PCフィルム特性の回復を待つ。
 第4層では、半導体(semiconductor)層を形成する。ゲート絶縁層(PVP)上にソース-ドレインパターンが形成された被印刷面をウェット洗浄し、有機汚れを除去する。続いて除電しダストの除去を行う。半導体材料の一例であるP3HTインクを使って反転印刷により半導体パターンを形成する。これにより、図2に示した半導体層50がソース(source)-ドレイン(drain)層間に形成される。形成後直ぐに窒素雰囲気のグローブボックスに入れ、ホットプレートで150℃、15分加熱する。その後、約3時間そのまま窒素雰囲気のグローブボックス中で放置し、PCフィルム特性の回復を待つ。作製した有機TFTの電気特性は、N雰囲気のグローブボックス中でテスターを使い計測した。
 第5層では、パシベーション(passivation)層を形成する。半導体材料にダメージを与えるウェット洗浄やUV照射等は行わず、反転印刷で1μm厚のフッ素系樹脂(CYTOP(登録商標))膜を形成する。オーブンで150℃、20分加熱する。これにより、図2に示したパシベーション層60がゲート絶縁層20上に形成される。
 しかしながら、上述した作製プロセスは以下の課題を有する。第1の課題は、インクの改質を行うことで発生する膜表面の親水性のばらつきである。図3に示したインク表面Aと基板表面Bが混在する印刷面では、それぞれの材料表面の親水性が異なる。このため、その上に印刷する、あるいは塗布する材料の表面にミクロな凹凸ができる。この凹凸は作製するデバイスの性能を低下させるため印刷表面はできる限り平坦な方がよい。例えば、図3に示したように、ゲート絶縁層20の表面SUの凹凸によりゲート絶縁層20上に印刷したソース-ドレイン層30,40のパターンが切れてしまうことがある。
 第2の課題は、作製に長時間を要することである。TFTアレイを1枚作るのに12時間半かかる。図4に、図1の作製プロセス時間の詳細を示す。基板フィルムの予備加熱、各印刷レイヤーで必要となるインクの改質熱処理と基板フィルムの特性回復(大気圧室温下での自然回復)などが長時間プロセスとなる主な理由である。使用するプラスチックフィルムはガラス転移点を超えたあたりから材料の軟化が始まるため、インク改質は転移点以下で時間をかけて行わざるを得ない。ポリカーボネートフィルムとナノ銀インクの組み合わせの場合では、オーブンで180℃、30分間の加熱を要する。この後、フィルムに加えられた熱負荷によるフィルムの変形歪などを除去する目的で、室温大気中に放置する約3時間の回復プロセスが施される。回復プロセスを行うことにより次レイヤーとの合わせの悪化を防ぐことができる。
 第3の課題は、各工程で印刷した各パターンの相対的位置がずれることである。これは、作製中の熱処理によって基板が収縮することによる。
 よって、フィルム基板に変形歪を起こさずに、より短時間でインクを改質でき、かつ積層される材料表面の凹凸をできる限り抑えることができれば、上述したプリンテッドエレクトロニクスのデバイス作製に比べて、短時間、高精度、高品質のデバイス作製を可能にできる。以下の実施形態では、上記3つの課題を改善し、基板の変形を抑えて合わせ精度が向上でき、製造時間が短縮でき、印刷積層表面を平坦化できる作製プロセスを提供する。以下では、第1実施形態に係る有機TFTアレイの作製工程について説明する。
 <第1実施形態>
 [第1実施形態に係る有機TFTアレイの作製工程]
 まず、第1実施形態に係るパターン形成方法を用いた有機TFTアレイの作製工程について、図5のフローチャートを参照しながら説明する。図5では、図1に示したTFT作製プロセスフローのうち、本実施形態に係るパターン形成方法を適用可能なゲート層、ゲート絶縁層、ソース-ドレイン層の3層について記載している。
 図1のTFT作製プロセスフローと同様に、先ずフィルム基板を、後工程の焼成で基板にかかる最大熟負荷相当(180℃、60分)で事前に加熱し、基板の初期の歪を解放させる(S20)。次に、基板を洗浄、すなわち除電してパーティクルを除去する(S21)。次に、反転印刷機でナノ銀インクを用いてゲート層のパターンを印刷する(S22)。ステップS22は、メタル層を形成するための第1のインク材料パターンを印刷する第1のパターン形成工程の一例である。
 印刷後ただちにゲート絶縁膜の塗布工程にて、例えばスピンコート法やスリットノズルコート法でPVP(ポリビニルフェノール樹脂)を全面塗布する(S23)。ゲート絶縁層膜は、絶縁性のあるインクを使って反転印刷により形成してもよい。ステップS23は、第1のパターン形成工程後、絶縁材料を塗布する塗布工程の一例である。
 必要に応じて、PVP塗布後の基板を乾燥炉に送り、PVP表面がべとつかない程度まで短時間低温で乾燥させる(S24)。
 乾燥後、反転印刷機でナノ銀インクを用いてソース-ドレイン層のパターンを印刷する(S25)。ステップS25は、塗布工程後、前記印刷された第1のインク材料パターンの位置に応じた位置に、メタル層を形成するための第2のインク材料パターンを印刷する第2のパターン形成工程の一例である。
 その後、ゲート層、ソース層、ドレイン層の3層が形成された基板を熱平衡加熱手段、例えばオーブン焼成炉で一体的に加熱する(S26)。ステップS26は、第2のパターン形成工程後、前記第1のインク材料パターン、前記絶縁材料及び前記第2のインク材料パターンを一体的に改質する改質工程の一例である。改質の際、前記第1のインク材料パターン、前記絶縁材料及び前記第2のインク材料パターンのうち最も改質しにくい材料の改質条件に基づき、3層を一体的に焼成してもよい。加熱条件は3層をそれぞれ焼成した際に必要とされる加熱条件の中から、最も高い温度と最も長い時間に設定することが望ましい。本実施形態の場合は、180℃、60分に設定する。これにより、各層を改質し、各層を所望の電気特性にすることができる。その後、生成した積層膜を冷却し(S27)、本処理を終了する。
 以上の工程では、第1のインク材料パターン及び第2のインク材料パターンのインク材料は、1ミクロン又は1ミクロン未満のナノ材料を含む材料から構成されてもよい。
 また、改質工程及び乾燥工程以外の工程では、前記第1のインク材料パターン、前記ゲート絶縁材料及び前記第2のインク材料パターンを加熱及び乾燥しなくてもよい。
 [効果]
 次に、本実施形態のパターン形成方法を用いた電子デバイスの製造の効果について説明する。
(1)作製時間に係る効果
 本実施形態では、加熱工程を最低、ステップS26の一回とすることができる。このため、電子デバイスの製造時間を短縮でき、生産性を高めることができる。
 図4はTFT作製プロセスの一例におけるゲート層、絶縁層、ソース-ドレイン層の3層の形成にかかる時間を示した図である。3層の構造体を形成するのに要する時間は702分であった。
 これに対して本実施形態では同一の構造体を作製するのにかかった所要時間は、図6に示すように、286分だった。本実施形態に係るパターン形成方法により製造時間の大幅な短縮が図れた理由は、各層改質のための複数回の焼成工程を省き、3層形成後、一体的に3層を焼成したためである。また、ゲート層、絶縁層、ソース-ドレイン層の各層の膜質特性を計測したところ、図7の表に示すように、TFT作製プロセスの一例で作製した場合と、本実施形態のプロセスで作製した場合の有機TFTアレイの膜質特性は変わらないという結果が得られた。
 以上から、本実施形態に基づく作製プロセスで作ったTFTは、従来の作製プロセス例で作ったTFTと同等の膜質を持つ3層構造体を、従来のプロセス例の半分以下の時間で作製することができ、生産性を大幅に高めるという極めて大きな効果を有することが分かった。
 (2)合わせ精度に係る効果
 ゲート層のパターンを印刷後、ゲート層を焼成すると、下地のプラスチック基板は冷却されて室温に戻ると焼成前に比べて収縮する。これにより、ゲート層と、その後に印刷するソース層及びドレイン層のパターンとの位置ずれが生じる。しかし、本実施形態では、ゲート層のパターンを印刷後(図5のS22)、ゲート層を焼成せずにソース層及びドレイン層のパターン印刷までを実行することが可能である。これにより、上記位置ずれを回避することができる。
 図8は、従来のプロセス例で作製されたゲート絶縁膜付のゲート層と、それに重ね印刷したソース-ドレイン層の合わせずれを調べた結果である。ゲート層の合わせマークが理想的な格子状に並んでいるとした時に、ソース-ドレイン層の合わせマークがどれだけずれているかを示している。焼成によりプラスチック基板が収縮するため、設計通りの寸法で配置されたソース-ドレイン層の合わせマークは拡大配置される。これからわかるように、いくら版の位置合わせマークと既に印刷されてフィルム基板上に存在する位置合わせマークとを合わせ込んでも、パターンは所望するように重ならない。
 本実施形態では、重ね合わせが必要なゲート層とソース-ドレイン層との位置合わせの前に基板が収縮する程焼成する必要がないので、基板の収縮による印刷パターンの位置ずれを回避し、版と基板との位置合わせマークを合わせれば、前面のパターンが良好に重なる。
 図9は本実施形態に基づいて行ったゲート層とソース-ドレイン層との重ね合わせ精度を測定した結果である。図8の従来のプロセス例の場合に比べて、重ね合わせ精度が大きく向上していることがわかる。
 以上から、本実施形態に基づく作製プロセスでは、従来のプロセス例で作ったTFT構造体でのゲート層とソース-ドレイン層の重ね合わせ精度に比べ、格段に高い重ね合わせ精度を達成することができ、極めて大きな効果を有することが分かった。
 (3)表面凹凸に係る効果
 例えば、ゲート層のパターンを印刷後、ゲート層を焼成すると、図3に示したゲート層のインク表面Aと基板表面Bとの親水性の差がより顕著になり、より凹凸が大きくなる。よって、その上に印刷する、あるいは塗布する材料の表面SUに生じる凹凸がより顕著になる。この凹凸は作製するデバイスの性能を低下させるため印刷表面はできる限り平坦な方がよい。そこで、本実施形態では、ゲート層のパターンを印刷後(図5のS22)、ゲート層を焼成せずに次工程以降を実行することが可能である。これにより、ゲート層上部のゲート絶縁膜を平坦化し、デバイスの性能低下を抑制することができる。
 反転印刷法では、解像性が高く数μmパターンを印刷できる。しかし、下地の表面に凹凸がある場合、印刷性が悪くなり一般に印刷層の膜厚と同程度の段差が存在すると良好な印刷ができないと言われている。
 図1に示したプロセス例に従って、ゲート層を印刷した後にインク焼成を行い、インクを改質した後に絶縁膜を1μmの厚さを目標にして塗布すると、図10の「a」に示すように、その表面にはゲート層の有無を反映した凹凸が形成される。図10の「a」の場合、約60~70nmのうねりが形成されている。この絶縁膜表面にソース-ドレイン層を反転印刷法で形成しようとする場合、印刷パターンの膜厚が100nm程度であると、印刷パターンの厚さが絶縁膜表面の凹凸値と同程度になり、絶縁膜表面に印刷されるソース-ドレイン層が破断することが懸念される(図3)。
