WO2016024457A1 - アルコキシシラン変性ポリアミド酸溶液、それを用いた積層体及びフレキシブルデバイス、並びに積層体の製造方法 - Google Patents

アルコキシシラン変性ポリアミド酸溶液、それを用いた積層体及びフレキシブルデバイス、並びに積層体の製造方法 Download PDF

Info

Publication number
WO2016024457A1
WO2016024457A1 PCT/JP2015/070250 JP2015070250W WO2016024457A1 WO 2016024457 A1 WO2016024457 A1 WO 2016024457A1 JP 2015070250 W JP2015070250 W JP 2015070250W WO 2016024457 A1 WO2016024457 A1 WO 2016024457A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyamic acid
alkoxysilane
acid solution
polyimide film
modified
Prior art date
Application number
PCT/JP2015/070250
Other languages
English (en)
French (fr)
Inventor
隆宏 秋永
滝口 友輝
伸二 小澤
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to CN201580043148.6A priority Critical patent/CN106574051A/zh
Priority to US15/502,706 priority patent/US10308767B2/en
Priority to JP2016542526A priority patent/JP6807231B2/ja
Priority to KR1020177006001A priority patent/KR102294065B1/ko
Publication of WO2016024457A1 publication Critical patent/WO2016024457A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • C08G73/101Preparatory processes from tetracarboxylic acids or derivatives and diamines containing chain terminating or branching agents
    • C08G73/1017Preparatory processes from tetracarboxylic acids or derivatives and diamines containing chain terminating or branching agents in the form of (mono)amine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • C08G73/1028Preparatory processes from tetracarboxylic acids or derivatives and diamines characterised by the process itself, e.g. steps, continuous
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • C08G73/1028Preparatory processes from tetracarboxylic acids or derivatives and diamines characterised by the process itself, e.g. steps, continuous
    • C08G73/1032Preparatory processes from tetracarboxylic acids or derivatives and diamines characterised by the process itself, e.g. steps, continuous characterised by the solvent(s) used
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0326Organic insulating material consisting of one material containing O
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/032Organic insulating material consisting of one material
    • H05K1/0346Organic insulating material consisting of one material containing N
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/036Multilayers with layers of different types
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0393Flexible materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0011Working of insulating substrates or insulating layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/007Manufacture or processing of a substrate for a printed circuit board supported by a temporary or sacrificial carrier
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4673Application methods or materials of intermediate insulating layers not specially adapted to any one of the previous methods of adding a circuit layer
    • H05K3/4676Single layer compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0306Inorganic insulating substrates, e.g. ceramic, glass
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0154Polyimide
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0162Silicon containing polymer, e.g. silicone
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/02Details related to mechanical or acoustic processing, e.g. drilling, punching, cutting, using ultrasound
    • H05K2203/0264Peeling insulating layer, e.g. foil, or separating mask

Definitions

  • the present invention relates to an alkoxysilane-modified polyamide acid solution, a laminate and a flexible device using the alkoxysilane-modified polyamide acid solution, and a method for producing the laminate.
  • glass substrates are mainly used as substrates in the field of electronic devices such as flat panel displays and electronic paper.
  • a glass substrate is not necessarily an ideal substrate because it is heavy and fragile. Therefore, studies have been actively conducted to realize a flexible device in which the substrate is replaced with a substrate made of a polymer material from a glass substrate.
  • many of the techniques for producing these flexible devices require new production techniques and equipment. Therefore, flexible devices using polymer materials have not been mass-produced.
  • Non-Patent Document 1 In the process using this laminate, the polyimide resin layer is separated from the glass substrate at the final stage to obtain a flexible device.
  • the laminate is required to have smoothness and low warpage for good handling. That is, the polyimide resin layer of the laminate needs to have a linear expansion coefficient comparable to that of glass.
  • soda lime glass and non-alkali glass are used as the material of the glass substrate.
  • the linear expansion coefficient of soda lime glass is about 8 to 9 ppm / ° C.
  • the linear expansion coefficient of alkali-free glass is about 3 to 5 ppm / ° C.
  • the process temperature at the time of manufacturing an amorphous silicon thin film transistor reaches 300 to 350 ° C. at the maximum. Since the coefficient of linear expansion of general polyimide is larger than that of glass, materials suitable for such a process are naturally limited.
  • Patent Document 1 discloses a polyimide precursor obtained from 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and paraphenylenediamine or 4,4 ′′ diaminoparaterphenyl on an inorganic substrate.
  • a polyimide precursor having a specific structure is formed into a film on an inorganic substrate and further heated at a certain rate.
  • the polyimide film may be peeled off from the substrate when heat imidization is carried out by using a surface treatment of the inorganic substrate for the purpose of improving the adhesion between the polyimide and the inorganic substrate (Non-patent Document 2), polyimide A silane coupling agent having an amino group or an acid anhydride group is added to the precursor solution (Patent Documents 2 and 3).
  • Japanese Patent Publication Japanese Patent Laid-Open No. 2012-35583 (Released on February 23, 2012)” Japanese Published Patent Publication "Japanese Patent Laid-Open No. 63-302069 (published on December 8, 1988)” Japanese Patent Gazette “Patent No. 2551214 (Registered on August 22, 1996)”
  • Patent Document 1 When a polyimide precursor having a specific structure exhibiting a low linear expansion coefficient as shown in Patent Document 1 is formed into a polyimide film on an inorganic substrate, it is heated and imidized by a temperature increase at a certain rate or more. There was a problem that the polyimide film peeled off. In general, the thicker the film before imidization, the easier it is to peel off. Therefore, when producing a laminate of a thick polyimide film and a glass substrate, it is difficult to increase productivity. Moreover, when using a polyamic acid as a polyimide precursor, since the viscosity change at the time of storing at normal temperature is large, it was necessary to store it refrigerated.
  • the present invention has been made in view of the above background, and can be suitably used for the production of a polyamic acid solution that can be formed without peeling even with a thick film and can be stably stored at room temperature, and a flexible device. It is an object of the present invention to provide a laminate of a polyimide film and an inorganic substrate, specifically a laminate of a polyimide film and an inorganic substrate having a linear expansion coefficient of 1 to 10 ppm / ° C.
  • the alkoxysilane-modified polyamic acid solution according to the present invention is an alkoxysilane-modified polyamic acid solution obtained by reacting an aminosilane-containing alkoxysilane compound and a polyamic acid in the solution, and the polyamic acid is an aromatic diamine.
  • aromatic tetracarboxylic dianhydride in a solvent, and the molar ratio obtained by dividing the total number of moles of aromatic tetracarboxylic dianhydride by the total number of moles of aromatic diamine is 0.
  • the addition amount of the alkoxysilane compound exceeds 0.050 part by weight when the amount of the polyamic acid contained in the alkoxysilane-modified polyamic acid solution is 100 parts by weight. And less than 0.100 parts by weight.
  • the water content of the alkoxysilane-modified polyamic acid solution may be 500 ppm or more and 3000 ppm or less.
  • the aromatic tetracarboxylic dianhydride is 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride
  • the aromatic diamine is represented by the following formula ( The aromatic diamine represented by 1) may be used.
  • the main component of the solvent may be an amide solvent.
  • the method for producing a laminate according to the present invention includes a polyimide film obtained from the alkoxysilane-modified polyamic acid solution by casting the alkoxysilane-modified polyamic acid solution according to the present invention on an inorganic substrate and thermal imidization. Includes a step of obtaining a laminate laminated on the inorganic substrate.
  • the method for manufacturing a flexible device according to the present invention includes a step of forming an electronic element on a polyimide film in the laminate obtained by the method for manufacturing a laminate according to the present invention, and a polyimide film on which the electronic element is formed. And a step of peeling from the inorganic substrate.
  • a laminate according to the present invention is a laminate having a polyimide film obtained from the alkoxysilane-modified polyamic acid solution according to the present invention and an inorganic substrate on which the polyimide film is laminated, and the linear expansion coefficient of the polyimide film Is 1 to 10 ppm / ° C.
  • the inorganic substrate may have a thickness of 0.4 to 5.0 mm, and the polyimide film may have a thickness of 10 to 50 ⁇ m.
  • the flexible device according to the present invention is characterized by having a polyimide film obtained from the alkoxysilane-modified polyamic acid solution according to the present invention and an electronic element formed on the polyimide film.
  • the method for producing an alkoxysilane-modified polyamic acid solution comprises a step of obtaining a polyamic acid by reacting an aromatic diamine and an aromatic tetracarboxylic dianhydride in a solvent, and an alkoxysilane containing an amino group. And a step of reacting the compound with the polyamic acid in a solution to obtain an alkoxysilane-modified polyamic acid solution, and the total number of moles of the aromatic tetracarboxylic dianhydride is calculated based on the total number of aromatic diamines.
  • the molar ratio divided by the number of moles is 0.980 or more and 0.9995 or less, and the addition amount of the alkoxysilane compound is 100 parts by weight of the polyamic acid contained in the alkoxysilane-modified polyamic acid solution. In some cases, it is more than 0.050 part by weight and less than 0.100 part by weight.
  • an alkoxysilane-modified polyamic acid solution prepared so that most of the terminal ends of the polyamic acid are amino groups is likely to generate an amide bond when decomposition occurs. For this reason, the molecular weight of the alkoxysilane-modified polyamic acid solution is less likely to change, and the viscosity change during varnish storage can be suppressed.
  • the alkoxysilane-modified polyamic acid solution (hereinafter also simply referred to as “solution”) of the present invention can be obtained by reacting an alkoxysilane compound containing an amino group and polyamic acid in a solution.
  • Polyamic acid can be obtained by reacting aromatic diamine and aromatic tetracarboxylic dianhydride in a solvent.
  • the modification with the aminosilane-containing alkoxysilane compound is performed by adding the aminosilane-containing alkoxysilane compound to the polyamic acid solution in which the polyamic acid is dissolved in a solvent, and reacting the aminosilane-containing alkoxysilane compound with the polyamic acid. Is done.
  • alkoxysilane compound containing an amino group examples include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-aminopropylmethyldimethoxysilane, 3-aminopropylmethyldiethoxysilane, 3- (2-amino And ethyl) aminopropyltrimethoxysilane, 3-phenylaminopropyltrimethoxysilane, 2-aminophenyltrimethoxysilane, and 3-aminophenyltrimethoxysilane.
  • the alkoxysilane compound containing a primary amino group is preferable.
  • the alkoxysilane compound containing an amino group is an alkoxysilane compound containing a primary amino group, it can react suitably with polyamic acid.
  • the mixing ratio of these alkoxysilane compounds containing amino groups to 100 parts by weight of polyamic acid is more than 0.050 parts by weight and less than 0.100 parts by weight.
  • the compounding ratio of the alkoxysilane compound containing an amino group to 100 parts by weight of the polyamic acid is more than 0.050 parts by weight and not more than 0.099 parts by weight, 0.050. More preferably, it is more than 0.095 parts by weight and more than 0.050 parts by weight and less than 0.090 parts by weight.
  • the lower limit of the mixing ratio of the alkoxysilane compound containing an amino group to 100 parts by weight of the polyamic acid may be 0.051 part by weight or more, 0.055 part by weight or more, and It may be 060 parts by weight or more.
  • the compounding ratio of the alkoxysilane compound containing an amino group exceeds 0.050 part by weight, the effect of suppressing the peeling of the polyimide film from the inorganic substrate is sufficiently exhibited.
  • the blending ratio of the alkoxysilane compound containing an amino group is less than 0.100 parts by weight, the molecular weight of the polyamic acid is sufficiently maintained, and problems such as embrittlement of the polyimide film do not occur. Furthermore, when it is less than 0.100 parts by weight, the change in viscosity after addition of the alkoxysilane compound is also reduced.
  • the unreacted components gradually react with the polyamic acid to reduce the viscosity of the polyamic acid solution, or the polycondensation between alkoxysilanes causes the polyamic acid solution to gel.
  • the amount of aminosilane-containing alkoxysilane compound By suppressing the amount of aminosilane-containing alkoxysilane compound to the minimum necessary, while preventing the polyimide film from peeling from the inorganic substrate, it suppresses extra side reactions such as viscosity reduction and gelation during varnish storage. can do.
  • the reaction temperature is preferably 0 ° C. or higher and 80 ° C. or lower, more preferably 20 ° C. or higher and 60 ° C. or lower, since the modification reaction easily proceeds while suppressing the reaction between the acid anhydride group and water. preferable.
  • the modification reaction is slow because the acid dianhydride concentration is small, and if the reaction temperature is low, it may take about 5 days for the viscosity to become constant.
  • the viscosity change with time is recorded for each reaction temperature, and an appropriate reaction temperature may be selected.
  • aromatic tetracarboxylic dianhydride mainly 3,3 ′, 4,4′-biphenyltetra Carboxylic dianhydride (hereinafter sometimes abbreviated as BPDA) is preferably used
  • aromatic diamine an aromatic diamine represented mainly by the following formula (1) is preferably used.
  • the aromatic diamine of the formula (1) is paraphenylenediamine (hereinafter sometimes abbreviated as PDA), 4,4′-diaminobenzidine, and 4,4 ′′ -diaminoparaterphenyl (hereinafter abbreviated as DATP).
  • PDA paraphenylenediamine
  • DATP 4,4 ′′ -diaminoparaterphenyl
  • PDA and DATP are preferable because of their availability.
  • the aromatic tetracarboxylic dianhydride is preferably 3,3 ', 4,4'-biphenyltetracarboxylic dianhydride.
  • aromatic diamines other than PDA, 4,4′-diaminobenzidine, and DATP may be used as long as the characteristics of the present invention are not impaired, or 3,3 ′, 4,4′-biphenyltetracarboxylic acid.
  • Aromatic tetracarboxylic dianhydrides other than dianhydrides may be used.
  • the following aromatic tetracarboxylic dianhydrides and / or aromatic diamines may be used in an amount of 5 mol% or less based on the total amount of the polyamic acid raw material.
  • Aromatic tetracarboxylic dianhydrides include pyromellitic dianhydride, 3,3 ′, 4,4′-benzophenone tetracarboxylic dianhydride, 2,3,3 ′, 4′-biphenyltetracarboxylic acid Dianhydride, 3,3 ′, 4,4′-diphenylsulfonetetracarboxylic dianhydride, 1,4,5,8-naphthalenetetracarboxylic dianhydride, 2,3,6,7-naphthalenetetracarboxylic Acid dianhydride, 1,2,5,6-naphthalenetetracarboxylic dianhydride, 4,4′-oxydiphthalic anhydride, 9,9-bis (3,4-dicarboxyphenyl) fluorene dianhydride, 9,9′-bis [4- (3,4-dicarboxyphenoxy) phenyl] fluorene dianhydride, 3,3 ′, 4,4′-bi
  • Aromatic diamines include 4,4′-diaminodiphenyl ether, 3,4′-diaminodiphenyl ether, 4,4′-diaminodiphenyl sulfone, 1,5- (4-aminophenoxy) pentane, 1,3-bis (4 -Aminophenoxy) -2,2-dimethylpropane, 2,2-bis (4-aminophenoxyphenyl) propane, bis [4- (4-aminophenoxy) phenyl] sulfone and bis [4- (3-aminophenoxy) Phenyl] sulfone and the like.
  • the polyamic acid used in the present invention can be produced by solution polymerization. That is, one or more aromatic tetracarboxylic dianhydrides as raw materials and one or more aromatic diamines are used so that the molar ratio of the aromatic diamine is higher than that of the carboxyl group. Then, it is polymerized in an organic polar solvent to obtain a polyamic acid solution which is a polyimide precursor.
  • the molar ratio obtained by dividing the total number of moles of aromatic tetracarboxylic dianhydride by the total number of moles of aromatic diamine is preferably 0.980 or more and 0.9995 or less, more preferably 0.995 or more and 0.0. 998 or less.
  • the molar ratio is preferably 0.980 or more and 0.9995 or less, more preferably 0.995 or more and 0.0. 998 or less.
  • the molar ratio is 0.980 or more, a strong polyimide film having excellent tensile strength can be obtained.
  • the molar ratio should preferably be 0.998 or more to prepare for molecular weight reduction during storage or imidization.
  • the tensile strength is evaluated by a tensile property test method described in JIS K7127: 1999.
  • Preferred solvents for synthesizing the polyamic acid are amide solvents, that is, N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone and the like.
  • the main component of the solvent is preferably an amide solvent.
  • the amount of the amide solvent is preferably 50 to 100 parts by weight, and more preferably 70 to 100 parts by weight.
  • N, N-dimethylacetamide when used as the solvent, the storage stability of the polyamic acid is deteriorated and the linear expansion coefficient of the polyimide film is increased.
  • N-methyl-2-pyrrolidone when used as the solvent, the storage stability of the polyamic acid solution is high, and the linear expansion coefficient of the polyimide film is lower.
  • better characteristics can be obtained using N-methyl-2-pyrrolidone, but either one is not superior with respect to characteristics such as linear expansion coefficient.
  • N-methyl-2-pyrrolidone is used if the polyimide film is preferably harder, and N, N-dimethylacetamide is used if the polyimide film is softer.
  • a suitable solvent should be selected.
  • the reaction apparatus is preferably provided with a temperature adjusting device for controlling the reaction temperature.
  • the reaction temperature for polymerizing the polyamic acid is preferably 0 ° C. or higher and 80 ° C. or lower, and 20 ° C. or higher and 60 ° C. or lower suppresses dissociation of the amide bond, which is a reverse reaction of the polymerization, and further polyamic acid. It is preferable because the viscosity of
  • heat treatment may be performed at about 70 to 90 ° C. for 1 to 24 hours for the purpose of adjusting the viscosity, that is, adjusting the molecular weight.
  • This is an operation conventionally referred to as cooking, and heat treatment promotes dissociation of amic acid and deactivation of acid dianhydride due to reaction with water in the system.
  • the purpose is to make the viscosity suitable for the operation. Since the unreacted aromatic tetracarboxylic dianhydride tends to be deactivated, it is preferable to carry out the polymerization reaction and cooking separately. However, the reaction temperature is set to 70 to 90 ° C. from the beginning and the polymerization reaction and cooking are performed. It is also possible to carry out all at once.
  • the polyamic acid dissolved in the organic solvent is preferably 5 to 30% by weight, more preferably 8 to 25% by weight, and 10 to 20%. More preferably, it is% by weight. If the weight% of the polyamic acid is in the above range, it is preferable because gelation due to abnormal polymerization of the undissolved raw material can be suppressed and the viscosity of the polyamic acid is likely to increase.
  • the water content in all the alkoxysilane-modified polyamic acid solutions so far is preferably 500 ppm to 3000 ppm, more preferably 500 ppm to 1000 ppm. It is preferable that the water content is 3000 ppm or less because the effect of improving storage stability by adjusting the molar ratio is sufficiently exhibited. In the case of 1000 ppm or less, it is more preferable because the viscosity change at the time of varnish storage can be suppressed by reducing the probability that the acid anhydride group generated by the decomposition of the amide bond in the polyamic acid molecule reacts with water to deactivate.
  • the water in the solution can be divided into raw material origin and work environment origin. There are various methods for reducing moisture, but it is not preferable to reduce moisture more than necessary by using an extra process or excess equipment because the cost increases. For example, since the water content of a commercially available amide solvent is about 500 ppm, an attempt to reduce the water content below that is not preferable because the cost increases.
  • the treatment may be performed under reduced pressure.
  • the preferred value of the molar ratio obtained by dividing the total number of moles of aromatic tetracarboxylic dianhydride by the total number of moles of aromatic diamine can also vary depending on the relationship with the water content of the alkoxysilane-modified polyamic acid solution.
  • the molar ratio is 0.00. It is preferably 9975 or less, and the water content is preferably 2500 ppm or less, more preferably the molar ratio is 0.9975 or less, and the water content is 2200 ppm or less. From the above viewpoint, the molar ratio is more preferably 0.9950 or less, and particularly preferably 0.9901 or less.
  • a laminate having a polyimide film and an inorganic substrate can be produced by casting the above-described alkoxysilane-modified polyamic acid solution on an inorganic substrate and thermal imidizing. It can be said that the laminate is a laminate in which a polyimide film obtained from an alkoxysilane-modified polyamic acid solution is laminated on an inorganic substrate.
  • the inorganic substrate examples include a glass substrate and various metal substrates, and a glass substrate is preferable.
  • a glass substrate As a material for the glass substrate, soda lime glass, borosilicate glass, non-alkali glass, or the like is used. In particular, since alkali-free glass is generally used in the thin film transistor manufacturing process, alkali-free glass is more preferable as the material for the inorganic substrate.
  • the thickness of the inorganic substrate used is preferably 0.4 to 5.0 mm. A thickness of the inorganic substrate of 0.4 mm or more is preferable because the inorganic substrate can be easily handled. Moreover, it is preferable if the inorganic substrate is 5.0 mm or less because the heat capacity of the inorganic substrate is reduced and the productivity in the heating or cooling process is improved.
  • a known method can be used.
  • known casting methods such as a gravure coating method, a spin coating method, a silk screen method, a dip coating method, a bar coating method, a knife coating method, a roll coating method, and a die coating method can be exemplified.
  • the above-mentioned reaction solution may be used as it is, but the solvent may be removed or added as necessary.
  • Solvents that can be used for the polyimide precursor solution include N, N-dimethylformamide, N, N-dimethylacetamide, and N-methyl-2-pyrrolidone, Examples include dimethyl sulfoxide, hexamethylphosphoric triamide (HMPA), acetonitrile, acetone, and tetrahydrofuran.
  • auxiliary solvents xylene, toluene, benzene, diethylene glycol ethyl ether, diethylene glycol dimethyl ether, 1,2-bis- (2-methoxyethoxy) ethane, bis (2-methoxyethyl) ether, butyl cellosolve, butyl cellosolve acetate, propylene glycol methyl Ether and propylene glycol methyl ether acetate may be used in combination.
  • An imidization catalyst and / or inorganic fine particles may be added to the polyimide precursor solution as necessary.
  • a tertiary amine is preferably used.
  • a heterocyclic tertiary amine is more preferable.
  • the heterocyclic tertiary amine include pyridine, 2,5-diethylpyridine, picoline, quinoline and isoquinoline.