 図10の「b」は、本実施形態のプロセス(図5)に基づいて行った絶縁膜をコート後の絶縁膜の表面凹凸の計測結果である。面内の各測定点で凹凸値は図1に示したプロセスに比べて2/3程であり、50nmより小さくなっている。本実施形態では、ゲート層を印刷後、ゲート層を焼成することなく絶縁膜を塗布するため、インク表面(図3のA)と基板表面(図3のB)との親水性の差が図1に示したプロセス例に比べて小さくなり、図1に示したプロセスより絶縁膜の表面凹凸が小さくなったと推測される。
 以上から、本実施形態による作製プロセスで作ったTFTは、従来の作製プロセス例で作ったTFTの絶縁膜表面に比べ凹凸値が小さくなり、ソース-ドレイン層のパターン形成の信頼性を大きく向上することができるという極めて大きな効果を有することが分かった。さらに層間の導通が十分に確保される作製プロセスを提供することができる。
 以上に説明したように、本実施形態に係るパターン形成方法によれば、基板の変形を抑えて合わせ精度が向上でき、TFTの作製時間が短縮でき、印刷積層表面を平坦化できる等、従来のプリンテッドエレクトロニクスデバイス作製プロセスに比べて格段に高い効果を有する作製プロセスを提供することができる。
 [反転印刷法による反転印刷機]
 上記実施形態に係るパターン形成方法では、ゲート層及びソース-ドレイン層において、反転印刷法により第1のインク材料パターン及び第2のインク材料パターンを印刷する。
 以下では、反転印刷を実行する反転印刷機の一例を、図11及び図12を参照しながら説明する。
 図11は、本実施形態に係る反転印刷機1の概略の構成を示す斜視図である。反転印刷機1は1本のローラ転写胴3を備えている。反転印刷機1の本体9には、連結されたテーブル4、5が移動可能に設置されている。テーブル4上にはマスター板25(板状体の版)25が載置される。また、テーブル5上にはワーク板(板状体のフィルム)11が載置される。
 マスター板25は、平板状でワーク板11に印刷されるパターンの反転パターンが形成された凸版である。マスター板25は、テーブル4上に固定された状態で保持されている。マスター板25は、ローラ転写胴3の回転に応じてマスター板25の凸部とローラ転写胴3とが接触することで、全体にインキが塗布されたローラ転写胴3上から凸部の反転パターンに対応したインキが除去され、マスター板25に転写される。
 ワーク板11は、ガラス基板やフィルム基板よりなる平板状の被印刷物であり、ローラ転写胴3に残った、印刷パターンに対応したインキが転写される。ワーク板11は、テーブル5上に固定された状態で保持されている。
 ローラ転写胴3は、図12を用いて後述するように、外周に例えばシリコーンよりなる撥水性ブランケット16が巻回されたブランケット胴とされていてもよい。ローラ転写胴3はその回転軸RCがブラケット13に固定された軸受で支持されている。ローラ転写胴3の両側にはブラケット13との間にピニオン12が取り付けられ、クラッチ7で回転軸RCと連動、非連動で動くようになっている。本体9には、ピニオン12と噛合可能なラック2が設けられている。ブラケット13全体は上下機構14により上下動する。これにより、ラック2とピニオン12が噛合、離間、分離の三状態を選択することができる。
 図11に示すように、本実施形態では、ラック2、ピニオン12をローラ転写胴3の両側に設置してもよい。これにより、ラック2、ピニオン12のがたつきを減らすことができ、マスター板25又はワーク板11とローラ転写胴3とを位置合わせする際の位置合わせ精度を向上させることができる。ローラ転写胴3の一端には、ブラケット13に固定された回転駆動用の駆動部6が連結されており、ローラ転写胴3の他端には、クラッチ7が取り付けられている。このクラッチ7をつなげるとローラ転写胴3とピニオン12が連動して回転し、クラッチ7を切るとローラ転写胴3だけが回転するようになっている。また、ブラケット13には、ローラ転写胴3の表面にインクを塗布するためのインクコーター8も固定されている。
 本体9上にはラック2と平行した直線軸受のリニアガイド15が固定され、リニアガイド15の上を連結されたテーブル4、5が移動自在に固定されている。またピニオン12の下にも直線すべり軸受けが設置されテーブルの剛性が低下しないようにしている。
 テーブル4、5には、各々載置されたマスター板25とワーク板11をX、Y、Z方向、及び各X、Y、Z軸周りの回転θ、Υ、Ψ方向に移動可能な6軸駆動機構4a、5aが組み込まれている。この6軸駆動機構4a、5aにより、ロール転写胴3に対するマスター板25とワーク板11とのZ方向の間隔、X方向のずれ、θ方向の傾きの調整、マスター板25とワーク板11とのY方向の距離を調整することができる。
 図12は、本実施形態に係る反転印刷機1の動作を説明するための概略断面図である。先ず連結したテーブル4、5を原点(図11のテーブル位置の状態)に戻し、そこでマスター板25、ワーク板11の各々を、テーブル4、5の各々の所定の位置に置き固定する。固定は、例えば真空チャックや機械式固定法等により行うことができる。
 次に、テーブル4、5に組み込まれた6軸駆動機構4a、5aを動作させ、ロール転写胴3に対するマスター板25とワーク板11とのZ方向の間隔、X方向のずれ、θ方向の傾き、マスター板25とワーク板11とのY方向の距離などを調整する。そして、ローラ転写胴3の回転と同期してテーブル4、5をX方向に移動させ、テーブル4、5上をローラ転写胴3が転動する際に、テーブル4、5上のマスター板25、ワーク板11と、ローラ転写胴3との間でインクの転写(印刷)が行えるようにする。
 上下機構14を動作させることによってブラケット13を上昇させ、ピニオン12とラック2の歯が噛合わないように完全に分離する。そして、クラッチ7を切った状態で駆動部6によりローラ転写胴3を回転させ、ローラ転写胴3を原点位置に戻す。次いで、図12のST1に示すように所定の位置でインクコーター8をローラ転写胴3に近づけ、インクコーター8の先端とローラ転写胴3の表面との間隔を設定値にする。この状態で、ローラ転写胴3を回転させ、メニスカス法によりローラ転写胴3の表面の必要な領域に一定膜厚のインク17を形成する。インク17を形成した後は、インクコーター8を所定の位置まで戻す。ロータ転写胴3をさらに回転させ所定の位置でクラッチ7を接続し、上下機構14を動作させてブラケット13を下降させ、ラック2とピニオン12を噛合わせる。そして、駆動部6を動作させることによって、ローラ転写胴3をテーブル4と連動させて動かす。ラック2とピニオン12が噛合し、ローラ転写胴3の半径とピニオン12との半径は一致させてあるので、ローラ転写胴3の外周速度はテーブル4の移動速度と一致する。このため、テーブル4上のマスター板25は、回転軸RCに沿って直線状に接触する領域において、凸部25bにより、ローラ転写胴3に塗られたインク17から接触したインクをはぎ取りながら、転動する。この結果、ローラ転写胴3の撥水性ブランケット16の表面には、図12のST2に示すように、マスター板25に形成されているパターンとは反転したパターンが残り、印刷パターンが形成される。
 次に、上下機構14によりブラケット13を上昇させ、ラック2とピニオン12との噛合を解除し、ローラ転写胴3を所定の位置まで回転させ、その後再び上下機構14によりブラケット13を下降させ、ラック2とピニオン12とを噛合させる。そして、駆動部6を動作させることによって、ローラ転写胴3をテーブル5と連動させて動かし、図12のST3に示すように、撥水性ブランケット16上のインクをワーク板11上に転写する。
 このような動作を繰り返すことによって、ワーク板11上にゲート層とソース-ドレイン層とのパターンを重ね印刷し、所望の構造体を作製することができる。ワーク板11へのパターンの重ね印刷の際には、先に印刷されたパターンに対して位置合わせが行われる。マスター板25に位置合わせマークを形成しておき、他のパターンと同じように、位置合わせマークもローラ転写胴3に転写される。ローラ転写胴3に転写された位置合わせマークは、さらにワーク板11に転写される。ワーク板11に転写されている位置合わせマークと、ローラ転写胴3に転写されている位置合わせマークが一致するように制御すれば、正確にパターンの重ね印刷をすることができる。
 以上、ゲート層及びソース-ドレイン層において、反転印刷法により第1のインク材料パターン及び第2のインク材料パターンを印刷する場合に使用する反転印刷の具体例について説明した。
 次に、BGBC、BGTC、TGBC、TGTCの4つの構造のTFTについて説明する。第1実施形態~第3実施形態に係る有機TFTアレイの作製工程は、上記4つの構造のTFTを製造する際に使用することができる。
[BGBC構造TFT]
 図13の1段目は、BGBC(Bottom Gate, Bottom Contact)構造のTFTを示す。BGBC構造のTFTでは、ゲート層10が下部(基板上)に位置し、ソース-ドレイン層30、40が半導体層50の下部に位置する。
 BGBC構造のTFTでは、基板S上にゲート層10が形成され、ゲート層10を覆うようにゲート絶縁層20が形成される。ゲート絶縁層20上にはソース-ドレイン層30、40が形成される。ゲート絶縁層20は、ゲート層10とソース-ドレイン層30、40との間に設けられ、ゲート層10とソース-ドレイン層30、40とを電気的に絶縁する。ソース-ドレイン層30、40の間及び上部には、半導体層50が形成される。半導体層50は、少なくとも一部がソース-ドレイン層30、40に接触している。
[BGTC構造TFT]
 図13の2段目は、BGTC(Bottom Gate, Top Contact)構造のTFTを示す。BGTC構造のTFTでは、ゲート層10が下部に位置し、ソース-ドレイン層30、40が半導体層50の上部に位置する。
 BGTC構造のTFTでは、基板S上にゲート層10が形成され、ゲート層10を覆うようにゲート絶縁層20が形成される。ゲート絶縁層20上には半導体層50が形成される。半導体層50上には、ソース-ドレイン層30、40が形成される。ソース-ドレイン層30、40は、少なくとも一部が半導体層50上に接触する。
[TGBC構造TFT]
 図13の3段目は、は、TGBC(Top Gate, Bottom Contact)構造のTFTを示す。TGBC構造のTFTでは、ゲート層10が最も上部に位置し、ソース-ドレイン層30、40が半導体層50の下部に位置する。
 TGBC構造のTFTでは、基板S上にソース-ドレイン層30、40が形成される。ソース-ドレイン層30、40の間及び上部には、半導体層50が形成される。半導体層50上には、ゲート絶縁層20が形成される。ゲート絶縁層20の上部にはゲート層10が形成される。
[TGTC構造TFT]