  • the amount of the imidization catalyst used is preferably 0.01 to 2.00 equivalents, particularly 0.02 to 1.20 equivalents, based on the reaction site of the polyimide precursor (that is, alkoxysilane-modified polyamic acid).
  • the amount is 2.00 equivalents or less, the ratio of the catalyst not involved in the reaction is small, which is preferable in terms of cost.
  • the inorganic fine particles include inorganic oxide powders such as fine particle silicon dioxide (silica) powder and aluminum oxide powder, and inorganic salt powders such as fine particle calcium carbonate powder and calcium phosphate powder.
  • inorganic oxide powders such as fine particle silicon dioxide (silica) powder and aluminum oxide powder
  • inorganic salt powders such as fine particle calcium carbonate powder and calcium phosphate powder.
  • these inorganic fine particles are preferably dispersed uniformly.
  • Thermal imidation is a method in which the imidization reaction proceeds only by heating without the action of a dehydrating ring-closing agent or the like.
  • the heating temperature and heating time at this time can be determined as appropriate, and may be as follows, for example.
  • the heating atmosphere can be performed in air, under reduced pressure, or in an inert gas such as nitrogen.
  • well-known apparatuses such as a hot air oven, an infrared oven, a vacuum oven, or a hot plate, can be used.
  • heating is performed at a temperature of 200 to 500 ° C.
  • the heating conditions at this time are preferably gradually increased from a low temperature.
  • the maximum temperature is preferably in the range of 300 to 500 ° C.
  • a maximum temperature of 300 ° C. or higher is preferable because thermal imidization easily proceeds and the mechanical properties of the obtained polyimide film are improved.
  • a maximum temperature of 500 ° C. or lower is preferable because thermal degradation of polyimide does not proceed and characteristics do not deteriorate.
  • the polyimide film is naturally peeled off from the inorganic substrate during the heat treatment.
  • Cheap when an alkoxysilane-modified polyamic acid solution is used, natural peeling is suppressed, so that the process window can be greatly widened.
  • the thickness of the polyimide film is preferably 5 to 50 ⁇ m. If the thickness of a polyimide film is 5 micrometers or more, the mechanical strength required as a board
  • the thickness of the polyimide film is 5 ⁇ m or more, since sufficient mechanical strength necessary for the substrate film can be secured.
  • the thickness of the polyimide film is 50 ⁇ m or less, the above-described natural peeling or the like is suppressed, and it becomes easy to stably obtain a laminate.
  • the laminate obtained by the present invention is excellent in storage stability and process consistency, and can be suitably used for manufacturing a flexible device by a known thin film transistor process for liquid crystal panels.
  • a polyimide film having a linear expansion coefficient of 1 to 10 ppm / ° C. by casting a solution of a polyimide precursor on an inorganic substrate, thermal imidization, and selecting a specific structure for the polyamic acid skeleton And a laminate having an inorganic substrate can be obtained. And the flexible device which has the outstanding characteristic can be obtained by using this laminated body.
  • a flexible device having excellent characteristics can be obtained. That is, a flexible device can be obtained by forming an electronic element on the polyimide film of the laminate of the present invention and then peeling the polyimide film from the inorganic substrate. Further, the above process has an advantage that a production apparatus using an existing inorganic substrate can be used as it is, can be used effectively in the field of electronic devices such as flat panel displays and electronic paper, and is suitable for mass production.
  • a method for peeling the polyimide film from the inorganic substrate a known method can be used. For example, it may be peeled off by hand, or may be peeled off using a mechanical device such as a drive roll or a robot. Furthermore, a method of providing a release layer between the inorganic substrate and the polyimide film may be used. In addition, for example, a method in which a silicon oxide film is formed on an inorganic substrate having a large number of grooves and the substrate is separated by infiltrating an etching solution, and a method in which an amorphous silicon layer is provided on the inorganic substrate and separated by laser light. I can list them.
  • the polyimide film has excellent heat resistance and a low coefficient of linear expansion, and also has excellent characteristics such as not only excellent lightness and impact resistance but also improved warpage. is doing.
  • a flexible device with improved warping can be obtained by adopting a method in which a polyimide film having a low linear expansion coefficient equivalent to that of an inorganic substrate is directly cast and laminated on the inorganic substrate.
  • viscosity The viscosity was measured according to JIS K7117-2: 1999 using a viscometer RE-215 / U (manufactured by Toki Sangyo Co., Ltd.). The attached thermostat was set to 23.0 ° C., and the measurement temperature was always constant.
  • Linear expansion coefficient The linear expansion coefficient was evaluated by thermomechanical analysis by a tensile load method using TMA / SS120CU manufactured by SII Nano Technology.
  • the polyimide film of Example was peeled off from the glass substrate which is an inorganic substrate, and the sample of 10 mm x 3 mm was produced.
  • a 3.0 g load was applied to the long side of the sample and heated to 500 ° C. or higher to remove residual stress, and then heated again at a rate of temperature increase of 10 ° C./min.
  • the amount of change in strain of the sample per unit temperature in the range of 100 ° C. to 300 ° C. at this time was taken as the linear expansion coefficient.
  • the charged concentration of the aromatic diamine and aromatic tetracarboxylic dianhydride in this reaction solution is 15% by weight with respect to the total reaction solution, and the total number of moles of aromatic tetracarboxylic dianhydride is the aromatic.
  • the molar ratio divided by the total number of moles of diamine is 0.9975.
  • an alkoxysilane-modified polyamic acid solution having a viscosity of 13700 mPa ⁇ s at 23 ° C. and a water content of 1400 ppm was obtained.
  • the compounding ratio (addition amount) of the alkoxysilane compound ( ⁇ -APS) in this reaction is 0.050 part by weight with respect to 100 parts by weight of the polyamic acid.
  • the obtained solution was stored in a sealed glass bottle in an environment of 23 ° C. and 55% RH for one week, and the viscosity was measured again to be 12400 mPa ⁇ s ( ⁇ 9%).
  • the obtained alkoxysilane-modified polyamic acid solution is generally used as a glass substrate for FPD having a square of 150 mm on both sides and a thickness of 0.7 mm.
  • the polyimide film and the alkali-free glass plate have an appropriate peel strength and do not peel naturally during heating, but it was possible to peel the polyimide film from the alkali-free glass plate. It shows in Table 1 about the characteristic of the obtained polyimide film.
  • the charged concentration of aromatic diamine and aromatic tetracarboxylic dianhydride in this polyamic acid solution is 15% by weight with respect to the total reaction solution, and the total number of moles of aromatic tetracarboxylic dianhydride
  • the molar ratio divided by the total number of moles of the group diamine is 0.9950.
  • this polyamic acid solution was quickly cooled in a water bath, and the temperature of the polyamic acid solution was adjusted to about 50 ° C.
  • 7.50 g of 1% DMAc solution of ⁇ -APS was added to the polyamic acid solution and stirred. Since the viscosity did not change from 19100 mPa ⁇ s, the reaction was completed after 5 hours, and the polyamic acid solution was diluted with DMAc until the viscosity became easy to work. In this way, an alkoxysilane-modified polyamic acid solution having a viscosity of 13800 mPa ⁇ s at 23 ° C. and a water content of 1900 ppm was obtained.
  • the addition amount of (gamma) -APS in this reaction is 0.050 weight part with respect to 100 weight part of polyamic acids.
  • the laminated body of a 22-micrometer-thick polyimide film and an alkali free glass plate was able to be obtained similarly to the method of the reference example 1, without peeling naturally. It shows in Table 1 and Table 2 about the viscosity change at the time of storage, and the characteristic of a polyimide film.
  • the charged concentration of the aromatic diamine and aromatic tetracarboxylic dianhydride in this reaction solution is 15% by weight with respect to the total reaction solution, and the total number of moles of aromatic tetracarboxylic dianhydride is the aromatic.
  • the molar ratio divided by the total number of moles of diamine is 0.9991.
  • the reaction solution was quickly cooled in a water bath, and the temperature of the solution was adjusted to about 50 ° C. Next, 7.50 g of 1% DMAc solution of ⁇ -APS was added to the polyamic acid solution and stirred. Since the viscosity no longer changed, the reaction was completed in 3 hours, and the polyamic acid solution was diluted with DMAc until the viscosity became easy to work. In this way, an alkoxysilane-modified polyamic acid solution having a viscosity of 13500 mPa ⁇ s at 23 ° C. and a water content of 1500 ppm was obtained.
  • the addition amount of (gamma) -APS in this reaction is 0.050 weight part with respect to 100 weight part of polyamic acids.
  • the laminated body of the 20-micrometer-thick polyimide film and the alkali free glass plate was able to be obtained by the method similar to the method of the reference example 1.
  • the polyimide film and the alkali-free glass plate have an appropriate peel strength and do not peel naturally during heating, but it was possible to peel the polyimide film from the alkali-free glass plate. It shows in Table 1 and Table 2 about the viscosity change at the time of storage, and the characteristic of a polyimide film.
  • the charged concentration of the aromatic diamine and aromatic tetracarboxylic dianhydride in this reaction solution is 15% by weight with respect to the total reaction solution, and the total number of moles of aromatic tetracarboxylic dianhydride is the aromatic.
  • the molar ratio divided by the total number of moles of diamine is 0.9901.
  • the reaction solution was quickly cooled in a water bath, and the temperature of the solution was adjusted to about 50 ° C. Next, 7.50 g of 1% DMAc solution of ⁇ -APS was added to the polyamic acid solution and stirred. Since the viscosity no longer changed, the reaction was completed in 3 hours, and the polyamic acid solution was diluted with DMAc until the viscosity became easy to work. In this way, an alkoxysilane-modified polyamic acid solution having a viscosity of 13400 mPa ⁇ s at 23 ° C. and a water content of 1800 ppm was obtained.
  • the addition amount of (gamma) -APS in this reaction is 0.050 weight part with respect to 100 weight part of polyamic acids.
  • the laminated body of a 21-micrometer-thick polyimide film and an alkali free glass plate was able to be obtained by the method similar to the method of the reference example 1.
  • the polyimide film and the alkali-free glass plate have an appropriate peel strength and do not peel naturally during heating, but it was possible to peel the polyimide film from the alkali-free glass plate. It shows in Table 1 and Table 2 about the viscosity change at the time of storage, and the characteristic of a polyimide film.
  • the charged concentration of the aromatic diamine and aromatic tetracarboxylic dianhydride in this reaction solution is 15% by weight with respect to the total reaction solution, and the total number of moles of aromatic tetracarboxylic dianhydride is the aromatic.
  • the molar ratio divided by the total number of moles of diamine is 0.9801.
  • the reaction solution was quickly cooled in a water bath, and the temperature of the solution was adjusted to about 50 ° C.
  • 7.50 g of 1% DMAc solution of ⁇ -APS was added to the polyamic acid solution and stirred. Since the viscosity no longer changed, the reaction was completed in 2 hours. In this way, an alkoxysilane-modified polyamic acid solution having a viscosity of 6100 mPa ⁇ s at 23 ° C. and a moisture content of 2200 ppm was obtained.
  • the addition amount of (gamma) -APS in this reaction is 0.050 weight part with respect to 100 weight part of polyamic acids.
  • the laminated body of the 20-micrometer-thick polyimide film and the alkali free glass plate was able to be obtained by the method similar to the method of the reference example 1.
  • the polyimide film and the alkali-free glass plate have an appropriate peel strength and do not peel naturally during heating, but it was possible to peel the polyimide film from the alkali-free glass plate. It shows in Table 1 and Table 2 about the viscosity change at the time of storage, and the characteristic of a polyimide film.
  • Example 1 An alkoxysilane-modified polyamic acid solution was obtained in the same manner as in Reference Example 1 except that the addition amount of the 1% DMAc solution of ⁇ -APS was changed to 13.50 g. In addition, the addition amount of (gamma) -APS in this reaction is 0.090 weight part with respect to 100 weight part of polyamic acids. The resulting solution had a viscosity of 13500 mPa ⁇ s at 23 ° C. and a water content of 1700 ppm. Moreover, the laminated body of the 20-micrometer-thick polyimide film and the alkali free glass plate was able to be obtained like the method of the reference example 1, without peeling naturally. It shows in Table 1 and Table 2 about the viscosity change at the time of storage, and the characteristic of a polyimide film.
  • Example 2 An alkoxysilane-modified polyamic acid solution was obtained in the same manner as in Reference Example 1 except that the addition amount of the 1% DMAc solution of ⁇ -APS was changed to 8.25 g. In addition, the addition amount of (gamma) -APS in this reaction is 0.055 weight part with respect to 100 weight part of polyamic acids. The resulting solution had a viscosity of 13200 mPa ⁇ s at 23 ° C. and a water content of 1500 ppm. Moreover, the laminated body of the 20-micrometer-thick polyimide film and the alkali free glass plate was able to be obtained like the method of the reference example 1, without peeling naturally. It shows in Table 1 and Table 2 about the viscosity change at the time of storage, and the characteristic of a polyimide film.
  • the charged concentration of the aromatic diamine and aromatic tetracarboxylic dianhydride in this reaction solution is 15% by weight with respect to the total reaction solution, and the total number of moles of aromatic tetracarboxylic dianhydride is the aromatic.
  • the molar ratio divided by the total number of moles of diamine is 1.0070.
  • reaction solution was quickly cooled in a water bath, and the temperature of the solution was adjusted to about 50 ° C.
  • 7.50 g of 1% DMAc solution of ⁇ -APS was added to the polyamic acid solution and stirred. Since the viscosity did not change from 19100 mPa ⁇ s, the reaction was completed after 5 hours, and the polyamic acid solution was diluted with DMAc until the viscosity became easy to work. In this way, an alkoxysilane-modified polyamic acid solution having a viscosity of 13600 mPa ⁇ s at 23 ° C. and a water content of 1400 ppm was obtained.
  • the addition amount of (gamma) -APS in this reaction is 0.050 weight part with respect to 100 weight part of polyamic acids.
  • the laminated body of the polyimide film and the alkali free glass board was able to be obtained like the method of the reference example 1, without natural peeling. It shows in Table 1 and Table 2 about the viscosity change at the time of storage, and the characteristic of a polyimide film.
  • Comparative Example 3 To the solution obtained in Comparative Example 2, water corresponding to 0.1% by weight with respect to the solution was added. The resulting solution had a viscosity of 13300 mPa ⁇ s at 23 ° C. and a moisture content of 2600 ppm. Table 1 shows the change in viscosity during storage.
  • Comparative Example 4 To the solution obtained in Comparative Example 2, water corresponding to 0.3% by weight with respect to the solution was added. The resulting solution had a viscosity of 13300 mPa ⁇ s at 23 ° C. and a moisture content of 4800 ppm. Table 1 shows the change in viscosity during storage.
  • Table 2 shows the results of evaluating the adhesion and linear expansion coefficient of the polyimide films obtained from the respective solutions to the alkali-free glass plate.
  • adhesion when there is no gap between the polyimide film and the alkali-free glass plate and the polyimide film has a uniform appearance, there is a gap between the polyimide film and the alkali-free glass plate.
  • X when bubbles or the like are generated inside the polyimide film.
  • Reference Examples 7 and 8 have the same moisture content as Comparative Example 4, but the viscosity change rate is small.
  • Reference Examples 5 and 6 and Comparative Example 2 have a viscosity change rate of about 1400 ppm with respect to about 3000 ppm, and the viscosity change rate is about the same even though the water content is about twice as high.
  • A The value obtained by dividing the viscosity change rate by the viscosity change rate of the comparative example of the same level of water is 0.4 or less.
  • B The value obtained by dividing the viscosity change rate by the viscosity change rate of the comparative example of the same level of water. More than 0.4 and 0.5 or less
  • C The value obtained by dividing the viscosity change rate by the viscosity change rate of the comparative water sample is more than 0.5 and 0.6 or less.
  • D The viscosity change rate is the same.
  • the value divided by the viscosity change rate of the comparative example of water is greater than 0.6 and less than or equal to 0.7 E:
  • the value obtained by dividing the viscosity change rate by the viscosity change rate of the comparative example of the same moisture content is from 0.7 Large
  • the comprehensive evaluation of the comparative example is “ ⁇ ”, it indicates that the comparative example is a reference for comparison with the reference example and the example in the comprehensive evaluation.
  • a comparative example of the same level of water for a certain example or reference example (referred to as example ⁇ or reference example ⁇ ) means that, in Comparative Examples 2 to 4, Example ⁇ or Reference Example ⁇ This indicates a comparative example in which the absolute value of the difference in moisture is the smallest.
  • the absolute value of the water difference from Comparative Example 2 is 1900
  • the absolute value of the water difference from Comparative Example 3 is 700
  • the absolute value of the water difference from Comparative Example 4 is 1500. It is. Therefore, Reference Example 6 is evaluated by comparison with Comparative Example 3.
  • Reference Examples 1, 3, 9 and 10 were compared with Comparative Example 2 having the same level of moisture. Further, Reference Examples 2, 4 to 6 and 11 were compared with Comparative Example 3 having a similar moisture content. Reference Examples 7 and 8 were compared with Comparative Example 4 which has similar moisture.
  • the overall evaluation is A, B, or C.
  • the overall evaluation is A or B.
  • Examples 1 and 2 were compared with Comparative Example 2 having the same level of moisture.
  • the overall evaluation is A. This shows that the viscosity change rate can be suppressed when the addition amount of the alkoxysilane compound containing an amino group is more than 0.050 parts by weight and less than 0.100 parts by weight.
  • the polyimide films of Reference Examples 1 to 3 and 9 to 11 do not generate bubbles between the polyimide film and the alkali-free glass plate even with a dry thickness of about 20 ⁇ m, and are a laminate of the polyimide film and the alkali-free glass plate.
  • Bubbles are generated between the polyimide film and the alkali-free glass plate even with a dry thickness of about 20 ⁇ m, and a laminate of the polyimide film and the alkali-free glass plate can be obtained. There wasn't.
  • the polyimide films of Reference Examples 1 to 3, 9 to 11 and Comparative Example 2 did not curl or warp even after peeling from the alkali-free glass plate. This is because these polyimide films have a linear expansion coefficient of 6 to 8 ppm / ° C., which is close to the linear expansion coefficient of the alkali-free glass plate.
  • the polyimide films of Examples 1 and 2 do not generate bubbles between the polyimide film and the alkali-free glass plate even with a dry thickness of about 20 ⁇ m, and a laminate of the polyimide film and the alkali-free glass plate can be obtained. did it.
  • polyimide films of Examples 1 and 2 did not curl or warp even after peeling from the alkali-free glass plate. This is because these polyimide films have a linear expansion coefficient of 6 to 8 ppm / ° C., which is close to the linear expansion coefficient of the alkali-free glass plate.
  • a polyamic acid solution that can be formed without peeling even with a thick film and can be stably stored at room temperature, and a polyimide film and an inorganic substrate that can be suitably used for the production of flexible devices And a laminated body can be provided.
  • the present invention can be suitably used in the field of electronic devices such as flat panel displays and electronic paper.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Laminated Bodies (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