 図13の4段目は、TGTC(Top Gate, Top Contact)構造のTFTを示す。TGTC構造のTFTでは、ゲート層10が最も上部に位置し、ソース-ドレイン層30、40が半導体層50の上部で電気的に接続されている。
 TGTC構造のTFTでは、基板S上に半導体層50が形成される。半導体層50上には、半導体層50上の少なくとも一部と接触するようにソース-ドレイン層30、40が形成される。ソース-ドレイン層30、40の間及び上部には、ゲート絶縁層20が形成される。ゲート絶縁層20の上部にはゲート層10が形成される。
 以上、4つの構造のTFTについて説明した。例えば、図14を参照すると、BGBC構造のTFTを製造するために、従来の印刷プロセスの一例では、プロセスP1に示すように、ゲート層10の形成(S1)、焼成(S2)、ゲート絶縁層20の形成(S3)、焼成(S4)、ソース-ドレイン層30、40の形成(S5)、焼成(S6)、半導体層50の形成(S7)、焼成(S8)の8工程が必要である。
 一方、以下に説明する第2実施形態に係るパターン形成方法では、BGBC構造のTFTの作製工程において、プロセスP2に示すように、ゲート層10の形成(S1)、ゲート絶縁層20の形成(S3)、ソース-ドレイン層30、40の形成(S5)、半導体層50の形成(S7)、焼成(S8)の5工程のみとなり、3つの焼成工程が不要となる。
 また、第2実施形態に係るパターン形成方法では、TGBC構造のTFTの作製工程においても、プロセスP3に示すように、ソース-ドレイン層30、40の形成(S10)、半導体層50の形成(S11)、ゲート絶縁層20の形成(S12)、ゲート層10の形成(S13)、焼成(S14)の5工程のみとなり、3つの焼成工程が不要となる。
 <第2実施形態>
 [第2実施形態に係る有機TFTアレイの作製工程]
 次に、第2実施形態に係るパターン形成方法を用いた有機TFTアレイの作製工程について、図15のフローチャートを参照しながら説明する。図15では、図1に示したTFT作製プロセスフローに加え、パシベーション膜に貫通ビアを設け、それを介して画素電極を形成するボトムゲート型のTFT作製プロセスフローまで示している。
 最初に、図15のフローチャートに手順を示したBGBC構造のTFTの作製工程について説明する。図16~図18は、図15のプロセスフローの各印刷工程でブランケット上と基板上にどのような構造体が作られているかを示している。ブランケット上の構造体は本来なら曲面上に形成されるが、この図では簡略化して平面上の構造体として示している。
 (BGBC構造のTFT)
 まず、ガラス基板、または、フィルム基板(以下、基板Sという。)を洗浄および除電してパーティクルや有機物を除去する(S30)。反転印刷機1を用いてゲート層のパターンを印刷する(S31)。使用するインクは、例えばナノ銀インクである。この工程では、ゲート層用のインク17aをブランケット16の表面に塗布する(図16のP10)。次に、ゲート層の反転パターンが形成されたマスター板の凸部(図示せず)と接触したインク17aをはぎ取り、ゲート層用のパターン17a1を形成し(図16のP11)、基板S上に転写する(図16のP12)。これにより、基板S上にゲート層10が形成される。
 次に、反転印刷機1を用いてゲート絶縁層を印刷する(図15のS32)。使用するインクは、例えばPVPインクである。この工程では、ゲート絶縁層用のインク17bをブランケット16の表面に塗布する(図16のP13)。次に、基板S上にインク17bを印刷する(図16のP14)。これにより、ゲート絶縁層20が重ね印刷される。
 次に、反転印刷機1を用いてソース-ドレイン層30,40のパターンを印刷する(図15のS33)。使用するインクは、例えばゲート層10と同じナノ銀インクである。この工程では、ソース-ドレイン層用のインク17cをブランケット16の表面に塗布する(図16のP15)。次に、ソース-ドレイン層の反転パターンが形成されたマスター板と接触したインク17cをはぎ取り、ソース-ドレイン層のパターン17c1を形成する(図16のP16)。そして、基板S側に付けられた位置合わせマークとパターン17c1側に付けられた位置合わせマークとの位置合わせを行って、基板Sにパターン17c1を印刷する(図16のP17)。これにより、ソース-ドレイン層30,40が重ね印刷される。
 次に、反転印刷機1を用いて半導体層50のパターンを、上記に説明した位置合わせ方法によって位置合わせし、印刷する(図15のS34)。使用する半導体インクは、例えばP3HTインクやIGZOインクである。
 この工程では、半導体層50用のインク18aをブランケット16の表面に塗布する(図17のP18)。次に、半導体層の反転パターンが形成されたマスター板と接触したインク18aをはぎ取り、半導体層50のパターン18a1を形成する(図17のP19)。そして、基板Sにパターン18a1を印刷する(図17のP20)。これにより、半導体層50が重ね印刷される。
 次に、反転印刷機1を用いてパシベーション層60のパターンを、上記に説明した位置合わせ方法によって位置合わせを行って、印刷する(図15のS35)。使用する半導体インクは、例えば、CYTOP等のフッ素系樹脂インクである。この工程では、パシベーション層60用のCYTOPのインク19aをブランケット16の表面に塗布する(図17のP21)。次に、パシベーション層の反転パターンが形成されたマスター板と接触したCYTOPのインク19aをはぎ取り、パシベーション層60のパターン19a1を形成する(図17のP22)。そして、基板Sにパターン19a1を印刷する(図17のP23)。
 次にビア及び画素電極層70を一体で形成する(図15のS36)。反転印刷は、段差がある膜上への印刷と厚い膜の印刷の精度がグラビア反転印刷よりも劣る。ここで、ビアと画素電極の層は1~2μm程度の厚い膜である。このため、ビアと画素電極は、グラビア反転印刷によって形成する。グラビア反転印刷法を図18及び図19に示す。
 グラビア反転印刷では、グラビア版31の凹部にインク21aを充填する(図18のP24)。より詳細には、図19のST10に示したように、グラビア版31の凹部31aにスキージ22を使ってインク21aを充填する。
 次に、グラビア版31からブランケット16上にインク21aを抜き取る(図18のP25)。より詳細には、図19のST11、ST12に示したように、ブランケット16が巻かれたローラ転写胴3を使って、ローラ転写胴3をグラビア版31上で回転移動させグラビア版31上のインク21aをブランケット16側に抜き取る。
 図19のST13に示したように、グラビア反転印刷でも、パシベーション層60の印刷と同様にビアと画素電極の一体パターンのインク21aを重ね印刷する。これにより、ビア及び画素電極層70が形成される(図18のP26)。
 ここで、グラビア反転印刷では、ブランケット16を押しつぶしてビアと画素電極の一体パターンのインク21aを基板S上に転写する。このため、図18のP26に示したように、下層のパシベーション層60のビア用の穴60aがブランケット16により塞がれ、ビア用の穴60aの底部に入った空気の逃げ場がなくなる。これにより、ソース-ドレイン層30,40の表面Qにて、インク21aがソース-ドレイン層30,40のパターン17c1と接触しないことが起こる虞がある。
 これを解決するために、本実施形態の変形例では、ビア及び画素電極層70を形成時の印刷雰囲気をHeやCOでパージしてもよい。HeやCOは空気に比べ、インク21aやブランケット16などの高分子材料を通り抜ける能力が高い(透過係数が高い)。このため、ブランケット16によりビア用の穴60aの出口が塞がれても、空気がビア用の穴60a内に溜まらずに材料を通過して外部に逃げる。これにより、インク21aは容易にソース-ドレイン層30,40まで達し、画像電極とソース-ドレイン層30,40のパターン17c1との導通が確保できる。なお、少なくともブランケット16と基板Sとの接触部が空気より透過係数が高い気体にて満たされていればよく、例えば、エアーシャワーで接触部周辺を囲うことで実現できる。このように構成すると、装置内部全体を透過係数が高い気体で満たすよりも、ランニングコストを低くすることができる。なお、ここでは、グラビア反転印刷を用いて説明したが、通常のグラビア印刷を用いて形成してもよい。また、段差被覆性を考慮しないのであれば、反転印刷を用いてもよい。
 ビア及び画素電極層70を形成後、基板Sを乾燥炉に送り、基板S上の6層を一体焼成する(図15のS37)。本実施形態では、上記6層の焼成条件のうち最も高温、長時間を要する焼成条件に合わせて、180℃のオーブン内で60分間焼成する。6層を一体焼成することで、各層のパターンの位置ずれを生じさせることなく、TFTを製造することができるとともに、プロセス時間の短縮を図ることができる。一体焼成後、基板Sを冷却する(図15のS38)。
 (BGTC構造のTFT)
 次に、BGTC構造のTFTの作製工程について、図20及び図21を参照しながら説明する。まず、基板Sを洗浄後、図16のP10~P12に示したように、ゲート層10のパターンを印刷する。次に、図16のP13、P14に示したように、ゲート絶縁層20を印刷する。
 次に、半導体層50のパターンを、上記に説明した位置合わせ方法によって位置合わせし、印刷する。この工程では、半導体層50用のインク18aをブランケット16の表面に塗布する(図20のP30)。次に、半導体層のパターン18a1を形成し(図20のP31)、基板S上にそのパターン18a1を印刷する(図20のP32)。これにより、基板S上に半導体層50が重ね印刷される。
 次に、ソース-ドレイン層30,40のパターンを、上記に説明した位置合わせ方法によって位置合わせを行って、印刷する。この工程では、ソース-ドレイン層用のインク17cをブランケット16の表面に塗布する(図20のP33)。次に、ソース-ドレイン層のパターン17c1を形成し(図20のP34)、基板Sにパターン17c1を印刷する(図20のP35)。これにより、ソース-ドレイン層30,40が重ね印刷される。
 次に、パシベーション層60のパターンを、上記に説明した位置合わせ方法によって位置合わせを行って、印刷する。この工程では、CYTOPのインク19aをブランケット16の表面に塗布する(図21のP36)。次に、パシベーション層のパターン19a1を形成し(図21のP37)、基板Sにパターン19a1を印刷する(図21のP38)。これにより、パシベーション層60が重ね印刷される。
 次に、ビア及び画素電極層70をグラビア反転印刷によって形成する。この工程では、グラビア版31の凹部にインク21aを充填する(図21のP39)。次に、グラビア版31からブランケット16上にインク21aを抜き取る(図21のP40)。そして、基板Sにビア及び画素電極層パターンのインク21aを印刷する(図21のP41)。これにより、ビア及び画素電極層70が重ね印刷される。