 厚膜でも剥離することなく製膜でき、室温で安定的に保管できるポリアミド酸溶液、及びフレキシブルデバイスの生産に好適に使用できる積層体を提供する。本発明に係るアルコキシシラン変性ポリアミド酸溶液は、アミノ基を含有するアルコキシシラン化合物の添加量が、0.050重量部を超えて0.100重量部未満である。

Description

アルコキシシラン変性ポリアミド酸溶液、それを用いた積層体及びフレキシブルデバイス、並びに積層体の製造方法
 本発明は、アルコキシシラン変性ポリアミド酸溶液、アルコキシシラン変性ポリアミド酸溶液を用いた積層体及びフレキシブルデバイス、並びに積層体の製造方法に関する。
 現在、フラットパネルディスプレイ及び電子ペーパーなどの電子デバイスの分野では、基板としては、主としてガラス基板が用いられている。しかし、ガラス基板は、重く壊れやすいという問題があるため、必ずしも理想的な基板と言えない。そこで、基板をガラス基板からポリマー材料製の基板へと置き換えたフレキシブルデバイスを実現しようとする検討が盛んに行われてきた。しかしながら、これらのフレキシブルデバイスを生産するための技術の多くは新しい生産技術や装置を必要とする。そのため、ポリマー材料を用いたフレキシブルデバイスは大量生産されるには至っていない。
 一方で、最近、効率的にフレキシブルデバイスを大量生産する近道として、ガラス基板上にポリイミド樹脂層を形成した積層体を用いることにより、通常のガラス基板用プロセスを用いてフレキシブルデバイスを生産することが提案されている(非特許文献1)。この積層体を用いるプロセスでは、最終段階でポリイミド樹脂層をガラス基板から分離してフレキシブルデバイスを得る。
 かかるプロセスにおいて積層体には、良好なハンドリングのための平滑性及び低反り性が求められる。すなわち、積層体のポリイミド樹脂層は、ガラスと同程度の線膨張係数を有する必要がある。尚、ガラス基板の材料として一般的にソーダライムガラス及び無アルカリガラスが使用されている。ソーダライムガラスの線膨張係数は8~9ppm/℃程度であり、無アルカリガラスの線膨張係数は3~5ppm/℃程度である。また、アモルファスシリコン薄膜トランジスタ製造時のプロセス温度は最高で300~350℃に達する。一般的なポリイミドの線膨張係数はガラスよりも大きいため、かかるプロセスに好適な材料は自然と限られたものになる。例えば、特許文献1には、無機基板上に、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物と、パラフェニレンジアミンまたは4,4”ジアミノパラテルフェニルとから得られるポリイミド前駆体の溶液を流延し、熱イミド化して積層体を得る方法が記載されている。一方で、特定構造のポリイミド前駆体は、無機基板上でフィルム化し、さらに一定以上の速度での昇温によって加熱イミド化させると、基板からポリイミドフィルムが剥離することがある。そのため、ポリイミドと無機基板との接着性を改善する目的で、無機基板の表面処理を行ったり(非特許文献2)、ポリイミド前駆体溶液にアミノ基または酸無水物基を有するシランカップリング剤を添加したりすることが行われる(特許文献2、3)。
日本国公開特許公報「特開2012-35583号(2012年2月23日公開)」 日本国公開特許公報「特開昭63-302069号(1988年12月8日公開)」 日本国特許公報「特許第2551214号(1996年8月22日登録)」
日経FPD2008vol.1 トレンド・戦略編、144~151頁、日経BP社(2008) シランカップリング剤の効果と使用法[新装版]、132~139頁、サイエンス&テクノロジー株式会社(2010)
 特許文献1に示される様な低い線膨張係数を示す特定構造のポリイミド前駆体は、無機基板上でポリイミドフィルムにする際に、一定以上の速度での昇温によって加熱イミド化させると、無機基板からポリイミドフィルムが剥離するという課題があった。一般にイミド化前のフィルムが厚いほど剥離は起こりやすくなるため、厚いポリイミドフィルムとガラス基板との積層体を作製する場合には生産性を上げにくい。また、ポリアミド酸をポリイミド前駆体として用いる場合には、常温で保管した際の粘度変化が大きいために、冷蔵保管する必要があった。
 これらの課題のうち、無機基板からの剥離に対しては、ポリイミドフィルムと無機基板との接着性を改善する目的で、無機基板の表面処理を行ったり、ポリイミド前駆体溶液にアミノ基または酸無水物基を有するシランカップリング剤を添加したりすることが提案されている。しかし、非特許文献2に示される様な無機基板の表面処理を行う方法には、工程が増えることによる生産性低下という課題がある。また、特許文献2、3に示される様なポリイミド前駆体溶液にシランカップリング剤を添加する方法では、多くの場合に、ポリイミド前駆体溶液の貯蔵安定性が損なわれるという課題がある。
 本発明は、上記の背景を鑑みてなされたものであり、厚膜でも剥離することなく製膜でき、且つ室温で安定的に保管できるポリアミド酸溶液、及びフレキシブルデバイスの生産に好適に用いることのできるポリイミドフィルムと無機基板との積層体、具体的には1~10ppm/℃の線膨張係数を有するポリイミドフィルムと無機基板との積層体を提供することを目的とする。
 本発明の構成を以下に示す。本発明に係るアルコキシシラン変性ポリアミド酸溶液は、アミノ基を含有するアルコキシシラン化合物とポリアミド酸とを溶液中で反応させることにより得られるアルコキシシラン変性ポリアミド酸溶液であり、ポリアミド酸は、芳香族ジアミンと芳香族テトラカルボン酸二無水物とを溶媒中で反応させることによって得られ、芳香族テトラカルボン酸二無水物の総モル数を、芳香族ジアミンの総モル数で除したモル比が、0.980以上0.9995以下であり、前記アルコキシシラン化合物の添加量は、前記アルコキシシラン変性ポリアミド酸溶液中に含まれるポリアミド酸の量を100重量部とした場合に、0.050重量部を超えて0.100重量部未満であることを特徴としている。
 本発明に係るアルコキシシラン変性ポリアミド酸溶液では、前記アルコキシシラン変性ポリアミド酸溶液の水分は、500ppm以上3000ppm以下であってもよい。
 本発明に係るアルコキシシラン変性ポリアミド酸溶液では、前記芳香族テトラカルボン酸二無水物が3,3’,4,4’-ビフェニルテトラカルボン酸二無水物であり、前記芳香族ジアミンが下記式(1)で表される芳香族ジアミンであってもよい。
Figure JPOXMLDOC01-appb-C000002
(式中nは、1~3の整数である)
 本発明に係るアルコキシシラン変性ポリアミド酸溶液では、前記溶媒の主成分がアミド系溶媒であってもよい。
 本発明に係る積層体の製造方法は、本発明に係るアルコキシシラン変性ポリアミド酸溶液を無機基板上に流延し、熱イミド化することによって、該アルコキシシラン変性ポリアミド酸溶液から得られたポリイミドフィルムが該無機基板上に積層された積層体を得る工程を含むことを特徴としている。
 本発明に係るフレキシブルデバイスの製造方法は、本発明に係る積層体の製造方法によって得られた積層体において、ポリイミドフィルム上に電子素子を形成する工程と、前記電子素子が形成されたポリイミドフィルムを無機基板より剥離する工程とを含むことを特徴としている。
 本発明に係る積層体は、本発明に係るアルコキシシラン変性ポリアミド酸溶液から得られるポリイミドフィルムと、該ポリイミドフィルムが積層された無機基板とを有する積層体であって、前記ポリイミドフィルムの線膨張係数が1~10ppm/℃であることを特徴としている。
 本発明に係る積層体では、前記無機基板の厚みが、0.4~5.0mmであり、前記ポリイミドフィルムの厚みが、10~50μmであってもよい。
 本発明に係るフレキシブルデバイスは、本発明に係るアルコキシシラン変性ポリアミド酸溶液から得られるポリイミドフィルムと、該ポリイミドフィルム上に形成された電子素子とを有することを特徴としている。
 本発明に係るアルコキシシラン変性ポリアミド酸溶液の製造方法は、芳香族ジアミンと芳香族テトラカルボン酸二無水物とを溶媒中で反応させることによりポリアミド酸を得る工程と、アミノ基を含有するアルコキシシラン化合物と前記ポリアミド酸とを溶液中で反応させることによりアルコキシシラン変性ポリアミド酸溶液を得る工程とを含んでおり、前記芳香族テトラカルボン酸二無水物の総モル数を、前記芳香族ジアミンの総モル数で除したモル比が、0.980以上0.9995以下であり、前記アルコキシシラン化合物の添加量は、前記アルコキシシラン変性ポリアミド酸溶液中に含まれるポリアミド酸の量を100重量部とした場合に、0.050重量部を超えて0.100重量部未満であることを特徴としている。
 本発明によれば、ポリアミド酸の一部の末端をアルコキシシランによって変性したアルコキシシラン変性ポリアミド酸溶液を用いることで、該溶液を無機基板上に塗って加熱してポリイミドフィルムを作製する際に、ポリイミドフィルムの無機基板からの剥離(デラミネーション、発泡)を抑制できる。
 また、ポリアミド酸の末端の大部分がアミノ基になるように調整したアルコキシシラン変性ポリアミド酸溶液は、分解が起きた際にアミド結合が生成しやすくなる。そのため、アルコキシシラン変性ポリアミド酸溶液は、分子量が変化しにくくなり、ワニス保管時の粘度変化を抑制できる。
 以下に本発明について詳細に説明するが、これらは本発明の一態様であり、本発明はこれらの内容に限定されない。なお、本明細書において特記しない限り、数値範囲を表す「A~B」は、「A以上B以下」を意味する。
 <アルコキシシラン変性ポリアミド酸溶液>
 本発明のアルコキシシラン変性ポリアミド酸溶液(以下、単に「溶液」ともいう)は、アミノ基を含有するアルコキシシラン化合物とポリアミド酸とを溶液中で反応させることにより得られる。また、ポリアミド酸は芳香族ジアミンと芳香族テトラカルボン酸二無水物とを溶媒中で反応させることで得られる。
 ポリアミド酸の原料及び重合方法については後述するが、本発明では、貯蔵安定性を向上させる目的からポリアミド酸末端がカルボキシル基よりもアミノ基で占められている比率を高くする必要がある。
 アミノ基を含有するアルコキシシラン化合物による変性は、ポリアミド酸が溶媒に溶解したポリアミド酸溶液に、アミノ基を含有するアルコキシシラン化合物を添加し、アミノ基を含有するアルコキシシラン化合物とポリアミド酸とを反応させることで行われる。アミノ基を含有するアルコキシシラン化合物としては、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-アミノプロピルメチルジメトキシシラン、3-アミノプロピルメチルジエトキシシラン、3-(2-アミノエチル)アミノプロピルトリメトキシシラン、3-フェニルアミノプロピルトリメトキシシラン、2-アミノフェニルトリメトキシシラン、3-アミノフェニルトリメトキシシラン等があげられる。なかでも、アミノ基を含有するアルコキシシラン化合物としては、第1級アミノ基を含有するアルコキシシラン化合物が好ましい。アミノ基を含有するアルコキシシラン化合物が第1級アミノ基を含有するアルコキシシラン化合物である場合、ポリアミド酸と好適に反応し得る。
 これらのアミノ基を含有するアルコキシシラン化合物のポリアミド酸100重量部に対する配合割合は、0.050重量部を超えて0.100重量部未満である。ワニス保管時の粘度変化を抑制する点から、前記アミノ基を含有するアルコキシシラン化合物のポリアミド酸100重量部に対する配合割合は、0.050重量部を超えて0.099重量部以下、0.050重量部を超えて0.095重量部以下、または0.050重量部を超えて0.090重量部以下であることがより好ましい。なお、前記アミノ基を含有するアルコキシシラン化合物のポリアミド酸100重量部に対する配合割合の下限は、0.051重量部以上であってもよく、0.055重量部以上であってもよく、0.060重量部以上であってもよい。
 アミノ基を含有するアルコキシシラン化合物の配合割合が0.050重量部を超えることで、無機基板からのポリイミドフィルムの剥離を抑制する効果は十分に発揮される。アミノ基を含有するアルコキシシラン化合物の配合割合が0.100重量部未満であるとポリアミド酸の分子量が十分に保たれるため、ポリイミドフィルムの脆化などの問題が生じない。さらに0.100重量部未満であると、アルコキシシラン化合物を添加した後の粘度変化も小さくなる。また、未反応の成分が多い場合には、該未反応の成分が徐々にポリアミド酸と反応してポリアミド酸溶液の粘度が低下したり、アルコキシシラン同士で縮合してポリアミド酸溶液がゲル化したりする。アミノ基を含有するアルコキシシラン化合物の添加量を必要最低限に抑えることで、無機基板からのポリイミドフィルムの剥離は抑制しながらも、ワニス保管時には減粘及びゲル化などの余計な副反応を抑制することができる。
 末端の大部分がアミノ基であるポリアミド酸に、アミノ基を含有するアルコキシシラン化合物を添加すると、ポリアミド酸溶液の粘度が下がる。発明者らは、これはポリアミド酸中のアミド結合が解離した際に再生した酸無水物基とアルコキシシラン化合物のアミノ基とが反応し、変性反応が進行するとともに、ポリアミド酸の分子量が低下するためだと推定している。反応温度は、酸無水物基と水との反応を抑制しつつ変性反応が進行しやすくなることから、0℃以上80℃以下であることが好ましく、20℃以上60℃以下であることがより好ましい。
 ポリアミド酸の種類及び濃度にもよるが、酸二無水物の濃度が小さいため変性反応は遅く、反応温度が低いと粘度が一定となるまでに5日程度要する場合がある。ポリアミド酸の種類及び/または溶媒が異なる場合には、反応温度ごとに時間ごとの粘度変化を記録し、適当な反応温度を選択すれば良い。
 このように一部の末端をアルコキシシランによって変性することにより得られたポリアミド酸溶液を無機基板上に塗った場合には、加熱して得られるポリイミドフィルムの剥離(デラミネーション、発泡)を抑制できる。またポリアミド酸の末端の大部分がアミノ基になるように調整することによって、アルコキシシラン変性ポリアミド酸溶液の分解が起きた際にもアミド結合が生成しやすくなる。そのため、分子量が変化しにくくなり、ワニス保管時の粘度変化を抑制できる。
 <ポリアミド酸の原料>
 前述のように、ポリアミド酸の原料には芳香族テトラカルボン酸二無水物と芳香族ジアミンとが用いられる。
 1~10ppm/℃の線膨張係数を有するポリイミドフィルムと無機基板との積層体を得るためには、芳香族テトラカルボン酸二無水物としては、主として3,3’,4,4’―ビフェニルテトラカルボン酸二無水物(以下、BPDAと略記することもある。)を用いることが好ましく、芳香族ジアミンとしては、主として下記式(1)で表される芳香族ジアミンを用いることが好ましい。
Figure JPOXMLDOC01-appb-C000003
(式中nは、1~3の整数である)
 式(1)の芳香族ジアミンは、パラフェニレンジアミン(以下PDAと略記することもある。)、4,4’-ジアミノベンジジン、及び4,4”-ジアミノパラテルフェニル(以下、DATPと略記することもある。)である。これらの芳香族ジアミンの中でも、入手性の良いことからPDA、及びDATPが好ましい。
 芳香族テトラカルボン酸二無水物は、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物とすることが好ましい。3,3’,4,4’-ビフェニルテトラカルボン酸二無水物と、芳香族ジアミンとしてパラフェニレンジアミン等の直線性の高い芳香族ジアミンとを含むアルコキシシラン変性ポリアミド酸溶液を用いることで、低いCTEなどのフレキシブルデバイス基板に好適な特性を付与することができる。
 さらに、本発明の特性を損なわない範囲で、PDA、4,4’-ジアミノベンジジン、及びDATP以外の芳香族ジアミンを用いても良いし、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物以外の芳香族テトラカルボン酸二無水物を用いても良い。例えば、次の芳香族テトラカルボン酸二無水物及び/または芳香族ジアミンを、ポリアミド酸の原料全体に対してそれぞれ5モル%以下併用しても良い。
 芳香族テトラカルボン酸二無水物としては、ピロメリット酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、4,4’-オキシジフタル酸無水物、9,9-ビス(3,4-ジカルボキシフェニル)フルオレン二無水物、9,9’-ビス[4-(3,4-ジカルボキシフェノキシ)フェニル]フルオレン二無水物、3,3’,4,4’-ビフェニルエーテルテトラカルボン酸二無水物、2,3,5,6-ピリジンテトラカルボン酸二無水物、3,4,9,10-ペリレンテトラカルボン酸二無水物、4,4’-スルホニルジフタル酸二無水物、パラテルフェニル-3,4,3’,4’-テトラカルボン酸二無水物、メタテルフェニル-3,3’,4,4’-テトラカルボン酸二無水物、3,3’,4,4’-ジフェニルエーテルテトラカルボン酸二無水物等が挙げられる。上記酸二無水物の芳香環は、アルキル基置換および/またはハロゲン置換された部位を有していても良い。
 芳香族ジアミンとしては、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルスルホン、1,5-(4-アミノフェノキシ)ペンタン、1,3-ビス(4-アミノフェノキシ)-2,2-ジメチルプロパン、2,2-ビス(4-アミノフェノキシフェニル)プロパン、ビス[4-(4-アミノフェノキシ)フェニル]スルホン及びビス[4-(3-アミノフェノキシ)フェニル]スルホン等が挙げられる。
 <ポリアミド酸の重合方法>
 本発明に用いるポリアミド酸は、溶液重合により製造可能である。すなわち、原料である1種または2種以上の芳香族テトラカルボン酸二無水物、及び1種または2種以上の芳香族ジアミンを、芳香族ジアミンのモル比がカルボキシル基よりも高くなるように使用し、有機極性溶媒中で重合してポリイミド前駆体であるポリアミド酸溶液を得る。