 次に、インク材料を用いた上記6層の電子デバイス用パターンが形成された基板Sをオーブン焼成炉で加熱する。一体焼成後、基板Sを冷却する。
 (TGBC構造のTFT)
 次に、TGBC構造のTFTの作製工程について、図22~図24を参照しながら説明する。まず、ソース-ドレイン層30,40のパターンを印刷する。この工程では、ソース-ドレイン層用のインク17cをブランケット16の表面に塗布する(図22のP50)。次に、ソース-ドレイン層用のパターン17c1を形成し(図22のP51)、基板Sにパターン17c1を印刷する(図22のP52)。これにより、基板S上にソース-ドレイン層30,40が形成される。
 次に、半導体層50のパターンを、上記に説明した位置合わせ方法によって位置合わせし、印刷する。この工程では、半導体層用のインク18aをブランケット16の表面に塗布する(図22のP53)。次に、半導体層のパターン18a1を形成し(図22のP54)、基板Sに印刷する(図22のP55)。これにより、半導体層50が重ね印刷される。
 次に、ゲート絶縁層のパターンを、上記に説明した位置合わせ方法によって位置合わせし、印刷する。この工程では、ゲート絶縁層用のインク17bをブランケット16の表面に塗布する(図23のP56)。次に、ゲート絶縁層のパターン17b1を形成し(図23のP57)、基板S上にパターン17b1を印刷する(図23のP58)。これにより、ゲート絶縁層20が重ね印刷される。
 次に、ゲート層10のパターンを、上記に説明した位置合わせ方法によって位置合わせを行って、印刷する。この工程では、ゲート層用のインク17aをブランケット16の表面に塗布する(図23のP59)。次に、ゲート層のパターン17a1を形成し(図23のP60)、基板Sにパターン17a1を印刷する(図23のP61)。これにより、ゲート層10が重ね印刷される。
 次に、パシベーション層60のパターンを、上記に説明した位置合わせ方法によって位置合わせを行って、印刷する。この工程では、CYTOPのインク19aをブランケット16の表面に塗布する(図24のP62)。次に、パシベーション層のパターン19a1を形成し(図24のP63)、基板Sにパターン19a1を印刷する(図24のP64)。これにより、パシベーション層60が重ね印刷される。
 次に、ビア及び画素電極層70をグラビア反転印刷によって一体で形成する。この工程では、グラビア版31の凹部にインク21aを充填する(図24のP65)。次に、グラビア版31からブランケット16上にインク21aを抜き取る(図24のP66)。そして、基板Sにパターンのインク21aを印刷する(図24のP67)。これにより、ビア及び画素電極層70が重ね印刷される。
 次に、インク材料を用いた上記6層の電子デバイス用パターンが形成された基板Sをオーブン焼成炉で加熱する。一体焼成後、基板Sを冷却する。
 (TGTC構造のTFT)
 次に、TGTC構造のTFTの作製工程について、図25~図27を参照しながら説明する。まず、半導体層50のパターンを印刷する。この工程では、半導体層用のインク18aをブランケット16の表面に塗布する(図25のP70)。次に、半導体層のパターン18a1を形成し(図25のP71)、基板Sにパターン18a1を印刷する(図25のP72)。これにより、基板S上に半導体層50が形成される。
 次に、ソース-ドレイン層30,40のパターンを印刷する。この工程では、ソース-ドレイン層用のインク17cをブランケット16の表面に塗布する(図25のP73)。次に、ソース-ドレイン層用のパターン17c1を形成し(図25のP74)、基板Sにパターン17c1を印刷する(図25のP75)。これにより、ソース-ドレイン層30,40が重ね印刷される。
 次に、ゲート絶縁層のパターンを、上記に説明した位置合わせ方法によって位置合わせし、印刷する。この工程では、ゲート絶縁層用のインク17bをブランケット16の表面に塗布する(図26のP76)。次に、ゲート絶縁層のパターン17b1を形成し(図26のP77)、基板S上にインク17b1を印刷する(図26のP78)。これにより、ゲート絶縁層20が重ね印刷される。
 次に、ゲート層10のパターンを、上記に説明した位置合わせ方法によって位置合わせを行って、印刷する。この工程では、ゲート層用のインク17aをブランケット16の表面に塗布する(図26のP79)。次に、ゲート層のパターン17a1を形成し(図26のP80)、基板Sにパターン17a1を印刷する(図26のP81)。これにより、ゲート層10が重ね印刷される。
 次に、パシベーション層60のパターンを、上記に説明した位置合わせ方法によって位置合わせを行って、印刷する。この工程では、CYTOPのインク19aをブランケット16の表面に塗布する(図27のP82)。次に、パシベーション層のパターン19a1を形成し(図27のP83)、基板Sにパターン19a1を印刷する(図27のP84)。これにより、パシベーション層60が重ね印刷される。
 次に、ビア及び画素電極層70をグラビア反転印刷によって形成する。この工程では、グラビア版31の凹部にインク21aを充填する(図27のP85)。次に、グラビア版31からブランケット16上にインク21aを抜き取る(図27のP86)。そして、基板Sにパターンのインク21aを印刷する(図27のP87)。これにより、ビア及び画素電極層70が重ね印刷される。
 次に、インク材料を用いた上記6層の電子デバイス用パターンが形成された基板Sをオーブン焼成炉で加熱する。一体焼成後、基板Sを冷却する。
 以上説明したように、本実施形態に係るパターン形成方法によれば、上記6層のパターンをすべて重ね印刷した後に6層の一体焼成が実行される。つまり、6層のパターンを重ね印刷する間の熱処理は行われないため、6層のパターン形成を行う間に基板Sを収縮させることがない。基板Sにプラスチックフィルムを使った場合でも各層のインクに対して熱焼成が施されていないので、6層のパターン形成を行う間に熱収縮などの基板S変形は生じていない。そこで位置合わせマークを参照にした正確な重ね印刷を行うことができる。これによりオーバーレイ精度の高いTFT構造体を作製することができる。
 また、6層のパターンを一体焼成することによって層間にて焼成工程や乾燥工程を実行しないため、プロセス時間を短縮できる。更に、熱処理による基板Sの収縮を生じさせずに6層のパターンをすべて重ね印刷した後に一体焼成するため、パターンの断線や導通不良が低減され印刷信頼性が向上できる。以上から、本実施形態に係るパターン形成方法によれば、従来のプリンテッドエレクトロニクスデバイス製造プロセスに比べて格段に高い効果を有する製造プロセスを提供することができる。
 半導体層50は水分吸収により性能の劣化が起こるため、窒素雰囲気中で上記構造体を焼成すればより良い性能を得ることができる。また、ビア及び画素電極層70は印刷雰囲気をHeやCOでパージしているので、空気がビア用の開口内に溜まらずに材料を通過して外部に逃がすことができる。このため、インクは容易にソース-ドレイン層30,40まで達し画像電極とソース-ドレイン層30,40のパターンとの導通が確保できる。以上の効果は、4つの構造のTFTの作製工程の効果として得ることができる。
 <第3実施形態>
 第2実施形態に係るパターン形成方法では、BGBC、BGTC、TGBC、TGTCの4つの構造のTFTの作製工程の一例を説明した。第3実施形態に係るパターン形成方法では、上記4つの構造のTFTの作製工程の他の例を説明する。
 第3実施形態に係るパターン形成方法では、上記4つの構造のTFTの作製工程において、ブランケット16上で2層を重ねて1回の転写で2層を基板Sに印刷する点が、第2実施形態と異なる。以下、順に上記4つの構造のTFTの作製工程について説明する。
 (BGBC構造のTFT:2層重ねて転写)
 最初に、BGBC構造のTFTの作製工程について、図28~図31を参照しながら説明する。図29~図31には、図28のプロセスフローの各印刷工程でブランケット16上と基板上にどのような構造体が作られているかを示している。ブランケット上の構造体は本来なら曲面上に形成されるが、この図では簡略化して平面上の構造体として示している。
 まず、基板Sを洗浄および除電してパーティクルや有機物を除去する(図28のS40)。次に、反転印刷機1を用いてゲート層のパターンを印刷する(S41)。この工程では、ゲート層用のインク17aをブランケット16の表面に塗布し(図29のP90)、ゲート層用のパターン17a1を形成し(図29のP91)、基板S上に転写する(図29のP92)。これにより、基板S上にゲート層10が形成される。
 次に、ゲート絶縁層20とソース-ドレイン層30,40の一体印刷を行う(図28のS42)。この一体印刷では、まず、ソース-ドレイン層30,40となるナノ銀インク17cをブランケット16上にコートする(図29のP93)。次に、ソース-ドレイン層用のマスター板で不要インクを除去し、ソース-ドレイン層のパターン17c1を形成する(図29のP94)。ソース-ドレイン層のパターン17c1が残っているブランケット16上にゲート絶縁層用のPVPインク17bを全面塗布する(図29のP95)。ブランケット16上に重ねられた2層(ソース-ドレイン層とゲート絶縁層のパターン)を一体として基板Sに重ね印刷する。(図29のP96)。これにより、基板S上にゲート絶縁層20とソース-ドレイン層30,40が一体形成される。下地となる基板Sであるプラスチックフィルムは熱焼成が施されていないので熱収縮などの基板変形は生じていない。このため、位置合わせマークを参照にした重ね印刷を精度よく行うことができる。
 次に、反転印刷機1で半導体層50を位置合わせし、印刷する(図28のS43)。使用する半導体インクは、例えばP3HTインクである。この工程では、半導体層50用のインク18aをブランケット16の表面に塗布する(図30のP97)。次に、半導体層50のパターン18a1を形成する(図30のP98)。そして、基板Sにパターン18a1を印刷する(図30のP99)。これにより、半導体層50が重ね印刷される。
 次に、パシベーション層60を反転印刷する(図28のS44)。例えばCYTOP(絶縁膜)のインクを約1μmの厚さで反転印刷する。この工程では、ブランケット表面にCYTOPのインク19aを塗布し(図30のP100)、パシベーション層用のマスター板で不要インクを除去し(図30のP101)、ビアを埋め込む穴パターン19a1を基板S上の下層パターンに対して重ね印刷する(図30のP102)。これにより、にパシベーション層60が重ね印刷される。
 次に、ビア及び画素電極層70をグラビア反転印刷によって一体で形成する(図28のS45)。この工程では、グラビア版31の凹部にインク21aを充填する(図31のP103)。次に、グラビア版31からブランケット16上にインク21aを抜き取る(図31のP104)。そして、基板Sにパターンのインク21aを印刷する(図31のP105)。これにより、基板S上にビア及び画素電極層70が重ね印刷される。本実施形態においても、ビア及び画素電極層70を形成時の印刷雰囲気をHeやCOとしてもよい。
 次に、インク材料を用いた上記6層の電子デバイス用パターンが形成された基板Sをオーブン焼成炉で加熱し(図28のS46)、焼成後、基板Sを冷却する(S47)。
 第3実施形態に係るパターン形成方法では、BGBC構造のTFTの作製工程において、ブランケット16上で2層を重ねて1回の転写で2層を基板Sに印刷し、6層を一体焼成する。これにより、第2実施形態と同様の効果が得られるとともに、工程数を減らすことでプロセス時間の短縮を図ることができる。
 (BGTC構造のTFT:2層重ねて転写)
 次に、BGTC構造のTFTの作製工程について、図32及び図33を参照しながら説明する。まず、基板Sを洗浄後、図29のP90~P92に示したように、基板S上にゲート層10のパターンを印刷する。
 次に、ゲート絶縁層20と半導体層50の一体印刷を行う。この工程ではまず、半導体層50のインク18aをブランケット16上に塗布する(図32のP110)。次に、半導体層用のマスター板で不要インクを除去し、半導体層のパターン18a1を形成する(図32のP111)。半導体層のパターン18a1が残っているブランケット16上にゲート絶縁層用のPVPインク17bを重ねて全面塗布する(図32のP112)。ブランケット16上に重ねられた2層(半導体層とゲート絶縁層のパターン)を一体として基板Sに重ね印刷する。(図32のP113)。これにより、基板S上にゲート絶縁層20と半導体層50が一体形成される。
 次に、ソース-ドレイン層30,40のパターンを、上記に説明した位置合わせ方法によって位置合わせし、印刷する。この工程では、ソース-ドレイン層用のインク17cをブランケット16の表面に塗布する(図32のP114)。次に、ソース-ドレイン層用のパターン17c1を形成し(図32のP115)、基板S上に印刷する(図32のP116)。これにより、ソース-ドレイン層30,40が重ね印刷される。
 次に、パシベーション層60のパターンを、上記に説明した位置合わせ方法によって位置合わせを行って、印刷する。この工程では、CYTOPのインク19aをブランケット16の表面に塗布する(図33のP117)。次に、パシベーション層のパターン19a1を形成し(図33のP118)、基板Sに印刷する(図33のP119)。これにより、パシベーション層60が重ね印刷される。
 次に、ビア及び画素電極層70をグラビア反転印刷によって形成する。この工程では、グラビア版31の凹部にインク21aを充填する(図33のP120)。次に、グラビア版31からブランケット16上にインク21aを抜き取る(図33のP121)。そして、基板Sにパターンのインク21aを印刷する(図33のP122)。これにより、ビア及び画素電極層70が重ね印刷される。
 次に、インク材料を用いた上記6層の電子デバイス用パターンが形成された基板Sをオーブン焼成炉で加熱する。一体焼成後、基板Sを冷却する。
 (TGBC構造のTFT:2層重ねて転写)
 次に、TGBC構造のTFTの作製工程について、図34~図36を参照しながら説明する。まず、ソース-ドレイン層30,40のパターンを印刷する。この工程では、ソース-ドレイン層用のインク17cをブランケット16の表面に塗布する(図34のP130)。次に、ソース-ドレイン層用のパターン17c1を形成し(図34のP131)、基板Sに印刷する(図34のP132)。これにより、基板S上にソース-ドレイン層30,40が形成される。
 次に、半導体層50のパターンを、上記に説明した位置合わせ方法によって位置合わせし、印刷する。この工程では、半導体層用のインク18aをブランケット16の表面に塗布する(図34のP133)。次に、半導体層のパターン18a1を形成し(図34のP134)、基板Sに印刷する(図34のP135)。これにより、基板S上に半導体層50が重ね印刷される。
 次に、ゲート絶縁層20とゲート層10の一体印刷を行う。この工程では、ゲート層用のインク17aをブランケット16上に塗布する(図35のP136)。次に、ゲート層のパターン17a1を形成する(図35のP137)。ゲート層のパターン17a1が残っているブランケット16上にゲート絶縁層用のインク17bを全面塗布する(図35のP138)。次に、ゲート絶縁層のパターン17b1を形成する(図35のP139)。次に、ブランケット16上に重ねられた2層(ゲート層とゲート絶縁層のパターン)を一体として基板Sに重ね印刷する(図35のP140)。これにより、基板S上にゲート絶縁層20とゲート層10が一体形成される。
 次に、パシベーション層60のパターンを、上記に説明した位置合わせ方法によって位置合わせを行って、印刷する。この工程では、CYTOPのインク19aをブランケット16の表面に塗布する(図36のP141)。次に、パシベーション層のパターン19a1を形成し(図36のP142)、基板Sに印刷する(図36のP143)。これにより、パシベーション層60が重ね印刷される。
 次に、ビア及び画素電極層70をグラビア反転印刷によって形成する。この工程では、グラビア版31の凹部にインク21aを充填する(図36のP144)。次に、グラビア版31からブランケット16上にインク21aを抜き取る(図36のP145)。そして、基板Sにパターンのインク21aを印刷する(図36のP146)。これにより、ビア及び画素電極層70が重ね印刷される。
 次に、インク材料を用いた上記6層の電子デバイス用パターンが形成された基板Sをオーブン焼成炉で加熱する。一体焼成後、基板Sを冷却する。
 (TGTC構造のTFT:2層重ねて転写)
 次に、TGTC構造のTFTの作製工程について、図37~図39を参照しながら説明する。まず、半導体層のパターンを印刷する。この工程では、半導体層用のインク18aをブランケット16の表面に塗布する(図37のP150)。次に、半導体層用のパターン18a1を形成し(図37のP151)、基板Sに印刷する(図37のP152)。これにより、基板S上に半導体層50が形成される。
 次に、ソース-ドレイン層30,40のパターンを、上記に説明した位置合わせ方法によって位置合わせを行って、印刷する。この工程では、ソース-ドレイン層用のインク17cをブランケット16の表面に塗布する(図37のP153)。次に、ソース-ドレイン層のパターン17c1を形成し(図37のP154)、基板Sに印刷する(図37のP155)。これにより、ソース-ドレイン層30、40が重ね印刷される。
 次に、ゲート絶縁層20とゲート層10の一体印刷を行う。この工程では、ゲート層用のインク17aをブランケット16上に塗布する(図38のP156)。次に、ゲート層のパターン17a1を形成する(図38のP157)。ゲート層のパターン17a1が残っているブランケット16上にゲート絶縁層用のインク17bを全面塗布する(図38のP158)。次に、ゲート絶縁層のパターン17b1を形成する(図38のP159)。次に、ブランケット16上に重ねられた2層(ゲート層とゲート絶縁層のパターン)を一体として基板Sに重ね印刷する(図38のP160)。これにより、基板S上にゲート絶縁層20とゲート層10が一体形成される。
 次に、パシベーション層60のパターンを、上記に説明した位置合わせ方法によって位置合わせを行って、印刷する。この工程では、CYTOPのインク19aをブランケット16の表面に塗布する(図39のP161)。次に、パシベーション層のパターン19a1を形成し(図39のP162)、基板Sに印刷する(図39のP163)。これにより、パシベーション層60が重ね印刷される。
 次に、ビア及び画素電極層70をグラビア反転印刷によって形成する。この工程では、グラビア版31の凹部にインク21aを充填する(図39のP164)。次に、グラビア版31からブランケット16上にインク21aを抜き取る(図39のP165)。そして、基板Sにパターンのインク21aを印刷する(図39のP166)。これにより、基板S上にビア及び画素電極層70が重ね印刷される。
 次に、インク材料を用いた上記6層の電子デバイス用パターンが形成された基板Sをオーブン焼成炉で加熱する。一体焼成後、基板Sを冷却する。
 以上説明したように、本実施形態に係るパターン形成方法によれば、第2実施形態において説明した効果に加えて、ブランケット16上で2層を重ねることにより工程数を削減し、プロセス時間をより短縮することができる。また、ブランケット16上で2層を重ねることにより一方の層の他方の層へ埋め込むことができる。これにより、基板S上に形成される複数層をより平坦化し、デバイスの性能を上げることができる。
 (TFTの特性)
 図40は、上記第2又は第3実施形態に係るパターン形成方法により作製したTFTの特性評価結果である。横軸がゲート電圧を示し、縦軸がドレイン電流を示す。これによれば、従来のパターン形成方法で作製したBGBC構造のTFT(比較例)に対して、本実施形態のパターン形成方法で作製したBGBC構造のTFT(実施形態)及びTGBC構造のTFT(実施形態)の特性(つまり、図中の各グラフの形状)は変わらなかった。この結果から本実施形態のパターン形成方法で作製したTFTが正常に動作することがわかる。
 ただし、本実施形態のパターン形成方法で作製したTFTの性能は、現時点では比較例のTFTの性能に比べ劣っている。これは、プロセスの改善、インク材料の改善で向上できる。例えば、プロセスの改善例として、例えば、各層の印刷間に乾燥工程を入れることなどが考えられる。乾燥工程の一例としては、反転印刷機1のローラ転写胴3の周りにドライヤー等を組み込む方法等がある。
 一方、本実施形態のパターン形成方法で作製したTFTは、基板の歪みに起因する設計誤差が抑制され、精度の高いTFTを得ることができる。また、本実施形態のパターン形成方法で作製したTFTは、従来のパターン形成方法で作製したTFTと比べ、作製時間が短く、基板の歪みに起因する製品間の誤差を抑制できるため、量産技術として優れている。さらに、本実施形態のパターン形成方法で作製したTFTは、BGBC、BGTC、TGBC、TGTCの4つの構造のTFTについて適用可能であることから、デバイス設計の自由度の観点からも優れている。
 (反転印刷法でのパターン形成過程)
 最後に、第1~第3実施形態で使用した反転印刷法でのパターン形成過程を、図41を参照しながら考察する。図41は、反転印刷法でのパターン形成過程を模式的に示した図である。インク8は、低い温度で蒸発する低沸点溶媒と高い温度で蒸発する高沸点溶媒とが混合されたものを使用する。また、ブランケット16も高い沸点の溶媒を吸い込む材料を使用する。