 芳香族テトラカルボン酸二無水物の総モル数を、芳香族ジアミンの総モル数で除したモル比は、好ましくは0.980以上0.9995以下であり、より好ましくは0.995以上0.998以下である。モル比を0.9995以下とすることでポリアミド酸末端がアミノ基で占められる割合が酸無水物基で占められる割合よりも高くなり、貯蔵安定性を改善することができる。この効果は、モル比を小さくすることでさらに改善するが、0.998以下では大幅には改善しない。一方で、強靭なポリイミドフィルムを得るためにはモル比を1.000に近づけ十分に分子量を高める必要がある。モル比が0.980以上であれば、引張強度に優れた丈夫なポリイミドフィルムが得られる。また、好ましくはモル比を0.998以上として、保管時やイミド化時の分子量低下に備えるべきである。なお、引張強度はJIS K7127:1999に記載された引張特性の試験方法によって評価する。
 ポリアミド酸を合成するための好ましい溶媒は、アミド系溶媒、すなわちN,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド及びN-メチル-2-ピロリドンなどである。これらの溶媒を適宜選択して用いることによって、ポリアミド酸溶液の特性、及び、無機基板上でイミド化した後のポリイミドフィルムの特性を制御することができる。上記溶媒は、主成分がアミド系溶媒であることが好ましい。例えば溶媒全体の量を100重量部とした場合にアミド系溶媒の量が50~100重量部であることが好ましく、70~100重量部であることがより好ましい。
 本発明者らの検討では、溶媒にN,N-ジメチルアセトアミドを用いた場合には、ポリアミド酸の貯蔵安定性が悪くなり、ポリイミドフィルムの線膨張係数は高くなる。溶媒にN-メチル-2-ピロリドンを用いた場合には、ポリアミド酸溶液の貯蔵安定性が高く、ポリイミドフィルムの線膨張係数はより低くなる。貯蔵安定性に関してはN-メチル-2-ピロリドンを用いた方がより優れた特性が得られるが、線膨張係数等の特性に関してはどちらか一方が優れている訳ではない。例えば、ポリイミドフィルムがより硬いことが好ましいならばN-メチル-2-ピロリドンを用い、ポリイミドフィルムが柔らかいことが好ましいならばN,N-ジメチルアセトアミドを用いる等のように、目的とする用途ごとに好適な溶媒を選択するべきである。
 反応装置には、反応温度を制御するための温度調整装置が備えられていることが好ましい。ポリアミド酸を重合する際の反応温度としては0℃以上80℃以下が好ましく、さらに、20℃以上60℃以下であることが、重合の逆反応であるアミド結合の解離を抑制し、しかもポリアミド酸の粘度が上昇しやすいことから好ましい。
 また、重合後に粘度の調整、すなわち分子量調整を目的として70~90℃程度で1~24時間加熱処理を行っても良い。これは、従来クッキングと称されている操作であり、加熱処理をおこなうことでアミド酸の解離、及び系中の水との反応による酸二無水物の失活を促進し、ポリアミド酸溶液をその後の操作に適した粘度にすることを目的としている。未反応の芳香族テトラカルボン酸二無水物が失活しやすくなるため、重合反応とクッキングとは分けて行うことが好ましいが、最初から反応温度を70~90℃にして重合反応とクッキングとを一括して行うことも可能である。
 ポリアミド酸溶液中のポリアミド酸の重量%については、有機溶媒中に溶解されているポリアミド酸が5~30重量%であることが好ましく、8~25重量%であることがより好ましく、10~20重量%であることが更に好ましい。ポリアミド酸の重量%が上記範囲であれば、未溶解原料の異常重合に起因するゲル化を抑制することができ、しかも、ポリアミド酸の粘度が上昇しやすいことから好ましい。
 <アルコキシシラン変性ポリアミド酸溶液の水分>
 これまでのすべてのアルコキシシラン変性ポリアミド酸溶液中の水分は、500ppm以上3000ppm以下であることが好ましく、500ppm以上1000ppm以下であることがより好ましい。水分が3000ppm以下であればモル比の調整による貯蔵安定性向上の効果が十分に発揮されるため好ましい。1000ppm以下の場合、ポリアミド酸分子中のアミド結合の分解によって生じた酸無水物基と水とが反応して失活する確率を下げることにより、ワニス保管時の粘度変化を抑制できるためより好ましい。溶液中の水分は、原料由来と作業環境由来とに分けることができる。水分を減らすために様々な方法があるが、余分な工程または過剰な設備を用いて必要以上に水分を減らすことも、コストアップになるため好ましくない。例えば、市販のアミド系溶剤の水分は500ppm程度であるため、それ以下に水分を減らそうとするとコストアップが伴うので好ましくない。
 水分を減らす方法として、原料の保管を厳密に行って水分の混入を避け、反応雰囲気を乾燥空気または乾燥窒素等で置換することが効果的である。更に減圧下で処理しても良い。
 <芳香族テトラカルボン酸二無水物の総モル数を、芳香族ジアミンの総モル数で除したモル比と、アルコキシシラン変性ポリアミド酸溶液の水分との関係>
 芳香族テトラカルボン酸二無水物の総モル数を、芳香族ジアミンの総モル数で除したモル比の好ましい値は、アルコキシシラン変性ポリアミド酸溶液の水分との関係によっても変化し得る。
 例えば、同程度の水分を含有し、且つ上記モル比が1.000以上であるポリアミド酸溶液に比べて貯蔵安定性に優れたポリアミド酸溶液が得られるという観点からは、上記モル比が0.9975以下であり、且つ水分が2500ppm以下であることが好ましく、上記モル比が0.9975以下であり、且つ水分が2200ppm以下であることがより好ましい。また、上記観点からは、上記モル比が0.9950以下であることがさらに好ましく、0.9901以下であることが特に好ましい。
 <アルコキシシラン変性ポリアミド酸溶液の流延及び熱イミド化>
 ポリイミドフィルムと無機基板とを有する積層体は、前述したアルコキシシラン変性ポリアミド酸溶液を、無機基板上に流延し、熱イミド化することによって製造することができる。上記積層体はアルコキシシラン変性ポリアミド酸溶液から得られたポリイミドフィルムが無機基板上に積層された積層体であるとも言える。
 無機基板としては、ガラス基板及び各種金属基板があげられるが、ガラス基板が好適である。ガラス基板の材料としては、ソーダライムガラス、ホウ珪酸ガラス、無アルカリガラス等が使用されている。特に、薄膜トランジスタの製造工程では無アルカリガラスが一般的に使用されているため、無機基板の材料としては無アルカリガラスがより好ましい。用いる無機基板の厚みとしては、0.4~5.0mmが好ましい。無機基板の厚みが0.4mm以上であれば無機基板のハンドリングが容易になるため、好ましい。また、無機基板が5.0mm以下であれば無機基板の熱容量が小さくなり加熱または冷却工程での生産性が向上するため好ましい。
 溶液の流延方法としては、公知の方法を用いることができる。例えば、グラビアコート法、スピンコート法、シルクスクリーン法、ディップコート法、バーコート法、ナイフコート法、ロールコート法、及び、ダイコート法等の公知の流延方法を挙げることが出来る。
 アルコキシシラン変性ポリアミド酸溶液としては、前述の反応液をそのまま用いても良いが、必要に応じて溶媒を除去あるいは加えても良い。ポリイミド前駆体溶液(すなわち、アルコキシシラン変性ポリアミド酸溶液)に用いることができる溶媒としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、及び、N-メチル-2-ピロリドンの他に、例えば、ジメチルスルホキシド、ヘキサメチルリン酸トリアミド(Hexamethylphosphoric triamide:HMPA)、アセトニトリル、アセトン、及び、テトラヒドロフランが挙げられる。また、補助溶剤として、キシレン、トルエン、ベンゼン、ジエチレングリコールエチルエーテル、ジエチレングリコールジメチルエーテル、1,2-ビス-(2-メトキシエトキシ)エタン、ビス(2-メトキシエチル)エーテル、ブチルセロソルブ、ブチルセロソルブアセテート、プロピレングリコールメチルエーテル、及び、プロピレングリコールメチルエーテルアセテートを併用してもかまわない。
 ポリイミド前駆体溶液には、必要に応じてイミド化触媒及び/または無機微粒子等を加えても良い。
 イミド化触媒としては、3級アミンを用いることが好ましい。3級アミンとしては複素環式の3級アミンが更に好ましい。複素環式の3級アミンの好ましい具体例としては、ピリジン、2,5-ジエチルピリジン、ピコリン、キノリン、及び、イソキノリンなどを挙げることができる。イミド化触媒の使用量は、ポリイミド前駆体(すなわち、アルコキシシラン変性ポリアミド酸)の反応部位に対して0.01~2.00当量、特に0.02~1.20当量であることが好ましい。イミド化触媒が0.01当量以上である場合は、触媒の効果が十分に得られるため、好ましい。2.00当量以下である場合は、反応に関与しない触媒の割合が少ないため、費用の面で好ましい。
 無機微粒子としては、微粒子状の二酸化ケイ素(シリカ)粉末及び酸化アルミニウム粉末等の無機酸化物粉末、並びに微粒子状の炭酸カルシウム粉末及びリン酸カルシウム粉末等の無機塩粉末を挙げることができる。本発明の分野ではこれらの無機微粒子の粗大な粒が次工程以降での欠陥の原因となる可能性があるため、これらの無機微粒子は、均一に分散されることが好ましい。
 熱イミド化は、脱水閉環剤等を作用させずに加熱だけでイミド化反応を進行させる方法である。このときの加熱温度、及び、加熱時間は適宜決めることができ、例えば、以下のようにすれば良い。先ず、溶剤を揮発させるため、温度100~200℃で3~120分加熱する。加熱雰囲気は空気下、減圧下、又は窒素等の不活性ガス中で行うことができる。また、加熱装置としては、熱風オーブン、赤外オーブン、真空オーブン、またはホットプレート等の公知の装置を用いることができる。次に、さらにイミド化を進めるため、温度200~500℃で3分~300分加熱する。この時の加熱条件は低温から徐々に高温にするのが好ましい。また、最高温度は300~500℃の範囲が好ましい。最高温度が300℃以上であれば、熱イミド化が進行しやすく、得られたポリイミドフィルムの力学特性が向上するため、好ましい。最高温度が500℃以下であれば、ポリイミドの熱劣化が進行せず、特性が悪化しないため好ましい。
 従来のポリアミド酸溶液を用いた場合は、ポリアミド酸の種類及び厚み、無機基板の種類及び表面状態、並びに加熱条件及び加熱方法によっては、加熱処理の際に無機基板からポリイミドフィルムが自然に剥離しやすい。しかし、アルコキシシラン変性ポリアミド酸溶液を用いれば、自然剥離が抑制されるため、プロセスウィンドウを大きく広げることができる。
 ポリイミドフィルムの厚みは、5~50μmであることが好ましい。ポリイミドフィルムの厚みが5μm以上であれば、基板フィルムとして必要な機械強度が確保できる。また、ポリイミドフィルムの厚みが50μm以下だと、加熱条件の調整だけで、ポリイミドフィルムと無機基板との積層体を自然剥離せずに得ることができる。
 ポリイミドフィルムの厚みが5μm以上だと、基板フィルムとして必要な機械強度が十分に確保できるため、好ましい。ポリイミドフィルムの厚みが50μm以下だと、前述した自然剥離等が抑制され、積層体を安定して得ることが容易になるため、好ましい。本発明により得られた積層体は、貯蔵安定性及びプロセス整合性に優れており、公知の液晶パネル用薄膜トランジスタプロセスによるフレキシブルデバイスの製造に好適に用いることができる。
 このようにポリイミド前駆体の溶液を無機基板上に流延し、熱イミド化すること、及び、ポリアミド酸骨格に特定の構造を選択することによって線膨張係数が1~10ppm/℃であるポリイミドフィルムと無機基板とを有する積層体を得ることができる。そしてこの積層体を用いることで、優れた特性を有するフレキシブルデバイスを得ることができる。
 <電子素子の形成、及び、無機基板からのポリイミドフィルムの剥離>
 本発明の積層体を用いることで、優れた特性を有するフレキシブルデバイスを得ることができる。すなわち、本発明の積層体のポリイミドフィルム上に、電子素子を形成し、その後、該ポリイミドフィルムを無機基板から剥離することでフレキシブルデバイスを得ることができる。さらに、上記工程は、既存の無機基板を使用した生産装置をそのまま使用できるという利点があり、フラットパネルディスプレイ及び電子ペーパーなどの電子デバイスの分野で有効に使用でき、大量生産にも適している。
 無機基板からポリイミドフィルムを剥離する方法には、公知の方法を用いることができる。例えば、手で引き剥がしても良いし、駆動ロールまたはロボット等の機械装置を用いて引き剥がしても良い。更には、無機基板とポリイミドフィルムとの間に剥離層を設ける方法でも良い。また、例えば、多数の溝を有する無機基板上に酸化シリコン膜を形成し、エッチング液を浸潤させることによって剥離する方法、及び無機基板上に非晶質シリコン層を設けレーザー光によって分離させる方法を挙げることが出来る。
 本発明のフレキシブルデバイスは、ポリイミドフィルムが優れた耐熱性と低線膨張係数とを有しており、また軽量性及び耐衝撃性に優れるだけでなく、反りが改善されたという優れた特性を有している。特に反りに関しては、無機基板と同等の低線膨張係数を有するポリイミドフィルムを無機基板上に直接、流延及び積層する方法を採用することにより、反りが改善されたフレキシブルデバイスを得ることができる。
 以下、本発明を実施例に基づいて具体的に説明する。ただし、本発明は、これらの実施例によって限定されるものではなく、本発明の趣旨を逸脱しない範囲で実施形態の変更が可能である。
 (特性の評価方法)
 (水分)
 容量滴定カールフィッシャー水分計 890タイトランド(メトロームジャパン株式会社製)を用いて、JIS K0068の容量滴定法に準じて溶液中の水分を測定した。ただし、滴定溶剤中に樹脂が析出する場合は、アクアミクロンGEX(三菱化学株式会社製)とN-メチルピロリドンとの1:4の混合溶液を滴定溶剤として用いた。
 (粘度)
 粘度計 RE-215/U(東機産業株式会社製)を用い、JIS K7117-2:1999に準じて粘度を測定した。付属の恒温槽を23.0℃に設定し、測定温度は常に一定にした。
 (線膨張係数)
 線膨張係数は、エスアイアイ・ナノテクノロジー株式会社製TMA/SS120CUを用い、引張荷重法による熱機械分析によって評価した。実施例のポリイミドフィルムを無機基板であるガラス基板から引き剥がして、10mm×3mmの試料を作製した。該試料の長辺に3.0gの荷重を加え、500℃以上に加熱して残留応力を取り除いた後、再び10℃/分の昇温速度で加熱して測定した。この際の100℃~300℃の範囲における単位温度あたりの試料の歪の変化量を線膨張係数とした。
 (参考例1)
 (1-1)ポリアミド酸溶液の製造
 ポリテトラフルオロエチレン製シール栓付き攪拌器、攪拌翼、及び、窒素導入管を備えた容積2Lのガラス製セパラブルフラスコに、モレキュラーシーブを用いて脱水したN,N-ジメチルアセトアミド(DMAc)を850.0g入れ、パラフェニレンジアミン(PDA)40.31gを加え、得られた溶液を油浴で50.0℃に加熱しながら窒素雰囲気下で30分間攪拌した。原料が均一に溶解したことを確認した後、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(BPDA)109.41gを加え、原料が完全に溶解するまで窒素雰囲気下で10分間攪拌しながら、溶液の温度を約80℃に調整した。さらに一定の温度で加熱しながら攪拌を3時間続けて粘度を下げ、さらにDMAcを153.8g加えて攪拌し、23℃で粘度25000mPa・sを示す粘調なポリアミド酸溶液を得た。なお、この反応溶液における芳香族ジアミン及び芳香族テトラカルボン酸二無水物の仕込み濃度は全反応液に対して15重量%であり、芳香族テトラカルボン酸二無水物の総モル数を、芳香族ジアミンの総モル数で除したモル比は、0.9975である。
 (1-2)アミノ基を含有するアルコキシシラン化合物による変性
 上記のポリアミド酸溶液を水浴で速やかに冷却し、ポリアミド酸溶液の温度を約50℃に調整した。次に3-アミノプロピルトリエトキシシラン(γ―APS)の1%DMAc溶液7.50gをポリアミド酸溶液に加え、攪拌した。23000mPa・sから粘度が変化しなくなったので5時間後に反応を終え、作業しやすい粘度になるまでDMAcでポリアミド酸溶液を希釈した。この様にして23℃で粘度13700mPa・sであり水分が1400ppmを示すアルコキシシラン変性ポリアミド酸溶液を得た。なお、この反応におけるアルコキシシラン化合物(γ―APS)の配合割合(添加量)は、ポリアミド酸100重量部に対して0.050重量部である。
 得られた溶液を密栓したガラス瓶で23℃55%RHの環境に一週間保管して再度粘度を測定すると12400mPa・s(-9%)になっていた。
 (1-3)ポリイミド前駆体の流延及び熱イミド化
 得られたアルコキシシラン変性ポリアミド酸溶液を、両辺150mm、厚さ0.7mmの正方形の、FPD用のガラス基板として一般的に用いられている無アルカリガラス板(コーニング社製 イーグルXG)上に、バーコーターを用いて乾燥厚みが20μmになるように流延し、熱風オーブン内で80℃にて20分乾燥し、次いで150℃にて30分間乾燥した。さらに、220℃と300℃とで30分ずつ、430℃と500℃とで1時間ずつ加熱した。それぞれの温度間は2℃/分で徐々に昇温した。高温で熱イミド化することで、厚み19μmのポリイミドフィルムと無アルカリガラス板との積層体を得た。ポリイミドフィルムと無アルカリガラス板とは適度な剥離強度を有しており、加熱中に自然に剥離することはないが、無アルカリガラス板からポリイミドフィルムを引き剥がすことが可能であった。得られたポリイミドフィルムの特性について、表1に示す。
 (参考例2)
 γ-APSの1%DMAc溶液の添加量を1.50gに変更した以外は、参考例1と同様にして、アルコキシシラン変性ポリアミド酸溶液を得た。なお、この反応におけるγ―APSの添加量は、ポリアミド酸100重量部に対して0.010重量部である。得られた溶液は23℃で粘度13100mPa・sであり水分が2800ppmであった。また、参考例1の方法と同様にして自然剥離せずに厚み20μmのポリイミドフィルムと無アルカリガラス板との積層体を得ることができた。保管時の粘度変化及びポリイミドフィルムの特性について表1及び表2に示す。