 この状態で、ブランケット16の表面にインク8を塗布すると、塗布膜表層から低沸点溶媒が徐々に蒸発していく。また、ブランケット16の表面との界面では高沸点溶媒がブランケット16内に浸み込む。低沸点溶媒が概ね蒸発する時間を経た状態がマスター板との接触前状態である。この状態では、インク8の大部分は乾燥して一体化し、ブランケット16との界面のみが濡れている。なお、図41では、ブランケット16の表面上のインクの湿層は比較的厚いように描かれているが、濡れている領域の厚さは極めて薄く、湿っているのは界面のみである。
 この状態で、ローラ転写胴3のブランケット16にマスター板25を接触させ、マスター板25の凸部25bをブランケット16に押し付けると、マスター板25のエッジ部に対応した部分にせん断力が働きインク8の膜がその部分で切断される。マスター板25をブランケット16から引き離すとインク8は界面でブランケット16から離れ、不要なインク8がマスター板25側に付着することで、ブランケット16から取り除かれる。
 その後、ブランケット16の表面上に残ったインク8は基板S(ワーク板11)と接触させると、インク8は界面で切り離され基板S側に転移する。ブランケット16に高沸点溶媒が浸み込むことで、インク8はブランケット16上に残らず100%の転移の実行が可能になる。基板側に転移したインク8は、ブランケット16と接触していた面が表になり、残っている溶媒が徐々に蒸発していく。従って、印刷が完了した時点、すなわちインク8が基板Sに転移した時点では、インク8はセミドライ状態になっていると考えられる。
 上記実施形態のパターン形成方法において、インク8を連続して積層しても積層間でインクの混じり合いが起こらず、構造体が出来上がり、TFTが正常に動作するのは、各インク8がセミドライ状態で重ねられるためである。
 なお、上記各実施形態において、ゲート層を形成する工程は、ゲート層用の第1のインク材料パターンを基板上に形成する第1のパターン形成工程の一例である。
 また、上記各実施形態において、ソース-ドレイン層を形成する工程は、ソース-ドレイン層用の第2のインク材料パターンを基板上に形成する第2のパターン形成工程の一例である。
 また、上記各実施形態において、半導体層を形成する工程は、半導体層用の第3のインク材料パターンを基板上に形成する第3のパターン形成工程の一例である。
 また、上記各実施形態において、ゲート絶縁層を形成する工程は、第1及び第2のインク材料パターンを絶縁する絶縁層を基板上に形成する絶縁層形成工程の一例である。
 また、複数層を一体焼成する工程は、形成された各層を一体的に改質する改質工程の一例である。
 また、上記各実施形態において、パシベーション層を形成する工程は、パシベーション層用の第4のインク材料パターンを基板上に形成する第4のパターン形成工程の一例である。
 また、上記各実施形態において、ビア及び画素電極層を形成する工程は、ビア及び画素電極層用の第5のインク材料パターンを基板上に形成する第5のパターン形成工程の一例である。
 また、上記第3実施形態において、ブランケットに2層重ねて基板上に印刷する工程は、第1~第3のパターン形成工程のいずれかと前記絶縁層形成工程とを1つの工程として、前記第1~第3のインク材料パターンのいずれかと前記絶縁層とを積層した積層膜を基板に一体形成する工程の一例である。ブランケットに2層以上重ねて基板上に印刷してもよい。
 (重ね印刷によるミキシング層)
 図42は、重ね印刷した際のインク層間にできるミキシング層によりインク膜の性能がどのように低下するかを「ナノ銀インクとPVPインクの界面」と「ナノ銀インクとガラス基板の界面」とを比較して調べた結果である。ミキシング層は、隣接する層の界面に生じる各層のインクが混ざり合った層である。隣接する層のそれぞれの膜厚は、隣接する層の各層の厚さ(ミキシング層となった部分の厚さを含まない)をいう。
ガラス基板上のナノ銀インクの場合、ナノ銀インクの膜厚が増えるにつれて焼成後の体積抵抗は一定値(100nm厚以上で約0.00001Ωcm)になる。
 一方、ガラス基板にPVPインクを印刷し、その上にナノ銀インクを重ね印刷した場合、焼成後の体積抵抗は150nm厚以上で約0.00004Ωcm、それより薄くなると一桁以上悪化することが分かった。走査型電子顕微鏡(SEM)でナノ銀インクとPVPインクの界面を観察すると、明確な境が見えず両者が混ざり合っていることが分かった。この層の体積抵抗はナノ銀インクのそれより大きいためミキシング層の厚さに比べて純粋なナノ銀インク層が薄くなると体積抵抗が急激に悪化することが分かった。
 このことから先にインクを重ね印刷し、その後にインク構造体を一体で焼成して改質させる方法においては、インク界面に生じるミキシング層厚よりもインク層の厚さを大きくしておくことが重要であることがわかった。厚さをどの程度にするかは要求仕様に基づいて決定すればよい。
 また、各インクのセミドライ状態における残留溶媒量をできるだけ小さくすること、またはセミドライ状態におけるインク層の残留溶媒に対して隣接するインク層成分が溶解しないようにインク材料の組み合わせを選択することでミキシング層厚を低減できる。
 本実施形態では、重ね印刷をした際に層間界面に発生するインク同士にミキシング層が生じる場合、ミキシング層の厚さよりも第1層のインク層と第2層のインク層を厚くするように印刷する。すなわち使用するインクを重ねた際に発生するミキシング層の厚さを予め測定しておき、その厚さ以上のインクを印刷することにより、ミキシング層による性能低下が要求性能を引き下げないようにする。このように印刷各層の厚さをミキシング層厚以上に大きくして、要求仕様に見合う膜厚を確保すれば各層の膜性能を保証した製造プロセスを提供することができる。
 なお、本実施形態では、2層を対象にしているが3層以上の構造体であってもそれぞれの2層間で形成されるミキシング層厚以上のインク層厚を確保すればよい。
 以上説明したように、本実施形態によれば、改質工程なしにインクを重ね印刷した際に発生するミキシング層による膜質低下を防ぎ、各層の材料が安定した性能を発揮することができる。
 以上、添付図面を参照しながら本発明に係るパターン形成方法及び該パターン形成方法を用いた電子デバイスの好適な実施形態について詳細に説明した。しかしながら、本発明に係るパターン形成方法及び該パターン形成方法を用いた電子デバイスの技術的範囲はかかる例に限定されない。本発明に係るパターン形成方法及び該パターン形成方法を用いた電子デバイスの技術分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範囲で各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明に係るパターン形成方法及び該パターン形成方法を用いた電子デバイスの技術的範囲に属する。また、上記実施形態及び変形例が複数存在する場合、矛盾しない範囲で組み合わせることができる。
 例えば、上記実施形態によるTFT作製では、基板上にまずゲート層を反転印刷し、ゲート絶縁膜塗布後、ゲート絶縁膜上にソース-ドレイン層を反転印刷したが、これに限られず、ゲート層とソース-ドレイン層の配置を逆にしてもよい。つまり、基板上にまずソース-ドレイン層を反転印刷し、その後ゲート絶縁膜上にゲート層を反転印刷してTFTを作製してもよい。
 また、上記実施形態に係るインク材料の印刷を用いた電子デバイス用のパターン形成方法では、前記第1のインク材料パターンとしてのゲート層、前記絶縁材料及び前記第2のインク材料パターンとしてのソース-ドレイン層は、基板上に形成された。しかし、本発明に係る電子デバイス用のパターン形成方法は、TFTを作製するためだけでなく、例えば配線層等、前記第1のインク材料パターンとしてのメタル層、前記絶縁材料及び前記第2のインク材料パターンとしてのメタル層の積層構造を有する電子デバイス用のパターン作製に全般的に用いることができる。よって、本発明のパターン形成方法を用いて作製される電子デバイスは、有機TFTに限られず、前記第1のインク材料パターンとしてのメタル層、前記絶縁材料及び前記第2のインク材料パターンとしてのメタル層の積層構造を有するすべての電子デバイスが含まれ、そのようなすべての電子デバイスに本発明のパターン形成方法を適用することができる。
 上記各実施形態に係るパターン形成方法では、ゲート層10、ゲート絶縁層20、ソース-ドレイン層30,40、半導体層50、パシベーション層60及びビア及び画素電極層70の6層を一体焼成したが、本発明に係るパターン形成方法はこれに限られない。例えば、本発明に係るパターン形成方法は、ゲート層10、ゲート絶縁層20、及びソース-ドレイン層30,40の3層を一体焼成してもよく、前記3層に半導体層50を加えた4層を一体焼成してもよく、前記4層にパシベーション層60を加えた5層を一体焼成してもよい。いずれの場合にも工程数を削減できる。
 ただし、半導体層50を印刷する前に印刷した複数層を一体焼成する場合、パターン内の水分を除きながら半導体層50のパターンを形成することができ、水分吸収により半導体層50の性能の劣化が起こることを効果的に回避できる。
 複数層を一体焼成する場合、上記複数層の焼成条件のうち最も高温、長時間を要するインクの焼成条件で一体焼成を行う。例えば、ゲート層10、ゲート絶縁層20、ソース-ドレイン層30,40を一体焼成する場合、ゲート絶縁層を形成するためのPVPインクに合わせて、180℃のオーブン内で60分間焼成する。その後、他の層を基板S上に印刷し、更に焼成することでTFTを作製することができる。
 なお、例えば、図5のステップS24のようなTFTの作製工程中の乾燥工程は、省いてもよい。これにより、プロセス時間の更なる短縮を図ることができる。また、乾燥工程を省くかどうかは、材料によって定めることが好ましい。
 また、図5のステップS21のような基板搬入時の洗浄を行うことが望ましいが、その他のTFTの作製工程中の洗浄は省略することができる。また、半導体層50の前にドライ洗浄を行ってもよい。
 また、一体焼成は、複数層の焼成条件のうち最も高温、長時間を要するインクの焼成条件としたが、これに限定されない。温度や時間以外にも考慮する条件があれば、複数層の焼成条件のうち最も要求が高い条件に設定することが望ましい。また、上記の焼成条件で他のインク材料が劣化してしまう場合には、焼成条件を引き下げる等の変更を行うこともできる。例えば、180℃、60分間の焼成にて半導体インクの層が劣化する場合には、最高温度を150℃とし、焼成時間を75分に延長することにより、半導体インクへの熱負荷を低減して劣化を抑えるとともに、絶縁膜インクを完全に改質することができる。
 本国際出願は、2012年8月1日に出願された日本国特許出願2012-171401号に基づく優先権を主張するものであり、その全内容を本国際出願に援用する。
 1:反転印刷機、10:ゲート層、20:ゲート絶縁層、30:ソース層、40:ドレイン層、50:半導体層、60:パシベーション層、S:基板