 (参考例3)
 参考例1と同じ実験装置に脱水したDMAcを850.0g入れ、PDA40.39gを加え、得られた溶液を油浴で50.0℃に加熱しながら窒素雰囲気下で30分間攪拌した。原料が均一に溶解したことを確認した後、BPDA109.34gを加え、原料が完全に溶解するまで窒素雰囲気下で10分間攪拌しながら、溶液の温度を約80℃に調整した。さらに一定の温度で加熱しながら攪拌を5時間続けて粘度を下げ、23℃で粘度25300mPa・sを示す粘調なポリアミド酸溶液を得た。なお、このポリアミド酸溶液における芳香族ジアミン及び芳香族テトラカルボン酸二無水物の仕込み濃度は全反応液に対して15重量%であり、芳香族テトラカルボン酸二無水物の総モル数を、芳香族ジアミンの総モル数で除したモル比は、0.9950である。
 さらに、このポリアミド酸溶液を水浴で速やかに冷却し、ポリアミド酸溶液の温度を約50℃に調整した。次にγ―APSの1%DMAc溶液7.50gをポリアミド酸溶液に加え、攪拌した。19100mPa・sから粘度が変化しなくなったので5時間後に反応を終え、作業しやすい粘度になるまでDMAcでポリアミド酸溶液を希釈した。この様にして23℃で粘度13800mPa・sであり水分が1900ppmを示すアルコキシシラン変性ポリアミド酸溶液を得た。なお、この反応におけるγ―APSの添加量は、ポリアミド酸100重量部に対して0.050重量部である。また、参考例1の方法と同様にして自然剥離せずに厚み22μmのポリイミドフィルムと無アルカリガラス板との積層体を得ることができた。保管時の粘度変化及びポリイミドフィルムの特性について表1及び表2に示す。
 (参考例4)
 水分量が異なるDMAcを使用した以外は、参考例1と同様にしてアルコキシシラン変性ポリアミド酸溶液を得た。得られた溶液は23℃で粘度14200mPa・sであり水分が2500ppmであった。保管時の粘度変化について表1に示す。
 (参考例5)
 参考例1と同様にして得られたアルコキシシラン変性ポリアミド酸溶液を、乾燥窒素で加圧し、日本ポール株式会社製カプセルフィルターDFA HDC2(定格ろ過精度1.2μm)でろ過した。ろ過作業後、未ろ過で残った溶液は、23℃で粘度12700mPa・sであり水分が2700ppmであった。保管時の粘度変化について表1に示す。
 (参考例6)
 参考例1と同様にして得られたアルコキシシラン変性ポリアミド酸溶液を、乾燥窒素で加圧し、日本ポール株式会社製カプセルフィルターDFA HDC2(定格ろ過精度1.2μm)でろ過した。ろ過した溶液は、23℃で粘度12000mPa・sであり水分が3300ppmであった。保管時の粘度変化について表1に示す。
 (参考例7)
 参考例1と同様にして得られたアルコキシシラン変性ポリアミド酸溶液を大気下で開封したまま60分間静置した後、均一に攪拌した。得られた溶液は吸湿しており、23℃で粘度12100mPa・sであり水分が4400ppmであった。この溶液の保管時の粘度変化について表1に示す。
 (参考例8)
 参考例4で得られた溶液に、溶液に対して0.3重量%相当の水を添加した。得られた溶液は23℃で粘度13800mPa・sであり水分が4900ppmであった。保管時の粘度変化について表1に示す。
 (参考例9)
 参考例1と同じ実験装置に脱水したDMAcを850.0g入れ、PDA40.34gを加え、得られた溶液を油浴で50.0℃に加熱しながら窒素雰囲気下で30分間攪拌した。原料が均一に溶解したことを確認した後、BPDA109.66gを加え、原料が完全に溶解するまで窒素雰囲気下で10分間攪拌しながら、溶液の温度を約90℃に調整した。さらに一定の温度で加熱しながら攪拌を続けて粘度を下げ、23℃で粘度35500mPa・sを示す粘調なポリアミド酸溶液を得た。なお、この反応溶液における芳香族ジアミン及び芳香族テトラカルボン酸二無水物の仕込み濃度は全反応液に対して15重量%であり、芳香族テトラカルボン酸二無水物の総モル数を、芳香族ジアミンの総モル数で除したモル比は、0.9991である。
 この反応溶液を水浴で速やかに冷却し、溶液の温度を約50℃に調整した。次にγ―APSの1%DMAc溶液7.50gをポリアミド酸溶液に加え、攪拌した。粘度が変化しなくなったので3時間で反応を終え、作業しやすい粘度になるまでDMAcでポリアミド酸溶液を希釈した。この様にして、23℃で粘度13500mPa・sであり水分が1500ppmを示すアルコキシシラン変性ポリアミド酸溶液を得た。なお、この反応におけるγ―APSの添加量は、ポリアミド酸100重量部に対して0.050重量部である。また、参考例1の方法と同様の方法で厚み20μmのポリイミドフィルムと無アルカリガラス板との積層体を得ることができた。ポリイミドフィルムと無アルカリガラス板とは適度な剥離強度を有しており、加熱中に自然に剥離することはないが、無アルカリガラス板からポリイミドフィルムを引き剥がすことが可能であった。保管時の粘度変化及びポリイミドフィルムの特性について表1及び表2に示す。
 (参考例10)
 参考例1と同じ実験装置に脱水したDMAcを850.0g入れ、PDA40.61gを加え、得られた溶液を油浴で50.0℃に加熱しながら窒素雰囲気下で30分間攪拌した。原料が均一に溶解したことを確認した後、BPDA109.39gを加え、原料が完全に溶解するまで窒素雰囲気下で10分間攪拌しながら、溶液の温度を約80℃に調整した。さらに一定の温度で加熱しながら攪拌を続けて粘度を下げ、23℃で粘度31200mPa・sを示す粘調なポリアミド酸溶液を得た。なお、この反応溶液における芳香族ジアミン及び芳香族テトラカルボン酸二無水物の仕込み濃度は全反応液に対して15重量%であり、芳香族テトラカルボン酸二無水物の総モル数を、芳香族ジアミンの総モル数で除したモル比は、0.9901である。
 この反応溶液を水浴で速やかに冷却し、溶液の温度を約50℃に調整した。次にγ―APSの1%DMAc溶液7.50gをポリアミド酸溶液に加え、攪拌した。粘度が変化しなくなったので3時間で反応を終え、作業しやすい粘度になるまでDMAcでポリアミド酸溶液を希釈した。この様にして、23℃で粘度13400mPa・sであり水分が1800ppmを示すアルコキシシラン変性ポリアミド酸溶液を得た。なお、この反応におけるγ―APSの添加量は、ポリアミド酸100重量部に対して0.050重量部である。また、参考例1の方法と同様の方法で厚み21μmのポリイミドフィルムと無アルカリガラス板との積層体を得ることができた。ポリイミドフィルムと無アルカリガラス板とは適度な剥離強度を有しており、加熱中に自然に剥離することはないが、無アルカリガラス板からポリイミドフィルムを引き剥がすことが可能であった。保管時の粘度変化及びポリイミドフィルムの特性について表1及び表2に示す。
 (参考例11)
 参考例1と同じ実験装置に脱水したDMAcを850.0g入れ、PDA40.91gを加え、得られた溶液を油浴で50.0℃に加熱しながら窒素雰囲気下で30分間攪拌した。原料が均一に溶解したことを確認した後、BPDA109.09gを加え、原料が完全に溶解するまで窒素雰囲気下で10分間攪拌しながら、溶液の温度を約80℃に調整した。さらに一定の温度で加熱しながら攪拌を続けて粘度を下げ、23℃で粘度6300mPa・sを示す粘調なポリアミド酸溶液を得た。なお、この反応溶液における芳香族ジアミン及び芳香族テトラカルボン酸二無水物の仕込み濃度は全反応液に対して15重量%であり、芳香族テトラカルボン酸二無水物の総モル数を、芳香族ジアミンの総モル数で除したモル比は、0.9801である。
 この反応溶液を水浴で速やかに冷却し、溶液の温度を約50℃に調整した。次にγ―APSの1%DMAc溶液7.50gをポリアミド酸溶液に加え、攪拌した。粘度が変化しなくなったので2時間で反応を終えた。この様にして、23℃で粘度6100mPa・sであり水分が2200ppmを示すアルコキシシラン変性ポリアミド酸溶液を得た。なお、この反応におけるγ―APSの添加量は、ポリアミド酸100重量部に対して0.050重量部である。また、参考例1の方法と同様の方法で厚み20μmのポリイミドフィルムと無アルカリガラス板との積層体を得ることができた。ポリイミドフィルムと無アルカリガラス板とは適度な剥離強度を有しており、加熱中に自然に剥離することはないが、無アルカリガラス板からポリイミドフィルムを引き剥がすことが可能であった。保管時の粘度変化及びポリイミドフィルムの特性について表1及び表2に示す。
 (実施例1)
 γ-APSの1%DMAc溶液の添加量を13.50gに変更した以外は、参考例1と同様にして、アルコキシシラン変性ポリアミド酸溶液を得た。なお、この反応におけるγ―APSの添加量は、ポリアミド酸100重量部に対して0.090重量部である。得られた溶液は23℃で粘度13500mPa・sであり水分が1700ppmであった。また、参考例1の方法と同様にして自然剥離せずに厚み20μmのポリイミドフィルムと無アルカリガラス板との積層体を得ることができた。保管時の粘度変化及びポリイミドフィルムの特性について表1及び表2に示す。
 (実施例2)
 γ-APSの1%DMAc溶液の添加量を8.25gに変更した以外は、参考例1と同様にして、アルコキシシラン変性ポリアミド酸溶液を得た。なお、この反応におけるγ―APSの添加量は、ポリアミド酸100重量部に対して0.055重量部である。得られた溶液は23℃で粘度13200mPa・sであり水分が1500ppmであった。また、参考例1の方法と同様にして自然剥離せずに厚み20μmのポリイミドフィルムと無アルカリガラス板との積層体を得ることができた。保管時の粘度変化及びポリイミドフィルムの特性について表1及び表2に示す。
 (比較例1)
 参考例1と同様にしてポリアミド酸溶液を得た後、γ―APSを添加せずに作業しやすい粘度になるまでDMAcで希釈し、粘度13600mPa・sであり水分が1100ppmを示すアルコキシシラン変性ポリアミド酸溶液を得た。得られた溶液を参考例1と同様にして無アルカリガラス板上に流延及びイミド化したが、熱イミド化の際にポリイミドフィルムと無アルカリガラス板との間に気泡が発生し、一部が剥離したポリイミドフィルムと無アルカリガラス板との積層体しか得ることができなかった。得られたポリイミドフィルムの特性について表2に示す。
 (比較例2)
 参考例1と同じ反応容器に脱水したDMAcを850.0g入れ、BPDA110.08gを加え、攪拌して分散させた。分散液を油浴で50.0℃に加熱しながら、PDA40.17gを30分程度かけて徐々に加えた。原料が完全に溶解し粘度が一定になるまで1時間攪拌を続けた。さらにDMAcを250g加えて攪拌し、粘度20100mPa・sを示す粘調なポリアミド酸溶液を得た。なお、この反応溶液における芳香族ジアミン及び芳香族テトラカルボン酸二無水物の仕込み濃度は全反応液に対して15重量%であり、芳香族テトラカルボン酸二無水物の総モル数を、芳香族ジアミンの総モル数で除したモル比は、1.0070である。
 さらに、反応溶液を水浴で速やかに冷却し、溶液の温度を約50℃に調整した。次にγ―APSの1%DMAc溶液7.50gをポリアミド酸溶液に加え、攪拌した。19100mPa・sから粘度が変化しなくなったので5時間後に反応を終え、作業しやすい粘度になるまでDMAcでポリアミド酸溶液を希釈した。この様にして23℃で粘度13600mPa・sであり水分が1400ppmを示すアルコキシシラン変性ポリアミド酸溶液を得た。なお、この反応におけるγ―APSの添加量は、ポリアミド酸100重量部に対して0.050重量部である。また、参考例1の方法と同様にして自然剥離せずにポリイミドフィルムと無アルカリガラス板との積層体を得ることができた。保管時の粘度変化及びポリイミドフィルムの特性について表1及び表2に示す。
 (比較例3)
 比較例2で得られた溶液に、溶液に対して0.1重量%相当の水を添加した。得られた溶液は23℃で粘度13300mPa・sであり水分が2600ppmであった。保管時の粘度変化について表1に示す。
 (比較例4)
 比較例2で得られた溶液に、溶液に対して0.3重量%相当の水を添加した。得られた溶液は23℃で粘度13300mPa・sであり水分が4800ppmであった。保管時の粘度変化について表1に示す。
 なお、下記表1では、参考例1~11及び比較例2~4については水分の量に順に並べて示した。また、粘度変化率は、小数点以下を四捨五入して示している。
Figure JPOXMLDOC01-appb-T000004
 それぞれの溶液から得られたポリイミドフィルムの無アルカリガラス板への密着性と線膨張係数とを評価した結果を表2に示す。密着性については、目視でポリイミドフィルムと無アルカリガラス板との間に空隙がなくポリイミドフィルムが均一な外観を有している場合に○、ポリイミドフィルムと無アルカリガラス板との間に空隙があるかポリイミドフィルム内部に気泡等が発生した場合に×と記した。
Figure JPOXMLDOC01-appb-T000005
 液中の水分が多いほど溶液の貯蔵安定性は悪化し粘度が減少するが、同じ水分の場合には本発明の方法で粘度変化を低減することができる。参考例1~11では水分が増加すると、粘度がより減少する傾向が見られる。また、比較例2~4でも、水分が増加すると粘度がより減少する。とくに、参考例9と比較して参考例1、3、10はより粘度変化が小さい。参考例1、3、9、10は比較例2と同程度の水分であるが、粘度変化率は小さい。同様に参考例2、4、5、6、11は比較例3と同程度の水分であるが、粘度変化率は小さい。さらに、参考例7、8も比較例4と同程度の水分であるが、粘度変化率は小さい。例えば参考例5、6と比較例2とでは、約3000ppmに対して1400ppmであり、2倍程度水分が異なるにも関わらず、粘度変化率は同程度である。
 また、これらの結果に対して、A~Eで評価し、表1の総合評価の項に示す。評価基準は以下の様にした。
 A:粘度変化率を、同程度の水分の比較例の粘度変化率で除した値が0.4以下
 B:粘度変化率を、同程度の水分の比較例の粘度変化率で除した値が0.4より大きく0.5以下
 C:粘度変化率を、同程度の水分の比較例の粘度変化率で除した値が0.5より大きく0.6以下
 D:粘度変化率を、同程度の水分の比較例の粘度変化率で除した値が0.6より大きく0.7以下
 E:粘度変化率を、同程度の水分の比較例の粘度変化率で除した値が0.7より大きい
 ここで、比較例の総合評価が「-」となっている場合は、当該比較例が、総合評価において参考例及び実施例と比較する基準となっていることを表す。
 なお、ある実施例または参考例(実施例αまたは参考例αとする)に対して「同程度の水分の比較例」とは、比較例2~4のうち、実施例αまたは参考例αとの水分の差の絶対値が最も小さい比較例を指す。例えば、参考例6の場合は、比較例2との水分の差の絶対値が1900、比較例3との水分の差の絶対値が700、比較例4との水分の差の絶対値が1500である。よって、参考例6は比較例3との比較によって評価される。
 具体的には、総合評価において、参考例1、3、9及び10は、同程度の水分である比較例2と比較した。また、参考例2、4~6及び11は、同程度の水分である比較例3と比較した。参考例7及び8は、同程度の水分である比較例4と比較した。
 総合評価の結果について、以下に検討する。芳香族テトラカルボン酸二無水物の総モル数を、芳香族ジアミンの総モル数で除したモル比(以下、単にモル比とも言う)が0.9950以下の場合(参考例3、10及び11)、総合評価はAまたはBとなっている。特に、モル比が0.9901以下の場合(参考例10及び11)、総合評価はAとなっている。
 モル比が0.9975以下であり、且つ水分が2500以下の場合(参考例1、3、4、10及び11)、総合評価はA、BまたはCとなっている。また、モル比が0.9975以下であり、且つ水分が2200以下の場合(参考例1、3、10及び11)、総合評価はAまたはBとなっている。
 総合評価において、実施例1及び2は、同程度の水分である比較例2と比較した。その結果、実施例1及び2は、総合評価がAとなっている。このことから、アミノ基を含有するアルコキシシラン化合物の添加量が、0.050重量部を超えて0.100重量部未満である場合、粘度変化率を抑えることができることがわかる。
 また、参考例1~3、9~11のポリイミドフィルムは、20μm程度の乾燥厚みでもポリイミドフィルムと無アルカリガラス板との間に気泡が発生せず、ポリイミドフィルムと無アルカリガラス板との積層体を得ることができた。これに対して比較例1のポリイミドフィルムは、20μm程度の乾燥厚みでもポリイミドフィルムと無アルカリガラス板との間に気泡が発生し、ポリイミドフィルムと無アルカリガラス板との積層体を得ることができなかった。
 また、参考例1~3、9~11及び比較例2のポリイミドフィルムは無アルカリガラス板から剥離した後も、カールしたり反ったりすることはなかった。これらのポリイミドフィルムの線膨張係数が6~8ppm/℃であり、無アルカリガラス板の線膨張係数と近いためである。
 実施例1及び2のポリイミドフィルムも同様に、20μm程度の乾燥厚みでもポリイミドフィルムと無アルカリガラス板との間に気泡が発生せず、ポリイミドフィルムと無アルカリガラス板との積層体を得ることができた。
 また、実施例1及び2のポリイミドフィルムは無アルカリガラス板から剥離した後も、カールしたり反ったりすることはなかった。これらのポリイミドフィルムの線膨張係数が6~8ppm/℃であり、無アルカリガラス板の線膨張係数と近いためである。
 以上のように、本発明によれば、厚膜でも剥離することなく製膜でき、室温で安定的に保管できるポリアミド酸溶液、及びフレキシブルデバイスの生産に好適に用いることのできるポリイミドフィルムと無機基板との積層体を提供することができる。
 従って、本発明は、例えば、フラットパネルディスプレイ及び電子ペーパー等の電子デバイスの分野において好適に利用することができる。