Claims (19)

  1.  インク材料を用いた複数層の電子デバイス用パターンを、基板上に形成する方法であって、
     ゲート層用の第1のインク材料パターンを基板上に形成する第1のパターン形成工程と、
     ソース-ドレイン層用の第2のインク材料パターンを基板上に形成する第2のパターン形成工程と、
     半導体層用の第3のインク材料パターンを基板上に形成する第3のパターン形成工程と、
     前記第1のインク材料パターンと前記第2のインク材料パターンとの間を絶縁する絶縁層を基板上に形成する絶縁層形成工程と、
     前記形成された各層を一体的に改質する改質工程と、
     を有することを特徴とするパターン形成方法。
  2.  パシベーション層用の第4のインク材料パターンを基板上に形成する第4のパターン形成工程を更に有し、
     前記改質工程は、
     前記形成された各層を一体的に改質する、
     ことを特徴とする請求項1に記載のパターン形成方法。
  3.  ビア及び画素電極層用の第5のインク材料パターンを基板上に形成する第5のパターン形成工程を更に有し、
     前記改質工程は、
     前記形成された各層を一体的に改質する、
     ことを特徴とする請求項1に記載のパターン形成方法。
  4.  前記第5のパターン形成工程は、
     前記第5のインク材料パターンを、空気より透過係数の大きなガス雰囲気中で基板上に形成する、
     ことを特徴とする請求項3に記載のパターン形成方法。
  5.  前記第1~第3のパターン形成工程のいずれかと前記絶縁層形成工程とを1つの工程として、前記第1~第3のインク材料パターンのいずれかと前記絶縁層とを積層した積層膜を基板に一体形成する、
     ことを特徴とする請求項1に記載のパターン形成方法。
  6.  前記形成された各層のうち、隣接する2層間に生じるミキシング層の厚さよりも前記隣接する層のそれぞれの厚さを大きくする、
     ことを特徴とする請求項1に記載のパターン形成方法。
  7.  インク材料の印刷を用いて電子デバイス用パターンを形成する方法であって、
     メタル層を形成するための第1のインク材料パターンを印刷する第1のパターン形成工程と、
     前記第1のパターン形成工程後、絶縁材料を塗布する塗布工程と、
     前記塗布工程後、前記印刷された第1のインク材料パターンの位置に応じた位置に、メタル層を形成するための第2のインク材料パターンを印刷する第2のパターン形成工程と、
     前記第2のパターン形成工程後、前記第1のインク材料パターン、前記絶縁材料及び前記第2のインク材料パターンを一体的に改質する改質工程と、
     を含むことを特徴とするパターン形成方法。
  8.  前記塗布工程後であって前記第2のパターン形成工程前に、前記塗布された絶縁材料を熱乾燥手段、自然乾燥手段、光乾燥手段又は荷電粒子乾燥手段の少なくともいずれかの手段により乾燥させる乾燥工程を更に含むことを特徴とする請求項7に記載のパターン形成方法。
  9.  前記第1のインク材料パターン、前記絶縁材料及び前記第2のインク材料パターンは、
    基板上に形成されることを特徴とする請求項7に記載のパターン形成方法。
  10.  前記第1のパターン形成工程及び前記第2のパターン形成工程では、反転印刷法により前記第1のインク材料パターン及び前記第2のインク材料パターンが印刷されることを特徴とする請求項7に記載のパターン形成方法。
  11.  前記改質工程は、前記第1のインク材料パターン、前記絶縁材料及び前記第2のインク材料パターンのうち最も改質しにくい材料の改質条件に基づき、一体的に焼成する請求項7に記載のパターン形成方法。
  12.  前記第1のインク材料パターン及び前記第2のインク材料パターンのインク材料は、1ミクロン又は1ミクロン未満のナノ材料を含む材料から構成される請求項7に記載のパターン形成方法。
  13.  前記塗布工程は、スピンコート法あるいはスリットノズルコート法により絶縁材料を塗布し、絶縁層を形成する請求項7に記載のパターン形成方法。
  14.  前記改質工程は、熱平衡加熱法により前記第1のインク材料パターン、前記絶縁材料及び前記第2のインク材料パターンを焼成する請求項11に記載のパターン形成方法。
  15.  前記改質工程及び前記乾燥工程以外の工程では、前記第1のインク材料パターン、前記絶縁材料及び前記第2のインク材料パターンを加熱及び乾燥しない請求項8に記載のパターン形成方法。
  16.  メタル層を形成するために第1のインク材料パターンを印刷する第1のパターン形成工程と、
     前記第1のパターン形成工程後、絶縁材料を塗布する塗布工程と、
     前記塗布工程後、前記印刷された第1のインク材料パターンの位置に応じた位置に、メタル層を形成するための第2のインク材料パターンを印刷する第2のパターン形成工程と、
     前記第2のパターン形成工程後、前記第1のインク材料パターン、前記絶縁材料及び前記第2のインク材料パターンを一体的に改質する改質工程と、
     を含むパターン形成方法を用いて作製された電子デバイス。
  17.  インク材料の印刷を用いて電子デバイス用パターンを形成するパターン形成装置であって、
     メタル層を形成するための第1のインク材料パターンを印刷する第1のパターン形成ステップと、
     前記第1のパターン形成ステップ後、絶縁材料を塗布する塗布ステップと、
     前記塗布ステップ後、前記印刷された第1のインク材料パターンの位置に応じた位置に、メタル層を形成するための第2のインク材料パターンを印刷する第2のパターン形成ステップと、
     前記第2のパターン形成工程後、前記第1のインク材料パターン、前記絶縁材料及び前記第2のインク材料パターンを一体的に改質する改質ステップと、
     を含むステップにより電子デバイス用パターンを形成することを特徴とするパターン形成装置。
  18.  請求項1に記載のパターン形成方法を用いて形成されたTFTアレイ。
  19.  前記基板は、可撓性フィルム基板であること特徴とする請求項1に記載のパターン形成方法。
PCT/JP2013/070888 2012-08-01 2013-08-01 電子デバイス用のパターン形成方法、電子デバイス及びパターン形成装置 WO2014021423A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014528219A JPWO2014021423A1 (ja) 2012-08-01 2013-08-01 電子デバイス用のパターン形成方法、電子デバイス及びパターン形成装置
KR20157002449A KR20150037929A (ko) 2012-08-01 2013-08-01 전자 디바이스용 패턴 형성 방법, 전자 디바이스 및 패턴 형성 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012171401 2012-08-01
JP2012-171401 2012-08-01

Publications (1)

Publication Number Publication Date
WO2014021423A1 true WO2014021423A1 (ja) 2014-02-06

Family

ID=50028090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/070888 WO2014021423A1 (ja) 2012-08-01 2013-08-01 電子デバイス用のパターン形成方法、電子デバイス及びパターン形成装置

Country Status (4)

Country Link
JP (1) JPWO2014021423A1 (ja)
KR (1) KR20150037929A (ja)
TW (1) TW201417191A (ja)
WO (1) WO2014021423A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015198176A (ja) * 2014-04-01 2015-11-09 東洋紡株式会社 フレキシブル電子デバイスの製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6593336B2 (ja) * 2014-08-26 2019-10-23 株式会社ニコン デバイス製造方法
US10042251B2 (en) * 2016-09-30 2018-08-07 Rohm And Haas Electronic Materials Llc Zwitterionic photo-destroyable quenchers

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273712A (ja) * 2006-03-31 2007-10-18 Dainippon Ink & Chem Inc 電子部品の製造方法
JP2009239033A (ja) * 2008-03-27 2009-10-15 Toppan Printing Co Ltd 有機薄膜トランジスタまたは/および有機薄膜トランジスタアレイの製造方法と有機薄膜トランジスタ、有機薄膜トランジスタアレイ
JP2010541255A (ja) * 2007-10-01 2010-12-24 コヴィオ インコーポレイテッド 輪郭設計された薄膜デバイス及び構造体
WO2011001499A1 (ja) * 2009-06-30 2011-01-06 Dic株式会社 電子部品の製造方法および該方法で製造された電子部品

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010047391A1 (ja) * 2008-10-23 2010-04-29 三菱化学株式会社 熱線反射膜及びその積層体ならびに熱線反射層形成用塗布液
JP5618524B2 (ja) * 2009-11-18 2014-11-05 公益財団法人九州先端科学技術研究所 デバイス、薄膜トランジスタおよびその製造方法
JP5754126B2 (ja) * 2009-12-21 2015-07-29 三菱化学株式会社 有機半導体用混合物、並びに、有機電子デバイスの作製方法及び有機電子デバイス
JP2011187558A (ja) * 2010-03-05 2011-09-22 Adeka Corp 有機薄膜トランジスタ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273712A (ja) * 2006-03-31 2007-10-18 Dainippon Ink & Chem Inc 電子部品の製造方法
JP2010541255A (ja) * 2007-10-01 2010-12-24 コヴィオ インコーポレイテッド 輪郭設計された薄膜デバイス及び構造体
JP2009239033A (ja) * 2008-03-27 2009-10-15 Toppan Printing Co Ltd 有機薄膜トランジスタまたは/および有機薄膜トランジスタアレイの製造方法と有機薄膜トランジスタ、有機薄膜トランジスタアレイ
WO2011001499A1 (ja) * 2009-06-30 2011-01-06 Dic株式会社 電子部品の製造方法および該方法で製造された電子部品

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015198176A (ja) * 2014-04-01 2015-11-09 東洋紡株式会社 フレキシブル電子デバイスの製造方法

Also Published As

Publication number Publication date
JPWO2014021423A1 (ja) 2016-07-21
KR20150037929A (ko) 2015-04-08
TW201417191A (zh) 2014-05-01

Similar Documents

Publication Publication Date Title
KR100820170B1 (ko) 플렉시블 기판의 적층 방법
WO2010038963A2 (ko) 계층화 구조물 제조 장치
WO2015050320A1 (ko) 광투과도가 우수한 전극, 이의 제조방법 및 이를 포함하는 전자소자
US8253137B2 (en) Laminate structure, electronic device, and display device
WO2011001499A1 (ja) 電子部品の製造方法および該方法で製造された電子部品
WO2014021423A1 (ja) 電子デバイス用のパターン形成方法、電子デバイス及びパターン形成装置
KR20070092663A (ko) 뱅크 구조물로의 재료의 잉크-젯 인쇄에 의한 장치의 제조및 엠보싱 툴
WO2014185755A1 (ko) 투명전극 필름의 제조방법
JP5565038B2 (ja) 電界効果型トランジスタ及びその製造方法並びに画像表示装置
WO2019225940A1 (ko) 스트레쳐블 디스플레이 및 그 제조방법
WO2016024823A1 (ko) 직교 패터닝 방법
JP5018368B2 (ja) 印刷方法
WO2011046254A1 (ko) 음료 및 식품 용기 적층용 대전방지 시트 및 이의 제조 방법
JP4760844B2 (ja) 電子部品の製造方法および該方法で製造された電子部品
WO2016085029A1 (ko) 롤대롤 그라비아 인쇄기반 박막트랜지스터 제조방법, 박막트랜지스터 백플랜 제조방법, 백플랜 압력센서 및 스마트 장판의 제조방법
JP2008207526A (ja) 印刷方法及び印刷装置
JP6393936B2 (ja) 薄膜トランジスタ、トランジスタアレイ、薄膜トランジスタの製造方法及びトランジスタアレイの製造方法
JP4857859B2 (ja) 印刷方法および薄膜トランジスタの製造方法
Koutake et al. Reverse offset printing and specialized inks for organic TFTs
TWI469224B (zh) 有機薄膜電晶體及其製造方法
WO2015046741A1 (ko) 도너 필름용 광경화성 수지 조성물 및 도너 필름
WO2015046740A1 (ko) 도너 필름용 광경화성 수지 조성물 및 도너 필름
WO2021182711A1 (ko) 투명 유연성 박막 및 이의 제조 방법
JP2008155449A (ja) 印刷方法
WO2018149000A1 (zh) 薄膜晶体管的制备方法、显示面板的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13825283

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014528219

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20157002449

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13825283

Country of ref document: EP

Kind code of ref document: A1