Claims (10)

  1.  アミノ基を含有するアルコキシシラン化合物とポリアミド酸とを溶液中で反応させることにより得られるアルコキシシラン変性ポリアミド酸溶液であり、
     前記ポリアミド酸は、芳香族ジアミンと芳香族テトラカルボン酸二無水物とを溶媒中で反応させることにより得られ、
     前記芳香族テトラカルボン酸二無水物の総モル数を、前記芳香族ジアミンの総モル数で除したモル比が、0.980以上0.9995以下であり、
     前記アルコキシシラン化合物の添加量は、前記アルコキシシラン変性ポリアミド酸溶液中に含まれるポリアミド酸の量を100重量部とした場合に、0.050重量部を超えて0.100重量部未満であることを特徴とするアルコキシシラン変性ポリアミド酸溶液。
  2.  前記アルコキシシラン変性ポリアミド酸溶液の水分は、500ppm以上3000ppm以下であることを特徴とする請求項1に記載のアルコキシシラン変性ポリアミド酸溶液。
  3.  前記芳香族テトラカルボン酸二無水物が3,3’,4,4’-ビフェニルテトラカルボン酸二無水物であり、
     前記芳香族ジアミンが下記式(1)で表される芳香族ジアミンであることを特徴とする請求項1又は2に記載のアルコキシシラン変性ポリアミド酸溶液。
    Figure JPOXMLDOC01-appb-C000001
    (式中nは、1~3の整数である)
  4.  前記溶媒の主成分がアミド系溶媒であることを特徴とする請求項1~3のいずれか1項に記載のアルコキシシラン変性ポリアミド酸溶液。
  5.  請求項1~4のいずれか1項に記載のアルコキシシラン変性ポリアミド酸溶液を無機基板上に流延し、熱イミド化することによって、該アルコキシシラン変性ポリアミド酸溶液から得られたポリイミドフィルムが該無機基板上に積層された積層体を得る工程を含むことを特徴とする積層体の製造方法。
  6.  請求項5に記載の積層体の製造方法によって得られた積層体において、ポリイミドフィルム上に電子素子を形成する工程と、
     前記電子素子が形成されたポリイミドフィルムを無機基板より剥離する工程とを含むことを特徴とするフレキシブルデバイスの製造方法。
  7.  請求項1~4のいずれか1項に記載のアルコキシシラン変性ポリアミド酸溶液から得られるポリイミドフィルムと、該ポリイミドフィルムが積層された無機基板とを有する積層体であって、
     前記ポリイミドフィルムの線膨張係数が1~10ppm/℃であることを特徴とする積層体。
  8.  前記無機基板の厚みが、0.4~5.0mmであり、
     前記ポリイミドフィルムの厚みが、10~50μmであることを特徴とする請求項7に記載の積層体。
  9.  請求項1~4のいずれか1項に記載のアルコキシシラン変性ポリアミド酸溶液から得られるポリイミドフィルムと、該ポリイミドフィルム上に形成された電子素子とを有することを特徴とするフレキシブルデバイス。
  10.  芳香族ジアミンと芳香族テトラカルボン酸二無水物とを溶媒中で反応させることによりポリアミド酸を得る工程と、
     アミノ基を含有するアルコキシシラン化合物と前記ポリアミド酸とを溶液中で反応させることによりアルコキシシラン変性ポリアミド酸溶液を得る工程とを含んでおり、
     前記芳香族テトラカルボン酸二無水物の総モル数を、前記芳香族ジアミンの総モル数で除したモル比が、0.980以上0.9995以下であり、
     前記アルコキシシラン化合物の添加量は、前記アルコキシシラン変性ポリアミド酸溶液中に含まれるポリアミド酸の量を100重量部とした場合に、0.050重量部を超えて0.100重量部未満であることを特徴とするアルコキシシラン変性ポリアミド酸溶液の製造方法。
PCT/JP2015/070250 2014-08-12 2015-07-15 アルコキシシラン変性ポリアミド酸溶液、それを用いた積層体及びフレキシブルデバイス、並びに積層体の製造方法 WO2016024457A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580043148.6A CN106574051A (zh) 2014-08-12 2015-07-15 烷氧基硅烷改性聚酰胺酸溶液、使用了其的层叠体及柔性器件、以及层叠体的制造方法
US15/502,706 US10308767B2 (en) 2014-08-12 2015-07-15 Alkoxysilane-modified polyamic acid solution, laminate and flexible device using same, and laminate manufacturing method
JP2016542526A JP6807231B2 (ja) 2014-08-12 2015-07-15 アルコキシシラン変性ポリアミド酸溶液、それを用いた積層体及びフレキシブルデバイス、並びに積層体の製造方法
KR1020177006001A KR102294065B1 (ko) 2014-08-12 2015-07-15 알콕시실란 변성 폴리아미드산 용액, 그것을 사용한 적층체 및 플렉시블 디바이스, 그리고 적층체의 제조 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-164456 2014-08-12
JP2014164456 2014-08-12

Publications (1)

Publication Number Publication Date
WO2016024457A1 true WO2016024457A1 (ja) 2016-02-18

Family

ID=55304086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/070250 WO2016024457A1 (ja) 2014-08-12 2015-07-15 アルコキシシラン変性ポリアミド酸溶液、それを用いた積層体及びフレキシブルデバイス、並びに積層体の製造方法

Country Status (5)

Country Link
US (1) US10308767B2 (ja)
JP (2) JP6807231B2 (ja)
KR (1) KR102294065B1 (ja)
CN (1) CN106574051A (ja)
WO (1) WO2016024457A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017197645A (ja) * 2016-04-27 2017-11-02 株式会社カネカ アルコキシシラン変性ポリイミド前駆体溶液、および、前駆体溶液、積層体並びにフレキシブルデバイスの製造方法。
WO2018199117A1 (ja) * 2017-04-28 2018-11-01 三井化学株式会社 基板積層体及び基板積層体の製造方法
JP2019099697A (ja) * 2017-12-04 2019-06-24 ユニチカ株式会社 ガラス基板への塗工用溶液
JP2020094206A (ja) * 2018-12-04 2020-06-18 ユニチカ株式会社 ポリアミック酸溶液およびこれを用いた積層体の製造方法
KR20200093700A (ko) 2017-12-28 2020-08-05 우베 고산 가부시키가이샤 플렉시블 디바이스 기판 형성용 폴리이미드 전구체 수지 조성물
WO2024058194A1 (ja) * 2022-09-16 2024-03-21 三菱瓦斯化学株式会社 ポリイミドフィルムの製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11319514B2 (en) * 2017-03-03 2022-05-03 Nissan Chemical Corporation Composition for forming a coating film for removing foreign matters
JP7431039B2 (ja) * 2017-12-26 2024-02-14 株式会社カネカ ポリアミド酸組成物およびその製造方法、ポリイミドフィルム、積層体およびその製造方法、ならびにフレキシブルデバイス
CN110066396A (zh) * 2018-03-20 2019-07-30 南方科技大学 柔性链改性的聚酰亚胺前躯体及其制备方法和锂离子电池

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS64121A (en) * 1987-02-13 1989-01-05 New Japan Chem Co Ltd Polyimide resin composition and its production
JPS6469667A (en) * 1987-08-21 1989-03-15 Du Pont Polyimide coating composition
JPH03243625A (ja) * 1990-02-21 1991-10-30 Hitachi Chem Co Ltd ポリイミド前駆体組成物およびポリイミドの製造方法
JP2006007632A (ja) * 2004-06-28 2006-01-12 Shin Etsu Chem Co Ltd フレキシブル金属箔ポリイミド積層板及びその製造方法
JP2006321229A (ja) * 2005-04-19 2006-11-30 Ube Ind Ltd ポリイミドフィルム積層体
JP2007203489A (ja) * 2006-01-31 2007-08-16 Toray Ind Inc 金属層付き積層フィルムとその製造方法、これを用いた配線基板および半導体装置
JP2009294536A (ja) * 2008-06-06 2009-12-17 Hitachi Chem Co Ltd 感光性樹脂組成物及び基板の接着方法
CN101824159A (zh) * 2009-03-06 2010-09-08 北京化工大学 聚酰亚胺/梯形聚硅氧烷两面异性复合薄膜的制备方法
JP2011514266A (ja) * 2008-02-05 2011-05-06 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 高接着性ポリイミド銅張積層板およびその製造方法
WO2013125194A1 (ja) * 2012-02-23 2013-08-29 日立化成デュポンマイクロシステムズ株式会社 ディスプレイ基板の製造方法
WO2014123045A1 (ja) * 2013-02-07 2014-08-14 株式会社カネカ アルコキシシラン変性ポリアミド酸溶液、それを用いた積層体およびフレキシブルデバイス、並びに積層体の製造方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61207438A (ja) * 1985-03-11 1986-09-13 Chisso Corp 可溶性ポリイミドシロキサン前駆体及びその製造方法
JP2549136B2 (ja) 1987-01-31 1996-10-30 株式会社東芝 サーマルヘッド
KR930004777B1 (ko) 1987-01-31 1993-06-08 가부시키가이샤 도시바 내열성 절연피복재 및 이것을 이용한 써말 헤드
US4996293A (en) 1987-02-13 1991-02-26 New Japan Chemical Co., Ltd. Composition comprising polyimide resin from diphenyl sulfone -3,3',4,4'-tetracarboxylic acid dianhydride
US5063115A (en) 1987-08-21 1991-11-05 E. I. Du Pont De Nemours And Company Electronic device coated with a polyimide coating composition
JPH0749524B2 (ja) * 1988-07-01 1995-05-31 旭硝子株式会社 ポリアミツク酸組成物およびその製造方法
JP2551214B2 (ja) 1990-08-06 1996-11-06 信越化学工業株式会社 硬化性樹脂溶液組成物及びその製造方法並びに電子部品用保護膜
JPH05105756A (ja) * 1991-10-17 1993-04-27 Chisso Corp 接着性ポリイミドフイルム
JP2722915B2 (ja) 1992-01-17 1998-03-09 信越化学工業株式会社 硬化性樹脂及びその製造方法並びに電子部品用保護膜
JPH0794834A (ja) 1993-09-20 1995-04-07 Toshiba Chem Corp フレキシブル印刷回路基板
US6746639B2 (en) * 2000-09-11 2004-06-08 Kaneka Corporation Process for preparing polyimide film
JP2004256418A (ja) 2003-02-25 2004-09-16 Du Pont Toray Co Ltd パラフェニレンジアミン、その精製方法およびその用途
US8043697B2 (en) * 2005-04-19 2011-10-25 Ube Industries, Ltd. Polyimide film-laminated body
JP2008094927A (ja) 2006-10-11 2008-04-24 Kaneka Corp 新規な熱硬化性樹脂組成物
US20090035454A1 (en) 2007-07-31 2009-02-05 Occam Portfolio Llc Assembly of Encapsulated Electronic Components to a Printed Circuit Board
US20130244000A1 (en) 2008-02-05 2013-09-19 E I Du Pont De Nemours And Company Highly adhesive polyimide copper clad laminate and method of making the same
US20110124806A1 (en) * 2009-11-20 2011-05-26 E.I. Du Pont De Nemours And Company Dimensionally stable polyimides, and methods relating thereto
WO2011145696A1 (ja) 2010-05-20 2011-11-24 宇部興産株式会社 ポリイミドフィルムの製造方法、ポリイミドフィルム、およびそれを用いた積層体
JP5650458B2 (ja) 2010-08-11 2015-01-07 株式会社カネカ 積層体の製造方法、及びフレキシブルデバイスの製造方法
CN103619591B (zh) 2011-04-15 2016-02-24 东洋纺株式会社 层叠体、其制造方法以及使用该层叠体的器件结构体的制作方法
JP5862866B2 (ja) 2011-05-30 2016-02-16 東洋紡株式会社 積層体の作成方法および、この積層体を利用したフィルムデバイスの作成方法
KR101610558B1 (ko) 2011-07-12 2016-04-07 닛산 가가쿠 고교 가부시키 가이샤 액정 배향제, 액정 배향막 및 액정 표시 소자
TWI499656B (zh) 2011-07-14 2015-09-11 Nissan Chemical Ind Ltd Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
WO2015182419A1 (ja) * 2014-05-24 2015-12-03 株式会社カネカ アルコキシシラン変性ポリアミド酸溶液、それを用いた積層体及びフレキシブルデバイス、並びにポリイミドフィルム及び積層体の製造方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS64121A (en) * 1987-02-13 1989-01-05 New Japan Chem Co Ltd Polyimide resin composition and its production
JPS6469667A (en) * 1987-08-21 1989-03-15 Du Pont Polyimide coating composition
JPH03243625A (ja) * 1990-02-21 1991-10-30 Hitachi Chem Co Ltd ポリイミド前駆体組成物およびポリイミドの製造方法
JP2006007632A (ja) * 2004-06-28 2006-01-12 Shin Etsu Chem Co Ltd フレキシブル金属箔ポリイミド積層板及びその製造方法
JP2006321229A (ja) * 2005-04-19 2006-11-30 Ube Ind Ltd ポリイミドフィルム積層体
JP2007203489A (ja) * 2006-01-31 2007-08-16 Toray Ind Inc 金属層付き積層フィルムとその製造方法、これを用いた配線基板および半導体装置
JP2011514266A (ja) * 2008-02-05 2011-05-06 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 高接着性ポリイミド銅張積層板およびその製造方法
JP2009294536A (ja) * 2008-06-06 2009-12-17 Hitachi Chem Co Ltd 感光性樹脂組成物及び基板の接着方法
CN101824159A (zh) * 2009-03-06 2010-09-08 北京化工大学 聚酰亚胺/梯形聚硅氧烷两面异性复合薄膜的制备方法
WO2013125194A1 (ja) * 2012-02-23 2013-08-29 日立化成デュポンマイクロシステムズ株式会社 ディスプレイ基板の製造方法
WO2013125193A1 (ja) * 2012-02-23 2013-08-29 日立化成デュポンマイクロシステムズ株式会社 樹脂組成物、及びこれを用いたポリイミド樹脂膜、ディスプレイ基板とその製造方法
WO2014123045A1 (ja) * 2013-02-07 2014-08-14 株式会社カネカ アルコキシシラン変性ポリアミド酸溶液、それを用いた積層体およびフレキシブルデバイス、並びに積層体の製造方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017197645A (ja) * 2016-04-27 2017-11-02 株式会社カネカ アルコキシシラン変性ポリイミド前駆体溶液、および、前駆体溶液、積層体並びにフレキシブルデバイスの製造方法。
WO2018199117A1 (ja) * 2017-04-28 2018-11-01 三井化学株式会社 基板積層体及び基板積層体の製造方法
JPWO2018199117A1 (ja) * 2017-04-28 2019-11-07 三井化学株式会社 基板積層体及び基板積層体の製造方法
US11859110B2 (en) 2017-04-28 2024-01-02 Mitsui Chemicals, Inc. Substrate laminated body and method of manufacturing substrate laminated body
JP2019099697A (ja) * 2017-12-04 2019-06-24 ユニチカ株式会社 ガラス基板への塗工用溶液
KR20200093700A (ko) 2017-12-28 2020-08-05 우베 고산 가부시키가이샤 플렉시블 디바이스 기판 형성용 폴리이미드 전구체 수지 조성물
KR20220138011A (ko) 2017-12-28 2022-10-12 유비이 가부시키가이샤 플렉시블 디바이스 기판 형성용 폴리이미드 전구체 수지 조성물
JP2020094206A (ja) * 2018-12-04 2020-06-18 ユニチカ株式会社 ポリアミック酸溶液およびこれを用いた積層体の製造方法
JP7461626B2 (ja) 2018-12-04 2024-04-04 ユニチカ株式会社 ポリアミック酸溶液およびこれを用いた積層体の製造方法
WO2024058194A1 (ja) * 2022-09-16 2024-03-21 三菱瓦斯化学株式会社 ポリイミドフィルムの製造方法

Also Published As

Publication number Publication date
JPWO2016024457A1 (ja) 2017-05-25
US20170233530A1 (en) 2017-08-17
JP2020114919A (ja) 2020-07-30
JP6858900B2 (ja) 2021-04-14
KR20170041798A (ko) 2017-04-17
KR102294065B1 (ko) 2021-08-26
JP6807231B2 (ja) 2021-01-06
US10308767B2 (en) 2019-06-04
CN106574051A (zh) 2017-04-19

Similar Documents

Publication Publication Date Title
JP6578424B2 (ja) アルコキシシラン変性ポリアミド酸溶液、それを用いた積層体およびフレキシブルデバイス、並びに積層体の製造方法
JP6858900B2 (ja) アルコキシシラン変性ポリアミド酸溶液の製造方法、積層体の製造方法及びフレキシブルデバイスの製造方法
JP6336061B2 (ja) アルコキシシラン変性ポリアミド酸溶液、それを用いた積層体及びフレキシブルデバイス、並びにポリイミドフィルム及び積層体の製造方法
JP5650458B2 (ja) 積層体の製造方法、及びフレキシブルデバイスの製造方法
KR102066280B1 (ko) 투명 가요성 적층체 및 적층체 롤
JP2012102155A (ja) ポリイミドフィルム、積層体、及びフレキシブルデバイス
TW201930402A (zh) 聚醯胺酸組合物及其製造方法、聚醯亞胺膜、積層體及其製造方法、與可撓性裝置
JP2022008353A (ja) 電子デバイスの製造方法
JP6336194B2 (ja) ポリイミド積層体の製造方法およびその利用
JP6754607B2 (ja) アルコキシシラン変性ポリイミド前駆体溶液、積層体およびフレキシブルデバイスの製造方法
JP2007098675A (ja) 積層ポリイミドフィルム及び該積層ポリイミドフィルムの製造方法
KR20220013387A (ko) 폴리아미드산 용액 및 그의 제조 방법, 폴리이미드 필름, 적층체 및 그의 제조 방법, 그리고 플렉시블 디바이스

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15831291

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016542526

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177006001

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15831291

Country of ref document: EP

Kind code of ref document: A1